IN THE UNITED STATES DISTRICT COURT FOR THE WESTERN DISTRICT OF WISCONSIN

WILLIAM WHITFORD, et al.,
Plaintiffs,
v.

Case No. 15-CV-0421
GERALD NICHOL, et al.,
Defendants.

DECLARATION OF BRIAN P. KEENAN

I, Brian P. Keenan, pursuant to 28 U.S.C. § 1746, hereby declare as follows:

1. I am one of the attorneys representing Defendants in the above captioned action. I make this declaration based upon my personal knowledge and in support of the State Defendants' Motion for Summary Judgment.
2. Attached as Exhibit 100 is a true and correct copy of the deposition transcript of Kenneth Mayer.
3. Attached as Exhibit 101 is a true and correct copy of the deposition transcript of Simon Jackman.
4. Attached as Exhibit 102 is a true and correct copy of the Government Accountability Board's 2012 Fall General Election Results.
5. Attached as Exhibit 103 is a true and correct copy of the document marked as Exhibit 5 at the deposition of Kenneth Mayer.
6. Attached as Exhibit 104 is a true and correct copy of the document marked as exhibit 7 at the Mayer deposition.
7. Attached as Exhibit 105 is a true and correct copy of the document marked as exhibit 8 at the Mayer deposition.
8. Attached as Exhibit 106 is a true and correct copy of the GAB's 2014 Fall General Election Results.
9. Attached as exhibit 107 is a true and correct copy of the document marked as exhibit 10 at the Mayer deposition.
10. Attached as exhibit 108 is a true and correct copy of the GAB's 2008 Fall General Election Results.
11. Attached as exhibit 109 is a true and correct copy of the GAB's 2010 Fall General Election Results.
12. Attached as exhibit 110 is a true and correct copy of the GAB's 2012 Recall Election Results.
13. Attached as exhibit 111 is a true and correct copy of the expert report of Kenneth Mayer. This report is identical to the one filed with the court on July 8, 2014 (Dkt. 1-2) except it contains an Annex that was referenced in, but not attached to, the version filed with the Court.
14. Attached as exhibit 112 is a true and correct copy of the article Jowei Chen and Jonathan Rodden, Unintentional Gerrymandering: Political Geography and Electoral Bias in Legislatures, 57 Quarterly Journal of Poli. Sci. 239 (2013).
15. Attached as exhibit 113 is a true and correct copy of page 203 of the book by Michael J. Dubin, Party Affiliations in the State Legislatures: A Year by Year Summary, 1796-2006.

I declare under penalty of perjury that the foregoing is true and correct.

Dated this 4 day of January, 2016
/s/Brian P. Keenan
BRIAN P. KEENAN

DEPOSITION of KENNETH MAYER, Ph.D., a witness in the above-entitled action, taken at the instance of the defendants, under the provisions of the Federal Rules of Civil Procedure, taken pursuant to notice, before LISA A. CREERON, a Registered Professional Reporter and Notary Public in and for the State of Wisconsin, at the Wisconsin Department of Justice, 17 West Main Street, in the City of Madison, County of Dane, and state of Wisconsin, on the 9th day of November, 2015, commencing at 8:57 a.m.

A P P EARANCES
PAUL STRAUSS, RUTH GREENWOOD and ANNABELLE HARLESS, CHICAGO LAWYERS' COMMITTEE FOR CIVIL RIGHTS UNDER LAW, INC., Attorneys at Law, 100 North La Salle Street, Suite 600, Chicago, Illinois 60602, appearing on behalf of the plaintiffs;

BRIAN P. KEENAN,
Attorneys at Law, WISCONSIN DEPARTMENT OF JUSTICE, 17 West Main Street, Madison, Wisconsin 53703, appearing on behalf of the defendants.
(Original transcript is filed with Attorney Keenan)

I N D E X
Examination By: Page
Attorney Keenan 4
Attorney Strauss 124
Exhibits Nos.:Identified
1 - Analysis report of Dr. Mayer dated 7-3-15 7
2 - Letter to Dr. Mayer from P. Strauss dated 11-5-14 12
3 - Invoices from Brad Jones 18
4 - Invoices from Dr. Mayer 19
5 - Act 43 direct chart 65
6 - Canvass results for 2012 presidential and general election 69
7 - Final map table 78
8 - Gaddie metric table 78
9 - GAB canvass reporting system information 102
10 - All open seat data information117

KENNETH MAYER, Ph.D., called as a witness, being first duly sworn in the above cause, testified under oath as follows:

EXAMINATION

BY MR. KEENAN:
Q We met at the hearing on Monday, but I just introduced myself. My name is Brian Keenan. I'm an attorney representing the defendants in this case. We're here for your deposition. Have you been deposed before?

A Yes.
Q Okay. So I suppose you know some of the rules, but I'm just going to go over a few of the ground rules just to refresh your memory. We have a court reporter here, and she's taking down the testimony and so it's important we get a clear transcript. So if you'd please let me finish my question before you say your answer, I'll try to let you say your answer before I start a next question so that we make it easy for her.

You understand that you've sworn to tell the truth?

A Yes.
Q Okay. Now, if at any time during the deposition if
you don't understand my question, just let me know. We want to make sure you understood the question and give a truthful answer. So if you don't understand, just tell me. I'll try to rephrase the question or we can have her repeat it back. Do you understand?

A Yes.
Q Okay. Maybe I could just get your educational background. I know some of it's in your report, but maybe just the schools that you got, the degrees -the schools you went to, the degrees you obtained and the years.

A My undergraduate degree is from the University of California-San Diego, and that was 1982. My Ph.D. is from Yale University, and I received that in 1988. And there are subsidiary degrees you get along the way, master's and master's of philosophy, which I think the dates were '86 and '87.

Q And the Ph.D. was from where?
A Yale.
Q Yale. And then what was the Ph.D. in?
A Political science.
Q And then you are now a professor at the University of Wisconsin-Madison, correct?

A Correct.
Q Okay. How long have you been a professor there?

A Since 1989.
Q So right after you got your Ph.D. at Yale?
A I spent a year after I received my degree working for the RAND Corporation in Washington, DC.

Q And what's your current title, so to speak, as a professor at Madison?

A Professor of political science and affiliate faculty of LaFollette School of Public Affairs.

Q And what are your research areas?
A Research interests are American politics, the presidency, elections, elections administration, some interest in Australian politics, but mostly American politics.

I teach courses in the undergraduate course, courses in the presidency, a course on campaign finance, various seminars, but all of them are focused on either elections, elections administration, the American presidency, and I taught one course on comparative electoral systems.

Q Do you teach any classes that relate to districting or redistricting like that's at issue in this case?

A Not specifically. I have taught courses that deal with various issues relating to election administration and that plays a role, but no courses specifically on redistricting.

Q You're an expert -- serving as an expert witness for the plaintiffs in this case. Have you served as an expert witness in other cases?

A Yes.
Q And how many other times?
A They are in my report. I think it is six or seven times. I'd have to go back and look to be sure.

Q And how many of those deal with -- have dealt with districting situations as opposed to perhaps campaign finance or something else?

A Well, let me think for a minute. Can I look at my report?

Q Yeah. Actually why don't we mark that as Exhibit 1.

A I just want to make sure I get this correctly.
Q And then you can refer to that.
MR. KEENAN: Here's a copy for Exhibit 1.

MR. STRAUSS: Thank you.
(Exhibit 1 is marked for identification)
Q And just for the record, this is the Exhibit 1 that was provided by your counsel that has the -- I had a copy that didn't have the appendix with some data error -- or an annex, sorry. This one has the annex to it.

A So this covers the last eight years, Baldus vs. Brennan was a redistricting case. Kenosha County vs. City of Kenosha was a redistricting case. I was an expert in 2001, and I think that was Baumgart vs. Wendelberger. Those are the -- as best I can recall, those are the only cases where I have testified as an expert on a redistricting matter.

Q Okay. I'm familiar with the Baldus and the Baumgart case, but what was the Kenosha one about?

A The Kenosha case involved a dispute between the City of Kenosha and the County of Kenosha over the drawing of wards and districts and it -- as I remember, it involved disputes over whether the -- how the city and county resolve discrepancies or disagreements over wards and as they affect county supervisory district lines and city aldermanic lines.

Q Okay. That was going to be my next question. So it involved local election lines, not state assembly lines?

A Correct.
Q Okay. And which party did you represent in that -or not represent but provide an expert report for?

A I provided an expert report on behalf of the city.
Q Do you know what the end result of that case was?
A The end result of the case -- again I'd have to go
back and look at the record. The end result was that the city was able to reconfigure its wards so that they were in compliance with the -- again I'm operating -- it's been a long time, it's been four years since I've looked at this, that the city was able to reconfigure its wards to address some of the disagreement.

Q Okay. And do you know if there was a judicial decision that allowed that or was it a settlement or agreement or do you know?

A I don't know.
Q Okay. And then it says you have testified as an expert witness at trial or deposition. Which -- did you testify in a deposition, trial or both in that case?

A Baldus was deposition and at trial. NAACP vs. Walker, both deposition and trial. The one case where I testified in deposition but not in trial was McComish vs. Brewer.

Q Okay. So there was a trial in the Kenosha County one?

A There was.
Q In the Baldus vs. Brennan case, on behalf of which party did you submit an expert report -- or parties?

A I'm pretty sure it was on behalf of Baldus because

Brennan was on the GAB.
Q Okay. And what was your understanding of who the plaintiffs were in that case?

A People who were challenging the constitutionality of Act 43.

Q And then in the Baumgart case from the 2000 round of redistricting, on which side did you -- on behalf of which -- sorry, on behalf of which parties did you submit an expert report?

A That case I recall I worked -- one of the parties was the Senate Democratic Caucus I believe was the party that -- I worked for or provided the report for.

Q And what were the issues you offered an opinion on in Baumgart to the extent you can remember?

A In that case my role involved assessing the partisan consequences of the proposed plans submitted by all of the parties.

Q And did you offer an opinion on perhaps which parties under the map that was the best in that case?

A I would have to go back and look at my report, but my recollection is that both the party I was working for and the other party, which I believe was the Assembly Republicans, had submitted multiple maps and I analyzed those maps and provided analysis about the estimated consequences that those maps would have.

But I would have to go back and look at the report to be more specific.

Q And what's your understanding of the district that came into being as a result of the Baumgart case? Did the court accept either of the maps that were drawn by the parties, or did it draw its own map?

A So are we back in 2001?
Q 2001, yeah.
A So my understanding is that the court took the submissions from both parties and produced its own map.

Q Okay. Well, let's switch to this case. When did you first get approached about potentially being an expert in this case?

A I believe it was somewhere around -- it was over the summer. Somewhere around July. I don't remember precisely.

Q July of this -- 2015?
A 2014 .
Q 2014. And who did you talk to about it?
A I believe the initial conversations were with Peter Earl and Ruth, Ruth Greenwood.

Q And after that initial contact, when did you officially become involved with the case?

A I would have to look at the agreement letter. I'm
not sure when I actually signed that.
MR. KEENAN: Let's mark that then as
No. 2.
(Exhibit 2 is marked for identification)

Q And you mentioned an agreement letter and we put before you Exhibit 2, and is this the agreement letter that you're referring to?

A I believe it is, yes.
Q And it's dated November 5th, 2014. Does that refresh your recollection about the time you were retained about?

A I would say November.
Q And it's your understanding that this letter contains the scope of work that you were asked to do on behalf of the plaintiffs in this case?

A That's correct.
Q And it says that your rate is $\$ 300$ an hour. That is your rate, correct?

A Correct.
Q Looking at your report, did anyone else assist you in doing the work that went into the production of your report?

A In terms of the report, no.
Q Okay. And when you said in terms of the report, that indicates that perhaps someone else assisted you in
some other ways?
A I had a graduate student whom I've worked with before do some of the data issues, particularly regarding the -- I guess the proper term would be preparing the data for subsequent analysis.

Q Okay. And what type of data is that?
A It was, as I explained in the report, that I obtained data from the LTSB and GAB, primarily ward level election and demographic election returns and demographic data.

Q And what's your understanding of what -- first who was the grad student?

A His name is Brad Jones.
Q What did Mr. Jones do to the data in order to prepare it for the subsequent use by you?

A His responsibilities or his tasks were to do some -I'll call it cleanup to making sure that the different fields and the data conformed so that we could put them together, and I also instructed him and used him to do some disaggregation. At one of the points we took ward level estimates and disaggregated them down to the block level using voting eligible populations. So it was essentially -- I wouldn't say data analysis, but data processing to put the data in a form that was

[^0]suitable for the actual analysis.
Q You used a couple terms there that I just want to get on the record what they are. You mentioned ward level data and block level data. Could you just explain what those are?

A Sure. The data on elections and the redistricting data that the Legislative Technology Services Bureau produced were largely at the ward level or the voting tabulation district level. But I also used census data or the actual redistricting files, the map files that the Legislative Technology Services Bureau produced. And those include block level data, the 250,000 or so blocks, census blocks that are defined by the Census Bureau, and in doing the analysis and preparing the maps, I did that at the block level. So it was necessary to take the ward level results and disaggregate them down to the census block level.

Q Okay. So maybe if I could just also get you to define what disaggregate means when you're talking about the ward level down to the block level.

A Sure. In this case it means assigning values to census blocks based on the percentage of the ward population, the voting eligible population that existed in each census block. And I explained a couple of examples in the report of how I did that.

Q How big is a census block? Are they uniform in size or are they -- do they differ in terms of the number of people in them?

A They vary.
Q Okay. And then I take it that a ward is made up of several different census blocks?

A Usually.
Q Usually, okay. And does that vary from ward to ward, I guess?

A Well, in terms -- vary in terms of what?
Q Like, for example, like a ward could be five census blocks or one or 10, it depends on the ward, or do wards tend to have a certain number of census blocks that are in them?

A The number of census blocks in each ward varies.
Q Okay. And so when you're disaggregating, are you attempting to -- you're taking a larger data set made up of several census blocks and trying to establish the number of votes from the ward totals that are assigned to each different census block? Perhaps that's a bad question.

A Can you -- I mean --
Q Sure.
A -- the methodology of doing this is actually pretty standard. It's common and disciplined, but I want to
make sure that I understand what I mean based on -match it up.

Sure. Well, maybe you could explain what you're doing when you take -- I take from your testimony that you're taking ward level information then and it's a bigger number than trying to break it down into smaller numbers that go into each census block?

A Correct. When you're working with GIS data or geographic data, it's very common to apply or to transfer information at one level to another level. And a common way to do that is that you assign or distribute values at a higher level to a lower level based on the distribution of population.

So in my report, I developed estimates of partisanship, the number of people who I estimate will vote Democratic or Republican, and I broke those down or distributed those ward level totals to the various blocks in that ward based on the proportion of each block or the proportion of a ward that was made up in that block.

Q Okay. And when the data disaggregated from the ward level to the block level, is it a straight population, for example, like one block has 30 percent of the people of this ward, so, therefore, 30 percent of the totals get assigned to that block, or
do you actually go into the demographic data and adjust for different types of populations that vary block to block?

A I did do adjustments -- I made two adjustments. One is that we adjusted for citizenship using data that is data on people who are of voting age but are not eligible to vote because they're not citizens. And I also controlled for institutional -- prison populations which are similarly -- these are typically voting age, but they can't vote in Wisconsin and so it was -- I made a calculation of the voting eligible population in each ward and block.

Q But after you accounted for those two issues, then were the votes assigned from the ward level to the block level based on just the percentage of voters that -- eligible voters that were in that block compared to the whole ward?

A That's correct. And that's very common in both GIS and in political science as a way of doing that.

Q Sure. And I'm just trying to make sure that I understand it correctly.

A Sure.
Q Okay. I've got a couple of documents here.
(Exhibit 3 is marked for identification)

Q And I guess first I should maybe back up a little bit. So you understand that there's a subpoena issued for documents related to this case, correct?

A Yes.
Q You turned over documents that were in your possession to your attorneys who then turned them over to me, do you understand that?

A Correct.
Q And so what was your understanding of the documents that you were supposed to give to your attorneys that they could provide to me?

A My understanding was that I was to turn over documents that reflected the things that I took into account, all of the data sources that I took into account in preparing my report.

Q Okay. And so there weren't any documents that you took into account in your report that you failed to give to your attorneys?

A There were some things in the bibliography, I suppose, the publicly available things that I relied on, but there was nothing that I relied on in making my report that I did not turn over.

Q So getting back to No. 3, I'll just tell you what I did. This is several different documents that were in your production that I put together. These were
the invoices that listed Brad Jones on them.
A Um-hum.
Q And I tried to put them in chronological order. And you mentioned Brad Jones before. So are these the invoices for Mr. Jones' work on this case?

A These look -- these are the invoice that he submitted, so reflecting the work that he did.

Q And then do you know if he's been paid for his work?
A He has.
Q Okay. And who has paid him for the work?
A I believe the same people who paid me.
Q And who is that?
A The Chicago Lawyers' Committee, and I did receive one check or a couple of checks from the national ACLU.

Q And then I also --
MR. KEENAN: We'll mark this as No. 4. (Exhibit 4 is marked for identification)

Q Exhibit 4 is similar to what I did with Exhibit 3 was I took the invoices that had Kenneth Mayer Consulting, LLC on it and put them in chronological order and just grouped them together here. So if you want to take a look at that, and I'm just going to ask you if these invoices constitute all of the invoices that you've submitted for your work in this case.

A So this looks like -- it looks like there's one error. The invoice I submitted in February was for January, but it says the dates of services were December. So that looks like it's incorrect.

Q Okay. But that's just a typographical error?
A Right.
Q Okay. It says Kenneth Mayer Consulting, LLC. What is that LLC?

A That's a limited liability corporation that I set up in the State of Wisconsin.

Q And is that the -- I guess the business forum for which you do the consulting work on these when you're an expert witness?

A Correct.
Q Looking at Exhibit 4, I noticed that there's one bill for a computer. Why did you submit a bill for what looks to be a computer to the plaintiffs' attorneys?

A The software that I use to -- the GIS software only runs on Windows machines and all of my computers are Macs, so it was necessary to get a machine that could run the program.

Q So if we add up all the total of these invoices, we could get the total amount you've billed to the plaintiffs in this case, correct?

A Through these dates, correct.

Q Yeah. And has all that money been -- have you been paid for all those invoices?

A I don't know.
Q Okay. And you mentioned that some of the checks came from the Chicago Committee and others came from the national ACLU. Do you know what percentage of your invoices were paid by either entity?

A No.
Q What's your understanding of why the national ACLU paid some of the bills?

A I don't know.
Q Perfectly fine answer. I think we can put -- like 2, 3 and 4 we probably won't refer much to again, so you can probably just put somewhere. Exhibit 1 we will refer to, so you might want to keep that handy.

Another thing I didn't say is that since we do have documents and if I put a document in front of you, feel free to read it over and refresh your memory and look at it to the extent you need to to answer a question when it relates to a document.

A Okay, thank you.
Q And also I forgot to mention we can take breaks when you want, so if you're feeling like you have to go to the bathroom or anything like that, just let us know and we can take a break. I will add if there's a
question pending, I'll ask you to answer the question that's pending, but then we can take a break if you need to.

A Okay.
Q Okay. Maybe we could just go to the back of the report, the annex. You mentioned in the report that there were some data errors in Wisconsin election data, and I just wanted to ask you about what -- as I understand it, there were some errors in the ward level data not matching up between the GAB and the LTSB, is that correct?

A Correct.
Q Okay. And so how did you go about resolving any of those data errors?

A The process is that whenever I am provided or begin working with a large data set, it's always important to go through and check the validity of the data. And so in this case we had -- I had -- I'm using the royal we meaning I had the LTSB data which was an individual ward level data on demographics, population, information on the municipality, the jurisdictions in terms of assembly, senate, congressional districts that that ward was in. And it had voting data going back, depending on the file that you used, sometimes it would go back a number of
election cycles.
And so the first thing that I did is took that data file, which had 6,500 or so records, however many populated wards there are in Wisconsin, 6,592, and calculated -- used that data to calculate district level totals for assembly races, which will tell me whether or not those totals are accurate, and I compared them to the GAB, the Government Accountability Board totals and the Blue Book, the State of Wisconsin Blue Book and I took that to be authoritative.

And I found a number of cases where the totals were off, sometimes considerably. The totals were off. There were districts where according to the GAB, a candidate was running unopposed, but there were votes that showed up for both parties in the LTSB data and these were -- I found these to be significant and concluded that it required investigation. I had a conversation with a staffer at the LTSB asking them about this, and I suspected one of the problems and one of the reasons that this happened is that the GAB, the way that elections are administered in Wisconsin is that they are administered at the ward level but smaller municipalities, I think those that have fewer than

35,000 people are actually permitted to combine individual wards into reporting units, and that's done for administrative ease.

And so if you look at the official GAB totals, frequently they'll be City of Madison Ward 96, but in some areas, they'll be the City of Marshfield. It will be Wards 1, 3 and 5 and so they're combined and there is no -- that's how they received the data. And so if you looked at just the GAB, you would get data at the reporting unit level.

The LTSB has data at the ward level, and I was told by LTSB that they did their own allocation process, which is assigning reporting -- in cases where you had reporting units, to assigning those totals to individual wards, and I thought that that is one of the ways that the totals were wrong.

I have a chart in there, I believe it was the City of Mequon that shows what happened and so the City of Mequon, the LTSB data, when you take that data and recombine it into the reporting unit level, all the numbers are off. And so one of the steps that I conducted is to -- I went through in those places where there were errors, I fixed them and I fixed them by either correcting them to the totals in the GAB or I redid the -- I redid the steps that they
performed and reallocated the reporting unit totals to the individual ward levels to get accurate -- an accurate representation of what those totals were. Okay. A lot in that answer, so I'm just going to try to break it down a little bit and just try to figure out what -- so for an assembly race, if we go to the GAB election data that says Candidate A had 17,000 votes and Candidate B had 15,000 votes total throughout the district, you took that number as accurate, correct?

A I took that number as authoritative.
Q Authoritative might be a better word. And then if the GAB's ward level data didn't have an issue of combining certain wards into one reporting unit, would the GAB's ward level data be accurate or authoritative?

A So are you asking whether the GAB's individual ward level data is authoritative?

Q Yes.
A I took the GAB data as authoritative.
Q And at the ward level as well?
A Correct.
Q Okay. Now, some of the GAB data might be -- I think you said where there are several wards combined into one reporting unit, is that correct?

A Correct.
Q Okay. So I think you used the City of Marshfield example of like 1, 3 and 5? Or it's 1, 3 and 5 are combined into one reporting --

A Actually it might be better to use the Mequon because we actually have --

Q Okay, yeah. Maybe. Where is that?
A That's in the --
Q Page 3 of the annex. So we see there's three columns here on this page. One says GAB reports, one says LTSB data and one says difference. So the GAB reports, for example, it has Ward 1, there's only one ward there and a list of Romney and Obama votes and vote totals. Did you take that line, Ward 1 in Mequon, as authoritative?

A Yes.
Q Okay. But then the LTSB data, that had some different numbers there, and I take it when you looked at that data and compared it to GAB data, you noticed a discrepancy and thought that the LTSB data for Ward 1 needed to be corrected, so to speak?

A Well, there are two parts to that. I think it's more accurate to say that I looked at -- compared the LTSB data, ward level data to the GAB, so the LTSB was different and it required investigation as to why.

Q Okay. But just looking at these two, if I pulled up these two spreadsheets, so to speak, that had both of the ward units reporting here and GAB as Ward 1 and then LTSB as Ward 1, if I wanted to know which one had the authoritative vote totals, that would be the GAB?

A Right. As I understand it, the LTSB data has no official status. It is simply the data that is presented and I think that it's -- I am not aware of anything that suggests that that has any official status as opposed to something that they release. It's the GAB which I took to be authoritative.

Q Okay. And then I guess we go to GAB like, for example, the GAB reports, there's reporting Units 3 and 4 together, Wards 3 and 4 are together and if I understand your testimony correctly, in a situation like that, that may cause some errors in the LTSB data because there's one reporting unit for multiple wards?

A Well, I'm not prepared to say that the second part of that is true.

Q Okay.
A But the -- correct to say that in the GAB data,
Wards 3 and 4 produce results at the reporting unit level, and those numbers are off as well in the LTSB
data.
Q Okay. And then so when you did any sort of calculation in Mequon here, there's Wards 3 and 4 report together, what did you do to disaggregate, so to speak, Ward 3 from Ward 4 based on the data in the GAB report?

A Well, the disaggregation was the second step in this because the first step was to try to determine why these individual ward or reporting unit totals are off in the LTSB data. My experience tells me that this is an allocation issue because if you look at the totals, the last row, the total number of votes cast for Romney and Obama were all accurate. They match up perfectly.

It's just the internal distribution of those votes in the LTSB data is incorrect, and that is why I concluded that this was a problem or there was an error in how the LTSB allocated those votes, and I don't know why that happened. I don't know why the LTSB when it had individual wards just didn't plug the GAB totals in there, I don't know why.

But it's clear this was an erroneous allocation of votes in this case at the reporting unit level, and if the reporting unit level is wrong, it's not going to get better when you further disaggregate
into wards.
Q Sure.
A And so I was able to identify every case where there was what I considered to be a material discrepancy. There were some where it was a single vote or a small handful of votes that was too small to have any effect on subsequent analysis. And as I explained in the report, I went through and corrected those and there were -- this was only one of the errors.

There were other instances that I describe in here where a ward was simply assigned to the incorrect district in the LTSB data and I was able to identify and fix those.

Q Okay. But if I want to just look at the -- what were the results in a particular election by reporting unit, I can just go to the GAB spreadsheet that lists each reporting unit and that would be the authoritative source of the vote totals?

A That's correct.
Q Okay. I think that's enough on the data errors. If we just go get a little more general, what's your understanding of what partisan symmetry is?

A I understand partisan symmetry to mean that the political parties, the two major parties are treated equally in terms of their ability to translate the
votes that they receive into seats.
Q And when you say the votes they receive, what do you mean by that?

A The votes that they receive in a particular -typically partisan symmetry is used in the context of legislative races where you have a set of elections and you --

Q So it will be the votes cast for all the candidates in a particular party?

A Generally. There are some exceptions to that, as I'm sure we'll get into.

Q And what's -- and maybe we can just get into it now. What's your opinion about the appropriate way to measure a party's share of the vote in a legislative -- a series of legislative elections, for example, like the 2012 election for Wisconsin Assembly?

A In the political science literature in the context of redistricting, the general -- what is in my view the generally accepted way of measuring that is looking at some measure of the underlying partisanship of a district. Frequently this is a function of the actual votes that are cast, but there are instances where that will not give you an accurate measure of the underlying partisanship, particularly when there
are uncontested races.
But there were also issues where incumbency can affect the vote and so the -- a common, I don't know if I would say it was the most common, but a common method of estimating the vote or partisanship in a district is you construct a measure of the partisanship of that district. And sometimes you can use the actual votes. In many cases you can't.

And that gives you an estimate of what the underlying partisanship of a district would be ideally. In some cases you would need to do that independent of the actual candidates who are running.

Q For legislative elections, would it be appropriate to look at that party's candidate for, for example, presidency in the state during the same election to determine the statewide vote share for that party? MR. STRAUSS: Object to the form of the question. Appropriate for what purpose? MR. KEENAN: Well, for determining the statewide vote share that we're using in determining partisanship symmetry.

A So can you restate?
Q Yeah.
A I'm kind of losing track here.

Q Sure. At some instances I see reference to the fact that President Obama won a certain percentage of the vote in Wisconsin in 2012. Other times there's a reference to the amount of votes perhaps adjusted that the Democratic candidates won in the 2012 assembly elections. Which one would be the appropriate one to use for measuring partisan symmetry of the assembly elections?

A It depends. My references to the presidential vote is -- the statewide presidential vote is a marker of an indication. It is a measure of statewide partisanship. But that is not the measure I used in constructing my analysis of the underlying partisanship of all of Act 43 and also the demonstration plan that I drew.

Q And when you calculated the Democrat statewide vote share in the 2012 assembly elections, was it higher or lower than the share of the vote that President Obama received in Wisconsin in 2012?

A So if I calculated referring to my measure of partisanship?

Q Yes. The way you -- you said you didn't look at the presidential vote as -- you did something else, you looked at your measure.

A Right.

Q And did your measure come up with a number that was higher or lower than President Obama's vote total in Wisconsin in 2012?

A Well, now we're starting to get apples and oranges. We're talking about percentages or numbers.

Q Well, we can do either or both.
A I don't recall sitting here. I would have to look at the data to be able to tell you whether -- I would have to look at the report. I don't remember what those numbers are or even if I did that calculation.

Q Okay. And then another question would be when calculating the statewide vote share of the Republicans and the Democrats, how do you account for votes that are cast for third parties or even just scattering votes for random candidates?

A So in doing the calculation, the accepted practice and the discipline is that you count the major parties. And the scattering will typically be a minuscule proportion, but it's the two-party vote that is the quantity of interest.

Q Okay. So just so I understand that, the two-party vote would be, for example, I'm just giving you some numbers, if there's 100 statewide votes and one party got 50 votes and one party got 48 votes and another like random people got two votes, you disregard those
two votes and now the vote total is 50 to 48 , is that correct?

A Well, for the purposes of doing an analysis of a plan that you would look at the 50 and the 48.

Q And so then the percentage ends up being a little bit off where it's now the party that got 50 percent actually got a little more than 50 percent because it's --

A Well, I dispute the term off because that suggests that there is a true measure that this departs from.

Q Fair enough.
A The political scientists and people who study redistricting would say that the best measure of the partisanship in that scenario would be 50 divided by 98, which would be a small majority. We could do the math.

Q Yeah. That's just what I'm trying to get at.
A It would be 50 percent. It would be probably 51 percent.

Q So when you look at a GAB statewide election total, President Obama or Scott Walker or someone might have a total, but that's not quite exactly right because someone -- it's not the exact percentage of the two-party vote because there's some scattering of some less than one percent of votes that are out
there?
A There will be -- there are votes that are not counted in those percentages. They are almost always a trivial and immaterial number.

Q Okay. What is a wasted vote?
A So a wasted vote in the context of the efficiency gap is a vote that is cast by either the losing party in an election or for the party with -- that wins, the number in excess of what was necessary to win the seat.

Q Now, the losing party makes sense, that's pretty easy. You just take their vote total, right, and that counts -- all those are wasted votes, is that correct?

A Yes.
Q Okay. Now, for the winner, I just want to figure out how we just get to the exact number there. How do you determine the number of wasted votes for the winning candidate's party?

A So I recall it is the essentially one-half of the margin of victory in terms of number of votes.

Q Okay. So that would take the winning candidate's number, whatever it is, subtract the losing candidate's number and left with something and then I divide that by two and I got -- and that's the wasted
votes for the winning candidate?
A Say that again. I want to make sure --
Q Sure. Yeah. I may not have explained it very well. So I would take the vote total for the winning candidate and then subtract from that the vote total for the losing candidate and I'm left with the difference -- the margin of victory, correct?

A Correct.
Q And I would take the margin of victory and divide that by two and I have the wasted vote number for the winning party?

A Correct.
Q Okay. And if I just to make sure that that number is a two-party vote measure, it also kind of disregards any sort of stray votes that are cast for candidates outside of that two-party race?

A So it's correct that that quantity is calculated using the -- well, it will always be the Democratic and Republican candidate and -- but it counts only those votes.

Q What's your understanding of where the -- well, first maybe you mentioned that as part of the efficiency gap, we're talking about the wasted vote. What is the efficiency gap?

A It's a measure of the -- it is a measure of the total
number of wasted votes divided by the total number of votes cast and it gives you a measure of the relative number of wasted votes for the two parties.

Q What's your understanding of where this version of the efficiency gap first came into being in the political science world?

A Well, that's an ambiguous question because the method and quantity was explained in a University of Chicago Law Review article. I don't know exactly the publication date. It may have been October 2014 or something like that, but I can't tell you the history and evolution of the concept.

Q So did that article from you think maybe October of 2014 but may be off a little bit, did that article provide the basis for how you went about calculating the wasted votes in Wisconsin in 2012?

A So my method of calculating the wasted vote relied on the methods and formulas outlined in that article.

Q Okay. And then were there any other -- whether they're law reviews or political science articles or I don't want to limit it, but any other articles or maybe something else that you relied on in developing your method for calculating the wasted votes in Wisconsin?

A Well, in terms of the actual calculation of the
wasted votes or the method -- so in terms of the -once I had my district level measures, my method of calculating the wasted votes, I did not rely on any other sources.

Q Okay. Yeah. I'm aiming more at the theoretical concept that you were using, where that came from. And so that came from this article in the Chicago Law Review?

A Yes.
Q Okay. How does this efficiency gap method of calculating partisan symmetry differ from other methods of calculating partisan symmetry?

A That you'd have to ask the author of the article. I'm really not in a position to answer that.

Q All right. Are you familiar with the term partisan bias as a measure of political or partisan symmetry?

A Well, the partisan bias is not really synonymous of partisan symmetry. It reflects something different.

Q Enlighten me, I guess. What does it reflect that's different?

A So the quickest definition of partisan bias would be in a 50-50 election what percentage of seats does the majority party have and so if the -- so if there was a 50-50 election and one -- in that election, one party had 55 percent of the seats, would you
calculate the partisan bias at five percent, and there are sort of roughly analogous methods of looking at it at different levels, but that's -- as I understand it, that's the most common way of measuring the partisan bias.

Q Have you ever performed a partisan bias calculation on Wisconsin or any other state's election?

MR. STRAUSS: Object to the form. In what year?

MR. KEENAN: Any year.
A It's possible that I may have done something similar in the Baumgart case. I don't remember.

Q Do you consider yourself an expert in calculating the partisan bias in this 50-50 election scenario?

A Well, can you define -- I mean I know how to do it. Q Okay.

A And I'm familiar with the literature of how that's done.

Q All right. Well, I just didn't want to start asking you questions about something you had no idea what it was. So how does one go about determining how many seats a party would win in a 50-50 election?

A So normally the method would be to construct an underlying measure of election outcomes and then typically you would perturb -- you would apply
frequently what would be a uniform swing and you would assume that the percentage of the vote that the one party gets goes up or down by a fixed amount around the state and you would adjust that to see what happens at 50 , look at the numbers of seats and that's what you would use as the partisan bias, and there are lots of refinements in terms of how you calculate the winners, but that's -- my recollection is that that's the most common method of doing it.

Q So someone has to create a model that determines underlying partisanship of each and every district in the state?

A Well, you wouldn't necessarily need to -- you can do it just looking at the actual votes, but it ultimately relies on some measure of election outcomes at the district level that you can perturb or examine what happened under some alternative scenarios.

Q And then so, for example, in a 48-52 election, this many seats, and then eventually you get to 50-50 and then you have to see how many seats each party gets?

A Well, it's more complicated than that. In a 48 to 52 statewide election, the district level votes would be distributed, and so you would see what happens in the district where you perturb the percentage.

Q Okay. I guess to be clear, the method you used in this case isn't a measure of partisan bias in the 50-50 election?

A That's correct.
Q Why don't you explain the -- how you went about determining the underlying partisanship of each district in the Wisconsin Assembly? And feel free to refer to your report to the extent you need to do that.

A What I did in the report was construct the regression model that uses as the dependent variable the actual assembly vote in contested districts. And the independent variables, I'm going to refer to my report here just to make sure I get this correct.

Q Sure. And just identify, please, the page where you're at and we can follow along.

A Okay. So I'm on Page 10 and 11. So it explains -it is a model that uses as a dependent variable the assembly vote in a particular ward. This is ward level analysis.

Q Maybe I could just stop you. In terms of the assembly vote just so -- I know they're small numbers, but is this the two-party vote or the total vote?

A I did a separate model for Democrats and Republicans
in each district. So this is the actual number of votes received by in the first case the Democratic candidate and then I ran the model again for the Republican candidate.

Q For just the D's and R's, so if there was some candidate that gets 15 and I look at the results, I need to add the Republican and the Democratic actual votes to get the total votes in your model?

A Well, the way that you would use this to get a district level measure is that you would look at the Democratic and Republican totals.

Q All right. Continue, sorry.
A Then the dependent variables again for each ward are the demographics, the total voting eligible population and these are numbers, not percentages. The total Black voting eligible population, the Hispanic voting eligible population.

And on the next page, the Democratic and Republican presidential vote, again these are all absolute totals. A dummy variable, if there is a Democratic incumbent or a Republican incumbent and that's one, if it's a Democratic or Republican incumbent, zero otherwise. And then the last term of the county, that's what's called a fixed effect, there's a dummy variable for each county reflecting
some possible geographic effects.
And I did this again for the underlying data with the actual vote totals in contested assembly districts in 2012.

Q Okay. One thing is just with political scientists, you guys like to use these equations, and I'm not sure exactly how to say the letters and numbers and things that are there. So when it says y and then like little i, I guess, how would I just like refer to that?

A That's Y i or Y, sub i.
Q Y, sub i, okay.
A But that's just sort of a symbolic representation sort of explaining the regression and just sort of as -- expresses the fact that this is a linear model.

Q And then the sub i is meant to refer to -- that's for one district?

A For each ward.
Q Each ward, okay, that's a ward. And then there's A, do we just call that, or alpha?

A Alpha.
Q And then is the next one beta?
A Beta.

Q Sub i or sub 1?
A Yeah.

Q Okay. And then there's the really fancy one at the end?

A Right. That's basically it reflects the fact there are 72 counties in Wisconsin. So rather than write out all 72 counties, it's a way that for each county, it's a 1 if it's in that county, a 0 if it's not and then I believe I excluded Dunn County because when you have a dummy variable that's exhaustive, you need to exclude at least one variable because otherwise you have a constant that makes it difficult to -- or makes it impossible to generate the estimates.

Q We've been going for like an hour. I don't know if you're fine still going or if you want a break.

A I could take a break.
MR. KEENAN: Okay. Let's take a break.
(Short recess is taken)
Q Mr. Mayer, before the break, we had just started to get into the model on Pages 10 and 11, so we can just go back there and I'd like to just go into each of the different pieces of the model and we can just talk about them individually. So I think we already talked about the assembly vote part of it. The total voting age population, why don't you explain that element of the formula?

A The census produces numbers for each block which the LTSB aggregates into wards, and one of the variables is the number of people 18 or over who are eligible to vote. I did two corrections. One is that I adjusted for estimates of noncitizenship rates using separate estimates that the census produces. I believe I used county level estimates of basically the percentage of adults for noncitizens and did that correction and also removed institutionalized felon populations using state and federal prisons.

Q Okay. So I think we talked about that earlier in the deposition.

A Okay. And so that gives me an estimate of the number of people who are eligible to vote in each ward, which is a better figure to use than the total number of people because there may be numbers of people who for whatever reason are not eligible to vote. Generally these numbers are going to be small enough that they are not likely to make a material effect on the outcome.

Q So just so I understand the county level issue with the noncitizenships, for like a ward that's in Dane County here, you just took the Dane County average for noncitizens and applied that to each ward in Dane County?

A Well, there are separate estimates for each ethnic and demographic group. So there's noncitizenship for Whites, African-Americans, Hispanics, Asians and so I applied the noncitizenship rates to each of those demographic groups.

Q So as they appear in Dane County, so if there's five percent Hispanics, then you needed to -- I'm sorry. Probably I think that's a bad question.

So you looked at the underlying demographic data of each county or did you look at the demographic data of each ward?

A Well, I applied the county level noncitizenship estimate to the wards and they don't differ that much from the municipality level estimates. One of the reasons I used the county estimates is because you have a slightly larger geographic jurisdiction. Those estimates are going to be more accurate because there are more people. But I strongly suspect that it would not change if I had applied the city level figures in any case. Those would have been -- there was a larger chance that those estimates were inaccurate or would be more likely to be a larger margin of error using the larger base population.

Q Sure. And I guess maybe I'm trying to figure out that's the percentage of noncitizenship used. What
did you apply that to?
A So I applied the voting age to the voting age population. Just to give a hypothetical example that in most parts of the state, the noncitizenship rate among White voting age, White non-Hispanic voting age, the noncitizenship rate is on the order of 1 to 1.2 percent and so would reduce the ward level populations by that much. They tend to be very small with the exception of Hispanics where you have a larger noncitizenship rate.

Q But you looked at each individual ward's demographic data to determine like how many Hispanics are in this ward and then applied the noncitizenship factor to that ward individually?

A Correct.
Q All right. I probably asked that poorly to get that simple answer, so I apologize.

Why don't we just -- I think you probably can address Black and Hispanic voting age population together. Like what do those elements mean?

A Those are again taken from census. The number of people identified in census as Black and Hispanic and again with the same adjustment made for voting eligible population.

Q Okay. And then why did you break out Black voting
age population, Hispanic voting age population separately from total voting age population?

A Well, the reason I did that was because the propensity to vote the partisanship of different demographic groups varies. Blacks are more likely to be democrats. Hispanics are slightly more likely to be democrats or vote Democratic is the proper way to phrase that. And so it was -- I considered it necessary to include a measure of that as a way of trying to estimate the number of people who vote for one party or the other.

Q When you eventually did the -- run the numbers for an individual ward, what -- I'm trying to think of the way to ask this. But, for example, like when you put in the Black voting age population, what percentage of that are you assigning to like the Democratic column, or is that --

A That's purely a function of what the data showed. I wasn't doing any prior assignment.

Q Okay.
A It was you run the regression, you will get a coefficient that tells you each additional Black voting age person will add a certain number -- in this case a fraction of votes for Democrats or Republicans, so it's not an assumption that I made.

It's driven by the results.
Q Sure. I didn't mean to like imply that, but you gave me the way to ask it to you, I think. How did you develop that coefficient that then goes into the formula?

A That's simply a function of the regression commands done in this data where you have the data and you tell it I want to use this as a dependent variable and here are my independent variables and it performs the calculations and it gives you the results and you show them -- give some of the results and the annex gives the full set of coefficients.

Q Okay. So if we just turn to the annex to --
A It would be Page 5.
Q Page 5, okay. So it says Black voting age population, coefficients negative .03, is that what you're referring to?

A Correct.
Q So for someone that doesn't have as much of a background in stats, what does that mean?

A So the way that you would interpret this result or that results, the coefficient is minus .03 which suggests that each -- and this is all linear -- the unit of analysis is the person. So each additional -- as the Black population
goes up, the Republican number -- number of Republican votes will tend to go down. You also need to look at the estimate of precision, which is the standard error, and that simply gives you a way of assessing how precise this estimate is and in particular use that further statistical test to see if the coefficient is different from zero. And the P-value, which is the last, that gives you the probability that the number is significantly different from zero.

The bottom line is that the Black voting age, this coefficient is not significant. And the reason it's not significant is that the bulk of that effect is going to be picked up through the Republican and Democratic presidential votes, that if I know how many Republicans vote, if people voted for Republicans, having the additional information of how many people in the ward were African-American doesn't give me much more information, which is a little different than for the Democratic vote. So that's why I ran different models.

Basically through -- in this table, the coefficients, the rows that are bolded, those are what would be defined as statistically significant coefficients.

Q Okay. So the ones that are not bolded, Black voting eligible population, Hispanic voting eligible population and Democratic presidential votes, are not significant?

A Correct.
Q Statistically significant?
A Correct.
Q And then maybe I can just get you to define what these columns are. You mentioned them, but the robust standard error, the t -statistic and P -value. A So the standard error, again it's the calculation of the precision of the coefficient estimate that the coefficients will be drawn -- it will be a distribution and basically if you think of it as a curve, as the standard error goes down, that curve gets narrow and so you can have more confidence that that number is precisely where it is.

It's robust because there's an adjustment to be made when the -- each of the wards is clustered into a particular district and we know that you have one candidate running in a series of wards and so it's an adjustment that is made to the standard error to account for that. The t-statistic is simply the coefficients divided by the standard error, and generally the t-statistic is greater than plus or
minus -- it's greater than 1.96 or smaller than minus 1.96. That gives you a measure of the statistical significance. And the P-value is just an expression of the significance of the estimate.

Q Okay. I think you may have just done this, but it slipped out of my head. The P-value, what's the cutoff for showing what's significant or not significant?

A So the typical standard is using -- it's called a 95 percent confidence interval and that in a data set of this size, that cutoff will be 1.96 .

So you can see just an example, the Republican presidential votes is .95, which means that each additional Republican presidential vote gives you . 95 votes for the candidate. The standard error is . 01. The t-statistic is 110, which is -- that means that the probability that that number is actually zero is zero.

Q Okay. Maybe you could explain why the Democratic Assembly incumbent and Republican Assembly incumbent are also significant.

A Generally when there's an incumbent in a race, that incumbent will do better. There's long literature in political science explaining why this is true. Better name recognition, better candidates, they tend
to have more experience, more money. And so other things being equal, an incumbent will do better in a district than a non-incumbent of the same party would do.

Q Looking at the numbers, could you just explain what those numbers signify in terms of their significance?

A So generally a -- so we're looking at the number of votes that the Assembly Republican candidate would get. And the fact that the Democratic Assembly incumbent coefficient is negative, it's small, but it's negative, is that other things being equal in a race where the Democratic Assembly incumbent, the number of the votes for the Republican will go down.

Q Okay.
A And the reverse for the Republican incumbent, that in the case where you have a Republican incumbent, that will go up. And I need to make one correction. The Democrat -- the incumbency coefficients are weighted by the population of the ward.

Q Explain what that means.
A So if I just used -- typically you would just use a dummy variable. It's one in a ward where there's a Democratic incumbent and zero when there's not, but because the wards are unequal size and some of them they have populations ranging from a few hundred to a
few thousand, that would bias the results because you would expect more votes for the Democratic candidate when you have a Democratic incumbent in a ward of 3,000 people as opposed to a ward of 100 people or 300 people.

And so this is -- you would have to multiply this number by the population of the ward to get the number of additional votes that the candidate would receive.

Q When you're calculating the raw like actual total numbers, but is the percentage effect the same? You know, like a 100-vote ward might get two more votes or something, but then you'd upscale that to 1,000 and it gets a load of 20 more votes or something? Or is there a difference added to that?

A Well, the coefficient is that the -- let me think here for a minute. The independent effect of incumbency would be -- as a theoretical quantity would be constant across wards, although the effects would not. So basically for each additional person, you would expect an effect based on incumbency and that effect -- that effect on that individual person or that individual level effect would be the same in a ward of 100 people as opposed to a ward of 3,000 people even though the total number of votes that the

Republican or Democrat would get would be different in those two.

Okay. So if I'm looking at just a district-wide vote total that isn't broken down into each individual ward, is there a way to take your number and just kind of like convert that into like a total percentage of the vote that's a bump due to incumbency, you know, like five percent, two percent, one percent just to kind of get an idea as to like the magnitude of that effect?

A I'm just trying to work out in my head whether you could do that. The way that this model expresses that is that you would get an increment in each ward based on the coefficient and the size of the ward, and I think it's possible that you could simply apply that to the district-wide total. But that's -- I would not be comfortable doing that.

The way that I would want to do that is to do the analysis and actually look at the incremental number of votes you get on a district by district basis. You might be able to get a first approximation of what that might look like, but it's -- there are reasons why you would want to interpret that with caution.

But the general rule holds is that -- the other
issue here is that that coefficient exists after you have taken into account the Republican and presidential -- Republican and Democratic presidential vote. So you wouldn't be able to look at that number and say, ah, there were 50,000 votes or 40,000 votes cast in the assembly race, . 02 , that means that the Republican advantage was 800 votes.

You would have to look at that and say that would be after you take into account all of the other variables. So this is the independent effect of incumbency once you've controlled for the other variables. So in that sense, you wouldn't be able to take this coefficient and just apply it to a district to come up with an estimate of the total effect of incumbency.

Q So the effect of the incumbency, will it be different, for example, a ward that has 55 percent that voted for the Republican presidential candidate versus another ward that has 40 percent that voted for the Republican candidate? You know, how does the effect of this Republican Assembly incumbent differ there?

A This is a linear estimate and so that assumes that the effects would be the same at different levels of Republican support or Democratic support.

Q Okay.
A But again the number -- that that would be after you take into account the Republican and Democratic presidential votes, so you would not see the same presidential number of votes for Republicans and Democrats in the 55 percent Republican district as opposed to 55 percent Democratic district. So you need to keep that in mind that this is controlling for all of these factors, including population and counties and all of these things.

Q I think I understand it. So we've been talking about the Democratic and Republican incumbents. I think we've gone over those. And then the county, what exactly is the county effect?

A Well, there are different areas of the county that may have particular political dispositions that these don't capture and it was -- struck me as prudent to put this in. You can see most of the effects are actually not significant, and even the effects on which you would think of the most Republican and most Democratic districts, like the effect in Washington County, Waukesha County, Ozaukee County, Dane County, Milwaukee County, those are all not significant, but it gives me a little more analytical leverage to include those.

Q And what page?
A We're looking at the coefficients on Page 6 and 7.
Q It's the same that these ones that are bolded are the ones that have a significant -- statistically significant effect?

A Correct.
Q So then you mentioned Dane and Milwaukee and Washington. And those are not bolded, that's the way you reference it?

A Right. That means once you take into account all these other variables, being in Dane County does not have an independent effect on the Republican presidential vote.

Q So just going back to Page 10 and 11 -- 11, I guess, in this -- should I call it an equation?

A Sure. Or model.
Q Model. Which elements take the actual votes cast in -- for the assembly candidates in that district -as maybe I should say you applied this model to several different -- to Act 43 actual elections and then to your demonstration plan. I'm kind of focusing on the Act 43 since there's no actual elections under your demonstration plan.

When looking at Act 43, which elements of this model take into account the actual votes cast for the
particular candidates in an assembly district?
A I would say they all do because the actual vote is the dependent variable. So these all reflect the estimate of the effect these variables have on the actual vote. So in that sense, they are all related to what actually occurred in the -- in contested districts.

Q But in terms of actually like plugging in the numbers of Candidate A in District 1 got 12,000 votes and Candidate B in District 1 got 15,000 votes, where do those numbers go into the equation?

A They go in on the left-hand side.
Q The assembly vote?
A Right.
Q Where you add up total votes Republican and total votes for Democrats?

A Well, again we'd need to be precise here that the dependent variable is the ward level totals. So I'm not adding anything up there. And that the model estimates the effect of all of these independent variables on the actual vote. So in that sense, they are all connected and they all are a function -- all of the estimates are a function of the actual vote.

Q Let's go to something else quick. Page 40, there's like Figures 10, 11 and 12. I'll just ask you some
questions on those, but you can look at them to familiarize yourself.

A Okay.
Q So we'll just start at Figure 10 and it says actual 2012 Republican Assembly vote in Act 43 districts. What did the numbers in Figure 10 represent?

A This is a histogram that shows the distribution of the actual results. And the way that you would look at -- so the X axis here is the Republican vote percentage in 2012 going from zero to 100 and what this shows is that the left-hand bar, the one with the 23, that is 23 districts in which there was no Republican running, so that Republican vote percentage shows up as zero.

You look at the right-hand side where there's the bar with the 4, that shows that there were four districts where there was a Republican on the ballot but no Democrat. And so the rest of these figures show that, for example, there was one -- this is just the Republican votes.

If you looked at the Democratic vote, it would be the mirror image of this. There was one district in which the Republican got between 25 and 30 percent of the vote, nine where the Republican got between 40 and 45 percent. The bold vertical line is 50
percent, so everything to the right the Republican won, everything to the left, the Republican lost. And this shows you that there were a large number of Republicans who won with between 50 and 60 or basically between 50 and 65 percent of the vote.

I counted 51 Republicans won with between 50 and 65 percent of the vote. So this shows the distribution of the actual results.

Q And the percentage of vote, is this like we'd been talking about before, the two-party vote, or is this just like the top line number?

A I believe this is the percentage of the two-party vote.

Q So someone might have got 47. -- or 49.8 percent, but they would actually be counted as above 50 percent because once you look at if they won the seat, they would have gotten more than 50 percent of the two-party vote? And it's like a hypothetical of a guy -- you know, a close race where there's 48 to 49.6 and then there's scattering.

A It is possible that if someone got 49.9 percent of the vote and the Democrat got 48 percent and there's someone else with that extra, it's possible that that could move someone over 50 percent, but I don't recall that there were any -- certainly not many
examples of that.
Q And then going to Figure 11, it says Republican vote forecast in Act 43 districts-Gaddie measure. What does this represent?

A This is estimates that the expert that was hired in the 2012 redistricting case, he did an analysis for the -- I guess we'll call them the defendants. I don't know if that's the right term -- where he derived his own estimate of what the results would -like what the partisanship would be and the projected Republican vote in the Act 43 districts and laid along the same axis. So you can visually compare them.

Q And then going to Figure 12, it says Act 43 baseline partisan measure. What does that recommend?

A This is the numbers that came out of the regression model. It gave me estimates of the number of votes that were cast, and from that, I extracted the incumbency advantage. So the baseline partisanship is an estimate of what the vote would be in an Act 43 district that was contested with no incumbent.

Q And this reminded me of something I forgot to ask on your model. What elections went into looking at the baseline for you to determine the baseline partisanship of the districts? Did you just look at
the 2012 election results, or did you look at past elections as well?

A I used the 2012 election results.
Q And so if we look at Figure 12, that's your calculation of the baseline partisan measure based on the 2012 election results?

A Correct.
Q I was going to get to Table 9, which is on Page 52 -no, sorry. Table 8. Table 8 on Page -- how you calculated the efficiency gap for Act 43.

A We're on Page 50?
Q 50, yeah, sorry. I misspoke. Why don't you just generally explain what your -- what the calculations you did on Table 8.

A So this reflects my -- the results of the model which I used to produce estimates of the votes that -- the underlying partisanship of the votes. It's basically the model applied to Act 43 districts extracting the incumbency advantage.

The reason I did that is I wanted to have a uniform basis of comparison with my demonstration plan, the results produced by Professor Gaddie, and compared it to the underlying partisanship of the Act 43 districts. So the predicted Democratic and Republican votes are the model estimates of what the
votes would have been and if the race was contested and when there was no incumbent running.

So this is a way of correcting for the -- how to deal with uncontested races because we know in an uncontested race that even if there's no Republican on the ballot and the Republican gets zero votes, that doesn't mean there are no Republicans in the district. So it's necessary to correct for that. And so this is the -- each district from 1 to 99 has a predicted Democratic and Republican vote total which is produced by the model.

It predicts the winning party, which is simply which candidate gets the most votes, and then it goes through and calculates the efficiency gap for each district, the lost -- the votes for the losing candidate are lost, the surplus votes or the votes in excess of what is necessary. So the efficiency gap has two categories of wasted votes. There are lost votes and there are surplus votes, that the lost votes are the votes cast for the losing candidate. The surplus votes is one-half of the margin of victory for the winning candidate.

You would add up the surplus and wasted votes or the lost and surplus votes for Democrats and Republicans and you can -- and then you basically add
those up across all districts and the difference between the wasted Democratic and wasted Republican votes gives you a net wasted votes which when divided by the total number of votes cast gives you the efficiency gap.

Q I'm going to mark a document.
(Exhibit 5 is marked for identification)
Q And I've put before you Exhibit 5. What this is is there was a document that your counsel provided called -- it was a spreadsheet called Efficiency Gap Calculations, and there were several tabs in that Excel spreadsheet, and then this was the one that was labeled Act 43 Direct. So it had a lot of columns, so I printed out on legal size paper here, but I think it matches up with the calculations done on Table 8 in terms of the -- you can check that over to make sure I gave you the right document.

A So this looks like the spreadsheet I used to generate this table.

Q Okay. So I was just going to ask you some questions on the spreadsheet and the columns and just what they are. So obviously district is the district and then there's Pop, what does that mean?

A That I believe is the population of the district, total population.

Q And then there's a column that says Dev, do you know what that --

A That's deviation, which is the difference between the population and the ideal population, which I believe is 57,444. Yeah, that's what it is.

Q Okay. And then percent?
A The percent deviation.
Q And then there's dhat_open. Do you know what that --
A So typically when you're dealing with an estimate, you use -- if you were to write it down, it would be a D with a caret over it, so dhat, rhat. So that was how I identified that it was a predicted value, and then open reflects the fact that it assumes -- it's an estimate after the incumbency advantage has been extracted. So it assumes that the seats are open.

Q So that -- you see that 16.235 is what's listed on the Table 8 as predicted Democratic votes?

A Correct.
Q And so that column is what your model predicts would be the Democratic votes in the Assembly District 1?

A Correct.
Q The Dem percent, what does that mean?
A That's the percentage of the Democratic vote of the two-party vote. Basically you add up the Democratic and Republican vote and you divide the Democratic
vote -- or you divide each party's side by that total and that gives you the percentage of the two-party vote.

Q And it says rhat_open. I think I know what that means, but you can explain it.

A That's the estimate of the number of votes that a Republican candidate would receive in a contested race with no incumbent.

Q And then I would think Republican percentage, that's the baseline --

A That's the Republican share of the two-party vote.
Q Okay. And then D Lost?
A So that's -- I think those just matched the lost Democratic, lost Republican, surplus Democratic, surplus Republican, the total of the Democratic and Republican wasted votes.

Q All right. And then Rep Win, it says 1, I take it that means the Republican would win that district?

A Correct.
Q How is the R surplus determined? I was trying to figure that out by just adding and subtracting these numbers, but I wasn't quite sure how it worked out.

A It should be that if you subtract the Republican vote from the Democratic vote in District 1, for example, that gives you 383 -- 393, I believe that's right.

So that gives you 393, the margin of victory, you divide that by two, which gives you 196.5, which I rounded.

Q Okay. To 197, all right. And so for every one of these districts, we can just do that same calculation and we'll get that R wasted or the D wasted if they're the winner?

A Correct.
Q Okay. Now, so if we look at the District 1, you can look at either the spreadsheet or the table, this is a pretty close election, correct, in that there's 197 surplus votes?

A That's a close election.
Q Okay. Then how would you characterize the seat as like a toss-up seat or a swing seat, or is there a name that you characterize kind of a 50-50 seat like this?

A It would be accurately characterized as a toss-up seat.

Q Okay. Now, I take it if the surplus Republican votes, it's only 197, if this election goes a little bit differently in real life rather than in the model and the Democratic candidate wins narrowly, then these numbers flip in the sense that the Republican is going to have 16,000-some wasted votes and the

Democrat is going to have a narrow number of surplus votes?

A Correct.
Q Okay.
(Exhibit 6 is marked for identification)

Q I put before you Exhibit 6, which is a printout from the Government Accountability Board website, and this is the 2012 fall general election final vote totals from the GAB website. So if you could flip to -- I printed out the entire thing because I just figured we should have the entire document, but the assembly districts start --

MS. GREENWOOD: Page 8.
Q 8, okay. So if we look at Assembly District 1, on the official results, the actual results were Gary Bies, I think the Republican won with 16,993 votes at 52.27 percent and then Patrick Veeser I believe is a Democrat. He lost at 48.65 percent. So I guess what I'm trying to say is the actual election results, the 69.83 is not the number that you have here for the Republican votes in Assembly District 1?

A That's correct.
Q And then also the 16,124 is different from your predicted Democratic votes?

A That's correct. Again this table is based on
estimates of what the vote would be.
Q Okay. So why did you use estimates instead of the actual vote totals?

A Because in extracting the incumbent advantage, I concluded that it was best to use a consistent methodology rather than picking and choosing and applying one method in this district, one method in that district.

And again this is consistent with what Professor Gaddie did, and I wanted to make sure that I had a consistent methodology that I applied to Act 43 and the demonstration plan because in the demonstration plan, we -- that's based on a hypothetical set of results in a different plan and wanted to make sure that I was applying a consistent methodology and consistent judgment in making comparisons across the two plans.

Q And but Act 43 elections did take place with actual incumbents running, correct?

A That's true.
Q So when you look at the actual vote totals cast in the assembly districts, they reflect whatever measure of incumbent advantage any incumbent had?

A That's true.
Q Now, in your predicted Republican vote total, 16, 628,
is that created just by looking at 16,993 and subtracting out an incumbent advantage?

A No.
Q So it is 16,628 is produced by that model we went through earlier that had the number of different variables --

A Correct.
Q -- on Page 10 and 11?
A Correct.
Q We don't need to go through them all again.
A But again after extracting the incumbent advantage. I actually don't know sitting here whether Gary Bies was the incumbent in District 1.

Q Yeah, perhaps he wasn't. Now, subtracting out the incumbent advantage, that ends up reducing the wasted votes for any incumbent who won, is that correct?

A It would -- extracting the incumbent advantage would reduce the number of votes for the incumbent, so it would have the effect of reducing the number of surplus votes.

Q And then this is like -- am I correct in saying that this is a zero sum gain with respect to the Democratic and Republican votes in the sense that by reducing the Republican incumbent vote, you would increase the Democratic losing vote?

A Well, not necessarily.
Q Why not?
A Because again working from the model estimates that if you reduce the number of Republican votes for the incumbent, that doesn't increase the number of votes that the Democrat gets.

Q Well, I thought that your model, though, used the total votes for Assembly District 1 would be the total two-party votes cast.

A Correct. But if I did that and extracted the incumbency advantage and basically moved from -- I'd have to double check this, but if I extracted the incumbency advantage, you only do that for the incumbent. You don't -- extracting the incumbency advantage reduces the number of votes that the incumbent would get. I would have to go back and look at the results, but --

Q But your model assumes -- or maybe I'm wrong. In Assembly District 1, for example, there's 16,993 votes for the winner and 16,124 votes for the loser. Is your total turnout model, so to speak, like total number of votes that are going to be cast in Assembly District 1 adding up 16,993 and 16,124?

A No.
Q Okay. What does the total turnout model mean?

A Well, the total turnout is the predicted number of votes that would be cast and it's going to be different than the actual total. It's going to be very close. I think in this one I was off by 350 votes, which that's pretty good. But so let's go back a step here. If we look at the regression results on -- I'm on Page 21.

So these are the substantive variables. So if you look at the effects of incumbency for the Democratic and Republican Assembly incumbent that you can see that those -- the coefficients are -- the coefficient for Democratic Assembly incumbent is positive for Democrats, . 028, negative for Republican votes, minus . 021.

Now, those numbers are different. They're not the mirror image of each other. They show that the number of votes that the Democratic Assembly candidate gets is higher when the Democrat is a Republican, they get more Democratic votes and fewer Republican votes. In extracting that advantage, you use this -- the results of the model to generate the results, but you set both of these equations, both of these coefficients to zero.

So that means that you are -- you are, in fact, when you subtract the incumbency advantage, it has
the effect in a race with a Democratic incumbent, that reduces the number of votes that the Democratic candidate gets. It increases the number of votes that the Republican candidate gets, but those numbers are not equal. It's not like you take 100 votes.

It depends on what the coefficients are, and so it would affect both totals, but it's not you're taking marbles from one jar and transferring them to the other. It depends on what the underlying data show.

Q That makes sense.
A Okay.
Q But there would be some sort of, so to speak, like reduction for the incumbent and bump for the non-incumbent candidate, but we can't say that they're equivalently sized?

A Correct.
Q Do you have an opinion as to whether your baseline partisanship numbers for all of these districts would hold also for the 2014 election?

A I think that they would be similar. I don't know how they would line up exactly. The reason I have some confidence that they would be similar is that my -if you look at my estimates using 2012 data to generate the estimate of underlying partisanship,
that's based on the 2012 election and measures of underlying partisanship.

When Professor Gaddie did his underlying partisanship estimate in 2011, he did them -- he did not have the 2012 election results. He had previous election results, 2010, 2008, 2003. And he did it in a different way. It is analogous in terms of what he's trying to measure, but his methods were slightly different than mine. If you look at -- so you look at Page 30, which is Professor Gaddie's baseline partisan metric plotted against mine. You can see that there are some differences, but they are very strongly related in that the correlation, the R squared between these two measures are . 96 , which is almost perfect.

And my conclusion looking at this is that we are measuring the same thing in that the fundamentals of the districts do not change even when the actual votes that might be cast in an election do change. So it is likely that the -- well, these numbers would be different if you used 2014, but that's a separate problem. You could not -- you couldn't take this model and simply say we're going to plug in the 2014 numbers and get what the -- see what the results are. But my conclusion is that this model is an
accurate measure of the underlying partisanship of the districts that were created in Act 43.

So do you think the partisan gerrymandering should be based on underlying partisanship of the district or based on the votes that were actually cast in the legislative elections?

A It's hard to give a clear answer to that because it depends on what you're measuring. Now, looking at the actual results gives you one indication of what happened. But as I explained here and is well-known in the discipline that there are other things that you need to look at, in particular, trying to deal with the question of uncontested districts.

Q What's the margin of error for determining the baseline partisanship of the district?

A So my -- with the Act 43, I would have to go back and look at the standard error of the regression, but it's probably on the order of plus or minus one and a half percentage points. I'd have to look specifically, but these are very precise estimates. It's not a large margin of error.

Q Although for determining the efficiency gap for districts that are somewhere between 48 and 52 percent, that 1.5 percent margin of error could flip a district from one to the other, can't they?

A Possibly. But the margin of error is not a uniform thing that anything that's within the margin of error means that you don't know what the answer is. That the farther away you are, the less likely it is that the actual number is -- that as you move away from the point estimate, the likelihood that the number being that far away goes down considerably.

So in a 49 percent -- in a 51-49 percent district, the margin of error suggests that there is some likelihood that the actual number is different, and it is not impossible that that actually might be 51-49, but that's not equally likely. You can't say that, oh, the margin of error is 1.5 and the -- my estimate is a victory margin of 1.5 percent, so it's a coin flip. That's not how you calculate the probabilities.

Q Sure. But a district like that wouldn't be a guaranteed win for the party that had districted it to be 51-49 percent Republican, is that correct?

A That's correct. That would be a competitive district.

Q Now, you calculate the percentage of the districts out to like 49.402 percent.

A Um-hum.
Q Do you think that it is possible to get the
partisanship down to like hundredths and thousandths of a percentage?

A Well, that's the results of the number, and as you will see, I rounded that to I think one or two significant digits. I'm not sure what the actual figures are. Now, that's not suggesting that I think you should measure that out to the 100,000 th. That's a function of the way that Excel calculates the numbers and you look at that. So you clearly would have to round that.

MR. KEENAN: Off the record.
(Discussion off the record)
(Exhibit 7 is marked for identification)
Q Can you read it okay, Mr. Mayer?
A Yes.
Q All right. Because I think I can get an electronic copy up here if we need to blow it up, and I think the numbers are also somewhere else too here.

MR. KEENAN: I will also mark this
right away as Exhibit 8.
(Exhibit 8 is marked for identification)
Q So my first question is going to be do you know what Exhibit 7 is? That's the color copy.

A Yes.
Q What is that?

A This is a chart, a table that was produced by Professor Gaddie which analyzed the projected partisanship of the districts in the map of -- the Act 43 districts.

Q Okay. And I'll explain what Exhibit 8, what I did is the same thing I did with Exhibit 5 is I printed out the tab of your spreadsheet that was titled Gaddie Metric that was at the top there on the wasted votes or maybe it was called Efficiency Gap spreadsheet and if I compare, I was just comparing -- if you look at Exhibit 7, the third column is the new and it has a list of percentages, like the first one is 51.22, and then if you look at the Gaddie Metric spreadsheet, there's a rep percentage column and that has . 5122 and if I go down, it looks like it's matching up.

A Correct.
Q But let me know if you disagree. So maybe I could just have you explain what you did in the Gaddie metric wasted vote calculation.

A So if I recall, and I would have to look at the math, so what Professor Gaddie produced was a map of percentages, sort of his estimate of the underlying partisanship of the district. In order to generate an efficiency gap calculation that is consistent with what I did in the rest of my report, I needed a
method of converting those percentages to actual votes.

And so what I believe I did, and I would have to go back and double check, but I believe what I did is looked at the total number of votes for the Democratic and Republican candidates that my model generated. So that gives me a total. So we would add up the Republican and Democratic votes in District 1, that gives me the total number of votes, and then I applied the percentages in this chart to that number to give me a distribution of the number of votes. And I think that's what I did.

And then I used the predicted Democratic and Republican votes to replicate an efficiency gap calculation that I could then compare with my metric.

Q Okay. So if I understand correctly, the Republican percentage column is just taken straight from Professor Gaddie's numbers in Exhibit 7?

A I believe that's true.
Q Now, the corresponding Democratic percentage, is that -- would that just be 100 percent minus whatever the Republican percentage is?

A That's correct.
Q So this again is a straight two-party vote
calculation?
A Right, which again is consistent with how the problem was handled in the literature.

Q And then in terms of the predicted number -- the total number of votes, obviously you needed to apply the 51.22 percent to a total vote number to get to the Republican vote total. How did you come up with like the total number of votes in this district?

A As I mentioned, I believe what I did is -- we can actually check this if you would like. I believe that the total number of Democratic and Republican votes is the same in this model. Or in here, I think I took that in the total that I generated in my model to come up with an estimate of the total number of votes, and we can check that if you'd like.

Q Okay. I can look at that, too, over the lunch break. Now, Professor Gaddie himself, though, to your understanding did not make projections of the expected turnout in the 2012 elections when he did this chart in Exhibit 7?

A I don't believe he did, but I don't know for sure.
Q Okay. And then how is -- you've gone into this a little bit before, but what's your understanding as to how Professor Gaddie arrived at his Republican percentage there?

A So my understanding as he described it is that he looked at past electoral performance in certain elections, and I don't recall precisely which ones that he looked at, and he concluded that that was an effective way to come up with an accurate estimate of the partisanship. So my understanding is that is how he generated these numbers.

Q Okay. And then where did your understanding of how he did this come from?

A From his deposition in which he described his methods and the different files that he produced that I was able to examine.

Q And that's the deposition from the Baldus litigation?
A See, the problem is that the Baldus vs. Brennan -there's so many B's in these cases.

Q Baumgart, yeah.
A To be precise.
Q Okay. So here's your report. And in your report, the Gaddie metric calculation is at Table 9, I believe, which is on Page 52. And just to confirm, so the way that the wasted votes were calculated was the same way that we went over with respect to the Act 43 calculations?

A Yes.
Q All the losing candidate votes count as wasted and
then the surplus votes is the differential divided by two?

A Correct.
Q Now, it's not your testimony that Dr. Gaddie himself went ahead and performed any sort of calculation like this?

A Not that I'm aware of.
Q Okay. Basically what you did is you took his underlying baseline partisanship numbers and plugged them into -- I guess you didn't plug them into your model, but you applied them to the total votes produced by your model?

A Correct. I'm glad you rephrased that -- that was very nicely done.

MR. KEENAN: Actually I think I'm at a good stopping point to go to lunch and then come back.
(Lunch recess is taken)
(11:18 p.m. to 12:19 p.m.)
Q We're back on the record after lunch. Let's just go back to some of the stuff we were talking about before lunch. One was uncontested seats and we had talked a little bit about how those were handled. I just wanted to look at first maybe just generally explain for any of the Act 43 calculations that you
did how your model predicted the votes in an uncontested race.

A So the model itself utilized data from contested districts. I think there were 72 contested districts. And all of the independent variables, the incumbency, the presidential votes, demographics, the county fixed effects, those are all exogenous to the characteristics of any particular district.

And so I was able to use the relationships that the model produced in the 72 contested districts to create evidence of the uncontested districts because we still have a presidential vote, we still have the ballots cast for both the Republican and Democratic presidential candidates. We have the demographics. So I essentially developed a model using the contested districts and then applied the results of that model using the values of the independent variables in uncontested districts to generate the vote, the estimated vote totals for the uncontested districts.

Q Okay. So in terms of the total number of votes that would be cast in an uncontested race, how is that determined?

A It was a function of the number of votes cast in the presidential, so the turnout is related to that, but
again the nature of that relationship was a function of the relationship that you observed in contested districts.

Q Okay. And so the number of total votes that you see -- that your model predicts between both of the parties' candidates, is that going to be greater than the total number of votes that the candidate received undefeated?

A So can we find --
Q Sure. I was thinking maybe we could look at your exhibit, Table 8, Page 50. And if you want to for reference go to Exhibit 6, I think District 8 is the first uncontested one. And then 9 and 10 I think are uncontested. And if I look at the votes for District 8, you know, Jocasta Zamarripa received 78-69 votes.

MR. STRAUSS: I'm sorry, I missed it. Where are you?

MR. KEENAN: Sure. It's Page 10 of
Exhibit 6. So it's Assembly District 8.
MR. STRAUSS: Okay, thanks. Yes.
Q So there is 78-69 votes for the uncontested Democratic candidate and then I see that -- looks like there's about 9,000 estimated votes for your Act 43 calculation.

A Okay.
Q So maybe just explain like what -- how you end up with 9,000 votes here when there was 7,800-some cast.

A I don't see 9,000 votes. Where are we?
Q If I look at No. 8, I see predicted Democratic vote, 73-42, predicted Republican vote, 1,738.

