

1	you don't understand my question, just let me know.	1 Q	You're an expert -- serving as an expert witness for
2	We want to make sure you understood the question and		the plaintiffs in this case. Have you served as an
3	give a truthful answer. So if you don't understand,	3	expert witness in other cases?
4	just tell me. I'll try to rephrase the question or	4 A	Yes.
5	we can have her repeat it back. Do you understand?	5 Q	And how many other times?
6 A	Yes.	6 A	They are in my report. I think it is six or seven
7 Q	Okay. Maybe I could just get your educational	7	times. I'd have to go back and look to be sure.
8	background. I know some of it's in your report, but	88	And how many of those deal with -- have dealt with
9	maybe just the schools that you got, the degrees --	9	districting situations as opposed to perhaps campaign
10	the schools you went to, the degrees you obtained and	10	finance or something else?
11	the years.	11 A	Well, let me think for a minute. Can I look at my
12 A	My undergraduate degree is from the University of	12	report?
13	California-San Diego, and that was 1982. My Ph.D. is	132	Yeah. Actually why don't we mark that as
14	from Yale University, and I received that in 1988.	14	Exhibit 1.
15	And there are subsidiary degrees you get along the	15 A	I just want to make sure I get this correctly.
16	way, master's and master's of philosophy, which I	16 Q	And then you can refer to that.
17	think the dates were '86 and '87.	17	MR. KEENAN: Here's a copy for
18 Q	And the Ph.D. was from where?	18	Exhibit 1.
19 A	Yale.	19	MR. STRAUSS: Thank you.
20 Q	Yale. And then what was the Ph.D. in?	20	(Exhibit 1 is marked for identification)
21 A	Political science.	21 Q	And just for the record, this is the Exhibit 1 that
22 2	And then you are now a professor at the University of	22	was provided by your counsel that has the -- I had a
23	Wisconsin-Madison, correct?	23	copy that didn't have the appendix with some data
24 A	Correct.	24	error -- or an annex, sorry. This one has the annex
25 Q	Okay. How long have you been a professor there?	25	to it.
1 A	Since 1989.	1 A	So this covers the last eight years, Baldus vs.
28	So right after you got your Ph.D. at Yale?	2	Brennan was a redistricting case. Kenosha County vs.
3 A	I spent a year after I received my degree working for		City of Kenosha was a redistricting case. I was an
4	the RAND Corporation in Washington, DC.		expert in 2001, and I think that was Baungart vs.
50	And what's your current title, so to speak, as a		Wendelberger. Those are the -- as best I can recall,
6	professor at Madison?	6	those are the only cases where I have testified as an
7 A	Professor of political science and affiliate faculty		expert on a redistricting matter.
8	of LaFollette School of Public Affairs.	80	Okay. I'm familiar with the Baldus and the Baumgart
92	And what are your research areas?		case, but what was the Kenosha one about?
10 A	Research interests are American politics, the	10 A	The Kenosha case involved a dispute between the City
11	presidency, elections, elections administration, some	11	of Kenosha and the County of Kenosha over the drawing
12	interest in Australian politics, but mostly American	12	of wards and districts and it -- as I remember, it
13	politics.	13	involved disputes over whether the -- how the city
14	I teach courses in the undergraduate course,	14	and county resolve discrepancies or disagreements
15	courses in the presidency, a course on campaign	15	over wards and as they affect county supervisory
16	finance, various seminars, but all of them are	16	district lines and city aldermanic lines.
17	focused on either elections, elections	17 Q	Okay. That was going to be my next question. So it
18	administration, the American presidency, and I taught	18	involved local election lines, not state assembly
19	one course on comparative electoral systems.	19	lines?
20 Q	Do you teach any classes that relate to districting	20 A	Correct.
21	or redistricting like that's at issue in this case?		Okay. And which party did you represent in that --
22 A	Not specifically. I have taught courses that deal	22	or not represent but provide an expert report for?
23	with various issues relating to election		I provided an expert report on behalf of the city.
24	administration and that plays a role, but no courses		Do you know what the end result of that case was?
25	specifically on redistricting.		The end result of the case -- again I'd have to go

1	back and look at the record. The end result was that		But I would have to go back and look at the report to
2	the city was able to reconfigure its wards so that		be more specific.
3	they were in compliance with the -- again I'm	3 2	And what's your understanding of the district that
4	operating -- it's been a long time, it's been four		came into being as a result of the Baumgart case?
5	years since I've looked at this, that the city was	5	Did the court accept either of the maps that were
6	able to reconfigure its wards to address some of the	6	drawn by the parties, or did it draw its own map?
7	disagreement.	7 A	So are we back in 2001?
82	Okay. And do you know if there was a judicial	8 2	2001, yeah.
9	decision that allowed that or was it a settlement or	9 A	So my understanding is that the court took the
10	agreement or do you know?	10	submissions from both parties and produced its own
11 A	I don't know.	11	map.
12 Q	Okay. And then it says you have testified as an	12 Q	Okay. Well, let's switch to this case. When did you
13	expert witness at trial or deposition. Which -- did	13	first get approached about potentially being an
14	you testify in a deposition, trial or both in that	14	expert in this case?
15	case?	15 A	I believe it was somewhere around -- it was over the
16 A	Baldus was deposition and at trial. NAACP vs.		summer. Somewhere around July. I don't remember
17	Walker, both deposition and trial. The one case	17	precisely.
18	where I testified in deposition but not in trial was	18 Q	July of this -- 2015?
19	McComish vs. Brewer.		2014.
20 Q	Okay. So there was a trial in the Kenosha County	20 Q	2014. And who did you talk to about it?
21	one?	21 A	I believe the initial conversations were with
22 A	There was.	22	Peter Earl and Ruth, Ruth Greenwood.
23 Q	In the Baldus vs. Brennan case, on behalf of which	230	And after that initial contact, when did you
24	party did you submit an expert report -- or parties?	24	officially become involved with the case?
25 A	I'm pretty sure it was on behalf of Baldus because	25 A	I would have to look at the agreement letter. I'm
9			
1	Brennan was on the GAB.	1	not sure when I actually signed that.
20	Okay. And what was your understanding of who the	2	MR. KEENAN: Let's mark that then as
3	plaintiffs were in that case?	3	No. 2.
A	People who were challenging the constitutionality of	4	(Exhibit 2 is marked for identification)
5	Act 43.	5 Q	And you mentioned an agreement letter and we put
62	And then in the Baumgart case from the 2000 round of	6	before you Exhibit 2, and is this the agreement
7	redistricting, on which side did you -- on behalf of	7	letter that you're referring to?
8	which -- sorry, on behalf of which parties did you	8 A	I believe it is, yes.
9	submit an expert report?	98	And it's dated November 5th, 2014. Does that refresh
10 A	That case I recall I worked -- one of the parties was	10	your recollection about the time you were retained
11	the Senate Democratic Caucus I believe was the party	11	about?
12	that -- I worked for or provided the report for.	12 A	I would say Novenber.
13 Q	And what were the issues you offered an opinion on in	13 Q	And it's your understanding that this letter contains
14	Baumgart to the extent you can remember?	14	the scope of work that you were asked to do on behalf
15 A	In that case my role involved assessing the partisan	15	of the plaintiffs in this case?
16	consequences of the proposed plans submitted by all	16 A	That's correct.
17	of the parties.	17 Q	And it says that your rate is \$300 an hour. That is
18 Q	And did you offer an opinion on perhaps which parties	18	your rate, correct?
19	under the map that was the best in that case?		Correct.
20 A	I would have to go back and look at my report, but my	20 Q	Looking at your report, did anyone else assist you in
21	recollection is that both the party I was working for	21	doing the work that went into the production of your
22	and the other party, which I believe was the Assembly	22	report?
23	Republicans, had submitted multiple maps and I		In terms of the report, no.
24	analyzed those maps and provided analysis about the	248	Okay. And when you said in terms of the report, that
25	estimated consequences that those maps would have. 10	25	indicates that perhaps someone else assisted you in

1	some other ways?	1 Q	How big is a census block? Are they uniform in size
2 A	I had a graduate student whom I've worked with before		or are they -- do they differ in terms of the number
3	do some of the data issues, particularly regarding	3	of people in them?
4	the -- I guess the proper term would be preparing the	4 A	They vary.
5	data for subsequent analysis.	5 Q	Okay. And then I take it that a ward is made up of
6 2	Okay. And what type of data is that?	6	several different census blocks?
7 A	It was, as I explained in the report, that I obtained	7 A	Usually.
8	data from the LTSB and GAB, primarily ward level	88	Usually, okay. And does that vary from ward to ward,
9	election and demographic election returns and	9	I guess?
10	demographic data.	10 A	Well, in terms -- vary in terms of what?
11 Q	And what's your understanding of what -- first who	11 Q	Like, for example, like a ward could be five census
12	was the grad student?	12	blocks or one or 10, it depends on the ward, or do
13 A	His name is Brad Jones.	13	wards tend to have a certain number of census blocks
14 Q	What did Mr. Jones do to the data in order to prepare	14	that are in them?
15	it for the subsequent use by you?	15 A	The number of census blocks in each ward varies.
16 A	His responsibilities or his tasks were to do some --	16 Q	Okay. And so when you're disaggregating, are you
17	I'll call it cleanup to making sure that the	17	attempting to -- you're taking a larger data set made
18	different fields and the data conformed so that we	18	up of several census blocks and trying to establish
19	could put them together, and I also instructed him	19	the number of votes from the ward totals that are
20	and used him to do some disaggregation. At one of	20	assigned to each different census block? Perhaps
21	the points we took ward level estimates and	21	that's a bad question.
22	disaggregated them down to the block level using	22 A	Can you -- I mean --
23	voting eligible populations. So it was	23 Q	Sure.
24	essentially -- I wouldn't say data analysis, but data	24 A	-- the methodology of doing this is actually pretty
25	processing to put the data in a form that was	25	standard. It's cormon and disciplined, but I want to
	13		15
1	suitable for the actual analysis.		make sure that I understand what I mean based on --
20	You used a couple terms there that I just want to get	2	match it up.
3	on the record what they are. You mentioned ward	32	Sure. Well, maybe you could explain what you're
4	level data and block level data. Could you just	4	doing when you take -- I take from your testimony
5	explain what those are?	5	that you're taking ward level information then and
6 A	Sure. The data on elections and the redistricting	6	it's a bigger number than trying to break it down
7	data that the Legislative Technology Services Bureau		into smaller numbers that go into each census block?
8	produced were largely at the ward level or the voting	8 A	Correct. When you're working with GIS data or
9	tabulation district level. But I also used census	9	geographic data, it's very cormon to apply or to
10	data or the actual redistricting files, the map files	10	transfer information at one level to another level.
11	that the Iegislative Technology Services Bureau	11	And a cormon way to do that is that you assign or
12	produced. And those include block level data, the	12	distribute values at a higher level to a lower level
13	250,000 or so blocks, census blocks that are defined	13	based on the distribution of population.
14	by the Census Bureau, and in doing the analysis and	14	So in my report, I developed estimates of
15	preparing the maps, I did that at the block level.	15	partisanship, the number of people who I estimate
16	So it was necessary to take the ward level results	16	will vote Democratic or Republican, and I broke those
17	and disaggregate them down to the census block level.	17	down or distributed those ward level totals to the
18 2	Okay. So maybe if I could just also get you to	18	various blocks in that ward based on the proportion
19	define what disaggregate means when you're talking	19	of each block or the proportion of a ward that was
20	about the ward level down to the block level.	20	made up in that block.
21 A	Sure. In this case it means assigning values to	21 Q	Okay. And when the data disaggregated from the ward
22	census blocks based on the percentage of the ward	22	level to the block level, is it a straight
23	population, the voting eligible population that	23	population, for example, like one block has 30
24	existed in each census block. And I explained a	24	percent of the people of this ward, so, therefore, 30
25	couple of examples in the report of how I did that. 14	25	percent of the totals get assigned to that block, or