A I see. So again the no incumbent baseline is the estimated partisanship of a contested race with no incumbent, and then in this District 8 is -- I believe Zamarripa was the incumbent. The reason that -- so basically the fact that there was no Republican on the ballot in District 8 doesn't mean that there were no Republicans in the district. If you looked at the presidential vote, you would see that Romney did get some votes in that district and so the no incumbent baseline is an estimate of what the votes would have been had that race been contested and had there been no incumbent. And so a couple of things are going on here. One is that turnout will go up in a contested race as opposed to in an uncontested race because those 1,700 people who would have voted Republican under my model, they have no Republican to vote for. And so the most common thing for them to do is simply to abstain, and that's one of the reasons why you see
almost invariably lower turnout, sometimes much lower turnout in an uncontested race rather than a contested race.

So that explains the reason why my model estimates that there would be 9,000 votes cast in a contested race with no incumbent as opposed to the result which was an uncontested race with an incumbent.

Okay. And then when we go to the Gaddie calculation, did you take, for example, the total number of votes, you know, the 7,342 and 1,738 equals -- there's a certain amount of total turnout in that. Did you then just apply Gaddie's percentages to that number?

A I believe I did. I'd have to sit down and do the calculations. My recollection is that's the way that I calculated the total number of votes is using the estimates generated by my model and as for the totals in applying them to Professor Gaddie's calculations.

Q Did your calculations for the efficiency gap for Act 43 have any instances where the model predicted a winner from the wrong party?

A There were I believe two instances where the model picked the wrong winner and I explained -- there's a table and it shows -- I think those two races, it was, you know, the winner got between 50 and 51
percent, 52 percent. They were both very close. calculation proceed on the basis that your model was correct, or did it flip that, so to speak, to show who actually won the race?

A When my model -- I used the results from my model. I didn't go back and manually correct the errors. The results are what they are.

Did you do an efficiency gap calculation for the 2014 legislative elections?

A I did not.
Q Is there any reason why you did not?
A A couple of reasons. One is that I concluded that the presidential year was the -- was going to give you the most accurate estimate of the underlying partisanship. And that's what's typically done for trying to assess a redistricting plan.

I had Professor Gaddie's estimates that he produced of what he anticipated what the results would be. And doing -- repeating the results for 2014 was actually a very involved process. It's not sitting down and saying, oh, I'm going to just change this number and punch a button. It would take quite a bit of work to do that.

But I did 2012 because in my view that the first
election after redistricting is going to give you the -- an accurate estimate of the effects of that redistricting plan.

Q Now, coming at the next redistricting in 2020, the first election is going to be a nonpresidential year, correct?

A Correct.
Q So if a court has to do this next time around, should it wait until a presidential year? Should it look at the 2022 year?

A Well, so in 2022 would be a nonpresidential year, so I would -- I mean it's hard to know precisely, but in that election, I would probably -- I don't know for sure but would be interested in what would happen in the first election after redistricting.

Q Now, the turnout -- the total turnout number is a lot different between the presidential year and a nonpresidential year, correct?

A That's correct.
Q Okay. Please explain how it differs.
A Well, it's well-known the empirical pattern is significant, that there are more people who vote in the presidential year than in a midterm election because without a president on the ballot, interest in the campaign is less and so there's no question
that the number of people who vote in a midterm election year is going to be lower than the number who vote in the presidential election year.

Q Is the difference in turnout going to drive a difference in efficiency gap calculations?

A Probably.
Q And do you know how much?
A Judging -- I have to go back and look at
Professor Jackman's report that the efficiency gap was lower in 2014 than it was in 2012 .

Q That leads me to one question which is you're familiar with Professor Jackman's report, correct?

A I've read it, yes.
Q And he calculates the efficiency gap in a different way from you, correct?

A In some ways, yes. The underlying concepts are similar, but the precise methodologies were different.

Q Okay. So explain to your understanding what his methodology was.

A So my understanding of his method is that he used what is in terms of the formula for the efficiency gap an equivalent mechanism of calculating it, which is a formula which looks at the percentage of vote and the percentage of seats, and that's how he
generated that, whereas I went through on a district by district basis looking at the actual number of votes.

Q Can you explain for me how those two different calculations yield basically the same end result?

A Because the reason they yield the same or very similar results is that they're both measuring the same thing, that the seat share and vote share calculation is the equivalent of what you would get if you did the district by district calculations with equal turnout. And my method was to look at district by district and actually counting the votes, and I did that for two reasons.

One is that I had the data available to do it. The second is that in the second step of my analysis, I was going to estimate what the partisan effect would be under an alternative district configuration. And if I was just looking at the percentage, there was no way to know what would happen if you have a district that's 47 percent-53 percent, if you changed the boundaries so the district is different, there's no way just looking at the percentages -- there's no way to calculate or estimate what the vote would be in the alternative district. For that you needed a measure of actual votes.

But that measure is not necessary if all you were interested in doing is calculating the efficiency gap, and that is why his estimate and my estimate are very close.

Q So you mentioned assuming equal turnout, I think was the phrase?

A Correct.
Q Could you just explain what that means?
A Well, so one way of doing the efficiency gap is that you just look at the percentages in each district without looking at the votes, and by looking just at the percentages, you are making an assumption that turnout is going to be equal in every district, and that way, that is mathematically identical to doing it as he did, which is using the seats and votes.

In looking at the actual votes or, more properly, the estimated votes, I'm able to take advantage of the fact that in this case, I can derive estimates of the numbers of votes that are cast in each district, and it gives me a method of calculating the efficiency gap that I can compare to an alternative district configuration such as my demonstration plan.

Q So if I'm understanding, equal turnout means it's assuming District 1 has the same number of voters as

District 2 and District 3 and District 4, all the way down the line?

A Correct.
Q Okay. And so then if you know that District 1 is 53 to 47 percent, you know that 47 percent of the vote is wasted on one side and 30 is on the other and then you can come up with a --

A Correct.
Q Okay.
A But having said that, the fact that our numbers are so close means that the fact that he did just looking at the percentages and I did it at the turnout, the fact that those numbers are so close means that they're both estimating the same underlying phenomenon.

Q Does he adjust for the incumbency effect?
A I don't believe so.
Q And the --
A Which is another reason why my efficiency gap calculation for Act 43 is going to be a little bit different because I've already extracted the incumbency advantage.

Q Do you know if Professor Jackman's total statewide vote share, is it actual -- is it the average share in each district, or is it the average of the total
statewide vote? Or is it the same?
A Well, these are questions you probably should direct to him because --

Q Yeah.
A -- I don't know that I'm in a position to get into the weeds about his specific methodologies.

Q Okay, that's fine. Now, out of every 10 -year period, there's going to be either two or three elections that take place in a presidential election cycle and two or three that take place in a nonpresidential cycle depending on the decade. Do you think your efficiency gap model accounts for how there might be differences between the presidential election year and the nonpresidential election year?

A Well, the model that I developed was an estimate of the efficiency gap in 2012. And in that sense, you would expect to see similar results in presidential years and similar but somewhat different results in off year elections, and I think here I would defer to Professor Jackman in his estimates of how enduring efficiency gaps are over time.

Q Let's move on. Your report a few times refers to the fact that I believe the Democrats won 51 or so percent of the statewide assembly vote, is that correct?

A I don't think that number is correct, but I would have to check, but I --

Q Well, maybe I should just ask you like how do you in your Act 43 calculation, what would be the way to figure out the total statewide vote share for each respective party?

A Well, based on the model that I did, you would be able to look at the total number of votes cast for Democrats and Republicans and calculate the percentage that each party received.

Q So on Table 8, I guess is the right one, we have the total -- the total predicted Democratic votes, the total predicted Republican votes, we could add those two together to get the total votes and then we would figure out what the percentage was for each of them?

A Right. But again this is for the no incumbent baseline, so this is an estimate of what the vote -what the baseline partisanship would be without taking incumbency into effect.

Q Now, in the differences between the presidential year and the nonpresidential year, is turnout affected equally in all parts of the state? Does it drop 30 percent everywhere or does it change in different areas?

A That I don't know.

Q The way you calculate the efficiency gap, for example, in districts, the turnout that has actually been seen in that district affects the total number of wasted votes for each party, is that correct?

A So, I'm sorry, say that again.
Q Sure. So like in -- the number of wasted votes in a district is partly a function of the total turnout in that district, correct, total number of votes cast?

A Not necessarily.
Q Why not?
A Because it's going to be more a function of what the distribution of the votes would be. If you had 100,000 votes cast in a district with a 51-49 split, the efficiency gap would be lower than it would be in an election with 20,000 votes that was 60-40. So it's not -- turnout can be one of the factors that explains it, but it is not the only one and it's probably not even the driving one. It's the distribution of votes that makes the larger contribution to the efficiency gap calculations.

Q Sure. But in an individual district, if turnout in, for example, a district that is always going to be Republican, one of these uncontested races is very high in that district, that's going to increase the
wasted votes for that Republican candidate, correct, if that's higher than normal? Like, for example, in 2014 compared to 2012, if turnout increases in certain areas, there's going to be more wasted votes for all those winning candidates, correct?

A Well, in the specific example you gave in an uncontested district where the winning candidate gets 100 percent of the vote that if that -- the number of votes goes up, that would increase the number of surplus votes.

Q Okay. And similarly if the turnout is lower than normal in a district, that decreases the number of wasted votes for the winning candidate?

A Well, again in this specific example, yes, but again the dynamic will be very different in a contested race. I'm sorry, can we take a quick break?

Q Sure.
(Short recess is taken)

Q Back from the break, do you have any opinion on the baseline level of partisanship of a district that a party has a realistic chance of winning that seat?

A It's hard to make a definitive statement. The definition of the classification of districts into safe, leaning, tossup, I mean there are some generally used definitions, but they are not -- not
everybody uses the same rule.
Q Okay. So maybe I could get what you think if there is a generally accepted definition, what those are and then what your opinion is on those.

A So in my own work on state legislatures, I had defined as competitive districts that where the incumbent wins with less than 60 percent of the vote, that other people used definitions of 55 percent.

So generally somewhere in the range of 50 to 55, 55 to 60 percent is what is one threshold for classifying a race that is conceivably competitive. It doesn't mean that you can easily have races where an incumbent wins with 57 percent of the vote and that's going to be considered generally safe.

Q Okay. Kind of switching topics a little bit, what factors would a legislature who is going about trying to do a redistricting plan after a census, what would they have to do in order to if they wanted to base a plan on your version of the efficiency gap, what would they have to do to do that?

A So if I understand the question is how would you go about devising a plan that would have a small efficiency gap.

Q Yeah.
A Essentially the way that you would do it is minimize
the amount of packing and cracking that you do. So not excessively concentrating voters of one party into a small number of overwhelming districts, not splitting up voters, I mean so that you would essentially treat voters from the major parties equally.

Q What sort of like calculations do they have to make in order to figure out how well they're doing on that so that after the fact someone is going to come up with these calculations, what would they have to do?

A Well, I mean you would need information as the type that Professor Gaddie did with the likely partisan outcomes are -- that you expect to see in districts or you could use an alternative measure, which is what I did, and use that information in the course of creating the districts and measuring the results.

Q Now, would you have to make some sort of estimate as to how many votes are going to be cast in that next election?

A You could do it that way. It's not necessarily the way. Professor Gaddie did not. I did. So that's one way you could do it.

Q Looking at some -- your report, it mentions a specific example of packing and cracking on Page 41, I believe.

A 43.
Q It starts at 41 about Sheboygan, the City of Sheboygan and then it continues on, yeah, 43. So if I have it correctly, under the prior plan, the 26 th Assembly District was -- it contained the City of Sheboygan itself in its entirety and also some of the surrounding areas?

A So in the 1992 and 2001 redistricting rounds, the city was entirely contained in a single assembly district.

Q And then in the most recent one, that was the 26 th District?

A Well, the most recent was the 26 th District entirely contained in the 26 th in the 1992 and the 2001 rounds.

Q And then in the 2010 round, the 26 th includes part of the City of Sheboygan, but you're saying it's cracked also into the 27 th District?

A Correct.
Q Okay.
A So this is a classic example of cracking because you have a jurisdiction which was small enough to be included in a single assembly district, which it had been for 20 years. It's a Democratic city. I would classify it as reasonably strongly Democratic. My
calculation showed that if the entire city was in a single assembly district, it was very likely to result in a Democratic district, but you by splitting it, you take a portion of those Democrats or a portion of those -- that Democratic partisanship and you split it into two districts where they don't come close to forming a majority in either one.

So this is quite literally a textbook demonstration of the cracking phenomenon where you have a jurisdiction that you don't need to split and you split it for what appears to be no other reason than to crack a Democratic constituency into two separate constituencies to create two Republican districts.

Q In your version of the City of Sheboygan district, the 26th District under the demonstration plan, what's your baseline partisanship of the district you created?

A Well, I don't know that my baseline plan, that district is named the 26 th because the numbering system was a little different, but I would have to go back and confirm, and that's just because what I call the 26th District in my plan may not be the plan -- I could go back and look, but it was -- actually we can even --

Q On 42 you say the result would have been a 54 to 56 percentile?

A Right, but I don't know that that is -- that's probably close to what happened, but -- what I did, but I would have to go back and actually look to get the precise numbers.

Q Okay. In the 26th District in the 2010 election, which party won that district?

A I'm not sure.
(Exhibit 9 is marked for identification)
Q I show you Exhibit 9, which this is the GAB printout for the fall election of 2010 . Now, it says error on the first page because, I don't know, that's what it does when it prints out, but if you turn to the 26 th District, I mean is it correct that the Republican won that district in the 2010 election?

A I'm looking at this, which is Page 15 of Exhibit 9. It shows that the Republican won by 151 votes if I'm calculating correctly.

Q So you're classifying that as a Democratic district, but under the prior plan, it wasn't impossible for a Republican to win that district, was it?

A Well, by definition that's true because a Republican won it just barely in 2010. But then the

Republicans -- the vote percentage went up from 48.9
to 51.3 on the subsequent election.
Q Now, in a 51.3 percent race, it's not impossible for a Democrat to win that race either, is it?

A Not impossible.
Q And then in the 27th, you calculate the baseline open seat partisanship measure at 52.3 percent?

A Well, again I'm not sure that --
Q On Page 42 on your report.
A Let's take a look here. Correct, so my underlying partisanship estimate for the 27 th was 52.3 . That's the open seat baseline.

Q Okay. And so I mean would you characterize both of those seats as winnable for the democrats?

A I would classify the 26 th as potentially winnable. I wouldn't classify the 27 th as winnable for the Democrats. Not impossible, but extremely difficult.

Q Okay. At 52.3, it's extremely difficult for them to win that seat?

A As again this is the open seat baseline, I would classify this as difficult for the Democrats to win, not impossible.

Q Okay. Now, what your plan would do, though, it would make one safe Republican district and one safe Democratic district, correct?

A It would --

Q They would be safer, it would be having one district more Republican and one district more Democratic, right?

A I believe so, that's correct.
Q Have you tested any of your demonstration map districts that are narrow Democratic districts, how they would have fared in the 2014 election, whether the Democrats would have actually held onto those seats?

A No.
Q Let's transition into your demonstration plan.
A Okay.
Q How did you go about -- first let me just ask you what computer program did you use to do the demonstration plan?

A I used a GIS program called Maptitude, Maptitude for Redistricting.

Q Is that -- I just don't know, is that the program that the legislators used to draw the Act 43 map?

A I don't know.
Q Okay.
A There are -- the two most commonly used redistricting programs are Maptitude for Redistricting and another one called AutoBound. I don't know --

Q I believe the other one was AutoBound -- from reading
the deposition, I believe it was AutoBound. If there were two different -- if you used Maptitude and they used AutoBound, does that create -- is there any sort of like incompatibility where you can't compare a map drawn from one and a map drawn from the other?

A There shouldn't be, no.
Q How did you go about drawing the demonstration plan?
A So in drawing the plan, what I did was to draw -- to draw a plan that took into account the traditional redistricting requirements, which is population equality, contiguity, compactness, adherence to Section 2 of the Voting Rights Act, respect for political subdivisions, and then going through the map trying to draw it in a way that was balanced between the parties in terms of creating equal opportunities to elect the candidates so that there weren't a significantly different number of noncompetitive seats or a significantly different number of competitive seats. We're trying to treat the voters equally in terms of their creating districts that gave members of each party an equal opportunity to see their votes translated into -converted into seats.

Q Did you start using a baseline of the prior districts that were in existence, or did you just start fresh?

A With one exception. I left the 8th District alone because that was a district created by the federal court in 2012, and I knew that that district was Voting Rights Act compliant.

The African-American majority-minority districts in Milwaukee I treated similarly to what they were under the plan, which we also knew was compliant. But other than those districts, I started with a blank slate.

Q I believe you said this before, but what's the ideal population of an assembly district?

A So I believe it's 57,444.
Q And is that 57,444 what?
A That is the ideal population as calculated by looking at the total population of the state, dividing it by the number of districts in a legislative body and that gives you the -- in a district plan with perfect population equality, that's the number that you would hit. So that's essentially 57,444 is the total population of Wisconsin after the 2010 census divided by 99 .

Q But that includes children who aren't going to be able to vote, correct?

A Correct.
Q And I think you mentioned like felons who can't vote?

A Correct.
Q And then does the 57,444 include noncitizens?
A The way the census calculates it, it's everybody.
Q Okay. So it's just 57,444 people are the voting numbers, but the number of eligible voters will be different than that?

A Yes.
Q Okay. How many districts did you draw that contain any part of the City of Milwaukee?

A I would have to look at the map. I could tell you I don't know off the top of my head.

Q Do you know how many you did that concluded -included any part of the City of Madison?

A I would have to check. I don't remember off the top of my head.

Q And do you know how those compared -- even if you don't know the number, do you know how it compared in terms of comparing it to Act 43?

A I suspect they were very close, if not identical, but again I can't be certain.

Q You mentioned compactness was one of the factors that you looked at, and I know you did a comparison of your plan to the Act 43 plan in terms of compactness?

A Correct.
Q What was the standard you used to measure compactness
of yours?
A I used something called the Roeck standard, which is $R-o-e-c-k$.

Q What is that?
A The way that the Roeck standard is calculated is you take a district and you place that district inside the smallest circumscribing circle. So you draw a circle that is the smallest circle that contains the entire district, and the Roeck value is the area of the district divided by the area of the smallest circumscribing circle, and it gives you a value between 0 -- you can't really have a value of 0 -and 1 where 1 would be you actually have a perfectly circular district, but basically as districts with more irregular shapes that are longer will tend to have lower measures on this index.

Q So lower is good or bad in terms of compactness?
A Higher values indicate more compactness.
Q Are there other ways to measure compactness?
A Yes.
Q What are some of the other ways?
A Other ways look at -- there are probably 10 or 12 methods of doing that. There is no universal agreement on which method is the best. One of the reasons I used the method that I did is that in
the -- in 2012, I have the record of that case shows what the Roeck number, the average compactness on the Roeck index is for Act 43. So I was able to compare it directly to that.

Q That was going to be one of my questions. So you got the compactness, the Roeck compactness on Act 43 from the Baldus litigation?

A Correct.
Q Do you know specifically where in that litigation?
A I'm not sure. I think it may have been in the -there was a report that both parties submitted. It may have been called the Joint Stipulation of Facts. I'm not sure. But it was somewhere in those documents.

Q Okay. Now, as I understood it, it's an average of all the districts?

A Correct.
Q So it would take like District 1 through 29, they each get their own individual scores and then you average those scores together?

A Correct.
Q How did you calculate the Roeck score for your map?
A There's a feature in Maptitude that allows you to generate compactness scores and it gives you an option on it and it was able to do a report that
listed the compactness scores, and I'm pretty sure I put the table in either the annex or the -- yeah, so Page 13 of my annex shows the Roeck scores, the smallest circle scores for the district.

Q Okay. And the average is -- I guess it doesn't say on that table, but it's earlier in there.

A I believe it's .41.
Q And then did you use any of the other manners of measuring compactness to measure your demonstration plan?

A I did not.
Q And why not?
A I had the point of comparison and I didn't see any reason to generate the other numbers because I had nothing to compare them to.

Q Was the Roeck test the only measure of compactness of the Act 43 districts that you recall seeing?

A It's the only one I recall seeing.
Q How did some of the other ways of measuring compactness differ from the Roeck test?

A Well, I'll give you a couple of examples. One measure is the difference between the ratio of the long axis to the short axis of a district. So if you have a district that's very, very long and thin, that would tend to give you a high number as opposed to a
district that was more of a circle or a square.
There is something called the perimeter to area measure, which is you calculate the length of the perimeter of a district, which will be higher with highly irregularly shaped districts with lots of nooks and crannies, and you divide that by the area, and as the perimeter area gets -- or area to perimeter, as it gets smaller, it means the district is more irregularly shaped.

There are a variety of different ways to do this. Generally speaking, and there are lots of exceptions, generally these measures tend to move in the same direction, that if one measure shows a high degree of noncompactness or a high degree of compactness, that it is common -- it's not invariably true, but it's common for different measures to show similar results.

Q How does the Roeck test handle a district that's like, for example, in Wisconsin that's on Lake Michigan?

A So one of the issues of how you calculate the Roeck index for District 1, which is Door County, and you calculate that by looking at the circle and it just is a feature of the geography that there is no way to calculate a highly compact district in that part of
the state.
Q And then would the same hold true, for example, of someone -- it's on a border of another state, Illinois or Iowa or Minnesota somewhere, the circle is going to extend out into the bordering state and there's just nothing you can do about it?

A That's correct.
Q Going to the municipal split, what counts as a municipal split?

A So my understanding of the way Wisconsin counts municipal splits, it's a simple determination is if a district border bisects a city or county, then that municipality is split. That is as best as I am aware and -- actually I can say that a little more definitively, but that is how Maptitude calculates the split. I will give you a report of the number of municipalities that are in more than one district.

Q So just in my head so I have this clear, Milwaukee is going to be too big to have one district, there's going to be like several districts within Milwaukee?

A Right. Correct.
Q But drawing two districts in that doesn't count as a split, right, or does it?

A Will, as I understand, it is a municipality that is split into more than one districts.

Q When you have a number that says there's this many -I'm trying to find the table where you list the -MS. GREENWOOD: Page 37. MR. KEENAN: Which one?

MS. GREENWOOD: Page 37.
Q Okay. Yeah, so I'm just trying to figure out what goes into the 64 city, town, village splits and 55 county splits, and then Act 43 has 62 city, town, village splits.

So if Milwaukee, for example, has like seven districts or six districts, I don't know how many, but does that -- but you need to have that just because of the equal population, you know, like there's nothing wrong with having six districts in Milwaukee, does that count as six splits, or does it count as zero splits?

A No, it counts as one split.
Q One split?
A Yeah. At least that's how I understand how Maptitude does it. The dividing line is whether a municipality is split.

Q But that split is going to happen under anyone's plan, I guess, because you just can't draw Milwaukee into --

A Correct.

Q And the same with some of these bigger cities?
A It would be the same in any larger jurisdiction that exceeded the ideal of population.

Q And then Milwaukee County I guess would be the same thing, that would count as a county split?

A I believe so, yes.
Q And then, now, say that there's a bunch of districts in Milwaukee, but then now we have one district that loops between Milwaukee and Waukesha. Is that still just one split, or is it one county split, or is it now do we have two county splits?

A I believe -- I would have to go back and check -that that would count as -- it would depend on how many other splits that there were. So if -- because my understanding is that it's not the number of splits that a jurisdiction is put into. It's whether or not it is split. So I believe that that would count as one split.

Q Okay. And then now that we've split Waukesha County at least once, it's now -- it can only count as one split, even once then you could split it with Jefferson -- I don't know what the border is, but some other county on the border, there's still one split?

A Well, but that could also count as a split in

Jefferson County. So Jefferson County, it was possible to place that in a single district and there was a little finger from Waukesha, that that would count as a split in Jefferson County.

Q Okay. And then what about, now going to the smaller levels, like dealing with the villages, if there's a village that can fit entirely within one district, maybe there's two of them even right next to each other and they're totally encircled in a district, that would be zero splits?

A Correct.
Q Okay. But then if -- I guess if one of those districts, half of it is in one district and half is in the other --

MR. STRAUSS: Object to the form. You said two districts. You mean two towns?

MR. KEENAN: Yeah, sorry.
Q Yeah, like two villages -- or, no, sorry. If there's like one village, but then it ends up getting cut in half between two districts, that counts as one split?

A Correct.
Q Okay. But then if that town or village had been carved into three -- instead of two, it had been like divided up into three different districts, would that still be one split?

A I believe that it would still count as one split.
Q Okay. Is there a list that was generated that shows like what are the splits in the demonstration plan like when you run the report or something that gives you that information?

A It does produce a report, yes.
Q But does it just have a number?
A And it shows the locations of the splits.
Q Okay. Do you know if you'd say there's a version of that document or report that would have been produced?

A So I don't know that that was -- I actually submitted that report because what I was interested in was just the number.

Q When you were districting, did you attempt to keep communities of interest together?

A As a rule, yes.
Q So how did you go about trying to do that?
A Well, the communities of interest standard is very subjective and -- but part of that is keeping subdivisions together, but I tried to not have too many divisions or districts that combined vastly different parts of the state to ensure that different regions of the state were kept together.

Q Are you offering an opinion that the demonstration
plan keeps communities of interest together better than Act 43?

A I don't know that I would make the statement that it was better because I made an effort to keep that in mind. But that's a very loose and subjective standard that can be difficult to do.

Q Why don't you turn to Table 7, which is your calculation of the efficiency gap under the demonstration plan?

MS. HARLESS: What page is that?
MR. KEENAN: 48.
Q And I will mark a similar spreadsheet there which is the demonstration plan version.
(Exhibit 10 is marked for identification)
Q And Exhibit 10 is similar to what you've seen before, but I printed out the tab on the efficiency gap spreadsheet, and I think it was titled All Open Seat Data.

A Right.
Q Which I think is what I understood to be the demonstration plan calculations. Is that what it is?

A I believe so, yes.
Q So I guess we can look at either Exhibit 10 or the Table 7 in the report. How did you go about calculating the efficiency gap for the demonstration
plan?
A The same way that I did for the Act 43, that I had essentially block level estimates of the number of Republican and Democratic votes, the demonstration plan was created out of those blocks and so that meant that each district had a predicted number of Democratic and Republican votes which formed the first two columns and then I calculated the efficiency gap in the same way as I did for Act 43, calculating the lost and surplus votes for both parties.

Q Now, for -- if I take it the -- your districts are made out of -- did you define your districts in the demonstration plan based on specific ward numbers in various municipalities?

A No.
Q What were they made up of?
A I made them -- I did not use wards, and the reason I didn't use wards is those wards were actually created after Act 43 went into effect and so if I built the new districts out of those wards, I would be building them using essentially a template for -- that was used for Act 43.

I constructed them where I could out of entire jurisdictions, whether it's counties, municipalities.

Where that was not possible or whether when I created a district that in order to achieve population equality, I couldn't do that, then I worked with census blocks.

Q And then each of your districts is made up of a certain subset of the census blocks and jurisdictions?

A Well, it's a combination of again you can select entire jurisdictions, which can be efficient, and you can also build a district or create the district by selecting individual census blocks.

Q And then for your demonstration, District 1 is obviously different from Act 43, District 1, correct?

A Correct.
Q And so for your District 1, how did you determine the predicted Democratic vote and the predicted Republican vote?

A Once I had generated the expected Republican and Democratic votes at the -- using the original model, I then disaggregated or allocated those ward level results to the blocks inside that ward using the percentage of the voting eligible population in that ward. And so once that was done, I had a file that for each block in the state of the $250,000,252,000$ or so blocks, each block had an expected number of

Democratic and Republican votes again for the no incumbent baseline, and that would allow me to draw a hypothetical demonstration plan and generate estimates of what the partisanship, what the voting would be in those districts.

Q How is the total number of votes in the district determined? For example, I'm just looking at District 1, and it looks like your predictions show about 32,000 -some votes. I realize that's a function of some sort of your equation, but I'm just trying to figure out how does it get to that number?

A That's simply adding up the number of Democratic and Republican -- predicted Democratic and predicted Republican votes in each block as you build that block into the district. That's the number that results.

Q Okay. What's your definition of gerrymandering? MR. STRAUSS: Object to the form of the question to the extent it calls for a legal conclusion. But you can answer.

A So there are a variety of different ways of defining that. As a political scientist, it's most commonly defined as the drawing of district lines in a manner that intentionally provides a political benefit to one party over the other.

Q Do you have an opinion of whether the plan that was in effect in the 2000 s assembly districts, whether that was a gerrymander?

MR. STRAUSS: Again object to the extent it calls for a legal conclusion. If you understand the question.

A Yeah, I mean that one was produced by courts and courts generally do not take partisanship into account. At the same time, my understanding of the way that the 2001 plan was drawn is that the judges in that case accepted submissions from the parties. There were a number of maps the Democrats submitted, there were a number of maps that Republicans submitted and that they incorporated that into their drawing of the map. So the -- I'll leave it at that.

Q Do you know how many times the Democrats have won the Wisconsin Assembly in the last 20 years?

A I could look. I don't know off the top of my head. Q Does your demonstration plan, would it give them -give Democrats an advantage in terms of attempting to like control the assembly?

A I would have to look at the results. I'm not sure what the expected -- I think there's a table in there somewhere. Let me look.

So on Page 46 there's a table that shows the summary statistics and it shows that my plan would be expected to produce a 51 to 48 Democratic majority in the assembly.

Q Okay. And that's based off of just looking at the 2012 election data, though, right, your calculations?

A I just want to make sure I give a precise answer. That that's based on the underlying model, which is based on the 2012 election results.

Q Yes, that's sort of what I meant to say. So yes.
A Okay.
Q But thank you for clarifying. And do you know if that baseline partisanship would then hold under an election that -- in like 2014 where a Republican won the highest office on the ballot that year?

A Well, I haven't done the numbers, but it's quite possible that if you did that result for 2014 that it would show a Republican majority, but I don't know.

Q And then just going back to your demonstration plan partisanship model, I'm looking at Exhibit 10, but I guess it's probably the same. The column D percent and R percent are PCT, but I think it's percent, it's about the seventh one in, it says D PCT?

A Okay.
Q And then the ninth one, it says R percent, do you see
those two columns?
A Yes.
Q If I wanted to look at a particular district under your demonstration plan and determine what your view of the underlying partisanship is, those are the two columns I'd look at?

A Correct, if you were interested in the percentages.
Q Yeah. So like, for example, when it says party split, 48 to 51 on Page 46 of your report, that's looking at those two columns and seeing where -which party's over 50 percent?

A Correct.
Q And just doing this again, I think I know the answer, but those are two party percentages, so just the two-party vote?

A Correct.
Q So someone is going to be 50 percent over in each one of those races?

A Correct.
MR. KEENAN: I think I want to take a break.
(Short recess is taken)
Q Well, back on the record. I just have a few more follow-up questions. Where did you get the number of municipal splits that Act 43 had? Where did you get
that number from?
A I believe I got that from within Maptitude using the same method, but I'm not sure.

Q So you think you imported the Act 43 districts into your Maptitude program and ran a report like that?

A I think so.
Q So I guess if that's the case, Maptitude was using the same measurements?

A I believe so. I would have to go back and double check.

Q Are you expressing an opinion about the durability of the efficiency gap in Wisconsin over the course of --

A I think on that I will defer to Professor Jackman and his report.

Q Very good.
MR. KEENAN: That's all I have.
MR. STRAUSS: Just give us a minute and let us talk and see if we have any questions to ask.
(Short recess is taken)
MR. STRAUSS: So on the record.
EXAMINATION
BY MR. STRAUSS:
Q In your calculations of the efficiency gap, you used what you described as estimates. What do you mean by
estimates?
A So these were -- these estimates were generated by the underlying model, which looked at the relationship between the independent variables that I used in the actual assembly vote and then I used the results of that model to generate forecasts, estimates of what the underlying partisanship was in each of the 99 assembly districts and also used that to generate estimates in the demonstration plan that I drew.

But one thing to note about this model is that it was a highly accurate, you know, with very extraordinarily high R squares, which you rarely see in social science models, so I'm very confident that these are accurate estimates of the existing partisanship and what it would have been in my demonstration plan.

Q And do you consider -- when you use the word estimate, do you -- how would you compare that to using the word guess?

A I'm using the estimate in the statistical sense, that it is a number that is produced through analysis, that there is obviously going to be some degree of error, but I'm confident that that error is very small and in no sense is it a guess.

MR. STRAUSS: Okay. I don't have any further questions. MR. KEENAN: No further questions.

MR. STRAUSS: We'll reserve signature. (1:39 p.m.)
\qquad

Kenneth Mayer, Ph.D.

STATE OF WISCONSIN) COUNTY OF DANE) SS.

I, LISA A. CREERON, a Registered Professional Reporter and Notary Public in and for the state of Wisconsin, do hereby certify that the foregoing is a true record of the deposition of KENNETH MAYER, Ph.D., who was first duly sworn by me; having been taken on the $9 t h$ day of November, 2015, at the Wisconsin Department of Justice, 17 West Main Street, in the City of Madison, County of Dane, and state of Wisconsin, in my presence, and reduced to writing in accordance with my stenographic notes made at said time and place.

I further certify that I am not a relative or employee or attorney or counsel for any of the parties, or a relative or employee of such attorney or counsel, or financially interested in said action.

In witness whereof, I have hereunto set my hand and affixed my seal of office this 14 th day of November, 2015 .

```
Notary Public, State of Wisconsin
My Commission Expires: 1/29/17
```

IN THE UNITED STATES DISTRICT COURT
FOR THE WESTERN DISTRICT OF WISCONSIN

WILLIAM WHITFORD, et al.,
Plaintiffs,
v. Case No. 15-CV-421-bbc

GERALD NICHOL, et al.,
Defendants.

DEPOSITION OF SIMON D. JACKMAN, Ph.D.
Friday, November 20, 2015 9:02 a.m.

Reported by: MARY L. MIXON

DEPOSITION of SIMON D. JACKMAN, Ph.D., a
witness in the above-entitled action, taken at the instance of the Defendants, under the provisions of the Federal Rules of Civil Procedure, taken pursuant to notice, before MARY L. MIXON, a Court Reporter and Notary Public in and for the State of Wisconsin, at the Wisconsin Department of Justice, 17 West Main Street, in the City of Madison, County of Dane, and State of Wisconsin, on the 20th day of November 2015, commencing at 9:02 a.m.

A P P EARANCES

PAUL STRAUSS, RUTH GREENWOOD and ANNABELLE HARLESS, CHICAGO LAWYERS' COMMITTEE FOR CIVIL RIGHTS UNDER LAW, INC., Attorneys at Law, 100 North La Salle Street, Suite 600, Chicago, Illinois 60602, appearing on behalf of the Plaintiffs.

BRIAN P. KEENAN,
Assistant Attorney General, WISCONSIN DEPARTMENT OF JUSTICE, 17 West Main Street, Madison, Wisconsin 53703, appearing on behalf of the Defendants.

PETER G. EARLE, LAW OFFICE OF PETER EARLE, LLC, Attorneys at Law, 839 North Jefferson Street, Suite 300, Milwaukee, Wisconsin 53202-3744, appearing on behalf of the Witness.

SIMON D. JACKMAN, Ph.D., called as a witness, being first duly sworn, testified under oath as follows:

EXAMINATION

By Mr. Keenan:
Q Good morning, Professor Jackman. My name is Brian Keenan, I'm the attorney for the defendants in this case and we're here for your deposition.

Have you ever been deposed before?
A No.
Q Okay. Well, it's the first time so I'll give you a few ground rules.

A Okay.
Q I'll be asking you questions and you'll be giving me answers. And do you understand that you're under oath?

A I do.

Q And another thing is you have to answer verbally so that the court reporter here can take down your answers. Another thing is to just let me get my whole question out and then you can give your answer, and I'll try to not talk over you before my next question. So you understand that you've sworn to tell the truth to my questions to the
best of your ability?
A Yes.
Q If ever you don't understand a question just let me know, and I'll be happy to rephrase it or we can have the court reporter read it out loud again. Do you understand?

A I do.

Q We can take some breaks, so if ever you feel like you have to go to the bathroom or something, just let me know and we'll take a break. I will say if there's a pending question, you'll have to answer the question and then you can take a break.

A I understand.
Q What did you do to prepare for the deposition today?

A In addition to writing the report, we did a few phone calls with the team here and we had a day-long meeting here yesterday.

Q And who all was at that meeting yesterday?

A Everybody you see to my right here with the exception of Emma down at the end of the table.

Q And how long do you think that meeting lasted?
A About four and a half hours.
Q Okay. I'm just going to mark some documents as exhibits and we'll refer to them.

A You bet.
MR. KEENAN: I was going to continuously mark exhibits. So we had left off at 10, so I was going to mark the first one as 11.

MR. STRAUSS: That's a great idea.
MR. EARLE: So we're going to do this consistently through the whole case?

MR. KEENAN: I'd be happy with that.

MR. EARLE: Okay, go ahead.
Sometimes people do that, they start that way and then they switch, and things get complicated when that happens.

MR. KEENAN: Yeah. So we'll mark this as No. 11.
(Exhibit 11 is marked for identification)
Q So for Exhibit 11, perhaps you could just identify what Exhibit 11 is for us.

A It's the report I produced at the request of the plaintiffs.

Q Okay. And so keep that handy. I'm actually going to go on to some other things, but it made more sense to mark this as the first exhibit at this deposition. So I've got another one.
(Exhibit 12 is marked for identification)
Q And if you could identify what Exhibit 12 is for us?

A It's a copy of my curriculum vita dated May 11, 2015.

Q And is this a current version of your CV?
A Current as of May, but yeah, there are no substantial changes.

Q All right. So if I wanted to get your educational history and the jobs you've had, if I look at what's listed here in Exhibit 12, that would tell me all that information?

A That's correct.
Q Okay. So I don't think we need to have you repeat what's already on this page, so that's why I did that.

A Okay.
MR. EARLE: In deference to the snow, that's a good idea.

MR. KEENAN: Yeah.
Q What is your current position right now?
A I'm a professor of political science at Stanford University.

Q Okay. And what do you do in that position?
A I teach classes in the Department of Political

Science, I'm a researcher, and a reasonable amount of administrative responsibilities as well that accompany a professorial position.

Q What classes do you teach?
A Primarily statistical methods for master's and Ph.D. students in the Department of Political Science.

Q And then you said primarily; are there any other classes you teach outside of --

A Yeah, and American politics are the other classes I teach.

Q Any specific classes in American politics?
A Elections, public opinion are the topics in American politics that recent teaching has covered.

Q And you said you're a researcher; what are the topics that you've researched?

A Most recently I've been directing the American National Election Studies, but over my career I've done a lot of work on electoral systems, on the application of statistical methods in many realms of political science but again with a heavy emphasis on American politics.

Q You mentioned the American National Elections Studies.

A Uh-huh.
Q What is that organization?
A Okay, sure. That is a large survey-based study of American political attitudes. It is the single biggest piece of political science funded by the National Science Foundation. It's a study that has been in existence in one form or another since 1952 and is currently a co-production of Stanford University and the University of Michigan.

Q And then I see on your CV that it says principal investigator; is that your title?

A Yeah. For the purposes of that project, that is my title.

Q And then what are your responsibilities as the principal investigator?

A Stewardship of the NSF grant dollars, making decisions about the science that we're conducting, the design of given presidential cycles, survey work, the dissemination of the data, the extent to which we rely on our Advisory Board for assistance, directing a small staff at Stanford and partnering with our opposite numbers at the University of Michigan.

Q And then I see that there's a website listed here, www.electionstudies.org; is that the website for
the American National Election Studies?
A It is, yeah. That's hosted out of the University of Michigan.

Q Have you ever served as an expert witness in a legal case before?

A No.
Q All right. When did you start working as an expert in this case?

A Late last year.
Q And how did it come about that you ended up getting involved with this case?

A I don't exactly recall, but I believe it was I think Ruth Greenwood e-mailed me and asked me if I'd be interested in coming on board, either Ruth or Nick Stephanopoulos.

Q And during that initial contact with you, what was it suggested that you would do on behalf of the plaintiffs in this case?

A Would I look at the properties of this measure that McGhee and Stephanopoulos had written about in a Law Review article, examine its -- generate measures of the efficiency gap for a large set of state legislative elections, as many as we could possibly manage, examining the properties of that measure, examining some of the ways we might go
about computing it, examining the robustness of the resulting estimates of the efficiency gap and ultimately to produce an assessment of the extent to which recent values of the efficiency gap from Wisconsin, how they stacked up against that -- in light of that historical analysis.

Q You used the term "robustness" which is a term I've seen. Could you explain what you mean by that?

A Yeah. A simple definition might be the extent to which you get the same answer when you do different things and make different assumptions about the way you treat the data.

Q And you also mentioned a Law Review article by McGhee and Stephanopoulos. At the time you had first been --

MR. EARLE: Excuse me, did you say large?

MR. KEENAN: Law Review.
MR. EARLE: Oh, Law Review, okay. I thought you said large. I'm sorry, go ahead.

Q Law Review article by McGhee and Stephanopoulos. At the time you were approached to work on this case, were you already familiar with that Law

Review article?
A No, I was not.
Q Were you familiar with the, not the specific article, with the efficiency gap measure that was outlined in the article?

A No.
(Exhibit 13 is marked for identification)
Q Could you identify what Exhibit 13 is?
A It's my letter of engagement.
Q For your work in this case?
A Uh-huh.
Q All right. I think the copy that I received from your attorneys doesn't have your signature on it, but is this still the engagement letter even though it doesn't look like it has your signature on it?

A Yes.
Q You're not disputing that it's the engagement letter?

A No, no.
Q All right. And then looking at the engagement letter, is it your understanding that this encapsulates what you were asked to do in this case?

A Uh-huh.

Q And if you look at the second page, there's a series of numbers. The number 3 you can see, it's italicized, it says Partisan Gerrymandering and the Efficiency Gap, 82 U.Chi.L.Rev. Is that the Stephanopoulos and McGhee article you were referencing?

A Yes, that's right.
Q Okay, let's put that aside. And then your rate is \$250 per hour; is that correct?

A That's correct.
(Exhibit 14 is marked for identification)
Q And perhaps I should back up. You understood that you were supposed to produce documents in your possession to your attorney that then would be produced to me, correct?

A Yes.
Q And you produced all the materials that you relied on in formulating your report to your attorneys, correct?

A Yes, I did.
Q All right. When I went through those materials, I found these two invoices which are contained in Exhibit 14.

A Uh-huh.
Q And my main question is are these the only two
invoices you've submitted to the plaintiffs in the case?

A That's correct.
Q And the first invoice is dated June 8th, 2015. And if I understand that correctly, that would cover all of the work you did from whenever the first engagement was up until that date?

A That's correct.
Q And then have the plaintiffs paid the invoices that you submitted to them?

A Yes.
Q Are there any other outstanding invoices, not invoices I guess, but any outstanding work that you haven't billed yet to the plaintiffs?

A Yes.
Q Okay. And do you have any estimate of how much that is?

A Ten to 12 hours.
Q Okay. But you will be submitting an invoice for that to the plaintiffs?

A I will.
Q All right. So now we can get back to your report. You can maybe have Exhibit 11 in front of you.

A Uh-huh.
Q And I thought I would just go through the report
and ask you questions about it.
A Okay.
Q And the way it's organized, it has an introduction section and then some more detail behind. So I thought maybe we could start with the introduction but then perhaps jump to the substance later and then we might have to jump back and forth.

MR. EARLE: Why don't we -- okay.
MS. GREENWOOD: Yeah, just let
Simon look on his own copy there.
MR. EARLE: Okay.
Q So I understand you have your own copy.
A Yeah.
Q But I believe it's the same document.
A It is the same document, right.
Q All right. If you look at No. 3, Section 3 is the Summary.

A Uh-huh.
Q Start with Paragraph 1 there.
A Uh-huh.
MR. EARLE: Can we pause for a second?

MR. KEENAN: Sure.
(Discussion off the record)
Q So just looking at that first paragraph,

Paragraph 1, the second sentence says, "Wasted votes are votes for a party in excess of what the party needed to win a given district or votes cast for a party in districts that the party doesn't win."

Where did you get that definition of wasted votes from?

A From McGhee and Stephanopoulos.
Q And what's your understanding of -- did McGhee and Stephanopoulos, I guess for lack of a better word, create this wasted votes measure?

A I think the concept of wasted votes is well rehearsed in the literature. I think it's given an extremely precise definition here, but I think the concept itself is well known in the literature on partisan gerrymandering.

Q And then continue on, "Differences in wasted vote rates between political parties measure the extent of partisan gerrymandering."

Why is it your opinion that differences in wasted votes measure the extent of partisan gerrymandering?

A Because fundamentally differences in wasted vote rates between parties are measuring the extent to which district lines are systematically treating
voters of different parties unequally.
Q And is it your opinion that any districting system that systematically treats voters of different parties unequally is a product of gerrymandering?

A No. I think very specifically it's through the districting or it's the districting that generates that unequal treatment. You know, there are other ways an electoral system might treat voters unequally. But this is a very precise meaning in this context, and it's with respect to the districts and the district boundaries.

Q Okay. So any decision on districting that treats voters of different parties unequally would be considered gerrymandering?

MR. EARLE: I'm going to object to the form of the question and to the extent that you're asking him for a legal conclusion. Subject to that objection, you can answer the question if you understand it.

A Yeah. Could you repeat the question then?
Q Sure. Is it your opinion that any districting decision that results in districts that treat voters of different parties unequally constitutes gerrymandering?

MR. EARLE: Same objection, go
ahead.
A The word "treat" in that sentence is key and perhaps subject to a little ambiguity. I think if operationally the plan, the districting plan produces differences in wasted vote rates of the sort that I elaborate in this report, then we're on the road to establishing partisan gerrymandering.

Q And did you say you're on the road to establishing partisan gerrymandering?

A Uh-huh.
Q That's a yes?
A Yes.
Q Sorry. But does the just difference in wasted votes alone establish partisan gerrymandering?

MR. EARLE: Same objection. I'll
just note that for the record without repeating and elaborating on it, but go ahead and answer the question if you understand the question.

A From my perspective, absent any data about the intent of people who were drawing the lines, that's why I got hung up on the word treat in your earlier question. But the data I observe and in particular the data I had at my disposal for this
report, differences in wasted vote rates was the indicator that I relied on to measure partisan gerrymandering.

Q I guess I'm just trying to figure out why rely on that as your indicator?

A Because it's available in such a wide array of states and years and made possible the analysis that I did.

Q And your analysis, just kind of following up on your prior answer, is based solely on the end results of the various elections in the states you measured?

MR. EARLE: I'm going to object to the form of the question, ambiguous.

A Okay. Could you repeat the question?
Q Sure. You mentioned that you were just looking at the results of the elections and didn't look at the intent of any of the bodies that were doing any of the districting; that's correct?

A Yes, in large effect. The one additional piece of data that I did have at my disposal was, you know, under which plan an election took place. But I didn't take into account who drew the plan, and I have no room to measure this to whatever was in their minds when they draw the plan.

Q Yeah. And so your analysis just looks at what the results of those plans were in the various elections that took place under those plans?

A Yes.
Q Okay. I was just going to skip ahead to -actually maybe we'll just go to No. 2, Paragraph 2 where it says, "The efficiency gap, EG, is a relative, wasted vote measure, the ratio of one party's wasted vote rate to the other party's wasted vote rate."

A Uh-huh.
Q And I think we've talked about this before, but you got this definition of the efficiency gap from the Stephanopoulos and McGhee article; is that correct?

A That's right.
Q Have you written any articles that were published about the efficiency gap?

A No.
Q And then you say in No. 3 that, "The efficiency gap is an excess seats measure reflecting the nature of a partisan gerrymander."

When you say excess seats, excess in comparison to what?

A An efficiency gap of zero and an assumption that
there's an equal number of voters in every district. Under those two assumptions, we have a very precise relationship between statewide vote share and seat share for a given party. And it's with respect to that very precise relationship that I'm using the term excess seats. So it's with reference to a world, hypothetical world in which the efficiency gap is zero, all right. Against that standard we can assess what happens in real world elections, the extent to which the seats won given the votes won is above or below the level that the zero efficiency gap standard would imply.

Q And you said that it assumes that there's equal voters in each district. Can you just explain what that means?

A Right. That's a simplification that generates a very simple representation of the mapping from votes to seats when the efficiency gap is zero. So if we were able or willing to make the assumption that there were equal number of voters in every district and if the efficiency gap was a preset value, let's say zero for the sake of argument, then we have an expectation as to how many seats we should see for a given level of vote
-- statewide vote. Now, the equal number of voters per seat means just that, that in every district we have the same number of people voting.

Q And the same number of people voting would be the total votes, not the number of people that live in the district?

A That's correct.
Q Okay. So it assumed that District 1, 20,000 people voted and District $2,20,000$ people voted, all the way down the line?

A That's right.
Q Okay. I'm just going to jump ahead a little bit and we can get into these things in a little more detail.

A Uh-huh.
Q Looking at Figure 1 which is on Page 7.
A Uh-huh.
Q The exhibit is in color, so if that's a little --

A Yeah, that is helpful.
Q I printed it in black and white and realized it didn't make much sense, so then I printed it in color.

MR. EARLE: We need to increase the budget of the AG's office and have a color printer.

MR. KEENAN: No, I have color.
MR. EARLE: Oh, this is my copy. MR. KEENAN: Yeah, his is in black and white.

MR. EARLE: Oh, I see. Oh, it is.
MR. KEENAN: Yeah, the official one is in color. There's some of these graphs that --

MR. EARLE: Okay. Page 7, got it.

Q And now that we have the color version, the red, I take it the red line there is Wisconsin; is that correct?

A That is the average of the efficiency gap measures for Wisconsin 2012 and Wisconsin 2014.

Q And you say average, so that would be?
A It's just the average of two numbers.

Q Two numbers. And then the bar is there, there's a dot in the middle and then there's bars on the side. What does that line represent?

A In this graph the horizontal lines are 95 percent confidence intervals around each average.

Q Okay. So the right most, for example, line is the furthest -- I'm just trying to figure out if that's actually your calculation of the efficiency gap for I guess what would be the most favorable
democratic year in a plan or does that extend even further right based on some sort of confidence interval?

MR. EARLE: I'm going to object to the form of the question. I think I know what you're asking, but answer the question if you understand it.

A That's not the interpretation I would give --
Q Okay. Why don't you explain what you would give?
MR. EARLE: Let him finish his sentence.

MR. KEENAN: Sure.
MR. EARLE: There you go.
A The right most edge or the limit at the end there of the red horizontal line is the point at which there is only a 2.5 percent chance that the average efficiency gap lies to the right of that point. And similarly there is only a 2.5 percent chance that the average efficiency gap score for Wisconsin 2012, 2014 lies to the left of the left-hand end of the red line. So the single point estimate is the dot that is unknown -- our uncertainty about that point estimate is concentrated around that red dot, and the line is giving a graphical summary of how large that
uncertainty is.
Q And I'll just follow that up. So in Wisconsin in this red line, there's only two efficiency gap calculations, correct?

A That's right.
Q And so later on you give what those are for Wisconsin. And I guess I might be phrasing this poorly but, for example, if you put two dots at where your calculation for the efficiency gap for 2012 and 2014 --

A That's correct.
Q -- would those be inside the outermost edges there or would they be at the outermost edges there?

A The individual estimates for each year lie on either side of the average, right, so the average by definition will be in the middle. And since we only have two, the 2012 estimate will be on one side and the 2014 estimate will be on the other. In this case the 2012 estimate is to the left and the 2014 estimate is to the right. Just looking at my numbers, the individual point estimates for 2012 and 2014, the 2012 estimate would lie on that red line, and the 2014 estimate, yes, probably does as well, probably right up towards the right-hand edge, the right-hand end of that red
horizontal line.
Q Okay. And I guess I was trying to be a little bit simpler in that those two numbers, we have two and then we have an average. If we had bigger dots to represent the 2012 and 2014 numbers, would they lie at the very extreme of this red line or would they be somewhat inside of it?

A They'd be as I just said, one would be towards the left-hand end but still on that line, and the other would be towards the end but I think still -- it would still be on the red line.

MR. EARLE: Just so the record is clear, the deponent was referencing Figure 35.

A I was eyeballing, literally sort of doing the transposition, picking up those two estimates there at the end of Figure 35 and plunking them down on Figure 1.

MR. EARLE: And for the ease of anybody reading the transcript, Figure 35 is on Page 72.

Q And you said it's a long line. I guess I'm just trying to figure out if it's at the very end of the line or if the line you have depicted on Figure 1 accounts for some uncertainty that the
efficiency gap might actually be to the right of whatever the number was calculated for 2012 ?

A Okay. So the uncertainty in that average, that 95 percent confidence interval that's been drawn around the average, reflects the uncertainty in the estimate for 2012 and 2014. So to the extent we're uncertain about those point estimates, that uncertainty is reflected and that's what's generating the confidence interval that you see graphed for the average.

Q And this graph represents the average efficiency gap scores it says for 206 districting plans; is that correct?

A Uh-huh, that's correct.
Q Is that all of the districting plans you looked at?

A Yes.
Q And so I take it that Wisconsin obviously only has two elections under its plan, but some of these elections that are here have a full five elections under the plan?

A That's correct.
Q Okay. I guess we can move to 4.1, the Seats-Votes Curves. We had been talking about this a little bit before I believe, perhaps we can get into it a
little more here.
A Uh-huh.
Q I note that there's like a Footnote 1 that talks about the Cube Law. Can you just explain what the Cube Law is?

A Sure. The Cube Law really isn't a law. It's a law in the sense that social scientists sometimes use that term when talking about what might be better described as an apparent empirical regularity.

The Cube Law dates back to the very beginning of systematic study of electoral systems when turn of the 20th Century British statisticians started looking at the relationship between vote shares and seat shares in single-member district systems in the UK House of Commons in particular. And what was observed was a nonlinear relationship between vote shares and seat shares for a given party. And literally through fitting what might be the right curve to fit to that nonlinear relationship, it was speculated that that particular equation shown in Figure 1 would produce a good fit to the data that that group of early investigators of this topic were seeing in the UK House of Commons data.

And if I were to describe it to you, you get an S-shaped curve of the sort that I've graphed in Figure 2 on Page 10, and that appeared to fit those early data reasonably well. And it was speculated that maybe there was something about the nature of single-member district systems that would produce S-shaped curves and indeed maybe S-shaped curves where the right power function there is cubic; hence, the Cube Rule or the cube Law. But over time as we've investigated many, many single-member district systems over the years, we've come to realize that sometimes we see values higher than three and sometimes we see values lower than three.

Proportional representation is a special case. It's not a district system at all, right, it's just allocated seats in proportion to vote shares. That gives you a 45-degree line. It's essentially taking the three you see there in the Cube Law and setting up to one. And then there are even more extreme versions. You know, districting plans that are extremely protective of incumbents, actually the value drops below one. And you get sort of an inverted S-shaped curve, a curve that is steep at the ends but largely flat
over vote shares between say 25 to 75 percent, or if not quite flat then close to it.

And so the Cube Law lives on in the literature. It's a nice way to introduce people to the topic. And it still does express -- I think the thing to take away from it is that in single-member district systems you don't get 45-degree lines, you get a quite abrupt nonlinearity. Single-member district systems hand out harsh punishment to parties whose vote share falls into the teens or the twenties or the thirties. Seat shares tend to rapidly improve as your vote share moves up towards into the forties, fifties and then tends to plateau out once statewide, jurisdiction-wide vote shares get largely beyond 70, 80 percent. And that's a regularity that holds up, and the Cube Law lives on in the sense that it was one of the first attempts to formalize that empirical regularity.

MR. EARLE: Before you ask the next question, just for the record I think there was a misspeak at the beginning of that answer where you referred to Figure 1 as opposed to Footnote 1 as to the location of the formula.

THE WITNESS: Oh, pardon me. Footnote 1, location of the formula, yes.

Q And then just digging into that answer a little bit, you mentioned that sometimes instead of a cube you get a three, you get something higher or lower. If you go higher, does that make the shape of the curve steeper?

A Exactly.
Q And lower is flatter?
A Flatter, exactly.
Q You mentioned that this Cube Law differs from system to system, some systems have higher or lower. Is there a study about like what the proportion is in United States state legislature elections?

A Yes, indeed. So just keep in mind it's not the Cube Law that varies; it's the Cube Law proposes three, that's where you empirically go about trying to estimate these curves. Jurisdiction to jurisdiction or context to context, we see variation in the number that belongs there. And there's a large literature, you know, offering ways of estimating that number in state legislative elections comparing state legislative elections to house elections to an institution
like the electoral college winner take all by state with the exception of Maine and Nebraska. So yeah, there are estimates like that out there.

Q Does your calculation of the efficiency gap rely on a seats-votes curve?

A Strictly speaking, no, no, although a seats-votes curve is implied by the efficiency gap. If you assume the efficiency gap is zero, an underlying seats-votes curve is implied.

Q What is the underlying seats-votes curve implied that you're mentioning?

A Okay. Figure 4 of Page 18 of my report, I show in orange the seats-votes curve that's implied by an efficiency gap of zero. And it's what we would call formally a piecewise linear function that is flat, horizontal when vote shares lie between zero and .25 , has a slope of two between vote shares of 25 percent and 75 percent, and is again flat or horizontal from the point at which vote share is 75 percent through to 100 percent.

Q Okay. So if I look at the orange line here on Figure 4 and if a seats-votes result in a particular election lies on that line, there'd be a zero efficiency gap?

A Subject to some assumptions here, right, that that
would be subject to the equal votes in each district assumption, sure.

Q Okay. And then just to make sure I'm visualizing this correctly, is the vote share going to the right, that's the democratic vote share?

A It could be, it need not be. We're in a two-party system here is what all of this presumes, and those curves are perfectly symmetric, about 50/50. So it's just a point of convenience what you choose. But for sake of argument and the way I've done the analysis, I took it to be democratic vote share.

Q That's what I was going to ask. The way you did the analysis, was that the democratic votes -- V is democratic vote share?

A That's right.

Q And so if I wanted to plot out, you know, the democratic vote at 60 percent, I'd have to go to . 6 on your map?

A That's right.
Q And just for example, if democrats had 60 percent of the vote, so I'd go to the 0.6?

A Uh-huh.
Q But they got 50 percent of the seats, I'd go up to. 5?

A Uh-huh.
Q And I guess if I compare that to where the line is there, the line says it should be at . 7 percent of the seats but they're at .5, what's the efficiency gap under that condition?

A Right. It's --
MR. EARLE: I'm going to object to the form of the question only because you were diagramming on your copy of the exhibit with your finger, and that's not going to appear on the transcript.

Q Did you understand the question?
A I did.
Q Okay.
A I did. Well, there's a very simple formula. So the scenario you sketched is that they won 50 percent of the seats with 60 percent of the vote. And so in such a case, the efficiency gap there would be negative . 2 .

Q Okay. And that's just the difference between where that orange line intersects with . 6 and where the actual seats number is?

A Yeah, that's right. And that's the sense in which earlier I referred to the efficiency gap measure or as inducing excess seats, understanding what's
going on here, that conditional on winning 60 percent of the votes under the zero efficiency gap standard, we'd expect 70. Under your scenario they won 50; that difference is a deficit relative to what we would expect under a zero efficiency gap.

Q Okay. And then like just to view a different side of the coin, if they got 40 percent of the vote but got 50 percent of the seats, what would the efficiency gap be in that circumstance?

A If they won 50 percent of the seats with 40 percent of the vote, in that case the efficiency gap is -- that would be a positive . 2 .

Q And then if we were -- say we just flip this to look at it from the republican perspective, it would be just a mirror image. That would be --

A Yeah, one minus everything, right.
MR. EARLE: We're getting a little conversational here. One of the things about depositions is when you discuss something, you get conversational and you sometimes speak over each other a little bit. And there was a little bit of that there. So if you could try to keep the question separated from the answer, that would be great.

Q I think I understand that now, so I'm just going to go backwards in the report to Page 16 , and there are some equations here.

A Uh-huh.

Q Could you just start with the first one there, it starts with EG.

A Uh-huh.

Q What does that equation represent?

A That's the definition of the efficiency gap as the difference of two wasted -- two numbers of wasted votes.

Q So is WB, that's the wasted votes for --

A For Party B, and WA are the wasted votes for Party A. And we've divided in both cases by the total number of in this case the jurisdictions, the number of jurisdictions in the -- actually I misspoke. In this particular formulation, these are proportions, these are not numbers, these are proportions.

Q Okay. So maybe just explain that then.
A Yeah, right. The constituent parts of WA and WB are these quantities S and V. V is a vote proportion, in particular a share of the two-party vote for Party A, I express those as proportion.

Q Okay. So some of these examples we've been using,
if Party A got 40 percent of the vote, is WA 40 percent?

A No, that's their wasted vote.
Q Oh, okay.
A Not the statewide vote.
Q Okay, I see. So the next equation down is WA equals a bunch of things that I don't understand, so maybe you could just --

MR. EARLE: Just so the transcript
is clear, you're now discussing the second formula --

MR. KEENAN: On Page 16.
MR. EARLE: -- from the top of
Page 16, okay.
Q What does this equation for WA mean?
A Okay. So there's a summation operator there, so over all districts we do the following: The vote share one -- okay, so these shares are defined with respect to Party A. So VI is the vote share of Party A in District I, and we're assuming it's a two-party system. So if VI exceeds .5, then Party A wins the district.

Q Right.
A So the wasted votes for Party A are in seats where it won the proportion of votes in excess of what
it needed to win, so that's why we've got VI minus .5, all right, multiplied by SI. Now, SI takes the value one when the party wins the seat and takes the value zero when it doesn't. So when SI is one, we're talking about seats that Party A won.

And then the second piece of the second equation on Page 16, one minus SI, well, if SI is one, then one minus SI is only one when SI equals zero. And so now that part of the equation is picking up wasted votes and seats that Party A did not win, and in that case the VI in that case they're all below .5. And the definition of wasted votes is any votes you cast that are cast for a party in seats that it goes on to lose are wasted votes.

So we've essentially summed up all the districts now, right. Every district is won by either Party A or Party B. Wasted votes in the seats that Party A wins are the vote shares in excess of .5. And in the seats that Party A loses it's just the vote share, so it's just VI in those cases. And then we're just summing now of all districts. So every district is appearing somewhere in that equation, either a seat that

Party A won or a seat that Party A did not win.
Q Okay. So this is a calculation to determine the wasted votes in a particular district; is that correct?

A But summed over all districts.
Q Yeah, I'm sorry. WA is the wasted votes in a particular district --

A No, no, for the whole jurisdiction.
MR. EARLE: Hold on, we're getting conversational again. Why don't we start over with the next question and rephrase it. MR. KEENAN: Okay.

Q So the sum means that you do this sigma, is that the correct --

A Correct, yes.
Q You do that calculation for each and every district; is that correct?

A Subscript I indexes districts, so the summation over I takes us across districts. So now we've got a jurisdiction-wide quantity; WA is jurisdiction wide or in this case statewide as is EG, the efficiency gap itself.

What's happening down at the district level are these vote shares, VI and SI which is just telling us where the VI is above . 5, and not
telling us who won the district.
Q All right. And as I understand it, you did not actually perform this particular calculation in every district across every election that you looked at?

A Actually I used a very similar form of this after I was able to -- my version of the efficiency gap calculation, my calculations are extremely similar to this in that I substitute -- I have a vote share for each and every district. So I did come up with a VI for every district.

Q Okay. So maybe I should just ask you how you calculated the efficiency gap for a particular state in a particular year.

A Okay, sure. Well, why don't we take an easy case where every district is contested and so VI is observed for every district. And we're limiting ourselves or ignoring minor party candidates; we're focused on two-party competition. In that case, the efficiency gap calculations are identical under either the form given in the top half of Page 16 as we've just been discussing and unpacking the three equations in the top half of that page, or we could use the formulation given in Equation 1 on the lower half of Page 16 where
we can rely quite simply on the statewide aggregate numbers S-- the seat share for Party A in this case the way I set it up, the democrats -and V, the average of the district vote shares.

Q So did you, in calculating the efficiency gap for all the various states that you looked at, did you use the equation here in 6.1 or the one above it in 6.0?

A Well, under the assumption of equal size districts, there's a strict correspondence between the two and so I assumed that. And so the distinction between the two forms is immaterial.

Q Yeah, and that may be. I'm just trying to figure out, though, like when you actually did the calculation, did you use the 6.1 equation or the one above it?

A Okay. To be perfectly clear, I used the equation labeled 1 on the bottom half of Page 16 but note that it has an input, to wit, V, which has these VI, V subscript $I, ~ q u a n t i t i e s ~ w h i c h ~ a r e ~ a n a l o g o u s ~$ to the VI quantities on the top half of the --

MR. EARLE: Just so the transcript is clear, you're referencing the sentence immediately below Formula 1 in 6.1 where V equals, and then you have a formula.

THE WITNESS: That's right.
MR. EARLE: Okay.
Q And you mentioned -- it says there's an assumption of equally-sized districts.

A Yes.
Q Other parts of the deposition you talked about we've assumed equal number of voters. Is this equal number of voters or is it a different assumption?

A No, equal number of voters.
Q Okay. Because the districts could be equally sized and have different numbers of voters.

A I understand.
MR. EARLE: You want to take a break now?

MR. KEENAN: Yeah, we can take a break.
(Recess)
Q We're back on the record. You were in the middle of explaining how you calculated the efficiency gap, and I think we're on Page 16 of your report.

A Sure.
Q Going back to something you had said, you mentioned that you were looking at the two-party vote. Just so I understand that correctly, in a
race where there happened to be a third party candidate perhaps even only getting two percent of the vote or some small amount, what did you do with that party candidate's vote?

MR. EARLE: I'm going to object to the form of the question. Go ahead and answer if you understand the question.

A In such a case, everything I did is defined by computing the democrats' share of the two-party vote. So it would be D over D plus R and putting votes for any other candidates out of the analysis.

Q Okay. And then looking at the bottom of Page 16 it says, "I operationalize V as the average over districts of the democratic share of the two-party vote, in seats won by either a democratic or republican candidate."

What did you do with a seat that wasn't won by a democratic or a republican candidate?

A And again, they're out of the analysis.
Q So, for example, if in Wisconsin there's 99 seats and one of them is won by some other party, then the analysis proceeds just looking at the 98 other seats?

A That's correct.

Q What does the average over districts of democratic share of the two-party vote mean?

A It means that you compute the democratic share of the two-party vote in every district, you sum that up over districts, and you divide by the number of districts.

Q So that will give you a number, a percentage?
A Yeah.
Q And then you say, "If districts are of equal size and ignoring seats won by independents and minor party candidates, then this average over districts will correspond to the democratic share of the statewide, two-party vote."

Okay. I think I understand that, so I don't need to ask more about it.

MR. EARLE: So there's no question?

MR. KEENAN: No.

MR. EARLE: All right.

Q We already went over the seats-votes curve, so I guess we can pass over that.

A Uh-huh.
Q Why don't you explain the set of legislative elections that you analyzed for your report?

A Sure. So the data -- well, the set of state elections I rely on span 1972 to 2014. I looked
at general election contests for State Lower House elections held under single-member district electoral systems. Or there are also a small number of districts and races in there that are multimember districts, but multimember districts with slots or positions. So we're able to identify which candidates were running for which slot and in effect treat them as if they were the functional equivalent of single-member districts.

Q Okay. So you only looked at elections that were the State Lower House; that's correct?

A That's correct.
Q So the Wisconsin State Senate, for example, that wasn't considered?

A Not in this analysis.
Q And then if there was any elections that had multimember, any multimember districts?

A There are some multimember districts in the analysis, but as I said earlier in answer to the previous question, only of a particular type.

MR. EARLE: Pause a little bit before answering the question so I can insert an objection if necessary. And I will, post hoc, make an objection to the form of that last question.

Q So just so I understand, if there was like a State Lower House that had most of its seats were single-member but there was a few that were multimember but not of this slotted type, then that election was not considered?

A There are a couple of cases in the data where I did keep elections of that type. There aren't many, but I put the multimember districts to one side that were not of that slotted position type.

Q But you could still run an efficiency gap on the remaining --

A That's right, yeah.
Q If you look at Figure 5 on Page 21, I just want to make sure that I'm understanding correctly that if there's an orange dot for the state in a particular year, that's an election that you did consider in your analysis?

A That's correct.
Q And if there's not a dot, then that election was not considered?

A Or there was not an election in that year, that's right.

Q Fair enough. Who is Karl Klarner?
A He's a political scientist.
Q And what role did he have in the data that you
used in your study?
A He is the current steward of this large canonical, in political science at least, canonical collection of data on state legislative election returns. And he supplied me with the data for up through 2014 which was the current append to the longer historical data collection that runs 1967 to 2012.

Q Was Mr. Klarner the only source of your election data or did you go to some other sources as well?

A On the state legislative election returns, the collection that he is currently the steward of and the append for 2014 he gave me, that's where that data came from. There are of course other data used in the analysis that came from other sources. But in terms of the state legislative election outcomes, that data collection is the only source for those data.

Q Okay. So I see here 786 elections across 41 states.

A Could you tell me --
Q Page 20 at the very bottom.
MR. EARLE: It's the last sentence
on Page 20.
A Correct.

Q And then are all those 786 elections reflected on Figure 5?

A Yes.
Q Moving to 7.2, the uncontested races, you mentioned this a little bit before but why don't you explain how you accounted for uncontested races in your analysis?

A Okay. So in the what is an uncontested race, it's where we do not have a democrat facing off against a republican, and so we don't have votes from both a democrat and republican. In such a case, in order to come up with a vote share for that district, I relied on a modeling procedure that used presidential vote tabulated by state legislative district from the most temporally proximate presidential election. And I also took into account if the candidate who did -- the only candidate who did show up and was returned unopposed was an incumbent or not and of which party. So was it a republican incumbent, was it a democratic incumbent or was there no incumbent.

Now, what I did was to run regression
analysis of the relationship between vote shares and the state legislative elections against presidential vote in districts where we did have a
contested race, so we get to observe both of these things in those cases. Then on the basis of what that analysis tells us about the relationship between those two variables taking into account incumbency, we're able then to make a prediction as to the vote share in an uncontested race because even in the uncontested races, races that aren't contested in the state legislative election, nonetheless we do have presidential vote share available in that district. And so the regression procedure is able to produce a prediction for those cases.

Q Okay. Let's just get into some specifics there. So you said the presidential vote in the most recent or proximate presidential election.

A Typically the preceding one.
Q Preceding one. For example 2014, would you have looked at the 2012 presidential election?

A Exactly, yes.
MR. EARLE: Slipping into
conversation again, but --

THE WITNESS: Sure.
MR. EARLE: -- that's fine.
Q And then for the 2012 election where there was a presidential election that year, would you have
just used the 2012 presidential election?
A Yes.
Q Okay. And then the regression analysis, was that done -- I guess against which unit is that done? Was that done for each state in each election or is it a nationwide thing?

A No. That regression analysis is run in each election -- each state, each election.

Q So there's a separate calculation for Wisconsin 2012 from Michigan 2012?

A Yeah. And moreover, there's a separate calculation for Wisconsin 2012 republican incumbents versus Wisconsin 2012 democratic incumbents versus Wisconsin 2012 open seats.

Q So when you say an incumbent, does that refer to the candidate that's running unopposed whether they're an incumbent or not?

A That's right.
Q Okay. So you're trying to or what you're trying to do is model the share of votes that incumbent running would have received if there was an actual opponent?

A If in fact they had attracted a challenger, that's right.

Q Okay. And you're running a separate calculation
if the unopposed candidate is not actually an incumbent?

A The same type of calculation but leveraging off a different set of data.

Q Is the vote total that you're trying to find, is it just a percentage or is it an actual like number of votes?

A It's actually -- I'm trying to model a percentage, not a count.

Q So in the report on Page 26 through 29, it mentions two different imputation models?

A Right.
Q What are the two different imputation models?
A For prior to the 2000 s, we don't have presidential vote share tabulated at the level of state legislative districts or at least that's not widely available. So there I relied on a different procedure, one that attempted to build an over time sequence. So inside a districting plan if we take a given district, suppose it was contested in one year and then it was uncontested in the following year but contested in the year after, in the election after that, then we had a basis for interpolating what the missing vote share would have been. Again taking into account
incumbency and also statewide factors, you could say it was a particularly good year or not so good year for the party in that state in that year. So that was the procedure I relied on in that case. I engaged in some comparisons of how that method performed against the method I was able to use and I prefer to use for the period 2000 forward where presidential vote shares were available and was reasonably satisfied that I was getting similar results. And although while I would much prefer to rely on presidential vote when I've got it as a basis for imputation, I was reasonably satisfied with the performance of that ultimate procedure based on the time periods where I had both methods so I could perform both methods. So I did a check of the performance of the two methods.

Q Under the imputation model that didn't have presidential vote share available, how were you able to determine the share of votes when a district was always uncontested?

A Right. That poses a real challenge. And at that point you're only able to rely on the identity of the incumbent and your estimate of the statewide vote share. And so in those cases, the estimates
of vote shares in such a district are relatively imprecise.