1	do you actually go into the demographic data and		the invoices that listed Brad Jones on them.
2	adjust for different types of populations that vary	2 A	Um-hum.
3	block to block?	3 2	And I tried to put them in chronological order. And
A	I did do adjustments -- I made two adjustments. One		you mentioned Brad Jones before. So are these the
5	is that we adjusted for citizenship using data that	5	invoices for Mr. Jones' work on this case?
6	is data on people who are of voting age but are not	6 A	These look -- these are the invoice that he
7	eligible to vote because they're not citizens. And I		submitted, so reflecting the work that he did.
8	also controlled for institutional -- prison	8 2	And then do you know if he's been paid for his work?
9	populations which are similarly -- these are	9 A	He has.
10	typically voting age, but they can't vote in	10 Q	Okay. And who has paid him for the work?
11	Wisconsin and so it was -- I made a calculation of	11 A	I believe the same people who paid me.
12	the voting eligible population in each ward and	12 Q	And who is that?
13	block.	13 A	The Chicago Lawyers' Committee, and I did receive one
142	But after you accounted for those two issues, then	14	check or a couple of checks from the national ACLJ.
15	were the votes assigned from the ward level to the	15 Q	And then I also --
16	block level based on just the percentage of voters	16	MR. KEENAN: We'll mark this as No. 4.
17	that -- eligible voters that were in that block	17	(Exhibit 4 is marked for identification)
18	compared to the whole ward?	18 Q	Exhibit 4 is similar to what I did with Exhibit 3 was
19 A	That's correct. And that 's very common in both GIS	19	I took the invoices that had Kenneth Mayer
20	and in political science as a way of doing that.	20	Consulting, LIC on it and put them in chronological
218	Sure. And I'm just trying to make sure that I	21	order and just grouped them together here. So if you
22	understand it correctly.	22	want to take a look at that, and I'm just going to
23 A	Sure.	23	ask you if these invoices constitute all of the
24 Q	Okay. I've got a couple of documents here.	24	invoices that you've submitted for your work in this
25	(Exhibit 3 is marked for identification)	25	case.
	17		19
0	And I guess first I should maybe back up a little	1 A	So this looks like -- it looks like there's one
2	bit. So you understand that there's a subpoena		error. The invoice I submitted in February was for
3	issued for documents related to this case, correct?		January, but it says the dates of services were
A	Yes.	4	December. So that looks like it's incorrect.
5 2	You turned over documents that were in your	58	Okay. But that's just a typographical error?
6	possession to your attorneys who then turned them	6 A	Right.
7	over to me, do you understand that?	78	Okay. It says Kenneth Mayer Consulting, LLC. What
A	Correct.	8	is that LIC?
92	And so what was your understanding of the documents	9 A	That's a limited liability corporation that I set up
10	that you were supposed to give to your attorneys that	10	in the State of Wisconsin.
11	they could provide to me?	11 Q	And is that the -- I guess the business forum for
12 A	My understanding was that I was to turn over	12	which you do the consulting work on these when you're
13	documents that reflected the things that I took into	13	an expert witness?
14	account, all of the data sources that I took into	14 A	Correct.
15	account in preparing my report.	15 Q	Looking at Exhibit 4, I noticed that there's one bill
16 Q	Okay. And so there weren't any documents that you		for a computer. Why did you submit a bill for what
17	took into account in your report that you failed to	17	looks to be a computer to the plaintiffs' attorneys?
18	give to your attorneys?	18 A	The software that I use to -- the GIS software only
19 A	There were some things in the bibliography, I	19	runs on Windows machines and all of my computers are
20	suppose, the publicly available things that I relied	20	Macs, so it was necessary to get a machine that could
21	on, but there was nothing that I relied on in making	21	run the program.
22	my report that I did not turn over.	22 Q	So if we add up all the total of these invoices, we
238	So getting back to No. 3, I'll just tell you what I	23	could get the total amount you've billed to the
24	did. This is several different documents that were	24	plaintiffs in this case, correct?
25	in your production that I put together. These were 18	25 A	Through these dates, correct.

0	Yeah. And has all that money been -- have you been	1	election cycles.
2	paid for all those invoices?	2	And so the first thing that I did is took that
3 A	I don't know.	3	data file, which had 6,500 or so records, however
42	Okay. And you mentioned that some of the checks came	4	many populated wards there are in Wisconsin, 6,592,
5	from the Chicago Committee and others came from the	5	and calculated -- used that data to calculate
6	national ACLU. Do you know what percentage of your	6	district level totals for assembly races, which will
7	invoices were paid by either entity?	7	tell me whether or not those totals are accurate, and
8 A	No.	8	I compared them to the GAB, the Government
92	What's your understanding of why the national ACLU	9	Accountability Board totals and the Blue Book, the
10	paid some of the bills?	10	State of Wisconsin Blue Book and I took that to be
11 A	I don't know.	11	authoritative.
12 Q	Perfectly fine answer. I think we can put -- like 2,	12	And I found a number of cases where the totals
13	3 and 4 we probably won't refer much to again, so you	13	were off, sometimes considerably. The totals were
14	can probably just put somewhere. Exhibit 1 we will	14	off. There were districts where according to the
15	refer to, so you might want to keep that handy.	15	GAB, a candidate was running unopposed, but there
16	Another thing I didn't say is that since we do	16	were votes that showed up for both parties in the
17	have documents and if I put a document in front of	17	LTSB data and these were -- I found these to be
18	you, feel free to read it over and refresh your	18	significant and concluded that it required
19	memory and look at it to the extent you need to to	19	investigation. I had a conversation with a staffer
20	answer a question when it relates to a document.	20	at the LTSB asking them about this, and I suspected
21 A	Okay, thank you.	21	one of the problems and one of the reasons that this
22 Q	And also I forgot to mention we can take breaks when	22	happened is that the GAB, the way that elections are
23	you want, so if you're feeling like you have to go to	23	administered in Wisconsin is that they are
24	the bathroom or anything like that, just let us know	24	administered at the ward level but smaller
25	and we can take a break. I will add if there's a 21	25	municipalities, I think those that have fewer than 23
1	question pending, I'll ask you to answer the question	1	35,000 people are actually permitted to combine
2	that's pending, but then we can take a break if you	2	individual wards into reporting units, and that's
3	need to.	3	done for administrative ease.
A	Okay.	4	And so if you look at the official GAB totals,
58	Okay. Maybe we could just go to the back of the	5	frequently they'll be City of Madison Ward 96, but in
6	report, the annex. You mentioned in the report that	6	some areas, they'll be the City of Marshfield. It
7	there were some data errors in Wisconsin election	7	will be Wards 1, 3 and 5 and so they're combined and
8	data, and I just wanted to ask you about what -- as I	8	there is no -- that's how they received the data.
9	understand it, there were some errors in the ward	9	And so if you looked at just the GAB, you would get
10	level data not matching up between the GAB and the	10	data at the reporting unit level.
11	LTSB, is that correct?	11	The LTSB has data at the ward level, and I was
12 A	Correct.	12	told by LTSB that they did their own allocation
13 2	Okay. And so how did you go about resolving any of	13	process, which is assigning reporting -- in cases
14	those data errors?	14	where you had reporting units, to assigning those
15 A	The process is that whenever I am provided or begin	15	totals to individual wards, and I thought that that
16	working with a large data set, it's always important	16	is one of the ways that the totals were wrong.
17	to go through and check the validity of the data.	17	I have a chart in there, I believe it was the
18	And so in this case we had -- I had -- I'm using the	18	City of Mequon that shows what happened and so the
19	royal we meaning I had the LTSB data which was an	19	City of Mequon, the LTSB data, when you take that
20	individual ward level data on demographics,	20	data and recombine it into the reporting unit level,
21	population, information on the municipality, the	21	all the numbers are off. And so one of the steps
22	jurisdictions in terms of assembly, senate,	22	that I conducted is to -- I went through in those
23	congressional districts that that ward was in. And	23	places where there were errors, I fixed them and I
24	it had voting data going back, depending on the file	24	fixed them by either correcting them to the totals in
25	that you used, sometimes it would go back a number of 22	25	the GAB or I redid the -- I redid the steps that they

1	performed and reallocated the reporting unit totals	12	Okay. But just looking at these two, if I pulled up
2	to the individual ward levels to get accurate -- an		these two spreadsheets, so to speak, that had both of
3	accurate representation of what those totals were.	3	the ward units reporting here and GAB as Ward 1 and
48	Okay. A lot in that answer, so I'm just going to try	4	then LTSB as Ward 1, if I wanted to know which one
5	to break it down a little bit and just try to figure	5	had the authoritative vote totals, that would be the
6	out what -- so for an assembly race, if we go to the	6	GAB?
7	GAB election data that says Candidate A had 17,000	7 A	Right. As I understand it, the LTSB data has no
8	votes and Candidate B had 15,000 votes total	8	official status. It is simply the data that is
9	throughout the district, you took that number as	9	presented and I think that it's -- I am not aware of
10	accurate, correct?	10	anything that suggests that that has any official
11 A	I took that number as authoritative.	11	status as opposed to something that they release.
12 Q	Authoritative might be a better word. And then if	12	It's the GAB which I took to be authoritative.
13	the GAB's ward level data didn't have an issue of	138	Okay. And then I guess we go to GAB like, for
14	combining certain wards into one reporting unit,	14	example, the GAB reports, there's reporting Units 3
15	would the GAB's ward level data be accurate or	15	and 4 together, Wards 3 and 4 are together and if I
16	authoritative?	16	understand your testimony correctly, in a situation
17 A	So are you asking whether the GAB's individual ward	17	like that, that may cause some errors in the LTSB
18	level data is authoritative?	18	data because there's one reporting unit for multiple
19 2	Yes.	19	wards?
20 A	I took the GAB data as authoritative.	20 A	Well, I'm not prepared to say that the second part of
21 Q	And at the ward level as well?	21	that is true.
22 A	Correct.	22 Q	Okay.
23 Q	Okay. Now, some of the GAB data might be -- I think	23 A	But the -- correct to say that in the GAB data,
24	you said where there are several wards combined into	24	Wards 3 and 4 produce results at the reporting unit
25	one reporting unit, is that correct?	25	level, and those numbers are off as well in the LTSB
	25		27
A	Correct.	1	data.
28	Okay. So I think you used the City of Marshfield	20	Okay. And then so when you did any sort of
3	example of like 1, 3 and 5? Or it's 1, 3 and 5 are	3	calculation in Mequon here, there's Wards 3 and 4
4	combined into one reporting --	4	report together, what did you do to disaggregate, so
5 A	Actually it might be better to use the Mequon because	5	to speak, Ward 3 from Ward 4 based on the data in the
6	we actually have --	6	GAB report?
78	Okay, yeah. Maybe. Where is that?	7 A	Well, the disaggregation was the second step in this
A	That's in the --	8	because the first step was to try to determine why
92	Page 3 of the annex. So we see there's three columns	9	these individual ward or reporting unit totals are
10	here on this page. One says GAB reports, one says	10	off in the LTSB data. My experience tells me that
11	LTSB data and one says difference. So the GAB	11	this is an allocation issue because if you look at
12	reports, for example, it has Ward 1, there's only one	12	the totals, the last row, the total number of votes
13	ward there and a list of Romney and Obama votes and	13	cast for Romney and Obama were all accurate. They
14	vote totals. Did you take that line, Ward 1 in	14	match up perfectly.
15	Mequon, as authoritative?	15	It's just the internal distribution of those
16 A	Yes.	16	votes in the LTSB data is incorrect, and that is why
17 Q	Okay. But then the LTSB data, that had some	17	I concluded that this was a problem or there was an
18	different numbers there, and I take it when you	18	error in how the LTSB allocated those votes, and I
19	looked at that data and compared it to GAB data, you	19	don't know why that happened. I don't know why the
20	noticed a discrepancy and thought that the LTSB data	20	LTSB when it had individual wards just didn't plug
21	for Ward 1 needed to be corrected, so to speak?	21	the GAB totals in there, I don't know why.
22 A	Well, there are two parts to that. I think it's more	22	But it's clear this was an erroneous allocation
23	accurate to say that I looked at -- compared the LTSB	23	of votes in this case at the reporting unit level,
24	data, ward level data to the GAB, so the LTSB was	24	and if the reporting unit level is wrong, it's not
25	different and it required investigation as to why.	25	going to get better when you further disaggregate
26			28

12	And did your measure come up with a number that was	1	there?
2	higher or lower than President Obama's vote total in	2 A	There will be -- there are votes that are not counted
3	Wisconsin in 2012?	3	in those percentages. They are almost always a
A	Well, now we're starting to get apples and oranges.		trivial and immaterial number.
5	We're talking about percentages or numbers.	52	Okay. What is a wasted vote?
0	Well, we can do either or both.	6 A	So a wasted vote in the context of the efficiency gap
7 A	I don't recall sitting here. I would have to look at	7	is a vote that is cast by either the losing party in
8	the data to be able to tell you whether -- I would		an election or for the party with -- that wins, the
9	have to look at the report. I don't remember what	9	number in excess of what was necessary to win the
10	those numbers are or even if I did that calculation.	10	seat.
11 Q	Okay. And then another question would be when	11 Q	Now, the losing party makes sense, that's pretty
12	calculating the statewide vote share of the	12	easy. You just take their vote total, right, and
13	Republicans and the Democrats, how do you account for	13	that counts -- all those are wasted votes, is that
14	votes that are cast for third parties or even just	14	correct?
15	scattering votes for random candidates?	15 A	Yes.
16 A	So in doing the calculation, the accepted practice	16 Q	Okay. Now, for the winner, I just want to figure out
17	and the discipline is that you count the major	17	how we just get to the exact number there. How do
18	parties. And the scattering will typically be a		you determine the number of wasted votes for the
19	minuscule proportion, but it's the two-party vote	19	winning candidate's party?
20	that is the quantity of interest.	20 A	So I recall it is the essentially one-half of the
21 Q	Okay. So just so I understand that, the two-party	21	margin of victory in terms of number of votes.
22	vote would be, for examole, I'm just giving you some	228	Okay. So that would take the winning candidate's
23	numbers, if there's 100 statewide votes and one party	23	number, whatever it is, subtract the losing
24	got 50 votes and one party got 48 votes and another	24	candidate's number and left with something and then I
25	like random people got two votes, you disregard those	25	divide that by two and I got -- and that's the wasted
	33		35
1	two votes and now the vote total is 50 to 48, is that	1	votes for the winning candidate?
2	correct?	2 A	Say that again. I want to make sure --
3 A	Well, for the purposes of doing an analysis of a plan	32	Sure. Yeah. I may not have explained it very well.
4	that you would look at the 50 and the 48.		So I would take the vote total for the winning
5 Q	And so then the percentage ends up being a little bit	5	candidate and then subtract from that the vote total
6	off where it's now the party that got 50 percent	6	for the losing candidate and I'm left with the
7	actually got a little more than 50 percent because	7	difference -- the margin of victory, correct?
8	it's --	8 A	Correct.
9 A	Well, I dispute the term off because that suggests	92	And I would take the margin of victory and divide
10	that there is a true measure that this departs from.	10	that by two and I have the wasted vote number for the
112	Fair enough.	11	winning party?
12 A	The political scientists and people who study	12 A	Correct.
13	redistricting would say that the best measure of the	13 Q	Okay. And if I just to make sure that that number is
14	partisanship in that scenario would be 50 divided by	14	a two-party vote measure, it also kind of disregards
15	98, which would be a small majority. We could do the	15	any sort of stray votes that are cast for candidates
16	math.	16	outside of that two-party race?
17 Q	Yeah. That's just what I'm trying to get at.	17 A	So it's correct that that quantity is calculated
18 A	It would be 50 percent. It would be probably 51	18	using the -- well, it will always be the Democratic
19	percent.	19	and Republican candidate and -- but it counts only
202	So when you look at a GAB statewide election total,	20	those votes.
21	President Obama or Scott Walker or someone might have		What's your understanding of where the -- well, first
22	a total, but that's not quite exactly right because	22	maybe you mentioned that as part of the efficiency
23	someone -- it's not the exact percentage of the	23	gap, we're talking about the wasted vote. What is
24	two-party vote because there's some scattering of	24	the efficiency gap?
25	some less than one percent of votes that are out	25 A	It's a measure of the -- it is a measure of the total
34			36

1	number of wasted votes divided by the total number of		calculate the partisan bias at five percent, and
2	votes cast and it gives you a measure of the relative	2	there are sort of roughly analogous methods of
3	number of wasted votes for the two parties.	3	looking at it at different levels, but that's -- as I
Q	What's your understanding of where this version of	4	understand it, that's the most cormon way of
5	the efficiency gap first came into being in the	5	measuring the partisan bias.
6	political science world?	62	Have you ever performed a partisan bias calculation
7 A	Well, that's an ambiguous question because the method	7	on Wisconsin or any other state's election?
8	and quantity was explained in a University of Chicago	8	MR. STRAUSS: Object to the form. In
9	Law Review article. I don't know exactly the	9	what year?
10	publication date. It may have been October 2014 or	10	MR. KEENAN: Any year.
11	something like that, but I can't tell you the history	11 A	It's possible that I may have done something similar
12	and evolution of the concept.	12	in the Baumgart case. I don't remember.
138	So did that article from you think maybe October of	138	Do you consider yourself an expert in calculating the
14	2014 but may be off a little bit, did that article	14	partisan bias in this $50-50$ election scenario?
15	provide the basis for how you went about calculating		Well, can you define -- I mean I know how to do it.
16	the wasted votes in Wisconsin in 2012?		Okay.
17 A	So my method of calculating the wasted vote relied on		And I'm familiar with the literature of how that's
18	the methods and formulas outlined in that article.	18	done.
192	Okay. And then were there any other -- whether		All right. Well, I just didn't want to start asking
20	they're law reviews or political science articles or	20	you questions about something you had no idea what it
21	I don't want to limit it, but any other articles or	21	was. So how does one go about determining how many
22	maybe something else that you relied on in developing	22	seats a party would win in a $50-50$ election?
23	your method for calculating the wasted votes in	23 A	So normally the method would be to construct an
24	Wisconsin?	24	underlying measure of election outcomes and then
25 A	Well, in terms of the actual calculation of the 37	25	typically you would perturb -- you would apply 39
1	wasted votes or the method -- so in terms of the --	1	frequently what would be a uniform swing and you
2	once I had my district level measures, my method of	2	would assume that the percentage of the vote that the
3	calculating the wasted votes, I did not rely on any	3	one party gets goes up or down by a fixed amount
4	other sources.	4	around the state and you would adjust that to see
5 Q	Okay. Yeah. I'm aiming more at the theoretical	5	what happens at 50, look at the numbers of seats and
6	concept that you were using, where that came from.	6	that's what you would use as the partisan bias, and
7	And so that came from this article in the Chicago Law	7	there are lots of refinements in terms of how you
8	Review?	8	calculate the winners, but that's -- my recollection
9 A	Yes.	9	is that that's the most cormon method of doing it.
10 Q	Okay. How does this efficiency gap method of	10 Q	So someone has to create a model that determines
11	calculating partisan symmetry differ from other	11	underlying partisanship of each and every district in
12	methods of calculating partisan syrmetry?	12	the state?
13 A	That you'd have to ask the author of the article.	13 A	Well, you wouldn't necessarily need to -- you can do
14	I'm really not in a position to answer that.	14	it just looking at the actual votes, but it
15 2	All right. Are you familiar with the term partisan	15	ultimately relies on some measure of election
16	bias as a measure of political or partisan symmetry?	16	outcomes at the district level that you can perturb
17 A	Well, the partisan bias is not really synonymous of	17	or examine what happened under some alternative
18	partisan symmetry. It reflects something different.	18	scenarios.
198	Enlighten me, I guess. What does it reflect that's		And then so, for example, in a 48-52 election, this
20	different?	20	many seats, and then eventually you get to $50-50$ and
21 A	So the quickest definition of partisan bias would be	21	then you have to see how many seats each party gets?
22	in a 50-50 election what percentage of seats does the	22 A	Well, it's more complicated than that. In a 48 to 52
23	majority party have and so if the -- so if there was	23	statewide election, the district level votes would be
24	a 50-50 election and one -- in that election, one	24	distributed, and so you would see what happens in the
25	party had 55 percent of the seats, would you	25	district where you perturb the percentage.

Q Okay. I guess to be clear, the method you used in this case isn't a measure of partisan bias in the 50-50 election?
A That's correct.
Q Why don't you explain the -- how you went about determining the underlying partisanship of each district in the Wisconsin Assembly? And feel free to refer to your report to the extent you need to do that.
A What I did in the report was construct the regression model that uses as the dependent variable the actual assembly vote in contested districts. And the independent variables, I'm going to refer to my report here just to make sure I get this correct.
\& Sure. And just identify, please, the page where you're at and we can follow along.
A Okay. So I'm on Page 10 and 11. So it explains -it is a model that uses as a dependent variable the assembly vote in a particular ward. This is ward level analysis.
Q Maybe I could just stop you. In terms of the assembly vote just so -- I know they're small numbers, but is this the two-party vote or the total vote?
A I did a separate model for Democrats and Republicans
in each district. So this is the actual number of votes received by in the first case the Democratic candidate and then I ran the model again for the Republican candidate.
Q For just the D's and R's, so if there was some candidate that gets 15 and I look at the results, I need to add the Republican and the Democratic actual votes to get the total votes in your model?
A Well, the way that you would use this to get a district level measure is that you would look at the Democratic and Republican totals.
Q All right. Continue, sorry.
A Then the dependent variables again for each ward are the demographics, the total voting eligible population and these are numbers, not percentages. The total Black voting eligible population, the Hispanic voting eligible population.