Q Okay. So if I understand, 8.1, Imputation model deals with the 2000 through the post 2000 s that we have presidential vote share data?

A Well, you're actually also able to do a lot of the nineties as well because the 2000 presidential election takes place with the same districting plan in place for a lot of the elections of the nineties in a lot of jurisdictions.

Q Okay. So you actually used the 2000 presidential election and went backwards so to speak to impute election results into the nineties?

A Yeah.
Q Okay.

A Only in cases where the same plan's in place obviously.

Q Understood. I guess now we'll get in to your actual calculations of the efficiency gap by the state in each election.

A Sure.
MR. EARLE: Which page do we move to?

MR. KEENAN: 32.
Q Did you use some sort of computer program to run
the -- or programs to run the calculations?
A Yes.
Q And can you just explain what you did to get the efficiency gaps in terms of, you know, running through computer programs?

MR. EARLE: I'm going to object to the form of that question.

MR. KEENAN: Sure.
MR. EARLE: Do you understand the question?

THE WITNESS: No.
A I need you to be a bit more specific for me.
Q I understand that obviously you have a lot of data and I know that there's like -- I've seen some document production of a program called R ?

A Uh-huh.

Q Could you explain how you used R in calculating the efficiency gap? On a general level; I don't need you to get into the --

A Okay. R is a widely used statistical data processing program used widely in the social and -- in science and in industry. I wrote programs in R that took the original data from the, as we were discussing earlier, the Karl Klarner collection. There's a lot of preprocessing
getting the data down to one record per district per election per state. Then at the level of each election, we then compute those quantities that go into the computation of the efficiency gap. So referring to my report, and I think we were discussing those equations earlier.

MS. GREENWOOD: Page 16 .
THE WITNESS: Thank you.
A So for instance, Equation 1 on Page 16 then is computed for every election in this data set. And so in this instance, this analysis, 786 separate calculations of Equation 1. And again a program like R, this is rather straightforward, looping over the states and the years and keeping states grouped, you know, according to tagging them with a redistricting plan. That's precisely the sort of task that a computing environment like R is extremely well suited for, along with producing the graphs that appear throughout the report.

Q Yeah. And there are a lot of graphs, and I was just wondering if there was a -- do you have a master list anywhere, or perhaps it could be generated, that lists the efficiency gap as calculated by you for each state and each election that you analyzed?

Q What does each little box represent?
A A plotted square is the particular vote share and seat share, all right -- so a vote share on the horizontal axis, seat share on the vertical axis -- from each of the 786 elections in the analysis.

Q And then elections that are I guess I want to say above and to the left of the orange line, would those be positive or negative efficiency gaps?

A Right. The vertical distance of a plotted square, if you project up or down to the orange line, gives you the efficiency gap. And so a data point that lies vertically above the orange line indicates a positive efficiency gap and a data point that lies below in a vertical distance, and vertical distance vertically below the orange line, indicates a negative estimate of the efficiency gap -- would correspond to a negative estimate of the efficiency gap.

Q Just turning to the next page, Figure 12, looking at that, can you explain what Figure 12 represents?

A Figure 12 represents the individual election-by-election efficiency gap estimates ordered by time left to right, and with the box indicating the point estimate of each efficiency
gap and the vertical bars extending outward from each box indicating length of a 95 percent confidence interval around each election-by-election estimate. And the data of course are grouped by state and ordered by time.

Q Is there a reason Vermont is listed at the top left?

MR. EARLE: Were you finished with your question?

MR. KEENAN: Yes.
MR. EARLE: Okay.
A That's a peculiarity of R. If you look, it's a reverse alphabetical order going from bottom left through to the top right.

Q Okay.
A That's all that is.
Q It confused me so --
A Yeah.
Q I was just going to go through the -- on the next page on 35 there's numbers with some points here.

A Uh-huh.
MR. EARLE: When you say numbers, you mean numbered paragraphs?

MR. KEENAN: Yeah, numbered paragraphs.

MR. EARLE: Okay.
Q So in Paragraph 4, is it true that New York had the lowest median efficiency gap estimates in your study?

A Yes.
Q And what is -- maybe just explain what a median estimate gap is.

A The plural in estimates there may be misleading. The lowest median -- if you took the median of all of New York's efficiency gap estimates, right, and then you did that for each state, New York has the lowest of those medians across the states. That's what I'm trying to say in the opening of

Paragraph 4 on Page 35.
Q Okay, that makes sense. And for a low efficiency gap, that means favorable to republicans and unfavorable to democrats?

A That's right.
Q And No. 5 says Arkansas has the highest median efficiency gap score?

A That's right.
Q So that would be the highest median that's
favorable to democrats?
A That's right.
Q And I believe you found Michigan was the third
lowest median efficiency gap score by state. Is there a list in here of each state's median?

A Not that I'm aware of.
Q Okay. No. 8 on the next page deals with Wisconsin specifically. It says Wisconsin's EG estimates range from negative . 14 to . 02 . So is .02 the most favorable efficiency gap to democrats that you observed in Wisconsin?

A Yes.
Q Okay. And when you say efficiency gap estimates, what do you mean by that?

A Okay. I used the language of estimate; the word "estimate" appears because of the modeling that went into handling uncontested seats. And that's just the way I think any social scientist would refer to a calculation that came out of a procedure like that. In three cases we could drop the word estimate, in three cases where every seat was contested, but there are only three out of 786. So for the rest of the time, I prefer the word estimate.

Q And are those three elections that are not estimates, is that because they had no uncontested seats at all?

A That's right. And hence nothing had to be done,
yeah, for the uncontested seats.
Q Is the level of confidence in a particular efficiency gap estimate -- sorry, I'll start over again. Does the level of confidence in a particular efficiency gap estimate change from election to election and state to state?

A Yes.
Q And what factors affect that?
A The proportion of seats that are uncontested.
Q Okay. And I would take it that a lower proportion of uncontested seats would give you more confidence in your calculation?

A And the limiting case is of course zero uncontested seats in which case the confidence interval around an estimate collapses onto a point estimate itself. And in such a case, we could dispense with the word estimate.

Q And you looked at Wisconsin's election results for every year from 1972 to 2014?

A That's correct.
Q And among that whole time, the most favorable efficiency gap to democrats was .02; is that correct?

A That's correct.
Q And you found that Wisconsin has recorded an
unbroken run of negative EG estimates from 1998 to 2014; is that correct?

A That's correct.
Q Looking at Figure 13 on Page 37, there's a series of plotted squares -- is that the correct term?

A That will work.
Q -- that are connected by a line. I was just, my question was whether that line -- does that line move temporally from, for example, 1972 to 1974 or is it just the nearest dot?

A No. It's difficult to see in this case but what I -- I was indeed trying to demonstrate the temporal sequence, and I used a solid box to indicate the end of the sequence so that's 2014. And you can kind of make out backward through time the way that sequence of efficiency gap estimates in Georgia in this case, in Figure 13 we're looking at Georgia, the evolution that the sequence of efficiency gap estimates can literally be read off that graph, you know, regard from being below the orange line in recent elections to earlier in time to be considerably above the orange line in an earlier phase in Georgia.

Q Okay. So I noticed that there's a similar type of graph, looks like every page, 37 through 42; do
you see that?
A Indeed, yeah.
Q For each of these, did you use the same procedure of having a solid box for the most recent election and then connecting the line to the --

A Yeah, that's correct.
Q Okay. So for each of these if I start at the solid box, then I go from there and work my way backwards through time?

A Well, it can be difficult when the lines overlap, but absent that problem, that would be correct, yeah.

Q And again looking at each of these plotted squares, the ones that are below on the vertical axis from the orange line are negative efficiency gaps?

A That's correct.
Q And the ones that are above are positive efficiency gaps?

A That's correct.
Q And then going to 42 is Figure 18, Wisconsin, so this shows graphical plot of all the efficiency gaps you calculated in Wisconsin from 1972 to 2014?

A Well, one can figure out what the efficiency gap
estimates are in the sense I was talking about earlier in that they're the vertical distance of each plotted square from the orange line with the last two, 2014, being the solid point there in the lower left quadrant of the graph. And you can see the line taking us back in time to the immediately preceding election in 2012.

Q Going on to Page 44 now, Section 9.2.
A Uh-huh.
Q It's titled Over-time change in the efficiency gap.

A Uh-huh.
Q What did you find with respect to any changes in the efficiency gap over time from the beginning of the 1972 period that you looked at till today?

A At a high level of generality, the general trend in the distribution of efficiency gap estimates across states is for a roughly -- we see plans more favorable to democrats, at least as measured by the efficiency gap, in the earlier decades of this analysis. But in the late nineties and particularly 2000 s onwards, that shifts and on average, efficiency gap estimates from the mid nineties onwards on average are indicative of plans that are favoring republicans. So negative
efficiency gap estimates are tending to be the norm although there's considerable -- I think it's important to note that at any given time point, there's considerable spread in the distribution. So that's sort of a weak trend in the overall distribution.

Q Yeah, let's look at Figure 20 which I believe you're referring to.

A Uh-huh.

Q Could you explain what the -- to look at it, the bottom, I guess the horizontal axis has time, 1970, 1980, 1990, 2000, 2010, vertical is the efficiency gap, and there's a series of black dots.

A Uh-huh.

Q What does each black dot represent?

A Each black dot is an efficiency gap estimate from a specific election. So they're grouped by the year of the election. Typically most of these states, the elections have been held in even-numbered years.

Q Okay. And then so if you look at any one particular year, the highest dot would be the plan that's the most -- or the election that's the most favorable to democrats as measured by the
efficiency gap?
A That's right. Positive values of the efficiency gap are indicative of plans favorable to democrats. And so as you go vertically up the graph, you're in positive territory up in the very, all right, above zero there in the top half of the graph. And for the contrary, for negative territory on the vertical axis, the bottom half of the graph, negative estimates of the efficiency gap indicative of plans that are not advantageous to democrats.

Q So the lower most dot would be the plan that's most favorable to republicans as measured by the efficiency gap?

A That's right.
Q And there's three blue lines on the graph; could you explain what those are?

A Yeah. That's estimating -- the middle blue line is an estimate of the median across states, all right. So in any given year, looking at that spread of points in the vertical dimension estimating where the median is but performing a little bit of what we call smoothing so to produce a trend over time in both. So the middle line is the smoothed over time estimate of the median
efficiency gap.
The upper blue line is a smooth estimate of the 75 th percentile, the point at which only one-quarter of elections are producing efficiency gap estimates more extreme than that. And the lower blue line is the smooth estimate of the 25 th percentile of the distribution of efficiency gap estimates, the point at which only 25 percent of elections are producing efficiency gap estimates more advantageous to republicans than where the blue line is, the lower blue line.

Q So looking at just like one election --
A Uh-huh.
Q -- you plotted each, or plotted might not be the best word, but plotted each efficiency gap that you calculated on that line, and then the median is the one that's in the middle when you line them up lowest to highest?

A Yeah. The median is the middle of the efficiency gap estimates arrayed from lower to high, and the only qualification is that we've smoothed -there's a little bit of smoothing going on. Otherwise the estimate of that median would be quite jagged if we did it with respect to every two years. So we employed a little statistical
technique called smoothing to just make that less jagged and easier to visualize than it would be otherwise.

MR. EARLE: And just for the record to make it clear, the deponent was using his hands to symbolize a sawtooth pattern as he was describing the word "jagged."

Q So if I'm reading this correctly, since about it looks like as you said the mid nineties, the median plan has been an efficiency gap that's favorable to republicans?

A That's right. Well, strictly speaking, the median efficiency gap estimate, right, so plans span multiple elections. But substantially the characterization that plans is correct, but technically the graph is displaying election-by-election estimates of the efficiency gap.

Q Yeah. So the median efficiency gap that you calculated for that particular election year?

A Election year, correct.
MR. EARLE: That's fine. The question wasn't complete, he was referencing the prior question. But that's okay, the transcript will reflect that.

Q Turning to Figure 21 on the next page, could you explain what Figure 21 represents?

A Right. So for each efficiency gap estimate, each one comes equipped with some uncertainty. And what I've attempted to do in Figure 21 is to take into account that uncertainty and produce, averaging over all efficiency gap estimates produced in a given year and taking into account the uncertainty that accompanies each one, nonetheless, what's the probability that a given efficiency gap number from a given election year is positive or negative, all right.

So here I've plotted the probability that an efficiency gap estimate from 1972 is positive, and remember positive means would favor democrats, and in 1972 we see that that's just above 50 percent. We see that cluster -- we see a bunch of estimates above 50 percent through to the mid nineties, and this largely tracks, you know, it's another summary of the distribution of the data presented in Figure 20, all right.

And so as the data in Figure 20 we saw the median fall below zero in the mid nineties. Likewise, this estimate of the probability that an efficiency gap estimate is positive, it falls
below . 5 meaning it's more likely than not that efficiency gap estimates from that election year are negative. That happens in the mid nineties, and it's largely that way say for that line 50/50 result in 2010 as indicated on Figure 21 .

Q So is this, looking at like 2006 because it's almost precisely on that .25 percent line --

A Uh-huh.
Q -- does that mean that 25 percent of plans were efficiency gap positive and 75 percent of plans were efficiency gap negative that year?

A Of elections held under plans in that year, 25 percent of the efficiency gap estimates produced in that election year indicated democratic advantage, 75 percent indicated republican advantage.

Q Okay. And going back to Figure 20, is each state weighted equally --

A Yes.
Q -- in these graphs?
A Yes.

Q And then I did note that on Figure 20 it said at the very end on the little caption it says, "weighted by the precision of each EG measure." What does that mean?

A Okay. So when the median is computed, an estimate of the efficiency gap that is imprecise contributes less weight to the computation of the estimate of where the median is than one that's estimated precisely, more precisely. So it is not the case that each state is weighted equally. They're precision weighted estimates of the median of the 25 th percentile and of the 75 th percentile.

Q Turning to Figure 22, what does this graph represent?

A This is in a sense folding the efficiency gap estimates now. So now we're looking at the absolute value in magnitude, not -- so we're just literally asking irrespective of the partisan advantage that may or may not indicate, just are the raw values in absolute value terms of a changing over time. And here the answer seems to be that's reasonably stable over time.

Q So when you say absolute value, what does that mean?

A It literally means a number that is negative, you would call a positive sign. The positive numbers stay the same. We're just literally looking at magnitudes now, not -- we're wiping out the sign, we're ignoring the sign of a given efficiency gap
estimate.
Q Okay. So a negative 10 and a positive 10 now become --

A Are treated the same, yeah, for the purposes of Figure 22.

Q Okay.
MR. EARLE: Yeah, we had a little overlap there. And maybe, Brian, you want to clear that up.

MR. KEENAN: Sure.
Q For the purposes of Figure 22, a negative 10 and a positive 10 would both be plotted out at the . 10 level?

A That's correct.
Q Going to 9.3 which is titled Within-plan variation in the efficiency gap.

MR. EARLE: So you're on Page 48?
MR. KEENAN: Yes, 48.
Q So you did note that within a particular plan the efficiency gap will change over the course of that plan; is that correct?

A That is correct.
Q And it's your opinion that some of this change is caused by districts displaying demographic drift which is gradually changing the political
complexion of those districts; is that correct?
A That's one reason.
Q And then another one would be incumbent losing or not running again for some reason; that's true?

A That's true.
Q And then you also found that a variation in turn-out most prominently from an on-year to an off-year election will cause the distribution of vote shares to vary from election to election; is that correct?

A That's correct.
Q And an on-year election, that's a presidential election, correct?

A That's what I mean by that, yes.
Q And then an off-year is an election that takes place in a year when there's not a presidential election?

A Right.
Q So, for example, in Wisconsin in 2012, that would be an on-year election?

A That's correct.
Q And then 2014 is an off-year election?
A That's correct.
Q Going down to the third paragraph it says, "About 76 percent of the variation in the EG estimates is
between-plan variation." What does that mean?
A Okay. So suppose you took all the efficiency gap estimates, 786 of them, and you want to assess the extent to which the efficiency gap is more or less stable over the life of a plan and hence would bolster up confidence that we're measuring a characteristic of the plan and not these election-to-election vagaries that you just led me through.

What we observe is that 76 percent of the variation is due to if we clustered the efficiency gap estimates by what plan they belong to, if we group them by that, the variation across those groups now is 76 percent of the total variation we saw which means that 100 minus 76,24 percent of the variation we see in efficiency gap estimates is within-plan variation. And so that means by a ratio of about three to one, all right, it's what plan I'm in is three times as important in telling me what level of efficiency gap I'm going to see than other factors such as these election-to-election vagaries.

So this bolsters my confidence that the efficiency gap is measuring something about the plan and isn't varying so much election to
election that who knows what it's telling us about the plan. The strong clustering by plan in the efficiency gap scores is what that between-plan variation reference is getting at.

Q Did you do any analysis of analyzing, comparing the differences between just specific states between plans and whether a factor was just the underlying nature of the state?

MR. EARLE: I'm going to object to the form of that question but go ahead, you can answer.

A I didn't quite catch the last part of it.
Q Sure. Did you do any analysis of examining the difference in efficiency gap just looking at the variations in states over time through different plans and whether there was any correlation between the efficiency gap in just the particular state that was being measured?

MR. EARLE: I'm going to object to the form of the question as ambiguous. Are you referring to the variables that you went through before being the factors? I mean, I don't understand the question, I guess.

MR. KEENAN: No, he's talking about that he saw that variations in plans,

76 percent, you know, there's clustering by plan.

Q Did you do any analysis of clustering by states around efficiency gap numbers through time?

A Well, clustering by state, holding time, bundling all efficiency gap estimates by time, if that's what you mean, the answer is no, I haven't performed that specific analysis.

MR. EARLE: You completed your
answer?
THE WITNESS: Yes.
MR. EARLE: Okay.
Q Going to Page 49, there's a second paragraph there, it says, "A plan with moderate variability in the EG. The median, within-plan standard deviation of the EG is about .03." What does that mean?

A Okay. So recall that we begin with an efficiency gap estimate for each election. Elections are then bundled into plans. And so for a given plan, we may have up to as many as five say estimates of the efficiency gap, all right. So now we're up at the level of plans.

For each plan, we can compute a measure of how variable the efficiency gap is over the life
of the plan. And the particular measure of variability I used is the standard deviation, the square root of the variance. And now I have one of those numbers for each plan, and I simply computed the median of those standard deviations across the 200 odd plans in this analysis.

Q Okay. And in thinking about just what that means for a particular plan specific efficiency gap calculation, what does that .03 mean? Does that mean that like the median plan would deviate between .03 and .06 or like . 3 from the middle of the plan, the median efficiency gap calculated under that plan? I mean, I just ask you to help me understand.

A Sure, sure.
MR. EARLE: So the question is you're asking him to help you understand -MR. KEENAN: Yeah, what this means. MR. EARLE: -- the ambiguous question, which I was struggling with the same thing. But I just want to clear that up. Go ahead.

A See if I can clarify here a little. One way to think of it, let's suppose a plan has -- we don't have to suppose. A plan will have an average
efficiency gap number associated with it, right. And then the standard deviation measures variation in efficiency gap estimates over the life of the plan. And averaged over all plans, that variation, the median standard deviation is . 03 . Now, how to interpret that. If, and it's an if, efficiency gap estimates followed say a normal distribution, then we could expect that it would be extremely unlikely to see an efficiency gap for a given election more than two standard deviations away from the average efficiency gap estimate for the plan. So that would be in this case plus or minus .06. That would be an extremely conservative bound on how much variation you see in efficiency gap estimates over the life of a plan around the average efficiency gap estimate we see over the plan.

Q Okay. So just in my head, like if the average efficiency gap is .05, one standard deviation away is .08?

A Uh-huh.
Q And then two would be .11?
A Yeah.
Q It would be unlikely to get -- statistically unlikely to get higher than .11?

A Yeah.
Q Okay. But then it could go the other way as well; . 05 could go down to . 02, correct, for one standard deviation?

A Well, two --
MR. EARLE: You're getting
conversational again.
Q So if the average is .05, if the standard deviation goes the other way, one standard deviation is down to .02?

A Uh-huh.
Q Okay. And then two standard deviations away would be going to the other side of zero to --

A Yeah, negative . 01.
Q Okay. Makes sense.
MR. EARLE: You said it makes sense?

MR. KEENAN: It makes sense to me now.

Q How did you go about measuring the durability of an efficiency gap over the course of a plan?

A I did a number of things. One of the first things I did was to compute just pair-wise election to election under a plan how often or the probability that a temporally adjacent pair of efficiency gap
estimates have the same sign. But the other thing I did was to also compute the probability that given the efficiency gap estimate we see at the start of a plan, the probability that the sequence of efficiency gap estimates we see from that point forward, right, the subsequent fall elections, have the same sign as the efficiency gap estimate that the plan opened with.

Q And then what did you find with respect to the chance that the plan would keep the same sign over the course of the plan?

A Well, so I'm referring to on Page 55 of my report. If we restrict our attention to efficiency gap measures available for three -- plans where we've got efficiency gap measures for three or more elections, the probability of seeing three or more efficiency gap estimates with the same sign, there are 141 such plans; 35 percent of those 141 plans had at least a 95 percent probability of each of the efficiency gap measures having the same sign. So I understand that's a little, may be a little difficult to parse, but --

MR. EARLE: You said parse?
THE WITNESS: Yes, P-A-R-S-E.
A So there's 141 -- I'll say it one more time.

There's 141 plans, all right, give us three or more elections with sequences of efficiency gaps of like three or more. What's the probability that they've all got the same sign? Well, 35 percent of those 141 plans, that probability is about 95 percent. If you say 75 percent chance of having the same sign, then we go up to roughly about half, 46 percent of the plans have at least a 75 percent chance of retaining the same sign over the life of the plan.

Q And then how do you -- how are you calculating this 95 percent probability and the 75 percent probability? I don't really understand that.

A Remember that each estimate of the efficiency gap comes with a confidence interval, and so it's taking into account the fact that each efficiency gap is being estimated with some uncertainty. And so, you know, there's a chance given that uncertainty that in any given year, for instance, that confidence interval may drift above zero. And so we want to take that into account when we talk about the stability of the efficiency gap. So that's why this is being couched in probabilistic terms.

For any given plan with its sequence of
efficiency gap estimates, there's a probability that that sequence of efficiency gap estimates lies above or below zero, reflecting the uncertainty that each individual efficiency gap estimate is accompanied with.

Q Okay. So I think that leads then to you found 17 plans that were utterly unambiguous as to their sign?

A That's right.
Q What does that mean?
A The individual efficiency gap estimates are so far from zero in a positive or negative direction and the uncertainty that accompanies each of those efficiency gap estimates is sufficiently small that the probability that we're seeing a sign flip is zero, out to as many decimal places as is reasonable.

Q No part of any confidence interval ends up on the other side of a line?

A It's even stronger than that. Remember those confidence intervals go up to 95 percent. Now we're up to 99.99999 percent. And that's an extremely stringent standard, and that's why it's a relatively small set of plans that it's not beyond -- you know, we're not just beyond the
typical standards used in the social sciences, say 95 percent; we're essentially within rounding error of 100 percent.

Q And those 17 plans are listed in Table 1 on Page 55; is that correct?

A That's right.
Q And as I read it, 16 of those 17 plans were unambiguously negative efficiency gaps which means they were favorable to the republicans and unfavorable to the democrats?

A That's correct.
Q And then one of them which looks to be Florida --
A Uh-huh.
Q -- in 1972 to 1980 was favorable to the democrats and unfavorable to the republicans?

A That's right.
Q Did you do any analysis on these states as to like which party was in control of the districting for these unambiguous plans?

A No, I did not.
Q And Wisconsin here, 2002 to 2010, that shows up as an unambiguously negative plan, correct?

A That's correct.
Q Okay. And I see the average efficiency gap of Wisconsin from 2002 to 2010 was negative . 076
percent?
A Well, negative . 076 .
Q Okay. And negative -- I'll ask it again.
A Or we could say negative . 7 --
Q Negative 7.6 percent?
A If we wish, yes.
Q And then the efficiency gap minimum which I guess would be the plan, the calculation that was most favorable to republicans and least favorable to democrats was negative .118; is that correct?

A That's correct.
Q And then the efficiency gap max which would be the plan that was --

MR. EARLE: Hold on a second, I think he's looking at -- in response to the last question.

A Yep.
Q And then the efficiency gap max is the plan that is most favorable to democrats and least favorable to republicans, and that's negative .039?

A That's correct.
Q Okay.
MR. KEENAN: I think now is a good time for a break.

MS. GREENWOOD: Yeah, sure.
(Discussion off the record)
(Recess)
Q Professor Jackman, you understand you're still under oath?

A Yes.
Q All right. Let's turn to Page 56 of your report which is Section 10. Why don't you describe how you determined a threshold for determining if the EG is a large and enduring characteristic of a plan.

A Sure. In this part of the report, what I sought about finding was a particular threshold value of the efficiency gap such that if you saw a value of the efficiency gap that large or larger, there's a low probability that you would see an efficiency gap with the opposite sign elsewhere over the life of the plan.

Q Okay. And why did you base your test on seeing an election with the opposite sign over the course of the plan?

A Well, remember that the sign of the efficiency gap is indicative of passing advantage one way or the other. So if a plan were to produce a sequence of efficiency gap values all of the same sign, that's evidence that's more consistent with the
proposition the plan is advantaging one side or the other than if the efficiency gap estimates were to alternate sign or to be of mixed sign over the life of the plan. So consistency of sign of the efficiency gap estimate I took to be a signal, a reliable signal of the partisan advantage of the plan.

Q In this Page 56 it says EG with a little star after it. What does that refer to?

A That's the threshold or the putative, the proposed threshold, yeah.

Q Going down you say that, "Plans with at least one election with an efficiency gap greater than . 07 are reasonably common."

So you found that there was a 20 percent chance that a plan will have at least one election that has an efficiency gap that's greater than .07?

MR. EARLE: You're referring to the second to last paragraph of Section 10 on Page 56, correct?

MR. KEENAN: Yes.
MS. GREENWOOD: Maybe you should
just explain when you have EG between --
THE WITNESS: Sure.

A On the page, on Page 56 in that second to last paragraph, EG appears with two vertical bars around it. That's a mathematical notation for absolute value. So irrespective of sign, just in terms of raw magnitude, seven percent positive or negative is reasonably common is the way to read that. And that again is taking into account the uncertainty that accompanies the efficiency gap estimates.

Q Okay. Looking at Figure 27, could you explain what's represented here?

A Sure. Okay. So there are two quantities plotted on Figure 27, and the color version of the report makes the two quantities clear. In blue is the proportion of plans that have an efficiency gap estimate in excess of where we are on the horizontal axis. So let's just take, for instance, to the immediate left of zero we have negative not much, negative a little bit. And there are lots of plans, right, that produce an efficiency gap in excess of that threshold; about 75 percent of plans will do that.

But you'll note that as we move away from zero on the horizontal axis of the graph, as we move out to more extreme values of the efficiency
gap in either direction, positive or negative, the probability -- the blue dots are going down meaning that the probability of or the proportion of plans that are recording a value of the efficiency gap in excess of that threshold is getting smaller and smaller, right. It's a more extreme event, all right, to record an efficiency gap -- let's go right out, say, on the left-hand side of the chart out to say a negative.10. At that point we see the blue square there is down now below . 2; roughly about 18 percent of plans recording an efficiency gap estimate in excess to the left, in this case of negative. 10 , and the corresponding number out on the right of the chart is a positive . 10 , you know, about 14 percent of plans record a value in excess of that. So straight away we see that extreme values of the efficiency gap are relatively rare, all right.

And then there's a second quantity plotted, and that's the quantity in red. And then that asks conditional on having -- so now we're looking at a plan and we're looking at the sequence of efficiency gap estimates that are racked up over the life of a plan. And so now let's just take the case at negative .10. Conditional on one
plan, at least one plan exceeding negative .10, of the set of plans that trip that threshold, what's the probability that in the same plan we'll get an estimate of the efficiency gap that's actually positive, right, it is on the other side of zero, all right. And you can see the general pattern is that that goes down as well as the threshold becomes more stern.

So in the case of negative . 10 where I've referred us on Figure 27, conditional on seeing one efficiency gap estimate at negative . 10 or even more extreme, the probability that we'd also see an estimate, a positive, right, sort of a different signal, right, advantage going the other way, positive advantage going the other way, that probability is about 15 percent and so on. So you can see that that probability continues to track down as we get further out into the tails of the distribution of efficiency gap estimates.

Q Focusing on the blue ones, are these values in -are they absolute values or does the sign matter?

A Sign matters in this graph with respect to the horizontal axis. But since what's been plotted on the vertical axis here is a proportion, that's always going to lie between zero and one on the
vertical axis.
Q Sure. We looked at the negative . 10 in the blue and it looks like there's I think you said 18 percent of plans would have an efficiency gap in excess of that.

A Uh-huh.
Q If we also look at the . 1 positive for the democrats --

A Yep.
Q -- and there's another, I don't know what that is, 15 percent?

A Yeah, let's call it, sure.
Q So would that mean that in total when you're looking at the absolute values, that 33 percent of plans have a value greater than .1?

A Thirty-three percent of plans will, over the whole analysis, have recorded at least one efficiency gap estimate greater than .10 in magnitude.

Q And then I take it the same -- when we look at the red ones as well then, they are also -- the sign matters where if you look at . 1 on the red and you look at . 1 on the -- negative . 1 and positive .1, in order to determine the absolute value of plans that had one election exceeding that threshold, you'd have to add those two percentages together?

A I just think we have to be very careful with exactly what the red dot -- it says conditional on a plan tripping that threshold, what's the probability of a sign flip. And so provided we keep that interpretation very foremost in our minds, that's right. Conditional in exceeding positive .1, there's about a 37 percent chance it would flip back over to the negative side. Conditional on going below negative .1, there's about a 15 percent chance it would flip and see something on the positive side?

Q And if I look at the efficiency gap thresholds, the positive efficiency gap thresholds for the red plotted squares, I'm just noticing that the shape looks a little different from --

A Yeah.
Q -- when you look at the negative efficiency gap. Can you explain what the difference in the shape means?

A Yeah, that was a very interesting feature of the analysis. The interpretation of that is that, okay, remember what a positive efficiency gap means, that's advantage for democrats. What this says is that a plan that trips that threshold indicative of -- you know, let's go right out,
let's go out to .10, that's substantial advantage for democrats it would appear. The probability that we will, over the life of the plan we will also see an efficiency gap estimate indicating republican advantage is reasonably large, it's about 40 percent.

So there's an asymmetry here that the signal as it were or a single efficiency gap estimate tripping this threshold of .10 or of democratic advantage is not especially reliable or not as reliable as the signal on the other side. Plans that when we're getting indications of democratic advantage, at least over the data available to us, it appears that that's not a durable feature -- as durable a feature of the underlying plan as is the signal, the opposite signal, and that is saying negative .10, indicative of advantage for republicans. That tends to be a more durable feature of a plan.

So the take away there is that democratic advantage or apparent democratic advantage from any given reading of the efficiency gap isn't as durable, as reliable as the opposite signal. So these negative efficiency gap estimates tend to recur, are more likely to recur, to stay negative,
than a positive estimate of the efficiency gap. That's far more likely to flip back and cross the road to the other sign.

Q There's a somewhat similar figure on Figure 28, Page 59. Maybe you could just explain what the Figure 28 on Page 59 represents.

A Yeah. Now, what I did there, let me just read carefully. Yeah, so Figure 28 is a replay of Figure 27 if you will, subset to redistricting plans from the 1990 forward. So putting the data from 1970 and 1980 aside, just focusing on more recent decades, and a couple of things happen. The red dots if you will even drift a little higher above the blue dots on the right of the graph. And the red dots on the left of the graph come down relative to where they were in Figure 27.

So let me explain that. The reliability of seeing a single efficiency gap estimate indicative of democratic advantage is less informative as to what you're going to see over the life of the plan than the corresponding signal on the other side with respect to -- so you saw the same magnitude of signal with respect to republican advantage. A single plans that appear to have republican
advantage in them, we tend to get a more similar sequence of efficiency gap estimates out of those plans than out of plans that at various points in time seem to be indicative of democratic advantage. And that is there in the entire data set, Figure 27, but is even more pronounced in the analysis that focuses on recent decades as done in Figure 28.

Q So the trend that was seen in Figure 27 shows up stronger when you look at just the data from 1991 to the present?

A That's correct.
Q Okay.
A Well, the asymmetry in Figure 27 is more pronounced in Figure 28.

Q Okay. And if we look at like some specific numbers on Figure 28 , just using the positive. .1, looks like there's, you know, about a 56 percent or something chance that there will be one election over the course of the plan that would have a negative sign; is that correct?

A Yeah, that's the correct interpretation.
Q Okay. But then if we look at the republicans at negative.1, there's maybe only a 14 percent chance or something that there's an election with
a positive sign?
A That's correct.
Q Moving on to Page 60 and Section 10.1, it's titled Conditioning on the first election in a districting plan.

A Right.
Q Can you just explain what conditioning on the first election in a districting plan means?

A Right. So here I tried to put myself in the shoes of litigants frankly and people trying to adjudicate these matters. And that is it's fine for me as an analyst to come through and look at these historical data and get to observe all five elections, up to five elections that we may observe over the life of a plan. But people that want to take issue with a redistricting plan, the idea we have to wait to see with the five elections -- you know, typically if you're going to intervene, you've got to intervene early before we've seen much data at all from the plan, the election results the plan is throwing off.

So what I set about to do was to ask how informative is the signal we get from the first efficiency gap reading under a plan. So in particular, what can you take away from the fact
that there's a new plan in place, we see the first election under that plan, and it generates a positive efficiency gap reading or negative one. So how much can you rely on that particular number as a characterization of what you would see over the life of the plan. How much does the first election or the efficiency gap estimate produced under the first election tell you about the plan. And in particular, what's the critical threshold of -- how big does that first efficiency gap estimate have to be before you can feel confident that you're seeing something about a plan that is not a one-off or a fluke, that you've seen something that gives you enough confidence to believe this plan is manifesting advantage one way or the other. That's the goal of this part of the analysis.

Q Okay. And then is your analysis of conditioning on the first election in a districting plan contained in Figure 29?

A That is one of the graphs that summarizes the results of this analysis.

Q And Figure 29 contains the results from all the elections that you looked at?

A Yes, that's 1972 to the present.

Q And why don't we just go ahead again and explain what the graph means, both the blue dots and the red dots.

A Okay. So the blue dots and the red dots have the same interpretation, an analogous interpretation to the previous discussion. But this time now that the event is the efficiency gap reading we get out of the first election under the plan.

So let's take an example. Let's say we're at negative . 10 on the horizontal axis and we see the blue dot tells us -- the height of the blue dot, right, we read over against the vertical axis, tells us that about eight percent of districting plans have a first election efficiency gap reading at that level or more extreme to the left in a negative direction. All right. So that's the blue dot.

If we went out to the corresponding blue dot on the positive side, we would get, you know, it's almost the same number actually. The proportion of plans that have as their first efficiency gap reading . 10 or more or larger, more positive, is about eight percent.

Now, the red dots, all right. Now, conditional on having seen the blue dot event,
that is a first election under the plan with an efficiency gap at least as extreme as where we are on the horizontal axis, then how many of that set of plans, what's the proportion of them that go on over the life of the plan to produce an efficiency gap estimate of the opposite sign.

And so at negative .10, eight percent of plans begin life with an efficiency gap reading that large or more extreme. Of that eight percent, about -- what is that, that looks about just reading off the graph, I don't have the exact number, I 'm reading off the graph -- but about 12 or 13 percent of them go on over the life of the plan to produce an efficiency gap reading that conveys a different message, all right, would convey in this case democratic advantage. So the plan opens up with the first reading is negative, that's republican advantage. Of the set of plans with sending an extreme signal like that or as extreme as that one, 12 or 13 percent of them flip sign.

We go out and we do the same exercise on the right-hand side of the graph. At . 10 we're talking about eight percent of plans open up with apparent democratic advantage that large or
larger, but of that eight percent, 40 percent of those go on to produce an efficiency gap estimate over the life of a plan that sends the opposite message; that is, would send a message consistent with a republican advantage.

So again, the take away there is a similar one to what we saw in the earlier graphs, and that is this asymmetry here, how reliable a signal that first efficiency gap reading is. It's far more reliable as to what you're going to see over the life of the plan if it's indicating in the first election republican advantage than the reliability we get from an initial reading that points us in the direction of saying we've got a democratic advantage. Democratic advantage doesn't seem to be as durable as republican advantage.

Q In looking at the plans that were analyzed here, did you include plans from the 2010s where you have two elections? Are they a data point here or not?

MR. EARLE: I'm going to object to the form of the question only because you're asking if there were two elections in 2010? MR. KEENAN: No.

Q Like, for example, Wisconsin has a 2012 election
and a 2014 election. You could condition a test on that 2012 election, but there's only one subsequent election for which it could possibly flip signs. And I was just wondering if those 2012, 2014 elections are represented in this Figure 29 data or not?

A I would want to consult my R code or my lab notes on that one before I answered one way. I take the point, right, given only two elections, and I know at other points I've restricted analyses of the plans for three or more elections. So I would need to consult my notes on that.

Q Would you be able to do that? I mean, we don't need to do it right now. But your computer is here, would you be able to do that during the course of the deposition, like on a break?

MS. GREENWOOD: Yeah.
MR. EARLE: Yeah, he can go in the R code and look at that.

MR. KEENAN: Okay.
Q We don't need to do it right now, we can do it at a time that works.

A Okay.
MR. EARLE: Do you want to mark the question so when we come back, we can
respond?
Q And then looking at, for example, the negative. 1 percent efficiency gap and then the positive. 1 percent -- or not percent, . 1 efficiency gap, we had about eight percent for each of those numbers. Does that mean that in total about 16 percent of plans had an efficiency gap as an absolute matter that were greater than .1?

A That's right.
Q And the same would hold true for if we're trying to find absolute values for any one of these efficiency gap thresholds, we'd have to add the percent in on both the positive and the negative side?

A That's right.
Q Looking at these dots, just for example, like are the dots on hold numbers or are they on a certain percentage --

A Oh, yeah, they're on a grid, yeah. So literally the R code shifts that threshold in discrete steps out from zero.

Q And I was just sort of curious. For example, like the first one to the left of one, is that at a -are those at particular places like. 25 or . 5 or is it -- or maybe I could just ask you if you know
if they're at particular value points?
A They're in steps of . 005 .
Q Okay. So to get to .01, we're at the second dot?
A That's correct.
Q Okay. All right, makes sense. And that would be the -- is that the same for the ones we looked at before, Figure 27?

A Yeah, that's right, that's right.
Q Okay. Now, looking at Figure 30, what does Figure 30 represent?

A Figure 30 is a rerun of Figure 29 but subset to data 1991 onwards again, this idea of separating out what's been going on in recent decades from the entire historical analysis.

Q And what changes did you see when comparing the post 1990 data to the entire data set?

A Sure. Well, for one thing, there are fewer plans that open with as large advantage to democrats. So if you were to look at the right-hand side of Figure 29 and compare it with the right-hand side of Figure 30, you'd see that the blue, the distribution of blue squares is pushed down the graph in Figure 30, right.

So now let's take that number we were playing with earlier, the .10. The proportion of plans in
recent decades that begin life with an efficiency gap that advantageous to democrats or even more advantageous is down to about five percent, whereas it was up around eight, nine percent in earlier decades.

The other thing you see is that on the left-hand side of the graph, the distribution of red dots has come down a little bit, and that's consistent with that initial reading of a particular efficiency gap reading that you get from the first election under a plan that appears to be more durable, a more reliable signal as to what you'll see over the life of the plan, a more reliable signal in recent decades than in the entire data set as a whole. We're less likely to see plans that initially manifest that level, a given level of republican advantage go on to produce a contrary signal over the life of the plan in recent decades than in the entire data set.

Q And everything we've held before about like the placement of the dots, that holds for this graph?

A Oh, the grid spacing you referred to earlier?
Q Yes.
A Yes, that's the same. I used the same grid
stepping in all the graphs that have this layout.
Q Okay. Now, you've proposed I believe a threshold of seven percent; is that correct?

A Uh-huh.
Q For an efficiency gap in the first election?
A Uh-huh.
Q How did you come to that number?
A Through the calculations and indeed the graphs we were just discussing, I set about asking what would be a threshold such that we're either going to leave plans unquestioned, right, so plans don't trigger the threshold at all, or the probability of them flipping sign is sufficiently low that we've seen that that first election signal is sufficient to trigger investigation at a reasonably high level.

Now, by reasonably high, I chose a
conventional 95 percent standard; that's fairly typical in the social sciences. And indeed, you know, went a little bit beyond that. If anything, it's closer to 99 percent. It's roughly 10 percent of plans exceed the threshold, and of those only 10 percent flip sign. So, you know, in a sense your error rate there is, you know, 10 percent of 10 percent. It is down to one
percent.
So I thought -- what I was aiming for was a fairly conservative standard before on the basis of just one election we could say hey, there's something to look at here. This is a plan that on the basis of the first election has sent a sufficiently strong signal that we ought to take a closer look.

Q But the key fact you're trying to project would be whether the efficiency gap would flip sign throughout the course of the plan?

A That's right. And I relied on the historical analysis that we were just talking about to come up with a threshold.

Q Did you think that there should be a different threshold for positive versus negative efficiency gaps given the difference we saw in the durability between the two?

A No, I didn't. I thought if it was to be a threshold, it ought to be symmetric with respect to democratic or republican advantage.

Q And just looking at, for example, Figure 29, so if we look at the blue dots, what's the proportion of plans that have an EG in excess of negative .07?

A That's about -- let me make sure I'm reading the
right dot -- that's about 18 percent.

Q Okay. And then of that --
MR. EARLE: Wait, are you done?
Were you done with the answer?
THE WITNESS: Uh-huh.
MR. EARLE: Okay.
Q And then the red dot there would represent the proportion of those plans that would change sign over the length of a plan; is that correct?

A Of those, how many then go on to flip, yeah.
Q And where is the red dot when we look at negative .07?

A Yeah, . 22 .
Q So 22 percent of that 18 percent would change sign?

A Uh-huh.
Q And then if we look at positive .07, the blue dot, where's the blue dot for that?

A Yeah, that's about 18 percent as well maybe, yep.
Q Okay. And then the red dot is up at -- where is that, about four?

A Forty, yep.
Q So using the . 07 percent efficiency gap standard, we find that 18 percent plus 18 percent, so 36 percent of plans would exceed that in their
first election?

A Yep. I'm going to -- okay, so I'm going to qualify my answer here because the blue dots are the single best estimates. There is some uncertainty around each of them, and the folding exercise that you're proposing, it's not going to be strictly additive in the way as you've been proposing in the questions. That would come out, and indeed the confidence interval around that won't be simply putting the two together. So the better way to do that would be to compute it with respect to the absolute value directly rather than popping it off, reading it off this graph directly.

Q Do you have that absolute value calculated here?
A Well, that analysis is the analysis reported in Figure 32. That takes, that performs that calculation about the confidence that I was referring to earlier. So the more appropriate way to get at the level of confidence we have in a given threshold is summarized by the calculations that appear in Figure 32 than in this exercise that we're performing with respect to Figure 29 or alternatively Figure 30 .

Q So maybe we could just explain why, why is it
better to use the Figure 32 method than the --
A Okay. Because it's taking into account, okay, if we went down the road we were on with respect to Figure 29, we would say that 18 percent of plans, all right, exceed . 07 or greater in the first election, and then of those, 22 percent change sign. So we'd have 22 percent of 18 which is, I can't quite do that but we'll call it 20 percent of 18 if you --

MR. STRAUSS: Looks like about three percent.

THE WITNESS: Right.
A But again, it's the way the uncertainty propagates. You want to, you know, once you're bound on that and you're confidence bound on that, and to do that you just don't literally multiply -- you know, you can multiply those two percentages together and get down to roughly three percent. But to put a bound on that, you've actually got to engage in some brute force computation. And the summary of that brute force computation is what I produced in Figure 30 and Figure 32. So we land somewhere close to, you know, 100 minus three, . 97 in Figure 32. And the bound on that -- by that I mean if we went out
to . 7 , a negative .07 on the horizontal axis on Figure 32 and project it out, we'd arrive at roughly that 100 minus three something, close to . 97 there.

But the key is that that confidence interval is, this one is sort of an honest computation if you will, one that I believe more than just sort of, you know, reading off numbers from this graph, multiplying them together and we're not really -on Figure 29 reading off numbers, multiplying them together and sort of finger to the wind in trying to come up with estimates of the corresponding error rates. Those are computed directly if you will in Figure 32.

Q Sure. Let's go into Figure 32.
A Sure.
Q Which dot represents the negative .07? Would it be the first one after that line at 6 or the second one?

A I believe I used the same gridding, yeah.
Q So it's the second one?
A I believe so.
Q And so that's at about 96 percent or .96?
A Thereabouts, yeah.
Q So what does that mean, that . 96?

A That means that at that threshold, 96 percent of plans are either not tripping that threshold or if they are, they're continuing to produce efficiency gaps on that side of zero. So it's basically saying what proportion of plans would be correct decisions if that was your actionable standard. And so you'd be wrong, you're going to be wrong at least according to historical analysis, you know, let's call it like three plus or minus, not much, percent of the time, out at that standard. And as you make the standard more stringent, you can see there are fewer plans you're going to look at, right. And so the error rate obviously falls away to zero meaning our confidence rate goes up towards 100.

Q I think I understand. So any plan that never gets above or that doesn't start above the . 7 threshold -- . 07 threshold, that's undisturbed?

A Yeah, right, right, yes.
Q And then you're also adding in plans that are above that threshold but would never change sign over the course of the term?

A Yeah, yeah. And you can go the other way, right. So suppose we took a really permissive stand and said hey, if a plan trips -- suppose you took a
really small negative reading, you know, you'd be making errors 20 percent of the time, right. Or on the other side, a small positive reading, you'd be wrong, you know, 78 percent -- you'd be correct 78 percent of the time; you'd be making errors 22 percent of the time.

So as you push the threshold out, two things are happening. One, fewer things are tripping it, but you're also -- because it's a more stringent threshold, you're more confident that plans are going to stick. Conditional in the first plan getting over that hurdle, it's increasingly likely that subsequent elections under the plan will be there as well. But I was just hesitant to read -- I mean, I've done the calculation I think you were going for directly in Figure 32, you know.

Q Sure. But if we wanted to --

MR. EARLE: You were referencing
Figure 29 as you were --

THE WITNESS: Figure 29 , right.
Q If we wanted to calculate just the total overall percentage of plans that would trigger the initial threshold, could we look at Figure 29 and look at whichever threshold you want to pick.

A Sure.
Q Look at the blue dot and then add the proportion of plans on both the positive and the negative side that are in excess of that efficiency gap?

MR. EARLE: So your question's about Figure 29?

MR. KEENAN: Yeah.
A Figure 29 --
Q Yeah, just trying to figure out like instead of the number of plans where we're confident that we're right, the number of plans that just would get swept into this threshold?

A Right.
MR. EARLE: What's the question?
Q How would we determine that from looking at Figure 29?

MR. STRAUSS: I think the question is how would you determine by looking at Figure 29 what percentage of plans would have numbers more than an absolute value of .07; is that the question?

MR. KEENAN: Yes.
A Yeah, and the answer is -- the answer is if you're looking at the first election, the answer is over the entire historical period, 18 percent of plans
have a first efficiency gap reading in excess of that.

Q On the negative side?

A Yes, sir.

Q But then on the positive side, we'd have to look at that one as well?

A Yeah.

Q And then for each, if we want to change that threshold from . 07 to . 1, we could run that same exercise just looking at the dots on this --

A That's right, that's right. That's what the graph is reporting, the proportion of plans with a first efficiency gap reading at or beyond the specified threshold on the horizontal axis.

Q And if we go to Figure 30, this represents the same data we were looking at in Figure 29 but just for the 1991 through the present?

A Yeah, yeah.

Q So if we wanted to do the same thing and find out how many plans triggered -- what proportion of plans triggered the threshold, we would have to look at the blue dots --

A That's right.
Q -- on each side of the zero, correct?

A Uh-huh. Yeah, so quite a few plans trigger that
on the left, not many. That's a far fewer proportion than --

Q On the left it looks like --
MR. EARLE: Finish your answer.
A On Figure 30 at negative .07 , right, we're at about 22 percent. At positive. 07 we're at about, what's that, about 12 percent.

Q So that's 34 percent total of plans are in excess of the . 07 efficiency gap?

MR. EARLE: Are you asking him to confirm that?

MR. KEENAN: Yes.
MR. EARLE: He's asking if what he just said is correct. Can we have the court reporter read it back? (Question read)

A Yes.
Q All right. Let's move on to the -- okay, just maybe to clear up, Figure 33, that looks to be an analogous graph to Figure 32 but just using the data from the 1990 plans to the current?

A That's right.
Q So everything we talked about in Figure 32 we can transfer over to Figure 33?

A That's right, with the caveat that the data in

Figure 33 covers latter decades.
Q Let's go to like number -- well actually, it's 12:30. I don't know if you guys want to take a break or --
(Discussion off the record)
(Recess)
Q So we're back on the record. And we had an earlier question that, Professor Jackman, you said you didn't know and you wanted to consult your R code on the answer. And I was asking you about in Figure 29 whether this calculation that conditions certain things on the first election in a cycle, whether the elections from 2012 and 2014 were included in this data set. You've had a chance to look at your R code and what is your answer to that question?

A The answer is yes, elections from 2012 and 2014 are included in this analysis, this part of the analysis.

Q All right. So we can go back to Page 69 which deals with the Wisconsin plan.

A Uh-huh.
Q What did you conclude with respect to Wisconsin's plan that was enacted for the 2012 election?

A The Wisconsin plan 2012, and we've had two
elections under that plan, 2012 and 2014, has produced efficiency gap estimates of negative . 13 in 2012 and negative . 10 in 2014. Those are large and negative -- large, negative estimates of the efficiency gap.

Q In determining the efficiency gap for Wisconsin in 2012, what did you calculate the democratic share of the vote to be?

A After imputations for uncontestedness, 51.4.
Q And 2014, did you calculate it to be 48.0 percent?
A That's correct.
Q And if we wanted to visualize that, if we go back to Figure 4 on Page 18 --

A Yeah.
Q So if we go to -- we'd have to estimate sort of, but where 51.4 percent is, that shows that the -we would have to see where the orange line,

Page 18 --
A Yeah, I'm trying to --
MR. EARLE: Yeah, but wait for a complete question, though. I think he's trying to frame the question, hasn't gotten it out yet.

Q So I was just trying to figure out how we could -so the orange line would say that with
51.4 percent of the votes, the democrats should receive I'm not sure exactly but perhaps, you know, 53, 55 percent of the vote. Do you know exactly what they should receive with 51.4 percent of the votes?

MR. EARLE: I'm going to object to
the form of the question. Go ahead and answer it if you can.

A I can answer the question under the scenario the maintained hypothesis of a zero efficiency gap. So under a zero efficiency gap, should democrats win 51.4 percent of the vote, we can infer that they should win -- and it's pretty simple but I'll look up the exact formula. So they've exceeded 50 percent of the vote by . 14 or .014 so that's .028, should be that they should bring 52.8 percent of the seats.

Q With 51.4 percent, did they exceed by 1.4 percent? I thought you used a . 014 .

A I was converting that 1.4 percent to a proportion.
Q Okay, that makes sense. I should assume that you know how to do this better than I do, so that my mistake. And so 51.4 percent of the votes translates to 52.8 percent of the seats?

A Under the maintained hypothesis of the zero
efficiency gap, yes.
Q And to determine the efficiency gap -- I guess, sorry, just scrap all that. What percentage of seats did the democrats win in the 2012 election?

A They won 39 of 99 seats or 39.4 percent of the seats.

Q So then is the efficiency gap equivalent to subtracting 39.4 percent from 52.8 percent?

A The efficiency gap is equivalent to subtracting -to be perfectly explicit and if you don't mind, I'll work in proportions. So it's . 394 minus . 5 minus two times . 514 minus .5. And so if you do that you should get negative . 13 .

Q And you round to the tenth?
A Yeah. When I'm reporting negative . 13 and negative . 10 in the report and in testimony, I'm rounding to digits of precision.

Q Looking at Figure 35, what's represented on Figure 35?

A Figure 35 presents a sequence of efficiency gap estimates for Wisconsin arrayed left to right from 1972 to 2014. Each plotted point is the estimate of the efficiency gap, and the vertical bars indicate the size of the 95 percent confidence interval accompanying each estimate.

Q And if we look at that, looks to me that the last positive efficiency gap that Wisconsin saw was in 199 -- is that 1994?

A That last positive point estimate was 1994.
Q That's a good point, the positive point estimate was 1994. 1996 the point estimate is a negative efficiency gap; is that correct?

A The point estimate is negative.
Q But the confidence interval spans to the positive side?

A That's right. That is indistinguishable from zero at conventional levels of statistical significance.

Q Then from 1998 onwards, would you say that Wisconsin has experienced an unambiguously negative efficiency gap?

A Yes.
Q And none of the confidence intervals go to the positive side?

A And indeed terminate considerable distance in negative territory.

Q Okay. You calculated an average efficiency gap for the elections conducted under the 2000s plan for Wisconsin; is that correct?

A Yes.

Q And Table 1 indicates that's a negative . 076 ?
A Could you point me to the page, please?
Q Sure, Page 55.
A That's correct.
Q Maybe we could just use this graph to explain how that average is calculated.

A Oh, okay. So that is an average of the point estimates that begin 2002 and run through '04, '06, '08 and '10. And taking into account the uncertainty associated with each point estimate, then computing an average and the uncertainty in turn inducing a confidence interval around the average.

Q Okay. And then Figure 36, what does this represent?

A Figure 36 presents the efficiency gap estimates observed in states in the most recent round of redistricting. So for the states here it's typically just a pair of elections; just two elections have been held under the redistricting plan. And the solid square indicates an efficiency gap estimate, and the confidence interval is indicated by the gray bar extending horizontally. And you can see that there are, you know, two estimates per state. And I've ordered
the states by the average level of efficiency gap for each state from low at the bottom of the page to high, positive, at the top of the page.

Q So Florida had the lowest efficiency gap when considering the average of the two elections?

A That's right.

Q Okay. And did you calculate the average here in a similar manner to the way you calculated the average we discussed with respect to Wisconsin in --

A Yes.
MR. EARLE: You answered the question before he finished. He was going to indicate which figure.

THE WITNESS: I'm sorry.
Q -- Figure 35 during the 2000 s period?

A Well, there is no average indicated on Figure 35.

Q Yeah, but we had discussed it in connection with that.

A That's right.
Q So you --
MR. EARLE: We want to wait for the whole question to come out.

MR. KEENAN: Yeah.
Q You calculated the averages in Figure 36 similar

SIMON D. JACKMAN, Ph.D.
to the way we discussed the way you calculated the averages for Wisconsin during the 2000 s period?

A Yes.
MR. KEENAN: I'm just going to take a quick break, make sure I've asked everything I need to ask.

MR. EARLE: Sure.
(Recess)
MR. KEENAN: Well, we'll go back on the record just to say that I don't have any more questions. So thanks for your time this morning and afternoon.

MR. EARLE: We'll read and sign.
MR. STRAUSS: And that concludes the deposition. Thank you very much.
(Adjourning at 12:59 p.m.)

STATE OF WISCONSIN)) SS . COUNTY OF DANE)

I, MARY L. MIXON, a Court Reporter and Notary Public in and for the State of Wisconsin, do hereby certify that the foregoing deposition was taken before me at the Wisconsin Department of Justice, 17 West Main Street, in the City of Madison, County of Dane, and State of Wisconsin, on the 20th day of November 2015, that it was taken at the request of the Defendants, upon verbal interrogatories; that it was taken in shorthand by me, a competent court reporter and disinterested person, approved by all parties in interest and thereafter converted to typewriting using computer-aided transcription; that said transcript is a true record of the deponent's testimony; that the appearances were as shown on Page 2 of the transcript; that the deposition was taken pursuant to notice; that said SIMON D. JACKMAN, Ph.D. before examination was sworn by me to testify the truth, the whole truth, and nothing but the truth relative to said cause.

Dated November 25, 2015.

Notary Public, State of Wisc

G.A.B. Canvass Reporting System

Canvass Results for 2012 PRESI DENTIAL AND GENERAL ELECTION - 11/6/2012

	Number of Votes Received	Percent of Total Votes	Candidate	Party
Office	President of the United States		Total Votes:	3,068,434
	1,407,966	45.89\%	MITT ROMNEY/PAUL RYAN 585 COMMERCIAL ST BOSTON MA 021091024	Republican
Winner	1,620,985	52.83\%	BARACK OBAMAJJOE BIDEN 233 N MICHIGAN AVE STE 1720 CHICAGO IL 60601	Democrat
	4,930	.16\%	VIRGIL GOODE/JIM CLYMER 90 E CHURCH ST ROCKY MOUNT VA 241511556	CON
	20,439	.67\%	GARY J OHNSON/J AMES P. GRAY 850C CAMINO CHAMISA SANTA FE NM 875018907	Independent
	526	.02\%	GLORIA LA RIVA/FILBERTO RAMIREZ, JR. 3207 MISSION ST APT 9 SAN FRANCISCO CA 94110	Independent
	553	.02\%	JERRY WHITE/PHYLLIS SCHERRER 17580 AVILLA BLVD LATHRUP VLG MI 480762706	Independent
	7,665	.25\%	JILL STEIN/BEN MANSKI 17 TROTTING HORSE DR LEXINGTON MA 024216318	Independent
	112	0\%	ROSS C. ROCKY ANDERSON/LUIS J. RODRIGUEZ (WRITE-IN) 418 S DOUGLAS ST SALT LAKE CTY UT 841023231	Independent
	88	0\%	ROSEANNE BARR/CINDY LEE SHEEHAN (WRITE IN)	Independent
	5,170	.17\%	SCATTERING	

Office	US SENATOR - CLASS I			Total Votes: 3,009,411
	1,380,126	45.86\%	TOMMY G. THOMPSON	Republican
			1313 MANASSAS TRL	
			MADISON WI 537188243	
Winner	1,547,104	51.41\%	TAMMY BALDWIN	Democrat
			10 E DOTY ST STE 405	
			MADISON WI 53703	

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	US SENATOR - CLASS I			Total Votes:	3,009,411
	62,240	2.07\%	JOSEPH KEXEL		Independent
			7616 33RD AVE		
			KENOSHA WI 53142		
	16,455	.55\%	NIMROD Y.U. ALLEN, III		Independent
			749 LAND PL		
			MI LWAUKEE WI 532052358		
	70	0\%	RILEY J. HOOD (WRITE-IN)		CON
			1403 E POTTER AVE		
			MILWAUKEE WI 532071918		
	43	0\%	DIANE E. LORBIECKI (WRITE-IN)		Independent
			10521 N O CONNELL LN		
			MEQUON WI 530973315		
	3,373	.11\%	SCATTERING		
Office	CONGRESSI ONAL - DI STRICT 1			Total Votes:	365,058
Winner	200,423	54.9\%	PAUL RYAN		Republican
			221 E HOLMES ST		
			JANESVILLE WI 535453909		
	158,414	43.39\%	ROB ZERBAN		Democrat
			5406 2ND AVE		
			KENOSHA WI 531406504		
	6,054	1.66\%	KEITH DESCHLER		Independent
			1239 1/2 MONROE AVE		
			RACINE WI 53402		
	167	.05\%	SCATTERING		
Office	CONGRESSI ONAL	- DISTRICT 2		Total Votes:	390,898
	124,683	31.9\%	CHAD LEE		Republican
			403 DURTSCHI DR		
			MT. HOREB WI 53572		
Winner	265,422	67.9\%	MARK POCAN		Democrat
			309 N BALDWIN ST		
			MADISON WI 537031701		
	6	0\%	J OE KOPSICK (WRITE-IN)		Independent
			521 W DOTY ST APT 7		
			MADISON WI 537032664		
	787	. 2%	SCATTERING		

	Number of Percent of Votes Total Votes Received	Candidate		Party
Office	CONGRESSI ONAL - DI STRICT 3		Total Votes:	339,764
	121,713 35.82\%	RAY BOLAND		Republican
		7186 ICEHOUSE AVE		
		SPARTA WI 546565729		
Winner	217,712 64.08\%	RON KIND		Democrat
		3061 EDGEWATER LN		
		LACROSSE WI 54603		
	339 .1\%	SCATTERING		
Office	CONGRESSI ONAL - DI STRICT 4		Total Votes:	325,788
	80,787 24.8\%	DAN SEBRING		Republican
		3919 S 60TH ST		
		MILWAUKEE WI 53220		
Winner	235,257 72.21\%	GWEN MOORE		Democrat
		4043 N 19TH PL		
		MILWAUKEE WI 53209		
	9,277 2.85\%	ROBERT R. RAYMOND		I ndependent
		4102 N MORRIS BLVD		
		SHOREWOOD WI 53211		
	467 . 14%	SCATTERING		
Office	CONGRESSI ONAL - DI STRICT 5		Total Votes:	369,664
Winner	250,335 67.72\%	F. J AMES SENSENBRENNER JR		Republican
		N76W14726 NORTHPOINT DR		
		MENOMONEE FALLS WI 53052		
	118,478 32.05\%	DAVE HEASTER		Democrat
		W234 GREY MOSS CT N7649		
		SUSSEX WI 53089		
	851 . 23%	SCATTERING		
Office	CONGRESSI ONAL - DISTRICT 6		Total Votes:	359,745
Winner	223,460 62.12\%	TOM PETRI		Republican
		N5329 DE NEVEU LANE		
		FOND DU LAC WI 54937		
	135,921 37.78\%	J OE KALLAS		Democrat
		N4682 COUNTY ROAD D		
		PRINCETON WI 54968		
	364 .1\%	SCATTERING		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	CONGRESSI ONAL	- DISTRICT 7		Total Votes:	359,669
Winner	201,720	56.08\%	SEAN DUFFY		Republican
			2906 CITY HEIGHTS RD		
			ASHLAND WI 54806		
	157,524	43.8\%	PAT KREITLOW		Democrat
			15854 93RD AVE		
			CHIPPEWA FLS WI 547295167		
	20	.01\%	DALE C. LEHNER (WRITE-IN)		Independent
			1980 6TH AVE		
			PRAIRIE LAKE WI		
	405	.11\%	SCATTERING		
Office	CONGRESSI ONAL - DISTRICT 8			Total Votes:	355,464
Winner	198,874	-55.95\%	REID J. RIBBLE		Republican
			PO BOX 7200		
			APPLETON WI 53912		
	156,287	43.97\%	JAMIE WALL		Democrat
			W6214 COUNTY ROAD S		
			ONALASKA WI 546508926		
	303	.09\%	SCATTERING		
Office	STATE SENATE - DISTRICT 2			Total Votes:	65,143
Winner	64,192	98.54\%	ROBERT COWLES		Republican
			300 W SAINT J OSEPH ST		
			GREEN BAY WI 54301		
	951	1.46\%	SCATTERING		
Office	STATE SENATE - DI STRICT 4			Total Votes:	77,426
Winner	67,064	86.62\%	LENA C. TAYLOR		Democrat
			1518 W CAPITOL DR		
			MILWAUKEE WI 53206		
	10,154	13.11\%	DAVID D. KING		Independent
			2407A N PIERCE ST		
			MILWAUKEE WI 53212		
	208 . 27%		SCATTERING		

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Number of Votes Received \& Percent of Total Votes \& Candidate \& \& Party

\hline Office \& STATE SENATE - DI \& DISTRICT 6 \& \& Total Votes: \& 61,327

\hline \multirow[t]{4}{*}{Winner} \& 60,543 \& 98.72\% \& NIKIYA HARRIS \& \& \multirow[t]{4}{*}{Democrat}

\hline \& \& \& 7060 N PRESIDIO DR \& \&

\hline \& \& \& MILWAUKEE WI 532236321 \& \&

\hline \& 784 \& 1.28\% \& SCATTERING \& \&

\hline \multirow[t]{8}{*}{Office

Winner} \& \multicolumn{2}{|l|}{STATE SENATE - DISTRICT 8} \& \& \multirow[t]{8}{*}{Total Votes:} \& 79,934

\hline \& 76,402 \& 95.58\% \& ALBERTA DARLING \& \& \multirow[t]{3}{*}{Republican}

\hline \& \& \& 1325 W DEAN RD \& \&

\hline \& \& \& RIVER HILLS WI 53217 \& \&

\hline \& \multirow[t]{3}{*}{453} \& \multirow[t]{3}{*}{.57\%} \& BETH L. LUECK (WRITE-IN) \& \& \multirow[t]{4}{*}{Democrat}

\hline \& \& \& 5225 N BAY RIDGE AVE \& \&

\hline \& \& \& WHITEFISH BAY WI 532175102 \& \&

\hline \& 3,079 \& 3.85\% \& SCATTERING \& \&

\hline \multirow[t]{8}{*}{Office

Winner} \& \multicolumn{2}{|l|}{STATE SENATE - DISTRICT 10} \& \& \multirow[t]{8}{*}{Total Votes:} \& 87,734

\hline \& \multirow[t]{3}{*}{51,911} \& \multirow[t]{3}{*}{59.17\%} \& SHEILA HARSDORF \& \& \multirow[t]{3}{*}{Republican}

\hline \& \& \& N6627 COUNTY ROAD E \& \&

\hline \& \& \& RIVER FALLS WI 54022 \& \&

\hline \& \multirow[t]{3}{*}{35,728} \& \multirow[t]{3}{*}{40.72\%} \& DANIEL C. OLSON \& \& \multirow[t]{4}{*}{Democrat}

\hline \& \& \& 499 95TH AVE \& \&

\hline \& \& \& CLAYTON WI 540043001 \& \&

\hline \& 95 \& .11\% \& SCATTERING \& \&

\hline Office \& \multicolumn{2}{|l|}{STATE SENATE - DISTRICT 12} \& \& Total Votes: \& 90,994

\hline \multirow[t]{10}{*}{Winner} \& \multirow[t]{3}{*}{51,176} \& \multirow[t]{3}{*}{56.24\%} \& TOM TIFFANY \& \& \multirow[t]{3}{*}{Republican}

\hline \& \& \& 4973 WILLOW DAM RD \& \&

\hline \& \& \& HAZELHURST WI 54531 \& \&

\hline \& \multirow[t]{3}{*}{36,809} \& \multirow[t]{3}{*}{40.45\%} \& SUSAN SOMMER \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& 2674 SUNRISE CIR \& \&

\hline \& \& \& PHELPS WI 545549000 \& \&

\hline \& \multirow[t]{3}{*}{2,964} \& \multirow[t]{3}{*}{3.26\%} \& PAUL O. EHLERS \& \& \multirow[t]{4}{*}{Independent}

\hline \& \& \& 4560 CROSS COUNTRY RD \& \&

\hline \& \& \& RHINELANDER WI 545018957 \& \&

\hline \& 45 \& .05\% \& SCATTERING \& \&

\hline
\end{tabular}

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	STATE SENATE - D	DI STRICT 14		Total Votes:	81,941
Winner	47,137	57.53\%	LUTHER S. OLSEN		Republican
			1023 THOMAS ST		
			RIPON WI 54971		
	34,742	42.4\%	MARGARETE WORTHI NGTON		Democrat
			PO BOX 1433		
			WAUTOMA WI 549821433		
	62	.08\%	SCATTERING		
Office	STATE SENATE - DI STRICT 16			Total Votes:	73,231
Winner	72,298	98.73\%	MARK MI LLER 4903 ROIGAN TER MONONA WI 53716		Democrat
	933	1.27\%	SCATTERING		
Office	STATE SENATE - DI STRICT 18			Total Votes:	85,648
Winner	43,079	50.3\%	RICK GUDEX		Republican
			361 E DIVISION ST		
			FOND DU LAC WI 549354555		
	42,479	49.6\%	J ESSICA KING		Democrat
			1523 HAZEL ST		
			OSHKOSH WI 54901		
	90	.11\%	SCATTERING		
Office	STATE SENATE - D	DISTRICT 20		Total Votes:	97,460
Winner	66,882	68.63\%	GLENN GROTHMAN		Republican
			111 S 6TH AVE		
			WEST BEND WI 53095		
	30,504	31.3\%	TANYA LOHR		Democrat
			6244 GILBERT CIR		
			WEST BEND WI 530959197		
	74	.08\%	SCATTERING		
Office	STATE SENATE - DI STRICT 22			Total Votes:	73,559
	22,278	30.29\%	PAM STEVENS 1521 SHERIDAN RD UNIT C KENOSHA WI 531404469		Republican

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	STATE SENATE - DI STRICT 22			Total Votes:	73,559
Winner	51,177	69.57\%	ROBERT W. WIRCH		Democrat
			3007 SPRINGBROOK RD		
			PLEASANT PRAIRIE WI 53158		
	104	. 14%	SCATTERING		
Office	STATE SENATE - DI STRICT 24			Total Votes:	86,024
	37,259	43.31\%	SCOTT KENNETH NOBLE		Republican
			WARSHFIELD SBWI		
Winner	48,677	56.59\%	JULIE LASSA		Democrat
			4901 BEAVER DAM RD		
			STEVENS POINT WI 54481		
	88	. 1%	SCATTERING		
Office	STATE SENATE - DI STRICT 26			Total Votes:	88,087
Winner	87,144	-98.93\%	FRED A. RISSER		Democrat
			100 WISCONSIN AVE UNIT 501		
			MADISON WI 53703		
	943	1.07\%	SCATTERING		
Office	STATE SENATE - D	DISTRICT 28		Total Votes:	96,010
Winner	60,854	4 63.38\%	MARY LAZICH		Republican
			4405 S 129TH ST		
			NEW BERLIN WI 53151		
	35,053	36.51%	JIM WARD		Democrat
			5225 MORLEY DR		
			GREENDALE WI 531291249		
	103	.11\%	SCATTERING		
Office	STATE SENATE - DI STRICT 30			Total Votes:	79,204
	36,178	45.68\%	JOHN MACCO		Republican
			1874 OLD VALLEY RD		
			DE PERE WI 541153370		
Winner	42,949	54.23\%	DAVE HANSEN		Democrat
			920 COPPENS RD		
			GREEN BAY WI 54303		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	STATE SENATE - DISTRICT 30			Total Votes:	79,204
	77	.1\%	SCATTERING		
Office	STATE SENATE - DISTRICT 32			Total Votes:	87,769
	36,545	41.64\%	BILL FEEHAN		Republican
			1901 CHEROKEE AVE		
			LA CROSSE WI 546031502		
Winner	51,153	58.28\%	JENNIFER SHILLING		Democrat
			2608 MAIN ST		
			LACROSSE WI 54601		
	71	.08\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 1			Total Votes:	33,146
Winner	16,993	51.27\%	GAREY BIES		Republican
			2520 SETTLEMENT RD		
			SISTER BAY WI 54234		
	16,124	48.65\%	PATRICK VEESER		Democrat
			E2620 SUNSET RD		
			LUXEMBURG WI 542179741		
	29	.09\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 2			Total Votes:	29,141
Winner	17,082	58.62\%	ANDRE JACQUE		Republican
			2390 E RIDGE TER		
	12,033	41.29\%	LARRY PRUESS		Democrat
			334 23RD ST		
	26	.09\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 3			Total Votes:	29,987
Winner	17,387	57.98\%	AL OTT		Republican
			W2168 CAMPGROUND RD		
			FOREST J UNCTION WI 54123		
	11,398	38.01\%	KOLE OSWALD		Democrat
			2424 S WALDEN AVE		
			APPLETON WI 549155876		

\begin{tabular}{|c|c|c|c|c|}
\hline \& \begin{tabular}{ll}
Number of \& \begin{tabular}{l}
Percent of \\
Votes
\end{tabular} \\
Total Votes \\
Received \&
\end{tabular} \& Candidate \& \& Party \\
\hline \multirow[t]{5}{*}{Office} \& \multicolumn{2}{|l|}{ASSEMBLY - DI STRICT 3} \& \multirow[t]{5}{*}{Total Votes:} \& 29,987 \\
\hline \& \multirow[t]{3}{*}{1,189 3.97\%} \& JOSH YOUNG \& \& \multirow[t]{4}{*}{Independent} \\
\hline \& \& 545 BERGHUIS DR \& \& \\
\hline \& \& COMBINED LCKS WI 541131418 \& \& \\
\hline \& 13 . \(04 \%\) \& SCATTERING \& \& \\
\hline Office

Winner \& \multicolumn{2}{|l|}{ASSEMBLY - DI STRICT 4} \& \multirow[t]{8}{*}{Total Votes:} \& 28,839

\hline \multirow[t]{7}{*}{Winner} \& \multirow[t]{3}{*}{16,029 55.58\%} \& CHAD WEI NI NGER \& \& \multirow[t]{3}{*}{Republican}

\hline \& \& 2030 PACKERLAND DR \& \&

\hline \& \& GREEN BAY WI 54304 \& \&

\hline \& \multirow[t]{3}{*}{12,770 44.28\%} \& MICHAEL J. MALCHESKI \& \& \multirow[t]{4}{*}{Democrat}

\hline \& \& 3564 S RIDGE RD \& \&

\hline \& \& DE PERE WI 541157695 \& \&

\hline \& 40.14% \& SCATTERING \& \&

\hline Office \& \multicolumn{2}{|l|}{ASSEMBLY - DISTRICT 5} \& \multirow[t]{8}{*}{Total Votes:} \& 28,850

\hline \multirow[t]{7}{*}{Winner} \& \multirow[t]{3}{*}{16,117 55.86\%} \& JIM STEI NEKE \& \& \multirow[t]{3}{*}{Republican}

\hline \& \& N2352 VANDENBROEK RD \& \&

\hline \& \& KAUKAUNA WI 54130 \& \&

\hline \& \multirow[t]{3}{*}{12,709 44.05\%} \& J EFF MCCABE \& \& \multirow[t]{4}{*}{Democrat}

\hline \& \& 900 KRISTY ST \& \&

\hline \& \& KAUKAUNA WI 541303851 \& \&

\hline \& 24.08% \& SCATTERING \& \&

\hline Office \& ASSEMBLY - DI STRICT 6 \& \& Total Votes: \& 25,961

\hline \multirow[t]{10}{*}{Winner} \& \multirow[t]{3}{*}{15,423} \& GARY TAUCHEN \& \& \multirow[t]{3}{*}{Republican}

\hline \& \& N3397 BROADWAY RD \& \&

\hline \& \& BONDUEL WI 54107 \& \&

\hline \& \multirow[t]{3}{*}{10,508 40.48\%} \& JOHN POWERS \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& W16533 WILSON CREEK LN \& \&

\hline \& \& WITTENBURG WI 54499 \& \&

\hline \& \multirow[t]{3}{*}{9 .03\%} \& JON KUPSKY (WRITE-IN) \& \& \multirow[t]{4}{*}{Independent}

\hline \& \& N7415 W RIVER ST \& \&

\hline \& \& GRESHAM WI 54128 \& \&

\hline \& 21.08% \& SCATTERING \& \&

\hline
\end{tabular}

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DI STRICT 20			Total Votes:	29,546
	51	.17\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 21			Total Votes:	29,357
Winner	17,403	59.28\%	MARK HONADEL		Republican
			1219 MANITOBA AVE		
			SOUTH MILWAUKEE WI 53172		
	11,921	40.61\%	WILLIAM R. KURTZ		Democrat
			221 N CHICAGO AVE		
			S MILWAUKEE WI 531721200		
	33	. 11%	SCATTERING		
Office	ASSEMBLY - DI STRICT 22			Total Votes:	24,165
Winner	23,817	98.56\%	DON PRIDEMORE		Republican
			2277 COUNTY ROAD K		
			HARTFORD WI 53027		
	348	1.44\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 23			Total Votes:	36,232
Winner	22,536	62.2\%	JIM OTT		Republican
			11743 NORTH LAKE SHORE DR		
			MEQUON WI 53092		
	13,669	37.73\%	CRIS ROGERS		Democrat
			816 E LAKE FOREST AVE		
			WHITEFISH BAY WI 532175376		
	27	.07\%	SCATTERING		
Office	ASSEMBLY - DI ST	TRICT 24		Total Votes:	33,559
Winner	20,932	62.37\%	DAN KNODL		Republican
			N101 W14475 RIDGEFIELD CT		
			GERMANTOWN WI 53022		
	12,594	37.53\%	SHAN HAQQI		Democrat
			16940 TANGLEWOOD DR		
			BROOKFIELD WI 530056846		
	33	.1\%	SCATTERING		

	Number of Percent of Votes Total Votes Received	Candidate		Party
Office	ASSEMBLY - DI STRICT 25		Total Votes:	28,295
Winner	16,287 57.56\%	PAUL TITTL		Republican
		2229 RHEAUME RD		
		MANITOWOC WI 542202548		
	11,947 42.22\%	JIM BREY		Democrat
		809 S 25TH ST		
		MANITOWOC WI 542204419		
	61 . 22%	SCATTERING		
Office	ASSEMBLY - DISTRICT 26		Total Votes:	29,294
Winner	15,018 51.27\%	MICHAEL ENDSLEY		Republican
		1829 N 27TH PL		
		SHEBOYGAN WI 530812022		
	14,257 48.67\%	MIKE HELMKE		Democrat
		4408 RED PINE LN		
		SHEBOYGAN WI 530817950		
	19 .06\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 27		Total Votes:	31,269
Winner	18,101 57.89\%	STEVE KESTELL		Republican
		W3829 STATE ROAD 32		
		ELKHART LAKE WI 53020		
	13,148 42.05%	STEVEN H. BAUER		Democrat
		W3798 COUNTY ROAD C		
		PLYMOUTH WI 530734343		
	20.06%	SCATTERING		
Office	ASSEMBLY - DI STRICT 28		Total Votes:	28,241
Winner	15,865 56.18\%	ERIK SEVERSON		Republican
		2147 45TH AVE		
		STAR PRAIRIE WI 54026		
	12,347 43.72%	ADAM T. BEVER		Democrat
		604 RAMBERG CT		
		BALSAM LAKE WI 548108016		
	29.1%	SCATTERING		

	Number of Percent of Votes Total Votes Received	Candidate		Party
Office	ASSEMBLY - DI STRICT 29		Total Votes:	27,287
Winner	15,237 55.84\%	JOHN MURTHA		Republican
		2283 20TH AVE		
		BALDWIN WI 54002		
	12,004 43.99\%	JIM SWANSON		Democrat
		1331 MATHEWS ST		
		MENOMONIE WI 547514614		
	46 . 47%	SCATTERING		
Office	ASSEMBLY - DI STRICT 30		Total Votes:	30,938
Winner	17,261 55.79%	DEAN KNUDSON		Republican
		1753 LAUREL AVE		
		HUDSON WI 54016		
	13,657 44.14\%	DIANE ODEEN		Democrat
		811 OAK KNOLL AVE		
		RIVER FALLS WI 540222646		
	20.06%	SCATTERING		
Office	ASSEMBLY - DI STRICT 31		Total Votes:	29,151
Winner	16,463 56.47\%	AMY LOUDENBECK		Republican
		10737 S STATE ROAD 140		
		CLINTON WI 53525		
	12,653 (43.41%	RYAN J. SCHROEDER		Democrat
		$510 \text { S 7TH ST }$		
		DELAVAN WI 531151908		
	35 . 12%	SCATTERING		
Office	ASSEMBLY - DI STRICT 32		Total Votes:	27,294
Winner	15,586 57.1\%	TYLER AUGUST		Republican
		120 FOX LN		
		WALWORTH WI 53184		
	10,828 39.67\%	KIM M. PETERSON		Democrat
		W768 DIXON DR		
		BURLINGTON WI 531052648		
	847 3.1\%	DAVID STOLOW		Independent
		170 HIGHLAND WAY		
		LAKE GENEVA WI 531472079		
	33 . 12%	SCATTERING		

	Number of Votes Percent of Total Votes Received	Candidate		Party
Office	ASSEMBLY - DI STRICT 33		Total Votes:	30,087
Winner	18,891 62.79\%	STEVE NASS		Republican
		N8330 JACKSON RD		
		WHITEWATER WI 53190		
	10,229 34\%	SCOTT ALLAN WOODS		Democrat
		744 TYRRELL AVE		
		DELAVAN WI 531152320		
	945 3.14\%	TERRY VIRGIL		Independent
		321 SWAP ST APT 101		
		JOHNSON CREEK WI 53038		
	22.07%	SCATTERING		
Office	ASSEMBLY - DI STRICT 34		Total Votes:	34,016
Winner	19,442 57.16\%	ROB SWEARI NGEN		Republican
		4485 OAKVIEW LN		
		RHI NELANDER WI 545018299		
	12,297 36.15\%	MERLIN VAN BUREN		Democrat
		5125 KERRY LN		
		RHI NELANDER WI 54501		
	791 2.33\%	TODD ALBANO		Independent
	1,469 4.32\%	KEVIN M. FITZPATRICK		Independent
		8677 HILL LAKE DR		
		MINOCQUA WI 545489741		
	17 .05\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 35		Total Votes:	29,045
Winner	15,481 53.3%	MARY CZAJA		Republican
		W4587 HWY S		
		IRMA WI 54442		
	12,149 41.83\%	KEVI N KOTH		Democrat
		W4987 HOOVIE RD		
		TOMAHAWK WI 544878604		
	1,397 4.81\%	PATRICK K. TJ UGUM		Independent
		2780 PRAIRIE LAKE RD		
		TOMAHAWK WI 544878864		
	18 .06\%	SCATTERING		

	Number of Percent of Votes Total Votes Received	Candidate		Party
Office	ASSEMBLY - DI STRICT 36		Total Votes:	26,902
Winner	15,886 59.05\%	JEFFREY L. MURSAU		Republican
		4 OAK ST		
		CRIVITZ WI 54114		
	10,997 40.88\%	DOROTHY KEGLEY		Democrat
		710 W J EFFERSON ST		
		CRANDON WI 545201564		
	19 .07\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 37		Total Votes:	29,172
Winner	15,799 54.16\%	JOHN J AGLER		Republican
		601 CLYMAN ST		
		WATERTOWN WI 530944667		
	13,289 45.55\%	MARY I. ARNOLD		Democrat
		954 DIX ST		
		COLUMBUS WI 539251210		
	84 . 29%	SCATTERING		
Office	ASSEMBLY - DI STRICT 38		Total Votes:	32,781
Winner	19,181 58.51%	J OEL KLEEFISCH		Republican
		W357N6189 SPINNAKER DR		
		OCONOMOWOC WI 53066		
	12,795 39.03\%	SCOTT MICHALAK		Democrat
		433 WATERLOO RD		
		MARSHALL WI 535599637		
	788 2.4\%	LEROY L. WATSON		Independent
		901 YORK IMPERIAL DR		
		OCONOMOWOC WI 53066		
	17 .05\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 39		Total Votes:	28,933
Winner	17,465 60.36\%	MARK L. BORN		Republican
		121 FRANKLIN ST		
		BEAVER DAM WI 539162211		
	11,446 39.56\%	JIM GRIGG		Democrat
		764 KAREN LN		
		HORICON WI 530321007		
	22.08%	SCATTERING		

	Number of Votes Received	Percent of Total Votes	Candidate	Total Votes:	Party
Office	ASSEMBLY - DI STRICT 40				21,403
Winner	21,127	98.71\%	KEVIN PETERSEN		Republican
			N1433 DRIVAS RD		
			WAUPACA WI 549818464		
	276	1.29\%	SCATTERING		
Office	ASSEMBLY - DI ST	TRICT 41		Total Votes:	25,958
Winner	15,035	57.92\%	JOAN BALLWEG		Republican
			170 W SUMMIT ST		
			MARKESAN WI 53946		
	10,906	42.01\%	MELISSA SORENSON		Democrat
			163 W NOYES ST		
			BERLIN WI 549231553		
	17	. 07%	SCATTERING		
Office	ASSEMBLY - DI ST	TRICT 42		Total Votes:	28,975
Winner	16,394	56.58\%	KEITH RIPP		Republican
			7113 COUNTY ROAD V		
			LODI WI 53555		
	12,567	43.37\%	PAULA COOPER		Democrat
			W5751 E BUSH RD		
			PARDEEVILLE WI 539549448		
	14	. 05%	SCATTERING		
Office	ASSEMBLY - DIST	TRICT 43		Total Votes:	30,585
	12,894	42.16\%	EVAN WYNN		Republican
			214 LAKEVIEW DR		
			WHITEWATER WI 53190		
Winner	17,612	57.58\%	ANDY J ORGENSEN		Democrat
			1424 ENDL BLVD		
			FORT ATKI NSON WI 53538		
	79	. 26%	SCATTERING		
Office	ASSEMBLY - DI ST	TRICT 44		Total Votes:	27,597
	10,571	38.3\%	JOE KNILANS		Republican
			1600 ALPINE DR		
			JANESVILLE WI 53546		

	Number of Votes Received	Percent of Total Votes	Candidate	Party
Office	ASSEMBLY - DI STRICT 48		Total Votes:	29,296
	4,849	16.55\%	TERRY R. GRAY	Independent
			5113 STARKER AVE	
			MADISON WI 537161915	
	0	0\%	ADAM KASSULKE (WRITE-IN)	Independent
			57 NORTHRIDGE TER	
			MADISON WI 537041979	
	13	.04\%	J ONATHON WILLIAM RYGIEWICZ (WRITE-IN)	Republican
	59	. 2%	SCATTERING	
Office	ASSEMBLY - DI STRICT 49		Total Votes:	26,235
Winner	14,218	54.19\%	TRAVIS TRANEL	Republican
			2231 LOUISBURG RD	
			CUBA CITY WI 53807	
	11,977	45.65\%	CAROL BEALS	Democrat
			45 COMMERCE ST	
			PLATTEVILLE WI 53818	
	40	.15\%	SCATTERING	
Office	ASSEMBLY - DI STRICT 50		Total Votes:	25,533
	11	.04\%	NATHAN J OHNSON (WRITE-IN)	Independent
			710 S PRESTON AVE APT 201	
			REEDSBURG WI 539591890	
Winner	12,842	50.3\%	ED BROOKS	Republican
			S4311 GROTE HILL RD	
			REEDSBURG WI 539599811	
	11,945	46.78\%	SARAH ANN SHANAHAN	Democrat
			N5845 VALLEY RD	
			NEW LISBON WI 53950	
	725	2.84\%	BEN OLSON, III	Independent
			E9510 OAK HILL RD	
			WISCONSIN DELLS WI 53965	
	10	.04\%	SCATTERING	
Office	ASSEMBLY - DI STRICT 51		Total Votes:	27,539
Winner	14,279	51.85\%	HOWARD MARKLEIN	Republican
			S11665 SOELDNER RD	
			SPRING GREEN WI 53588	

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DISTRICT 51			Total Votes:	27,539
	13,238	48.07\%	MAUREEN MAY-GRIMM		Democrat
			240 SOUTH ST		
			MINERAL POINT WI 535651342		
	22	.08\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 52			Total Votes:	26,899
Winner	16,313	60.65\%	JEREMY THIESFELDT		Republican
			604 SUNSET LN		
			FOND DU LAC WI 54935		
	10,575	39.31\%	PAUL G. CZISNY		Democrat
			260 SHEBOYGAN ST		
			FOND DU LAC WI 54935		
	11	.04\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 53			Total Votes:	26,285
Winner	15,844	60.28\%	MICHAEL SCHRAA		Republican
			220 WYLDEBERRY LN		
			OSHKOSH WI 549047676		
	10,410	39.6\%	RYAN FLEJ TER		Democrat
			526 E FRANKLIN ST		
			WAUPUN WI 539631513		
	31	.12\%	SCATTERING		
Office	$\begin{array}{rlr}\text { ASSEMBLY - DISTRICT } & 54 \\ \\ 11,594 & 39.9 \%\end{array}$			Total Votes:	29,058
			PAUL J. ESSLI NGER		Republican
			2350 HIGH OAK DR		
			OSHKOSH WI 549029005		
Winner	17,400	59.88\%	GORDON HINTZ		Democrat
			1209 WAUGOO AVE		
			OSHKOSH WI 54901		
	64	.22\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 55			Total Votes:	30,408
Winner	19,142	62.95\%	DEAN R. KAUFERT		Republican
			1360 ALPINE LN		
			NEENAH WI 54956		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DISTRICT 55			Total Votes:	30,408
	10,202	33.55\%	JIM CRAIL		Democrat
			W6616 GEMSTONE CT		
			GREENVILLE WI 549428101		
	1,016	3.34\%	RICH MARTIN		Independent
			1201 FIELDCREST DR		
			MENASHA WI 549522120		
	48	.16\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 56			Total Votes:	31,407
Winner	18,306	58.29\%	DAVE MURPHY		Republican
			W6564 TALON DR		
			GREENVILLE WI 549428714		
	13,071	41.62\%	RICHARD B. SCHOENBOHM		Democrat
			1331 N BALLARD RD APT 1		
			APPLETON WI 549114256		
	30	.1\%	SCATTERING		
Office	ASSEMBLY - DIST	TRICT 57		Total Votes:	21,124
Winner	19,862	94.03\%	PENNY BERNARD SCHABER		Democrat
			815 E WASHINGTON ST		
			APPLETON WI 54911		
	668	3.16\%	BRIAN GARROW (WRITE-IN)		Republican
			806 W WINNEBAGO ST		
			APPLETON WI 549143611		
	594	2.81\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 58			Total Votes:	27,248
Winner	26,945	98.89\%	PAT STRACHOTA		Republican
			639 RIDGE RD		
			WEST BEND WI 53095		
	303	1.11\%	SCATTERING		
Office	ASSEMBLY - DI STRI CT 59			Total Votes:	25,369
Winner	25,172	99.22\%	DANIEL R. LEMAHIEU		Republican
			W6284 LAKE ELLEN DR		
			CASCADE WI 53011		

	Number of Percent of Votes Total Votes Received	Candidate		Party
Office	ASSEMBLY - DISTRICT 63		Total Votes:	30,362
	21 .07\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 64		Total Votes:	20,926
Winner	20,264 96.84\%	PETER W. BARCA		Democrat
		1339 38TH AVE		
		KENOSHA WI 53144		
	662 3.16\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 65		Total Votes:	18,750
Winner	18,373 97.99\%	TOD OHNSTAD		Democrat
		3814 18TH AVE		
		KENOSHA WI 531405304		
	377 2.01\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 66		Total Votes:	17,060
Winner	16,830 98.65\%	CORY MASON		Democrat
		3611 KINZE AVE		
		RACINE WI 53405		
	230 1.35\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 67		Total Votes:	28,538
Winner	15,194 53.24\%	TOM LARSON		Republican
		E9359 COUNTY RD N		
		COLFAX WI 54730		
	13,325 46.69\%	DEB BIEGING		Democrat
		$431 \text { WOODRIDGE CT }$		
		CHIPPEWA FLS WI 547292057		
	10%	JAYME RYAN SCHULNER (WRITE-IN)		Republican
		912 PEARL ST APT 112		
		CHIPPEWA FLS WI 547291865		
	18 .06\%	SCATTERING		

	Number of Percent of Votes Total Votes Received	Candidate		Party
Office	ASSEMBLY - DI STRICT 68		Total Votes:	26,263
Winner	13,758 52.39\%	KATHY BERNIER		Republican
		10923 40TH AVE		
		CHIPPEWA FALLS WI 54729		
	12,482 47.53%	JUDY SMRIGA		Democrat
		500 S LINCOLN ST		
		THORP WI 547719213		
	23.09%	SCATTERING		
Office	ASSEMBLY - DI STRICT 69		Total Votes:	25,806
Winner	15,785 61.17\%	SCOTT SUDER		Republican
		102 S 4TH AVE		
		ABBOTSFORD WI 54405		
	9,998 38.74\%	PAUL KNOFF		Democrat
		GRANTON SB		
		WI		
	23.09%	SCATTERING		
Office	ASSEMBLY - DISTRICT 70		Total Votes:	26,936
	13,374 49.65\%	NANCY L. VANDERMEER		Republican
		18940 EDEN AVE		
		TOMAH WI 546608071		
Winner	13,518 50.19\%	AMY SUE VRUWINK		Democrat
		9425 FLOWER LN		
		MILLADORE WI 54454		
	44 . 16%	SCATTERING		
Office	ASSEMBLY - DISTRICT 71		Total Votes:	28,968
	11,279 38.94\%	PATRICK TESTIN		Republican
		1200 RIVER VIEW AVE APT 86		
		STEVENS POINT WI 544815149		
Winner	17,619 60.82\%	KATRINA SHANKLAND		Democrat
		2300A COLLEGE AVE		
		STEVENS POINT WI 544813103		
	70.24%	SCATTERING		

	Number of Percent of Total Votes Votes Received	Candidate		Party
Office	ASSEMBLY - DI STRICT 76		Total Votes:	31,948
	285 .89\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 77		Total Votes:	27,801
Winner	27,622 99.36\%	TERESE BERCEAU		Democrat
		4326 SOMERSET LN		
		MADISON WI 53711		
	179 .64\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 78		Total Votes:	30,294
Winner	22,853 75.44\%	BRETT HULSEY		Democrat
		110 MERRILL CREST DR		
		MADISON WI 53705		
	7,323 24.17\%	J ONATHAN DEDERING		Independent
		226 N BROOM ST APT 2		
		MADISON WI 537035037		
	118 . 39%	SCATTERING		
Office	ASSEMBLY - DISTRICT 79		Total Votes:	24,995
Winner	24,683 98.75\%	DIANNE HESSELBEIN		Democrat
		1420 N HIGH POINT RD		
		MIDDLETON WI 53562		
	312 1.25\%	SCATTERING		
Office	$\begin{array}{rl}\text { ASSEMBLY - DISTRICT } 80 \\ \\ 11,771 & 36.02 \%\end{array}$		Total Votes:	32,675
		TOM LAMBERSON		Republican
		1204 ENTERPRISE DR		
		VERONA WI 53593		
Winner	20,864 63.85\%	SONDY POPE-ROBERTS		Democrat
		4793 DELMARA RD		
		MIDDLETON WI 53562		
	40.12%	SCATTERING		

	Number of Percent of Votes Total Votes Received	Candidate		Party
Office	ASSEMBLY - DI STRICT 81		Total Votes:	28,835
	10,995 38.13\%	SCOTT FROSTMAN		Republican
		509 14TH AVE		
		BARABOO WI 53913		
Winner	17,829 61.83\%	FRED CLARK		Democrat
		E12367 COUNTY ROAD W		
		BARABOO WI 53913		
	11 . 04%	SCATTERING		
Office	ASSEMBLY - DI STRICT 82		Total Votes:	29,972
Winner	18,032 60.16\%	J EFF STONE		Republican
		5535 GRANDVIEW DR		
		GREENDALE WI 53129		
	11,896 39.69\%	KATHLEEN WIED-VINCENT		Democrat
		19330 W NORTH AVE		
		BROOKFIELD WI 530454173		
	44 . 45%	SCATTERING		
Office	ASSEMBLY - DI STRICT 83		Total Votes:	33,024
Winner	23,034 69.75\%	DAVE CRAIG		Republican
		W225 BIG BEND DRIVE S9505		
		BIG BEND WI 53103		
	9,967 30.18\%	JAMES BROWNLOW		Democrat
		W173 SCENIC DRIVE S7955		
		MUSKEGO WI 53150		
	23.07%	SCATTERING		
Office	ASSEMBLY - DI STRICT 84		Total Votes:	29,325
Winner	18,379 62.67\%	MIKE KUGLITSCH		Republican
		21865 W TOLBERT DR		
		NEW BERLIN WI 53146		
	10,882 37.11\%	J ESSE J. ROELKE		Democrat
		6784 HERBRAND RD		
		SAUK CITY WI 535839557		
	64 . 22%	SCATTERING		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DI STR	RICT 89		Total Votes:	27,232
Winner	16,081	59.05\%	JOHN NYGREN		Republican
			N2118 KELLER RD		
			MARINETTE WI 54143		
	11,129	40.87\%	JOE REI NHARD		Democrat
			3034 SANDALWOOD RD		
			ABRAMS WI 541019613		
	22	.08\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 90			Total Votes:	18,856
	7,432	39.41\%	DAVID VANDERLEEST		Republican
			505 S MAPLE AVE		
			GREEN BAY WI 54303		
Winner	11,353	60.21\%	ERIC GENRICH		Democrat
			1089 DIVISION ST		
			GREEN BAY WI 543033048		
	71	. 38%	SCATTERING		
Office	ASSEMBLY - DISTRICT 91			Total Votes:	23,674
Winner	23,030	97.28\%	DANA WACHS		Democrat
			437 LINCOLN AVE		
			EAU CLAIRE WI 547014094		
	644	2.72\%	SCATTERING		
Office	ASSEMBLY - DI STRI CT 92			Total Votes:	20,562
Winner	20,308	98.76\%	CHRIS DANOU		Democrat
			23951 8TH ST		
			TREMPEALEAU WI 54661		
	50	.24\%	STEPHEN J. DOERR		Republican
	204	.99\%	SCATTERING		
Office	ASSEMBLY - DI ST	RICT 93		Total Votes:	30,742
Winner	15,612	50.78\%	WARREN PETRYK		Republican
			S9840 HWY 93		
			ELEVA WI 54738		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DISTRICT 93			Total Votes:	30,742
	$15,114$$16$	49.16\%	JEFF SMITH		Democrat
			236 HUDSON ST		
			EAU CLAIRE WI 54703		
		. 05%	SCATTERING		
Office	ASSEMBLY - DISTRICT 94			Total Votes:	30,644
	12,068	39.38\%	BRUCE EVERS		Republican
			909 SILVER DR		
			HOLMEN WI 546368715		
Winner	18,566	60.59\%	STEVE DOYLE		Democrat
			N5525 HAUSER RD		
			ONALASKA WI 54650		
	10	.03\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 95			Total Votes:	22,783
Winner	22,531	98.89\%	JILL BILLINGS		Democrat
			403 13TH ST S		
			LA CROSSE WI 54601		
	252	1.11\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 96			Total Votes:	25,779
Winner	15,344	59.52\%	LEE A. NERISON		Republican
			S3035 COUNTY ROAD B		
			WESTBY WI 54667		
	10,4269	40.44\%	TOM J. JOHNSON		Democrat
			1114 REBECCA ST		
			VIROQUA WI 546658007		
		.03\%	SCATTERING		
Office	ASSEMBLY - DI STR	RICT 97		Total Votes:	28,481
Winner	18,399	64.6\%	BILL KRAMER		Republican
			2005 CLIFF ALEX CT S APT 3		
			WAUKESHA WI 53189		
	10,051	35.29\%	MARGA KRUMI NS		Democrat
			321 HARRISON AVE		
			WAUKESHA WI 531866129		

	Number of Percent of Votes Total Votes Received	Candidate		Party
Office	ASSEMBLY - DI STRICT 97		Total Votes:	28,481
	31 . 11%	SCATTERING		
Office	ASSEMBLY - DI STRICT 98		Total Votes:	32,187
Winner	22,665 70.42\%	PAUL FARROW		Republican
		245 HILLWOOD CT		
		PEWAUKEE WI 53072		
	9,503 29.52\%	ERIC PRUDENT		Democrat
		206 N UNIVERSITY DR		
		WAUKESHA WI 531884108		
	19 .06\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 99		Total Votes:	34,495
Winner	26,314 76.28\%	CHRIS KAPENGA		Republican
		N9W31035 CONCORD CT		
		DELAFIELD WI 53018		
	8,166 23.67\%	THOMAS D. HIBBARD		Democrat
		N48 ST HIGHWAY 83 W31390		
		HARTLAND WI 53029		
	15 .04\%	SCATTERING		
Office	District Attorney - Adams County		Total Votes:	4,702
Winner	4,672 99.36\%	TANIA M. BONNETT		Independent
		1887 LAKEVIEW DR		
		FRIENDSHIP WI 539349631		
	30.64%	SCATTERING		
Office	District Attorney - Ashland County		Total Votes:	5,796
Winner	5,727 98.81\%	KELLY J. MCKNIGHT		Democrat
		215 12TH ST W		
		ASHLAND WI 548063122		
	69 1.19\%	SCATTERING		

	Number of Percent of Votes Total Votes Received	Candidate		Party
Office	District Attorney - Barron County		Total Votes:	16,968
Winner	16,730 98.6\%	ANGELA L. BERANEK		Democrat
		1403 DUKE ST		
		RICE LAKE WI 54868		
	238 1.4\%	SCATTERING		
Office	District Attorney - Bayfield County		Total Votes:	9,236
	4,392 47.55\%	CRAIG HAUKAAS		Republican
		23540 CHERRYVILLE RD		
		ASHLAND WI 548065671		
Winner	4,833 52.33\%	FREDERICK I. BOURG		Democrat
		14590 COUNTY HWY N		
		DRUMMOND WI 548323622		
	11.12%	SCATTERING		
Office	District Attorney - Brown County		Total Votes:	86,423
Winner	85,031 98.39\%	DAVID L. LASEE		Republican
		1339 EMILIE ST		
		GREEN BAY WI 543013111		
	1,392 1.61\%	SCATTERING		
Office	District Attorney - Buffalo County		Total Votes:	5,147
Winner	5,104 99.16\%	THOMAS CLARK		Democrat
		57 W 13TH ST		
		BUFFALO WI 54622		
	43 . 84%	SCATTERING		
Office	District Attorney - Burnett County		Total Votes:	6,091
Winner	6,041 99.18\%	WILLIAM L. NORINE		Republican
		513 N PINE ST		
		GRANTSBURG WI 54840		
	50 . 82%	SCATTERING		

	Number of Percent of Votes Total Votes Received	Candidate		Party
Office	District Attorney - Calumet County		Total Votes:	24,411
Winner	14,372 58.88\%	NICHOLAS BOLZ		Republican
		W5460 HIDDEN TRAIL LN		
		APPLETON WI 549155231		
	10,010 41.01\%	JERILYN DIETZ		Independent
		PO BOX 182		
		CHILTON WI 530140182		
	29.12%	SCATTERING		
Office	District Attorney - Chippewa County		Total Votes:	22,336
Winner	22,143 99.14\%	STEVEN H. GIBBS		Republican
		3320 172ND ST		
		CHIPPEWA FLS WI 547295662		
	193 . 86%	SCATTERING		
Office	District Attorney - Clark County		Total Votes:	12,998
	5,377 41.37\%	SHARI L. POST		Republican
		PO BOX 25		
		CHILI WI 544200025		
Winner	7,615 58.59\%	LYNDSEY BOON BRUNETTE		Democrat
		W7928 CHILI RD		
		NEILLSVILLE WI 544568806		
	6 . 6 \%	SCATTERING		
Office	District Attorney - Columbia County		Total Votes:	20,584
Winner	20,051 97.41\%	JANE E. KOHLWEY		Republican
		N2557 COUNTY ROAD C		
		RIO WI 53960		
	533 2.59\%	SCATTERING		
Office	District Attorney - Crawford County		Total Votes:	5,818
Winner	5,782 99.38\%	TIMOTHY C. BAXTER		Democrat
		57972 BRECKENRIDGE LN		
		WAUZEKA WI 53826		
	36 . 62%	SCATTERING		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	District Attorney -	- Dane County		Total Votes:	219,027
Winner	217,013	99.08\%	ISMAEL OZANNE		Democrat
			210 S OWEN DR		
			MADISON WI 537055037		
	2,014	.92\%	SCATTERING		
Office	District Attorney - Dodge County			Total Votes:	34,963
Winner	34,630	99.05\%	KURT F. KLOMBERG		Republican
			218 FOX LAKE RD		
			WAUPUN WI 539631754		
	333	.95\%	SCATTERING		
Office	District Attorney - Door County			Total Votes:	13,272
Winner	12,988	97.86\%	RAYMOND L. PELRINE		Republican
			10717 LITTLE SISTER RD		
			SISTER BAY WI 542349184		
	284	2.14\%	SCATTERING		
Office	District Attorney - Douglas County			Total Votes:	17,485
Winner	17,237	98.58\%	DANIEL W. BLANK		Democrat
			2328 HAMMOND AVE		
			SUPERIOR WI 54880		
	248	1.42\%	SCATTERING		
Office	District Attorney - Dunn County			Total Votes:	16,719
Winner	16,444	98.36\%	JAMES M. PETERSON		Republican
			3413 INGALLS RD		
			MENOMONIE WI 54751		
	275	1.64\%	SCATTERING		
Office	District Attorney - Eau Claire County			Total Votes:	49,758
	23,266	46.76\%	BRIAN H. WRIGHT		Republican
			3727 ECHO VALLEY DR		
			EAU CLAIRE WI 547012313		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	District Attorney -	- Eau Claire County		Total Votes:	49,758
Winner	26,380	53.02\%	GARY KING		Democrat
			1420 WEBSTER AVE		
			EAU CLAIRE WI 547016586		
	112	.23\%	SCATTERING		
Office	District Attorney -	- Florence County		Total Votes:	2,020
Winner	2,007	99.36\%	DOUGLAS J. DREXLER		Republican
			4030 W LAKE ELLWOOD RD		
			FLORENCE WI 54121		
	13	.64\%	SCATTERING		
Office	District Attorney -	- Fond Du Lac County		Total Votes:	38,361
Winner	38,185	99.54\%	ERIC TONEY		Republican
			N8191 ASHBERRY AVE		
			FOND DU LAC WI 549376004		
	176	. 46%	SCATTERING		
Office	District Attorney -	- Forest County		Total Votes:	3,356
Winner	3,332	99.28\%	CHUCK SIMONO		Democrat
			307 E GRANT ST		
			CRANDON WI 54520		
	24	. 72%	SCATTERING		
Office	District Attorney -	- Grant County		Total Votes:	17,315
Winner	17,088	98.69\%	LISA A. RINIKER		Republican
			3774 PLATTE RD		
			PLATTEVILLE WI 53818		
	227	1.31\%	SCATTERING		
Office	District Attorney -	- Green County		Total Votes:	14,785
Winner	14,393	97.35\%	GARY L. LUHMAN		Republican
			1016 16TH AVE		
			MONROE WI 53566		

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Number of Votes Received \& Percent of Total Votes \& Candidate \& \& Party

\hline \multirow[t]{2}{*}{Office} \& \multicolumn{3}{|l|}{District Attorney - Green County} \& Total Votes: \& 14,785

\hline \& 392 \& 2.65\% \& SCATTERING \& \&

\hline Office

Winner \& \multicolumn{3}{|l|}{District Attorney - Green Lake County} \& \multirow[t]{5}{*}{Total Votes:} \& 7,691

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{7,646} \& \multirow[t]{3}{*}{-99.41\%} \& KYLE SARGENT \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& N4579 FOX RIVER DR \& \&

\hline \& \& \& PRINCETON WI 549688518 \& \&

\hline \& 45 \& .59\% \& SCATTERING \& \&

\hline Office \& \multicolumn{2}{|l|}{District Attorney - I owa County} \& \& Total Votes: \& 9,606

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{9,522} \& \multirow[t]{3}{*}{99.13\%} \& LARRY NELSON \& \& \multirow[t]{4}{*}{Democrat}

\hline \& \& \& 1243 W LAKE RD \& \&

\hline \& \& \& MINERAL POINT WI 53565 \& \&

\hline \& 84 \& . 87% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{District Attorney - I ron County

$1,626 \quad 49.91 \%$}} \& \& \multirow[t]{8}{*}{Total Votes:} \& 3,258

\hline \& \& \& ANTHONY J. STELLA JR \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& 13545 N COUNTY ROAD D \& \&

\hline \& \& \& HURLEY WI 545349131 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{1,630} \& \multirow[t]{3}{*}{50.03\%} \& MARTIN J. LIPSKE \& \& \multirow[t]{4}{*}{Independent}

\hline \& \& \& 13591 N COUNTY ROAD D \& \&

\hline \& \& \& HURLEY WI 54534 \& \&

\hline \& 2 \& .06\% \& SCATTERING \& \&

\hline Office \& \multicolumn{3}{|l|}{District Attorney - J ackson County} \& \multirow[t]{5}{*}{Total Votes:} \& 7,507

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{7,451} \& \multirow[t]{3}{*}{99.25\%} \& GERALD R. FOX \& \& \multirow[t]{4}{*}{Democrat}

\hline \& \& \& N13014 COUNTY ROAD T \& \&

\hline \& \& \& FAIRCHILD WI 54741 \& \&

\hline \& 56 \& .75\% \& \multirow[t]{2}{*}{SCATTERING} \& \&

\hline Office \& \multicolumn{2}{|l|}{District Attorney - J efferson County} \& \& Total Votes: \& 27,302

\hline \multirow[t]{3}{*}{Winner} \& \multirow[t]{3}{*}{26,550} \& \multirow[t]{3}{*}{97.25\%} \& SUSAN V. HAPP \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& 633 N DEWEY AVE \& \&

\hline \& \& \& J EFFERSON WI 53459 \& \&

\hline
\end{tabular}

	Number of Percent of Votes Total Votes Received	Candidate		Party
Office	District Attorney - J efferson County		Total Votes:	27,302
	752 2.75\%	SCATTERING		
Office	District Attorney - J uneau County		Total Votes:	10,181
Winner	6,059 59.51\%	MIKE SOLOVEY		Republican
		N5780 WOODLAND HILLS RD		
		NEW LISBON WI 539509118		
	4,070 39.98\%	STACY SMITH		Independent
		MJJ-REGI ONAL CTR		
		WI		
	52.51%	SCATTERING		
Office	District Attorney - Kenosha County		Total Votes:	60,191
Winner	58,739 97.59\%	ROBERT D. ZAPF		Democrat
		$4920 \text { 17TH ST }$		
		KENOSHA WI 53144		
	1,452 2.41\%	SCATTERING		
Office	District Attorney - Kewaunee County		Total Votes:	8,404
Winner	8,313 98.92\%	ANDREW NAZE		Democrat
		727 LOWELL RD		
		LUXEMBURG WI 54217		
	91 1.08\%	SCATTERING		
Office	District Attorney - La Crosse County		Total Votes:	46,489
Winner	46,127 99.22\%	TIM GRUENKE		Democrat
		1009 REMI NGTON DR		
		HOLMEN WI 54636		
	362 . 78%	SCATTERING		
Office	District Attorney - Lafayette County		Total Votes:	5,539
Winner	5,457 98.52\%	KATE FINDLEY		Democrat
		530 E LOUISA ST		
		DARLINGTON WI 535301458		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	District Attorney - Lafayette County			Total Votes:	5,539
	82	1.48\%	SCATTERING		
Office	District Attorney - Langlade County			Total Votes:	6,886
Winner	6,742	97.91\%	RALPH M. UTTKE		Democrat
			W11296 LAMPLIGHT LN		
			ANTIGO WI 54409		
	144	2.09\%	SCATTERING		
Office	District Attorney - Lincoln County			Total Votes:	14,233
Winner	8,036	56.46\%	DON DUNPHY		Republican
			W1412 1ST AVE		
			GLEASON WI 54435		
	6,172	43.36\%	SIDNEY A. BRUBACHER		Democrat
			1909 N 10TH AVE APT 4		
			WAUSAU WI 544010820		
	25	.18\%	SCATTERING		
Office	District Attorney - Manitowoc County			Total Votes:	30,634
Winner	30,391	99.21\%	MARK ROHRER		Democrat
			2408 J EFFERSON ST		
			TWO RIVERS WI 542412210		
	243	.79\%	SCATTERING		
Office	District Attorney - Marathon County			Total Votes:	50,155
Winner	49,342	98.38\%	KEN HEIMERMAN		Democrat
			1212 ARTHUR ST		
			WAUSAU WI 544036634		
	813	1.62\%	SCATTERING		
Office	District Attorney -	- Marinette County		Total Votes:	14,050
Winner	13,938	99.2\%	ALLEN R. BREY		Democrat
			3009 RIVERSIDE AVE		
			MARINETTE WI 54143		

	Number of Percent of Total Votes Votes Received	Candidate		Party
Office	District Attorney - Oconto County		Total Votes:	18,506
	27 . 15%	BRENT DEBORD (WRITE-IN)		Democrat
		150 LUBY AVE		
		OCONTO WI 541531923		
	13 . 07%	SCATTERING		
Office	District Attorney - Oneida County		Total Votes:	20,399
Winner	11,026 54.05\%	MICHAEL W. SCHIEK		Republican
		4173 PINE POINT DR		
		RHINELANDER WI 545019389		
	9,353 45.85\%	SCOTT MOLLER		Democrat
	20.1%	SCATTERING		
Office	District Attorney - Outagamie County		Total Votes:	66,429
Winner	65,724 98.94\%	CARRIE SCHNEIDER		Republican
		320 S WALNUT ST		
		APPLETON WI 54911		
	705 1.06\%	SCATTERING		
Office	District Attorney - Ozaukee County		Total Votes:	43,005
Winner	42,410 98.62\%	ADAM Y. GEROL		Republican
		11067 N ORIOLE LN		
		MEQUON WI 530924915		
	595 1.38\%	SCATTERING		
Office	District Attorney - Pepin County		Total Votes:	2,912
Winner	2,884 99.04\%	JON D. SEIFERT		Democrat
		N1501 BUCK LN		
		PEPIN WI 54759		
	28 . 96%	SCATTERING		

	Number of Percent of Total Votes Votes Received	Candidate		Party
Office	District Attorney - Sheboygan County		Total Votes:	46,402
Winner	45,823 98.75\%	J OE DECECCO		Democrat
		7136 MOENNING RD		
		SHEBOYGAN WI 530818805		
	579 1.25\%	SCATTERING		
Office	District Attorney - Taylor County		Total Votes:	9,261
	4,177 45.1\%	KARLJ. KELZ		Republican
		211 N 4TH ST		
		MEDFORD WI 54451		
Winner	5,084 54.9\%	KRISTI S. TLUSTY		Democrat
		545 GRAHL ST		
		MEDFORD WI 544511240		
	0 0\%	SCATTERING		
Office	District Attorney - Trempealeau County		Total Votes:	10,109
Winner	10,030 99.22\%	TAAVI MCMAHON		Democrat
		$16898 \text { S DAVIS ST }$		
		GALESVILLE WI 546302206		
	79 . 78%	SCATTERING		
Office	District Attorney - Vernon County		Total Votes:	10,717
Winner	10,640 99.28\%	TIMOTHY J. GASKELL		Republican
		602 S MAIN ST		
		WESTBY WI 54667		
	77 . 72%	SCATTERING		
Office	District Attorney - Vilas County		Total Votes:	10,457
Winner	10,178 97.33\%	ALBERT D. MOUSTAKIS		Republican
		2707 DEERSKIN PARK RD		
		EAGLE RIVER WI 54521		
	279 2.67\%	SCATTERING		

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Number of Votes Received \& Percent of Total Votes \& Candidate \& \& Party

\hline Office
Winner \& \multicolumn{3}{|l|}{District Attorney - Walworth County} \& \multirow[t]{5}{*}{Total Votes:} \& 40,973

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{39,825} \& \multirow[t]{3}{*}{97.2\%} \& DAN NECCI \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 924 CENTER ST \& \&

\hline \& \& \& DELAVAN WI 53115 \& \&

\hline \& 1,148 \& 2.8\% \& SCATTERING \& \&

\hline \multirow[t]{5}{*}{Office

Winner} \& \multicolumn{3}{|l|}{District Attorney - Washburn County} \& \multirow[t]{5}{*}{Total Votes:} \& 7,059

\hline \& \multirow[t]{4}{*}{7,014

45} \& \multirow[t]{3}{*}{4 99.36\%} \& J. MICHAEL BITNEY \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& N5552 BUCKI NGHAM \& \&

\hline \& \& \& SPOONER WI 54801 \& \&

\hline \& \& .64\% \& SCATTERING \& \&

\hline Office \& \multicolumn{3}{|l|}{District Attorney - Washington County} \& Total Votes: \& 64,420

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{63,856} \& \multirow[t]{3}{*}{99.12\%} \& MARK D. BENSEN \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 5423 SILVER LAKE DR \& \&

\hline \& \& \& WEST BEND WI 530958714 \& \&

\hline \& 564 \& . 88% \& SCATTERING \& \&

\hline \multirow[t]{5}{*}{Office

Winner} \& \multicolumn{3}{|l|}{District Attorney - Waukesha County} \& \multirow[t]{5}{*}{Total Votes:} \& 159,575

\hline \& \multirow[t]{3}{*}{158,479} \& \multirow[t]{3}{*}{99.31\%} \& BRAD SCHI MEL \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& W265 J AMIE COURT S2609 \& \&

\hline \& \& \& WAUKESHA WI 53188 \& \&

\hline \& 1,096 \& .69\% \& SCATTERING \& \&

\hline Office \& \multicolumn{2}{|l|}{District Attorney - Waupaca County} \& \& Total Votes: \& 19,030

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{18,899} \& \multirow[t]{3}{*}{99.31\%} \& JOHN P. SNIDER \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 406 E LAKE ST \& \&

\hline \& \& \& WAUPACA WI 54982 \& \&

\hline \& 131 \& .69\% \& \multirow[t]{2}{*}{SCATTERING} \& \&

\hline Office \& District Attorney \& - Waushara County \& \& Total Votes: \& 9,375

\hline \multirow[t]{3}{*}{Winner} \& \multirow[t]{3}{*}{9,302} \& \multirow[t]{3}{*}{99.22\%} \& SCOTT C. BLADER \& \& \multirow[t]{3}{*}{Republican}

\hline \& \& \& W8210 CYPRESS LN \& \&

\hline \& \& \& WAUTOMA WI 54982 \& \&

\hline
\end{tabular}

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	District Attorney - Waushara County			Total Votes:	9,375
	73	. 78%	SCATTERING		
Office	District Attorney - Winnebago County			Total Votes:	67,862
Winner	66,277	7 97.66\%	CHRISTIAN A. GOSSEIT		Republican
			885 ADAMS AVE		
			OSHKOSH WI 54902		
	1,585	2.34\%	SCATTERING		
Office	District Attorney -	- Wood County		Total Votes:	28,238
Winner	27,995	99.14\%	CRAIG LAMBERT		Republican
			711 ELM ST		
			WISC RAPIDS WI 544944323		
	243	. 86%	SCATTERING		
Office	WESTERN TECHNI	I CAL COLLEGE DISTR	EFERENDUM	Total Votes:	117,656
Winner	63,715	54.15\%	YES		
	53,941	45.85\%	NO		
Office	STATE SENATE - D	DISTRICT 33		Total Votes:	61,345
Winner	31,927	52.32\%	PAUL FARROW		Republican
			245 HILLWOOD CT		
			PEWAUKEE WI 53072		
	29,027	47.57\%	CHRIS KAPENGA		Republican
			N9 CONCORD CT W31035		
			DELAFIELD WI 53018		
	69	.11\%	SCATTERING		
Winner	292	100\%	SCATTERING		
Winner	14	100\%	SCATTERING		

	Number of Votes Received	Percent of Total Votes	Candidate	Party
Office	STATE SENATE - DI STRICT 33	Total Votes:	$\mathbf{6 1 , 3 4 5}$	

Winner	16	100%	SCATTERING

District	Pop	Dev	\% Dev	dhat_open	Dem \%	rhat_open	Rep \%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
1	57220	-224	-0.39\%	16,235	0.49402	16,628	0.50598	16235	-	-	197	16,235	197	16,038	1
2	57649	205	0.36\%	12,398	0.431159	16,357	0.568841	12398	-	-	1,980	12,398	1,980	10,419	1
3	57444	0	0.00\%	12,623	0.431425	16,636	0.568575	12623	-	-	2,006	12,623	2,006	10,617	1
4	57486	42	0.07\%	13,926	0.472034	15,576	0.527966	13926	-	-	825	13,926	825	13,101	1
5	57470	26	0.05\%	12,710	0.442439	16,017	0.557561	12710	-	-	1,654	12,710	1,654	11,056	1
6	57505	61	0.11\%	10,929	0.422505	14,938	0.577495	10929	-	-	2,005	10,929	2,005	8,924	1
7	57498	54	0.09\%	13,793	0.539399	11,778	0.460601	0	11,778	1,007	-	1,007	11,778	$(10,771)$	0
8	57196	-248	-0.43\%	7,342	0.808608	1,738	0.191392	0	1,738	2,802	-	2,802	1,738	1,064	0
9	57283	-161	-0.28\%	10,023	0.688604	4,533	0.311396	0	4,533	2,745	-	2,745	4,533	$(1,787)$	0
10	57428	-16	-0.03\%	25,306	0.897289	2,897	0.102711	0	2,897	11,205	-	11,205	2,897	8,308	0
11	57503	59	0.10\%	21,698	0.865628	3,368	0.134372	0	3,368	9,165	-	9,165	3,368	5,797	0
12	57494	50	0.09\%	19,700	0.79048	5,222	0.20952	0	5,222	7,239	-	7,239	5,222	2,018	0
13	57452	8	0.01\%	13,345	0.39597	20,358	0.60403	13345	-	-	3,506	13,345	3,506	9,839	1
14	57597	153	0.27\%	14,499	0.408139	21,025	0.591861	14499	-	-	3,263	14,499	3,263	11,235	1
15	57372	-72	-0.13\%	13,006	0.429006	17,310	0.570994	13006	-	-	2,152	13,006	2,152	10,853	1
16	57458	14	0.02\%	22,293	0.904922	2,342	0.095078	0	2,342	9,975	-	9,975	2,342	7,633	0
17	57354	-90	-0.16\%	24,088	0.856153	4,047	0.143847	0	4,047	10,020	-	10,020	4,047	5,973	0
18	57480	36	0.06\%	22,204	0.891874	2,692	0.108126	0	2,692	9,756	-	9,756	2,692	7,064	0
19	57546	102	0.18\%	22,759	0.687113	10,364	0.312887	0	10,364	6,198	-	6,198	10,364	$(4,166)$	0
20	57428	-16	-0.03\%	16,066	0.555485	12,856	0.444515	0	12,856	1,605	-	1,605	12,856	$(11,252)$	0
21	57449	5	0.01\%	12,566	0.450565	15,324	0.549435	12566	-	-	1,379	12,566	1,379	11,187	1
22	57495	51	0.09\%	11,290	0.329657	22,958	0.670343	11290	-	-	5,834	11,290	5,834	5,456	1
23	57579	135	0.24\%	14,260	0.397291	21,633	0.602709	14260	-	-	3,687	14,260	3,687	10,573	1
24	57282	-162	-0.28\%	13,885	0.405749	20,335	0.594251	13885	-	-	3,225	13,885	3,225	10,659	1
25	57322	-122	-0.21\%	12,032	0.430255	15,933	0.569745	12032	-	-	1,950	12,032	1,950	10,082	1
26	57581	137	0.24\%	13,639	0.467121	15,559	0.532879	13639	-	-	960	13,639	960	12,679	1
27	57536	92	0.16\%	14,709	0.473423	16,360	0.526577	14709	-	-	826	14,709	826	13,883	1
28	57467	23	0.04\%	12,719	0.453914	15,302	0.546086	12719	-	-	1,291	12,719	1,291	11,428	1
29	57537	93	0.16\%	12,909	0.468215	14,662	0.531785	12909	-	-	876	12,909	876	12,033	1
30	57241	-203	-0.35\%	14,019	0.452666	16,951	0.547334	14019	-	-	1,466	14,019	1,466	12,553	1
31	57240	-204	-0.36\%	13,273	0.459469	15,615	0.540531	13273	-	-	1,171	13,273	1,171	12,102	1
32	57524	80	0.14\%	11,255	0.422892	15,359	0.577108	11255	-	-	2,052	11,255	2,052	9,203	1
33	57565	121	0.21\%	11,226	0.380229	18,298	0.619771	11226	-	-	3,536	11,226	3,536	7,690	1
34	57387	-57	-0.10\%	12,445	0.391359	19,355	0.608641	12445	-	-	3,455	12,445	3,455	8,991	1
35	57562	118	0.21\%	12,270	0.441447	15,525	0.558553	12270	-	-	1,628	12,270	1,628	10,643	1
36	57432	-12	-0.02\%	11,403	0.421178	15,672	0.578822	11403	-	-	2,134	11,403	2,134	9,269	1
37	57507	63	0.11\%	12,707	0.439556	16,202	0.560444	12707	-	-	1,747	12,707	1,747	10,960	1

District	Pop	Dev	\% Dev	dhat_open	Dem \%	rhat open	Rep \%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
38	57493	49	0.09\%	12,668	0.398397	19,129	0.601603	12668	-	-	3,231	12,668	3,231	9,437	1
39	57387	-57	-0.10\%	11,491	0.400349	17,211	0.599651	11491	-	-	2,860	11,491	2,860	8,630	1
40	57366	-78	-0.14\%	11,485	0.457903	13,597	0.542097	11485	-	-	1,056	11,485	1,056	10,429	1
41	57337	-107	-0.19\%	11,719	0.447095	14,492	0.552905	11719	-	-	1,387	11,719	1,387	10,332	1
42	57285	-159	-0.28\%	13,705	0.469871	15,462	0.530129	13705	-	-	879	13,705	879	12,826	1
43	57443	-1	0.00\%	17,380	0.57068	13,075	0.42932	0	13,075	2,153	-	2,153	13,075	$(10,923)$	0
44	57395	-49	-0.09\%	16,680	0.618152	10,304	0.381848	0	10,304	3,188	-	3,188	10,304	$(7,116)$	0
45	57658	214	0.37\%	15,153	0.609941	9,691	0.390059	0	9,691	2,731	-	2,731	9,691	$(6,959)$	0
46	57458	14	0.02\%	19,173	0.624385	11,534	0.375615	0	11,534	3,819	-	3,819	11,534	$(7,714)$	0
47	57465	21	0.04\%	21,609	0.698214	9,340	0.301786	0	9,340	6,135	-	6,135	9,340	$(3,205)$	0
48	57506	62	0.11\%	24,517	0.762539	7,635	0.237461	0	7,635	8,441	-	8,441	7,635	806	0
49	57346	-98.	-0.17\%	12,307	0.474661	13,621	0.525339	12307	-	-	657	12,307	657	11,650	1
50	57624	180	0.31\%	12,467	0.502844	12,326	0.497156	0	12,326	71	-	71	12,326	$(12,256)$	0
51	57580	136	0.24\%	14,173	0.520666	13,048	0.479334	0	13,048	563	-	563	13,048	$(12,485)$	0
52	57232	-212	-0.37\%	11,294	0.419067	15,656	0.580933	11294	-	-	2,181	11,294	2,181	9,113	1
53	57240	-204	-0.36\%	9,875	0.37086	16,753	0.62914	9875	-	-	3,439	9,875	3,439	6,437	1
54	57250	-194	-0.34\%	15,180	0.540935	12,882	0.459065	0	12,882	1,149	-	1,149	12,882	$(11,733)$	0
55	57493	49	0.09\%	12,634	0.426748	16,971	0.573252	12634	-	-	2,169	12,634	2,169	10,465	1
56	57582	138	0.24\%	12,564	0.403477	18,576	0.596523	12564	-	-	3,006	12,564	3,006	9,559	1
57	57501	57	0.10\%	14,387	0.551995	11,676	0.448005	0	11,676	1,355	-	1,355	11,676	$(10,321)$	0
58	57227	-217	-0.38\%	8,843	0.282875	22,417	0.717125	8843	-	-	6,787	8,843	6,787	2,055	1
59	57391	-53	-0.09\%	8,784	0.287912	21,725	0.712088	8784	-	-	6,471	8,784	6,471	2,313	1
60	57385	-59	-0.10\%	9,848	0.291044	23,989	0.708956	9848	-	-	7,071	9,848	7,071	2,778	1
61	57614	170	0.30\%	13,145	0.44369	16,481	0.55631	13145	-	-	1,668	13,145	1,668	11,477	1
62	57345	-99	-0.17\%	14,828	0.461406	17,309	0.538594	14828	-	-	1,240	14,828	1,240	13,588	1
63	57365	-79	-0.14\%	13,233	0.440164	16,830	0.559836	13233	-	-	1,799	13,233	1,799	11,434	1
64	57270	-174	-0.30\%	15,702	0.581374	11,307	0.418626	0	11,307	2,198	-	2,198	11,307	$(9,109)$	0
65	57455	11	0.02\%	15,105	0.655765	7,929	0.344235	0	7,929	3,588	-	3,588	7,929	$(4,341)$	0
66	57545	101	0.18\%	16,162	0.747076	5,472	0.252924	0	5,472	5,345	-	5,345	5,472	(127)	0
67	57239	-205	-0.36\%	13,769	0.484078	14,674	0.515922	13769	-	.	453	13,769	453	13,316	1
68	57261	-183	-0.32\%	13,663	0.512334	13,005	0.487666	0	13,005	329	-	329	13,005	$(12,676)$	0
69	57649	205	0.36\%	11,083	0.435819	14,347	0.564181	11083	-	-	1,632	11,083	1,632	9,451	1
70	57552	108	0.19\%	12,211	0.459086	14,387	0.540914	12211	-	-	1,088	12,211	1,088	11,123	1
71	57519	75	0.13\%	17,614	0.60744	11,383	0.39256	0	11,383	3,115	-	3,115	11,383	$(8,267)$	0
72	57449	5	0.01\%	14,294	0.50707	13,895	0.49293	0	13,895	199	-	199	13,895	$(13,696)$	0
73	57453	9	0.02\%	17,353	0.616729	10,784	0.383271	0	10,784	3,284	-	3,284	10,784	$(7,500)$	0
74	57494	50	0.09\%	17,095	0.553832	13,772	0.446168	0	13,772	1,662	-	1,662	13,772	$(12,110)$	0

District	Pop	Dev	\% Dev	dhat_open	Dem\%	rhat_open	Rep \%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
75	57462	18	0.03\%	15,000	0.527835	13,418	0.472165	0	13,418	791	-	791	13,418	$(12,627)$	0
76	57617	173	0.30\%	30,939	0.819701	6,805	0.180299	0	6,805	12,067	-	12,067	6,805	5,262	0
77	57433	-11	-0.02\%	26,925	0.816763	6,041	0.183237	0	6,041	10,442	-	10,442	6,041	4,402	0
78	57546	102	0.18\%	24,163	0.710254	9,857	0.289746	0	9,857	7,153	-	7,153	9,857	$(2,704)$	0
79	57461	17	0.03\%	20,753	0.59759	13,975	0.40241	0	13,975	3,389	-	3,389	13,975	$(10,586)$	0
80	57585	141	0.25\%	20,369	0.617747	12,604	0.382253	0	12,604	3,882	-	3,882	12,604	$(8,722)$	0
81	57403	-41	-0.07\%	16,310	0.56896	12,356	0.43104	0	12,356	1,977	-	1,977	12,356	$(10,379)$	0
82	57430	-14	-0.02\%	12,168	0.402209	18,085	0.597791	12168	-	-	2,959	12,168	2,959	9,210	1
83	57423	-21	-0.04\%	10,186	0.300106	23,755	0.699894	10186	-	-	6,784	10,186	6,784	3,401	1
84	57365	-79	-0.14\%	12,503	0.399877	18,765	0.600123	12503	-	-	3,131	12,503	3,131	9,373	1
85	57480	36	0.06\%	13,613	0.512962	12,925	0.487038	0	12,925	344	-	344	12,925	$(12,581)$	0
86	57454	10	0.02\%	13,425	0.439056	17,152	0.560944	13425	-	-	1,863	13,425	1,863	11,561	1
87	57358	-86	-0.15\%	11,780	0.437956	15,118	0.562044	11780	-	-	1,669	11,780	1,669	10,111	1
88	57556	112	0.20\%	13,141	0.477489	14,380	0.522511	13141	-	-	620	13,141	620	12,521	1
89	57634	190	0.33\%	11,610	0.42801	15,516	0.57199	11610	-	-	1,953	11,610	1,953	9,658	1
90	57608	164	0.29\%	12,080	0.623026	7,309	0.376974	0	7,309	2,385	-	2,385	7,309	$(4,924)$	0
91	57359	-85	-0.15\%	17,942	0.603883	11,769	0.396117	0	11,769	3,086	-	3,086	11,769	$(8,683)$	0
92	57431	-13	-0.02\%	14,285	0.555278	11,441	0.444722	0	11,441	1,422	-	1,422	11,441	$(10,019)$	0
93	57548	104	0.18\%	15,268	0.497965	15,393	0.502035	15268	-	-	62	15,268	62	15,206	1
94	57266	-178	-0.31\%	17,408	0.573345	12,954	0.426655	0	12,954	2,227	-	2,227	12,954	$(10,727)$	0
95	57372	-72	-0.13\%	19,804	0.672888	9,627	0.327112	0	9,627	5,088	-	5,088	9,627	$(4,539)$	0
96	57484	40	0.07\%	10,950	0.424041	14,873	0.575959	10950	-	-	1,962	10,950	1,962	8,989	1
97	57279	-165	-0.29\%	10,826	0.375032	18,042	0.624968	10826	-	-	3,608	10,826	3,608	7,219	1
98	57513	69	0.12\%	10,182	0.317822	21,855	0.682178	10182	-	-	5,837	10,182	5,837	4,346	1
99	57496	52	0.09\%	8,346	0.246334	25,535	0.753666	8346	-	-	8,594	8,346	8,594	(248)	1
				1,454,717		1,389,958		702,148	401,975	175,297	142,918	877,445	544,893	332,552	57
														11.690\%	

Case: 3:15-cv-00421-bbc Document \#: 49-5 Filed: 01/04/16 Page 1 of 1

CurrentMas			New Map		
	Assembly	Senate		Assembly	Senate
Strong GOP (55\%+)	27	7	Strong GOP (55\%+)	38	12
Lean GOP (52.1-54.9\%):	13	8	New Lean GOP (52.1-54.9\%):	14	5
Total GOP Seats (strong + lean):	40	15	Total GOP Seats (strong + lean):	52	17
Swing (48-52\%):	19	5	New Swing (48-52\%)	10	3
Lean DEM (45.1-47.9\%):	7	3	New Lean Dem (45.1-47.9\%):	4	1
Strong DEM (-45\%):	33	10	Strong DEM (-45\%):	33	12
Total DEM Seats (strong + lean):	40	13	Total DEM Seats (strong + lean):	37	13

District	Pop	Dev	\% Dev	Predicted Dem Votes	Dem \%	Predicted Rep Votes	Rep \%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
1	57220	-224	-0.39\%	15,857	0.4878	16,651	0.5122	15857	-	-	397	15,857	397	15,461	1
2	57649	205	0.36\%	12,983	0.4516	15,766	0.5484	12983	-	-	1,391	12,983	1,391	11,591	1
3	57444	0	0.00\%	12,976	0.4442	16,236	0.5558	12976	-	-	1,630	12,976	1,630	11,346	1
4	57486	42	0.07\%	13,742	0.4653	15,791	0.5347	13742	-	-	1,025	13,742	1,025	12,717	1
5	57470	26	0.05\%	13,134	0.4572	15,593	0.5428	13134	-	-	1,230	13,134	1,230	11,904	1
6	57505	61	0.11\%	10,779	0.4167	15,088	0.5833	10779	-	-	2,155	10,779	2,155	8,624	1
7	57498	54	0.09\%	13,967	0.5462	11,604	0.4538	0	11,604	1,181	-	1,181	11,604	$(10,423)$	0
8	57196	-248	-0.43\%	6,178	0.6952	2,709	0.3048	0	2,709	1,735	-	1,735	2,709	(974)	0
9	57283	-161	-0.28\%	10,173	0.7086	4,184	0.2914	0	4,184	2,995	-	2,995	4,184	$(1,189)$	0
10	57428	-16	-0.03\%	24,623	0.8741	3,547	0.1259	0	3,547	10,538	-	10,538	3,547	6,992	0
11	57503	59	0.10\%	20,235	0.8042	4,927	0.1958	0	4,927	7,654	-	7,654	4,927	2,728	0
12	57494	50	0.09\%	18,066	0.7249	6,856	0.2751	0	6,856	5,605	-	5,605	6,856	$(1,251)$	0
13	57452	8	0.01\%	13,929	0.4133	19,774	0.5867	13929	-	-	2,922	13,929	2,922	11,007	1
14	57597	153	0.27\%	14,693	0.4136	20,831	0.5864	14693	-	-	3,069	14,693	3,069	11,624	1
15	57372	-72	-0.13\%	13,497	0.4452	16,819	0.5548	13497	-	-	1,661	13,497	1,661	11,835	1
16	57458	14	0.02\%	22,223	0.8946	2,618	0.1054	0	2,618	9,803	-	9,803	2,618	7,184	0
17	57354	-90	-0.16\%	22,553	0.8016	5,582	0.1984	0	5,582	8,486	-	8,486	5,582	2,904	0
18	57480	36	0.06\%	21,176	0.8506	3,719	0.1494	0	3,719	8,728	-	8,728	3,719	5,009	0
19	57546	102	0.18\%	23,838	0.7197	9,284	0.2803	0	9,284	7,277	-	7,277	9,284	$(2,007)$	0
20	57428	-16	-0.03\%	16,451	0.5688	12,471	0.4312	0	12,471	1,990	-	1,990	12,471	$(10,482)$	0
21	57449	5	0.01\%	13,125	0.4706	14,765	0.5294	13125	-	-	820	13,125	820	12,305	1
22	57495	51	0.09\%	11,364	0.3318	22,885	0.6682	11364	-	-	5,761	11,364	5,761	5,603	1
23	57579	135	0.24\%	15,182	0.4236	20,658	0.5764	15182	-	-	2,738	15,182	2,738	12,444	1
24	57282	-162	-0.28\%	14,205	0.4151	20,015	0.5849	14205	-	-	2,905	14,205	2,905	11,299	1
25	57322	-122	-0.21\%	13,065	0.4674	14,887	0.5326	13065	-	-	911	13,065	911	12,154	1
26	57581	137	0.24\%	12,853	0.4403	16,338	0.5597	12853	-	-	1,743	12,853	1,743	11,110	1
27	57536	92	0.16\%	13,611	0.4381	17,458	0.5619	13611	-	-	1,923	13,611	1,923	11,688	1
28	57467	23	0.04\%	12,609	0.45	15,412	0.55	12609	-	-	1,401	12,609	1,401	11,208	1
29	57537	93	0.16\%	13,519	0.4903	14,054	0.5097	13519	-	-	267	13,519	267	13,251	1
30	57241	-203	-0.35\%	14,267	0.4622	16,601	0.5378	14267	-	-	1,167	14,267	1,167	13,101	1
31	57240	-204	-0.36\%	12,616	0.4367	16,273	0.5633	12616	-	-	1,829	12,616	1,829	10,787	1
32	57524	80	0.14\%	10,038	0.3773	16,566	0.6227	10038	-	-	3,264	10,038	3,264	6,773	1
33	57565	121	0.21\%	11,274	0.3819	18,247	0.6181	11274	-	-	3,487	11,274	3,487	7,788	1
34	57387	-57	-0.10\%	14,239	0.4478	17,558	0.5522	14239	-	-	1,660	14,239	1,660	12,579	1

District	Pop	Dev	\% Dev	Predicted Dem Votes	Dem \%	Predicted Rep Votes	Rep \%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
35	57562	118	0.21\%	13,067	0.4701	14,729	0.5299	13067	-	-	831	13,067	831	12,236	1
36	57432	-12	-0.02\%	12,227	0.4516	14,848	0.5484	12227	-	-	1,310	12,227	1,310	10,917	1
37	57507	63	0.11\%	12,110	0.4189	16,799	0.5811	12110	-	-	2,345	12,110	2,345	9,766	1
38	57493	49	0.09\%	12,574	0.3955	19,218	0.6045	12574	-	-	3,322	12,574	3,322	9,251	1
39	57387	-57	-0.10\%	10,899	0.38	17,782	0.62	10899	-	-	3,442	10,899	3,442	7,457	1
40	57366	-78	-0.14\%	10,514	0.4193	14,561	0.5807	10514	-	-	2,024	10,514	2,024	8,490	1
41	57337	-107	-0.19\%	11,761	0.4484	14,467	0.5516	11761	-	-	1,353	11,761	1,353	10,407	1
42	57285	-159	-0.28\%	13,152	0.4506	16,036	0.5494	13152	-	-	1,442	13,152	1,442	11,710	1
43	57443	-1	0.00\%	17,339	0.5694	13,113	0.4306	0	13,113	2,113	-	2,113	13,113	$(10,999)$	0
44	57395	-49	-0.09\%	16,941	0.6278	10,043	0.3722	0	10,043	3,449	-	3,449	10,043	$(6,595)$	0
45	57658	214	0.37\%	14,886	0.5992	9,957	0.4008	0	9,957	2,464	-	2,464	9,957	$(7,493)$	0
46	57458	14	0.02\%	17,681	0.5761	13,010	0.4239	0	13,010	2,336	-	2,336	13,010	$(10,674)$	0
47	57465	21	0.04\%	20,628	0.6665	10,322	0.3335	0	10,322	5,153	-	5,153	10,322	$(5,169)$	0
48	57506	62	0.11\%	23,290	0.7244	8,861	0.2756	0	8,861	7,215	-	7,215	8,861	$(1,646)$	0
49	57346	-98	-0.17\%	13,071	0.5041	12,859	0.4959	0	12,859	106	-	106	12,859	$(12,752)$	0
50	57624	180	0.31\%	11,887	0.4794	12,908	0.5206	11887	-	-	511	11,887	511	11,376	1
51	57580	136	0.24\%	14,637	0.5377	12,584	0.4623	0	12,584	1,026	-	1,026	12,584	$(11,558)$	0
52	57232	-212	-0.37\%	11,034	0.4094	15,918	0.5906	11034	-	-	2,442	11,034	2,442	8,592	1
53	57240	-204	-0.36\%	9,930	0.3815	16,099	0.6185	9930	-	-	3,084	9,930	3,084	6,846	1
54	57250	-194	-0.34\%	15,372	0.5478	12,690	0.4522	0	12,690	1,341	-	1,341	12,690	$(11,348)$	0
55	57493	49	0.09\%	13,302	0.4494	16,297	0.5506	13302	-	-	1,498	13,302	1,498	11,804	1
56	57582	138	0.24\%	12,809	0.4114	18,326	0.5886	12809	-	-	2,759	12,809	2,759	10,050	1
57	57501	57	0.10\%	14,436	0.555	11,575	0.445	0	11,575	1,431	-	1,431	11,575	$(10,145)$	0
58	57227	-217	-0.38\%	9,211	0.2946	22,056	0.7054	9211	-	-	6,422	9,211	6,422	2,789	1
59	57391.	-53	-0.09\%	9,669	0.3169	20,843	0.6831	9669	-	-	5,587	9,669	5,587	4,083	1
60	57385	-59	-0.10\%	10,307	0.3048	23,508	0.6952	10307	-	-	6,601	10,307	6,601	3,706	1
61	57614	170	0.30\%	12,661	0.4278	16,935	0.5722	12661	-	-	2,137	12,661	2,137	10,524	1
62	57345	-99	-0.17\%	13,959	0.4344	18,175	0.5656	13959	-	-	2,108	13,959	2,108	11,851	1
63	57365	-79	-0.14\%	11,973	0.4036	17,692	0.5964	11973	-	-	2,860	11,973	2,860	9,113	1.
64	57270	-174	-0.30\%	15,452	0.5728	11,524	0.4272	0	11,524	1,964	-	1,964	11,524	$(9,560)$	0
65	57455	11	0.02\%	14,760	0.6408	8,274	0.3592	0	8,274	3,243	-	3,243	8,274	$(5,031)$	0
66	57545	101	0.18\%	14,776	0.6829	6,861	0.3171	0	6,861	3,957	-	3,957	6,861	$(2,904)$	0
67	57239	-205	-0.36\%	13,748	0.4833	14,698	0.5167	13748	-	-	475	13,748	475	13,273	1
68	57261	-183	-0.32\%	13,508	0.5062	13,177	0.4938	0	13,177	165	-	165	13,177	$(13,011)$	0