And on the next page, the Democratic and Republican presidential vote, again these are all absolute totals. A durmy variable, if there is a Democratic incumbent or a Republican incumbent and that's one, if it's a Democratic or Republican incumbent, zero otherwise. And then the last term of the county, that's what's called a fixed effect, there's a durmy variable for each county reflecting

1 some possible geographic effects.
And I did this again for the underlying data with the actual vote totals in contested assembly districts in 2012.
\& Okay. One thing is just with political scientists, you guys like to use these equations, and I'm not sure exactly how to say the letters and numbers and things that are there. So when it says y and then like little i, I guess, how would I just like refer to that?
A That's Y i or Y, sub i.
\& Y, sub i, okay.
13 A But that's just sort of a symbolic representation sort of explaining the regression and just sort of as -- expresses the fact that this is a linear model. \& And then the sub i is meant to refer to -- that's for one district?
A For each ward.
Q Each ward, okay, that's a ward. And then there's A, do we just call that, or alpha?
21 A Alpha.
22 \& And then is the next one beta?
23 A Beta.
24 \& Sub i or sub 1?
25 A Yeah.

1 \& Okay. And then there's the really fancy one at the end?
A Right. That's basically it reflects the fact there are 72 counties in Wisconsin. So rather than write out all 72 counties, it's a way that for each county, it's a 1 if it's in that county, a 0 if it's not and then I believe I excluded Dunn County because when you have a durmy variable that's exhaustive, you need to exclude at least one variable because otherwise you have a constant that makes it difficult to -- or makes it impossible to generate the estimates.
\& We've been going for like an hour. I don't know if you're fine still going or if you want a break. A I could take a break.

MR. KEENAN: Okay. Let's take a
break.
(Short recess is taken)
Mr. Mayer, before the break, we had just started to get into the model on Pages 10 and 11, so we can just go back there and I'd like to just go into each of the different pieces of the model and we can just talk about them individually. So I think we already talked about the assembly vote part of it. The total voting age population, why don't you explain that element of the formula?

A The census produces numbers for each block which the LTSB aggregates into wards, and one of the variables is the number of people 18 or over who are eligible to vote. I did two corrections. One is that I adjusted for estimates of noncitizenship rates using separate estimates that the census produces. I believe I used county level estimates of basically the percentage of adults for noncitizens and did that correction and also removed institutionalized felon populations using state and federal prisons.
Q Okay. So I think we talked about that earlier in the deposition.
A Okay. And so that gives me an estimate of the number of people who are eligible to vote in each ward, which is a better figure to use than the total number of people because there may be numbers of people who for whatever reason are not eligible to vote. Generally these numbers are going to be small enough that they are not likely to make a material effect on the outcome.
Q So just so I understand the county level issue with the noncitizenships, for like a ward that's in Dane County here, you just took the Dane County average for noncitizens and applied that to each ward in Dane County?

A Well, there are separate estimates for each ethnic and demographic group. So there's noncitizenship for Whites, African-Americans, Hispanics, Asians and so I applied the noncitizenship rates to each of those demographic groups.
Q So as they appear in Dane County, so if there's five percent Hispanics, then you needed to -- I'm sorry. Probably I think that's a bad question.

So you looked at the underlying demographic data of each county or did you look at the demographic data of each ward?
A Well, I applied the county level noncitizenship estimate to the wards and they don't differ that much from the municipality level estimates. One of the reasons I used the county estimates is because you have a slightly larger geographic jurisdiction. Those estimates are going to be more accurate because there are more people. But I strongly suspect that it would not change if I had applied the city level figures in any case. Those would have been -- there was a larger chance that those estimates were inaccurate or would be more likely to be a larger margin of error using the larger base population.
Q Sure. And I guess maybe I'm trying to figure out that's the percentage of noncitizenship used. What
did you apply that to?
A So I applied the voting age to the voting age population. Just to give a hypothetical example that in most parts of the state, the noncitizenship rate among White voting age, White non-Hispanic voting age, the noncitizenship rate is on the order of 1 to 1.2 percent and so would reduce the ward level populations by that much. They tend to be very small with the exception of Hispanics where you have a larger noncitizenship rate.
\& But you looked at each individual ward's demographic data to determine like how many Hispanics are in this ward and then applied the noncitizenship factor to that ward individually?
A Correct.
\& All right. I probably asked that poorly to get that simple answer, so I apologize.

Why don't we just -- I think you probably can address Black and Hispanic voting age population together. Like what do those elements mean?
A Those are again taken from census. The number of people identified in census as Black and Hispanic and again with the same adjustment made for voting eligible population.
\& Okay. And then why did you break out Black voting

[^0]| 1 | It 's driven by the results. | 12 | Okay. So the ones that are not bolded, Black voting |
| :---: | :---: | :---: | :---: |
| 2 Q | Sure. I didn't mean to like imply that, but you gave | 2 | eligible population, Hispanic voting eligible |
| 3 | me the way to ask it to you, I think. How did you | 3 | population and Democratic presidential votes, are not |
| 4 | develop that coefficient that then goes into the | 4 | significant? |
| 5 | formula? | 5 A | Correct. |
| 6 A | That's simply a function of the regression cormands | Q | Statistically significant? |
| 7 | done in this data where you have the data and you | 7 A | Correct. |
| 8 | tell it I want to use this as a dependent variable | 82 | And then maybe I can just get you to define what |
| 9 | and here are my independent variables and it performs | 9 | these columns are. You mentioned them, but the |
| 10 | the calculations and it gives you the results and you | 10 | robust standard error, the t-statistic and P-value. |
| 11 | show them -- give some of the results and the annex | | So the standard error, again it's the calculation of |
| 12 | gives the full set of coefficients. | 12 | the precision of the coefficient estimate that the |
| 138 | Okay. So if we just turn to the annex to -- | 13 | coefficients will be drawn -- it will be a |
| 14 A | It would be Page 5. | 14 | distribution and basically if you think of it as a |
| 15 Q | Page 5, okay. So it says Black voting age | 15 | curve, as the standard error goes down, that curve |
| 16 | population, coefficients negative .03 , is that what | 16 | gets narrow and so you can have more confidence that |
| 17 | you're referring to? | 17 | that number is precisely where it is. |
| 18 A | Correct. | 18 | It's robust because there's an adjustment to be |
| 19 2 | So for someone that doesn't have as much of a | 19 | made when the -- each of the wards is clustered into |
| 20 | background in stats, what does that mean? | 20 | a particular district and we know that you have one |
| 21 A | So the way that you would interpret this result or | 21 | candidate running in a series of wards and so it's an |
| 22 | that results, the coefficient is minus .03 which | 22 | adjustment that is made to the standard error to |
| 23 | suggests that each -- and this is all linear -- the | 23 | account for that. The t-statistic is simply the |
| 24 | unit of analysis is the person. | 24 | coefficients divided by the standard error, and |
| 25 | So each additional -- as the Black population | 25 | generally the t-statistic is greater than plus or |
| | 49 | | 51 |
| 1 | goes up, the Republican number -- number of | 1 | minus -- it's greater than 1.96 or smaller than minus |
| 2 | Republican votes will tend to go down. You also need | 2 | 1.96. That gives you a measure of the statistical |
| 3 | to look at the estimate of precision, which is the | 3 | significance. And the P-value is just an expression |
| 4 | standard error, and that simply gives you a way of | 4 | of the significance of the estimate. |
| 5 | assessing how precise this estimate is and in | | Okay. I think you may have just done this, but it |
| 6 | particular use that further statistical test to see | 6 | slipped out of my head. The P-value, what's the |
| 7 | if the coefficient is different from zero. And the | 7 | cutoff for showing what's significant or not |
| 8 | P-value, which is the last, that gives you the | 8 | significant? |
| 9 | probability that the number is significantly | 9 A | So the typical standard is using -- it's called a 95 |
| 10 | different from zero. | 10 | percent confidence interval and that in a data set of |
| 11 | The bottom line is that the Black voting age, | 11 | this size, that cutoff will be 1.96. |
| 12 | this coefficient is not significant. And the reason | 12 | So you can see just an example, the Republican |
| 13 | it's not significant is that the bulk of that effect | 13 | presidential votes is .95 , which means that each |
| 14 | is going to be picked up through the Republican and | 14 | additional Republican presidential vote gives you . 95 |
| 15 | Democratic presidential votes, that if I know how | 15 | votes for the candidate. The standard error is . 01. |
| 16 | many Republicans vote, if people voted for | 16 | The t-statistic is 110, which is -- that means that |
| 17 | Republicans, having the additional information of how | 17 | the probability that that number is actually zero is |
| 18 | many people in the ward were African-American doesn't | 18 | zero. |
| 19 | give me much more information, which is a little | 192 | Okay. Maybe you could explain why the Democratic |
| 20 | different than for the Democratic vote. So that's | 20 | Assembly incumbent and Republican Assembly incumbent |
| 21 | why I ran different models. | 21 | are also significant. |
| 22 | Basically through -- in this table, the | 22 A | Generally when there's an incumbent in a race, that |
| 23 | coefficients, the rows that are bolded, those are | 23 | incumbent will do better. There's long literature in |
| 24 | what would be defined as statistically significant | 24 | political science explaining why this is true. |
| 25 | coefficients. | 25 | Better name recognition, better candidates, they tend |
| 50 | | | |

1	to have more experience, more money. And so other		Republican or Democrat would get would be different
2	things being equal, an incumbent will do better in a	2	in those two.
3	district than a non-incumbent of the same party would	30	Okay. So if I'm looking at just a district-wide vote
4	do.	4	total that isn't broken down into each individual
52	Looking at the numbers, could you just explain what	5	ward, is there a way to take your number and just
6	those numbers signify in terms of their significance?	6	kind of like convert that into like a total
7 A	So generally a -- so we're looking at the number of	7	percentage of the vote that's a bump due to
8	votes that the Assembly Republican candidate would	8	incumbency, you know, like five percent, two percent,
9	get. And the fact that the Democratic Assembly	9	one percent just to kind of get an idea as to like
10	incumbent coefficient is negative, it's small, but	10	the magnitude of that effect?
11	it's negative, is that other things being equal in a	11 A	I'm just trying to work out in my head whether you
12	race where the Democratic Assembly incumbent, the	12	could do that. The way that this model expresses
13	number of the votes for the Republican will go down.	13	that is that you would get an increment in each ward
14 Q	Okay.	14	based on the coefficient and the size of the ward,
15 A	And the reverse for the Republican incumbent, that in	15	and I think it's possible that you could simply apply
16	the case where you have a Republican incumbent, that	16	that to the district-wide total. But that's -- I
17	will go up. And I need to make one correction. The	17	would not be comfortable doing that.
18	Democrat -- the incumbency coefficients are weighted	18	The way that I would want to do that is to do
19	by the population of the ward.	19	the analysis and actually look at the incremental
202	Explain what that means.	20	number of votes you get on a district by district
21 A	So if I just used -- typically you would just use a	21	basis. You might be able to get a first
22	durmy variable. It's one in a ward where there's a	22	approximation of what that might look like, but
23	Democratic incumbent and zero when there's not, but	23	it's -- there are reasons why you would want to
24	because the wards are unequal size and some of them	24	interpret that with caution.
25	they have populations ranging from a few hundred to a 53	25	But the general rule holds is that -- the other 55
1	few thousand, that would bias the results because you	1	issue here is that that coefficient exists after you
2	would expect more votes for the Democratic candidate	2	have taken into account the Republican and
3	when you have a Democratic incumbent in a ward of	3	presidential -- Republican and Democratic
4	3,000 people as opposed to a ward of 100 people or		presidential vote. So you wouldn't be able to look
5	300 people.	5	at that number and say, ah, there were 50,000 votes
6	And so this is -- you would have to multiply	6	or 40,000 votes cast in the assembly race, .02, that
7	this number by the population of the ward to get the	7	means that the Republican advantage was 800 votes.
8	number of additional votes that the candidate would	8	You would have to look at that and say that
9	receive.	9	would be after you take into account all of the other
10 Q	When you're calculating the raw like actual total	10	variables. So this is the independent effect of
11	numbers, but is the percentage effect the same? You	11	incumbency once you've controlled for the other
12	know, like a 100-vote ward might get two more votes	12	variables. So in that sense, you wouldn't be able to
13	or something, but then you'd upscale that to 1,000	13	take this coefficient and just apply it to a district
14	and it gets a load of 20 more votes or something? Or	14	to come up with an estimate of the total effect of
15	is there a difference added to that?	15	incumbency.
16 A	Well, the coefficient is that the -- let me think	16 Q	So the effect of the incumbency, will it be
17	here for a minute. The independent effect of	17	different, for example, a ward that has 55 percent
18	incumbency would be -- as a theoretical quantity	18	that voted for the Republican presidential candidate
19	would be constant across wards, although the effects	19	versus another ward that has 40 percent that voted
20	would not. So basically for each additional person,	20	for the Republican candidate? You know, how does the
21	you would expect an effect based on incumbency and	21	effect of this Republican Assembly incumbent differ
22	that effect -- that effect on that individual person	22	there?
23	or that individual level effect would be the same in		This is a linear estimate and so that assumes that
24	a ward of 100 people as opposed to a ward of 3,000	24	the effects would be the same at different levels of
25	people even though the total number of votes that the	25	Republican support or Democratic support. 56

1 particular candidates in an assembly district?
2 A I would say they all do because the actual vote is
3 the dependent variable. So these all reflect the
4 estimate of the effect these variables have on the 5 actual vote. So in that sense, they are all related 6 to what actually occurred in the -- in contested 7 districts.
8 \& But in terms of actually like plugging in the numbers of Candidate A in District 1 got 12,000 votes and Candidate B in District 1 got 15,000 votes, where do those numbers go into the equation?
A They go in on the left-hand side.
Q The assembly vote?
A Right.
\& Where you add up total votes Republican and total votes for Democrats?
A Well, again we'd need to be precise here that the dependent variable is the ward level totals. So I'm not adding anything up there. And that the model estimates the effect of all of these independent variables on the actual vote. So in that sense, they are all connected and they all are a function -- all of the estimates are a function of the actual vote. \& Let's go to something else quick. Page 40, there's like Figures 10, 11 and 12. I'll just ask you some

2 And what page?

A We're looking at the coefficients on Page 6 and 7.
Q It's the same that these ones that are bolded are the
ones that have a significant -- statistically
significant effect?
A Correct.
Q So then you mentioned Dane and Milwaukee and Washington. And those are not bolded, that's the way you reference it?
A Right. That means once you take into account all these other variables, being in Dane County does not have an independent effect on the Republican presidential vote.
Q So just going back to Page 10 and 11 -- 11, I guess, in this -- should I call it an equation?
A Sure. Or model.
Q Model. Which elements take the actual votes cast in -- for the assembly candidates in that district -as maybe I should say you applied this model to several different -- to Act 43 actual elections and then to your demonstration plan. I'm kind of focusing on the Act 43 since there's no actual elections under your demonstration plan.

When looking at Act 43, which elements of this model take into account the actual votes cast for the
questions on those, but you can look at them to familiarize yourself.
A Okay.
Q So we'll just start at Figure 10 and it says actual 2012 Republican Assembly vote in Act 43 districts. What did the numbers in Figure 10 represent?
A This is a histogram that shows the distribution of the actual results. And the way that you would look at -- so the X axis here is the Republican vote percentage in 2012 going from zero to 100 and what this shows is that the left-hand bar, the one with the 23, that is 23 districts in which there was no Republican running, so that Republican vote percentage shows up as zero.

You look at the right-hand side where there's the bar with the 4, that shows that there were four districts where there was a Republican on the ballot but no Democrat. And so the rest of these figures show that, for example, there was one -- this is just the Republican votes.

If you looked at the Democratic vote, it would be the mirror image of this. There was one district in which the Republican got between 25 and 30 percent of the vote, nine where the Republican got between 40 and 45 percent. The bold vertical line is 50

1	percent, so everything to the right the Republican		the 2012 election results, or did you look at past
2	won, everything to the left, the Republican lost.	2	elections as well?
3	And this shows you that there were a large number of		I used the 2012 election results.
4	Republicans who won with between 50 and 60 or	2	And so if we look at Figure 12, that's your
5	basically between 50 and 65 percent of the vote.	5	calculation of the baseline partisan measure based on
6	I counted 51 Republicans won with between 50 and	6	the 2012 election results?
7	65 percent of the vote. So this shows the	7 A	Correct.
8	distribution of the actual results.	82	I was going to get to Table 9, which is on Page 52
98	And the percentage of vote, is this like we'd been	9	no, sorry. Table 8. Table 8 on Page -- how you
10	talking about before, the two-party vote, or is this	10	calculated the efficiency gap for Act 43.
11	just like the top line number?	11 A	We're on Page 50?
12 A	I believe this is the percentage of the two-party	12 l	50, yeah, sorry. I misspoke. Why don't you just
13	vote.	13	generally explain what your -- what the calculations
148	So someone might have got 47. -- or 49.8 percent, but	14	you did on Table 8.
15	they would actually be counted as above 50 percent	15 A	So this reflects my -- the results of the model which
16	because once you look at if they won the seat, they	16	I used to produce estimates of the votes that -- the
17	would have gotten more than 50 percent of the	17	underlying partisanship of the votes. It's basically
18	two-party vote? And it's like a hypothetical of a	18	the model applied to Act 43 districts extracting the
19	guy -- you know, a close race where there's 48 to	19	incumbency advantage.
20	49.6 and then there's scattering.	20	The reason I did that is I wanted to have a
21 A	It is possible that if someone got 49.9 percent of	21	uniform basis of comparison with my demonstration
22	the vote and the Democrat got 48 percent and there's	22	plan, the results produced by Professor Gaddie, and
23	someone else with that extra, it's possible that that	23	compared it to the underlying partisanship of the
24	could move someone over 50 percent, but I don't	24	Act 43 districts. So the predicted Democratic and
25	recall that there were any -- certainly not many	25	Republican votes are the model estimates of what the
	61		63
1	examples of that.	1	votes would have been and if the race was contested
20	And then going to Figure 11, it says Republican vote	2	and when there was no incumbent running.
3	forecast in Act 43 districts-Gaddie measure. What	3	So this is a way of correcting for the -- how to
4	does this represent?	4	deal with uncontested races because we know in an
5 A	This is estimates that the expert that was hired in	5	uncontested race that even if there's no Republican
6	the 2012 redistricting case, he did an analysis for	6	on the ballot and the Republican gets zero votes,
7	the -- I guess we'll call them the defendants. I	7	that doesn't mean there are no Republicans in the
8	don't know if that's the right term -- where he	8	district. So it's necessary to correct for that.
9	derived his own estimate of what the results would --	9	And so this is the -- each district from 1 to 99 has
10	like what the partisanship would be and the projected	10	a predicted Democratic and Republican vote total
11	Republican vote in the Act 43 districts and laid	11	which is produced by the model.
12	along the same axis. So you can visually compare	12	It predicts the winning party, which is
13	them.	13	simply which candidate gets the most votes, and then
148	And then going to Figure 12, it says Act 43 baseline	14	it goes through and calculates the efficiency gap for
15	partisan measure. What does that recormend?	15	each district, the lost -- the votes for the losing
16 A	This is the numbers that came out of the regression	16	candidate are lost, the surplus votes or the votes in
17	model. It gave me estimates of the number of votes	17	excess of what is necessary. So the efficiency gap
18	that were cast, and from that, I extracted the	18	has two categories of wasted votes. There are lost
19	incumbency advantage. So the baseline partisanship	19	votes and there are surplus votes, that the lost
20	is an estimate of what the vote would be in an Act 43	20	votes are the votes cast for the losing candidate.
21	district that was contested with no incumbent.	21	The surplus votes is one-half of the margin of
228	And this reminded me of something I forgot to ask on	22	victory for the winning candidate.
23	your model. What elections went into looking at the	23	You would add up the surplus and wasted votes or
24	baseline for you to determine the baseline	24	the lost and surplus votes for Democrats and
25	partisanship of the districts? Did you just look at	25	Republicans and you can -- and then you basically add
62			

1	those up across all districts and the difference		vote -- or you divide each party's side by that total
2	between the wasted Democratic and wasted Republican	2	and that gives you the percentage of the two-party
3	votes gives you a net wasted votes which when divided	3	vote.
4	by the total number of votes cast gives you the	42	And it says rhat_open. I think I know what that
5	efficiency gap.	5	means, but you can explain it.
6 Q	I'm going to mark a document.	6 A	That's the estimate of the number of votes that a
7	(Exhibit 5 is marked for identification)	7	Republican candidate would receive in a contested
8 Q	And I've put before you Exhibit 5. What this is is		race with no incumbent.
9	there was a document that your counsel provided	92	And then I would think Republican percentage, that's
10	called -- it was a spreadsheet called Efficiency Gap	10	the baseline --
11	Calculations, and there were several tabs in that	11 A	That's the Republican share of the two-party vote.
12	Excel spreadsheet, and then this was the one that was	12 Q	Okay. And then D Lost?
13	labeled Act 43 Direct. So it had a lot of columns,	13 A	So that's -- I think those just matched the lost
14	so I printed out on legal size paper here, but I		Democratic, lost Republican, surplus Democratic,
15	think it matches up with the calculations done on	15	surplus Republican, the total of the Democratic and
16	Table 8 in terms of the -- you can check that over to	16	Republican wasted votes.
17	make sure I gave you the right document.	17 2	All right. And then Rep Win, it says 1, I take it
18 A	So this looks like the spreadsheet I used to generate		that means the Republican would win that district?
19	this table.		correct.
20 Q	Okay. So I was just going to ask you some questions	20 Q	How is the R surplus determined? I was trying to
21	on the spreadsheet and the columns and just what they	21	figure that out by just adding and subtracting these
22	are. So obviously district is the district and then	22	numbers, but I wasn't quite sure how it worked out.
23	there's Pop, what does that mean?	23 A	It should be that if you subtract the Republican vote
24 25	That I believe is the population of the district,		from the Democratic vote in District 1, for example, that gives you 383 -- 393, I believe that's right.
	65		that gives you 303-- 393, I .oelieve that's right.
1 Q	And then there's a column that says Dev, do you know	1	So that gives you 393, the margin of victory, you
2	what that --	2	divide that by two, which gives you 196.5, which I
3 A	That's deviation, which is the difference between the	3	rounded.
4	population and the ideal population, which I believe	42	Okay. To 197, all right. And so for every one of
5	is 57,444 . Yeah, that's what it is.	5	these districts, we can just do that same calculation
62	Okay. And then percent?	6	and we'll get that R wasted or the D wasted if
7 A	The percent deviation.	7	they're the winner?
88	And then there's dhat_open. Do you know what that --	8 A	Correct.
9 A	So typically when you're dealing with an estimate,	92	Okay. Now, so if we look at the District 1, you can
10	you use -- if you were to write it down, it would be	10	look at either the spreadsheet or the table, this is
11	a D with a caret over it, so dhat, rhat. So that was	11	a pretty close election, correct, in that there's 197
12	how I identified that it was a predicted value, and	12	surplus votes?
13	then open reflects the fact that it assumes -- it's	13 A	That's a close election.
14	an estimate after the incumbency advantage has been	148	Okay. Then how would you characterize the seat as
15	extracted. So it assumes that the seats are open.	15	like a toss-up seat or a swing seat, or is there a
162	So that -- you see that 16.235 is what's listed on	16	name that you characterize kind of a 50-50 seat like
17	the Table 8 as predicted Democratic votes?	17	this?
18 A	Correct.	18 A	It would be accurately characterized as a toss-up
19 Q	And so that column is what your model predicts would	19	seat.
20	be the Democratic votes in the Assembly District 1?	20 Q	Okay. Now, I take it if the surplus Republican
21 A	Correct.	21	votes, it's only 197, if this election goes a little
22 Q	The Dem percent, what does that mean?	22	bit differently in real life rather than in the model
23 A	That's the percentage of the Democratic vote of the	23	and the Democratic candidate wins narrowly, then
24	two-party vote. Basically you add up the Democratic	24	these numbers flip in the sense that the Republican
25	and Republican vote and you divide the Democratic	25	is going to have 16,000-some wasted votes and the
66			