District	Pop	Dev	\% Dev	$\begin{array}{\|c} \hline \text { Predicted Dem } \\ \text { Votes } \\ \hline \end{array}$	Dem \%	Predicted Rep Votes	Rep\%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
69	57649	205	0.36\%	11,657	0.4584	13,773	0.5416	11657	-	-	1,058	11,657	1,058	10,599	1
70	57552	108	0.19\%	13,105	0.4927	13,493	0.5073	13105	-	-	194	13,105	194	12,911	
71	57519	75	0.13\%	17,189	0.5928	11,807	0.4072	0	11,807	2,691	-	2,691	11,807	$(9,116)$	
72	57449	5	0.01\%	13,674	0.4851	14,514	0.5149	13674	-	-	420	13,674	420	13,254	
73	57453	9	0.02\%	16,837	0.5984	11,300	0.4016	0	11,300	2,769	-	2,769	11,300	$(8,531)$	
74	57494	50	0.09\%	17,628	0.5711	13,239	0.4289	0	13,239	2,195	-	2,195	13,239	$(11,044)$	0
75	57462	18	0.03\%	13,590	0.4782	14,829	0.5218	13590	-	-	620	13,590	620	12,970	
76	57617	173	0.30\%	32,275	0.8551	5,469	0.1449	0	5,469	13,403	-	13,403	5,469	7,934	
77	57433	-11	-0.02\%	26,627	0.8077	6,339	0.1923	0	6,339	10,144	-	10,144	6,339	3,804	
78	57546	102	0.18\%	23,528	0.6916	10,492	0.3084	0	10,492	6,518	-	6,518	10,492	$(3,974)$	0
79	57461	17	0.03\%	20,211	0.582	14,516	0.418	0	14,516	2,848	-	2,848	14,516	$(11,668)$	
80	57585	141	0.25\%	20,251	0.6145	12,704	0.3855	0	12,704	3,773	-	3,773	12,704	$(8,931)$	
81	57403	-41	-0.07\%	15,887	0.5544	12,770	0.4456	0	12,770	1,559	-	1,559	12,770	$(11,211)$	
82	57430	-14	-0.02\%	12,985	0.4292	17,269	0.5708	12985	-	.	2,142	12,985	2,142	10,843	
83	57423	-21	-0.04\%	10,756	0.3169	23,185	0.6831	10756	-	-	6,215	10,756	6,215	4,541	
84	57365	-79	-0.14\%	13,414	0.429	17,854	0.571	13414	-	-	2,220	13,414	2,220	11,194	
85	57480	36	0.06\%	13,703	0.5162	12,843	0.4838	0	12,843	430	-	430	12,843	$(12,413)$	
86	57454	10	0.02\%	15,780	0.5162	14,789	0.4838	0	14,789	495	-	495	14,789	$(14,294)$	
87	57358	-86	-0.15\%	12,413	0.4626	14,420	0.5374	12413	-	-	1,004	12,413	1,004	11,409	
88	57556	112	0.20\%	12,882	0.4681	14,638	0.5319	12882	-	-	878	12,882	878	12,004	
89	57634	190	0.33\%	12,009	0.4427	15,118	0.5573	12009	-	-	1,554	12,009	1,554	10,455	
90	57608	164	0.29\%	11,556	0.596	7,833	0.404	0	7,833	1,861	-	1,861	7,833	$(5,972)$	
91	57359	-85	-0.15\%	18,044	0.6043	11,816	0.3957	0	11,816	3,114	-	3,114	11,816	$(8,701)$	
92	57431	-13	-0.02\%	14,313	0.557	11,383	0.443	0	11,383	1,465	-	1,465	11,383	$(9,919)$	
93	57548	104	0.18\%	15,014	0.489	15,690	0.511	15014	-	-	338	15,014	338	14,676	
94	57266	-178	-0.31\%	14,601	0.4809	15,761	0.5191	14601	-	-	580	14,601	580	14,022	
95	57372	-72	-0.13\%	18,730	0.6364	10,701	0.3636	0	10,701	4,014	-	4,014	10,701	$(6,687)$	
96	57484	40	0.07\%	13,841	0.536	11,982	0.464	0	11,982	930	-	930	11,982	(11,052)	
97	57279	-165	-0.29\%	10,706	0.3709	18,158	0.6291	10706	-	-	3,726	10,706	3,726	6,979	
98	57513	69	0.12\%	10,566	0.3298	21,472	0.6702	10566	-	-	5,453	10,566	5,453	5,113	
99	57496	52	0.09\%	8,517	0.2515	25,349	0.7485	8517	-	-	8,416	8,517	8,416	102	1
				1,448,901		1,394,018		726,238	402,334	160,165	132,723	886,403	535,057	351,346	58

District	Pop	Dev	\% Dev	Predicted Dem Votes	Dem \%	Predicted Rep Votes	Rep\%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
						Correlation	1							12.36\%	
						relation 8th ?	1								
						Gaddie and C	0.80622								
				Corr	Gaddie		0.318163								
							All Tot Cor	addie							

G.A.B. Canvass Reporting System

Canvass Results for 2014 GENERAL ELECTION - 11/4/2014

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \multicolumn{2}{|l|}{\begin{tabular}{ll}
Number of \& \begin{tabular}{l}
Percent of \\
Votes
\end{tabular} \\
Total Votes \\
Received \& \\
\hline
\end{tabular}} \& Candidate \& \multicolumn{2}{|r|}{Party} \\
\hline Office \& \multicolumn{2}{|l|}{ATTORNEY GENERAL} \& \& Total Votes: \& 2,350,325 \\
\hline \multirow[t]{7}{*}{Winner} \& \multirow[t]{3}{*}{1,211,388} \& \multirow[t]{3}{*}{51.54\%} \& BRAD SCHIMEL \& \& \multirow[t]{3}{*}{Republican} \\
\hline \& \& \& W265S2609 JAMIE CT \& \& \\
\hline \& \& \& WAUKESHA WI 53188 \& \& \\
\hline \& \multirow[t]{3}{*}{70,951} \& \multirow[t]{3}{*}{3.02\%} \& THOMAS A. NELSON, SR. \& \& \multirow[t]{4}{*}{Independent} \\
\hline \& \& \& 2867 LAKESIDE ST \& \& \\
\hline \& \& \& MADISON WI 537115919 \& \& \\
\hline \& 1,120 \& \multirow[t]{2}{*}{.05\%} \& \multirow[t]{2}{*}{SCATTERING} \& \& \\
\hline Office \& SECRETARY OF STATE \& \& \& Total Votes: \& 2,322,035 \\
\hline \multirow[t]{13}{*}{Winner} \& \multirow[t]{3}{*}{1,161,113} \& \multirow[t]{3}{*}{50\%} \& DOUG LA FOLLETTE \& \& \multirow[t]{3}{*}{Democrat} \\
\hline \& \& \& 1211 RUTLEDGE ST APT 3 \& \& \\
\hline \& \& \& MADISON WI 537033840 \& \& \\
\hline \& \multirow[t]{3}{*}{1,074,835} \& \multirow[t]{3}{*}{46.29\%} \& JULIAN BRADLEY \& \& \multirow[t]{3}{*}{Republican} \\
\hline \& \& \& 1901 MILLER ST APT 3 \& \& \\
\hline \& \& \& LA CROSSE WI 546015205 \& \& \\
\hline \& \multirow[t]{3}{*}{25,744} \& \multirow[t]{3}{*}{1.11\%} \& JERRY BROITZMAN \& \& \multirow[t]{3}{*}{CON} \\
\hline \& \& \& PO BOX 13341 \& \& \\
\hline \& \& \& MILWAUKEE WI 532130341 \& \& \\
\hline \& \multirow[t]{3}{*}{58,996} \& \multirow[t]{3}{*}{2.54\%} \& ANDY CRAIG \& \& \multirow[t]{4}{*}{Independent} \\
\hline \& \& \& 4148 N COLGATE CIR \& \& \\
\hline \& \& \& MILWAUKEE WI 532221736 \& \& \\
\hline \& 1,347 \& \multirow[t]{2}{*}{.06\%} \& \multirow[t]{2}{*}{SCATTERING} \& \& \\
\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{STATE TREASURER

1,026,548}} \& \& \multirow[t]{4}{*}{Total Votes:} \& 2,295,218

\hline \& \& \& DAVID L. SARTORI \& \& Democrat

\hline \& \& \& 6000 S BUCKHORN AVE \& \&

\hline \& \& \& CUDAHY WI 531103056 \& \&

\hline \multirow[t]{12}{*}{Winner} \& \multirow[t]{3}{*}{1,120,140} \& \multirow[t]{3}{*}{48.8\%} \& MATT ADAMCZYK \& \& \multirow[t]{3}{*}{Republican}

\hline \& \& \& 2450 N 117TH ST \& \&

\hline \& \& \& WAUWATOSA WI 532261120 \& \&

\hline \& \multirow[t]{3}{*}{28,053} \& \multirow[t]{3}{*}{1.22\%} \& ANDREW ZUELKE \& \& \multirow[t]{3}{*}{CON}

\hline \& \& \& 578 EUREKA ST \& \&

\hline \& \& \& RIPON WI 549711155 \& \&

\hline \& \multirow[t]{3}{*}{66,120} \& \multirow[t]{3}{*}{2.88\%} \& RON HARDY \& \& \multirow[t]{3}{*}{Independent}

\hline \& \& \& 1437 N MAIN ST \& \&

\hline \& \& \& OSHKOSH WI 549012911 \& \&

\hline \& \multirow[t]{3}{*}{53,113} \& \multirow[t]{3}{*}{2.31\%} \& JERRY SHIDELL \& \& \multirow[t]{3}{*}{Independent}

\hline \& \& \& 333 W PROSPECT ST \& \&

\hline \& \& \& RHINELANDER WI 545013867 \& \&

\hline
\end{tabular}

	Number of Percent of Votes Total Votes Received	Candidate		Party
Office	STATE TREASURER		Total Votes:	2,295,218
	1,244 .05\%	SCATTERING		
Office	CONGRESSIONAL - DISTRICT 1		Total Votes:	288,170
	105,552 36.63\%	ROB ZERBAN		Democrat
		5406 2ND AVE		
		KENOSHA WI 531406504		
Winner	182,316 63.27\%	PAUL RYAN		Republican
		700 SAINT LAWRENCE AVE		
		JANESVILLE WI 535454040		
	29.01%	KEITH R. DESCHLER (WRITE-IN)		Independent
		1239 1/2 MONROE AVE		
		RACINE WI 534052836		
	273 . 29%	SCATTERING		
Office	CONGRESSIONAL - DISTRICT 2		Total Votes:	328,847
Winner	224,920 68.4\%	MARK POCAN		Democrat
		4062 BAKKEN STENLI RD		
		BLACK EARTH WI 535159700		
	103,619 31.51\%	PETER THERON		Republican
		1021 SEQUOIA TRL		
		MADISON WI 537132522		
	308 .09\%	SCATTERING		
Office	CONGRESSIONAL - DISTRICT 3		Total Votes:	275,161
Winner	155,368 56.46\%	RON KIND		Democrat
		3061 EDGEWATER LN		
		LA CROSSE WI 546031088		
	119,540 43.44\%	TONY KURTZ		Republican
		32722 OLD COUNTRY LN		
		PR DU CHIEN WI 538218119		
	128 .05\%	KEN VAN DOREN (WRITE-IN)		Independent
		248 MAINE ST		
		MAUSTON WI 539481304		
	125 .05\%	SCATTERING		

	Number of Percent of Votes Total Votes Received	Candidate		Party
Office	CONGRESSIONAL - DISTRICT 7		Total Votes:	286,603
Winner	169,891 59.28\%	SEAN DUFFY		Republican
		4015 CRESTWOOD DR		
		WAUSAU WI 544038124		
	3,686 1.29\%	LAWRENCE DALE		Independent
		5152 COUNTY ROAD G		
		EAGLE RIVER WI 545219712		
	5 0\%	JOHN SCHIESS (WRITE-IN)		Republican
		2205 29TH ST		
		RICE LAKE WI 548689050		
	30.01%	ROB TAYLOR (WRITE-IN)		Independent
		1720 3RD AVE		
		CUMBERLAND WI 548299169		
	42.01%	SCATTERING		
Office	CONGRESSIONAL - DISTRICT 8		Total Votes:	290,048
	101,345 34.94\%	RON GRUETT		Democrat
		1000 WIETING CT		
		CHILTON WI 530141390		
Winner	188,553 65.01\%	REID J. RIBBLE		Republican
		N7611 LOWER CLIFF RD BOX 10		
		SHERWOOD WI 541699701		
	150 .05\%	SCATTERING		
Office	STATE SENATE - DISTRICT 1		Total Votes:	77,025
	29,555 38.37\%	DEAN P. DEBROUX		Democrat
		1916 CREAMERY RD		
		DE PERE WI 541159405		
Winner	47,438 61.59\%	FRANK LASEE		Republican
		1645 SWAN RD		
		DE PERE WI 541158889		
	32 .04\%	SCATTERING		
Office	STATE SENATE - DISTRICT 3		Total Votes:	30,166
Winner	29,291 97.1\%	TIM CARPENTER		Democrat
		2957 S 38TH ST		
		MILWAUKEE WI 532153519		
	875 2.9\%	SCATTERING		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	STATE SENATE - D	DISTRICT 5		Total Votes:	76,498
Winner	55,869	73.03\%	LEAH VUKMIR		Republican
			2544 N 93RD ST		
			WAUWATOSA WI 532261764		
	20,020	26.17\%	WENDY FRIEDRICH		Independent
			13565 HAMPTON RD		
			BROOKFIELD WI 530057516		
	609	. 8%	SCATTERING		
Office	STATE SENATE - D	DISTRICT 7		Total Votes:	70,506
Winner	41,950	59.5\%	CHRIS J. LARSON		Democrat
			3261 S HERMAN ST		
			MILWAUKEE WI 532072851		
	28,387	40.26\%	JASON RED ARNOLD		Republican
			626 SHERMAN AVE APT 1		
			S MILWAUKEE WI 531723950		
	169	.24\%	SCATTERING		
Office	STATE SENATE - D	DISTRICT 9		Total Votes:	72,035
	28,770	39.94\%	MARTHA LANING		Democrat
			3007 GREENVIEW DR		
			SHEBOYGAN WI 530832519		
Winner	43,186	59.95\%	DEVIN LEMAHIEU		Republican
			21 S 8TH ST		
			OOSTBURG WI 530701436		
	79	.11\%	SCATTERING		
Office	STATE SENATE - D	DISTRICT 11		Total Votes:	69,271
	25,377	36.63\%	DAN KILKENNY		Democrat
			N3616 ELM RIDGE RD		
			DELAVAN WI 531153134		
Winner	43,842	63.29\%	STEVE NASS		Republican
			N8330 JACKSON RD		
			WHITEWATER WI 531904244		
	52	.08\%	SCATTERING		

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Number of Votes Received \& Percent of Total Votes \& Candidate \& \& Party

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{STATE SENATE - DISTRICT 13} \& \& \multirow[t]{4}{*}{Total Votes:} \& 76,980

\hline \& \multirow[t]{3}{*}{28,700} \& \multirow[t]{3}{*}{37.28\%} \& MICHELLE ZAHN \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& W6378 STATE ROAD 26 \& \&

\hline \& \& \& JUNEAU WI 530399433 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{48,255} \& \multirow[t]{3}{*}{62.69\%} \& SCOTT L. FITZGERALD \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& N4692 MAPLE RD \& \&

\hline \& \& \& JUNEAU WI 530399514 \& \&

\hline \& 25 \& .03\% \& \multicolumn{2}{|l|}{SCATTERING} \&

\hline Office \& \multicolumn{2}{|l|}{STATE SENATE - DISTRICT 15} \& \& Total Votes: \& 61,187

\hline \multirow[t]{7}{*}{Winner} \& \multirow[t]{3}{*}{36,389} \& \multirow[t]{3}{*}{59.47\%} \& JANIS RINGHAND \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& 412 FOWLER CIR \& \&

\hline \& \& \& EVANSVILLE WI 535361220 \& \&

\hline \& \multirow[t]{3}{*}{24,760} \& \multirow[t]{3}{*}{40.47\%} \& BRIAN FITZGERALD \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 3906 CAPELLA DR \& \&

\hline \& \& \& JANESVILLE WI 535463519 \& \&

\hline \& 38 \& .06\% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{STATE SENATE - DISTRICT 17

28,179}} \& \& \multirow[t]{4}{*}{Total Votes:} \& 62,836

\hline \& \& \& PAT BOMHACK \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& 108 E JEFFERSON ST \& \&

\hline \& \& \& SPRING GREEN WI 535889256 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{34,601} \& \multirow[t]{3}{*}{55.07\%} \& HOWARD MARKLEIN \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& S11665 SOELDNER RD \& \&

\hline \& \& \& SPRING GREEN WI 535889757 \& \&

\hline \& 56 \& .09\% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{STATE SENATE - DISTRICT 19

31,135}} \& \& \multirow[t]{4}{*}{Total Votes:} \& 72,815

\hline \& \& \& PENNY BERNARD SCHABER \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& 815 E WASHINGTON ST \& \&

\hline \& \& \& APPLETON WI 54911 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{41,628} \& \multirow[t]{3}{*}{57.17\%} \& ROGER ROTH \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 1910 W CHARLES ST \& \&

\hline \& \& \& APPLETON WI 549144842 \& \&

\hline \& 52 \& .07\% \& SCATTERING \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Number of Votes Received \& Percent of Total Votes \& Candidate \& \& Party

\hline Office \& ASSEMBLY - DIST \& RICT 2 \& \& Total Votes: \& 19,256

\hline \multirow[t]{4}{*}{Winner} \& 18,994 \& 98.64\% \& ANDRE JACQUE \& \& Republican

\hline \& \& \& 1615 LOST DAUPHIN RD \& \&

\hline \& \& \& DE PERE WI 541151919 \& \&

\hline \& 262 \& 1.36\% \& SCATTERING \& \&

\hline Office \& \multicolumn{2}{|l|}{ASSEMBLY - DISTRICT 3} \& \& Total Votes: \& 19,542

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{19,542} \& \multirow[t]{3}{*}{100\%} \& AL OTT \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& W2168 CAMPGROUND RD \& \&

\hline \& \& \& FOREST JUNCTION WI 54123 \& \&

\hline \& 0 \& 0\% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{ASSEMBLY - DISTRICT 4

10,026}} \& \& Total Votes: \& 24,524

\hline \& \& \& CHRIS PLAUNT \& \& Democrat

\hline \& \& \& 1068 PEONIES DR \& \&

\hline \& \& \& DE PERE WI 541157685 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{14,467} \& \multirow[t]{3}{*}{58.99\%} \& DAVID STEFFEN \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 1593 REDSTONE TRL \& \&

\hline \& \& \& HOWARD WI 543133954 \& \&

\hline \& 31 \& .13\% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{ASSEMBLY - DISTRICT 5

9,084}} \& \& Total Votes: \& 24,130

\hline \& \& \& JEFF MCCABE \& \& Democrat

\hline \& \& \& 900 KRISTY ST \& \&

\hline \& \& \& KAUKAUNA WI 541303851 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{15,045} \& \multirow[t]{3}{*}{62.35\%} \& JIM STEINEKE \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& N2352 VANDENBROEK RD \& \&

\hline \& \& \& KAUKAUNA WI 541309205 \& \&

\hline \& 1 \& 0\% \& SCATTERING \& \&

\hline Office \& ASSEMBLY - DIST \& RICT 6 \& \& Total Votes: \& 18,824

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{18,696} \& \multirow[t]{3}{*}{99.32\%} \& GARY TAUCHEN \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& N3397 BROADWAY RD \& \&

\hline \& \& \& BONDUEL WI 541078865 \& \&

\hline \& 128 \& .68\% \& SCATTERING \& \&

\hline
\end{tabular}

	Number of Votes Received	Percent of Total Votes		Pandidate

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DISTRICT 21			Total Votes:	16,626
	575	3.46\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 22			Total Votes:	29,430
	8,789	29.86\%	JESSIE READ		Democrat
			N7W24433 GOOD HOPE RD		
			SUSSEX WI 53089		
Winner	20,607	70.02\%	JANEL BRANDTJEN		Republican
			N52W16632 OAK RIDGE TRL		
			MENOMONEE FLS WI 530510641		
	34	. 12%	SCATTERING		
Office	ASSEMBLY - DISTRICT 23			Total Votes:	31,501
	11,470	36.41\%	BETH L LUECK		Democrat
			5225 N BAY RIDGE AVE		
			WHITEFISH BAY WI 53217		
Winner	20,006	63.51\%	JIM OTT		Republican
			11743 N LAKE SHORE DR		
			MEQUON WI 530923538		
	25	. 08%	SCATTERING		
Office	ASSEMBLY - DISTRICT 24			Total Votes:	22,479
Winner	21,818	97.06\%	DAN KNODL		Republican
			N101W14475 RIDGEFIELD CT		
			GERMANTOWN WI 530225348		
	661	2.94\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 25			Total Votes:	17,042
Winner	17,042	100\%	PAUL TITTL		Republican
			2229 RHEAUME RD		
			MANITOWOC WI 542202548		
	0	0\%	SCATTERING		

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Number of Votes Received \& Percent of Total Votes \& Candidate \& \& Party

\hline Office \& ASSEMBLY - DIST \& TRICT 35 \& \& Total Votes: \& 18,982

\hline \multirow[t]{4}{*}{Winner} \& 18,713 \& 98.58\% \& MARY J. CZAJA \& \& Republican

\hline \& \& \& W4587 HWY S \& \&

\hline \& \& \& IRMA WI 54442 \& \&

\hline \& 269 \& 1.42\% \& SCATTERING \& \&

\hline Office \& \multicolumn{2}{|l|}{ASSEMBLY - DISTRICT 36} \& \& Total Votes: \& 18,530

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{18,504} \& \multirow[t]{3}{*}{99.86\%} \& JEFFREY L. MURSAU \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 4 OAK ST \& \&

\hline \& \& \& CRIVITZ WI 541141635 \& \&

\hline \& 26 \& .14\% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{ASSEMBLY - DISTRICT 37

10,058}} \& \& Total Votes: \& 24,473

\hline \& \& \& MARY I. ARNOLD \& \& Democrat

\hline \& \& \& 954 DIX ST \& \&

\hline \& \& \& COLUMBUS WI 539251210 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{14,400} \& \multirow[t]{3}{*}{58.84\%} \& JOHN JAGLER \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 601 CLYMAN ST \& \&

\hline \& \& \& WATERTOWN WI 530944667 \& \&

\hline \& 15 \& .06\% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{ASSEMBLY - DISTRICT 38

10,281}} \& \& Total Votes: \& 27,786

\hline \& \& \& TOM CHOJNACKI \& \& Democrat

\hline \& \& \& 703 S MAIN ST \& \&

\hline \& \& \& LAKE MILLS WI 535511809 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{17,481} \& \multirow[t]{3}{*}{62.91\%} \& JOEL KLEEFISCH \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& W357N6189 SPINNAKER DR \& \&

\hline \& \& \& OCONOMOWOC WI 530661848 \& \&

\hline \& 24 \& .09\% \& SCATTERING \& \&

\hline Office \& ASSEMBLY - DIST \& RICT 39 \& \& Total Votes: \& 22,772

\hline \multirow[t]{6}{*}{Winner} \& \multirow[t]{3}{*}{16,793} \& \multirow[t]{3}{*}{73.74\%} \& MARK L. BORN \& \& \multirow[t]{3}{*}{Republican}

\hline \& \& \& 121 FRANKLIN ST \& \&

\hline \& \& \& BEAVER DAM WI 539162211 \& \&

\hline \& \multirow[t]{3}{*}{5,977} \& \multirow[t]{3}{*}{26.25\%} \& RICHARD BENNETT \& \& \multirow[t]{3}{*}{Independent}

\hline \& \& \& N6070 BENNETTS RD \& \&

\hline \& \& \& HORICON WI 530329774 \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Number of Votes Received \& Percent of Total Votes \& Candidate \& \& Party

\hline \multirow[t]{2}{*}{Office} \& \multicolumn{3}{|l|}{ASSEMBLY - DISTRICT 39} \& Total Votes: \& 22,772

\hline \& 2 \& . 01% \& SCATTERING \& \&

\hline Office \& \multicolumn{3}{|l|}{ASSEMBLY - DISTRICT 40} \& Total Votes: \& 18,617

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{18,424} \& \multirow[t]{3}{*}{-98.96\%} \& KEVIN PETERSEN \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& N1433 DRIVAS RD \& \&

\hline \& \& \& WAUPACA WI 549818464 \& \&

\hline \& 193 \& 1.04\% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{3}{|l|}{ASSEMBLY - DISTRICT 41} \& Total Votes: \& 21,563

\hline \& 8,409 \& 39\% \& JOE KALLAS \& \& Democrat

\hline \& \& \& N4682 COUNTY ROAD D \& \&

\hline \& \& \& PRINCETON WI 549688606 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{13,152} \& \multirow[t]{3}{*}{60.99\%} \& JOAN BALLWEG \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 170 W SUMMIT ST \& \&

\hline \& \& \& MARKESAN WI 539467192 \& \&

\hline \& 2 \& . 01% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{ASSEMBLY - DISTRICT 42

10,518}} \& \& \multirow[t]{4}{*}{Total Votes:} \& 24,770

\hline \& \& \& GEORGE FERRITER \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& N4209 MOHR RD \& \&

\hline \& \& \& FALL RIVER WI 539328908 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{14,238} \& \multirow[t]{3}{*}{57.48\%} \& KEITH RIPP \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 7113 COUNTY ROAD V \& \&

\hline \& \& \& LODI WI 535559509 \& \&

\hline \& 14 \& .06\% \& SCATTERING \& \&

\hline Office \& ASSEMBLY - DIST \& TRICT 43 \& \& Total Votes: \& 23,640

\hline \multirow[t]{7}{*}{Winner} \& \multirow[t]{3}{*}{14,116} \& \multirow[t]{3}{*}{59.71\%} \& ANDY JORGENSEN \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& 10 DIVISION ST \& \&

\hline \& \& \& MILTON WI 535631018 \& \&

\hline \& \multirow[t]{3}{*}{9,493} \& \multirow[t]{3}{*}{40.16\%} \& LEON L. HEBERT \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& W5795 HOGE RD \& \&

\hline \& \& \& FORT ATKINSON WI 535388928 \& \&

\hline \& 31 \& . 13% \& SCATTERING \& \&

\hline
\end{tabular}

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DIST	RICT 44		Total Votes:	19,652
Winner	13,354	67.95\%	DEBRA KOLSTE		Democrat
			4105 PARK VIEW DR		
			JANESVILLE WI 535461777		
	6,298	32.05\%	JACOB DORSEY		Republican
			3246 W ROCKPORT PARK DR		
			JANESVILLE WI 535487604		
	0	0\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 45			Total Votes:	12,983
Winner	12,856	99.02\%	MARK SPREITZER		Democrat
			1718 HENDERSON AVE		
			BELOIT WI 535113158		
	127	.98\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 46			Total Votes:	20,566
Winner	20,014	97.32\%	GARY HEBL		Democrat
			515 SCHEUERELL LN		
			SUN PRAIRIE WI 535902347		
	552	2.68\%	SCATTERING		
Office	ASSEMBLY - DIST	RICT 47		Total Votes:	25,014
Winner	20,332	81.28\%	ROBB KAHL		Democrat
			5700 WINNEQUAH RD		
			MONONA WI 537163061		
	4,596	18.37\%	PHILLIP N. ANDERSON		Independent
			2318 WESTCHESTER RD		
			FITCHBURG WI 537114372		
	86	. 34%	SCATTERING		
Office	ASSEMBLY - DIST	RICT 48		Total Votes:	23,785
Winner	23,423	98.48\%	MELISSA AGARD SARGENT		Democrat
			1638 MAYFIELD LN		
			MADISON WI 537042144		
	362	1.52\%	SCATTERING		

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Number of Votes Received \& Percent of Total Votes \& Candidate \& \& Party

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{3}{|l|}{ASSEMBLY - DISTRICT 49} \& \multirow[t]{4}{*}{Total Votes:} \& 19,941

\hline \& \multirow[t]{3}{*}{7,689} \& \multirow[t]{3}{*}{38.56\%} \& CHAD HENNEMAN \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& 16896 LARSON RD \& \&

\hline \& \& \& BOSCOBEL WI 538059557 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{12,240} \& \multirow[t]{3}{*}{61.38\%} \& TRAVIS TRANEL \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 2231 LOUISBURG RD \& \&

\hline \& \& \& CUBA CITY WI 538079380 \& \&

\hline \& 12 \& .06\% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{ASSEMBLY - DISTRICT 50} \& \& \multirow[t]{4}{*}{Total Votes:} \& 20,383

\hline \& \multirow[t]{3}{*}{8,600} \& \multirow[t]{3}{*}{42.19\%} \& CHRISTOPHER MILLER \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& 311B SCHOOL RD \& \&

\hline \& \& \& LA VALLE WI 539418553 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{11,775} \& \multirow[t]{3}{*}{57.77\%} \& ED BROOKS \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& S4311 GROTE HILL RD \& \&

\hline \& \& \& REEDSBURG WI 539599811 \& \&

\hline \& 8 \& .04\% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{ASSEMBLY - DISTRICT 51

10,577}} \& \& \multirow[t]{4}{*}{Total Votes:} \& 22,413

\hline \& \& \& DICK CATES \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& 5992 COUNTY ROAD T \& \&

\hline \& \& \& SPRING GREEN WI 535889008 \& \&

\hline \multirow[t]{7}{*}{Winner} \& \multirow[t]{3}{*}{10,642} \& \multirow[t]{3}{*}{47.48\%} \& TODD NOVAK \& \& \multirow[t]{3}{*}{Republican}

\hline \& \& \& 202 W DIVISION ST \& \&

\hline \& \& \& DODGEVILLE WI 535331426 \& \&

\hline \& \multirow[t]{3}{*}{1,177} \& \multirow[t]{3}{*}{5.25\%} \& ADAM LAUFENBERG \& \& \multirow[t]{4}{*}{Independent}

\hline \& \& \& 422 STEIL RD \& \&

\hline \& \& \& HIGHLAND WI 535439329 \& \&

\hline \& 17 \& .08\% \& SCATTERING \& \&

\hline Office \& \multicolumn{3}{|l|}{ASSEMBLY - DISTRICT 52} \& \multirow[t]{5}{*}{Total Votes:} \& 17,523

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{17,523} \& \multirow[t]{3}{*}{100\%} \& JEREMY THIESFELDT \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 604 SUNSET LN \& \&

\hline \& \& \& FOND DU LAC WI 549354742 \& \&

\hline \& 0 \& 0\% \& SCATTERING \& \&

\hline
\end{tabular}

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DIST	TRICT 53		Total Votes:	17,878
Winner	17,618	98.55\%	MICHAEL SCHRAA		Republican
			220 WYLDEBERRY LN		
			OSHKOSH WI 549047676		
	260	1.45\%	SCATTERING		
Office	ASSEMBLY - DIST	TRICT 54		Total Votes:	21,858
Winner	11,228	51.37\%	GORDON HINTZ		Democrat
			1209 WAUGOO AVE		
			OSHKOSH WI 549015466		
	10,571	48.36\%	MARK ELLIOTT		Republican
			1550 MARICOPA DR		
			OSHKOSH WI 549048230		
	59	.27\%	SCATTERING		
Office	ASSEMBLY - DIST	RICT 55		Total Votes:	24,295
	10,240	42.15\%	MARK WESTPHAL		Democrat
			945 HUNT AVE		
			NEENAH WI 549563725		
Winner	14,027	57.74\%	MIKE ROHRKASTE		Republican
			1417 MAHLER BLVD		
			NEENAH WI 549564974		
	28	.12\%	SCATTERING		
Office	ASSEMBLY - DIST	RICT 56		Total Votes:	20,935
Winner	20,844	99.57\%	DAVE MURPHY		Republican
			1777 IVY LN		
			GREENVILLE WI 549428714		
	91	. 43%	SCATTERING		
Office	ASSEMBLY - DIST	TRICT 57		Total Votes:	20,614
Winner	11,162	54.15\%	AMANDA STUCK		Democrat
			1404 N HARRIMAN ST		
			APPLETON WI 549113534		
	9,432	45.76\%	CHRIS KLEIN		Republican
			730 KEYES ST		
			MENASHA WI 549523412		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DISTRICT 67			Total Votes:	22,044
	8,691	39.43\%	GARY STENE		Democrat
			715 JOHNSON OLSON ST APT 1		
			COLFAX WI 547309529		
Winner	13,353	60.57\%	TOM LARSON		Republican
			E9359 COUNTY RD N		
			COLFAX WI 547305124		
	0	0\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 68			Total Votes:	21,371
	10,076	47.15\%	JEFF PECK		Democrat
			21956 30TH AVE		
			CADOTT WI 547275928		
Winner	11,289	52.82\%	KATHY BERNIER		Republican
			10923 40TH AVE		
			CHIPPEWA FLS WI 547296637		
	6	.03\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 696,380			Total Votes:	20,613
			NORBERT SALAMONSKI		Democrat
			307 LEY AVE		
			MARSHFIELD WI 544493379		
Winner	14,233	69.05\%	BOB KULP		Republican
			C4098 PAULINE LN		
			STRATFORD WI 544849464		
	0	0\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 7010,508			Total Votes:	22,293
			AMY SUE VRUWINK		Democrat
			9425 FLOWER LN		
			MILLADORE WI 544549744		
Winner	11,766	52.78\%	NANCY LYNN VANDER MEER		Republican
			18940 EDEN AVE		
			TOMAH WI 546608071		
	19	.09\%	SCATTERING		

	Number of Votes Received	Percent of Total Votes	Candidate	Total Votes:	Party
Office	ASSEMBLY - DISTRICT 71				17,521
Winner	17,134	97.79\%	KATRINA SHANKLAND		Democrat
			833 CLARK ST APT G		
			STEVENS POINT WI 544812926		
	387	2.21\%	SCATTERING		
Office	ASSEMBLY - DISTR	RICT 72		Total Votes:	23,437
	10,317	44.02\%	DANA W. DUNCAN		Democrat
			811 BRENTWOOD DR		
			PORT EDWARDS WI 544691172		
Winner	13,113	55.95\%	SCOTT S. KRUG		Republican
			1414 AKRON AVE		
			NEKOOSA WI 544579079		
	7	.03\%	SCATTERING		
Office	ASSEMBLY - DISTR	RICT 73		Total Votes:	15,634
Winner	15,602	99.8\%	NICK MILROY		Democrat
			4543 S SAM ANDERSON RD		
			SOUTH RANGE WI 548748523		
	32	. 2%	SCATTERING		
Office	ASSEMBLY - DISTR	RICT 74		Total Votes:	25,532
Winner	14,663	57.43\%	BETH MEYERS		Democrat
			36505 AIKEN RD		
			BAYFIELD WI 548144755		
	10,862	42.54\%	JAMEY FRANCIS		Republican
			305 5TH AVE S		
			HURLEY WI 545341331		
	7	.03\%	SCATTERING		
Office	ASSEMBLY - DISTR	RICT 75		Total Votes:	21,382
	9,643	45.1\%	STEPHEN SMITH		Democrat
			514 PINE RIDGE DR		
			SHELL LAKE WI 548718727		
Winner	11,730	54.86\%	ROMAINE ROBERT QUINN		Republican
			604 W STOUT ST		
			RICE LAKE WI 548681565		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DISTRICT 75			Total Votes:	21,382
	9	. 04%	SCATTERING		
Office	ASSEMBLY - DIST	RICT 76		Total Votes:	27,613
Winner	27,102	98.15\%	CHRIS TAYLOR		Democrat
			2910 OAKRIDGE AVE		
			MADISON WI 537045845		
	511	1.85\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 77			Total Votes:	25,610
Winner	25,268 98.66\%		TERESE BERCEAU		Democrat
			4326 SOMERSET LN		
			MADISON WI 537112816		
	342	1.34\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 78			Total Votes:	23,486
Winner	23,014	97.99\%	LISA SUBECK		Democrat
			818 S GAMMON RD		
			UNIT 4		
	472	2.01\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 79			Total Votes:	30,275
Winner	18,843	62.24\%	DIANNE HESSELBEIN		Democrat
			1420 N HIGH POINT RD		
			MIDDLETON WI 535623676		
	11,406	37.67\%	BRENT RENTERIA		Republican
			7752 OX TRAIL WAY		
			VERONA WI 535939640		
	26	.09\%	SCATTERING		
Office	ASSEMBLY - DIST	RICT 80		Total Votes:	22,140
Winner	21,633	97.71\%	SONDY POPE		Democrat
			9262 MOEN RD		
			CROSS PLAINS WI 535288829		

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Number of Votes Received \& Percent of Total Votes \& Candidate \& \& Party

\hline \multirow[t]{2}{*}{Office} \& \multicolumn{3}{|l|}{ASSEMBLY - DISTRICT 80} \& Total Votes: \& 22,140

\hline \& 507 \& 2.29\% \& SCATTERING \& \&

\hline Office \& ASSEMBLY - DIST \& TRICT 81 \& \& Total Votes: \& 23,832

\hline \multirow[t]{7}{*}{Winner} \& \multirow[t]{3}{*}{12,934} \& \multirow[t]{3}{*}{54.27\%} \& DAVE CONSIDINE \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& N6194 BREEZY HILL RD \& \&

\hline \& \& \& BARABOO WI 539139500 \& \&

\hline \& \multirow[t]{3}{*}{10,892} \& \multirow[t]{3}{*}{45.7\%} \& ASHTON KIRSCH \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 8986 WATERFORD RD \& \&

\hline \& \& \& SAUK CITY WI 535839569 \& \&

\hline \& 6 \& .03\% \& SCATTERING \& \&

\hline Office \& \multicolumn{3}{|l|}{ASSEMBLY - DISTRICT 82} \& Total Votes: \& 19,750

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{19,210} \& \multirow[t]{3}{*}{97.27\%} \& KEN SKOWRONSKI \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 8642 S 116TH ST \& \&

\hline \& \& \& FRANKLIN WI 531329501 \& \&

\hline \& 540 \& 2.73\% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{ASSEMBLY - DISTRICT 83

7,877}} \& \& \multirow[t]{4}{*}{Total Votes:} \& 29,295

\hline \& \& \& JIM BROWNLOW \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& W173S7955 SCENIC DR \& \&

\hline \& \& \& MUSKEGO WI 531508824 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{21,382} \& \multirow[t]{3}{*}{72.99\%} \& DAVE CRAIG \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& W225 S9505 BIG BEND DR \& \&

\hline \& \& \& BIG BEND, WI 53103 \& \&

\hline \& 36 \& .12\% \& SCATTERING \& \&

\hline Office \& ASSEMBLY - DIST \& TRICT 84 \& \& Total Votes: \& 20,252

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{19,700} \& \multirow[t]{3}{*}{97.27\%} \& MICHAEL KUGLITSCH \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 21865 W TOLBERT DR \& \&

\hline \& \& \& NEW BERLIN WI 531465225 \& \&

\hline \& 552 \& 2.73\% \& SCATTERING \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Number of Votes Received \& Percent of Total Votes \& Candidate \& \& Party

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{ASSEMBLY - DISTRICT 85} \& \& \multirow[t]{4}{*}{Total Votes:} \& 22,249

\hline \& \multirow[t]{3}{*}{11,082} \& \multirow[t]{3}{*}{49.81\%} \& MANDY WRIGHT \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& 2016 EWING ST \& \&

\hline \& \& \& WAUSAU WI 544036908 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{11,167} \& \multirow[t]{3}{*}{50.19\%} \& DAVE HEATON \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 8007 E JEFFERSON ST \& \&

\hline \& \& \& WAUSAU WI 544039191 \& \&

\hline \& 0 \& 0\% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{ASSEMBLY - DISTRICT 86

9,528}} \& \& \multirow[t]{4}{*}{Total Votes:} \& 25,403

\hline \& \& \& NANCY STENCIL \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& 119 SUNRISE DR \& \&

\hline \& \& \& WAUSAU WI 544017767 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{15,875} \& \multirow[t]{3}{*}{62.49\%} \& JOHN SPIROS \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 1406 E FILLMORE ST \& \&

\hline \& \& \& MARSHFIELD WI 544493050 \& \&

\hline \& 0 \& 0\% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{2}{|l|}{\multirow[t]{4}{*}{ASSEMBLY - DISTRICT 87

7,098}} \& \& \multirow[t]{11}{*}{Total Votes:} \& 21,277

\hline \& \& \& RICHARD PULCHER \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& W13276 SOUTH ST \& \&

\hline \& \& \& LUBLIN WI 544479702 \& \&

\hline \multirow[t]{7}{*}{Winner} \& \multirow[t]{3}{*}{14,121} \& \multirow[t]{3}{*}{66.37\%} \& JAMES W. EDMING \& \& \multirow[t]{3}{*}{Republican}

\hline \& \& \& N4998 EDMING RD \& \&

\hline \& \& \& GLEN FLORA WI 545269746 \& \&

\hline \& \multirow[t]{3}{*}{52} \& \multirow[t]{3}{*}{. 24%} \& MICHAEL BUB (WRITE-IN) \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 427 BILLINGS AVE \& \&

\hline \& \& \& MEDFORD WI 544511313 \& \&

\hline \& 6 \& .03\% \& SCATTERING \& \&

\hline \multirow[t]{4}{*}{Office} \& \multicolumn{3}{|l|}{ASSEMBLY - DISTRICT 88} \& \multirow[t]{4}{*}{Total Votes:} \& 22,980

\hline \& \multirow[t]{3}{*}{10,046} \& \multirow[t]{3}{*}{43.72\%} \& DAN ROBINSON \& \& \multirow[t]{3}{*}{Democrat}

\hline \& \& \& 446 COOK ST \& \&

\hline \& \& \& DE PERE WI 541152412 \& \&

\hline \multirow[t]{4}{*}{Winner} \& \multirow[t]{3}{*}{12,915} \& \multirow[t]{3}{*}{56.2\%} \& JOHN MACCO \& \& \multirow[t]{4}{*}{Republican}

\hline \& \& \& 1874 OLD VALLEY RD \& \&

\hline \& \& \& DE PERE WI 541153370 \& \&

\hline \& 19 \& . 08% \& SCATTERING \& \&

\hline
\end{tabular}

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DIST	TRICT 89		Total Votes:	18,599
Winner	18,483	99.38\%	JOHN NYGREN		Republican
			N2118 KELLER RD		
			MARINETTE WI 541439779		
	116	.62\%	SCATTERING		
Office	ASSEMBLY - DIST	TRICT 90		Total Votes:	14,477
Winner	7,953	54.94\%	ERIC GENRICH		Democrat
			1089 DIVISION ST		
			GREEN BAY WI 543033048		
	5,342	36.9\%	ERIC WIMBERGER		Republican
			1146 PINE ST		
			GREEN BAY WI 543014724		
	1,164	8.04\%	SHAE SORTWELL		Independent
			1846 FARLIN AVE		
			GREEN BAY WI 543022916		
	18	.12\%	SCATTERING		
Office	ASSEMBLY - DIST	TRICT 91		Total Votes:	15,145
Winner	14,686	96.97\%	DANA WACHS		Democrat
			437 LINCOLN AVE		
			EAU CLAIRE WI 547014094		
	459	3.03\%	SCATTERING		
Office	ASSEMBLY - DIST	RICT 92		Total Votes:	20,966
Winner	11,862	56.58\%	CHRIS DANOU		Democrat
			$23951 \text { 8TH ST }$		
			TREMPEALEAU WI 546619272		
	9,096	43.38\%	ISAAC WEIX		Republican
			5683 LOVELY RD		
			MONDOVI WI 54755		
	8	. 04%	SCATTERING		
Office	ASSEMBLY - DIST	TRICT 93		Total Votes:	24,130
	10,749	44.55\%	JEFF SMITH		Democrat
			S7747 NORRISH RD		
			EAU CLAIRE WI 547018679		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DIST	TRICT 98		Total Votes:	21,652
Winner	21,357	98.64\%	ADAM NEYLON		Republican
			294 MEADOWCREEK DR APT 4		
			PEWAUKEE WI 530723886		
	295	1.36\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 99			Total Votes:	29,855
	6,593	22.08\%	ALICE JENSEN		Democrat
			S29W31497 SUNSET DR		
			WAUKESHA WI 531899011		
Winner	23,232	77.82\%	CHRIS KAPENGA		Republican
			N9W31035 CONCORD CT		
			DELAFIELD WI 530182727		
	30	. 1%	SCATTERING		

	District	Pop	Dev	\% Dev	Net D	$\begin{array}{l\|} \hline \text { Predicted } \\ \hline \end{array}$ Dem	D Pct	Predicted Rep	R PCT	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
	1	57487	43	0.07\%		16,259	49.8\%	16414	50.2\%	16259	-		78	16,259	78	16,181	1
	2	57590	146	0.25\%		11,805	54.1\%	10025	45.9\%	0	10,025	890	-	890	10,025	$(9,136)$	0
	3	57686	242	0.42\%		11,243	38.7\%	17807	61.3\%	11243	-	-	3,282	11,243	3,282	7,961	1
	4	57406	-38	-0.07\%		10,881	46.0\%	12790	54.0\%	10881	-	-	955	10,881	955	9,926	1
	5	57633	189	0.33\%		13,497	49.4\%	13845	50.6\%	13497	-		174	13,497	174	13,323	1
	6	57480	36	0.06\%		11,045	38.5\%	17627	61.5\%	11045	-	-	3,291	11,045	3,291	7,753	1
	7	57208	-236	-0.41\%		22,822	69.1\%	10214	30.9\%	0	10,214	6,304	-	6,304	10,214	$(3,910)$	0
	8	57196	-248	-0.43\%		7,192	80.9\%	1695	19.1\%	0	1,695	2,749	-	2,749	1,695	1,054	0
	9	57420	-24	-0.04\%		10,497	65.1\%	5635	34.9\%	0	5,635	2,431	-	2,431	5,635	$(3,205)$	0
	10	57195	-249	-0.43\%		25,348	88.6\%	3270	11.4\%	0	3,270	11,039	-	11,039	3,270	7,769	0
	11	57455	11	0.02\%		22,374	82.2\%	4855	17.8\%	0	4,855	8,759	-	8,759	4,855	3,904	0
	12	57420	-24	-0.04\%		20,041	83.2\%	4039	16.8\%	0	4,039	8,001	-	8,001	4,039	3,962	0
	13	57248	-196	-0.34\%		15,950	49.1\%	16510	50.9\%	15950	-	-	280	15,950	280	15,670	1
	14	57333	-111	-0.19\%		13,575	49.6\%	13799	50.4\%	13575	-	-	112	13,575	112	13,464	1
	15	57514	70	0.12\%		13,412	47.4\%	14901	52.6\%	13412	-	-	745	13,412	745	12,667	
	16	57282	-162	-0.28\%		21,234	88.1\%	2856	11.9\%	0	2,856	9,189	-	9,189	2,856	6,333	0
	17	57437	-7	-0.01\%		21,769	85.9\%	3569	14.1\%	0	3,569	9,100	-	9,100	3,569	5,531	0
	18	57241	-203	-0.35\%		23,817	82.8\%	4954	17.2\%	0	4,954	9,431	-	9,431	4,954	4,477	0
	19	57313	-131	-0.23\%		15,160	58.2\%	10904	41.8\%	0	10,904	2,128	.	2,128	10,904	$(8,776)$	0
	20	57410	-34	-0.06\%		14,118	52.3\%	12901	47.7\%	0	12,901	609	-	609	12,901	$(12,292)$	0
	21	57434	-10	-0.02\%		12,257	42.0\%	16911	58.0\%	12257	-	-	2,327	12,257	2,327	9,930	1
	22	57526	82	0.14\%		18,335	55.3\%	14831	44.7\%	0	14,831	1,752	-	1,752	14,831	$(13,079)$	0
	23	57476	32	0.06\%		10,922	30.0\%	25459	70.0\%	10922	-	-	7,268	10,922	7,268	3,654	1
	24	57369	-75	-0.13\%		8,667	25.1\%	25868	74.9\%	8667	-	-	8,601	8,667	8,601	3,66	1
	25	57480	36	0.06\%		12,179	40.0\%	18248	60.0\%	12179	-	-	3,034	12,179	3,034	9,145	1
	26	57552	108	0.19\%		13,251	47.7\%	14527	52.3\%	13251	-	-	638	13,251	638	12,613	1
	27	57191	-253	-0.44\%		14,935	56.0\%	11755	44.0\%	0	11,755	1,590	-	1,590	11,755	$(10,165)$	0
	28	57515	71	0.12\%		12,617	44.7\%	15591	55.3\%	12617	-	-	1,487	12,617	1,487	11,131	1
	29	57300	-144	-0.25\%		14,180	52.3\%	12954	47.7\%	0	12,954	613	-	613	12,954	$(12,341)$	0
	30	57407	-37	-0.06\%		11,308	42.7\%	15165	57.3\%	11308	-	-	1,929	11,308	1,929	9,379	1
	31	57429	-15	-0.03\%		11,304	41.2\%	16117	58.8\%	11304	-	-	2,406	11,304	2,406	8,898	1
	32	57349	-95	-0.17\%		12,685	47.9\%	13787	52.1\%	12685	-	-	551	12,685	551	12,135	1
	33	57391	-53	-0.09\%		14,609	59.0\%	10151	41.0\%	0	10,151	2,229	-	2,229	10,151	$(7,922)$	0
	34 35	57651 57528	207	0.36\%		13,139	45.6\%	15690	54.4\%	13139	-	-	1,275	13,139	1,275	11,864	1
	35	57528	84	0.15\%		11,288	40.6\%	16503	59.4\%	11288	-	-	2,607	11,288	2,607	8,681	1
	36	57377	-67	-0.12\%		11,516	43.4\%	14997	56.6\%	11516	-	-	1,741	11,516	1,741	9,775	

District	Pop	Dev	\% Dev	Net D	$\begin{gathered} \hline \text { Predicted } \\ \text { Dem } \\ \hline \end{gathered}$	D Pct	Predicted Rep	R PCT	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
37	57671	227	0.40\%		9,222	29.3\%	22240	70.7\%	9222	-	-	6,509	9,222	6,509	2,713	1
38	57572	128	0.22\%		9,710	28.0\%	25021	72.0\%	9710	-	-	7,655	9,710	7,655	2,055	1
39	57457	13	0.02\%		10,747	38.0\%	17526	62.0\%	10747	-	-	3,390	10,747	3,390	7,357	1
40	57495	51	0.09\%		15,061	51.9\%	13947	48.1\%	0	13,947	557	-	557	13,947	$(13,391)$	0
41	57671	227	0.40\%		16,784	56.1\%	13120	43.9\%	0	13,120	1,832	-	1,832	13,120	$(11,288)$	0
42	57559	115	0.20\%		13,254	51.9\%	12282	48.1\%	0	12,282	486	-	486	12,282	$(11,796)$	0
43	57444	0	0.00\%		12,658	48.2\%	13606	51.8\%	12658	-	-	474	12,658	474	12,184	1
44	57434	-10	-0.02\%		16,477	60.2\%	10886	39.8\%	0	10,886	2,795	-	2,795	10,886	$(8,091)$	0
45	57242	-202	-0.35\%		16,352	54.6\%	13589	45.4\%	0	13,589	1,382	-	1,382	13,589	$(12,207)$	0
46	57463	19	0.03\%		20,583	64.3\%	11418	35.7\%	0	11,418	4,582	-	4,582	11,418	$(6,835)$	0
47	57494	50	0.09\%		20,208	67.1\%	9888	32.9\%	0	9,888	5,160	-	5,160	9,888	$(4,728)$	0
48	57568	124	0.22\%		24,457	73.5\%	8840	26.5\%	0	8,840	7,808	-	7,808	8,840	$(1,032)$	0
49	57389	-55	-0.10\%		13,625	50.3\%	13477	49.7\%	0	13,477	74	-	74	13,477	$(13,403)$	0
50	57465	21	0.04\%		12,289	47.3\%	13709	52.7\%	12289	-	-	710	12,289	710	11,579	1
51	57247	-197	-0.34\%		14,760	52.6\%	13323	47.4\%	0	13,323	718	-	718	13,323	$(12,605)$	0
52	57384	-60	-0.10\%		12,376	38.9\%	19416	61.1\%	12376	-	-	3,520	12,376	3,520	8,857	1
53	57444	0	0.00\%		12,388	48.1\%	13362	51.9\%	12388	-	-	487	12,388	487	11,902	1
54	57443	-1	0.00\%		14,032	53.4\%	12240	46.6\%	0	12,240	896	-	896	12,240	$(11,344)$	0
55	57446	2	0.00\%		13,565	47.0\%	15300	53.0\%	13565	-	-	868	13,565	868	12,697	1
56	57342	-102	-0.18\%		12,553	46.4\%	14518	53.6\%	12553	-	-	983	12,553	983	11,570	1
57	57404	-40	-0.07\%		14,897	53.4\%	13016	46.6\%	0	13,016	941	-	941	13,016	$(12,075)$	0
58	57436	-8	-0.01\%		9,325	30.6\%	21180	69.4\%	9325	-	-	5,927	9,325	5,927	3,398	1
59	57554	110	0.19\%		11,565	34.5\%	21984	65.5\%	11565	-	-	5,209	11,565	5,209	6,356	1
60	57547	103	0.18\%		8,756	28.1\%	22415	71.9\%	8756	-	-	6,830	8,756	6,830	1,926	1
61	57605	161	0.28\%		12,933	43.8\%	16576	56.2\%	12933	-	-	1,822	12,933	1,822	11,112	1
62	57632	188	0.33\%		15,181	60.3\%	9999	39.7\%	0	9,999	2,591	-	2,591	9,999	$(7,408)$	0
63	57299	-145	-0.25\%		15,640	61.2\%	9902	38.8\%	0	9,902	2,869	-	2,869	9,902	$(7,033)$	0
64	57266	-178	-0.31\%		15,089	52.8\%	13470	47.2\%	0	13,470	810	-	810	13,470	$(12,660)$	0
65	57601	157	0.27\%		12,721	39.1\%	19816	60.9\%	12721	-	-	3,547	12,721	3,547	9,173	1
66	57459	15	0.03\%		16,286	71.9\%	6362	28.1\%	0	6,362	4,962	-	4,962	6,362	$(1,401)$	0
67	57378	-66	-0.11\%		15,321	51.9\%	14226	48.1\%	0	14,226	547	-	547	14,226	$(13,678)$	0
68	57254	-190	-0.33\%		11,958	49.7\%	12124	50.3\%	11958	-	-	83	11,958	83	11,875	1
69.	57424	-20	-0.03\%		17,902	59.8\%	12022	40.2\%	0	12,022	2,940	-	2,940	12,022	$(9,083)$	0
70	57415	-29	-0.05\%		18,661	60.3\%	12266	39.7\%	0	12,266	3,197	-	3,197	12,266	$(9,069)$	0
71	57228	-216	-0.38\%		15,081	52.1\%	13884	47.9\%	0	13,884	599	-	599	13,884	$(13,285)$	0
72	57654	210	0.37\%		11,180	40.3\%	16542	59.7\%	11180	-	-	2,681	11,180	2,681	8,500	1

District	Pop	Dev	\% Dev	Net D	Predicted Dem	D Pct	Predicted Rep	R PCT	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
73	57491	47	0.08\%		17,137	61.4\%	10785	38.6\%	0	10,785	3,176	-	3,176	10,785	$(7,609)$	0
74	57320	-124	-0.22\%		17,712	55.5\%	14219	44.5\%	0	14,219	1,747	-	1,747	14,219	$(12,472)$	0
75	57255	-189	-0.33\%		13,902	44.0\%	17700	56.0\%	13902	-	-	1,899	13,902	1,899	12,002	1
76	57586	142	0.25\%		30,929	82.0\%	6811.	18.0\%	0	6,811	12,059	-	12,059	6,811	5,248	0
77	57398	-46	-0.08\%		26,708	81.5\%	6059	18.5\%	0	6,059	10,325	-	10,325	6,059	4,266	0
78	57579	135	0.24\%		24,413	71.3\%	9847	28.7\%	0	9,847	7,283	-	7,283	9,847	$(2,564)$	0
79	57341	-103	-0.18\%		20,439	60.6\%	13294	39.4\%	0	13,294	3,572	-	3,572	13,294	$(9,722)$	0
80	57385	-59	-0.10\%		20,179	63.4\%	11644	36.6\%	0	11,644	4,267	-	4,267	11,644	$(7,377)$	0
81	57266	-178	-0.31\%		13,703	51.8\%	12741	48.2\%	0	12,741	481	-	481	12,741	$(12,260)$	0
82	57641	197	0.34\%		9,871	31.8\%	21201	68.2\%	9871	-	-	5,665	9,871	5,665	4,206	1
83	57612	168	0.29\%		9,241	28.6\%	23075	71.4\%	9241	-	-	6,917	9,241	6,917	2,324	1
84	57375	-69	-0.12\%		11,990	34.6\%	22700	65.4\%	11990	-	-	5,355	11,990	5,355	6,634	1
85	57529	85	0.15\%		10,028	43.2\%	13190	56.8\%	10028	-	-	1,581	10,028	1,581	8,448	1
86	57477	33	0.06\%		13,853	50.7\%	13494	49.3\%	0	13,494	180	-	180	13,494	$(13,314)$	0
87	57661	217	0.38\%		11,358	40.0\%	17003	60.0\%	11358	-	-	2,823	11,358	2,823	8,535	1
88	57533	89	0.15\%		14,209	56.0\%	11142	44.0\%	0	11,142	1,533	-	1,533	11,142	$(9,609)$	0
89	57490	46	0.08\%		13,374	45.9\%	15771	54.1\%	13374	-	-	1,199	13,374	1,199	12,175	1
90	57617	173	0.30\%		11,349	39.4\%	17468	60.6\%	11349	-	-	3,059	11,349	3,059	8,290	1
91.	57374	-70	-0.12\%		14,807	51.7\%	13845	48.3\%	0	13,845	481	-	481	13,845	$(13,364)$	0
92	57421	-23.	-0.04\%		14,907	50.5\%	14594	49.5\%	0	14,594	157	-	157	14,594	$(14,437)$	0
93	57280	-164	-0.29\%		12,441	40.8\%	18057	59.2\%	12441	-	-	2,808	12,441	2,808	9,633	1
94	57509	65	0.11\%		16,171	57.9\%	11759	42.1\%	0	11,759	2,206	-	2,206	11,759	$(9,553)$	0
95	57496	52	0.09\%		19,769	66.5\%	9949	33.5\%	0	9,949	4,910	-	4,910	9,949	$(5,040)$	0
96	57406	-38	-0.07\%		14,665	51.5\%	13836	48.5\%	0	13,836	415	-	415	13,836	$(13,421)$	0
97.	57487	43	0.07\%		11,492	32.2\%	24222	67.8\%	11492	-	-	6,365	11,492	6,365	5,128	1
98	57485	41	0.07\%		9,864	28.5\%	24773	71.5\%	9864	-	-	7,454	9,864	7,454	2,410	1
99	57657	213	0.37\%		10,783	36.0\%	19160	64.0\%	10783	-	-	4,188	10,783	4,188	6,594	1
	5686986	30	0.86\%		1,454,117		1,388,991		566,634	536,783	175,350	142,787	741,984	679,570	62,414	48

Wisconsin State Elections Board

Office $\begin{array}{r}\text { Number of } \\ \text { Votes } \\ \text { Received }\end{array}$		Percent of Total Votes	Party	ID	Candidate
				Total Vote :	2,983,417 Incumbent George W. Bush/ Dick Cheney
Winner	1,677,211	56.22 \%	DEM	$\begin{aligned} & 200622 \\ & \text { OBAMA } \end{aligned}$	Barack Obama/ Joe Biden 233 North Michigan Avenue, Ste. 1720 Chicago, IL 60601
	1,262,393	42.31 \%	REP	$\begin{aligned} & 200529 \\ & \text { MCCAIN } \end{aligned}$	John McCain/ Sarah Palin 2211 East Camelback Road Phoenix, AZ 85016
	4,216	. 14 \%	WGR	200647 MCKINNEY	Cynthia McKinney/ Rosa Clemente 10371 Beach Street Los Angeles, CA 90002
	8,858	. 3 \%	LIB	200644 BARR	Bob Barr/ Wayne A. Root 2256 Parkwood Place Ct. Smyrna, GA 30080
	540	. 02 \%	IND	$\begin{aligned} & 200646 \\ & \text { MOORE } \end{aligned}$	Brian Moore/ Stewart A. Alexander 5559 Cactus Circle Spring Hill, FL 34606
	237	. 01 \%	IND	200641 LARIVA	Gloria LaRiva/ Robert Moses 3207 Mission Street, Apt. 9 San Francisco, CA 94110
	17,605	. 59 \%	IND	$\begin{aligned} & 200487 \\ & \text { NADER } \end{aligned}$	Ralph Nader/ Matt Gonzalez 53 Hillside Avenue Winsted, CT 06098
	5,072	. 17 \%	IND	200645 BALDWIN	Chuck Baldwin/ Darrell L. Castle 7970 Sasser Lane Pensacola, FL 32526
	764	. 03%	IND	200643 WAMBOLDT	Jeffrey J. Wamboldt/ David J. Klimisch 10314 83rd Place Pleasant Prairie, WI 53158
	6,521	. 22 \%			Scattering

Wisconsin State Elections Board

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office US	US Congress, District No. 1			Total Vote :	361,107 Incumbent	Paul Ryan
	125,268	34.69 \%	DEM	200638 KRUPP	Marge Krupp 11427 79th Place Pleasant Prairie, WI 53158	
Winner	er 231,009	63.97 \%	REP	$\begin{aligned} & 200500 \\ & \text { RYAN } \end{aligned}$	Paul Ryan 221 East Holmes Street Janesville, WI 53545	
	4,606	1.28 \%	LIB	$\begin{aligned} & 200630 \\ & \text { KEXEL } \end{aligned}$	Joseph Kexel 7616 33rd Avenue Kenosha, WI 53142	
	224	. 06%			Scattering	
Office US	US Congress, District No. 2			Total Vote :	400,841 Incumbent	Tammy Baldwin
Winner	er 277,914	69.33 \%	DEM	200491 BALDWIN	Tammy Baldwin 10 East Doty Street, \#405 Madison, WI 53703	
	122,513	30.56 \%	REP	200629 THERON	Peter Theron 1021 Sequoia Trail Madison, WI 53713-2522	
	414	. 1 \%			Scattering	

Wisconsin State Elections Board

Wisconsin State Elections Board

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office U	US Congress, District No. 6			Total Vote :	348,264 Incumbent	Tom Petri
	126,090	36.21 \%	DEM	$\begin{aligned} & 200636 \\ & \text { KITTELSON } \end{aligned}$	Roger A. Kittelson 555 Sunrise Avenue Lomira, WI 53048	
Winner	er 221,875	63.71 \%	REP	$\begin{aligned} & 200100 \\ & \text { PETRI } \end{aligned}$	Tom Petri N5329 De Neveu Lane Fond du Lac, WI 54935	
	299	. 09%			Scattering	
Office US	US Congress, District No. 7			Total Vote :	: 349,837 Incumbent	David R. Obey
Winner	er 212,666	60.79 \%	DEM	$\begin{aligned} & 200024 \\ & \text { OBEY } \end{aligned}$	David R. Obey 1212 Grand Avenue, \#32 Wausau, WI 54403	
	136,938	39.14 \%	REP	200627 MIELKE	Dan Mielke 2550 County Road II Rudolph, WI 54475	
	233	. 07%			Scattering	
Office US	US Congress, District No. 8			Total Vote :	: 358,647 Incumbent	Steven L. Kagen
Winner	er 193,662	54 \%	DEM	200611 KAGEN	Steve Kagen 1712 South Mason Street Appleton, WI 54914	
	164,621	45.9 \%	REP	$\begin{aligned} & 200591 \\ & \text { GARD } \end{aligned}$	John Gard 2234 Skyline Pines Drive Suamico, WI 54313	
	364	. 1 \%			Scattering	

Wisconsin State Elections Board

	Number of Votes Received	Percent of Total Votes	Party	1 D		Candidate	
Office St	State Senate, District No. 2				Total Vote :	: 60,900 Incumbent	Robert L. Cowles
Winner	er 60,507	99.35 \%	REP	100789 COWLES		Robert L. Cowles 300 West St. Joseph Street Green Bay, WI 54301-2328	
	393	. 65 \%				Scattering	
Office St	State Senate, District No. 4				Total Vote :	67,551 Incumbent	Lena C. Taylor
Winner	er 66,751	98.82 \%	DEM	104170 TAYLOR		Lena C. Taylor 1518 West Capitol Drive Milwaukee, WI 53206	
	800	1.18 \%				Scattering	
Office St	State Senate, District No. 6				Total Vote :	: 61,309 Incumbent	Spencer Coggs
Winner	er 60,606	98.85 \%	DEM	$\begin{aligned} & 101390 \\ & \text { COGGS } \end{aligned}$		Spencer Coggs 7819 West Potomac Ave Milwaukee, WI 53222	
	703	1.15 \%				Scattering	

Wisconsin State Elections Board

| Number of
 Votes
 Received | Percent of
 Total Votes | Party |
| :---: | :---: | :---: | :---: |\quad| ID |
| :---: |

Office State Senate, District No. 10
Total Vote : 98,967 Incumbent Sheila Harsdorf

43,041	43.49%	DEM	104633 PAGE	Alison H. Page 430 Crescent Street River Falls, WI 54022
Winner	55,816	56.4%	REP	102332 HARSDORF
			Sheila Harsdorf N6627 County Road E	
				River Falls, WI 54022
	110	$.11 \%$		Scattering

Office State Senate, District No. 12
Total Vote : 85,125 Incumbent Roger Breske (Filed Notification of Noncandidacy)

Winner

43,595	51.21%
41,480	48.73%

101410 HOLPERIN

Jim Holperin
3575 Monheim Rd
Conover, WI 54516
Tom Tiffany
4973 Willow Dam Rd
Hazelhurst, WI 54531
Scattering

Wisconsin State Elections Board

Wisconsin State Elections Board

Wisconsin State Elections Board

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate
Office S	State Senate, District N			Total Vote :	87,881 Incumbent Dan Kapanke
	42,647	48.53 \%	DEM	104632 JOHNSON	Tara Johnson N980 Bloomer Mill Road LaCrosse, WI 54601-2100
Winner	er 45,154	51.38 \%	REP	$\begin{aligned} & 103851 \\ & \text { KAPANKE } \end{aligned}$	Dan Kapanke 1610 Lakeshore Drive La Crosse, WI 54603
	80	. 09 \%			Scattering
Office S	State Assembly, Distric	No. 1		Total Vote :	30,985 Incumbent Garey Bies
	15,055	48.59 \%	DEM	104647 SKARE	Dick Skare 9311 Gibraltar Bluff Road Fish Creek, WI 54212
Winner	er 15,905	51.33 \%	REP	$\begin{aligned} & 103815 \\ & \text { BIES } \end{aligned}$	Garey Bies 2520 Settlement Rd Sister Bay, WI 54234
	25	. 08 \%			Scattering
Office St	State Assembly, Distric	No. 2		Total Vote :	30,714 Incumbent Frank G. Lasee
Winner	er 16,008	52.12 \%	DEM	104562 ZIGMUNT	Ted Zigmunt 305 Oakwood Drive, P.O. Box 321 Francis Creek, WI 54214
	14,687	47.82 \%	REP	103174 LASEE	Frank Lasee 2380 Bluestone Place Green Bay, WI 54311
	19	. 06 \%			Scattering