A Well, the total turnout is the predicted number of votes that would be cast and it's going to be different than the actual total. It's going to be very close. I think in this one I was off by 350 votes, which that's pretty good. But so let's go back a step here. If we look at the regression results on -- I'm on Page 21.

So these are the substantive variables. So if you look at the effects of incumbency for the Democratic and Republican Assembly incumbent that you can see that those -- the coefficients are -- the coefficient for Democratic Assembly incumbent is positive for Democrats, . 028, negative for Republican votes, minus . 021.

Now, those numbers are different. They're not the mirror image of each other. They show that the number of votes that the Democratic Assembly candidate gets is higher when the Democrat is a Republican, they get more Democratic votes and fewer Republican votes. In extracting that advantage, you use this -- the results of the model to generate the results, but you set both of these equations, both of these coefficients to zero.

So that means that you are -- you are, in fact, when you subtract the incumbency advantage, it has
the effect in a race with a Democratic incumbent, that reduces the number of votes that the Democratic candidate gets. It increases the number of votes that the Republican candidate gets, but those numbers are not equal. It's not like you take 100 votes.

It depends on what the coefficients are, and so it would affect both totals, but it's not you're taking marbles from one jar and transferring them to the other. It depends on what the underlying data show.
Q That makes sense.
A Okay.
Q But there would be some sort of, so to speak, like reduction for the incumbent and bump for the non-incumbent candidate, but we can't say that they're equivalently sized?
A Correct.
\& Do you have an opinion as to whether your baseline partisanship numbers for all of these districts would hold also for the 2014 election?
A I think that they would be similar. I don't know how they would line up exactly. The reason I have some confidence that they would be similar is that my -if you look at my estimates using 2012 data to generate the estimate of underlying partisanship,
that's based on the 2012 election and measures of underlying partisanship.

When Professor Gaddie did his underlying partisanship estimate in 2011, he did them -- he did not have the 2012 election results. He had previous election results, 2010, 2008, 2003. And he did it in a different way. It is analogous in terms of what he's trying to measure, but his methods were slightly different than mine. If you look at -- so you look at Page 30, which is Professor Gaddie's baseline partisan metric plotted against mine. You can see that there are some differences, but they are very strongly related in that the correlation, the R squared between these two measures are .96 , which is almost perfect.

And my conclusion looking at this is that we are measuring the same thing in that the fundamentals of the districts do not change even when the actual votes that might be cast in an election do change. So it is likely that the -- well, these numbers would be different if you used 2014, but that's a separate problem. You could not -- you couldn't take this model and simply say we're going to plug in the 2014 numbers and get what the -- see what the results are.

But my conclusion is that this model is an

75
accurate measure of the underlying partisanship of the districts that were created in Act 43.
Q So do you think the partisan gerrymandering should be based on underlying partisanship of the district or based on the votes that were actually cast in the legislative elections?
A It's hard to give a clear answer to that because it depends on what you're measuring. Now, looking at the actual results gives you one indication of what happened. But as I explained here and is well-known in the discipline that there are other things that you need to look at, in particular, trying to deal with the question of uncontested districts.
Q What's the margin of error for determining the baseline partisanship of the district?
A So my -- with the Act 43, I would have to go back and look at the standard error of the regression, but it's probably on the order of plus or minus one and a half percentage points. I'd have to look specifically, but these are very precise estimates. It's not a large margin of error.
Q Although for determining the efficiency gap for districts that are somewhere between 48 and 52 percent, that 1.5 percent margin of error could flip a district from one to the other, can't they?

A Possibly. But the margin of error is not a uniform thing that anything that's within the margin of error means that you don't know what the answer is. That the farther away you are, the less likely it is that the actual number is -- that as you move away from the point estimate, the likelihood that the number being that far away goes down considerably.

So in a 49 percent -- in a 51-49 percent district, the margin of error suggests that there is some likelihood that the actual number is different, and it is not impossible that that actually might be 51-49, but that's not equally likely. You can't say that, oh, the margin of error is 1.5 and the -- my estimate is a victory margin of 1.5 percent, so it's a coin flip. That's not how you calculate the probabilities.
Q Sure. But a district like that wouldn't be a guaranteed win for the party that had districted it to be 51-49 percent Republican, is that correct?
A That's correct. That would be a competitive district.
Q Now, you calculate the percentage of the districts out to like 49.402 percent.
A Um-hum.
5 \& Do you think that it is possible to get the

A This is a chart, a table that was produced by Professor Gaddie which analyzed the projected partisanship of the districts in the map of -- the Act 43 districts.
Q Okay. And I'll explain what Exhibit 8, what I did is the same thing I did with Exhibit 5 is I printed out the tab of your spreadsheet that was titled Gaddie Metric that was at the top there on the wasted votes or maybe it was called Efficiency Gap spreadsheet and if I compare, I was just comparing -- if you look at Exhibit 7, the third column is the new and it has a list of percentages, like the first one is 51.22, and then if you look at the Gaddie Metric spreadsheet, there's a rep percentage column and that has . 5122 and if I go down, it looks like it's matching up. A Correct.
Q But let me know if you disagree. So maybe I could just have you explain what you did in the Gaddie metric wasted vote calculation.
A So if I recall, and I would have to look at the math, so what Professor Gaddie produced was a map of percentages, sort of his estimate of the underlying partisanship of the district. In order to generate an efficiency gap calculation that is consistent with what I did in the rest of my report, I needed a
method of converting those percentages to actual votes.

And so what I believe I did, and I would have to go back and double check, but I believe what I did is looked at the total number of votes for the Democratic and Republican candidates that my model generated. So that gives me a total. So we would add up the Republican and Democratic votes in District 1, that gives me the total number of votes, and then I applied the percentages in this chart to that number to give me a distribution of the number of votes. And I think that's what I did.

And then I used the predicted Democratic and Republican votes to replicate an efficiency gap calculation that I could then compare with my metric.
\& Okay. So if I understand correctly, the Republican percentage column is just taken straight from Professor Gaddie's numbers in Exhibit 7?
A I believe that's true.
\& Now, the corresponding Democratic percentage, is that -- would that just be 100 percent minus whatever the Republican percentage is?
A That's correct.
25 \& So this again is a straight two-party vote

1	calculation?		then the surplus votes is the differential divided by
2 A	Right, which again is consistent with how the problem	2	two?
3	was handled in the literature.	3 A	Correct.
0	And then in terms of the predicted number -- the	40	Now, it's not your testimony that Dr. Gaddie himself
5	total number of votes, obviously you needed to apply	5	went ahead and performed any sort of calculation like
6	the 51.22 percent to a total vote number to get to	6	this?
7	the Republican vote total. How did you come up with	7 A	Not that I'm aware of.
8	like the total number of votes in this district?	82	Okay. Basically what you did is you took his
A	As I mentioned, I believe what I did is -- we can	9	underlying baseline partisanship numbers and plugged
10	actually check this if you would like. I believe	10	them into -- I guess you didn't plug them into your
11	that the total number of Democratic and Republican	11	model, but you applied them to the total votes
12	votes is the same in this model. Or in here, I think	12	produced by your model?
13	I took that in the total that I generated in my model	13 A	Correct. I'm glad you rephrased that -- that was
14	to come up with an estimate of the total number of	14	very nicely done.
15	votes, and we can check that if you'd like.	15	MR. KEENAN: Actually I think I'm at a
16 Q	Okay. I can look at that, too, over the lunch break.	16	good stopping point to go to lunch and then come
17	Now, Professor Gaddie himself, though, to your	17	back.
18	understanding did not make projections of the	18	(Lunch recess is taken)
19	expected turnout in the 2012 elections when he did	19	(11:18 p.m. to 12:19 p.m.)
20	this chart in Exhibit 7?	20 Q	We're back on the record after lunch. Let's just go
21 A	I don't believe he did, but I don't know for sure.	21	back to some of the stuff we were talking about
22 Q	Okay. And then how is -- you've gone into this a	22	before lunch. One was uncontested seats and we had
23	little bit before, but what's your understanding as	23	talked a little bit about how those were handled. I
24	to how Professor Gaddie arrived at his Republican	24	just wanted to look at first maybe just generally
25	percentage there?	25	explain for any of the Act 43 calculations that you
	81		83
1 A	So my understanding as he described it is that he	1	did how your model predicted the votes in an
2	looked at past electoral performance in certain	2	uncontested race.
3	elections, and I don't recall precisely which ones	3 A	So the model itself utilized data from contested
4	that he looked at, and he concluded that that was an	4	districts. I think there were 72 contested
5	effective way to come up with an accurate estimate of	5	districts. And all of the independent variables, the
6	the partisanship. So my understanding is that is how	6	incumbency, the presidential votes, demographics, the
7	he generated these numbers.	7	county fixed effects, those are all exogenous to the
8 2	Okay. And then where did your understanding of how	8	characteristics of any particular district.
9	he did this come from?	9	And so I was able to use the relationships that
10 A	From his deposition in which he described his methods	10	the model produced in the 72 contested districts to
11	and the different files that he produced that I was	11	create evidence of the uncontested districts because
12	able to examine.	12	we still have a presidential vote, we still have the
13 Q	And that's the deposition from the Baldus litigation?	13	ballots cast for both the Republican and Democratic
14 A	See, the problem is that the Baldus vs. Brennan --	14	presidential candidates. We have the demographics.
15	there's so many B's in these cases.	15	So I essentially developed a model using the
16 Q	Baungart, yeah.	16	contested districts and then applied the results of
17 A	To be precise.	17	that model using the values of the independent
18 Q	Okay. So here's your report. And in your report,	18	variables in uncontested districts to generate the
19	the Gaddie metric calculation is at Table 9, I	19	vote, the estimated vote totals for the uncontested
20	believe, which is on Page 52. And just to confim,	20	districts.
21	so the way that the wasted votes were calculated was	21 Q	Okay. So in terms of the total number of votes that
22	the same way that we went over with respect to the	22	would be cast in an uncontested race, how is that
23	Act 43 calculations?	23	determined?
24 A	Yes.		It was a function of the number of votes cast in the
25 Q	All the losing candidate votes count as wasted and	25	presidential, so the turnout is related to that, but
82			84

```
A Okay.
Q So maybe just explain like what -- how you end up
    with 9,000 votes here when there was 7,800-some cast.
    A I don't see 9,000 votes. Where are we?
& If I look at No. 8, I see predicted Democratic vote,
        73-42, predicted Republican vote, 1,738.
A I see. So again the no incumbent baseline is the
    estimated partisanship of a contested race with no
    incumbent, and then in this District 8 is -- I
    believe Zamarripa was the incumbent. The reason
        that -- so basically the fact that there was no
    Republican on the ballot in District 8 doesn't mean
        that there were no Republicans in the district.
            If you looked at the presidential vote, you
        would see that Romney did get some votes in that
        district and so the no incumbent baseline is an
        estimate of what the votes would have been had that
        race been contested and had there been no incumbent.
            And so a couple of things are going on here.
        One is that turnout will go up in a contested race as
        opposed to in an uncontested race because those 1,700
        people who would have voted Republican under my
        model, they have no Republican to vote for. And so
        the most common thing for them to do is simply to
        abstain, and that's one of the reasons why you see
```