	Number of Votes Received	Percent of Total Votes	Party	1 D	Candidate	
Office S	State Assembly, District No. 6			Total Vote :	: 25,874 Incumbent	Gary Tauchen
	11,631	44.95 \%	DEM	$\begin{aligned} & 104390 \\ & \text { POWERS } \end{aligned}$	John Powers W16533 Wilson Creek Lane Wittenburg, WI 54499	
Winner	er 14,237	55.02 \%	REP	$\begin{aligned} & 104463 \\ & \text { TAUCHEN } \end{aligned}$	Gary Tauchen N3397 S Broadway Rd Bonduel, WI 54107	
	6	. 02 \%			Scattering	
Office St	State Assembly, District No. 7			Total Vote :	: 27,831 Incumbent	Peggy Krusick
Winner	er 16,568	59.53 \%	DEM	101250 KRUSICK	Peggy Krusick 3426 South 69th Street Milwaukee, WI 53219	
	10,578	38.01 \%	REP	104710 WIESMUELLER	Corrine Wiesmueller 9089 West Waterford Square N Greenfield, WI 53228	
	655	2.35 \%	LIB	104720 SPONHOLZ	Brad Sponholz 4407 West Ohio Avenue Greenfield, WI 53219	
	30	. 11 \%			Scattering	
Office St	State Assembly, District No. 8			Total Vote :	: 8,898 Incumbent	Pedro Colon
Winner	er $\quad 8,743$	98.26 \%	DEM	$\begin{aligned} & 103656 \\ & \text { COLON } \end{aligned}$	Pedro Colon 821 South 3rd St Milwaukee, WI 53204	
	155	1.74 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, District No. 13			Total Vote :	22,316 Incumbent	David Cullen
Winner	er 21,963	98.42 \%	DEM	101887 CULLEN	David Cullen 2845 North 68th Street Milwaukee, WI 53210	
	353	1.58 \%			Scattering	
State Assembly, District No. 14				Total Vote :	: 31,182 Incumbent	Leah Vukmir
Office St	11,708	37.55 \%	DEM	$\begin{aligned} & 104554 \\ & \text { HUCKE } \end{aligned}$	Dave Hucke 332 N. 95th St Milwaukee, WI 53226	
Winner	er 19,419	62.28 \%	REP	104015 VUKMIR	Leah Vukmir 2544 North 93rd Street Wauwatosa, WI 53226	
	55	. 18 \%			Scattering	
Office St	State Assembly, District No. 15			Total Vote :	25,891 Incumbent	Tony Staskunas
Winner	er 15,652	60.45 \%	DEM	103374 STASKUNAS	Tony Staskunas 2010 South 103rd Ct West Allis, WI 53227	
	10,200	39.4 \%	REP	104566 NICKEL	David Nickel 1131 South 75th St West Allis, WI 53214	
	39	. 15 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, District No. 16			Total Vote :	19,432 Incumbent	Leon D. Young
Winner	er 19,200	98.81 \%	DEM	$\begin{aligned} & 102990 \\ & \text { YOUNG } \end{aligned}$	Leon D. Young 2224 North 17th Street Milwaukee, WI 53205	
	232	1.19 \%			Scattering	
Office St	State Assembly, District No. 17			Total Vote :	23,227 Incumbent	Barbara L. Toles
Winner	er 23,041	99.2 \%	DEM	$\begin{aligned} & 104213 \\ & \text { TOLES } \end{aligned}$	Barbara L. Toles 3835 N 56th St Milwaukee, WI 53216	
	186	. 8 \%			Scattering	
Office St	State Assembly, District No. 18			Total Vote	17,559 Incumbent	Tamara D. Grigsby
Winner	er 17,377	98.96 \%	DEM	$\begin{aligned} & 104335 \\ & \text { GRIGSBY } \end{aligned}$	Tamara D. Grigsby 2354 North 41st Street Milwaukee, WI 53210	
	182	1.04 \%			Scattering	
Office St	State Assembly, District No. 19			Total Vote :	25,660 Incumbent	Jon Richards
Winner	er 25,281	98.52 \%	DEM	103633 RICHARDS	Jon Richards 1823 North Oakland Avenue Milwaukee, WI 53202	
	379	1.48 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, District No. 20			Total Vote :	20,277 Incumbent	Christine M. Sinicki
Winner	er $\quad 19,917$	98.22 \%	DEM	$\begin{aligned} & 103687 \\ & \text { SINICKI } \end{aligned}$	Christine M. Sinicki 3132 South Indiana Ave Milwaukee, WI 53207	
	360	1.78 \%			Scattering	
Office S	State Assembly, District No. 21			Total Vote :	29,902 Incumbent	Mark Honadel
	14,184	47.43 \%	DEM	104666 BROWER	Glen Brower 404 Lake Drive South Milwaukee, WI 53172	
Winner	er 15,679	52.43 \%	REP	104183 HONADEL	Mark Honadel 1219 Manitoba Avenue South Milwaukee, WI 53172	
	39	. 13 \%				
Office St	State Assembly, District No. 22			Total Vote :	32,716 Incumbent	Sheldon A. Wasserman (Filed Notification of Noncandidacy)
Winner	er 21,938	67.06 \%	DEM	$\begin{aligned} & 104577 \\ & \text { PASCH } \end{aligned}$	Sandy Pasch 6301 North Berkeley Boulevard Whitefish Bay, WI 53217	
	10,720	32.77 \%	REP	104686 WADHWA	Yash P. Wadhwa 920 West Brentwood Lane Glendale, WI 53217	
	58	. 18 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, District No. 26			Total Vote :	24,523 Incumbent	Terry Van Akkeren
Winner	er 16,046	65.43 \%	DEM	$\begin{aligned} & 103784 \\ & \text { VAN AKKEREN } \end{aligned}$	Terry Van Akkeren 1612 South 7th St Sheboygan, WI 53081	
	8,463	34.51 \%	REP	$\begin{aligned} & 104753 \\ & \text { PIEPER } \end{aligned}$	Alex Pieper 152 Grafton Court Kohler, WI 53044	
	14	. 06 \%			Scattering	
Office S	State Assembly, District No. 27			Total Vote :	31,393 Incumbent	Steve Kestell
	10,672	33.99 \%	DEM	$\begin{aligned} & 104768 \\ & \text { COX } \end{aligned}$	Bob Cox 4022 North 45th Street Sheboygan, WI 53083	
Winner	er 20,704	65.95 \%	REP	103640KESTELL	Steve Kestell W3829 Hwy 32 Elkhart Lake, WI 53020	
	17	. 05 \%			Scattering	
Office St	State Assembly, District No. 28			Total Vote :	29,633 Incumbent	Ann Hraychuck
Winner	er $\quad 16,407$	55.37 \%	DEM	$\begin{aligned} & 104389 \\ & \text { HRAYCHUCK } \end{aligned}$	Ann Hraychuck 1629 130th St, P.O. Box 334 Balsam Lake, WI 54810	
	13,214	44.59 \%	REP	104679 MUSCHINSKE	Kent Muschinske 2129 100th Avenue Dresser, WI 54009	
	12	. 04 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, Distri	No. 29		Total Vote :	33,036 Incumbent	John Murtha
	14,115	42.73 \%	DEM	104667 BUCKEL	Chris Buckel 960 Marjorie Street Hammond, WI 54015	
Winner	er 17,633	53.38 \%	REP	104510 MURTHA	John Murtha 2283 20th Avenue Baldwin, WI 54002	
	1,257	3.8 \%	LIB	$\begin{aligned} & 104262 \\ & \mathrm{MOHN} \end{aligned}$	Craig Mohn 505 Southside Drive Woodville, WI 54028	
	31	. 09 \%			Scattering	
Office St	State Assembly, Distri	No. 30		Total Vote :	36,041 Incumbent	Kitty Rhoades
	16,278	45.17 \%	DEM	$\begin{aligned} & 104624 \\ & \text { BRUCH } \end{aligned}$	Sarah A. Bruch 645 Cherry Hill Lane Hudson, WI 54016	
Winner	er 19,729	54.74 \%	REP	$\begin{aligned} & 103675 \\ & \text { RHOADES } \end{aligned}$	Kitty Rhoades 708 4th Street Hudson, WI 54016	
	34	. 09 \%			Scattering	
Office St	State Assembly, Distri	No. 31		Total Vote :	32,671 Incumbent	Steve Nass
	10,853	33.22 \%	DEM	$\begin{aligned} & 104690 \\ & \text { URBAN } \end{aligned}$	Frank E. Urban W277 Northey Road Dousman, WI 53118	
Winner	er 21,780	66.66 \%	REP	102660 NASS	Steve Nass N8330 Jackson Rd Whitewater, WI 53190	
	38	. 12 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	1 D	Candidate	
Office St	State Assembly, District No. 38			Total Vote :	30,623 Incumbent	Joel Kleefisch
	10,295	33.62 \%	DEM	$\begin{aligned} & 104725 \\ & \text { PAS } \end{aligned}$	Dick Pas 662 E. Juneau Avenue Oconomowoc, WI 53066	
Winner	er 20,294	66.27 \%	REP	$\begin{aligned} & 104258 \\ & \text { KLEEFISCH } \end{aligned}$	Joel Kleefisch W357N6189 Spinnaker Drive Oconomowoc, WI 53066	
	34	. 11 \%			Scattering	
Office St	State Assembly, District No. 39			Total Vote :	: 26,588 Incumbent	Jeff Fitzgerald
	10,607	39.89 \%	DEM	104589 ONSRUD	Aaron E. Onsrud 104 York Street Beaver Dam, WI 53916	
Winner	er 15,974	60.08 \%	REP	$\begin{aligned} & 103832 \\ & \text { FITZGERALD } \end{aligned}$	Jeff Fitzgerald 910 Sunset Lane Horicon, WI 53032	
	7	. 03 \%			Scattering	
Office St	State Assembly, District No. 40			Total Vote :	: 25,289 Incumbent	Kevin David Petersen
	10,537	41.67 \%	DEM	104689 KUEHL	Kevin M. Kuehl 511 South State Street Waupaca, WI 54981	
Winner	er 14,741	58.29 \%	REP	$\begin{aligned} & 104400 \\ & \text { PETERSEN } \end{aligned}$	Kevin David Petersen N1433 Drivas Rd Waupaca, WI 54981	
	11	. 04 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	1 D	Candidate	
Office St	State Assembly, District No. 41			Total Vote :	26,532 Incumbent	Joan A. Ballweg
	9,853	37.14 \%	DEM	104650 MILHEISER	Scott Milheiser 1466 Wolf River Drive Fremont, WI 54940	
Winner	er 16,658	62.78 \%	REP	104243 BALLWEG	Joan A. Ballweg 170 W. Summit St. Markesan, WI 53946	
	21	. 08%			Scattering	
Office St	State Assembly, District No. 42			Total Vote :	: 27,257 Incumbent	J.A. Hines
Winner	er 15,936	58.47 \%	DEM	104644 CLARK	$\begin{aligned} & \text { Fred Clark } \\ & \text { E12367 Cty Rd W } \\ & \text { Baraboo, WI } 53913 \end{aligned}$	
	11,304	41.47 \%	REP	103561 HINES	J.A. Hines W8632 County I Oxford, WI 53952	
	17	. 06%			Scattering	
Office St	State Assembly, District No. 43			Total Vote :	: 29,914 Incumbent	Kim Hixson
Winner	er 15,303	51.16 \%	DEM	104475 HIXSON	Kim Hixson 327 South Woodland Drive Whitewater, WI 53190	
	14,581	48.74 \%	REP	104061 TOWNS	Debi Towns 7930 North Eagle Rd Janesville, WI 53548	
	30	. 1 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, District No. 47			Total Vote :	32,310 Incumbent	Eugene Hahn (Filed Notification of Noncandidacy)
	15,443	47.8 \%	DEM	104604 O'NEIL	Trish O'Neil W1087 Fox Road Columbus, WI 53925	
Winner	er $\quad 15,466$	47.87 \%	REP	104638 RIPP	Keith Ripp 7113 County Road V Lodi, WI 53555	
	1,388	4.3 \%	IND	104685 HRUBY	Dennis E. Hruby 7493 Brereton Road Dane, WI 53529	
	13	. 04 \%			Scattering	
Office St	State Assembly, District No. 48			Total Vote :	: 27,777 Incumbent	Joseph T. Parisi
Winner	er 27,640	99.51 \%	DEM	103945 PARISI	Joseph T. Parisi 702 McLean Drive Madison, WI 53718	
	137	. 49 \%			Scattering	
Office St	State Assembly, District No. 49			Total Vote :	: 25,693 Incumbent	Phil Garthwaite
Winner	er 13,865	53.96 \%	DEM	104431 GARTHWAITE	Phil Garthwaite 141 South Main Street Dickeyville, WI 53808	
	11,793	45.9 \%	REP	104591 TRANEL	Travis Tranel 2231 Louisburg Road Cuba City, WI 53807	
	35	. 14 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, District No. 50			Total Vote	25,600 Incumbent	Sheryl K. Albers (Filed Notification of Noncandidacy)
	11,194	43.73 \%	DEM	$\begin{aligned} & 104596 \\ & \text { CROFTON } \end{aligned}$	Tom Crofton 16005 Crofton Drive Richland Center, WI 53581	
Winner	er 14,387	56.2 \%	REP	$\begin{aligned} & 104714 \\ & \text { BROOKS } \end{aligned}$	Ed Brooks S4311 Grote Hill Road Reedsburg, WI 53959	
	19	. 07 \%			Scattering	
Office St	State Assembly, District No. 51			Total Vote	27,892 Incumbent	Steve Hilgenberg
Winner	er 15,855	56.84 \%	DEM	104438 HILGENBERG	Steve Hilgenberg 3607 Evans Quarry Rd Dodgeville, WI 53533	
	12,026	43.12 \%	REP	$\begin{aligned} & 104637 \\ & \text { RUSSELL } \end{aligned}$	Nathan R. Russell 1705 Bates Street Sauk City, WI 53583	
	11	. 04 \%			Scattering	
Office St	State Assembly, District No. 52			Total Vote	26,099 Incumbent	John Townsend
	10,966	42.02 \%	DEM	104672 KEIFENHEIM	Jerry Keifenheim N7828 Van Dyne Road Fond du Lac, WI 54937	
Winner	er $\quad 15,116$	57.92 \%	REP	103624 TOWNSEND	John Townsend 297 Rooseveldt Street Fond du Lac, WI 54935	
	17	. 07 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office S	State Assembly, District No. 53			Total Vote :	: 28,014 Incumbent	Carol Owens (Filed Notification of Noncandidacy)
	10,116	36.11 \%	DEM	104704 MANN	Jeff Mann 3116 Sheldon Drive Oshkosh, WI 54904	
Winner	er $\quad 17,872$	63.8 \%	REP	$\begin{aligned} & 104203 \\ & \text { SPANBAUER } \end{aligned}$	Richard J. Spanbauer 3040 Sheldon Dr Oshkosh, WI 54904	
	26	. 09 \%			Scattering	
Office St	State Assembly, District No. 54			Total Vote :	: 28,329 Incumbent	Gordon Hintz
Winner	er 18,758	66.21 \%	DEM	$\begin{aligned} & 104278 \\ & \text { HINTZ } \end{aligned}$	Gordon Hintz 1209 Waugoo Ave Oshkosh, WI 54901	
	9,531	33.64 \%	REP	$\begin{aligned} & 104693 \\ & \text { REIFF } \end{aligned}$	Mark Reiff 456 West 9th Avenue, Apt. F Oshkosh, WI 54902	
	40	. 14 \%			Scattering	
Office S	State Assembly, District No. 55			Total Vote :	: 26,466 Incumbent	Dean R. Kaufert
	12,179	46.02 \%	DEM	$\begin{aligned} & 104517 \\ & \text { WESTPHAL } \end{aligned}$	Mark Westphal 945 Hunt Avenue Neenah, WI 54956	
Winner	er 14,259	53.88 \%	REP	102571 KAUFERT	Dean R. Kaufert 1360 Alpine Lane Neenah, WI 54956	
	28	. 11 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, District No. 56			Total Vote :	35,149 Incumbent	Roger J. Roth, Jr.
	14,144	40.24 \%	DEM	$\begin{aligned} & 104497 \\ & \text { GARCIA FRANZ } \end{aligned}$	Susan Garcia Franz 1790 Wendy Way Neenah, WI 54956	
Winner	er 20,971	59.66 \%	REP	$\begin{aligned} & 104439 \\ & \text { ROTH } \end{aligned}$	Roger Roth 2732 West Glenpark Dr Appleton, WI 54914	
	34	. 1 \%			Scattering	
Office St	State Assembly, District No. 57			Total Vote :	: 26,999 Incumbent	Steve Wieckert (Filed Notification of Noncandidacy)
Winner	er 15,383	56.98 \%	DEM	104412 SCHABER	Penny Bernard Schaber 815 East Washington Street Appleton, WI 54911-5660	
	11,560	42.82 \%	REP	$\begin{aligned} & 104675 \\ & \text { EGELHOFF } \end{aligned}$	Jo Egelhoff 4734 Everbreeze Circle, Unit A Appleton, WI 54914	
	56	. 21 \%			Scattering	
Office St	State Assembly, District No. 58			Total Vote :	28,515 Incumbent	Pat Strachota
Winner	er 23,603	82.77 \%	REP	$\begin{aligned} & 104363 \\ & \text { STRACHOTA } \end{aligned}$	Pat Strachota 639 Ridge Rd West Bend, WI 53095	
	4,891	17.15 \%	IND	104614 DOMBRO	Greg Dombro 1450 Spring Valley Rd Jackson, WI 53037	
	21	. 07 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, District No. 59			Total Vote	26,434 Incumbent	Daniel LeMahieu
Winner	er 26,254	99.32 \%	REP	104053 LEMAHIEU	Daniel R. LeMahieu W6284 Lake Ellen Drive, P.O. Box 277 Cascade, WI 53011	
	180	. 68 \%			Scattering	
Office St	State Assembly, District No. 60			Total Vote	33,121 Incumbent	Mark Gottlieb
	9,821	29.65 \%	DEM	$\begin{aligned} & 104585 \\ & \text { DUMAN } \end{aligned}$	Perry Duman 203 West Grand Avenue Port Washington, WI 53074	
Winner	er 23,282	70.29 \%	REP	$\begin{aligned} & 103989 \\ & \text { GOTTLIEB } \end{aligned}$	Mark Gottlieb 1205 Noridge Trail Port Washington, WI 53074	
	18	. 05 \%			Scattering	
Office St	State Assembly, District No. 61			Total Vote :	18,547 Incumbent	Robert Turner
Winner	er 16,267	87.71 \%	DEM	$\begin{aligned} & 101939 \\ & \text { TURNER } \end{aligned}$	Robert Turner 36 McKinley Avenue Racine, WI 53404	
	2,242	12.09 \%	LIB	100261 MEYERS	George Meyers 1307 N. Wisconsin Street Racine, WI 53402	
	38	. 2 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, District No. 62			Total Vote :	21,164 Incumbent	Cory Mason
Winner	er 17,892	84.54 \%	DEM	104429 MASON	Cory Mason 3611 Kinzie Ave Racine, WI 53405	
	3,217	15.2 \%	LIB	$\begin{aligned} & 104118 \\ & \text { DESCHLER } \end{aligned}$	Keith R. Deschler 1239 1/2 Monroe Avenue Racine, WI 53405	
	55	. 26 \%			Scattering	
State Assembly, District No. 63				Total Vote :	32,794 Incumbent	Robin J. Vos
Office S	12,609	38.45 \%	DEM	$\begin{aligned} & 104676 \\ & \text { FLASHINSKI } \end{aligned}$	Linda Flashinski 5508 River Hills Road Racine, WI 53402	
Winner	er 20,172	61.51 \%	REP	$\begin{aligned} & 104283 \\ & \text { VOS } \end{aligned}$	Robin J. Vos 4710 Eastwood Ridge Racine, WI 53406	
	13	. 04 \%			Scattering	
Office St	State Assembly, District No. 64			Total Vote :	19,996 Incumbent	Jim Kreuser (Filed Notification of Noncandidacy)
Winner	er $\quad 19,739$	98.71 \%	DEM	101918 BARCA	Peter W. Barca 1339 38th Avenue Kenosha, WI 53144	
	257	1.29 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	1 D	Candidate	
Office St	State Assembly, Distri	No. 65		Total Vote :	: 29,127 Incumbent	John P. Steinbrink
Winner	er 18,093	62.12 \%	DEM	103399 STEINBRINK	John Steinbrink 8640-88th Avenue Pleasant Prairie, WI 53158	
	10,994	37.75 \%	REP	$\begin{aligned} & 104718 \\ & \text { TIAHNYBOK } \end{aligned}$	Alex Tiahnybok 8757 Lakeshore Drive Pleasant Prairie, WI 53158	
	40	. 14 \%			Scattering	
Office St	State Assembly, Distri	No. 66		Total Vote :	: 29,478 Incumbent	Samantha Kerkman
	11,799	40.03 \%	DEM	$\begin{aligned} & 104582 \\ & \text { ZAMBA } \end{aligned}$	Larry Zamba 1720 216th Avenue Union Grove, WI 53182	
Winner	er 17,659	59.91 \%	REP	$\begin{aligned} & 103849 \\ & \text { KERKMAN } \end{aligned}$	Samantha Kerkman 40255 105th Street Genoa City, WI 53128	
	20	. 07 \%			Scattering	
Office St	State Assembly, District No. 67			Total Vote :	: 24,650 Incumbent	Jeff Wood
	12,215	49.55 \%	REP	$\begin{aligned} & 104774 \\ & \text { MOGA } \end{aligned}$	Don Moga 17571 142nd Avenue Jim Falls, WI 54748	
Winner	er 12,393	50.28 \%	IND	104114 WOOD	Jeff Wood 1921 19th Avenue Bloomer, WI 54724	
	42	. 17 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, District No. 68			Total Vote :	30,657 Incumbent	Terry Moulton
Winner	er 15,437	50.35 \%	DEM	$\begin{aligned} & 104590 \\ & \text { DEXTER } \end{aligned}$	Kristen Dexter 7410 Lakeview Drive Eau Claire, WI 54701	
	15,165	49.47 \%	REP	104124 MOULTON	Terry Moulton 980 118th St Chippewa Falls, WI 54729	
	55	. 18 \%			Scattering	
Office S	State Assembly, District No. 69			Total Vote :	: 24,450 Incumbent	Scott Suder
	9,905	40.51 \%	DEM	104458 SWIGGUM	Tim Swiggum 739 E 7th St Owen, WI 54460	
Winner	er $\quad 14,537$	59.46 \%	REP	$\begin{aligned} & 103615 \\ & \text { SUDER } \end{aligned}$	Scott Suder 102 South Fourth Avenue Abbotsford, WI 54405	
	8	. 03 \%			Scattering	
Office St	State Assembly, District No. 70			Total Vote :	: 27,995 Incumbent	Amy Sue Vruwink
Winner	er $\quad 19,490$	69.62 \%	DEM	103828 VRUWINK	Amy Sue Vruwink 9425 Flower Lane Milladore, WI 54454	
	8,495	30.34 \%	REP	104767 SEEVERS	Dennis Seevers 5969 Butternut Road Arpin, WI 54410	
	10	. 04 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, District No. 71			Total Vote :	29,674 Incumbent	Louis John Molepske, Jr.
Winner	er 20,359	68.61 \%	DEM	104188 MOLEPSKE	Louis John Molepske, Jr. 1557 Church Street Stevens Point, WI 54481	
	9,271	31.24 \%	REP	104548 JENSEN	Daron L. Jensen 4500 Highway 66 Stevens Point, WI 54481	
	44	. 15 \%			Scattering	
Office St	State Assembly, District No. 72			Total Vote :	27,145 Incumbent	Marlin D. Schneider
Winner	er 16,892	62.23 \%	DEM	100355 SCHNEIDER	Marlin D. Schneider 3820 Southbrook Lane Wisconsin Rapids, WI 54494	
	10,230	37.69 \%	REP	104769 TYBERG	Jeff Tyberg 5311 Wyatt Ave Wisconsin Rapids, WI 54494	
	23	. 08%			Scattering	
State Assembly, District No. 73				Total Vote :	25,612 Incumbent	Frank Boyle (Filed Notification of Noncandidacy)
Winner	er 20,684	80.76 \%	DEM	$\begin{aligned} & 104678 \\ & \text { MILROY } \end{aligned}$	Nick Milroy 2706 North 17th Street Superior, WI 54880	
	4,788	18.69 \%	IND	104661 MONAGHAN	Jeffery Lawrence Monaghan 1213 Tower Avenue Superior, WI 54880	
	140	. 55 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, District No. 77			Total Vote :	25,953 Incumbent	Spencer Black
Winner	er 25,798	99.4 \%	DEM	$\begin{aligned} & 101780 \\ & \text { BLACK } \end{aligned}$	Spencer Black 5742 Elder Place Madison, WI 53705	
	155	. 6 \%			Scattering	
Office St	State Assembly, District No. 78			Total Vote :	: 27,443 Incumbent	Mark Pocan
Winner	ner 27,273	99.38 \%	DEM	$\begin{aligned} & 103540 \\ & \text { POCAN } \end{aligned}$	Mark Pocan 309 N Baldwin St Madison, WI 53703	
	170	. 62 \%			Scattering	
Office St	State Assembly, District No. 79			Total Vote :	40,224 Incumbent	Sondy Pope-Roberts
Winner	er 26,835	66.71 \%	DEM	$\begin{aligned} & 103840 \\ & \text { POPE-ROBERTS } \end{aligned}$	Sondy Pope-Roberts 4793 Delmara Rd. Middleton, WI 53562	
	13,361	33.22 \%	REP	104743 SKALITZKY	Carl Skalitzky 3614 Lynn Court Middleton, WI 53562	
	28	. 07 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID		Candidate	
Office St	State Assembly, District No. 80				Total Vote :	30,821 Incumbent	Brett Davis
	13,517	43.86 \%	DEM	104612 WAELTI		John Waelti 1800 21st Avenue Monroe, WI 53566	
Winner	er 17,291	56.1 \%	REP	104257 DAVIS		Brett Davis 1420 Raven Oaks Trail Oregon, WI 53375	
	13	. 04 \%				Scattering	
Office St	State Assembly, District No. 81				Total Vote :	24,253 Incumbent	Dave Travis (Filed Notification of Noncandidacy)
Winner	er 23,984	98.89 \%	DEM	104606 ROYS		Kelda Helen Roys 2215 North Sherman Avenue Madison, WI 53704-3310	
	269	1.11 \%				Scattering	
Office St	State Assembly, District No. 82				Total Vote :	22,998 Incumbent	Jeff Stone
Winner	er 22,773	99.02 \%	REP	103406 STONE		Jeff Stone 5535 Grandview Dr. Greendale, WI 53129	
	225	. 98 \%				Scattering	

Percent of
Total Votes \qquad ID
\qquad Candidate
Received Total Votes Party Incumbent Scott L. Gunderson

Total Vote : 34,032

Aaron Robertson
S67 W12559 Larkspur Road
Muskego, WI 53150
Scott L. Gunderson
123 North 2nd Street
Waterford, WI 53185
Scattering

Winner	16,975	64.08 \%	DEM	$\begin{aligned} & 104282 \\ & \text { SEIDEL } \end{aligned}$	Donna Seidel 807 South 20th St Wausau, WI 54403
	9,487	35.81 \%	REP	$\begin{aligned} & 104687 \\ & \text { KUFAHL } \end{aligned}$	Jess F. Kufahl 10325 60th Avenue Merrill, WI 54452
	27	. 1 \%			Scattering

	Number of Votes Received	Percent of Total Votes	Party	ID	$\underline{\text { Candidate }}$	
Office S	State Assembly, District No. 86			Total Vote :	31,133 Incumbent	Jerry J. Petrowski
	13,716	44.06 \%	DEM	104680 MYSZKA	Nate Myszka 4906 Crestwood Drive, \#4 Weston, WI 54476	
Winner	er 17,402	55.9 \%	REP	$\begin{aligned} & 103686 \\ & \text { PETROWSKI } \end{aligned}$	Jerry J. Petrowski 720 North 136th Ave Marathon, WI 54448	
	15	. 05%			Scattering	
Office St	State Assembly, District No. 87			Total Vote :	25,617 Incumbent	Mary Williams
	12,685	49.52 \%	DEM	$\begin{aligned} & 104432 \\ & \text { REAS } \end{aligned}$	Judy Reas W8055 Maple Ridge Rd Park Falls, WI 54552	
Winner	er $\quad 12,917$	50.42 \%	REP	104128 WILLIAMS	Mary Williams 542 Billings Avenue Medford, WI 54451	
	15	. 06%			Scattering	
Office St	State Assembly, District No. 88			Total Vote :	23,548 Incumbent	Jim Soletski
Winner	er 13,155	55.86 \%	DEM	104467 SOLETSKI	Jim Soletski 496 Menlo Park Rd Green Bay, WI 54302	
	10,368	44.03 \%	REP	$\begin{aligned} & 104691 \\ & \text { THEISEN } \end{aligned}$	Tony Theisen 931 South Baird Street Green Bay, WI 54301	
	25	. 11 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, District No. 93			Total Vote :	32,479 Incumbent	Jeff Smith
Winner	er 19,276	59.35 \%	DEM	$\begin{aligned} & 104251 \\ & \text { SMITH } \end{aligned}$	Jeff Smith 236 Hudson St Eau Claire, WI 54703	
	13,161	40.52 \%	REP	$\begin{aligned} & 104737 \\ & \text { FIELDS } \end{aligned}$	Darcy Fields 3561 Sharon Drive Eau Claire, WI 54701	
	42	. 13 \%			Scattering	
Office S	State Assembly, District No. 94			Total Vote	32,791 Incumbent	Mike Huebsch
	15,054	45.91 \%	DEM	104652 HANCOCK	Cheryl Hancock 1007 Deerfield Street Holmen, WI 54636	
Winner	er 17,719	54.04 \%	REP	$\begin{aligned} & 102532 \\ & \text { HUEBSCH } \end{aligned}$	Mike Huebsch 419 West Franklin West Salem, WI 54669	
	18	. 05 \%			Scattering	
Office St	State Assembly, District No. 95			Total Vote	: 22,963 Incumbent	Jennifer Shilling
Winner	er 22,341	97.29 \%	DEM	$\begin{aligned} & 103853 \\ & \text { SHILLING } \end{aligned}$	Jennifer Shilling 2608 Main St La Crosse, WI 54601	
	622	2.71 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, Distri	No. 96		Total Vote :	24,979 Incumbent	Lee Nerison
	12,054	48.26 \%	DEM	104586 KLEMME	Dale Klemme 338 North Main Street Prairie du Chien, WI 53821	
Winner	er $\quad 12,919$	51.72 \%	REP	$\begin{aligned} & 104289 \\ & \text { NERISON } \end{aligned}$	Lee Nerison S3035 CTH B Westby, WI 54667	
	6	. 02 \%			Scattering	
Office St	State Assembly, Distri	No. 97		Total Vote :	27,097 Incumbent	Bill Kramer
	12,268	45.27 \%	DEM	104657 JONES	Ruth Page Jones W251S4386 Oak View Drive Waukesha, WI 53189	
Winner	er 14,801	54.62 \%	REP	104449 KRAMER	Bill Kramer 2005 Cliff Alex Court South, \#3 Waukesha, WI 53189	
	28	. 1 \%			Scattering	
Office St	State Assembly, Distri	No. 98		Total Vote :	33,842 Incumbent	Rich Zipperer
	9,498	28.07 \%	DEM	104745 WEERS	Victor Weers 15980 Mark Drive Brookfield, WI 53005	
Winner	er 24,325	71.88 \%	REP	104459 ZIPPERER	Rich Zipperer N24 W26419 Bucks Island Ct Pewaukee, WI 53072	
	19	. 06 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office St	State Assembly, Distri	No. 99		Total Vote :	28,074 Incumbent	Don Pridemore
Winner	er 27,906	99.4 \%	REP	$\begin{aligned} & 104236 \\ & \text { PRIDEMORE } \end{aligned}$	Don Pridemore 2277 Highway K Hartford, WI 53027	
	168	. 6 \%			Scattering	
Office Ad	Adams County District	torney		Total Vote :	$: 7,135$ Incumbent	Mark D. Thibodeau
Winner	er $\quad 7,069$	99.07 \%	DEM	$\begin{aligned} & 102030 \\ & \text { THIBODEAU } \end{aligned}$	Mark D. Thibodeau 1081 Quarterstaff Court Nekoosa, WI 54457	
	66	. 93 \%			Scattering	
Office As	Ashland County Distric	ttorney		Total Vote :	$:$ 4,963 Incumbent	Sean P. Duffy
Winner	er 4,856	97.84 \%	REP	104056 DUFFY	Sean P. Duffy 2906 City Heights Road Ashland, WI 54806	
	107	2.16 \%			Scattering	
Office B	Barron County District	orney		Total Vote :	: 16,097 Incumbent	Angela L. Holmstrom
Winner	er 15,980	99.27 \%	DEM	$\begin{aligned} & 104299 \\ & \text { HOLMSTROM } \end{aligned}$	Angela L. Holmstrom Beranek 1403 Duke St Rice Lake, WI 54868	
	117	. 73 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office Bay	Bayfield County District Attorney			Total Vote :	5,317 Incumbent	H. Craig Haukaas
Winner	mer 5,212	98.03 \%	REP	$\begin{aligned} & 104083 \\ & \text { HAUKAAS } \end{aligned}$	H. Craig Haukaas 23540 Cherryville Rd Ashland, WI 54806	
	105	1.97 \%			Scattering	
Office Br	Brown County District Attorney			Total Vote :	87,849 Incumbent	John P. Zakowski
Winner	er 87,066	99.11 \%	REP	$\begin{aligned} & 102685 \\ & \text { ZAKOWSKI } \end{aligned}$	John P. Zakowski 1254 Emilie St Green Bay, WI 54301	
	783	. 89 \%			Scattering	
Office Buta	Buffalo County District Attorney			Total Vote :	$: 4,739$ Incumbent	Thomas Clark
Winner	er 4,713	99.45 \%	DEM	104490 CLARK	Thomas W. Clark 57 W. 13 St Buffalo, WI 54622	
	26	. 55 \%			Scattering	
Office Bu	Burnett County District Attorney			Total Vote :	: 3,238 Incumbent	William L. Norine
Winner	er 3,199	98.8 \%	IND	104760 NORINE	William L. Norine 513 North Pine Grantsburg, WI 54840	
	39	1.2 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office C	Calumet County District Attorney			Total Vote :	19,349 Incumbent	Kenneth R. Kratz
Winner	er 19,203	99.25 \%	REP	$\begin{aligned} & 102831 \\ & \text { KRATZ } \end{aligned}$	Kenneth R. Kratz N9435 Dusty Drive Appleton, WI 54915	
	146	. 75 \%			Scattering	
Office C	Chippewa County District Attorney			Total Vote :	29,170 Incumbent	Jon M. Theisen
	11,748	40.27 \%	DEM		Holly Wood Webster S8364 Wren Drive Eau Claire, WI 54701	
Winner	er $\quad 17,407$	59.67 \%	REP	$\begin{aligned} & 104246 \\ & \text { THEISEN } \end{aligned}$	Jon M. Theisen 903 Bluff View Ct Chippewa Falls, WI 54729	
	15	. 05 \%			Scattering	
Office Cla	Clark County District Attorney			Total Vote :	: 10,477 Incumbent	Darwin L. Zwieg
Winner	er 10,364	98.92 \%	DEM	102520 ZWIEG	Darwin L. Zwieg N7503 Gorman Ave Willard, WI 54493	
	113	1.08 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office Flo	Florence County District Attorney			Total Vote :	1,858 Incumbent	Douglas J. Drexler
Winner	er 1,852	99.68 \%	REP	$\begin{aligned} & 102921 \\ & \text { DREXLER } \end{aligned}$	Douglas J. Drexler 4030 Lake Ellwood Road Florence, WI 54121	
	6	. 32 \%			Scattering	
Office F	Fond du Lac County District Attorney			Total Vote :	49,210 Incumbent	Michael O'Rourke
	23,108	46.96 \%	DEM	104581 O'ROURKE	Michael E. O'Rourke 415 3rd Street Fond du Lac, WI 54935	
Winner	er 26,075	52.99 \%	REP	104722 KAMINSKY	Dan Kaminsky W3952 Artesian Road Fond du Lac, WI 54937	
	27	. 05 \%			Scattering	
Office Fo	Forest County District Attorney			Total Vote :	3,166 Incumbent	Leon D. Stenz (Filed Notification of Noncandidacy)
Winner	er 3,159	99.78 \%	DEM	104731 SIMONO	Chuck Simono 307 East Grant Street Crandon, WI 54520	
	7	. 22 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	1 D	Candidate	
Office Iro	Iron County District Attorney			Total Vote	2,401 Incumbent	Martin J. Lipske
Winner	er 2,386	99.38 \%	DEM	$\begin{aligned} & 103236 \\ & \text { LIPSKE } \end{aligned}$	Martin J. Lipske 13591N County Rd D Hurley, WI 54534	
	15	. 62 \%			Scattering	
Office Ja	Jackson County District Attorney			Total Vote	6,926 Incumbent	Gerald R. Fox
Winner	er 6,912	99.8 \%	DEM	$\begin{aligned} & 103614 \\ & \text { FOX } \end{aligned}$	Gerald R. Fox N13014 County Road T Fairchild, WI 54741	
	14	. 2 \%				
Office Je	Jefferson County District Attorney			Total Vote	41,203 Incumbent	David J. Wambach (Filed Notification of Noncandidacy)
Winner	er 23,117	56.11 \%	DEM	$\begin{aligned} & 104655 \\ & \text { HAPP } \end{aligned}$	Susan V. Happ 633 North Dewey Avenue Jefferson, WI 53549	
	18,003	43.69 \%	REP	104744 TEMPELIS	Peter M. Tempelis 111 Deer Crossing \#3 Johnson Creek, WI 53038	
	83	. 2 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	1 D		Candidate	
Office Pi	Pierce County District Attorney				Total Vote :	: 15,763 Incumbent	John M. O'Boyle
Winner	er 15,571	98.78 \%	DEM	$\begin{aligned} & 102860 \\ & \text { O'BOYLE } \end{aligned}$		John M. O'Boyle W8625 830th Avenue River Falls, WI 54022	
	192	1.22 \%				Scattering	
Office Polk	Polk County District Attorney				Total Vote :	15,474 Incumbent	Dan Steffen
Winner	er 15,371	99.33 \%	DEM	104494 STEFFEN		Daniel P. Steffen 2398 10th Ave Osceola, WI 54020	
	103	. 67 \%				Scattering	
Office Por	Portage County District Attorney				Total Vote :	: 28,728 Incumbent	Thomas B. Eagon
Winner	er 28,563	99.43 \%	DEM	$\begin{aligned} & 102615 \\ & \text { EAGON } \end{aligned}$		Thomas B. Eagon 327 Orderinda Court Stevens Point, WI 54481	
	165	. 57 \%				Scattering	
Office Pris	Price County District Attorney				Total Vote :	: 5,836 Incumbent	Mark T. Fuhr
Winner	er 5,829	99.88 \%	DEM	$\begin{aligned} & 104045 \\ & \text { FUHR } \end{aligned}$		Mark T. Fuhr N9531 West View Road Phillips, WI 54555	
	7	. 12 \%				Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office Ta	Taylor County District Attorney			Total Vote :	: 6,307 Incumbent	Karl Kelz
Winner	er 6,006	95.23 \%	REP	$\begin{aligned} & 104001 \\ & \text { KELZ } \end{aligned}$	Karl J. Kelz 211 North Fourth Street Medford, WI 54451	
	301	4.77 \%			Scattering	
Office Tr	Trempealeau County District Attorney			Total Vote :	9,850 Incumbent	Jeri Marsolek
Winner	ner 9,803	99.52 \%	DEM	104154 MARSOLEK	Jeri Marsolek 19665 Bluffview Place Galesville, WI 54630	
	47	. 48 \%			Scattering	
Office V	Vernon County District Attorney			Total Vote :	: 9,113 Incumbent	Timothy J. Gaskell
Winner	er 9,055	99.36 \%	REP	103604 GASKELL	Timothy J. Gaskell 602 South Main St Westby, WI 54667	
	58	. 64 \%			Scattering	
Office Vi	Vilas County District Attorney			Total Vote :	9,876 Incumbent	Albert D. Moustakis
Winner	er 9,690	98.12 \%	REP	103216 MOUSTAKIS	Albert D. Moustakis 2707 Deerskin Park Road Eagle River, WI 54521	
	186	1.88 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID	Candidate	
Office W	Walworth County District Attorney			Total Vote :	37,300 Incumbent	Phillip A. Koss
Winner	er 36,698	98.39 \%	REP	$\begin{aligned} & 102514 \\ & \text { KOSS } \end{aligned}$	Phillip A. Koss 120 North Wisconsin Street Elkhorn, WI 53121	
	602	1.61 \%			Scattering	
Office W	Washburn County District Attorney			Total Vote :	6,241 Incumbent	J. Michael Bitney
Winner	er 6,223	99.71 \%	REP	$\begin{aligned} & 102830 \\ & \text { BITNEY } \end{aligned}$	J. Michael Bitney N5552 Buckingham Drive, P.O. Spooner, WI 54801	Box 195
	18	. 29 \%			Scattering	
Office W	Washington County District Attorney			Total Vote :	58,285 Incumbent	Todd K. Martens
Winner	er 57,926	99.38 \%	REP	103845 MARTENS	Todd K. Martens W166 N10095 Santa Fe Court Germantown, WI 53022	
	359	. 62 \%			Scattering	
Office W	Waukesha County District Attorney			Total Vote :	169,061 Incumbent	Brad Schimel
Winner	er 168,330	99.57 \%	REP	104385 SCHIMEL	Brad Schimel W295 S2609 Jamie Court Waukesha, WI 53188	
	731	. 43 \%			Scattering	

	Number of Votes Received	Percent of Total Votes	Party	ID		Candidate	
Office W	Waupaca County District	Attorney			Total Vote	16,783 Incumbent	John P. Snider
Winner	er 16,728	99.67 \%	REP	102519 SNIDER		John P. Snider 406 East Lake Street Waupaca, WI 54981	
	55	. 33 \%				Scattering	
Office W	Waushara County Distrid	Attorney			Total Vote	8,430 Incumbent	Scott C. Blader
Winner	er 8,381	99.42 \%	REP	$\begin{aligned} & 104495 \\ & \text { BLADER } \end{aligned}$		Scott C. Blader W8210 Cypress Lane Wautoma, WI 54982	
	49	. 58 \%				Scattering	
Office W	Winnebago County Dis	Attorney			Total Vote	61,376 Incumbent	Christian A. Gossett
Winner	er 60,429	98.46 \%	REP	104437 GOSSETT		Christian A. Gossett 885 Adams Avenue Oshkosh, WI 54902	
	947	1.54 \%				Scattering	
Office W	Wood County District	orney			Total Vote	26,111 Incumbent	Todd P. Wolf
Winner	er 25,930	99.31 \%	REP	$\begin{aligned} & 104040 \\ & \text { WOLF } \end{aligned}$		Todd P. Wolf 5111 Timberland Trail Wisconsin Rapids, WI 54494	
	181	. 69 \%				Scattering	

G.A.B. Canvass Reporting System

\#Error

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	CONGRESSIIONA	- DISTRICT 1		Total Votes:	263,627
Party:	Congressional -	District 1	Total Votes:	263,627	
	79,363	30.1\%	JOHN HECKENLIVELY 410 SEVENTH STREET APT 2 RACINE WI 53403		Democrat
Winner	179,819	68.21\%	PAUL RYAN 221 E HOLMES ST JANESVILLE WI 53545		Republican
	4,311	1.64\%	JOSEPH KEXEL 7616 33RD AVE KENOSHA WI 53142		Libertarian
	134	.05\%	SCATTERING		
Office	CONGRESSIIONA	- DISTRICT 2		Total Votes:	309,460
Party:	Congressional -	District 2	Total Votes:	309,460	
Winner	191,164	61.77\%	TAMMY BALDWIN 119 MARTIN LUTHER KINGJR BLVD MADISON WI 53703		Democrat
	118,099	38.16\%	CHAD LEE 403 DURTSCHI DRIVE MT. HOREB WI 53572		Republican
	197	.06\%	SCATTERING		
Office	CONGRESSIIONA	- DISTRICT 3		Total Votes:	251,340
Party:	Congressional -	District 3	Total Votes:	251,340	
Winner	126,380	50.28\%	RON KIND 3061 EDGEWATER LANE LACROSSE WI 54603		Democrat
	116,838	46.49\%	DAN KAPANKE 1610 LAKESHORE DRIVE LACROSSE WI 54603		Republican
	8,001	3.18\%	MICHAEL KRSIEAN		Independent Citizen for Constitutional Government
			360 144TH AVE HOULTON WI 54082		
	121	.05\%	SCATTERING		
Office	CONGRESSIIONA	- DISTRICT 4		Total Votes:	208,103
Party:	Congressional -	District 4	Total Votes:	208,103	
Winner	143,559	68.98\%	GWEN MOORE 4043 N 19TH PLACE MILWAUKEE WI 53209		Democrat

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	STATE SENATE -	DISTRICT 29		Total Votes:	62,452
Party:	State Senate - District 29		Total Votes:	62,452	
	29,742	47.62\%	RUSS DECKER 1305 LAKE STREET WAUSAU WI 54401		Democrat
Winner	32,640	52.26\%	PAM GALLOWAY 1506 PINE VIEW LN WAUSAU WI 54403		Republican
	70	.11\%	SCATTERING		
Office	STATE SENATE - DI STRICT 31			Total Votes:	60,298
Party:	State Senate - District 31		Total Votes:	60,298	
Winner	30,314	50.27\%	KATHLEEN VINEHOUT W1490 CESLER VALLEY RD ALMA WI 54610		Democrat
	29,911	49.61\%	ED THOMPSON 805 KILBOURN AVENUE, PO BOX 604 TOMAH WI 54660		Republican
	73	.12\%	SCATTERING		
Office	STATE SENATE - DISTRICT 33			Total Votes:	63,045
Party:	State Senate - District 33		Total Votes:	63,045	
Winner	62,732	99.5\%	RICH ZIPPERER N24 W26419 BUCKS ISLAND CT PEWAUKEE WI 53072		Republican
	313	.5\%	SCATTERING		
Office	ASSEMBLY - DIS	TRICT 1		Total Votes:	24,405
Party:	Assembly - District 1		Total Votes:	24,405	
	10,165	41.65\%	RICHARD A. SKARE 9311 GILBRALTAR BLUFF ROAD, PO FISH CREEK WI 54212		Democrat
Winner	14,225	58.29\%	GAREY D. BIES 2520 SEITLEMENT RD SISTER BAY WI 54234		Republican
	15	.06\%	SCATTERING		
Office	ASSEMBLY - DIS	TRICT 2		Total Votes:	22,429
Party:	Assembly - District 2		Total Votes:	22,429	
	8,456	37.7\%	TED ZIGMUNT 305 OAKWOOD DR FRANCIS CREEK WI 54214		Democrat

| | Number of
 Votes
 Received | Cercent of |
| :---: | :---: | :---: | :---: | :---: |
| | Total Votes | |

| | Number of
 Votes
 Received | Cent of |
| :---: | :---: | :---: | :---: | :---: |
| | Total Votes | |

| | Number of
 Votes
 Received | Corcent of |
| :---: | :---: | :--- | :--- | :--- |
| | Total Votes | |

	Number of Votes Received	Percent of Total Votes	Candidate	Party	
Office	ASSEMBLY - DI STRICT 49			Total Votes:	18,244
Party:	Assembly - Distr	ct 49	Total Votes:	18,244	
	16	.09\%	SCATTERING		
Office	ASSEMBLY - DI STRI CT 50			Total Votes:	18,957
Party:	Assembly - District 50		Total Votes:	18,957	
	7,097	37.44\%	SARAH ANN SHANAHAN		Democrat
			N5845 VALLEY ROAD NEW LISBON WI 53950		
Winner	11,420	60.24\%	ED BROOKS		Republican
			S4311 GROTE HILL RD		
			REEDSBURG WI 53959		
	436	2.3\%	BEN OLSON III		Libertarian
			E9510 OAK HILL		
			WISCONSIN DELLS WI 53965		
	4	.02\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 51			Total Votes:	20,759
Party:	Assembly - District 51		Total Votes:	20,759	
	9,931	47.84\%	JOHN SIMONSON		Democrat
			1851 TWIN BRIDGE ROAD		
			MI NERAL POINT WI 53565		
Winner	10,822	52.13\%	HOWARD MARKLEIN		Republican
			S11665 SOELDNER RD		
			SPRING GREEN WI 53588		
	6	.03\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 52			Total Votes:	18,952
Party:	Assembly - District 52		Total Votes:	18,952	
	7,008	36.98\%	PAUL G. CZISNY 260 SHEBOYGAN ST FOND DU LAC WI 54935		Democrat
Winner	11,921	62.9\%	J EREMY THIESFELDT		Republican
			604 SUNSET LN		
			FOND DU LAC WI 54935		
	23	.12\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 53			Total Votes:	17,782
Party:	Assembly - District 53		Total Votes:	17,782	
Winner	17,685	99.45\%	RICHARD J. SPANBAUER		Republican
			3040 SHELDON DR		
			OSHKOSH WI 54904		

	Number of Votes Received	Percent of Total Votes	Candidate	Party	
Office	ASSEMBLY - DISTRICT 62		SCATTERING Total Votes:	Total Votes:	19,439
Party:	Assembly - District 62			19,439	
	9	.05\%			
Office	ASSEMBLY - DISTRICT 63			Total Votes:	19,653
Party:	Assembly - District 63		Total Votes:	19,653	
Winner	19,525	99.35\%	ROBINJ. VOS		Republican
			RACINE WI 53406		
	128	.65\%	SCATTERING		
Office	ASSEMBLY - DI STRICT 64			Total Votes:	11,485
Party:	Assembly - District 64		Total Votes:	11,485	
Winner	9,667	84.17\%	PETER W. BARCA		Democrat
			1339 38TH AVE		
			KENOSHA WI 53144		
	1,774	15.45\%	DAANE HOFFMAN		Libertarian
			3538 14TH AVE		
			KENOSHA WI 53140		
	44	. 38%	SCATTERING		
Office	ASSEMBLY - DI S	TRICT 65		Total Votes:	12,172
Party:	Assembly - Distr	ct 65	Total Votes:	12,172	
Winner	11,762	96.63\%	JOHN P. STEINBRINK		Democrat
			8640 88TH AVE		
			PLEASANT PRAIRIE WI 53158		
	410	3.37\%	SCATTERING		
Office	ASSEMBLY - DI S	TRICT 66		Total Votes:	20,796
Party:	Assembly - District 66		Total Votes:	20,796	
	6,284	30.22\%	STEVEN M. BROWN		Democrat
			8734 245TH AVENUE		
			SALEM WI 53168		
Winner	14,502	69.73\%	SAMANTHA KERKMAN		Republican
			40255 105TH ST		
			GENOA CITY WI 53128		
	10	.05\%	SCATTERING		

| | Number of
 Votes
 Received | Cercent of |
| :---: | :---: | :---: | :---: | :---: |
| | Total Votes | |

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DI S	TRICT 83		Total Votes:	28,203
Party:	Assembly - Distr	ct 83	Total Votes:	28,203	
	6,003	21.28\%	AARON ROBERTSON S67W12559 LARKSPUR RD MUSKEGO WI 53150		Democrat
Winner	22,192	78.69\%	SCOTT L. GUNDERSON 30805 SUNSET LANE WATERFORD WI 53185		Republican
	8	.03\%	SCATTERING		
Office	ASSEMBLY - DI S	TRICT 84		Total Votes:	27,004
Party:	Assembly - Distr	ct 84	Total Votes:	27,004	
	7,080	26.22\%	DON VANPOOL		Democrat
			S60W23787 STIGLER LN		
			WAUKESHA WI 53189		
Winner	19,906	73.72\%	MIKE KUGLITSCH		Republican
			21865 W TOLBERT DR		
			NEW BERLIN WI 53146		
	18	.07\%	SCATTERING		
Office	ASSEMBLY - DI S	TRICT 85		Total Votes:	19,604
Party:	Assembly - Distr	ct 85	Total Votes:	19,604	
Winner	10,298	52.53\%	DONNA SEIDEL		Democrat
			$807 \text { S 20TH ST }$		
			WAUSAU WI 54403		
	8,460	43.15\%	CHARLES R. ENO		Republican
			8705 WHIE PINE CT		
			WAUSAU WI 54403		
	830	4.23\%	JIM MAAS		Libertarian
			211 PEGGY LANE		
			ROTHSCHILD WI 54474-175		
	16	.08\%	SCATTERING		
Office	ASSEMBLY - DI S	TRICT 86		Total Votes:	23,136
Party:	Assembly - Distr	ct 86	Total Votes:	23,136	
	6,701	28.96\%	TODD PUNKE		Democrat
			4104 SUNNY HILL LANE		
			WAUSAU WI 54401		
Winner	15,459	66.82\%	J ERRY J. PETROWSKI		Republican
			720 N 136TH AVE		
			MARATHON WI 54448		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DIS	TRICT 86		Total Votes:	23,136
Party:	Assembly - Dist	t 86	Total Votes:	23,136	
	967	4.18\%	FREDERICK MELMS		Low taxes, small government
			3200 RIB MOUNTAIN WAY		
			WAUSAU WI 54401		
	9	.04\%	SCATTERING		
OfficeParty:	ASSEMBLY - DI STRICT 87			Total Votes:	19,760
	Assembly - District 87		Total Votes:	19,760	
	7,908	40.02\%	DANA SCHULTZ		Democrat
			7002 RANGELINE RD		
			ATHENS WI 54411		
Winner	11,223	56.8\%	MARY WILLIAMS		Republican
			542 BILLINGS AVE		
			MEDFORD WI 54451		
	623	3.15\%	FRANK RUTHERFORD		Independent
			11158 W CO RD C		
			EXELAND WI 54835-210		
	6	.03\%	SCATTERING		
Office	ASSEMBLY - DISTRICT 88			Total Votes:	16,209
Party:	Assembly - District 88		Total Votes:	16,209	
	7,957	49.09\%	JIM SOLETSKI		Democrat
			496 MENLO PARK RD		
			GREEN BAY WI 54302		
Winner	8,224	50.74\%	JOHN KLENKE		Republican
			3463 YORKSHIRE ROAD		
			GREEN BAY WI 54311		
	28	.17\%	SCATTERING		
Office	ASSEMBLY - DI S	TRICT 89		Total Votes:	23,326
Party:	Assembly - District 89		Total Votes:	23,326	
	7,520	32.24\%	BOB ORWIG		Democrat
			W2133 RADER RD		
			MARINETTE WI 54143		
Winner	15,788	67.68\%	J OHN NYGREN		Republican
			N2118 KELLER RD		
			MARINETTE WI 54143		
	18	.08\%	SCATTERING		

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	ASSEMBLY - DI	TRICT 94		Total Votes:	23,754
Party:	Assembly - Dis	t 94	Total Votes:	23,754	
	9,768	41.12\%	CHERYL HANCOCK 1007 DEERFIELD ST HOLMEN WI 54636		Democrat
Winner	13,979	58.85\%	MIKE HUEBSCH 419 W FRANKLIN ST WEST SALEM WI 54669		Republican
	7	.03\%	SCATTERING		
Office	ASSEMBLY - DI	TRICT 95		Total Votes:	18,720
Party:	Assembly - Dis	+ 95	Total Votes:	18,720	
Winner	11,893	63.53\%	JENNIFER SHILLING 2608 MAIN ST LACROSSE WI 54601		Democrat
	6,790	36.27\%	NICK CHARLES 1010 CASS ST LA CROSSE WI 54601		Republican
	37	. 2%	SCATTERING		
Office	ASSEMBLY - DI	TRICT 96		Total Votes:	19,571
Party:	Assembly - Dist	$\text { ict } 96$	Total Votes:	19,571	
	7,604	38.85\%	BRIAN K. MURPHY S1222 MATHISON LANE WESTBY WI 54667-726		Democrat
Winner	11,964	61.13\%	LEE A. NERISON S3035 COUNTY ROAD B WESTBY WI 54667		Republican
	3	$.02 \%$	SCATTERING		
Office	ASSEMBLY - DI	TRICT 97		Total Votes:	19,675
Party:	Assembly - Dist	$\text { ict } 97$	Total Votes:	19,675	
	6,390	32.48\%	DAWN M. CARUSS 215 N GREENFIELD AVENUE WAUKESHA WI 53186		Democrat
Winner	13,272	67.46\%	BILL KRAMER 2005 CLIFF ALEX CT SOUTH APT 3 WAUKESHA WI 53189		Republican
	13	.07\%	SCATTERING		

G.A.B. Canvass Reporting System

Canvass Results for 2012 JUNE 5 RECALL ELECTION - 6/5/2012

	Number of Votes Received	Percent of Total Votes	Candidate		Party
Office	GOVERNOR			Total Votes:	2,516,065
Party:	GOVERNOR		Total Votes:	2,516,065	
Winner	1,335,585	53.08\%	SCOTT WALKER		Republican
			520 N 68 TH ST		
			WAUWATOSA WI 53213		
	1,164,480	46.28\%	TOM BARRETT		Democrat
			5030 W WASHINGTON BLVD		
			MILWAUKEE WI 53208		
	14,463	.57\%	HARI TRIVEDI		Independent
			16880 VANDERBILT ST		
			BROOKFIELD WI 530052777		
	1,537	.06\%	SCATTERING		
Office	LIEUTENANT GOVERNOR		Total Votes:	Total Votes:	2,461,336
Party:	LIEUTENANT GOVERNOR			2,461,336	
Winner	1,301,739	52.89\%	REBECCA KLEEFISCH		Republican
			W357 SPINNAKER DRIVE N6189		
			OCONOMOWOC WI 53066		
	1,156,520	46.99\%	MAHLON MITCHELL		Democrat
			2574 TARGHEE ST		
			FITCHBURG WI 537115493		
	3,077	.13\%	SCATTERING		
Office	RECALL STATE SENATE-DISTRICT 13			Total Votes:	80,851
Party:	RECALL STATE SENATE- 13		Total Votes:	80,851	
Winner	47,146	58.31\%	SCOTT FITZGERALD		Republican
			N4692 MAPLE RD		
			JUNEAU WI 53039		
	32,909	40.7\%	LORI COMPAS		Democrat
			326 GARFIELD ST		
			FORT ATKINSON WI 535381409		
	763	.94\%	TERRY VIRGIL		Libertarian
			321 SWAP ST APT 101		
			JOHNSON CREEK WI 53038		
	33	.04\%	SCATTERING		

Analysis of the Efficiency Gaps of Wisconsin's Current Legislative District Plan and Plaintiffs' Demonstration Plan

Kenneth R. Mayer, Ph.D.
Department of Political Science
University of Wisconsin-Madison
July 3, 2015

Table of Contents

I. Introduction 2
II. Qualifications, Publications, Testimony, and Compensation 3
III. Opinions 4
A. Summary 4
B. Measuring Partisanship in Actual and Hypothetical Districting Plans 5

1. Step One: A Model of Voting in Assembly Elections 8
a. The Dependent Variable: Ward level Assembly Vote 12
b. Independent Variables: Demographic Data 12
c. Independent Variables: Measures of Partisanship 13
d. Independent Variables: Incumbency 17
e. Independent Variables: County Effects 18
f. Estimation and Results 19
g. Out of Sample Forecasting Accuracy 25
h. Comparison to 2011 Republican Expert Baseline Partisanship Measure 29
2. Step Two - Predicting Votes in a Demonstration District Plan 30
a. Creating a Demonstration District Plan 31
b. Constitutional and Statutory Requirements 37
C. Efficiency Gap Calculations 38
3. Analysis of Act 43 38
4. Efficiency Gap Calculations for Act 43 and The Demonstration Plan 43
D. Conclusions 54
IV. Sources 56

I. Introduction

My name is Kenneth Mayer and I currently am a Professor of Political Science at the University of Wisconsin-Madison, and a faculty affiliate at the Lafollette School of Public Affairs, at the University. I joined the faculty in 1989. I teach courses on American politics, the presidency, Congress, campaign finance, election law, and electoral systems.

I have been retained by counsel representing the plaintiffs in this lawsuit (the "Plaintiffs") to analyze and provide expert opinions. I have been asked to determine whether, in my opinion, it is possible to create a Wisconsin state legislative map that does not result in systemic partisan advantage, by drawing a legislative district plan that has an efficiency gap as close to zero as possible while complying with federal and state requirements at least as well as the plan enacted by the Wisconsin legislature in Act 43. ${ }^{1}$

I submit this report, which contains the opinions that I intend to give in this matter. I describe my methods for estimating the state Assembly vote in actual and hypothetical state legislative redistricting plans, and for calculating the efficiency gap for Act 43 and for the alternative demonstration plan I drew.

My opinions, which are based on the technical and specialized knowledge that I have gained from my education, training and experience, are premised on commonly used, widely accepted and reliable methods of analysis, the application of the legal requirements of redistricting, and are based on my review and analysis of the following information and materials:

- Redistricting materials available from the Wisconsin legislature at http://legis.wisconsin.gov/gis/data, including Geographic Information System (GIS)

[^1]files for Act 43 districts, and ward level election data for 2012

- Census Bureau data on population, citizenship, and location of institutionalized populations as explained below
- Election data from the 2013-2014 Wisconsin Blue Book for the 2012 State Assembly and presidential elections
- Election data from the Government Accountability Board, including ward level 2012 election results for State Assembly and presidential elections.
- GIS data, including Census population figures, block assignments, and shape files for Wisconsin, available in the GIS program Maptitude for Redistricting
- Files submitted by defendants in Baldus et al. v. Brennan et al.

I conducted my analysis using Stata, Excel, R, and Maptitude for Redistricting.

II. Qualifications, Publications, Testimony, and Compensation

I have a Ph.D. in political science from Yale University, where my graduate training included courses in econometrics and statistics. My undergraduate degree is from the University of California, San Diego, where I majored in political science and minored in applied mathematics. My curriculum vitae is attached to this report as Exhibit 1.

All publications that I have authored and published in the past ten years appear in my curriculum vitae, attached as Exhibit 1. Those publications include the following peerreviewed journals: Journal of Politics, American Journal of Political Science, Election Law Journal, Legislative Studies Quarterly, Presidential Studies Quarterly, American Politics Research, Congress and the Presidency, Public Administration Review, and PS: Political Science and Politics. I have also published in law reviews, including the Richmond Law Review, the UCLA Pacific Basin Law Journal, and the University of Utah Law Review. My work on campaign finance has been published in Legislative Studies Quarterly, Regulation,

PS: Political Science and Politics, Richmond Law Review, the Democratic Audit of Australia, and in an edited volume on electoral competitiveness published by the Brookings Institution Press. My research on campaign finance has been cited by the Government Accountability Office, and by legislative research offices in Connecticut and Wisconsin.

My work on election administration has been published in the Election Law Journal, American Journal of Political Science, Public Administration Review, and American Politics Research. I was part of a research group retained as a consultant by the Wisconsin Government Accountability Board to review their compliance with federal mandates and reporting systems, and to survey local election officials throughout the state. I serve on the Steering Committee of the Wisconsin Elections Research Center, a unit with the UW-Madison College of Letters and Science. In 2012 I was retained by the U.S. Department of Justice to analyze data and methods regarding Florida's efforts to identify and remove claimed ineligible noncitizens from the statewide file of registered voters.

In the past eight years, I have testified as an expert witness in trial or deposition in the following cases: Baldus et al. v. Brennan et al., 849 F. Supp. 2d 840 (E.D. Wis. 2012);

Milwaukee Branch of the NAACP et al. v. Walker et al., 2014 WI 98, 357 Wis. 2d 469, 851
N.W. 2d 262; McComish et al. v. Brewer et al., No.CV- 08-1550, 2010 WL 2292213 (D.

Ariz. June 23, 2010); and Kenosha County v. City of Kenosha, No. 11-CV-1813 (Kenosha
County Circuit Court, Kenosha, WI, 2011).
I am being compensated at a rate of $\$ 300$ per hour.

III. Opinions

A. Summary

My opinions may be summarized as follows.

- Using a model that estimates baseline ward-level partisanship, I conclude that the redistricting plan enacted by Act 43 is significantly biased against Democrats, with an efficiency gap of 11.69%. The plan achieves this via the use of classic "packing and cracking" gerrymandering techniques: concentrating Democratic voters into districts where they have overwhelming majorities (packing), and drawing other districts so that Democrats constitute partisan minorities well below 50% and unlikely to win legislative seats (cracking). In doing so, Republicans guarantee a strong majority of legislative seats, even if they obtain well below 50% of the statewide legislative vote. In 2012, Republicans won 61% of State Assembly seats (60 of 99) while achieving only 46.5% of the statewide vote (as measured by the presidential vote, a common proxy for statewide partisanship).
- Using the same measure of partisan strength that the Wisconsin state legislature used in assessing partisan impact of proposed districts in Act 43, Act 43 has an efficiency gap of 12.36%.
- I created a demonstration redistricting plan (the "Demonstration Plan") that is equivalent to Act 43 on population deviation, has fewer political subdivision splits, and has better compactness scores, with a much lower efficiency gap score of 2.20%. This is less than one-fifth of the Act 43 efficiency gap.
- The Demonstration Plan shows that the partisan advantage secured in Act 43 was in no sense required in order to adhere to the constitutional and statutory requirements of legislative redistricting.

B. Measuring Partisanship in Actual and Hypothetical Districting Plans

The efficiency gap is a measure of "wasted votes" that fall into two categories: those votes cast for a losing candidate in a district (lost votes), and votes cast for the winning candidate above what is necessary to win (surplus votes). In an existing set of districts, the calculation is based on the actual vote in each district, with adjustments for uncontested races (Stephanopoulos and McGhee 2015). Larger imbalances in the number of wasted votes signify a degree of partisan unfairness against the political party with more wasted votes.

Calculating the efficiency gap in the Demonstration Plan requires estimating what the underlying partisan vote would be in each newly drawn (and hypothetical) district. The gap cannot be estimated by simply rearranging the votes cast in actual Assembly contests into a new
district configuration, as the votes cast for specific Assembly candidates in each district are a function of the electoral environment in that district and whether a race is even contested by both parties. A large literature has developed around the problem of estimating the likely election results in redistricting plan alternatives and calculating summary statistics that characterize existing and hypothetical plans (Gelman and King 1994; Cain 1985).

In most applications, the partisan consequences of a redistricting plan are expressed in terms of the effect on future elections: using prior election results to predict outcomes in subsequent election cycles, or estimating the statewide vote swing required to significantly change the partisan composition of the legislature from one election to the next (Gelman and King 1990; Cain 1985). The results are typically expressed as the estimated two-party vote percentages in each new district (Gelman and King 1994), which are sufficient to forecast who will win an election and calculate swing ratios and seats-votes curves. ${ }^{2}$

My aim is different. Instead of estimating future election results for an existing or proposed hypothetical plan, my goal was to determine whether it was possible to draw a district plan following the 2010 Census that minimized the efficiency gap while maintaining strict fidelity to the federal and state constitutional requirements of population equality, contiguity, compactness, respect for political subdivisions, and compliance with the Voting Rights Act. The efficiency gap is a function of the number of wasted votes, and therefore requires a model that generates predictions of how many votes would have been cast for Democratic and Republican candidates in 2012 in a different district configuration, rather than simply vote

[^2]percentages. My methods provide a way of estimating what the 2012 Assembly election results would have been in such a Demonstration Plan.

Given appropriate data, it is possible to generate reliable and accurate vote count predictions that can be aggregated to any district boundaries. What is required is a set of independent variables that accurately predict the vote in state Assembly elections but which are to the greatest extent possible exogenous to that vote, meaning that the independent variables have underlying values that do not themselves depend on the district vote. If this condition is met, we can estimate what the district vote would have been in an alternative district configuration, since the independent variables do not depend on any particular district configuration. This is not an issue in models that predict future election results, since by definition variables measured today are exogenous to outcomes that occur several years in the future. Because I use one set of election results (the 2012 presidential vote) as part of a model that predicts another set of contemporaneous election results (the 2012 Assembly vote), it is an important but manageable methodological issue.

My method consists of two steps. The first is the construction of a regression model that predicts the 2012 Assembly vote as a function of partisanship, population, demographics, incumbency, and fixed geographic boundaries in Wisconsin's roughly 6,600 wards. In doing so, I establish the empirical relationships between a set of exogenous variables independent of any specific district configurations and the actual Assembly vote in existing wards. In the second step, I use this model to generate a forecast of Assembly vote preferences as a function of these independent variables, and disaggregate this forecast to the Census block level. Using these block level estimates of the Assembly vote, I draw a Demonstration Plan and estimate the Assembly vote and efficiency gap in the resulting districts.

1. Step One: A Model of Voting in Assembly Elections

Estimating the Assembly vote in alternative district configurations requires a model that can generate accurate estimates of the underlying partisanship of a district. As I noted above, the most common models regress the observed Assembly vote on measures of district partisan preferences and other variables known to affect the vote, and generate a predicted value of the vote based on the values of the independent variables. Changing district boundaries will change the values of the independent variables as new voters are moved into the district and others moved out, which in turn allows forecasts of what the vote would be in those new districts.

What I am interested in estimating is how many votes will be cast for Democratic and Republican candidates in each district in a demonstration district plan. This involves a different set of variables than is typical in models that evaluate the percentage of votes each party receives, since I require a measure that accounts for both differences in ward populations and variation in turnout.

I use ward level vote totals as the unit of analysis to increase the number of observations available and allow for more precise estimates. Wisconsin's 99 Assembly districts are composed of roughly 6,600 wards, with districts containing between 24 and 153 wards. While the ideal population of an Assembly district is 57,444 , wards have an average population of approximately 869 people, and are far more demographically homogeneous. ${ }^{3}$

[^3]There are four reasons analysis at the ward level is preferable to analysis at the district level. The first is a matter of sheer numbers: the precision of coefficient estimates, forecasting accuracy, and overall statistical power are all strongly related to the number of observations (or sample size). An n of 6,600 is far preferable to an n of 99 , all other things being equal. ${ }^{4}$

The second is the amount of information lost when smaller units are ignored. From a statistical standpoint, using district data when ward data are available imposes the assumption that the values of all of the ward-level variables are equal to the district level variables, when we know this to be untrue immediately upon inspection. Assembly district 1, for example, has 110 populated wards, ranging in population between one and 999 people. In 2012, 73.4% of the voting age population cast ballots in the Assembly contest, and the victorious Republican Assembly candidate received 51.3% of the vote. At the ward level, however, there was considerable variation, with the Republican vote percentage ranging from a low of 38.4% to a high of 75%, and turnout ranging from 50% to over 90%. Ignoring this information and variation will lead to less accurate estimates and forecasts.

Third, in the second step of the analysis I disaggregate ward level estimates to the block level. Minimizing the differences in size and maximizing the homogeneity across that disaggregation will lead to more accurate block level estimates.

And fourth, each Census block is assigned to a single ward, ${ }^{5}$ with a unique numerical code that identifies the block's location. ${ }^{6}$ These codes allow for disaggregating ward level data

[^4]into blocks and generating inputs for the redistricting software I use in the second step of my analysis.

I use two main sources of data. The first is redistricting data prepared by the Wisconsin Legislative Technology Services Bureau (LTSB), which consists of spreadsheets with ward level Census population data and election results, as well as ward and district shape files containing this data that can be imported into GIS software. ${ }^{7}$ The second source is official election results published by the Government Accountability Board (GAB), both online and in the 2013 edition of the Wisconsin Blue Book.

In my experience working with large data sets, and especially when dealing with complex GIS data, I have found data errors to be a common problem. I assessed the reliability of the LTSB data by checking it against the GAB election data, and found numerous errors that required correction, as well some errors that could not be corrected. ${ }^{8}$ I describe these errors and my corrections in greater detail in an annex to this report. All subsequent references to ward level vote or population counts uses these corrected vote totals.

The regression model used to predict Assembly vote totals takes the standard form of

$$
\mathrm{Y}_{i}=\alpha+\beta \mathrm{X}_{i}+\varepsilon_{i}
$$

where Y_{i} is the dependent variable in ward i, X_{i} is a set of independent variables in ward i, and α, β, and ε_{i} are parameters estimated as a function of the variables. The full model is:

$$
\begin{aligned}
& \text { Assembly } \\
& \text { Vote }_{i}
\end{aligned}=\alpha+\beta_{1} \text { Total VEP }_{i}+\beta_{2} \text { Black VEP }_{i}+\beta_{3}{\text { Hispanic } V E P_{i}}^{\text {A }}
$$

[^5]\[

$$
\begin{gathered}
\quad+\beta_{4} \begin{array}{c}
\text { Democratic }_{\text {Presidential Vote }}^{i}
\end{array}+\beta_{5} \begin{array}{c}
\text { Republican } \\
\text { Presidential Vote }_{i}
\end{array} \\
+\beta_{6} \text { Democratic }_{\text {Incumbent }_{i}}^{\text {Des }}+{ }_{7} \text { Republican }_{\text {Incumbent }_{i}}^{\text {Replo }}+\sum_{j=1}^{71} \gamma_{j} \text { County }_{j}+\varepsilon_{i}
\end{gathered}
$$
\]

Where

Assembly Vote

Black VEP Voting eligible Black population in ward i

Hispanic VEP Voting eligible Hispanic population in ward i

Democratic Number of votes cast for Barack Obama in the 2012
Presidential Vote

Republican Number of votes cast for Mitt Romney in the 2012
Presidential Vote
Democratic
Incumbent

Republican $\quad 1$ if the Assembly election in ward i has a Republican Incumbent

County candidate in the 2012 Assembly election in ward i. I estimate separate equations for the Democratic and Republican candidates

Total VEP \quad Voting eligible population in ward i, as measured in the 2010 Census presidential election in ward i presidential election in ward i

Number of votes cast for the Republican or Democratic

The model explains the Assembly vote as a function of four types of variables: district demographics, underlying partisanship, incumbency, and fixed geographic effects.

[^6]
a. The Dependent Variable: Ward level Assembly Vote

The key quantity of interest in this analysis is the number of Assembly votes for each party, and it is the dependent variable in the model, using LTSB ward data that I corrected using the process outlined above. Since I am interested in estimating actual vote counts and not the percentage of the two party vote, I estimate separate equations for votes received by each party. ${ }^{10}$ Estimating vote counts provides more accuracy than vote percentages, as it controls for variations in turnout across districts. ${ }^{11}$

b. Independent Variables: Demographic Data

The first three independent variables - Total Voting Age Population (VEP), Black VEP,
and Hispanic VEP - are the 2010 Census voting age population counts by ward, adjusted to remove ineligible voters. ${ }^{12}$ Total VEP constitutes a baseline of the size of the voting population, reflecting the fact that the number of votes will be a function of total population. Black and Hispanic VEP are additional controls that reflect the partisan tendencies of key subpopulations as

[^7]well as turnout likelihood. Traditionally, both African American and Hispanic populations vote at lower rates that whites, although in 2012 African American turnout was comparable to white turnout. Hispanic populations vote at lower rates than other demographic groups, in part because of a higher noncitizen population, but also because of socioeconomic factors known to reduce turnout.

I expect weak relationships for these measures because of the importance of the next set of variables, which reflect actual voting in the 2012 presidential election.

c. Independent Variables: Measures of Partisanship

The next two variables are the number of votes cast for the Democratic and Republican candidates for president in the 2012 election. The presidential vote is widely used as an exogenous measure of district level partisanship (Ansolabehere, Snyder and Stewart 2000, 2001; Gelman and King 1994; Glazier, Grofman, and Robbins 1987; McDonald 2014; Jacobson 2003, 2009), and it correlates very strongly with other more complex measures of partisan strength (Levendusky, Pope, and Jackman 2008).

The presidential vote is, not surprisingly, an extremely strong predictor of the legislative vote. If we know how many votes were cast for the Republican presidential candidate in a ward we will have a very good idea, subject to some conditions, of how many votes will be cast for the Republican candidate in the legislative election in that ward. While not everyone who votes for the Republican presidential candidate will vote for the Republican state legislative candidate, nearly all will, and we can precisely quantify the nature of that relationship.

The strength of the relationship between presidential and Assembly votes is clear in Figures 1 through 3, which plot the total Assembly vote, Republican Assembly vote, and Democratic Assembly vote in 2012 by the respective presidential vote in each contested ward (where voters have an opportunity to express a preference for either party in the legislative race).

Figure 3: Presidential Vote and Assembly Vote 2012

Figure 1 shows that the number of presidential votes cast in a ward is very strongly related to the number of Assembly votes, although almost all wards show a "roll off" as some presidential voters opt not to mark the ballot in the assembly race (the reference line shows where the number of presidential and Assembly votes would be equal). Such drop-offs are ubiquitous in down-ticket races, because voters have less information about lower-level candidates and often have weaker or nonexistent preferences (Wattenberg, McAllister, and Salvanto 2000).

The graphs for the Republican (Figure 2) and Democratic (Figure 3) votes show more variance around this reference line, indicating that some voters are splitting their tickets by voting for a presidential candidate of one party and an Assembly candidate of the other. Nevertheless, the relationship between the number the Republican and Democratic presidential and Assembly votes is apparent. Taken together, these figures indicate that the presidential vote is a very strong predictor of the Assembly vote.

An important property of the presidential vote as an independent variable in this model is that it can be treated as exogenous to (i.e., not caused by) the legislative vote. Exogeneity can be described in two ways. The first is in causal terms. Most voters will vote for the same party for the president and state Assembly, as the above graphs show. These voters are consistent because they are Democrats or Republicans, and partisanship is the factor that explains both vote choices. Other voters will make their Assembly choice based on their presidential vote, because they use party labels as a cue when voting in a down-ticket race. "[P]arties are generally known by the presidential candidates they nominate, and candidates for state legislative races are a good deal less well known to voters than the congressional candidates who ride presidential coattails" (Campbell 1986, 46). Few voters, if any at all, will decide on an Assembly candidate first and
then vote for president on the basis of their Assembly vote preference. The causal arrow runs from the presidential vote to the Assembly vote, not from the Assembly vote to the presidential vote. This is why we speak of presidential coattails affecting legislative races, and not the other way around (Campbell 1986; Jacobson 2009).

The second reason why the presidential vote is exogenous to the Assembly vote is that it is not affected by local district-level conditions such as incumbency, spending, or candidate quality (Abramowitz, Alexander, and Gunning 2006, 87). The broader factors that influence the presidential vote, and the presidential candidates themselves, are the same in every Assembly district. The presidential vote is affected by underlying partisanship, national conditions and the characteristics of the presidential candidates, factors that are constant whether that vote is aggregated at the state, district, or ward levels.

To put it another way, a change in the statewide presidential vote is virtually certain to affect state legislative election results. Adding or subtracting hundreds of thousands of Democrats or Republicans will alter voting patterns at the district level. However, nobody would expect that the statewide presidential result will be affected by the configuration of legislative districts. The statewide presidential vote would be the same, no matter how the district lines are drawn. Consequently, we can consider the presidential vote as exogenous to, but a causal factor of, the state legislative vote.

d. Independent Variables: Incumbency

The incumbency advantage is perhaps the most well-known feature of contemporary legislative elections (Jacobson 2009, 30-35). Legislative incumbents rarely lose, and usually win by large margins. All other things being equal, an incumbent will get more votes than a non-
incumbent. The causes of this advantage are less important in this context than its magnitude. ${ }^{13}$ The model takes into account the incumbency advantage by noting whether an incumbent is running in an Assembly district.

Incumbency effects are measured with a dummy variable equal to 1 when a candidate is an incumbent, and 0 otherwise, ${ }^{14}$ multiplied by the ward voting eligible population to create an interactive variable that accounts for differences in size from one ward to the next. Since the dependent variable is an actual vote count, the value of incumbency - in terms of how many additional votes incumbents receive - will vary with the number of voters who reside in a ward.

e. Independent Variables: County Effects

The last set of variables estimate the effect that county geography has on the Assembly vote. Some counties in Wisconsin are heavily Republican (Ozaukee, Washington, Waukesha) and some heavily Democratic (Dane, Douglas, Milwaukee). It is possible that a voters' county of residence could have an effect on the vote choice, whether because of sorting, socialization or assimilation, or other unobserved effects. Including dummy variables for each county will capture these effects if they exist. There are 71 county variables (excluding Dunn County) set to 1 when a ward is located in that county, 0 otherwise.

[^8]
f. Estimation and Results

Using Stata IC 11.2 I performed ordinary least squares regression, using 2012 ward data from contested districts where both Republican and Democratic candidates were on the ballot. ${ }^{15}$ Analyzing contested races solves the problem of trying to estimate partisan support in a district where voters have no opportunity to express their support for one side (Gelman and King 1994). The fact that Republicans registered 0 Assembly votes in the $78^{\text {th }}$ district (Madison), and Democrats 0 votes in the $58^{\text {th }}$ district (Washington County), does not mean there are no Republicans in the $78^{\text {th }}$ or Democrats in the $58^{\text {th }}$ districts, or that a Republican or Democratic candidate would receive zero votes if one were on the ballot. Using uncontested races in this initial analysis would produce inaccurate estimates of party strength in those districts.

The results for the Democratic and Republic regression models appear in Table 1. ${ }^{16}$ Most variables show the expected effects, particularly the very strong impact of the presidential vote. The r^{2} values are extremely high, and the standard errors of the regression models (Root MSE) are low. The model is also extremely accurate: when compared to actual ward vote, the model's predictions of the Republican ward totals are within 16 votes, and the Democratic predictions are within 18 votes.

Figure 4 shows the overall accuracy of the model by plotting the predicted ward level vote totals by the actual vote totals in each ward. Predictions for both Democrats and

[^9]Republicans are grouped tightly around the 45-degree line where predicted and actual values would be equal.

Figure 5 shows the accuracy of the model at the district level, which is the more relevant quantity for real-world applicability. I calculated district level results by aggregating wards into the associated Assembly district, using LTSB assignments. The district-level estimates are very close to the actual vote totals, and the average absolute error is 356 votes for Democratic candidates and 344 votes for Republican candidates.

Table 1
Regression Results: 2012 Assembly Votes, Contested Districts County fixed effect variables not shown,

Dependent Variable	Independent Variable	
	Assembly Republican Votes	Assembly Democratic Votes
Total Voting Eligible Population	$\begin{gathered} 0.009 \\ (.0070) \end{gathered}$	$\begin{aligned} & -0.008 \\ & (.0122) \end{aligned}$
Black Voting Eligible Population	$\begin{aligned} & -0.026 \\ & (.0215) \end{aligned}$	$\begin{aligned} & -0.021 \\ & (.044) \end{aligned}$
Hispanic Voting eligible Population	$\begin{aligned} & -0.0083 \\ & (.0321) \end{aligned}$	$\begin{gathered} -0.149^{* *} \\ (.05) \end{gathered}$
Democratic Presidential Votes	$\begin{aligned} & 0.0072 \\ & (.0173) \end{aligned}$	$\begin{gathered} 0.931^{* * *} \\ (.028) \end{gathered}$
Republican Presidential Votes	$\begin{gathered} 0.946^{* * *} \\ (.0086) \end{gathered}$	$\begin{aligned} & 0.013 \\ & (.013) \end{aligned}$
Democratic Assembly Incumbent	$\begin{gathered} -0.021^{* * *} \\ (.006) \end{gathered}$	$\begin{gathered} 0.028^{* * *} \\ (.007) \end{gathered}$
Republican Assembly Incumbent	$\begin{gathered} 0.011^{* *} \\ (.0042) \end{gathered}$	$\begin{gathered} -0.014^{* *} \\ (.005) \end{gathered}$
Constant	$\begin{gathered} -0.92 \\ (7.52) \end{gathered}$	$\begin{gathered} 9.8 \\ (5.4) \end{gathered}$
N	5,282	5,282
r^{2}	. 9903	. 9843
Root MS Error	15.8	17.7
Robust standard errors clustered by Assembly District in parentheses.${ }^{*} \mathrm{p}<.05, * * \mathrm{p}<0.01, * * * \mathrm{p}<0.001$		

Figure 4: Ward Level Predicted vs. Actual Assembly Vote - 2012

Figure 5: Predicted vs. Actual District Assembly Vote - 2012
Both Parties, Contested Districts

As important as the prediction of actual district vote totals is the model's ability to accurately identify the winner, as the efficiency gap calculation is sensitive to the party of the winners and losers. ${ }^{17}$ The accuracy of the model is shown in Table 2, which gives the actual and predicted vote percentages of the two-party vote for Republican candidates in contested districts. ${ }^{18}$

[^10]Table 2 - Predicted vs. Actual Vote Percentages,
Contested Districts

Assembly District	Actual GOP Vote \%	Predicted GOP Vote \%	Correct Winner?	Error
1	51.3\%	52.3\%	Y	1.0\%
2	58.7\%	58.8\%	Y	0.1\%
3	60.4\%	58.6\%	Y	-1.8\%
4	55.7\%	54.6\%	Y	-1.0\%
5	55.9\%	57.6\%	Y	1.7\%
6	59.5\%	59.9\%	Y	0.4\%
13	60.6\%	60.4\%	Y	-0.2\%
14	59.1\%	60.7\%	Y	1.6\%
15	58.3\%	57.1\%	Y	-1.2\%
20	42.4\%	40.9\%	Y	-1.5\%
21	59.3\%	56.9\%	Y	-2.5\%
23	62.3\%	61.8\%	Y	-0.5\%
24	62.4\%	61.0\%	Y	-1.4\%
25	57.7\%	57.0\%	Y	-0.7\%
26	51.3\%	55.1\%	Y	3.8\%
27	57.8\%	54.4\%	Y	-3.5\%
28	56.2\%	56.5\%	Y	0.3\%
29	55.9\%	55.2\%	Y	-0.7\%
30	55.8\%	56.5\%	Y	0.7\%
31	56.5\%	55.9\%	Y	-0.7\%
32	59.1\%	59.7\%	Y	0.6\%
33	64.9\%	63.8\%	Y	-1.0\%
34	61.3\%	60.9\%	Y	-0.4\%
35	56.0\%	55.9\%	Y	-0.1\%
36	59.0\%	60.0\%	Y	1.0\%
37	54.3\%	56.0\%	Y	1.7\%
38	60.0\%	61.9\%	Y	1.9\%
39	60.4\%	60.0\%	Y	-0.4\%
41	58.0\%	57.4\%	Y	-0.5\%
42	56.6\%	54.8\%	Y	-1.8\%
43	42.3\%	42.9\%	Y	0.7\%
44	38.4\%	40.1\%	Y	1.7\%
45	36.1\%	35.2\%	Y	-1.0\%
46	35.2\%	34.5\%	Y	-0.7\%
47	29.0\%	30.2\%	Y	1.1\%
49	54.4\%	54.6\%	Y	0.3\%
50	51.7\%	51.8\%	Y	0.1\%
51	51.9\%	49.9\%	N	-2.0\%
52	60.7\%	60.1\%	Y	-0.6\%
53	60.1\%	62.9\%	Y	2.8\%
54	39.8\%	42.0\%	Y	2.3\%
55	65.2\%	59.2\%	Y	-6.1\%
56	58.3\%	59.7\%	Y	1.3\%
60	71.2\%	72.6\%	Y	1.4\%
61	55.7\%	55.6\%	Y	-0.1\%
62	53.1\%	53.9\%	Y	0.8\%
63	58.4\%	57.7\%	Y	-0.6\%

67	53.3%	53.5%	Y	0.2%
68	52.4%	50.7%	Y	-1.8%
69	61.2%	58.5%	Y	-2.7%
70	49.7%	50.1%	N	0.4%
71	39.0%	39.3%	Y	0.2%
72	50.2%	51.3%	Y	1.1%
74	41.0%	41.1%	Y	0.1%
75	48.9%	49.2%	Y	0.2%
80	36.1%	35.3%	Y	-0.8%
81	38.1%	39.6%	Y	1.4%
82	60.3%	61.6%	Y	1.4%
83	69.8%	71.6%	Y	1.9%
84	62.8%	61.8%	Y	-1.0%
85	48.2%	48.7%	Y	0.5%
86	55.7%	56.1%	Y	0.4%
87	58.6%	58.3%	Y	-0.3%
88	52.5%	54.1%	Y	1.7%
89	59.1%	59.2%	Y	0.1%
90	39.6%	37.7%	Y	-1.9%
93	50.8%	52.0%	Y	1.2%
94	39.4%	39.4%	Y	0.0%
96	59.6%	59.7%	Y	0.1%
97	64.7%	64.4%	Y	-0.3%
98	70.5%	70.0%	Y	-0.5%
99	76.3%	77.0%	Y	0.7%

The regression model identifies the correct winner in 70 of 72 districts (97.2%); that is, it accurately identifies the candidate who received the most votes. In the two misclassified races, the Republican candidates received 51.9% and 49.7% of the vote. The average absolute error in the vote margin is 1.49%.

g. Out of Sample Forecasting Accuracy

These results, which compare predicted election results to the actual election results, demonstrate that the model is very accurate. A harder test involves the accuracy of predictions using data not in the sample - that is, applying the model to data and election results that are different from the data used to estimate the model. To test the model's out of sample accuracy, I reran the model 72 times (once for every contested district) excluding every ward in one single
contested district each time, ${ }^{19}$ and then used the results of that estimation to predict the vote totals in wards in the excluded district using the independent variable values for those wards. For example, in the first run I excluded all wards in Assembly district 2 (see footnote 20), and estimated the model using data from the other seventy one contested districts. I then used the results to predict the vote totals in the 2 nd district, and compared the prediction to the actual vote totals. Since we know the actual election results in excluded districts, this exercise is a "hard test" of the model's general predictive ability.

Figure 6 and Table 3 show the results for the 60 contested districts in which the full model could be estimated. ${ }^{20}$ The average district forecast error of the Republican vote percentage increased slightly, to 2.1%, but the out of sample forecasts identified the correct winner in 59 out of 60 races (98.3%). In Figure 6, which plots the actual versus predicted vote totals, the points are not grouped as tightly around the 45-degree line as they are in the full model predictions (Figure 5), but still show a very high degree of accuracy.

Table 3 -Out of Sample Predicted vs. Actual Vote
Percentages, Contested Districts

Assembly District	Actual GOP Vote $\%$	Predicted GOP Vote $\%$	Correct Winner?	Error
2	58.7%	59.0%	Y	0.3%
3	60.4%	57.5%	Y	-2.9%
4	55.7%	54.3%	Y	-1.3%
5	55.9%	58.9%	Y	2.9%
13	60.6%	60.4%	Y	-0.2%

[^11]| 14 | 59.1\% | 61.0\% | Y | 1.8\% |
| :---: | :---: | :---: | :---: | :---: |
| 15 | 58.3\% | 56.7\% | Y | -1.6\% |
| 20 | 42.4\% | 39.9\% | Y | -2.5\% |
| 21 | 59.3\% | 56.3\% | Y | -3.1\% |
| 23 | 62.3\% | 61.4\% | Y | -0.9\% |
| 24 | 62.4\% | 60.2\% | Y | -2.3\% |
| 25 | 57.7\% | 55.7\% | Y | -2.0\% |
| 26 | 51.3\% | 58.6\% | Y | 7.3\% |
| 27 | 57.8\% | 50.3\% | Y | -7.5\% |
| 28 | 56.2\% | 55.1\% | Y | -1.2\% |
| 29 | 55.9\% | 54.6\% | Y | -1.3\% |
| 30 | 55.8\% | 57.2\% | Y | 1.4\% |
| 31 | 56.5\% | 55.7\% | Y | -0.9\% |
| 32 | 59.1\% | 60.2\% | Y | 1.1\% |
| 33 | 64.9\% | 63.0\% | Y | -1.9\% |
| 37 | 54.3\% | 56.3\% | Y | 2.0\% |
| 38 | 60.0\% | 62.3\% | Y | 2.3\% |
| 39 | 60.4\% | 59.0\% | Y | -1.5\% |
| 41 | 58.0\% | 56.2\% | Y | -1.7\% |
| 42 | 56.6\% | 51.8\% | Y | -4.8\% |
| 43 | 42.3\% | 43.3\% | Y | 1.1\% |
| 44 | 38.4\% | 40.8\% | Y | 2.5\% |
| 45 | 36.1\% | 34.1\% | Y | -2.0\% |
| 46 | 35.2\% | 34.1\% | Y | -1.0\% |
| 47 | 29.0\% | 30.9\% | Y | 1.8\% |
| 50 | 51.7\% | 53.1\% | Y | 1.4\% |
| 51 | 51.9\% | 48.7\% | N | -3.2\% |
| 52 | 60.7\% | 59.4\% | Y | -1.3\% |
| 53 | 60.1\% | 64.4\% | Y | 4.4\% |
| 54 | 39.8\% | 43.8\% | Y | 4.0\% |
| 55 | 65.2\% | 56.0\% | Y | -9.3\% |
| 56 | 58.3\% | 59.9\% | Y | 1.6\% |
| 60 | 71.2\% | 73.9\% | Y | 2.8\% |
| 61 | 55.7\% | 54.9\% | Y | -0.8\% |
| 62 | 53.1\% | 54.5\% | Y | 1.4\% |
| 63 | 58.4\% | 57.1\% | Y | -1.3\% |
| 67 | 53.3\% | 54.7\% | Y | 1.4\% |
| 69 | 61.2\% | 57.2\% | Y | -4.0\% |
| 70 | 49.7\% | 49.7\% | Y | 0.0\% |
| 71 | 39.0\% | 40.1\% | Y | 1.1\% |
| 72 | 50.2\% | 53.0\% | Y | 2.8\% |
| 80 | 36.1\% | 35.1\% | Y | -1.0\% |
| 81 | 38.1\% | 40.8\% | Y | 2.6\% |

82	60.3%	62.0%	Y	1.8%
83	69.8%	71.8%	Y	2.0%
84	62.8%	61.7%	Y	-1.1%
85	48.2%	49.0%	Y	0.8%
86	55.7%	56.9%	Y	1.2%
87	58.6%	54.6%	Y	-3.9%
88	52.5%	54.6%	Y	2.1%
89	59.1%	59.0%	Y	-0.1%
90	39.6%	36.9%	Y	-2.7%
97	64.7%	64.2%	Y	-0.5%
98	70.5%	69.9%	Y	-0.5%
99	76.3%	77.3%	Y	1.0%

The model does an excellent job accurately forecasting vote totals and election results, and provides a solid foundation for estimating hypothetical vote totals in an alternative district plan.

h. Comparison to 2011 Republican Expert Baseline Partisanship Measure

The method I have outlined here is a standard technique in the analysis of redistricting plans: creating a baseline measure of partisanship that is independent of a particular district configuration, and applying those estimates to alternative hypothetical district plans.

Indeed, in preparing the district plan that would become Act 43, the state legislature went through the same analytical exercise, generating partisanship measures to forecast what the election results would be in the districts enacted in that plan. The expert that the legislative Republicans relied on to conduct that analysis, Dr. Ronald Keith Gaddie, described the process and method as "an effort to create a partisan normal vote measure or a partisan baselining measure to use to apply to different districts to ascertain their political tendency., ${ }^{21}$ The results of his regression analysis of the districts in Act 43 are in a spreadsheet used to evaluate the plan entitled "Final Map" which contains open seat baseline partisan estimates for existing and new Assembly districts.

Figure 7 compares Dr. Gaddie's open-seat baseline partisanship measure for the Act 43 districts with the equivalent results of my model, excluding the $8^{\text {th }}$ and $9^{\text {th }}$ Assembly districts which were redrawn by the Federal Court and are therefore not comparable. Gaddie's partisan baseline measure is plotted on the x-axis, and my measure on the y-axis. My measure is the expected partisan performance in actual Act 43 districts, with incumbency effects removed. ${ }^{22}$ The two measures are strongly related, indicating that both are capturing stable features of partisanship in Wisconsin. The line is a bivariate regression line produced by using Dr. Gaddie's partisanship estimate as the independent variable and my measure as the dependent variable.

[^12]The r-squared for this regression is 0.96 , indicating that the two measures are almost perfectly related, and are both capturing the same underlying partisanship.

The most important characteristics of Gaddie's measure is that it constitutes a true forecast of what was expected to occur in the 2012 elections, since the measure itself was generated in 2011 using data from the 2004-2010 elections. As I show below, this metric can be used to generate an efficiency gap measure of what was likely to happen (indeed, what did happen) in the 2012 election.

2. Step Two - Predicting Votes in a Demonstration District Plan

a. Creating a Demonstration District Plan

With the model parameters in hand, I can estimate baseline partisanship and vote totals in every ward, including those uncontested by both parties (because I have independent variables in all wards, even when only one party is on the Assembly ballot). For uncontested districts, the predicted ward vote totals are what would be expected if both parties ran a candidate, based on the values of the independent variables in the wards. I then use these predicted ward level vote totals to generate vote estimates at the Census block level, and build a demonstration district using Census blocks as my basic unit. Because the variables used in the model are exogenous to district configuration and the out of sample predictions are accurate, the results of the analysis in Step one represent a valid measure of what the Assembly vote would have been in a different district configuration.

I calculated estimated "open seat" vote totals, by subtracting the incumbency advantage in every district in which an incumbent ran. This is a more accurate method of determining the baseline partisanship of a district, as it removes the effect of incumbents, who may or may not be running in an alternative plan. This baseline process is standard in the discipline, and was used by the expert retained by the state legislature, Dr. Ronald Keith Gaddie, to analyze the partisan effects of Act 43 during the redistricting process.

To obtain block level vote estimates, I disaggregated the ward level predicted values for the Democratic and Republican vote totals to individual blocks in that ward, based on each block's share of the ward vote eligible population. This technique is widely used and accepted in the discipline (McDonald 2014; Pavia. and López-Quílez 2013). Census blocks have a voting eligible population range between 0 and 2,988 , with an average of approximately 17 people. Wards contain an average of 40 blocks, although the range is substantial, with a minimum of 1
and a maximum of 740. At the end of this disaggregation process, I have a predicted Democratic and Republican Assembly vote total for each Census block in the state.

Table 4 shows an illustrative example, using Ward 23 in the city of Waukesha. This ward, located in the southeastern part of the city, had a 2010 Census population of 1,426, a voting age population of 1,089 , and a voting eligible population of 1,071 . The voting model generated estimates of 552 Republican and 318 Democratic votes in an open seat Assembly race in that ward. The ward contains twenty five Census blocks ranging in population from 0 to 127 , with a voting eligible population range of 0 to 115 .

The first column in Table 4 is the block's geographic identifier, a unique code. ${ }^{23}$ The next column is the block's voting eligible population (VEP) calculated as described in the previous section by removing noncitizens and institutionalized persons (although there are no prisons in this ward). The third column is the block's share of the ward's total VEP of 1,071; for the first block in the table it is $38 \div 1,071=.0352$, or 3.52%. The next column is block level Republican vote estimate, calculated as 3.52% the ward Republican vote of 552 , or 19.438. While the table rounds these vote totals, I use fractional values in the actual calculations.

[^13]Table 4 - Ward to Block Disaggregation
City of Waukesha Ward 23

Ward Voting Eligible Population				1,071
Ward Estimated Republican Assembly Vote				552
Ward Estimated Democratic Assembly Vote				318
Block Geographic Identifier	Block VEP	Block Share of Ward VEP (Block VEP $\div 1,071$)	Block Level Republican Vote Estimate (Block Share * 522)	Block Level Democratic Vote Estimate (Block Share * 318)
551332024001002	38	3.52\%	19	11
551332024001003	56	5.24\%	29	17
551332024001004	65	6.06\%	33	19
551332024001005	30	2.77\%	15	9
551332024001007	47	4.37\%	24	14
551332024001008	81	7.57\%	42	24
551332024001009	12	1.11\%	6	4
551332024001010	50	4.70\%	26	15
551332024001011	26	2.46\%	14	8
551332024001012	25	2.32\%	13	7
551332024001013	44	4.14\%	23	13
551332024001014	60	5.57\%	31	18
551332024001015	30	2.77\%	15	9
551332024001016	53	4.99\%	28	16
551332024001017	0	0.00\%	0	0
551332024002009	10	0.93\%	5	3
551332024002010	50	4.68\%	26	15
551332024002011	65	6.06\%	33	19
551332024002012	37	3.44\%	19	11
551332024002013	39	3.61\%	20	12
551332024003036	41	3.78\%	21	12
551332024003039	15	1.39\%	8	4
551332024003040	62	5.76\%	32	18
551332024003042	22	2.01\%	11	6
551332025005011	115	10.73\%	59	34

Next, I input this block level data into a commercial GIS software package used for redistricting (Maptitude for Redistricting 2013, Build 2060) matching each block in the database of estimated votes with the same block in the Maptitude data using the block identification code.

Finally, I drew a redistricting plan with the goal of minimizing the efficiency gap while adhering to the Wisconsin and federal Constitutional requirements of equal population, contiguity, compactness, and respect for political subdivisions. Beyond these criteria. the primary decision rule was creating competitive districts where possible, and balancing the number of districts with large Democratic and Republican majorities.

Figures 8 and 9 show the statewide map and the districts in the Milwaukee area.

Figure 8 - Demonstration Plan Statewide Map

Figure 9 - Demonstration Plan - Milwaukee Area

b. Constitutional and Statutory Requirements

Table 5 shows the summary data for the Demonstration Plan (the full tables are in the annex to this report) and comparison data for the actual 2012 plan implemented in Act $43 .{ }^{24}$ The Demonstration Plan has a marginally larger population deviation, but is well below even the strictest standards applied to state legislative districts (a difference of 0.1% translates into 57 people). The population range in the Demonstration Plan is 57,191 to 57,686 , a difference of 495 people. Given the ideal Assembly district population of 57,444 , this is a deviation of 0.86%. The Demonstration Plan is more compact on average than Act 43, and has fewer municipal splits (119 compared to 120 in Act 43). On all constitutional requirements, the Demonstration Plan is comparable to Act 43.

Table 5 - Plan Comparison to Act 43

	Demonstration Plan	Act 43
Population Deviation	0.86%	0.76%
Average Compactness (Reock)	0.41	0.28
Number of Municipal Splits	County City Town Village	55

Act 43 created six majority-minority Black population districts (numbers 10-12 and 1618), ranging from $56.7 \%-67.6 \%$ Black population, and from $51.1 \%-61.8 \%$ Black voting age population. The Demonstration Plan retains six Majority Black Assembly districts, ranging from 60.0% to 63.4% Black population, and from 56.2% to 60.5% Black voting age population:

[^14]| Table 6 - Black Majority Districts in Demonstration Plan | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Assembly
 District | Population | Voting Age
 Population | Black
 Population | Black
 Percentage
 of Population | Black
 Voting Age
 Population | BVAP\% |
| 10 | 57,195 | 41,528 | 36,593 | 64.0% | 25,125 | 60.5% |
| 11 | 57,455 | 40,510 | 34,822 | 60.6% | 22,762 | 56.2% |
| 12 | 57,420 | 38,774 | 34,923 | 60.8% | 21,829 | 56.3% |
| 16 | 57,282 | 42,469 | 36,321 | 63.4% | 23,920 | 56.3% |
| 17 | 57,437 | 39,639 | 34,450 | 60.0% | 22,275 | 56.2% |
| 18 | 57,241 | 40,840 | 35,316 | 61.7% | 24,054 | 58.9% |

In Baldus et al. v. Brennan et al., a federal Court created a majority Latino district in Milwaukee (the $8^{\text {th }}$ Assembly District). The Demonstration Plan retains the boundaries of this district thereby insuring compliance with Section 2 of the Voting Rights Act.

C. Efficiency Gap Calculations

With the model described in Step one above and the block-level partisanship baseline it generates, I can analyze any existing or hypothetical district configuration and generate predicted vote totals and efficiency gap measures for the Demonstration Plan.

1. Analysis of Act 43

Any discussion of Act 43 must begin with the basic fact that in 2012 Republicans achieved a 60-39 majority in the Assembly in an election in which the Democratic Party achieved 53.5% of the statewide two-party presidential vote. The imbalance between the Republican Party's statewide vote margin at the top of the ticket (46.5\%) and its Assembly majority (60.6%) turns the very notion of partisan symmetry on its head. That standard, according to King and Grofman $(2007,8)$ "requires that the number of seats one party would
receive if it garnered a particular percentage of the vote be identical to the number of seats the other party would receive if it had received the same percentage of the vote" $(2007,8)$. Here, it means that Democrats would have had to obtain 60 Assembly seats with 46.5% of the vote, an absurd proposition that requires a party's legislative seat share to go $u p$ as its share of the vote goes down.

This result was achieved via the classic gerrymandering strategies of packing and cracking. Figure 10, a histogram of Republican two party vote percentages in 2012, shows the pattern. Here, the bars to the right of 50% indicate a Republican victory. Twenty three Democratic candidates were uncontested, indicating a significant level of packing (the bar at the far left side of the figure); uncontested races occur largely when one party sees zero probability of winning because the majority party has such overwhelming majorities in the district. By contrast, only four Republicans were uncontested. Act 43 also successfully cracked Democratic majorities in other districts, creating Republican majorities that were either marginal (twelve in the $50-55 \%$ range) or relatively safe (thirty nine in the $55-65 \%$ range). The 2012 results are consistent with what was forecast in 2011, as shown by Figure 11, a histogram of Dr. Gaddie's baseline partisanship measure for Act 43 districts. This measure forecast fifty one Assembly districts with between 50% and 65% Republican vote share. This is the same number that actually occurred, fifty one.

Figure 12 shows the baseline partisanship district forecasts for Act 43, using the model outline in Step one, above. It is very similar to Dr. Gaddie's forecast and the actual results: it forecast fifty districts with between 50% and 65% Republican vote share.

Figure 10: Actual 2012 Republican Assembly Vote in Act 43 Districts

Figure 11: Republican Vote Forecast in Act 43 Districts - Gaddie Measure

Figure 12: Act 43 Baseline Partisan Measure

The treatment of the city of Sheboygan shows how this cracking was achieved.
Sheboygan is a city on the Lake Michigan shoreline with a population of 49,285. It is a strongly Democratic area, voting 58.7\%-41.3\% for Obama in 2012; my baseline partisanship estimate for the city is 58.2%. The city is small enough to be contained in a single Assembly district in which it would constitute 86% of the ideal population, and it was entirely within the $26^{\text {th }}$ Assembly district in both the 1992 and 2001 redistricting rounds. The areas surrounding it the Village of Kohler and the Towns of Sheboygan and Wilson are all strongly Republican (with vote percentages for Romney of $62.8 \%, 56.3 \%$, and 59.4%, respectively; together, these municipalities constitute an area that is 58.2% Republican, as measured by the presidential vote).

Keeping the city of Sheboygan together would have created a Democratic district, made up of the city itself (58.7\% Democratic) with the remaining 14\% of population drawn from one
of the Republican areas around it. The result would have been a District that was roughly 54% 56\% Democratic.

Act 43, however, split Sheboygan into separate Assembly districts, placing 32,640 residents of the city into the $26^{\text {th }}$ District, and 16,645 into the $27^{\text {th }}$. With the city split, these areas were combined into the Republican areas surrounding the city, producing two Republican districts: the $26^{\text {th }}(51.3 \%$ Republican in the 2012 Assembly race; baseline open seat partisanship measure of 53.3%) and the $27^{\text {th }}$ (57.9% Republican in the 2012 Assembly race, baseline open seat partisanship measure of 52.3%).

Figure 13, below, shows the split into Districts 26 and 27:

Figure 13- Act 43 Treatment of Sheboygan

2. Efficiency Gap Calculations for Act 43 and The Demonstration Plan

Recall that the efficiency gap is a measure of gerrymandering based on the difference in the number of "wasted votes." Votes cast for losing candidates are wasted, as are surplus votes for winning candidates above what is necessary to win. The gap is defined as the difference between the sum of wasted votes for the two parties, divided by the total number of votes cast in the election.

Comparing a hypothetical district plan (where vote totals are predicted) to an existing district plan (where vote totals are known) requires care, in large part because it can be difficult
to know with certainty what districts will have incumbents (or how incumbents might rearrange themselves after a redistricting cycle), and because not every district will be contested in an actual election (Stephanopoulos and McGhee 2015).

Handling uncontested races is a straightforward problem; the key is applying a consistent rule to all plans being compared. In the efficiency gap calculation for my plan, I measure underlying partisan strength in each district by estimating the number of votes that would be cast for each party in an open seat election each district, assuming that all races are contested. In the actual 2012 Assembly elections, only 72 of 99 seats were contested by both major parties, leaving 27 uncontested races. Uncontested races by themselves will not necessarily have a dramatic effect on efficiency gap calculations as long as the number of races is small, or if uncontested districts are evenly split between the parties (as a rule, one uncontested race with only a Democrat will cancel out one uncontested race with only a Republican, conditioned on the number of votes cast in each race). But a significant imbalance in uncontested races will have a material effect on the results. Of the 27 uncontested races in 2012, 23 were in Democratic districts and only 4 in Republican districts.

In the academic redistricting literature, uncontested seats are typically handled by imputing what the vote totals would have been if a race had been contested (Gelman and King 1990), or assigning each uncontested race a $75 \%-25 \%$ vote split in favor of the party whose candidate ran unopposed (Gelman and King 1994; Stephanopoulos and McGhee 2015). Because I have direct measures of partisanship and vote predictions, I am able to generate accurate estimates of what the vote totals would have been in Act 43's uncontested districts had both parties fielded candidates. In applying this method to the uncontested districts in the 2012 State Assembly elections, I create two directly equivalent sets of data: one for the Demonstration Plan,
with predicted values of open seat vote totals for all districts, and one for the districts created in Act 43, using open seat estimates for each district. Efficiency gap results for the two redistricting plans constructed this way can be compared directly.

Table 7 shows the full set of efficiency gap calculations for the Demonstration Plan, with incumbency effects removed. For each district I calculate an estimated Democratic and Republican vote total, and forecast a winner. The resulting columns show the number of "wasted votes," counting all votes cast for a losing candidates, and surplus votes for winning candidates (equal to $1 / 2$ of the margin of victory). Totals for each party are summed, and the efficiency gap calculated as the Net Wasted Votes (here, Democratic Wasted Votes - Republican Wasted Votes) divided by the total number of votes cast in the election.

The data in Table 7 (on page 48) show that the Demonstration Plan results in 741,984 wasted Democratic votes (column E), obtained by adding the number of lost Democratic votes cast for losing candidates (566,634 , column A) and the number of surplus Democratic votes cast for winners above what was necessary to win $(175,350$, column C). The same calculation for Republicans (using columns B and D) results in 689,570 wasted Republican votes. The difference between these two numbers, 781,984-689,570 $=62,414$ net wasted Democratic votes. Dividing 62,414 by the predicted total number of votes $2,843,108$, produces the baseline efficiency gap for my plan, .0220 , or 2.20%.

Table 8 (on page 50) shows the same calculation for Act 43 districts, using estimated partisan vote totals with incumbent advantages removed. Act 43 resulted in a total of 332,552 net wasted Democratic votes. The efficiency gap of Act 43 is 11.69%, more than five times larger than the Demonstration Plan.

Table 9 (on page 52) shows the efficiency gap calculation for the partisan baseline prediction used by Dr. Gaddie during the drawing of the Act 43 districts, applying his partisanship division to the total number of votes predicted from my model in each district. As described above in section $\operatorname{III}(\mathrm{B})(1)(\mathrm{h})$ above, this is the predicted baseline partisanship measure of Act 43. It produces a forecast Efficiency Gap for Act 43 of 12.36\%.

Table 10 summarizes these results:

	Table 10: Summary Statistics for Redistricting Plans		
	My Plan Baseline	Act 43 Baseline	Act 43 - Gaddie Measure
party split (R-D)	48-51	57-42	58-41
Wasted Republican Votes	679,570	544,893	535,057
Wasted Democratic Votes	741,984	877,445	886,403
Gap	62,414	332,552	351,346
Total Democratic Votes	1,454,117	1,454,717	1,394,018
Total Republican Votes	1,388,991	1,389,958	1,448,901
Total Votes	2,843,108	2,844,676	2,842,919
Efficiency Gap (gap/total votes)	2.20\%	11.69\%	12.36\%

Three things are worth emphasizing. The first is that the predicted partisan effect of Act 43, represented by the Gaddie metric, produced an efficiency gap calculation (12.36\%) that was very close to the actual partisan effect of Act 43, as measured by the efficiency gap calculation for the actual 2012 partisan baseline (11.69\%). In brief, the architects of the Act 43 districts expected a partisan result that was almost identical to what actually occurred. The second is the large reduction in the efficiency gap that I am able to produce, which I have achieved without any departure from the core constitutional and statutory requirements of redistricting. The

Demonstration Plan is equivalent to Act 43 on all key criteria: population deviation, compactness, number of political subdivision splits, and compliance with the Voting Rights Act. At the same time, I have generated an efficiency gap score 82% smaller than the Act 43 gap. And third, I have reached this efficiency gap score with virtually identical numbers of Democratic and Republican voters as exist under Act 43. Given that my partisan estimates, once incumbency effects are removed, are entirely exogenous to any particular district configuration, these can be considered the same statewide set of voters. By placing the same voters as exist in Act 43 into a new set of districts designed to minimize the effects of gerrymandering while adhering to constitutional standards, I have generated a plan that is fair to both parties.

Figure 14 shows the distribution of baseline Republican vote predictions in the Demonstration Plan Assembly districts. The districts are far more balanced, with similar numbers of districts between $40 \%-50 \%$ (twenty seven) and between $50 \%-60 \%$ (twenty nine). There are also roughly equal numbers of districts above 65% (twelve) and below 35% (sixteen).

Figure 14: Predicted Vote - Demonstration Plan

Table 7-Efficiency Gap Calculation for Demonstration District Plan - No Incumbent Baseline

				A	B	C	D	E	F	
Assembly District	Predicted Democratic Votes	Predicted Republican Votes	Predicted Winning Party	Lost Democratic Votes	Lost Republican Votes	Surplus Democratic Votes	Surplus Republican Votes	Wasted Democratic Votes ($\mathrm{A}+\mathrm{C}$)	Wasted Republican Votes (B+D)	Net Wasted Votes (E - F)
1	16,259	16,414	Republican	16259	0	0	78	16259	78	16181
2	11,805	10,025	Democratic	0	10025	890	0	890	10025	-9136
3	11,243	17,807	Republican	11243	0	0	3282	11243	3282	7961
4	10,881	12,790	Republican	10881	0	0	955	10881	955	9926
5	13,497	13,845	Republican	13497	0	0	174	13497	174	13323
6	11,045	17,627	Republican	11045	0	0	3291	11045	3291	7753
7	22,822	10,214	Democratic	0	10214	6304	0	6304	10214	-3910
8	7,192	1,695	Democratic	0	1695	2749	0	2749	1695	1054
9	10,497	5,635	Democratic	0	5635	2431	0	2431	5635	-3205
10	25,348	3,270	Democratic	0	3270	11039	0	11039	3270	7769
11	22,374	4,855	Democratic	0	4855	8759	0	8759	4855	3904
12	20,041	4,039	Democratic	0	4039	8001	0	8001	4039	3962
13	15,950	16,510	Republican	15950	0	0	280	15950	280	15670
14	13,575	13,799	Republican	13575	0	0	112	13575	112	13464
15	13,412	14,901	Republican	13412	0	0	745	13412	745	12667
16	21,234	2,856	Democratic	0	2856	9189	0	9189	2856	6333
17	21,769	3,569	Democratic	0	3569	9100	0	9100	3569	5531
18	23,817	4,954	Democratic	0	4954	9431	0	9431	4954	4477
19	15,160	10,904	Democratic	0	10904	2128	0	2128	10904	-8776
20	14,118	12,901	Democratic	0	12901	609	0	609	12901	-12292
21	12,257	16,911	Republican	12257	0	0	2327	12257	2327	9930
22	18,335	14,831	Democratic	0	14831	1752	0	1752	14831	-13079
23	10,922	25,459	Republican	10922	0	0	7268	10922	7268	3654
24	8,667	25,868	Republican	8667	0	0	8601	8667	8601	66
25	12,179	18,248	Republican	12179	0	0	3034	12179	3034	9145
26	13,251	14,527	Republican	13251	0	0	638	13251	638	12613
27	14,935	11,755	Democratic	0	11755	1590	0	1590	11755	-10165
28	12,617	15,591	Republican	12617	0	0	1487	12617	1487	11131
29	14,180	12,954	Democratic	0	12954	613	0	613	12954	-12341
30	11,308	15,165	Republican	11308	0	0	1929	11308	1929	9379
31	11,304	16,117	Republican	11304	0	0	2406	11304	2406	8898
32	12,685	13,787	Republican	12685	0	0	551	12685	551	12135
33	14,609	10,151	Democratic	0	10151	2229	0	2229	10151	-7922
34	13,139	15,690	Republican	13139	0	0	1275	13139	1275	11864
35	11,288	16,503	Republican	11288	0	0	2607	11288	2607	8681
36	11,516	14,997	Republican	11516	0	0	1741	11516	1741	9775
37	9,222	22,240	Republican	9222	0	0	6509	9222	6509	2713
38	9,710	25,021	Republican	9710	0	0	7655	9710	7655	2055
39	10,747	17,526	Republican	10747	0	0	3390	10747	3390	7357
40	15,061	13,947	Democratic	0	13947	557	0	557	13947	-13391
41	16,784	13,120	Democratic	0	13120	1832	0	1832	13120	-11288
42	13,254	12,282	Democratic	0	12282	486	0	486	12282	-11796
43	12,658	13,606	Republican	12658	0	0	474	12658	474	12184
44	16,477	10,886	Democratic	0	10886	2795	0	2795	10886	-8091
45	16,352	13,589	Democratic	0	13589	1382	0	1382	13589	-12207
46	20,583	11,418	Democratic	0	11418	4582	0	4582	11418	-6835
47	20,208	9,888	Democratic	0	9888	5160	0	5160	9888	-4728

Case: 3:15-cv-00421-bbc Document \#: 49-12 Filed: 01/04/16 Page 50 of 73

48	24,457	8,840	Democratic	0	8840	7808	0	7808	8840	-1032
49	13,625	13,477	Democratic	0	13477	74	0	74	13477	-13403
50	12,289	13,709	Republican	12289	0	0	710	12289	710	11579
51	14,760	13,323	Democratic	0	13323	718	0	718	13323	-12605
52	12,376	19,416	Republican	12376	0	0	3520	12376	3520	8857
53	12,388	13,362	Republican	12388	0	0	487	12388	487	11902
54	14,032	12,240	Democratic	0	12240	896	0	896	12240	-11344
55	13,565	15,300	Republican	13565	0	0	868	13565	868	12697
56	12,553	14,518	Republican	12553	0	0	983	12553	983	11570
57	14,897	13,016	Democratic	0	13016	941	0	941	13016	-12075
58	9,325	21,180	Republican	9325	0	0	5927	9325	5927	3398
59	11,565	21,984	Republican	11565	0	0	5209	11565	5209	6356
60	8,756	22,415	Republican	8756	0	0	6830	8756	6830	1926
61	12,933	16,576	Republican	12933	0	0	1822	12933	1822	11112
62	15,181	9,999	Democratic	0	9999	2591	0	2591	9999	-7408
63	15,640	9,902	Democratic	0	9902	2869	0	2869	9902	-7033
64	15,089	13,470	Democratic	0	13470	810	0	810	13470	-12660
65	12,721	19,816	Republican	12721	0	0	3547	12721	3547	9173
66	16,286	6,362	Democratic	0	6362	4962	0	4962	6362	-1401
67	15,321	14,226	Democratic	0	14226	547	0	547	14226	-13678
68	11,958	12,124	Republican	11958	0	0	83	11958	83	11875
69	17,902	12,022	Democratic	0	12022	2940	0	2940	12022	-9083
70	18,661	12,266	Democratic	0	12266	3197	0	3197	12266	-9069
71	15,081	13,884	Democratic	0	13884	599	0	599	13884	-13285
72	11,180	16,542	Republican	11180	0	0	2681	11180	2681	8500
73	17,137	10,785	Democratic	0	10785	3176	0	3176	10785	-7609
74	17,712	14,219	Democratic	0	14219	1747	0	1747	14219	-12472
75	13,902	17,700	Republican	13902	0	0	1899	13902	1899	12002
76	30,929	6,811	Democratic	0	6811	12059	0	12059	6811	5248
77	26,708	6,059	Democratic	0	6059	10325	0	10325	6059	4266
78	24,413	9,847	Democratic	0	9847	7283	0	7283	9847	-2564
79	20,439	13,294	Democratic	0	13294	3572	0	3572	13294	-9722
80	20,179	11,644	Democratic	0	11644	4267	0	4267	11644	-7377
81	13,703	12,741	Democratic	0	12741	481	0	481	12741	-12260
82	9,871	21,201	Republican	9871	0	0	5665	9871	5665	4206
83	9,241	23,075	Republican	9241	0	0	6917	9241	6917	2324
84	11,990	22,700	Republican	11990	0	0	5355	11990	5355	6634
85	10,028	13,190	Republican	10028	0	0	1581	10028	1581	8448
86	13,853	13,494	Democratic	0	13494	180	0	180	13494	-13314
87	11,358	17,003	Republican	11358	0	0	2823	11358	2823	8535
88	14,209	11,142	Democratic	0	11142	1533	0	1533	11142	-9609
89	13,374	15,771	Republican	13374	0	0	1199	13374	1199	12175
90	11,349	17,468	Republican	11349	0	0	3059	11349	3059	8290
91	14,807	13,845	Democratic	0	13845	481	0	481	13845	-13364
92	14,907	14,594	Democratic	0	14594	157	0	157	14594	-14437
93	12,441	18,057	Republican	12441	0	0	2808	12441	2808	9633
94	16,171	11,759	Democratic	0	11759	2206	0	2206	11759	-9553
95	19,769	9,949	Democratic	0	9949	4910	0	4910	9949	-5040
96	14,665	13,836	Democratic	0	13836	415	0	415	13836	-13421
97	11,492	24,222	Republican	11492	0	0	6365	11492	6365	5128
98	9,864	24,773	Republican	9864	0	0	7454	9864	7454	2410
99	10,783	19,160	Republican	10783	0	0	4188	10783	4188	6594
TOTALS	1,454,117	1,388,991		566,634	536,783	175,350	142,787	741,984	679,570	62,414

Table 8 - Efficiency Gap Calculation for Act 43 - No Incumbent Baseline

				A	B	C	D	E	F	
Assembly District	Predicted Democratic Votes	Predicted Republican Votes	Predicted Winning Party	Lost Democratic Votes	Lost Republican Votes	Surplus Democra tic Votes	Surplus Republic an Votes	Wasted Democratic Votes (A + C)	Wasted Republican Votes (B + D)	Net Wasted Votes (E - F)
1	16,235	16,628	Republican	16235	0	0	197	16235	197	16038
2	12,398	16,357	Republican	12398	0	0	1980	12398	1980	10419
3	12,623	16,636	Republican	12623	0	0	2006	12623	2006	10617
4	13,926	15,576	Republican	13926	0	0	825	13926	825	13101
5	12,710	16,017	Republican	12710	0	0	1654	12710	1654	11056
6	10,929	14,938	Republican	10929	0	0	2005	10929	2005	8924
7	13,793	11,778	Democratic	0	11778	1007	0	1007	11778	-10771
8	7,342	1,738	Democratic	0	1738	2802	0	2802	1738	1064
9	10,023	4,533	Democratic	0	4533	2745	0	2745	4533	-1787
10	25,306	2,897	Democratic	0	2897	11205	0	11205	2897	8308
11	21,698	3,368	Democratic	0	3368	9165	0	9165	3368	5797
12	19,700	5,222	Democratic	0	5222	7239	0	7239	5222	2018
13	13,345	20,358	Republican	13345	0	0	3506	13345	3506	9839
14	14,499	21,025	Republican	14499	0	0	3263	14499	3263	11235
15	13,006	17,310	Republican	13006	0	0	2152	13006	2152	10853
16	22,293	2,342	Democratic	0	2342	9975	0	9975	2342	7633
17	24,088	4,047	Democratic	0	4047	10020	0	10020	4047	5973
18	22,204	2,692	Democratic	0	2692	9756	0	9756	2692	7064
19	22,759	10,364	Democratic	0	10364	6198	0	6198	10364	-4166
20	16,066	12,856	Democratic	0	12856	1605	0	1605	12856	-11252
21	12,566	15,324	Republican	12566	0	0	1379	12566	1379	11187
22	11,290	22,958	Republican	11290	0	0	5834	11290	5834	5456
23	14,260	21,633	Republican	14260	0	0	3687	14260	3687	10573
24	13,885	20,335	Republican	13885	0	0	3225	13885	3225	10659
25	12,032	15,933	Republican	12032	0	0	1950	12032	1950	10082
26	13,639	15,559	Republican	13639	0	0	960	13639	960	12679
27	14,709	16,360	Republican	14709	0	0	826	14709	826	13883
28	12,719	15,302	Republican	12719	0	0	1291	12719	1291	11428
29	12,909	14,662	Republican	12909	0	0	876	12909	876	12033
30	14,019	16,951	Republican	14019	0	0	1466	14019	1466	12553
31	13,273	15,615	Republican	13273	0	0	1171	13273	1171	12102
32	11,255	15,359	Republican	11255	0	0	2052	11255	2052	9203
33	11,226	18,298	Republican	11226	0	0	3536	11226	3536	7690
34	12,445	19,355	Republican	12445	0	0	3455	12445	3455	8991
35	12,270	15,525	Republican	12270	0	0	1628	12270	1628	10643
36	11,403	15,672	Republican	11403	0	0	2134	11403	2134	9269
37	12,707	16,202	Republican	12707	0	0	1747	12707	1747	10960
38	12,668	19,129	Republican	12668	0	0	3231	12668	3231	9437
39	11,491	17,211	Republican	11491	0	0	2860	11491	2860	8630
40	11,485	13,597	Republican	11485	0	0	1056	11485	1056	10429
41	11,719	14,492	Republican	11719	0	0	1387	11719	1387	10332
42	13,705	15,462	Republican	13705	0	0	879	13705	879	12826
43	17,380	13,075	Democratic	0	13075	2153	0	2153	13075	-10923
44	16,680	10,304	Democratic	0	10304	3188	0	3188	10304	-7116
45	15,153	9,691	Democratic	0	9691	2731	0	2731	9691	-6959
46	19,173	11,534	Democratic	0	11534	3819	0	3819	11534	-7714
47	21,609	9,340	Democratic	0	9340	6135	0	6135	9340	-3205
48	24,517	7,635	Democratic	0	7635	8441	0	8441	7635	806
49	12,307	13,621	Republican	12307	0	0	657	12307	657	11650

Case: 3:15-cv-00421-bbc Document \#: 49-12 Filed: 01/04/16 Page 52 of 73

50	12,467	12,326	Democratic	0	12326	71	0	71	12326	-12256
51	14,173	13,048	Democratic	0	13048	563	0	563	13048	-12485
52	11,294	15,656	Republican	11294	0	0	2181	11294	2181	9113
53	9,875	16,753	Republican	9875	0	0	3439	9875	3439	6437
54	15,180	12,882	Democratic	0	12882	1149	0	1149	12882	-11733
55	12,634	16,971	Republican	12634	0	0	2169	12634	2169	10465
56	12,564	18,576	Republican	12564	0	0	3006	12564	3006	9559
57	14,387	11,676	Democratic	0	11676	1355	0	1355	11676	-10321
58	8,843	22,417	Republican	8843	0	0	6787	8843	6787	2055
59	8,784	21,725	Republican	8784	0	0	6471	8784	6471	2313
60	9,848	23,989	Republican	9848	0	0	7071	9848	7071	2778
61	13,145	16,481	Republican	13145	0	0	1668	13145	1668	11477
62	14,828	17,309	Republican	14828	0	0	1240	14828	1240	13588
63	13,233	16,830	Republican	13233	0	0	1799	13233	1799	11434
64	15,702	11,307	Democratic	0	11307	2198	0	2198	11307	-9109
65	15,105	7,929	Democratic	0	7929	3588	0	3588	7929	-4341
66	16,162	5,472	Democratic	0	5472	5345	0	5345	5472	-127
67	13,769	14,674	Republican	13769	0	0	453	13769	453	13316
68	13,663	13,005	Democratic	0	13005	329	0	329	13005	-12676
69	11,083	14,347	Republican	11083	0	0	1632	11083	1632	9451
70	12,211	14,387	Republican	12211	0	0	1088	12211	1088	11123
71	17,614	11,383	Democratic	0	11383	3115	0	3115	11383	-8267
72	14,294	13,895	Democratic	0	13895	199	0	199	13895	-13696
73	17,353	10,784	Democratic	0	10784	3284	0	3284	10784	-7500
74	17,095	13,772	Democratic	0	13772	1662	0	1662	13772	-12110
75	15,000	13,418	Democratic	0	13418	791	0	791	13418	-12627
76	30,939	6,805	Democratic	0	6805	12067	0	12067	6805	5262
77	26,925	6,041	Democratic	0	6041	10442	0	10442	6041	4402
78	24,163	9,857	Democratic	0	9857	7153	0	7153	9857	-2704
79	20,753	13,975	Democratic	0	13975	3389	0	3389	13975	-10586
80	20,369	12,604	Democratic	0	12604	3882	0	3882	12604	-8722
81	16,310	12,356	Democratic	0	12356	1977	0	1977	12356	-10379
82	12,168	18,085	Republican	12168	0	0	2959	12168	2959	9210
83	10,186	23,755	Republican	10186	0	0	6784	10186	6784	3401
84	12,503	18,765	Republican	12503	0	0	3131	12503	3131	9373
85	13,613	12,925	Democratic	0	12925	344	0	344	12925	-12581
86	13,425	17,152	Republican	13425	0	0	1863	13425	1863	11561
87	11,780	15,118	Republican	11780	0	0	1669	11780	1669	10111
88	13,141	14,380	Republican	13141	0	0	620	13141	620	12521
89	11,610	15,516	Republican	11610	0	0	1953	11610	1953	9658
90	12,080	7,309	Democratic	0	7309	2385	0	2385	7309	-4924
91	17,942	11,769	Democratic	0	11769	3086	0	3086	11769	-8683
92	14,285	11,441	Democratic	0	11441	1422	0	1422	11441	-10019
93	15,268	15,393	Republican	15268	0	0	62	15268	62	15206
94	17,408	12,954	Democratic	0	12954	2227	0	2227	12954	-10727
95	19,804	9,627	Democratic	0	9627	5088	0	5088	9627	-4539
96	10,950	14,873	Republican	10950	0	0	1962	10950	1962	8989
97	10,826	18,042	Republican	10826	0	0	3608	10826	3608	7219
98	10,182	21,855	Republican	10182	0	0	5837	10182	5837	4346
99	8,346	25,535	Republican	8346	0	0	8594	8346	8594	-248
TOTALS	1,454,717	1,389,958		702,148	401,975	175,297	142,918	877,445	544,893	332,552

Table 9 - Efficiency Gap Calculation for
Act 432011 Gaddie Metric - No Incumbent Baseline

				A	B	C	D	E	F	
Assembly District	Predicted Democratic Votes	Predicted Republican Votes	Predicted Winning Party	Lost Democratic Votes	Lost Republican Votes	Surplus Democratic Votes	Surplus Republican Votes	Wasted Democratic Votes ($\mathrm{A}+\mathrm{C}$)	Wasted Republican Votes (B+D)	Net Wasted Votes (E - F)
1	15,857	16,651	Republican	15857	0	0	397	15857	397	15461
2	12,983	15,766	Republican	12983	0	0	1391	12983	1391	11591
3	12,976	16,236	Republican	12976	0	0	1630	12976	1630	11346
4	13,742	15,791	Republican	13742	0	0	1025	13742	1025	12717
5	13,134	15,593	Republican	13134	0	0	1230	13134	1230	11904
6	10,779	15,088	Republican	10779	0	0	2155	10779	2155	8624
7	13,967	11,604	Democratic	0	11604	1181	0	1181	11604	-10423
8	6,178	2,709	Democratic	0	2709	1735	0	1735	2709	-974
9	10,173	4,184	Democratic	0	4184	2995	0	2995	4184	-1189
10	24,623	3,547	Democratic	0	3547	10538	0	10538	3547	6992
11	20,235	4,927	Democratic	0	4927	7654	0	7654	4927	2728
12	18,066	6,856	Democratic	0	6856	5605	0	5605	6856	-1251
13	13,929	19,774	Republican	13929	0	0	2922	13929	2922	11007
14	14,693	20,831	Republican	14693	0	0	3069	14693	3069	11624
15	13,497	16,819	Republican	13497	0	0	1661	13497	1661	11835
16	22,223	2,618	Democratic	0	2618	9803	0	9803	2618	7184
17	22,553	5,582	Democratic	0	5582	8486	0	8486	5582	2904
18	21,176	3,719	Democratic	0	3719	8728	0	8728	3719	5009
19	23,838	9,284	Democratic	0	9284	7277	0	7277	9284	-2007
20	16,451	12,471	Democratic	0	12471	1990	0	1990	12471	-10482
21	13,125	14,765	Republican	13125	0	0	820	13125	820	12305
22	11,364	22,885	Republican	11364	0	0	5761	11364	5761	5603
23	15,182	20,658	Republican	15182	0	0	2738	15182	2738	12444
24	14,205	20,015	Republican	14205	0	0	2905	14205	2905	11299
25	13,065	14,887	Republican	13065	0	0	911	13065	911	12154
26	12,853	16,338	Republican	12853	0	0	1743	12853	1743	11110
27	13,611	17,458	Republican	13611	0	0	1923	13611	1923	11688
28	12,609	15,412	Republican	12609	0	0	1401	12609	1401	11208
29	13,519	14,054	Republican	13519	0	0	267	13519	267	13251
30	14,267	16,601	Republican	14267	0	0	1167	14267	1167	13101
31	12,616	16,273	Republican	12616	0	0	1829	12616	1829	10787
32	10,038	16,566	Republican	10038	0	0	3264	10038	3264	6773
33	11,274	18,247	Republican	11274	0	0	3487	11274	3487	7788
34	14,239	17,558	Republican	14239	0	0	1660	14239	1660	12579
35	13,067	14,729	Republican	13067	0	0	831	13067	831	12236
36	12,227	14,848	Republican	12227	0	0	1310	12227	1310	10917
37	12,110	16,799	Republican	12110	0	0	2345	12110	2345	9766
38	12,574	19,218	Republican	12574	0	0	3322	12574	3322	9251
39	10,899	17,782	Republican	10899	0	0	3442	10899	3442	7457
40	10,514	14,561	Republican	10514	0	0	2024	10514	2024	8490
41	11,761	14,467	Republican	11761	0	0	1353	11761	1353	10407
42	13,152	16,036	Republican	13152	0	0	1442	13152	1442	11710
43	17,339	13,113	Democratic	0	13113	2113	0	2113	13113	-10999
44	16,941	10,043	Democratic	0	10043	3449	0	3449	10043	-6595
45	14,886	9,957	Democratic	0	9957	2464	0	2464	9957	-7493
46	17,681	13,010	Democratic	0	13010	2336	0	2336	13010	-10674

Case: 3:15-cv-00421-bbc Document \#: 49-12 Filed: 01/04/16 Page 54 of 73

47	20,628	10,322	Democratic	0	10322	5153	0	5153	10322	-5169
48	23,290	8,861	Democratic	0	8861	7215	0	7215	8861	-1646
49	13,071	12,859	Democratic	0	12859	106	0	106	12859	-12752
50	11,887	12,908	Republican	11887	0	0	511	11887	511	11376
51	14,637	12,584	Democratic	0	12584	1026	0	1026	12584	-11558
52	11,034	15,918	Republican	11034	0	0	2442	11034	2442	8592
53	9,930	16,099	Republican	9930	0	0	3084	9930	3084	6846
54	15,372	12,690	Democratic	0	12690	1341	0	1341	12690	-11348
55	13,302	16,297	Republican	13302	0	0	1498	13302	1498	11804
56	12,809	18,326	Republican	12809	0	0	2759	12809	2759	10050
57	14,436	11,575	Democratic	0	11575	1431	0	1431	11575	-10145
58	9,211	22,056	Republican	9211	0	0	6422	9211	6422	2789
59	9,669	20,843	Republican	9669	0	0	5587	9669	5587	4083
60	10,307	23,508	Republican	10307	0	0	6601	10307	6601	3706
61	12,661	16,935	Republican	12661	0	0	2137	12661	2137	10524
62	13,959	18,175	Republican	13959	0	0	2108	13959	2108	11851
63	11,973	17,692	Republican	11973	0	0	2860	11973	2860	9113
64	15,452	11,524	Democratic	0	11524	1964	0	1964	11524	-9560
65	14,760	8,274	Democratic	0	8274	3243	0	3243	8274	-5031
66	14,776	6,861	Democratic	0	6861	3957	0	3957	6861	-2904
67	13,748	14,698	Republican	13748	0	0	475	13748	475	13273
68	13,508	13,177	Democratic	0	13177	165	0	165	13177	-13011
69	11,657	13,773	Republican	11657	0	0	1058	11657	1058	10599
70	13,105	13,493	Republican	13105	0	0	194	13105	194	12911
71	17,189	11,807	Democratic	0	11807	2691	0	2691	11807	-9116
72	13,674	14,514	Republican	13674	0	0	420	13674	420	13254
73	16,837	11,300	Democratic	0	11300	2769	0	2769	11300	-8531
74	17,628	13,239	Democratic	0	13239	2195	0	2195	13239	-11044
75	13,590	14,829	Republican	13590	0	0	620	13590	620	12970
76	32,275	5,469	Democratic	0	5469	13403	0	13403	5469	7934
77	26,627	6,339	Democratic	0	6339	10144	0	10144	6339	3804
78	23,528	10,492	Democratic	0	10492	6518	0	6518	10492	-3974
79	20,211	14,516	Democratic	0	14516	2848	0	2848	14516	-11668
80	20,251	12,704	Democratic	0	12704	3773	0	3773	12704	-8931
81	15,887	12,770	Democratic	0	12770	1559	0	1559	12770	-11211
82	12,985	17,269	Republican	12985	0	0	2142	12985	2142	10843
83	10,756	23,185	Republican	10756	0	0	6215	10756	6215	4541
84	13,414	17,854	Republican	13414	0	0	2220	13414	2220	11194
85	13,703	12,843	Democratic	0	12843	430	0	430	12843	-12413
86	15,780	14,789	Democratic	0	14789	495	0	495	14789	-14294
87	12,413	14,420	Republican	12413	0	0	1004	12413	1004	11409
88	12,882	14,638	Republican	12882	0	0	878	12882	878	12004
89	12,009	15,118	Republican	12009	0	0	1554	12009	1554	10455
90	11,556	7,833	Democratic	0	7833	1861	0	1861	7833	-5972
91	18,044	11,816	Democratic	0	11816	3114	0	3114	11816	-8701
92	14,313	11,383	Democratic	0	11383	1465	0	1465	11383	-9919
93	15,014	15,690	Republican	15014	0	0	338	15014	338	14676
94	14,601	15,761	Republican	14601	0	0	580	14601	580	14022
95	18,730	10,701	Democratic	0	10701	4014	0	4014	10701	-6687
96	13,841	11,982	Democratic	0	11982	930	0	930	11982	-11052
97	10,706	18,158	Republican	10706	0	0	3726	10706	3726	6979
98	10,566	21,472	Republican	10566	0	0	5453	10566	5453	5113
99	8,517	25,349	Republican	8517	0	0	8416	8517	8416	102
TOTALS	1,448,901	1,394,018		726,238	402,334	160,165	132,723	886,403	535,057	351,346

D. Conclusions

In this report, I have outlined a method that generates accurate estimates of underlying partisanship using the 2012 presidential election vote, demographics, incumbency, and geographic features to explain patterns of voting in Assembly elections. This method is accurate, as demonstrated by its ability to forecast vote totals at both the individual ward and district levels, and I demonstrate that it generates valid out of sample estimates. It produces results that are very similar to those derived by the expert witness retained by the state legislature during its development of the redistricting map implemented in Act 43.

The results demonstrate that Act 43 was an egregious gerrymander, packing Democratic voters into a small number of districts and distributing Republican voters efficiently in a large number of districts in which they constituted safe majorities. As I demonstrated with the treatment of the city of Sheboygan in Act 43, areas of Democratic strength large enough to constitute majorities in single districts were unnecessarily split and then combined with larger Republican populations to create additional Republican districts and eliminate Democratic districts. The city, which had been in a single Democratic Assembly district since 1992, was split into two Republican districts. This packing and cracking was so successful that Republicans won 61% of Assembly seats in 2012, while obtaining only 46.5% of the statewide presidential vote.

The scope of the gerrymander is demonstrated by the efficiency gap calculation for Act 43: 11.69%. Based on the baseline partisanship estimates produced by Dr. Ronald Keith Gaddie during the drawing of the Act 43 plan, this was the intended outcome: using Gaddie's baseline estimates, Act 43 had an expected efficiency gap of 12.36%.

However, I drew a demonstration districting plan that was equivalent to Act 43 on population deviation, municipal splits, and compliance with the Voting Rights Act, and better on compactness, with a dramatically lower efficiency gap score of 2.20%. This proves that Act 43 's extreme partisan effects were not required by these constitutional or statutory mandates.

IV. Sources

Abramowitz, Alan I., Brad Alexander, and Matthew Gunning. 2006. "Don’t Blame Redistricting for Uncompetitive Elections." PS: Political Science and Politics 39:87-90.

Afshartous, David and Jan de Leeuw. 2005. "Predicting in Multilevel Models." Journal of Educational and Behavioral Statistics 30:109-139 (No. 2).

Ansolabehere, Stephen and James M. Snyder. 2012. "The Effects of Redistricting on Incumbents." Election Law Journal 11:490-502 (No. 4)

Ansolabehere, Stephen and James M. Snyder, and Charles Stewart, III. 2000. "Old Voters, New Voters, and the Personal Vote: Using Redistricting to Measure the Incumbency Advantage. American Journal of Political Science 44:17-34 (No. 1, January).

Ansolabehere, Stephen and James M. Snyder, and Charles Stewart, III. 2001. "Candidate Positioning in U.S. House Elections." American Journal of Political Science 45:136-159 (No. 1, January)

Cain, Bruce E. 1985. "Assessing the Partisan Effects of Redistricting." American Political Science Review 79:320-333 (No. 2, June)

Campbell, James E. 1986. "Presidential Coattails and Midterm Losses in State Legislative Elections." American Political Science Review 80:45-63 (No. 1, March)

Gelman, Andrew, and Gary King. 1990. "Estimating the Electoral Consequences of Legislative Redistricting." Journal of the American Statistical Association 85:274-282 (June)

Gelman, Andrew, and Gary King. 1994. "A Unified Method of Evaluating Electoral Systems and Redistricting Plans." American Journal of Political Science 38:514-554 (No. 2, May)

Glazier, Amihai, Bernard Grofman, and Marc Robbins. 1987. "Partisan and Incumbency Effects of 1970s Congressional Redistricting." American Journal of Political Science 31:680-707 (No. 3, August).

Greene, William H. 1990. Econometric Analysis. New York: MacMillan.
Jacobson, Gary C. 2003. "Terror, Terrain, and Turnout: Explaining the 2002 Midterm Elections." Political Science Quarterly 118:1-22 (No. 1, Spring).

Jacobson, Gary C. 2009. The Politics of Congressional Elections $7^{\text {th }}$ edition. New York: Pearson Longman.

King, Gary. 1996. "Why Context Should Not Count." Political Geography 15:159-163 (No. 2).

Levendusky, Matthew S., Jeremy C. Pope, and Simon D. Jackman. 2008. "Measuring-District Level Partisanship with Implications for the Analysis of U.S. Elections." The Journal of Politics 70:736-753 (No. 3, July)

McDonald, Michael P. 2006. "Drawing the Line on District Competition." PS; Political Sciene and Politics 39:99-104 (No 1, January)

McDonald, Michael P. 2014. "Presidential Vote within State Legislative Districts." State Politics \& Policy Quarterly 14:196-204 (No. 2)

Pavia, Jose M. and Antonio López-Quílez. 2013. "Spatial Vote Redistribution in Redrawn Polling Units." Journal of the Royal Statistical Society A 176: 655-678 (Series A, Part 3)

Stephanopoulos, Nicholas O. and Eric M. McGhee. 2015. "Partisan Gerrymandering and the Efficiency Gap." University of Chicago Law Review 82 (forthcoming).

Wattenberg, Martin P., Ian McAllister, and Anthony Salvanto. 2000. "How Voting is Like Taking an SAT Test: An Analysis of American Voter Runoff." American Politics Quarterly 28:234-250 (No. 2, April).

I. Data Issues

The largest errors in the Legislative Technology Services Bureau (LTSB) data occurred because the two data sets used to create this data do not precisely overlap. In GIS argot, the two sets of data are not reported in the same geography. The LTSB files contained data at the individual ward level, while the official election data is aggregated by reporting unit. Wisconsin elections are administered at the ward level, but are often tabulated and released in reporting units consisting of multiple wards. ${ }^{1}$ Of Wisconsin's roughly 6,530 populated wards, only about a third report election results at the individual ward level; the rest report results by combining wards into reporting units. As one example, the city of Manitowoc (2010 population 33,736) has 25 wards, but reports election results in 10 reporting units of between 2 and 6 wards each. ${ }^{2}$

In order to generate data at the ward level, my understanding is that the LTSB disaggregated reporting unit results to individual wards based on the fraction of Voting Age Population in each ward comprising the reporting unit. In the process a number of anomalies crept into the data. The LTSB file for 2012 contains wards where the number of votes cast exceeds the voting age population; wards with large voting age populations and an unusually low number of votes, often zero, recorded; wards, municipalities, and districts with vote totals that differ substantially from what the Government Accountability Board (GAB) reports; votes allocated to the wrong district; incorrectly numbered and duplicated wards; and wards in uncontested Assembly districts with votes recorded for both political parties.

[^15]In most cases, correcting the errors in the LTSB data involved manually changing the incorrect ward totals to reflect GAB results. When the GAB data were combined into reporting units, I allocated votes to each ward in the unit based on the ward's share of the voting eligible population, removing noncitizen and prison populations. ${ }^{3}$ This process generated more accurate ward level data, and is a standard technique when allocating votes into different geographic levels (McDonald 2014; Pavia and López-Quílez 2013). At times, however, the LTSB and GAB data could not be reconciled, because of wards that appeared in one file but not in the other, or discrepancies in ward geography. The votes I was not able to allocate constituted only 0.21% of the total votes cast in the 2012 Assembly election, and have no effect on any subsequent analysis or my conclusions.

The following table shows some of the problems with the data recorded by the LTSB. It displays the errors in the LTSB 2012 presidential vote totals for the city of Mequon. The GAB Reports columns show the vote totals for each of the city's reporting units taken from the 2014 Wisconsin Blue Book, which I take to be authoritative. ${ }^{4}$ The LTSB Data columns show the results of combining the individual ward data in the LTSB ward file into the GAB reporting units. The Difference columns show the errors in the LTSB data. While the vote totals for the municipality are the same in both data sets, every ward total is different.

[^16]

GAB Reports				LTSB Data			Difference		
Reporting Unit (wards)	Obama Votes	Romney Votes	Total Votes	Obama Votes	Romney Votes	Total Votes	Obama Votes	Romney Votes	Total Votes
1	534	890	1424	849	1,522	2,371	315	632	947
2	120	391	511	240	633	873	120	242	362
3,4	637	1,249	1886	415	833	1,248	(222)	(416)	(638)
5, 7B	205	603	808	155	311	466	(50)	(292)	(342)
6, 7A	392	909	1301	292	589	881	(100)	(320)	(420)
8,9,10	737	1,245	1982	477	956	1,433	(260)	(289)	(549)
11, 12	635	1,126	1761	527	1,057	1,584	(108)	(69)	(177)
13, 14	353	770	1123	253	506	759	(100)	(264)	(364)
15	380	494	874	579	896	1,475	199	402	601
16	221	491	712	357	766	1,123	136	275	411
17	336	459	795	517	824	1,341	181	365	546
18	204	368	572	322	607	929	118	239	357
19,20,21	639	1,331	1970	410	826	1,236	(229)	(505)	(734)
Totals	5,393	10,326	15,719	5,393	10,326	15,719	0	0	0

Correcting these totals required manually changing the single-ward vote counts to match the GAB data, and allocating votes in reporting units to the individual wards based on the votingeligible population in each ward in the unit (in the following table, wards in a reporting unit are framed together):

Allocation of Reporting Unit Data to Ward Data

City of Mequon, 2012 Presidential Vote

GAB Data					Data Used in Voting Model		
Ward	Obama Votes	Romney Votes	Ward Voting Eligible Population	Ward Share of Reporting Unit VEP	Obama Votes	Romney Votes	Total Votes
1	534	890	-	-	534	890	1,424
2	120	391	-	-	120	391	511
3	637	1249	1063	53\%	336	658	994
4			954	47\%	301	591	892
5	205	603	501	67\%	137	402	539
7B			250	33\%	68	201	269
6	392	909	1240	87\%	343	794	1,137
7A			179	13\%	49	115	164
8	737	1245	599	26\%	192	324	516
9			457	20\%	146	247	393
10			1247	54\%	399	674	1,073
11	635	1126	1530	60\%	380	673	1,053
12			1029	40\%	255	453	708
13	353	770	761	63\%	221	482	703
14			455	37\%	132	288	420
15	380	494	-	-	380	494	874
16	221	491	-	-	221	491	712
17	336	459	-	-	336	459	795
18	204	368	-	-	204	368	572
19	639	1331	908	46\%	291	606	897
20			776	39\%	249	518	767
21			310	16\%	99	207	306
Totals	5,393	10,326			5,393	10,326	15,719

I repeated this process for every instance of inaccurate vote totals in the LTSB, using
GAB data as the reference.