1 almost invariably lower turnout, sometimes much lower
contested race.
So that explains the reason why my model
estimates that there would be 9,000 votes cast in a
contested race with no incumbent as opposed to the
result which was an uncontested race with an
incumbent.
Q Okay. And then when we go to the Gaddie calculation,
did you take, for example, the total number of votes,
you know, the 7,342 and 1,738 equals -- there's a
certain amount of total turnout in that. Did you
then just apply Gaddie's percentages to that number?
A I believe I did. I'd have to sit down and do the
calculations. My recollection is that's the way that
I calculated the total number of votes is using the
estimates generated by my model and as for the totals
in applying them to Professor Gaddie's calculations.
Q Did your calculations for the efficiency gap for
Act 43 have any instances where the model predicted a
winner from the wrong party?
A There were I believe two instances where the model
picked the wrong winner and I explained -- there's a
table and it shows -- I think those two races, it
was, you know, the winner got between 50 and 51
percent, 52 percent. They were both very close.
Q So how was that handled? Did the wasted vote calculation proceed on the basis that your model was correct, or did it flip that, so to speak, to show who actually won the race?
A When my model -- I used the results from my model. I didn't go back and manually correct the errors. The results are what they are.
Q Did you do an efficiency gap calculation for the 2014 legislative elections?
A I did not.
Q Is there any reason why you did not?
A A couple of reasons. One is that I concluded that the presidential year was the -- was going to give you the most accurate estimate of the underlying partisanship. And that's what's typically done for trying to assess a redistricting plan.

I had Professor Gaddie's estimates that he produced of what he anticipated what the results would be. And doing -- repeating the results for 2014 was actually a very involved process. It's not sitting down and saying, oh, I'm going to just change this number and punch a button. It would take quite a bit of work to do that.

But I did 2012 because in my view that the first

1	election after redistricting is going to give you		generated that, whereas I went through on a district
2	the -- an accurate estimate of the effects of that	2	by district basis looking at the actual number of
3	redistricting plan.	3	votes
Q	Now, coming at the next redistricting in 2020, the	Q	Can you explain for me how those two different
5	first election is going to be a nonpresidential year,	5	calculations yield basically the same end result?
6	correct?	6 A	Because the reason they yield the same or very
7 A	Correct.	7	similar results is that they're both measuring the
Q	So if a court has to do this next time around, should	8	same thing, that the seat share and vote share
9	it wait until a presidential year? Should it look at	9	calculation is the equivalent of what you would get
10	the 2022 year?	10	if you did the district by district calculations with
11 A	Well, so in 2022 would be a nonpresidential year, so	11	equal turnout. And my method was to look at district
12	I would -- I mean it's hard to know precisely, but in	12	by district and actually counting the votes, and I
13	that election, I would probably -- I don't know for	13	did that for two reasons.
14	sure but would be interested in what would happen in	14	One is that I had the data available to do it.
15	the first election after redistricting.	15	The second is that in the second step of my analysis,
16 Q	Now, the turnout -- the total turnout number is a lot	16	I was going to estimate what the partisan effect
17	different between the presidential year and a	17	would be under an alternative district configuration.
18	nonpresidential year, correct?	18	And if I was just looking at the percentage, there
19 A	That's correct.	19	was no way to know what would happen if you have a
20 Q	Okay. Please explain how it differs.	20	district that's 47 percent-53 percent, if you changed
21 A	Well, it's well-known the empirical pattern is	21	the boundaries so the district is different, there's
22	significant, that there are more people who vote in	22	no way just looking at the percentages -- there's no
23	the presidential year than in a midterm election	23	way to calculate or estimate what the vote would be
24	because without a president on the ballot, interest	24	in the alternative district. For that you needed a
25	in the campaign is less and so there's no question	25	measure of actual votes.
	89		91
1	that the number of people who vote in a midterm	1	But that measure is not necessary if all you
2	election year is going to be lower than the number	2	were interested in doing is calculating the
3	who vote in the presidential election year.	3	efficiency gap, and that is why his estimate and my
Q	Is the difference in turnout going to drive a	4	estimate are very close.
5	difference in efficiency gap calculations?	5 Q	So you mentioned assuming equal turnout, I think was
A	Probably.	6	the phrase?
78	And do you know how much?	7 A	Correct.
8 A	Judging -- I have to go back and look at	8 Q	Could you just explain what that means?
9	Professor Jackman's report that the efficiency gap	9 A	Well, so one way of doing the efficiency gap is that
10	was lower in 2014 than it was in 2012.	10	you just look at the percentages in each district
112	That leads me to one question which is you're	11	without looking at the votes, and by looking just at
12	familiar with Professor Jackman's report, correct?	12	the percentages, you are making an assumption that
13 A	I've read it, yes.	13	turnout is going to be equal in every district, and
14 2	And he calculates the efficiency gap in a different	14	that way, that is mathematically identical to doing
15	way from you, correct?	15	it as he did, which is using the seats and votes.
16 A	In some ways, yes. The underlying concepts are	16	In looking at the actual votes or, more
17	similar, but the precise methodologies were	17	properly, the estimated votes, I'm able to take
18	different.	18	advantage of the fact that in this case, I can derive
19 Q	Okay. So explain to your understanding what his	19	estimates of the numbers of votes that are cast in
20	methodology was.	20	each district, and it gives me a method of
21 A	So my understanding of his method is that he used	21	calculating the efficiency gap that I can compare to
22	what is in terms of the formula for the efficiency	22	an alternative district configuration such as my
23	gap an equivalent mechanism of calculating it, which	23	demonstration plan.
24	is a formula which looks at the percentage of vote	24 Q	So if I'm understanding, equal turnout means it's
25	and the percentage of seats, and that's how he	25	assuming District 1 has the same number of voters as
90			92

1	District 2 and District 3 and District 4, all the way		I don't think that number is correct, but I would
2	down the line?		have to check, but I --
3 A	Correct.	32	Well, maybe I should just ask you like how do you in
0	Okay. And so then if you know that District 1 is 53		your Act 43 calculation, what would be the way to
5	to 47 percent, you know that 47 percent of the vote	5	figure out the total statewide vote share for each
6	is wasted on one side and 30 is on the other and then	6	respective party?
7	you can come up with a --	7 A	Well, based on the model that I did, you would be
8 A	correct.	8	able to look at the total number of votes cast for
92	Okay.	9	Democrats and Republicans and calculate the
10 A	But having said that, the fact that our numbers are	10	percentage that each party received.
11	so close means that the fact that he did just looking	112	So on Table 8, I guess is the right one, we have the
12	at the percentages and I did it at the turnout, the	12	total -- the total predicted Democratic votes, the
13	fact that those numbers are so close means that	13	total predicted Republican votes, we could add those
14	they're both estimating the same underlying	14	two together to get the total votes and then we would
15	phenomenon.	15	figure out what the percentage was for each of them?
16 Q	Does he adjust for the incumbency effect?	16 A	Right. But again this is for the no incumbent
17 A	I don't believe so.	17	baseline, so this is an estimate of what the vote --
18 Q	And the --	18	what the baseline partisanship would be without
19 A	Which is another reason why my efficiency gap	19	taking incumbency into effect.
20	calculation for Act 43 is going to be a little bit	202	Now, in the differences between the presidential year
21	different because I've already extracted the	21	and the nonpresidential year, is turnout affected
22	incumbency advantage.	22	equally in all parts of the state? Does it drop 30
238	Do you know if Professor Jackman's total statewide	23	percent everywhere or does it change in different
24	vote share, is it actual -- is it the average share	24	areas?
25	in each district, or is it the average of the total	25 A	That I don't know.
	93		- 9
1	statewide vote? Or is it the same?	12	The way you calculate the efficiency gap, for
2 A	Well, these are questions you probably should direct	2	example, in districts, the turnout that has actually
3	to him because --	3	been seen in that district affects the total number
42	Yeah.	4	of wasted votes for each party, is that correct?
5 A	-- I don't know that I'm in a position to get into	5 A	So, I'm sorry, say that again.
6	the weeds about his specific methodologies.	62	Sure. So like in -- the number of wasted votes in a
78	Okay, that's fine. Now, out of every 10 -year period,	7	district is partly a function of the total turnout in
8	there's going to be either two or three elections	8	that district, correct, total number of votes cast?
9	that take place in a presidential election cycle and	9 A	Not necessarily.
10	two or three that take place in a nonpresidential	10 Q	Why not?
11	cycle depending on the decade. Do you think your	11 A	Because it's going to be more a function of what the
12	efficiency gap model accounts for how there might be	12	distribution of the votes would be. If you had
13	differences between the presidential election year	13	100,000 votes cast in a district with a 51-49 split,
14	and the nonpresidential election year?	14	the efficiency gap would be lower than it would be in
15 A	Well, the model that I developed was an estimate of	15	an election with 20,000 votes that was 60-40. So
16	the efficiency gap in 2012. And in that sense, you	16	it's not -- turnout can be one of the factors that
17	would expect to see similar results in presidential	17	explains it, but it is not the only one and it's
18	years and similar but somewhat different results in	18	probably not even the driving one.
19	off year elections, and I think here I would defer to	19	It 's the distribution of votes that makes the
20	Professor Jackman in his estimates of how enduring	20	larger contribution to the efficiency gap
21	efficiency gaps are over time.	21	calculations.
228	Let's move on. Your report a few times refers to the		Sure. But in an individual district, if turnout in,
23	fact that I believe the Democrats won 51 or so	23	for example, a district that is always going to be
24	percent of the statewide assembly vote, is that	24	Republican, one of these uncontested races is very
25	correct?	25	high in that district, that's going to increase the
94			