II. Full Regression Results

Republican vote totals (bold variables have $\mathrm{p}<.05$)

Independent Variable: Assembly Republican Votes
$\left.\begin{array}{|r|c|c|c|c|}\hline \begin{array}{l}\text { Dependent } \\ \text { Variable }\end{array} & \text { Coefficient } & \begin{array}{c}\text { Robust } \\ \text { Std. Error }\end{array} & \text { t-statistic } & \text { P-value } \\ \hline \begin{array}{r}\text { Total Voting } \\ \text { Eligible }\end{array} & 0.01 & & & \\ \text { Population }\end{array}\right)$

Columbia	15.01	10.08	1.49	0.141
Crawford	28.20	7.24	3.90	0
Dane	1.55	8.53	0.18	0.857
Dodge	8.54	7.88	1.08	0.282
Door	16.98	7.23	2.35	0.022
Douglas	-3.14	7.65	-0.41	0.682
EauClaire	0.47	7.83	0.06	0.953
Florence	-7.34	7.52	-0.98	0.332
FondduLac	4.74	8.07	0.59	0.559
Forest	-1.91	7.39	-0.26	0.796
Grant	24.64	7.23	3.41	0.001
Green	14.41	9.95	1.45	0.152
GreenLake	11.96	7.36	1.62	0.109
lowa	15.04	8.08	1.86	0.067
Iron	20.54	7.68	2.67	0.009
Jackson	5.74	7.53	0.76	0.449
Jefferson	2.37	8.41	0.28	0.779
Juneau	-4.31	7.29	-0.59	0.556
Kenosha	3.73	7.99	0.47	0.642
Kewaunee	-14.13	7.24	-1.95	0.055
LaCrosse	-26.58	8.43	-3.15	0.002
Lafayette	18.18	7.29	2.49	0.015
Langlade	4.35	8.30	0.52	0.602
Lincoln	-0.38	7.53	-0.05	0.96
Manitowoc	19.35	9.36	2.07	0.042
Marathon	2.01	8.56	0.24	0.815
Marinette	19.89	8.04	2.48	0.016
Marquette	6.91	7.26	0.95	0.344
Menominee	-3.08	7.32	-0.42	0.675
Milwaukee	1.96	11.98	0.16	0.871
Monroe	19.47	7.72	2.52	0.014
Oconto	3.21	7.95	0.40	0.687
Oneida	12.01	7.95	1.51	0.136
Outagamie	1.90	8.02	0.24	0.814
Ozaukee	13.71	8.82	1.55	0.125
Pepin	-9.83	7.27	-1.35	0.181
Pierce	-9.31	7.18	-1.30	0.199
Polk	-3.47	7.24	-0.48	0.633
Portage	-20.74	7.71	-2.69	0.009
Price	5.25	7.75	0.68	0.501
Racine	-6.90	8.23	-0.84	0.404
Richland	16.24	8.55	1.90	0.062
Rock	9.24	8.32	1.11	0.27

Rusk	3.71	7.37	0.50	0.616
SaintCroix	13.80	9.31	1.48	0.143
Sauk	$\mathbf{1 6 . 6 8}$	$\mathbf{8 . 2 7}$	$\mathbf{2 . 0 2}$	$\mathbf{0 . 0 4 8}$
Sawyer	-0.90	7.40	-0.12	0.903
Shawano	2.70	7.86	0.34	0.733
Sheboygan	-6.50	15.54	-0.42	0.677
Taylor	9.96	7.30	1.37	0.176
Trempealeau	1.29	7.21	0.18	0.859
Vernon	$\mathbf{3 1 . 5 4}$	$\mathbf{7 . 2 9}$	$\mathbf{4 . 3 3}$	$\mathbf{0}$
Vilas	3.61	7.64	0.47	0.638
Walworth	-2.00	8.17	-0.24	0.807
Washburn	-10.80	7.31	-1.48	0.144
Washington	14.16	12.70	1.12	0.269
Waukesha	1.18	7.93	0.15	0.882
Waupaca	-8.08	7.26	-1.11	0.27
Waushara	-3.47	7.30	-0.48	0.636
Winnebago	30.00	17.09	1.76	0.084
Wood	-7.60	8.96	-0.85	0.399
Constant	-0.92	7.52	-0.12	0.903

N	5282.00
R-squared	0.9903
Root MSE	15.823

Democratic vote totals

Independent Variable: Assembly Democratic Votes

Dependent Variable	Coefficient	Robust Std. Error	t-statistic	P -value
Total Voting Eligible Population	-0.01	0.01	-0.65	0.52
Black Voting Eligible Population	-0.02	0.04	-0.49	0.63
Hispanic Voting Eligible Population	-0.15	0.05	-3.01	0.00
Democratic Presidential Votes	0.93	0.03	33.33	0.00
Republican Presidential Votes	0.01	0.01	0.98	0.33
Democratic Assembly Incumbent	0.03	0.01	3.85	0.00
Republican Assembly Incumbent	-0.01	0.01	-2.77	0.01
Adams	-14.45	6.73	-2.15	0.04
Ashland	-4.78	5.58	-0.86	0.40
Barron	14.57	4.04	3.60	0.00
Bayfield	-2.82	5.58	-0.50	0.62
Brown	-21.57	7.80	-2.77	0.01
Buffalo	5.10	4.86	1.05	0.30
Burnett	-3.84	4.69	-0.82	0.42
Calumet	-26.32	5.81	-4.53	0.00
Chippewa	0.98	9.53	0.10	0.92
Clark	-6.83	4.80	-1.42	0.16
Columbia	-19.51	8.15	-2.39	0.02
Crawford	-32.57	4.33	-7.51	0.00
Dane	-9.39	7.20	-1.31	0.20
Dodge	-8.49	5.27	-1.61	0.11
Door	-11.92	4.51	-2.64	0.01
Douglas	-7.18	5.40	-1.33	0.19
EauClaire	1.05	7.22	0.14	0.89
Florence	-13.53	5.33	-2.54	0.01
FondduLac	-25.18	4.92	-5.12	0.00
Forest	-10.83	6.06	-1.79	0.08

Grant	-23.14	4.26	-5.43	0.00
Green	-15.68	6.63	-2.36	0.02
GreenLake	-17.01	4.65	-3.66	0.00
Iowa	-19.48	4.91	-3.96	0.00
Iron	-30.91	5.54	-5.58	0.00
Jackson	-12.37	6.44	-1.92	0.06
Jefferson	-17.18	7.09	-2.42	0.02
Juneau	-5.78	4.55	-1.27	0.21
Kenosha	1.78	5.33	0.33	0.74
Kewaunee	17.69	4.41	4.01	0.00
LaCrosse	25.17	6.69	3.76	0.00
Lafayette	-22.66	4.58	-4.95	0.00
Langlade	-22.20	6.05	-3.67	0.00
Lincoln	-13.42	5.15	-2.61	0.01
Manitowoc	-15.90	5.49	-2.90	0.01
Marathon	-5.64	6.20	-0.91	0.37
Marinette	-26.28	4.22	-6.23	0.00
Marquette	-15.87	4.48	-3.54	0.00
Menominee	-61.44	4.41	-13.95	0.00
Milwaukee	-29.20	6.47	-4.51	0.00
Monroe	-26.83	5.44	-4.93	0.00
Oconto	-12.99	4.42	-2.94	0.00
Oneida	-35.94	5.19	-6.92	0.00
Outagamie	-14.60	6.94	-2.10	0.04
Ozaukee	-17.19	5.83	-2.95	0.00
Pepin	6.62	4.52	1.46	0.15
Pierce	12.49	4.00	3.12	0.00
Polk	5.81	4.32	1.35	0.18
Portage	-0.04	5.13	-0.01	0.99
Price	-14.62	5.64	-2.59	0.01
Racine	4.42	5.29	0.83	0.41
Richland	-26.22	5.30	-4.95	0.00
Rock	-4.48	8.87	-0.50	0.62
Rusk	-8.01	4.90	-1.64	0.11
SaintCroix	-6.89	6.67	-1.03	0.31
Sauk	-19.42	6.51	-2.98	0.00
Sawyer	-6.06	4.64	-1.30	0.20
Shawano	-14.93	4.58	-3.26	0.00
Sheboygan	15.96	17.17	0.93	0.36
Taylor	-6.81	4.56	-1.49	0.14
Trempealeau	-3.89	4.29	-0.91	0.37
Vernon	-32.42	4.52	-7.18	0.00
Vilas	-27.14	5.48	-4.95	0.00

Case: 3:15-cv-00421-bbc Document \#: 49-12 Filed: 01/04/16 Page 68 of 73
Annex to Mayer Expert Report
October 23, 2015

Walworth	0.34	5.26	0.07	0.95
Washburn	6.43	4.74	1.36	0.18
Washington	$\mathbf{- 1 9 . 2 3}$	$\mathbf{9 . 7 5}$	$\mathbf{- 1 . 9 7}$	$\mathbf{0 . 0 5}$
Waukesha	$\mathbf{- 1 7 . 6 3}$	$\mathbf{5 . 5 5}$	$\mathbf{- 3 . 1 8}$	$\mathbf{0 . 0 0}$
Waupaca	$\mathbf{- 1 0 . 4 8}$	$\mathbf{4 . 3 7}$	$\mathbf{- 2 . 4 0}$	$\mathbf{0 . 0 2}$
Waushara	0.21	4.64	0.04	0.97
Winnebago	$\mathbf{- 3 2 . 1 2}$	$\mathbf{1 5 . 9 4}$	$\mathbf{- 2 . 0 2}$	$\mathbf{0 . 0 5}$
Wood	8.14	6.01	1.35	0.18
Constant	9.80	5.39	1.82	0.07
N	5282.00			
R-squared	0.9843			
Root MSE	17.675			

III. Plan characteristics
A. Population deviation

Assembly District	Population	Deviation from Ideal	$\%$ Deviation
1	57,487	43	0.07%
2	57,590	146	0.25%
3	57,686	242	0.42%
4	57,406	-38	-0.07%
5	57,633	189	0.33%
6	57,480	36	0.06%
7	57,208	-236	-0.41%
8	57,196	-248	-0.43%
9	57,420	-24	-0.04%
10	57,195	-249	-0.43%
11	57,455	11	0.02%
12	57,420	-24	-0.04%
13	57,248	-196	-0.34%
14	57,333	-111	-0.19%
15	57,514	70	0.12%
16	57,282	-162	-0.28%
34	57,437	-7	-0.01%
36	57,528	84	0.15%
37	57,377	-67	-0.12%

37	57,671	227	0.40\%
38	57,572	128	0.22\%
39	57,457	13	0.02\%
40	57,495	51	0.09\%
41	57,671	227	0.40\%
42	57,559	115	0.20\%
43	57,444	0	0.00\%
44	57,434	-10	-0.02\%
45	57,242	-202	-0.35\%
46	57,463	19	0.03\%
47	57,494	50	0.09\%
48	57,568	124	0.22\%
49	57,389	-55	-0.10\%
50	57,465	21	0.04\%
51	57,247	-197	-0.34\%
52	57,384	-60	-0.10\%
53	57,444	0	0.00\%
54	57,443	-1	0.00\%
55	57,446	2	0.00\%
56	57,342	-102	-0.18\%
57	57,404	-40	-0.07\%
58	57,436	-8	-0.01\%
59	57,554	110	0.19\%
60	57,547	103	0.18\%
61	57,605	161	0.28\%
62	57,632	188	0.33\%
63	57,299	-145	-0.25\%
64	57,266	-178	-0.31\%
65	57,601	157	0.27\%
66	57,459	15	0.03\%
67	57,378	-66	-0.11\%
68	57,254	-190	-0.33\%
69	57,424	-20	-0.03\%
70	57,415	-29	-0.05\%
71	57,228	-216	-0.38\%
72	57,654	210	0.37\%
73	57,491	47	0.08\%
74	57,320	-124	-0.22\%
75	57,255	-189	-0.33\%
76	57,586	142	0.25\%
77	57,398	-46	-0.08\%
78	57,579	135	0.24\%
79	57,341	-103	-0.18\%

80	57,385	-59	-0.10%
81	57,266	-178	-0.31%
82	57,641	197	0.34%
83	57,612	168	0.29%
84	57,375	-69	-0.12%
85	57,529	85	0.15%
86	57,477	33	0.06%
87	57,661	217	0.38%
88	57,533	89	0.15%
89	57,490	46	0.08%
90	57,617	173	0.30%
91	57,374	-70	-0.12%
92	57,421	-23	-0.04%
93	57,280	-164	-0.29%
94	57,509	65	0.11%
95	57,496	52	0.09%
96	57,406	-38	-0.07%
97	57,487	43	0.07%
98	57,485	41	0.07%
99	57,657	213	0.37%

B. Compactness (Reock or smallest circle measure)

Assembly District	Smallest Circle Measure
1	0.44
2	0.46
3	0.42
4	0.55
5	0.39
6	0.35
7	0.52
8	0.66
9	0.39
10	0.45
11	0.39
12	0.36
13	0.28
14	0.44
15	0.49
16	0.52
17	0.52

Case: 3:15-cv-00421-bbc Document \#: 49-12 Filed: 01/04/16 Page 72 of 73 Annex to Mayer Expert Report

October 23, 2015

18	0.30
19	0.30
20	0.44
21	0.40
22	0.34
23	0.42
24	0.42
25	0.57
26	0.49
27	0.53
28	0.31
29	0.49
30	0.50
31	0.60
32	0.45
33	0.30
34	0.42
35	0.49
36	0.43
37	0.34
38	0.24
39	0.30
40	0.51
41	0.39
42	0.33
43	0.29
44	0.43
45	0.37
46	0.35
47	0.26
48	0.43
49	0.35
50	0.44
51	0.53
52	0.56
53	0.27
54	0.28
59	0.37
55	0.37
56	0.57
57	0.26
58	0.40
2.37	
2	

Case: 3:15-cv-00421-bbc Document \#: 49-12 Filed: 01/04/16 Page 73 of 73 Annex to Mayer Expert Report

October 23, 2015

61	0.39
62	0.25
63	0.43
64	0.27
65	0.32
66	0.32
67	0.56
68	0.52
69	0.31
70	0.28
71	0.34
72	0.35
73	0.28
74	0.37
75	0.36
76	0.23
77	0.39
78	0.51
79	0.59
80	0.33
81	0.55
82	0.37
83	0.26
84	0.28
85	0.58
86	0.36
87	0.35
88	0.35
89	0.56
90	0.52
91	0.49
92	0.49
93	0.42
94	0.44
95	0.42
96	0.39
97	0.32
98	0.41
99	0.30
9	

Unintentional Gerrymandering: Political Geography and Electoral Bias in Legislatures

Jowei Chen ${ }^{1}$ and Jonathan Rodden ${ }^{2, *}$
${ }^{1}$ Department of Political Science, University of Michigan, 5700 Haven
Hall, 505 South State Street, Ann Arbor, MI 48109-1045, USA; jowei@umich.edu
${ }^{2}$ Department of Political Science and Hoover Institution, Stanford University, Encina Hall West, Suite 100, Stanford, CA 94305-6044, USA;
jrodden@stanford.edu

Abstract

While conventional wisdom holds that partisan bias in U.S. legislative elections results from intentional partisan and racial gerrymandering, we demonstrate that substantial bias can also emerge from patterns of human geography. We show that in many states, Democrats are inefficiently concentrated in large cities and smaller industrial agglomerations such that they can expect to win fewer than 50% of the seats when they win 50% of the votes. To measure this "unintentional

[^17]Online Appendix available from:
http://dx.doi.org/10.1561/100.00012033_app
Supplementary Material available from:
http://dx.doi.org/10.1561/100.00012033_supp
MS submitted 4 April 2012; final version received 13 January 2013
ISSN 1554-0626; DOI 10.1561/100.00012033
© 2013 J. Chen and J. Rodden
gerrymandering," we use automated districting simulations based on precinct-level 2000 presidential election results in several states. Our results illustrate a strong relationship between the geographic concentration of Democratic voters and electoral bias favoring Republicans.

In majoritarian political systems like the United States, the extent to which electoral support for a party translates into legislative representation is driven by the geographic distribution of votes across districts. For instance, in a set of hotly contested U.S. states including Florida, Michigan, Ohio, Missouri, Indiana, and Pennsylvania, the Democrats have had far more statewide success in winning presidential, U.S. Senate, and gubernatorial races than in winning control of state legislatures. Party strategists and pundits as well as academics (King and Gelman, 1991; Hirsch, 2003; McDonald, 2009a) have noticed that this disconnect between statewide partisanship and representation is driven by a disadvantageous distribution of Democratic voters across legislative districts. A window into this phenomenon is provided by Florida's notorious tied presidential election of November 2000, in which votes for George W. Bush outnumbered votes for Al Gore in 68% of Florida's Congressional districts.

Why does this type of electoral bias emerge? One source of bias is intentional gerrymandering, whereby district maps are drawn to favor partisan or racial groups. Another source is unintentional gerrymandering, whereby one party's voters are more geographically clustered than those of the opposing party due to residential patterns and human geography.

Ever since Elbridge Gerry proposed his famous Massachusetts district, the U.S. literature on electoral bias has been dominated by the notion of intentional gerrymandering. The machinations of politically motivated cartographers take center stage in the theory literature (e.g., Gilligan and Matsusaka, 1999; Gul and Pesendorfer, 2010) as well as in empirical studies (e.g., Abramowitz, 1983; Cain, 1985; Cox and Katz, 2002; Herron and Wiseman, 2008; McCarty et al., 2009). Likewise, studies of racial gerrymandering have used theoretical (e.g., Shotts, 2001, 2003) and empirical analyses (e.g., Brace et al., 1988; Hill, 1995; Lublin, 1997; Cameron et al., 1996; Griggs and Katz, 2005) to show that efforts at enhanced minority representation inexorably pack Democrats into relatively few districts.

A significant reform movement in the United States is predicated on the notion that observed electoral bias stems from intentional gerrymandering.

Districting reformers in many states have advanced various statutory and constitutional proposals to prohibit partisan gerrymandering and enforce more neutral, objective criteria and procedures in the redistricting process. In Florida, for example, in response to a striking pattern of proRepublican electoral bias, a coalition of left-wing interest groups invested significant energy and resources into passing Amendments 5 and 6 , which voters approved in November 2010. These ballot initiatives mandate that newly drawn congressional and state legislative districts be compact and contiguous in shape, and the initiatives prohibit redistricting plans drawn with the intent to favor either political party.

Such reforms are based on the assumption that human geography plays no significant role in generating electoral bias. Reformers are betting that the inefficient distribution of Democrats across districts in a number of states would disappear if the process of districting could only be sufficiently insulated from Republican cartographers and minority interest groups.

This article examines the possibility that human geography plays a far greater role in generating electoral bias in the United States than commonly thought. Building on existing literature, we explore the argument that Democrats are often more clustered in space than Republicans as a result of the industrial revolution, great migration, and subsequent patterns of suburbanization (Fenton, 1966; Dixon, 1968; Erikson, 1972, 2002; Jacobson, 2003; McDonald, 2009a, 2009b). This argument dovetails with the emphasis on similar aspects of human geography in the comparative literature (e.g., Johnston, 1976; Taylor and Gudgin, 1976; Gudgin and Taylor, 1979; Johnston and Hughes, 2008; Rodden, 2010).

We show that in many urbanized states, Democrats are highly clustered in dense central city areas, while Republicans are scattered more evenly through the suburban, exurban, and rural periphery. We illuminate this pattern with an in-depth case study of Florida and demonstrate that it holds up in many other states. Precincts in which Democrats typically form majorities tend to be more homogeneous and extreme than Republican-leaning precincts. When these Democratic precincts are combined with neighboring precincts to form legislative districts, the nearest neighbors of extremely Democratic precincts are more likely to be similarly extreme than is true for Republican precincts. As a result, when districting plans are completed, Democrats tend to be inefficiently packed in homogeneous districts.

This observation raises some vexing empirical questions: To what extent is observed pro-Republican electoral bias a function of human geography rather
than intentional gerrymandering? To what extent might pro-Republican bias persist in the absence of partisan and racial gerrymandering?
The main contribution of this paper is to answer these questions by generating a large number of hypothetical alternative districting plans that are blind as to party and race, relying only on criteria of geographic contiguity and compactness. We achieve this through a series of automated districting simulations. The simulation results provide a useful benchmark against which to contrast observed districting plans. We show that in general, pro-Republican partisan bias is quite persistent in the absence of intentional gerrymandering. Moreover, consistent with our argument about human geography, we demonstrate that the highest levels of electoral bias against Democrats occur in states where Democratic voters are most concentrated in urban areas.

1 Political Geography and the Roots of Electoral Bias in the United States

Electoral maps from recent U.S. presidential elections illustrate clearly that in much of the United States, support for Democrats is highly clustered in densely populated city centers, declines gradually as one traverses the suburbs and exurbs, and levels off in moderately Republican rural areas. Additionally, in the rural periphery, there are scattered pockets of strong support for Democrats in smaller agglomerations associated with nineteenth century industrial activity along railroad lines, canals, lakes, and rivers, as well as in college towns.

To illustrate the relationship between population density and voting behavior, we match precinct-level results from the 2000 presidential election to precinct boundary files produced by the U.S. Census. We are able to obtain such 2000 precinct-level data for 20 states. We then generate block group estimates of election results, which we plot against population density data from the census in Figure 1. The relationship between population density and Democratic voting is generally widespread, but there is some cross-state heterogeneity. This relationship is most pronounced in the most industrialized and urbanized states, but it is less pronounced or absent in less industrialized Southern states with large rural African American populations and in relatively sparse Western states.

It is important to note that the densely populated urban block groups in the lower-right corners of the scatter plots in Figure 1 are not randomly

Figure 1. Population density and Republican Presidential Vote Share, census block groups.

Figure 2. The spatial arrangement of partisanship in Florida.
distributed in space; many of them are in close proximity to one another. For example, support for Democrats in Florida is highly concentrated in downtown Miami and the other coastal cities to its immediate North, as well as downtown Orlando, Tampa, St. Petersburg, Daytona, Gainesville, Jacksonville, Tallahassee, and Pensacola, as well as a few other smaller railroad and college towns. The suburbs of these cities, along with rural Florida, are generally Republican, but only moderately so.

Figure 2 displays the distance in kilometers between the center of Miami's central business district and the location of every census block group in Florida. Figure 2 displays this distance on the horizontal axis, and the vertical axis displays the block group's Bush vote share. Block groups toward the right of this plot are further away from Miami, and the extreme right side of the plot depicts block groups in the Florida panhandle. The lower left corner of the plot displays the large number of overwhelmingly Democratic precincts in downtown Miami, Ft. Lauderdale, and Palm Beach. Above these urban cores in the graph are more heterogeneous suburban neighborhoods where the Bush vote share, on average, only slightly exceeds 50%.

The tips of each of the other "stalactites" in Figure 2 are city centers where Al Gore's vote share in November 2000 often exceeded 90%. In each case, as one moves outward from the city center, the Bush vote increases, and each
city is surrounded first by a very mixed area, second by a suburban periphery that produced solid but not overwhelming support for Bush, and then finally by a rather heterogeneous but moderately Republican periphery. Analogous plots are quite similar in all of the other states that are characterized by high correlations between population density and voting in Figure 1.

These depictions illustrate two important patterns with consequences for districting. First, Democrats are far more clustered within homogeneous precincts than are Republicans. For example, while Bush received over 80% of the vote in only 80 precincts, Gore received over 80% in almost 800 precincts. Second, the stalactite shape of cities and their surroundings in Figure 2 illustrate that Democratic precincts tend to be closer to one another in space than Republican precincts. That is, the nearest neighbors of predominantly Democratic precincts are more likely to be predominantly Democratic than is the case for Republican precincts.

Some simple spatial statistics allow us to demonstrate this. First, we can identify the nearest neighbor of every precinct, defined as the precinct with the most proximate centroid, and ask whether that neighbor has the same partisan disposition. For any reasonable cut-off used to differentiate "Democratic" and "Republican" precincts (e.g., lower than 40th vs. higher than 60 th percentile values of Bush share, 30 th vs. 70 th, etc.), we find that indeed, the nearest neighbors of Democratic precincts are significantly more likely to be Democratic than is the case for Republicans, whose neighbors are more heterogeneous.

Alternatively, rather than forcing precinct partisanship to be binary, it is useful to examine the extent to which each precinct's election results are correlated with those of its neighbors, and ask whether the extent of this spatial autocorrelation is higher in Democratic than in Republican districts. Anselin's (1995) local Moran's I is well suited to this task. For each precinct i, the local Moran's I is given by:

$$
I_{i}=\frac{Z_{i}}{m_{2}} \sum_{j} W_{i j} Z_{j}
$$

where

$$
m_{2}=\frac{\sum_{i} Z_{i}^{2}}{N}
$$

and Z_{i} is the deviation of Bush share with respect to the mean across all precincts, N is the number of precincts, and $W_{i j}$ is a matrix of weights with ones in position i, j whenever precinct i is a neighbor of precinct j,

Figure 3. 2000 Bush vote share. Colors correspond to Bush vote share, heights correspond to local Moran's I.
and zero otherwise. We define neighbors as precincts that share any part of any boundaries or vertices (Queen Contiguity), although we get very similar results when using Rook contiguity or distance-based spatial weights.

Overall, I_{i} is much higher for majority-Democratic precincts than for Republican precincts, indicating that Democratic precincts are far more spatially clustered. Figure 3 displays I_{i} for each precinct using an extruded map, in which the height of each extrusion corresponds to the extent of spatial autocorrelation, and the color moves from blue to red as the precinct's Bush vote share increases. Figure 3 illustrates clearly that the most Democratic precincts in Florida's city centers are also those with the highest levels of local spatial autocorrelation; that is, they are surrounded by other very Democratic precincts. While there are some Republican-leaning areas of high spatial autocorrelation in little Havana, suburban Jacksonville, and the Panhandle, Republican precincts overall tend to be located in more heterogeneous neighborhoods.

The process of building electoral districts involves someone - incumbent politicians, judges, or districting boards - stringing together contiguous census blocks. Drawing on the rhetoric of reform advocates, let us consider a districting process in which these census blocks are assembled without
political or racial manipulation. To illustrate, consider a process of randomly selecting one of the dots in Figure 2 and randomly connecting it with surrounding dots until enough dots have been selected to form a state legislative district or Congressional district.

This process is likely to undermine the representation of Democrats for three reasons. First, suppose that the initial seed is a precinct in one of the stalactites representing Florida's large cities, such as Miami, Jacksonville, or Tampa. Such a city is sufficiently large that this process will likely combine extremely Democratic districts with other extremely Democratic districts, thereby forming a district that is overwhelmingly Democratic.

Second, outside of little Havana, it is difficult to find a Florida precinct that, when randomly chosen as the initial seed, would produce an analogously extreme Republican district. In addition to being more internally heterogeneous, Republican precincts tend to be located in heterogeneous suburban and rural areas of the state where their nearest neighbors are more diverse. For instance, suppose the initially chosen precinct is rural and extremely pro-Republican. If one strings together neighboring precincts until reaching the population threshold for a district, this will usually require the inclusion of some rather heterogeneous precincts, often including pockets of Democrats in small cities or towns and on the fringes of larger cities.

A third reason concerns the locations of small Democratic-leaning towns throughout Florida. Although dense, pro-Democratic cities are often combined together to form Democratic districts along the Eastern Coast, there are also small, isolated, inland pockets of Democratic voters in the manufacturing and transportation agglomerations that sprung up along railroad tracks in the nineteenth century, such as Ocala or Pensacola, and the college towns of Tallahassee and Gainesville. When the size of districts is large relative to these small clusters of Democrats, these towns are often subsumed into predominantly rural, moderately Republican districts, thus wasting Democratic votes in districts that are won by Republicans.

The roots of unintentional gerrymandering in Florida can be summarized as follows. The complex process of migration, sorting, and residential segregation that generated a spatial distribution of partisanship has left the Democrats with a more geographically concentrated support base than Republicans. When compact, contiguous districts are imposed onto this geography without regard for partisanship, the result will be a skew in the distribution of partisanship across districts such that with 50% of the votes, Democrats can expect fewer than 50% of the seats.

2 Automated Districting and Electoral Bias

Studies of electoral bias typically flow from the normative premise that in a two-party system, a party with 50% of the votes should receive 50% of the seats. Empirical studies use either aggregate data over several elections or transformations of district-level data from individual elections to examine the seat share that would be obtained by the parties under a hypothetical scenario of a tied election. Our goal is different. Rather than examining the bias associated with existing districting plans, many of which were undoubtedly influenced by efforts at partisan and racial gerrymandering, we seek to estimate the electoral bias that would emerge under hypothetical districting plans that are not intentionally gerrymandered.

Rather than using information from existing districts to simulate hypothetical tied elections, we use information from precinct-level election results, and we perform a large number of automated, computer-based simulations of legislative districting plans. Our computer simulations construct these districting plans in a random, partisan-blind manner, using only the traditional districting criteria of equal apportionment and geographic contiguity and compactness of single-member legislative districts. For each of these simulated districting plans, we calculate the Bush-Gore vote share of each simulated single-member district, and we use this vote share to determine whether the district would have returned a Democratic or Republican majority. We begin with Florida's 2000 presidential race because of its unique quality as a tied election.

Since the early 1960s, scholars have suggested automated districting as a solution to the problem of partisan gerrymandering (e.g., Vickrey, 1961; Weaver and Hess, 1963; Nagel, 1965). More recently, scholars have used hypothetical districting experiments to examine partisan polarization (McCarty et al., 2009), partisan representation (Altman, 1998), and the impact of various districting criteria (McDonald, 2009b). These previous studies have often used automated redistricting in order to obtain a baseline against which to detect the intentions of those drawing the lines. Cirincione et al. (2003) use a simulated districting algorithm to detect racial gerrymandering in South Carolina's congressional districting plan, while Altman and McDonald (2004) propose an enhanced method of this algorithm for detecting partisan gerrymandering. Johnston and Hughes (2008) apply an automated districting algorithm in Brisbane, Australia in order to gain a baseline against which to compare the boundaries chosen by neutral
commissioners. Extending this past work, we use simulations to examine the electoral consequences of a hypothetical districting process without any intentional partisan or racial gerrymandering.

As of the November 2000 election, Florida consisted of 6,045 voting precincts. These precincts are the smallest geographic unit at which election results are publicly announced, so we use the precinct as the building block for our simulations. Hence, a complete districting plan consists of assigning each one of Florida's precincts to a single legislative district. Florida voters cast 5.96 million Presidential election ballots in 2000, so the average precinct cast a total of 986 presidential votes.

Our goal is to design a districting algorithm that uses only traditional geographic criteria of the kind favored by reform advocates. Our challenge is to guarantee equal apportionment of population while requiring geographic contiguity for all simulated districts, paying no attention to either voter partisanship or any demographic information other than simple population counts. Another concern is geographic compactness. Many districting reform proposals include explicit (if vague) compactness requirements, and reformers sometimes equate compactness with fairness. Moreover, an algorithm that makes no attempt to achieve compactness might create districts that seem too far removed from the real world. On the other hand, if we build some strict compactness criteria into the algorithm, we run the risk that any pro-Republican bias observed in the simulated plans could be driven exclusively by compactness criteria that, for instance, force the most extreme Democratic precincts in Miami to be joined together.

Our approach is to experiment with alternative algorithms that approach compactness in different ways or ignore it altogether. Due to space constraints, we focus here on two algorithms: one that aims for compactness and one that does not.

Our procedure for simulating compact districts is as follows. Suppose that we begin with n precincts and wish to create d districts with equal population.
(1) To begin the simulation procedure, each of the n precincts represents a single district. Hence, there are n districts, each containing only one precinct at the outset.
(2a) Randomly select one of the n districts and denote it as district i.
(2b) Among the neighboring districts that border district i, select the one that is geographically closest, and denote it as district j. Geographic
proximity is measured as the distance between district i 's centroid and the respective centroids of i 's neighboring districts.
(2c) Merge district i together with district j in order to form a single, new district. There are now $n-1$ total districts remaining.

Steps 2a through 2c are repeated until the total number of districts is exactly d. At this point in the procedure, these d districts are geographically contiguous and reasonably compact, due to the nearest distance criterion employed in step 2b. However, the districts are not guaranteed to be equally populated. Hence, repeated iterations of steps 3a through 3c are designed to achieve an equitable distribution of population across the simulated districts. These steps iteratively reassign precincts to different districts until equally populated districts are achieved.
(3a) Among all pairs of districts that border one another, identify the pair with the greatest disparity in district population. Within this pair, let us denote the more populated district as i and the less populated district as j.
(3b) Identify the set of all precincts currently within district i that could be reassigned to district j without violating the geographic contiguity of either district i or j.
(3c) For each precinct p satisfying the criterion in step 3 b , define D_{p} as precinct p 's geographic distance to the centroid of district i, minus precinct p 's distance to the centroid of district j.
(3d) Among the set of precincts satisfying the criteria in step 3b, select the precinct, p, with the highest value of D_{p}. Reassign this precinct from district i to district j.

Steps 3a through 3d are repeated until every district's population is within 5% of the ideal district population. The ideal district population is defined as the statewide population, divided by d, the total number of districts. Hence, these steps iteratively reassign precincts in order to achieve equal population across the districts. However, steps 3c and 3d perform such precinct reassignment in a manner that preserves the geographic compactness of the districts. Compactness is preserved because step 3d generally reassigns a precinct that was geographically distant from its old district's centroid and geographically close to the centroid of its new district.

In order to simulate non-compact districts, steps 1 and 2 a are performed in the same manner as in the compact districting algorithm. The procedure for non-compact districts then proceeds as follows:
(2b) Select one of district i 's bordering districts at random and denote it as district j.
(2c) Merge district i together with district j in order to form a single, new district. There are now $n-1$ total districts remaining.

Steps 2a through 2c are repeated until the total number of groups is exactly d. At this point in the procedure, these d districts are geographically contiguous but not guaranteed to be equally populated. Hence, repeated iterations of steps 3a through 3c are designed to achieve an equitable distribution of population across the simulated districts.
(3a) Identify the most populated district and denote it as district i.
(3b) Randomly select one of the precincts lying within district i and denote it as precinct p.
(3c) If precinct p can be reassigned from district i to a new district without violating the geographic contiguity of either this new district or district i, then reassign p to this new district. If two or more new districts satisfy this criterion, then reassign precinct p to one of these new districts at random.

Steps 3a through 3c are repeated until every district's population is within 5% of the ideal district population. The ideal district population is defined as the statewide population, divided by d, the total number of districts.

In order to help illustrate the output of these simulations, the Appendix displays sample maps of both compact and non-compact plans for Florida's 25 Congressional districts, as well as maps that zoom in on Miami and Jacksonville.

3 Simulation Results

For each procedure, we perform 25 simulations of Florida districting plans for each of a range of reasonable legislature sizes, ranging from 2 to 200 districts. For each simulation, we can simply aggregate the precinct-level Bush-Gore vote counts within each district and count up the number of districts in

Figure 4. Republican electoral bias in simulated Florida districting plans.
Note: Black dots indicate the average share of simulated districts that have pro-Bush majorities in the simulated plans. Gray bars depict the entire range of pro-Bush district shares that were observed across all simulations for each given legislature size. Red bars depict the range of simulated outcomes for legislatures of 25 districts (Florida's Congressional Delegation), 40 districts (the Florida State Senate), and 120 districts (the Florida State House).
which Bush received a majority. The expectation is that if there is no partisan bias, the average share of pro-Bush districts should be around 50%.

Our simulations reveal pro-Republican bias in the partisan distribution of seats in any realistically sized legislature; that is, significantly over onehalf of the legislative seats have Republican majorities. Figure 4 summarizes the distribution of seat shares produced under our simulations. The left panel presents results using the non-compact procedure, and the right panel reports results for the compact procedure. In this figure, the horizontal axis represents the number of single-member districts in each simulated plan. The vertical axis reports the percentage of these districts that have Republican majorities. For each different hypothetical legislature size, the dot represents the average share of simulated districts with pro-Bush majorities across all simulated plans, and the gray bars depict the entire range observed across all simulations for each given legislature size. The red colored
bars depict the entire range of simulated outcomes for legislatures of 25 districts (Florida's Congressional Delegation), 40 districts (the Florida State Senate), and 120 districts (the Florida State House).

The figure illustrates, for example, that when we conducted random simulations that divided Florida into 25 districts using the compact procedure, Republicans won an average of 61% of the seats. The most biased of the simulated plans gave the Republicans 68% of the seats, and the least biased plan gave them 56%. Overall, this plot illustrates the significant proRepublican bias that results from a districting procedure that is based solely on geography and population equality. Moreover, this result is not driven by the compactness of the simulated districts. The results are just as striking when we use the non-compact simulation procedure.

We find that the real-life districting plans enacted by the Republicancontrolled Florida legislature in 2002 are all within the range of districting plans produced by our simulation procedures. For example, in 2002, the state legislature enacted a Congressional districting plan in which Bush voters outnumbered Gore voters in 17 out of 25 districts, or 68%. This level of pro-Republican electoral bias falls just within the tail of the distribution of electoral biases produced across all of the randomly simulated, compact districting plans ($56-68 \%$), as illustrated in Figure 4. Hence, because the enacted districting plan falls within the range of plans produced by our compact districting procedure, we are simply unable to prove beyond a doubt that the enacted districting plan represents an intentional, partisan, Republican gerrymander.

Both panels of Figure 4 show that a legislature consisting of only two single-member districts will always have exactly one Democratic and one Republican seat, a result that follows naturally from Florida's 50-50 Bush-Gore vote share. But as the legislature grows in size, the partisan division of legislative seats quickly begins to favor the Republicans. When the simulated legislature has 25 seats - the size of Florida's Congressional delegation after the 2000 reapportionment - Republicans win an average of 61.2% of the districts when we use the compact procedure and 63.5% of the districts when we use the non-compact procedure.

As the size of the legislature increases further, some of the medium-density Democratic clusters in suburbs and small towns that had previously been subsumed in their surrounding Republican peripheries begin to win their own seats, and thus the Republican seat share slowly declines. However, a striking result is that the Republicans always continue to control over
one-half of the total seats. For any districting plan of realistic size, the pro-Republican bias exhibited in our simulations is significant. With only a few exceptions, the entire range of simulations produces a hypothetical legislature with a solid Republican majority in spite of the tied election.

To provide a closer illustration of the distribution of districting plans produced by the simulations, we conduct 250 independent simulations in which Florida is divided into 25 congressional districts using the non-compact procedure. Figure A6 in the Online Appendix depicts the partisan breakdown of districts produced under these 250 simulations.

This figure illustrates that all of the 250 simulated plans result in pro-Republican electoral bias: In each plan, at least 14 of the 25 districts (56%), and as many as 19 of the 25 districts (76%), have a pro-Bush majority. Moreover, the figure reveals that the distribution of partisan bias across the simulations follows a normal distribution. Most of the simulations resulted in the production of 15,16 , or 17 pro-Bush districts. Drawing 14 or 18 proBush districts was a rarer outcome, and only an exceedingly small number of simulations produced as many as 19 Bush-leaning districts. Hence, these simulations demonstrate that a range of partisan outcomes is achievable under the simulations, but most of the simulations result in a predictable partisan distribution of seats that indicates significant pro-Republican electoral bias.

4 A Closer Look at Political Geography

Next, we use the simulation results to take a closer look at political geography as an explanation for this persistent Republican advantage. In Figure 5, we present the results of 200 independent random simulations in which Florida is divided into 25 districts.

Each plotted point in Figure 5 represents one of Florida's 6,045 precincts, and we plot high, medium, and low density precincts separately, referring to them loosely as urban, suburban/town, and rural. For each plotted point, the horizontal axis measures the partisanship of the precinct, as measured by Bush-Gore vote share in November 2000. The vertical axis measures the average partisanship of the 200 simulated districts to which the precinct was assigned during our simulations.

The patterns of spatial autocorrelation reported above give rise to the generally positive correlation between the partisanship of a precinct and the

Figure 5. The partisanship of precincts' assigned districts.
Note: Each point represents a single Florida precinct. The horizontal axis indicates the precinct's partisanship, as measured by George Bush's November 2000 share of the twoparty vote. The vertical axis measures the average partisanship (George Bush vote share) of the simulated district to which the precinct was assigned. This measure is based on 25 independent random simulations of dividing Florida into 40 Senate districts, using the non-compact simulation algorithm.
partisanship of the legislative district to which the precinct was assigned. In other words, pro-Bush precincts are typically assigned to pro-Bush districts. In particular, the left and middle plots reveal that outside of dense city centers, pro-Bush precincts were almost always assigned to majority-Bush districts. Hence, the lower-right quadrants of these plots - where proRepublican precincts are assigned to majority-Democratic districts - are generally empty.

By contrast, majority-Gore precincts outside of dense urban neighborhoods are often in the upper-left quadrant of the plots. In other words, rural, small town, and suburban precincts that lean Democratic are often subsumed into moderately Republican districts. As described above, there are isolated pockets of support for Democrats in African-American enclaves in the suburbs of big cities and in smaller towns with a history of railroad industrialization or universities. However, these Democratic pockets are generally surrounded by Republican majorities, thus wasting these Democratic votes. As a result, the Democrats are poorly situated to win districts outside of the urban core.

Figure 5 illustrates that pro-Gore precincts in urban areas are generally assigned to overwhelmingly Democratic districts in our simulations. There is a large cluster of observations at the bottom of the lower-left
quadrant of the bottom graph, indicating that Democratic precincts are assigned to extremely Democratic districts. By contrast, there are very few corresponding Republican precincts in the extreme upper right of any of the plots. Taken together, these plots show that because of their geographic support distribution, Democrats not only waste more votes in the districts they lose, but they also accumulate more surplus votes in the heavily Democratic districts they win. These two phenomena explain the rather extreme pro-Republican bias revealed by our simulations.

5 Does Geography Constrain Partisan Gerrymandering?

Taken together, the simulation results presented thus far suggest that residential geography alone generates significant partisan bias in Florida's districting plans. As Figure 4 illustrates, almost the entire range of simulated districting plans for every reasonable legislature size produces at least some pro-Republican bias. Among all of the randomly simulated plans consisting of 25 districts (U.S. Congressional delegation), 40 districts (Florida Senate), and 120 districts (Florida House), not a single simulated plan produces at least as many Gore-leaning districts as Bush-leaning districts. Hence, both the compact and the non-compact simulation procedures are unable to produce a single Congressional, Senate, or House districting plan for Florida that is either neutral or pro-Democratic in its distribution of seats. This finding reflects the significant pro-Republican bias in Florida that results from the geographic constraint that each district must be contiguous, even if non-compact district shapes are permitted. Our simulation results show that this contiguity requirement alone is sufficient to consistently produce pro-Republican districting outcomes in Florida.

Could a sufficiently creative Democratic gerrymander work around these geographic constraints and produce a neutral or pro-Democratic districting plan in Florida? In theory, it seems that a clever Democratic cartographer might generate radial districts emanating from the city centers so as to break up the major agglomerations and create snake-like districts to connect some of the smaller cities. Such a hypothetically contorted districting arrangement would possibly neutralize the inherent Republican advantages in geographic districting. Is such a hypothetically neutral or pro-Democratic gerrymander achievable in real-life practice?

First, the key finding of our simulation results is that for the Florida Congressional, Senate, or House districts, our two simulated districting procedures are unable to produce a single districting plan that is neutral or pro-Democratic in terms of electoral bias. Hence, a real-life Democratic gerrymanderer would have to draw districting maps with even more creativity than our simulated non-compact districting plans in order to achieve a hypothetically neutral outcome. Moreover, human geography makes the task of a Democratic cartographer far more difficult than that facing a Republican-favoring cartographer, whom we have shown can do strikingly well by literally choosing precincts at random.

Second, to determine whether an electorally neutral districting plan in Florida is achievable in real-life practice, we examine the districting plans proposed by Democrats in the state legislature. Even though Florida's state legislature was controlled by the Republican Party during the 2002 redistricting cycle, Democratic legislators are nevertheless permitted to propose their own districting plans, and many did so in 2002 . We examine these Democrat-proposed districting plans in order to measure how the most Democrat-favorable districting proposals fared in terms of electoral bias.

Specifically, we obtained district-level statistics for every proposed districting plan submitted to the Florida Senate during the 2002 redistricting cycle. To see how these real-world districting proposals compare against our non-compact, simulated districting plans, Figure 6 displays the number of Bush-leaning districts in the Congressional (Figure 6A) and Florida Senate (Figures 6B) districting plans adopted by the Republican-dominated legislature in 2002. Additionally, Figure 6 also displays the number of Bush-leaning districts in each of the alternative districting proposals submitted during the redistricting process by various Republican legislators, by various Democratic legislators, and by the League of Women Voters (hereinafter: LWV) in the Florida legislature. ${ }^{1}$
Figure 6 displays the share of majority-Republican seats generated by each proposed plan and each computer-simulated plan, as well as a histogram displaying the distribution of Republican seat shares generated by 100 of our simulations. Figure 6A displays plans for the Florida delegation

[^18]

Figure 6A. Enacted, proposed, and simulated districting plans for Florida's 25 congressional districts.
Note: Proposed plans include all Congressional districting plans submitted for consideration to the Florida State Senate Committee on Reapportionment in 2002.
to the U.S. House, and Figure 6B displays plans for the Florida Senate. In terms of electoral bias, every one of the submitted plans falls well within the range of the simulated districting plans. Not surprisingly, the Republican plans tend to produce larger Republican majorities than Democratic or LWV plans, but remarkably, not a single unbiased or pro-Democratic plan was submitted by any of the Democratic legislators. Of course, we cannot conclude from Figure 6 that Democrats submit biased plans solely because

Figure 6B. Enacted, proposed, and simulated districting plans for Florida's Senate (40 districts).
Note: Proposed plans include all Senate districting plans submitted for consideration to the Florida State Senate Committee on Reapportionment in 2002.
of the constraints generated by human geography. However, at a minimum, Figure 6 suggests that the level of bias produced in the real world of strategic partisan cartographers, courts, and the Voting Rights Act is not radically different from that produced by human geography alone.

We acknowledge, however, that various political considerations may have influenced the drawing of the various Democrat-submitted plans. For example, important considerations for Democratic cartographers include
minority representation and protection of incumbents, especially those incumbents submitting the districting proposals. An additional possibility is that Democratic mapmakers understood that a pro-Democratic redistricting plan would never secure passage in the Republican-controlled state legislature; hence, perhaps only plans with built-in Republican bias were even worth submitting.

6 Simulation Results across U.S. States

The most striking result thus far is the rather consistent size of the proRepublican bias in Florida; additionally, much of this bias would have occurred with a simple, random districting scheme that is blind to race or partisanship. This finding raises at least two broad questions. First, to what extent does an urban concentration of Democrats generate a similar political geography of electoral bias in other states? Second, building upon Figure 6, to what extent does the electoral bias that would be generated by our automated districting algorithm track electoral bias observed in actual districting plans?

In order to provide the necessary cross-state perspective, we have linked November 2000 precinct-level data reported by county governments with corresponding GIS boundary files provided by the U.S. Census Bureau. The reprecincting and the use of completely different precinct identifiers in the two data sets make this a difficult challenge. While improved coordination between the census department and state election officials will soon allow for a more complete data set for more recent elections, for the November 2000 elections we have been able to match 20 states. We have applied exactly the same automated districting algorithm introduced above and produced graphs like those in Figure 4.

The only difference is that because elections in other states were not tied, before performing the simulations we applied a uniform swing to the precinct-level results in order to examine the seat share in a "hypothetical" tied election. We then calculate the average bias estimates across all simulations corresponding to the number of districts in each state's lower chamber, its upper chamber, and its U.S. Congressional delegation. A useful feature of the 2000 presidential election is the fact that it was very close in a number of states, so that the uniform swing used to achieve a hypothetical tie is not
a far stretch of the imagination. However, in consistently lopsided states like Massachusetts or Oklahoma, close statewide elections are less frequent.

Figure 1 revealed that the extent to which Democrats are spatially concentrated in urban areas varies considerably across states. We capture this heterogeneity in a simple way by using block group-level data and regressing, state by state, the Democratic vote share in the 2000 presidential election on logged population density, weighting by the block group's population. The coefficient from this regression is displayed on the horizontal axis of the first panel of Figure 7. The vertical axis displays the average estimated Republican vote share obtained from 50 simulations of the state's Congressional and state legislative districts. Observations above 0.5 indicate that on average, the districting algorithm produced districts that would turn tied elections into Republican legislative majorities.

Figure 7. Simulated electoral bias in state legislatures and the urban concentration of democrats.

Note: The solid lines represent least-squares regression fits. The horizontal axis in the left plot is measured as the estimated coefficient of population density when county-level Gore (November 2000) vote share is regressed onto county-level population density within each state. The vertical axis represents the simulated electoral bias for state legislative chambers, measured as the percentage of simulated congressional districts with Republican majorities when the statewide Republican vote share is exactly 50%.

Figure 7 suggests that Florida is not an outlier. The correlation between population density and Democratic voting is even higher in several other states, and in most of them, the simulations consistently produced similar or even higher levels of pro-Republican bias than in Florida. Average bias in favor of Republicans is substantial - surpassing 5% of legislative seats - in around half the states for which simulations were possible. It appears that in some of the largest and most urbanized U.S. states, even without overt racial or partisan gerrymandering, the Democrats are at a disadvantage in translating votes to seats simply because their voters are inefficiently clustered in urban areas. According to the simulations, this problem is less severe for the Democrats in Western and Southern states, where their voters are more efficiently spread out in space. The second panel in Figure 7 provides a different perspective on urbanization and electoral bias by plotting the simulation results against the extent to which the state has urbanized since 1950, suggesting that the Democrats face the most inefficient geographic support distributions in states that have experienced the most urbanization.

Next, we compare the bias generated by our simulated plans to that created by the districting plans that were in place both before and after the 2002 redistricting cycle. To calculate the latter, we superimpose the actual legislative district boundaries on the November 2000 precinct-level presidential election results and aggregate Bush and Gore votes, then apply the uniform swing in order to examine the share of districts that would be won by Bush in a hypothetical tied state legislature election. In Figure 8, this quantity is plotted on the vertical axis, and the simulated Republican seat shares are plotted on the horizontal axis, with lower chambers displayed in red and the upper chambers in blue

The positive correlation between the simulation estimates and those based on actual districts suggests the strong ability of our simulations to predict the direction and extent of electoral bias across states. In general, the states where the simulations produced large pro-Republican bias, like Texas and Pennsylvania, are the same states where the actual districting plans produced similar bias. As with the simulations, observed electoral bias in these states tends to favor Republicans, sometimes quite dramatically so.

Figure 8 plots include a 45 -degree line, such that any observation above (below) the line indicates that the observed pro-Republican bias associated with the existing plan exceeds (falls short of) the bias found in our raceand partisan-blind simulations. Most of the districting plans are clustered fairly close to this 45-degree line, suggesting that in most states, observed

Figure 8. Electoral bias in simulated districting plans versus actual districting plans.
Note: In both plots, the horizontal axis plots estimates of the share of seats in the legislature that would have Republican majorities from districting simulations under the hypothetical scenario of a tied statewide 2000 presidential vote. Also using 2000 presidential results, the vertical axis plots the percent of seats that would be won by Republicans after applying the uniform swing to votes aggregated to the level of actual districting plans. Each measure is displayed separately for the upper and lower chambers of each state's legislature.
electoral bias would not necessarily disappear in the absence of intentional partisan and racial gerrymandering. Moreover, the 45 -degree line provides a useful benchmark against which to compare observed districting plans. For instance, the plans drawn by Democrats in California and Georgia are friendlier to Democrats than the average of the simulated plans. Yet, in a state like Georgia, where the simulations reveal an especially bad geography for Democrats, even an aggressive pro-Democratic gerrymander was unable to completely erase the built-in pro-Republican bias. The simulations also identify cases, like the Florida House of Representatives and the Texas State Senate, where Republican cartographers appear to have done better for themselves than would be predicted from the simulations.

We must stop short of characterizing the deviation from the 45 -degree line in Figure 8 as a measure of partisan gerrymandering because this deviation is also driven by a variety of factors including court interventions and efforts at racial representation. Nevertheless, automated districting simulations place
observed plans into useful perspective. If one encounters a districting plan characterized by 7 or 8% pro-Republican bias in a state like Georgia or Pennsylvania, one cannot necessarily infer that partisan manipulation has taken place. Nor can one necessarily infer that efforts at minority representation are to blame, because party- and race-blind simulations produce even larger levels of bias.

On the other hand, in a state like New Jersey, Democrats are evenly dispersed throughout an urban corridor that lacks a sprawling and heterogeneous rural periphery, thus avoiding the phenomenon described in the Florida example above. As a result, the simulations predict modest proDemocratic bias in New Jersey, and this is reflected in the actual adopted plans. If Republicans in New Jersey and neighboring Pennsylvania submitted plans that produced an identical 10% bias in their favor, claims of partisan manipulation should carry more weight in New Jersey.

7 Discussion

This article has demonstrated that in contemporary Florida and several other urbanized states, voters are arranged in geographic space in such a way that traditional districting principles of contiguity and compactness will generate substantial electoral bias in favor of the Republican Party. This result is driven by a partisan asymmetry in voters' residential patterns: Democrats live disproportionately in dense, homogeneous neighborhoods in large cities that aggregate into landslide Democratic districts, or they are clustered in minor agglomerations that are small relative to the surrounding Republican periphery. Republicans, on the other hand, live in more sparsely populated suburban and rural neighborhoods that aggregate into districts that are geographically larger, more politically heterogeneous, and moderately Republican. We have explained how these geographic patterns can explain a large part of the pro-Republican bias observed in recent legislative elections in Florida and several other states.

Together, our theoretical explanation and our simulation results contribute to the literature on legislative districting and electoral bias in three ways. First, we have built upon and extended the work of political geographers who have noticed that electoral bias emerges in two-party systems when one party's voters are more concentrated in space. For example, Gudgin and Taylor (1979) show that in a competitive two-party system, if
the cross-district support distributions of the two parties are skewed, the party with too many of its supporters packed into the districts of the tail of the distribution will suffer in the transformation of votes to seats. Writing in the 1970s about Britain, they conjecture that due to the inevitability of densely packed support in coalfields and manufacturing districts, the Labour Party faced a right-skewed support distribution, causing it to suffer from a less efficient transformation of votes to seats than the Conservatives. Rydon (1957) and Johnston (1976) provide similar descriptive accounts of pro-Conservative electoral bias in Australia and New Zealand, respectively.

Erikson (1972, 2002), Jacobsen (2003), and McDonald (2009a, 2009b) have made similar observations about the relative concentration of Democrats in urban U.S. House districts in the post-war period. However, perhaps because the process of redistricting is typically more politicized in the United States than in Commonwealth countries, the U.S. literature tends to focus overwhelmingly on the partisan and racial motivations of those drawing the lines. This article has attempted to provide a window into the role of human geography in U.S. electoral bias through the use of automated simulations. It shows that pro-Republican bias can be quite pronounced even in the absence of intentional gerrymandering, and is greatest in states where Democratic voters are more geographically concentrated than Republican voters. A goal for future research is to complete simulations for all 50 states, and develop more sophisticated explanations for cross-state and time-series variation in the partisan bias owing to human geography.

Second, our findings show that voter geography confounds the traditionally hypothesized relationship between gerrymandering and the partisan control of legislatures. Past scholars have taken sharp positions in favor (e.g., Carson et al., 2007) and against (Abromowitz et al., 2006; Mann, 2007; McCarty et al., 2009) the hypothesis that gerrymandering affects polarization in the House of Representatives, and scholars have also examined the impact of gerrymandering on the incumbency advantage (Friedman and Holden, 2009). Other studies have analyzed the effect of racial gerrymandering (e.g., Hill, 1995; Shotts, 2001, 2003) and respect for municipal boundaries (e.g., McDonald, 2009b) on electoral bias.

Our findings caution that the relationships between intentional gerrymandering and observed electoral bias are not necessarily identical across different states. Rather, the nexus between districting strategies and partisan control of legislatures is confounded by the electoral bias that emerges from underlying residential patterns in each state. Because geographic patterns
of Democratic voter concentration vary widely across states, each state has a different baseline partisan seat distribution that would emerge under a districting process without overt gerrymandering. Hence, our work suggests the possibility that each state's unique voter geography may either open up or restrict opportunities for mapmakers wishing to implement politically motivated gerrymandering strategies. Simulation results like those presented in this article might provide a useful baseline for future empirical studies.

Third, our simulation results offer insight into the likely effect of various redistricting reforms, such as Amendments 5 and 6 in Florida, that attempt to mandate the seemingly objective districting criteria of compactness, contiguity, and respect for municipal boundaries. Our simulation method mimics the type of districting process mandated by such reforms. Our results suggest that in Florida, New York, Pennsylvania, and other urbanized states with substantial rural peripheries, such reforms are likely to lock in a powerful source of pro-Republican electoral bias that emanates from the distinct voter geography of these states. Hence, our simulations suggest that reducing the partisan bias observed in such states would require reformers to give up on what Dixon (1968) referred to as the "myth of non-partisan cartography," focusing not on the intentions of mapmakers, but instead on an empirical standard that assesses whether a districting plan is likely to treat both parties equally (e.g., King et al., 2006; Hirsch, 2009).

Although presidential and statewide elections have been quite close over the last decade, the Republicans have consistently controlled between 60 and 70% of the seats in Florida's state legislature and Congressional delegation. Beyond the electoral bias in the transformation of votes to seats that we illustrate in this paper, Ansolabehere et al. (2012) describe another, more subtle impact of the asymmetric distribution of partisans across districts. It is conceivable that because of the extent to which liberals are packed into urban districts, the Democratic platform, or at least its perception by Florida voters, is driven by its legislative incumbents - a small group of leftists from Miami-Dade and Broward counties who never face Republican challengers - which in turn makes it difficult for the party to compete in the crucial moderate districts. This hypothesis may help to explain why the Democrats consistently receive higher vote shares in presidential than in state races.

It is striking that political geography can turn a party like the Florida Democrats, with a persistent edge in statewide registration and presidential voting, into something approaching a permanent minority in legislative
races. One might imagine that a future Supreme Court would entertain the notion that this situation reaches the rather high bar for justiciability of partisan gerrymandering laid out in Davis v. Bandemer (1986), where a gerrymander must be shown to have essentially locked a party out of power in a way that frustrates "the will of the majority." The recent opinions of the pivotal justices, however, suggest that a claimant would need to demonstrate that an "egregious" gerrymander is intentional. Proving such intent in court will be difficult in states where equally egregious electoral bias can emerge purely from human geography.

References

Abramowitz, A. I. 1983. "Partisan Redistricting and the 1983 Congressional Elections." Journal of Politics 45(3): 767-770.
Abramowitz, A., B. Alexander, and M. Gunning. 2006. "Incumbency, Redistricting, and the Decline of Competition in U.S. House Elections." Journal of Politics 68(1): 75-88.
Altman, M. 1998. "Modeling the Effect of Mandatory District Compactness on Partisan Gerrymanders." Political Geography 17(8): 989-1012.
Altman, M. and M. McDonald. 2009. "BARD: Better Automated Redistricting." Journal of Statistical Software 10(2): 2-36.
Altman, M. and M. McDonald. 2004. "A Computation-Intensive Method for Evaluating Intent in Redistricting." Prepared for the 2004 Annual Meeting of the Midwest Political Science Association.
Anselin, L. 1995. "Local Indicators of Spatial Association." Geographical Analysis 27(2): 93-115.
Ansolabehere, S., W. Leblanc, and J. M. Snyder, Jr. 2012. "When Parties Are Not Teams: Party Positions in Single Member District and Proportional Representation Systems." Economic Theory 49(3): 521-547.
Brace, K., B. Grofman, L. Handley, and R. Niemi. 1988. "Minority Voting Equality: The 65 Percent Rule in Theory and Practice. Law \& Policy 10(1): 43-62.
Cain, B. 1985. "Assessing the Partisan Effects of Redistricting." American Political Science Review 79(2): 320-33.
Cameron, C., D. Epstein, and S. O’Halloran. 1996. "Do Majority-Minority Districts Maximize Substantive Black Representation in Congress?" American Political Science Review 9(4): 794-812.
Carson J., M. Crespin, C. Finocchiaro, and D. Rohde. 2007. "Redistricting and Party Polarization in the U.S. House of Representatives." American Politics Research 35(6): 878-904.
Cirincione, C., T. Darling, and T. O'Rourke. 2003. "Assessing South Carolina's 1990s Congressional Districting." Political Geography 19(2): 189-211.
Cox, G. W. and J. N. Katz. 2002. Elbridge Gerry's Salamander: The Electoral Consequences of the Reapportionment Revolution. Cambridge: Cambridge University Press.
Dixon, R. G. 1968. Democratic Representation: Reapportionment in Law and Politics. New York: Oxford.
Erikson, R. 1972. "Malapportionment, Gerrymandering, and Party Fortunes in Congressional Elections." American Political Science Review 66(4): 1234-1245.
Erikson, R. 2002. "Sources of Partisan Bias in U.S. Congressional Elections: An Update Stimulated by Ron Johnston's Essay." Political Geography 21: 49-54.

Fenton, J. H. 1966. Midwest Politics. New York: Holt, Reinhart and Winston.
Friedman, J. N. and R. T. Holden. "The Rising Incumbent Reelection Rate: What's Gerrymandering Got To Do With It?" Journal of Politics 71: 593-611.
Gilligan, T. W. and J. G. Matsusaka. 1999. "Structural Constraints on Partisan Bias Under the Efficient Gerrymander." Public Choice 100(1-2): 65-84.
Griggs, D. and J. Katz. 2005. "The Impact of Majority-Minority Districts on Congressional Elections." Unpublished Paper, California Institute of Technology.
Grofman, B. and G. King. 2007. "The Future of Partisan Symmetry as a Judicial Test for Partisan Gerrymandering after LULAC v. Perry." Election Law Journal 6(1): 2-35.
Gudgin, G. and P. J. Taylor. 1979. Seats, Votes, and the Spatial Organisation of Elections. London: Routledge.
Gul, F. and W. Pesendorfer. 2010. "Strategic Redistricting." American Economic Review 100(4): 1616-1641.
Herron, M. and A. Wiseman. 2008. "Gerrymanders and Theories of Law Making: A Study of Legislative Redistricting in Illinois." Journal of Politics 70(1): 151-167.
Hill, K. A. 1995. "Does the Creation of Majority Black Districts Aid Republicans? An Analysis of the 1992 Congressional Elections in Eight Southern States." Journal of Politics 57(2): 384-401.
Hirsch, S. 2003. "The United States House of Unrepresentatives: What Went Wrong in the Latest Round of Congressional Redistricting." Election Law Journal 2(2): 179-216.
Hirsch, S. 2009. "A Proposal for Redistricting Reform: A Model State Constitutional Amendment." Paper presented at American Mathematics Society, Washington, DC, January 8, 2009.
Jacobson, G. C. 2003. "Terror, Terrain, and Turnout: Explaining the 2002 Midterm Elections." Political Science Quarterly 118(1): 1-22.
Johnston, R. J. 1976. "Spatial Structure, Plurality Systems and Electoral Bias." Canadian Geographer 20: 310-328.
Johnston, R. J. and C. A. Hughes. 2008. "Constituency Delimitation and the Unintentional Gerrymander in Brisbane." Australian Geographical Studies 16(2): 99-110.
King, G. and A. Gelman. 1991. "Systemic Consequences of Incumbency Advantage in U.S. House Elections." American Journal of Political Science 35(1): 110-138.
King, G., B. Grofman, A. Gelman, and J. Katz. 2006. Brief of Amicus Curiae filed in LULAC v. Perry.
Lublin, D. 1997. The Paradox of Representation: Racial Gerrymandering and Minority Interests in Congress. Princeton, NJ: Princeton University Press.
Mann, T. E. 2007. "Polarizing the House of Representatives: How Much does Gerrymandering Matter?" In Red and Blue Nation? Characteristics and Causes of America's Polarized Parties, Pietro S. Novolo and David W. Brady, eds. Stanford, CA: Hoover Institution, pp. 263-283.
McCarty, N., K. T. Poole, and H. Rosenthal. 2009. "Does Gerrymandering Cause Polarization?" American Journal of Political Science 53(3): 666-680.
McDonald, M. 2009a. "Seats to Votes Ratios in the United States." Unpublished Paper, George Mason University.
McDonald M. 2009b. The Midwest Mapping Project. Fairfax, VA: George Mason University Press.
McDonald, M. D. and R. L. Engstrom. 1989. "Detecting Gerrymanders. In Toward Fair and Effective Representation: Political Gerrymandering and the Courts, ed. Bernard Grofman. New York, NY: Agathon, pp. 178-202.
Nagel, S. S. 1965. "Simplified Bipartisan Computer Redistricting." Stanford Law Review 17(5): 863-869.
Rodden, J. 2010. "The Geographic Distribution of Political Preferences." Annual Review of Political Science 13: 297-340.

Rydon, J. 1957. "The Relation of Votes to Seats in Elections for the Australian House of Representatives 1949-54." Political Science 9: 49-65.
Shotts, K. 2001. "The Effect of Majority-Minority Districts on Partisan Gerrymandering." American Journal of Political Science 45(1): 120-135.
Shotts, K. 2003. "Does Racial Redistricting Cause Conservative Policy Outcomes? Policy Preferences of Southern Representatives in the 1980s and 1990s." Journal of Politics 65(1): 216-226.
Taylor, P. J. and G. Gudgin. 1976. "The Myth of Non-Partisan Cartography: A Study of Electoral Biases in the English Boundary Commission's Redistribution for 1955-1970." Urban Studies 13(13): 13-25.
Vickrey, W. 1961. "On the Prevention of Gerrymandering." Political Science Quarterly 76(1): 105-110.
Weaver, J. B. and S. W. Hess. 1963. "A Procedure for Nonpartisan Districting." Yale Law Review 72(2): 228-308.
Wildgen J. and R. Engstrom. 1980. "Spatial Distribution of Partisan Support and the Seats/Votes Relationship." Legislative Studies Quarterly 5(3): 423-436.

Wisconsin

Affiliations

Senate

$D / R /$ oth
1974
1976
1978
1980
1982
1984
1986
1988
1990
1992
1994
1996
1998
2000
2002
2004
2006

19/14
$23 / 10$
$21 / 12$
20/13
22 / 11
19/14
19/14
$20 / 13$
19 / 14
$18 / 15^{2}$
$16 / 17^{3}$
$17 / 16^{4}$
$17 / 16$
$18 / 15$
15/18
$14 / 19$
18/15

Assembly
$D / R /$ oth
$63 / 36$
$66 / 33$
60 / 39
59 / 40
59 /40
$52 / 47$
$54 / 45$
$56 / 43$
$58 / 41$
$52 / 47$
$48 / 51$
$47 / 52$
$44 / 55$
$43 / 56$
$41 / 58$
39 / 60
47 / 52

Notes

1. Redistricting of existing districts in multi-district counties only.
2. As a result of special elections the Republicans won control on April 20, 1993, 17-16.
3. As a result of a special election on June 16, 1996, the Democrats took control of the Senate, 17-16
4. As a result a special election on April 19, 1998, Republicans won control of the Senate, 17-16.

Sources

Michael F. Holt, The Rise and Fall of the American Whig Party (New York: Oxford University Press, 1999), p. 1081, for the years 1848-1851. Holt differs in 1851 (Senate $12 \mathrm{D} / 6 \mathrm{~W} / 1 \mathrm{FS} /$ Assembly $25 \mathrm{D} / 35 \mathrm{~W} / 6 \mathrm{Fs}$) and also 1850 in the Assembly (48 D / $11 \mathrm{~W} / 7 \mathrm{FS}$) from the Whig Almanac. For years not located in the almanacs I used (Madison) Weekly Argus \& Democrat, November 11, 1852; (AMadison) Daily State Journal, November 12, 1852, January 12, 14 , November 18,

[^0]: MADISON FREELANCE REPORTERS, LLC

[^1]: ${ }^{1}$ The federal requirements are equal population, compliance with Section 2 of the Voting Rights Act, and the ban on racially gerrymandered districts. The state requirements are contiguity, compactness, and respect for political subdivisions (counties, towns, cities, and villages).

[^2]: ${ }^{2}$ Winners are determined by which candidate receives $>50 \%$ of the vote in a two party race. Seats votes curves depend on the number of seats a party wins in an election (determined by the number of races in which that party received $>50 \%$ of the vote) and the statewide vote totals in legislative races or some other set of statewide races

[^3]: ${ }^{3}$ Legislative Technology Services Bureau data show 6,592 wards in Wisconsin, of which 66 are unpopulated and another 50 have fewer than 10 people. The average populated ward contains 869 people. Wisconsin statutes 5.15 (2)(b) specifies a permissible population range for wards of 300-4,000, depending on a municipality's size, with exceptions allowed in certain circumstances (for example, when single blocks exceed a permitted ward size, or when a municipality is divided into multiple counties or school districts, contains islands, or has wards that must be altered to match district boundaries).

[^4]: ${ }^{4}$ The larger n also means that OLS is an accurate method of estimating the underlying relationships, whereas more complicated techniques may be required with smaller sample sizes (Afshartous and de Leeuw 2005).
 ${ }^{5}$ The Census Bureau uses the term "Voting Tabulation District" (VTD). Most states call VTDs precincts. In Wisconsin these units are called "wards."
 ${ }^{6}$ These are known as FIPS (Federal Information Processing Standard) codes. http://www.census.gov/geo/reference/ansi.html.

[^5]: ${ }^{7}$ The files are available at http://legis.wisconsin.gov/gis/data. The 2012 election results are in the file Wards_111312_ED_110612.xlsx.
 ${ }^{8}$ As I note in the Annex, I was not able to allocate 0.21% of the vote in 2012 because of inconsistencies between electoral data reported by the GAB and the geographic redistricting data reported by the LTSB. This small number of votes will not change any of my analysis or conclusions, and such errors are inevitable when working with large data sets.

[^6]: ${ }^{9}$ When using dummy variables (which take binary values of either 0 or 1) to measure effects in units or conditions across the full population, one unit must be excluded, as otherwise perfect collinearity prevents estimation (Greene 1990, 240-241).

[^7]: ${ }^{10}$ The reliance on actual numbers of voters eliminates the Modified Areal Unit Problem, which results when group statistics such as vote percentages or demographic fractions are aggregated into different geographic units levels. All of my variables and measures are scale invariant (see King 1996).
 ${ }^{11}$ The number of votes cast in Assembly races varies considerably even in in contested races. In 2012, the number of major party votes cast in the highest turnout Assembly election in the $23^{\text {rd }}$ Assembly district, 36,205 , was almost twice the number cast in the $90^{\text {th }}$ Assembly district, 18,735 , and almost 5 times the number cast in the uncontested $8^{\text {th }}$ district, 7,869 (numbers taken from GAB figures).
 ${ }^{12}$ The voting eligible population (VEP) adjusts the voting age population by removing adults who are not eligible to vote. In Wisconsin, the two largest categories of ineligible adults that can be identified geographically are noncitizens and adults in prison for felonies. Noncitizens were removed using the 2008-2012 5 year American Community Survey county level noncitizen estimates (available at http://www.census.gov/acs/www/data_documentation/2012_release/. Institutionalized prison populations were identified using Census Bureau "Advanced Group Quarters" files for Wisconsin, available at .http://www2.census.gov/census_2010/02Advance Group Quarters/, and described in http://www.census.gov/newsroom/releases/archives/2010_census/cb11-tps13.html. There are individuals on probation or extended supervision who are also ineligible to vote. I was not able to systematically identify their locations, but they are dispersed enough that they will not have a material effect on my resulting estimates or conclusions. All regression results and district estimates are materially unchanged when the unadjusted data are used.

[^8]: ${ }^{13}$ In the political science literature, the incumbency advantage has been attributed to the political skills and campaign experience of officeholders, higher name recognition, fundraising advantages, constituency service, redistricting, and the ability to scare off quality challengers. ${ }^{14}$ Incumbents were identified using 2012 election data in the 2013 Wisconsin Blue Book. In the $43^{\text {rd }}$ and $61^{\text {st }}$ Assembly districts two incumbents were paired against each other; these districts were coded as having no incumbent, since the advantage cancels. In the $7^{\text {th }}$ Assembly district, the Democratic incumbent lost in the primary election and ran a write in campaign in the general election. Because the incumbent was not on the ballot, this district is also coded as having no incumbent.

[^9]: ${ }^{15}$ This major-party contested definition is standard. It counts as uncontested four districts where one major party candidate was not on the ballot but received votes as a write in (districts 7, 17, 48 , and 57), and one district (district 95) where one major party candidate was on the ballot but did not campaign and received only 50 votes (or 0.24%). This is consistent with methods used in the literature, which often uses a 95% threshold for the winning candidate as a standard (Gelman and King 1990, 274).
 ${ }^{16}$ Standard errors were adjusted to reflect the aggregation (or clustering) of wards into districts. The full set of variables is included in an appendix to this report.

[^10]: ${ }^{17}$ All of the votes for a losing candidate are defined as wasted, whereas only those votes in excess of the number required to win are wasted for the winner.
 ${ }^{18}$ The vote percentages were calculated using the actual and predicted vote totals.

[^11]: ${ }^{19}$ Uncontested districts were not included in the analysis for reasons specified in section B(1)(f) above.
 ${ }^{20}$ In twelve districts (districts $1,6,34,35,36,49,68,74,75,93,94$ and 96), at least one county was entirely contained in a single district, making it impossible to estimate the fixed effect coefficient value for that county. Consequently, when the out-of-sample predictions were calculated, a variable was missing. An accurate test involves districts for which it was possible to estimate the full model.

[^12]: ${ }^{21}$ Deposition, January 20, 2012, p. 196.
 ${ }^{22}$ I generated this data by calculating predicted values for my model in Act 43 districts, setting all incumbency variables to zero.

[^13]: ${ }^{23}$ The identifier is a combination of state, county, Census tract, and block FIPS codes.

[^14]: ${ }^{24}$ Act 43 figures are taken from the Joint Final Pretrial Report filed in Baldus et al. vs Brennan et al.11-CV-562, filed February 24, 2012.

[^15]: ${ }^{1}$ Wisconsin Statutes $5.15(6)(b)$ allows municipalities with a population under 35,000 to combine wards for purposes of using a common polling place, and allows for the tabulation and reporting of combined ward vote totals.
 ${ }^{2}$ In 2012 the reporting units were Wards 1-2; 5-6; 7-8; 9-10; 11-12; 13-14; 15-16; 3, 4, and 22; and 17-18, 21, and 23-25.

[^16]: ${ }^{3}$ The voting eligible population (VEP) adjusts the voting age population by removing adults who are not eligible to vote. In Wisconsin, the two largest categories of ineligible adults are noncitizens and adults in prison for felonies. Noncitizens were removed using the 2008-2012 5 year American Community Survey county level noncitizen estimates (available at http://www.census.gov/acs/www/data documentation/2012 release/. Institutionalized prison populations were identified and removed using Census Bureau "Advanced Group Quarters" files for Wisconsin, available at http://www2.census.gov/census_2010/02-Advance_Group_Quarters/, and described in http://www.census.gov/newsroom/releases/archives/2010_census/cb11tps13.html.
 ${ }^{4}$ Table: Vote for President and Vice President by Ward, November 6, 2012 General Election, 938.

[^17]: * The authors wish to thank Micah Altman, Pablo Beramendi, Kyle Dropp, David Epstein, Andrew Gelman, Tony Hill, Nolan McCarty, Michael McDonald, Boris Shor, John Sides, and Chris Warshaw for helpful comments and suggestions.

[^18]: 1 The Florida Senate provides information on all plans submitted to the Senate Committee on Reapportionment by Senators or the public at archive.flsenate.gov, accessed on September 20, 2012.