1	calculation showed that if the entire city was in a		to 51.3 on the subsequent election.
2	single assembly district, it was very likely to	22	Now, in a 51.3 percent race, it's not impossible for
3	result in a Democratic district, but you by splitting		a Democrat to win that race either, is it?
4	it, you take a portion of those Democrats or a	4 A	Not impossible.
5	portion of those -- that Democratic partisanship and	52	And then in the 27th, you calculate the baseline open
6	you split it into two districts where they don't come	6	seat partisanship measure at 52.3 percent?
7	close to forming a majority in either one.	7 A	Well, again I'm not sure that --
8	So this is quite literally a textbook	82	On Page 42 on your report.
9	demonstration of the cracking phenomenon where you	9 A	Let's take a look here. Correct, so my underlying
10	have a jurisdiction that you don't need to split and	10	partisanship estimate for the 27th was 52.3. That's
11	you split it for what appears to be no other reason	11	the open seat baseline.
12	than to crack a Democratic constituency into two	12 2	Okay. And so I mean would you characterize both of
13	separate constituencies to create two Republican	13	those seats as winnable for the democrats?
14	districts.	14 A	I would classify the 26th as potentially winnable. I
15 Q	In your version of the City of Sheboygan district,	15	wouldn't classify the 27th as winnable for the
16	the 26th District under the demonstration plan,	16	Denocrats. Not impossible, but extremely difficult.
17	what's your baseline partisanship of the district you	17 Q	Okay. At 52.3, it's extremely difficult for them to
18	created?	18	win that seat?
19 A	Well, I don't know that my baseline plan, that	19 A	As again this is the open seat baseline, I would
20	district is named the 26th because the numbering	20	classify this as difficult for the Democrats to win,
21	system was a little different, but I would have to go	21	not impossible.
22	back and confirm, and that's just because what I call	22 Q	Okay. Now, what your plan would do, though, it would
23	the 26th District in my plan may not be the plan -- I	23	make one safe Republican district and one safe
24	could go back and look, but it was -- actually we can	24	Democratic district, correct?
25	even --	25 A	It would --
	101		103
18	On 42 you say the result would have been a 54 to 56	2	They would be safer, it would be having one district
2	percentile?		more Republican and one district more Democratic,
3 A	Right, but I don't know that that is -- that's	3	right?
4	probably close to what happened, but -- what I did,	A	I believe so, that's correct.
5	but I would have to go back and actually look to get	5 Q	Have you tested any of your demonstration map
6	the precise numbers.	6	districts that are narrow Democratic districts, how
78	Okay. In the 26th District in the 2010 election,	7	they would have fared in the 2014 election, whether
8	which party won that district?		the Democrats would have actually held onto those
9 A	I'm not sure.	9	seats?
10	(Exhibit 9 is marked for identification)	10 A	No.
11 Q	I show you Exhibit 9, which this is the GAB printout	11 Q	Let's transition into your demonstration plan.
12	for the fall election of 2010. Now, it says error on	12 A	Okay.
13	the first page because, I don't know, that's what it	132	How did you go about -- first let me just ask you
14	does when it prints out, but if you turn to the 26th	14	what computer program did you use to do the
15	District, I mean is it correct that the Republican	15	demonstration plan?
16	won that district in the 2010 election?	16 A	I used a GIS program called Maptitude, Maptitude for
17 A	I'm looking at this, which is Page 15 of Exhibit 9.	17	Redistricting.
18	It shows that the Republican won by 151 votes if I'm	18 2	Is that -- I just don't know, is that the program
19	calculating correctly.	19	that the legislators used to draw the Act 43 map?
20 Q	So you're classifying that as a Democratic district,		I don't know.
21	but under the prior plan, it wasn't impossible for a		Okay.
22	Republican to win that district, was it?	22 A	There are -- the two most cormonly used redistricting
23 A	Well, by definition that's true because a Republican	23	programs are Maptitude for Redistricting and another
24	won it just barely in 2010. But then the	24	one called AutoBound. I don't know --
25	Republicans -- the vote percentage went up from 48.9	258	I believe the other one was AutoBound -- from reading
102			104

1	the deposition, I believe it was AutoBound. If there	A	Correct.
2	were two different -- if you used Maptitude and they	2 Q	And then does the 57,444 include noncitizens?
3	used AutoBound, does that create -- is there any sort	3 A	The way the census calculates it, it's everybody.
4	of like incompatibility where you can't compare a map	48	Okay. So it's just 57,444 people are the voting
5	drawn from one and a map drawn from the other?	5	numbers, but the number of eligible voters will be
6 A	There shouldn't be, no.	6	different than that?
7 Q	How did you go about drawing the demonstration plan?	A	Yes.
8	So in drawing the plan, what I did was to draw -- to	8 Q	Okay. How many districts did you draw that contain
9	draw a plan that took into account the traditional	9	any part of the City of Milwaukee?
10	redistricting requirements, which is population	10 A	I would have to look at the map. I could tell you I
11	equality, contiguity, compactness, adherence to	11	don't know off the top of my head.
12	Section 2 of the Voting Rights Act, respect for	12 Q	Do you know how many you did that concluded --
13	political subdivisions, and then going through the	13	included any part of the City of Madison?
14	map trying to draw it in a way that was balanced	14 A	I would have to check. I don't remember off the top
15	between the parties in terms of creating equal	15	of my head.
16	opportunities to elect the candidates so that there	168	And do you know how those compared -- even if you
17	weren't a significantly different number of	17	don't know the number, do you know how it compared in
18	noncompetitive seats or a significantly different	18	terms of comparing it to Act 43?
19	number of competitive seats. We're trying to treat	19 A	I suspect they were very close, if not identical, but
20	the voters equally in terms of their creating	20	again I can't be certain.
21	districts that gave members of each party an equal	21 Q	You mentioned compactness was one of the factors that
22	opportunity to see their votes translated into --	22	you looked at, and I know you did a comparison of
23	converted into seats.	23	your plan to the Act 43 plan in terms of compactness?
242	Did you start using a baseline of the prior districts	24 A	Correct.
25	that were in existence, or did you just start fresh?	25 Q	What was the standard you used to measure compactness
	105		10
1 A	With one exception. I left the 8th District alone	1	of yours?
2	because that was a district created by the federal	2 A	I used something called the Roeck standard, which is
3	court in 2012, and I knew that that district was	3	R-o-e-c-k.
4	Voting Rights Act compliant.	4 Q	What is that?
5	The African-American majority-minority districts	5 A	The way that the Roeck standard is calculated is you
6	in Milwaukee I treated similarly to what they were	6	take a district and you place that district inside
7	under the plan, which we also knew was compliant.	7	the smallest circumscribing circle. So you draw a
8	But other than those districts, I started with a	8	circle that is the smallest circle that contains the
9	blank slate.	9	entire district, and the Roeck value is the area of
10 Q	I believe you said this before, but what's the ideal	10	the district divided by the area of the smallest
11	population of an assembly district?	11	circumscribing circle, and it gives you a value
12 A	So I believe it's 57,444.	12	between 0 -- you can't really have a value of 0 --
13 Q	And is that 57,444 what?	13	and 1 where 1 would be you actually have a perfectly
14 A	That is the ideal population as calculated by looking	14	circular district, but basically as districts with
15	at the total population of the state, dividing it by	15	more irregular shapes that are longer will tend to
16	the number of districts in a legislative body and	16	have lower measures on this index.
17	that gives you the -- in a district plan with perfect	17 Q	So lower is good or bad in terms of compactness?
18	population equality, that's the number that you would	18 A	Higher values indicate more compactness.
19	hit. So that's essentially 57,444 is the total	19 Q	Are there other ways to measure compactness?
20	population of Wisconsin after the 2010 census divided	20	Yes.
21	by 99.		What are some of the other ways?
22 8	But that includes children who aren't going to be	22 A	Other ways look at -- there are probably 10 or 12
23	able to vote, correct?	23	methods of doing that. There is no universal
24 A	Correct.	24	agreement on which method is the best. One of the
25 Q	And I think you mentioned like felons who can't vote? 106	25	reasons I used the method that I did is that in 108

1	the -- in 2012, I have the record of that case shows	1	district that was more of a circle or a square.
2	what the Roeck number, the average compactness on the	2	There is something called the perimeter to area
3	Roeck index is for Act 43. So I was able to compare	3	measure, which is you calculate the length of the
4	it directly to that.	4	perimeter of a district, which will be higher with
50	That was going to be one of my questions. So you got	5	highly irregularly shaped districts with lots of
6	the compactness, the Roeck compactness on Act 43 from	6	nooks and crannies, and you divide that by the area,
7	the Baldus litigation?	7	and as the perimeter area gets -- or area to
A	Correct.	8	perimeter, as it gets smaller, it means the district
2	Do you know specifically where in that litigation?	9	is more irregularly shaped.
10 A	I'm not sure. I think it may have been in the --	10	There are a variety of different ways to do
11	there was a report that both parties submitted. It	11	this. Generally speaking, and there are lots of
12	may have been called the Joint Stipulation of Facts.	12	exceptions, generally these measures tend to move in
13	I'm not sure. But it was somewhere in those	13	the same direction, that if one measure shows a high
14	documents.	14	degree of noncompactness or a high degree of
152	Okay. Now, as I understood it, it's an average of	15	compactness, that it is cormon -- it's not invariably
16	all the districts?	16	true, but it's cormon for different measures to show
17 A	Correct.	17	similar results.
18 Q	So it would take like District 1 through 29, they	18 Q	How does the Roeck test handle a district that's
19	each get their own individual scores and then you	19	like, for examole, in Wisconsin that's on Lake
20	average those scores together?	20	Michigan?
21 A	Correct.	21 A	So one of the issues of how you calculate the Roeck
22 Q	How did you calculate the Roeck score for your map?	22	index for District 1, which is Door County, and you
23 A	There's a feature in Maptitude that allows you to	23	calculate that by looking at the circle and it just
24	generate compactness scores and it gives you an	24	is a feature of the geography that there is no way to
25	option on it and it was able to do a report that 109	25	calculate a highly compact district in that part of
1	listed the compactness scores, and I'm pretty sure I	1	the state.
2	put the table in either the annex or the -- yeah, so		And then would the same hold true, for example, of
3	Page 13 of my annex shows the Roeck scores, the		someone -- it's on a border of another state,
4	smallest circle scores for the district.		Illinois or Iowa or Minnesota somewhere, the circle
5 Q	Okay. And the average is -- I guess it doesn't say	5	is going to extend out into the bordering state and
6	on that table, but it's earlier in there.	6	there's just nothing you can do about it?
7 A	I believe it's . 41.		That's correct.
82	And then did you use any of the other manners of	82	Going to the municipal split, what counts as a
9	measuring compactness to measure your demonstration	9	municipal split?
10	plan?	10 A	So my understanding of the way Wisconsin counts
11 A	I did not.	11	municipal splits, it's a simple determination is if a
12 Q	And why not?	12	district border bisects a city or county, then that
13 A	I had the point of comparison and I didn't see any	13	municipality is split. That is as best as I am aware
14	reason to generate the other numbers because I had	14	and -- actually I can say that a little more
15	nothing to compare them to.	15	definitively, but that is how Maptitude calculates
162	Was the Roeck test the only measure of compactness of	16	the split. I will give you a report of the number of
17	the Act 43 districts that you recall seeing?	17	municipalities that are in more than one district.
18 A	It 's the only one I recall seeing.	18 Q	So just in my head so I have this clear, Milwaukee is
19 Q	How did some of the other ways of measuring	19	going to be too big to have one district, there's
20	compactness differ from the Roeck test?	20	going to be like several districts within Milwaukee?
21 A	Well, I'll give you a couple of examoles. One		Right. Correct.
22	measure is the difference between the ratio of the	22 Q	But drawing two districts in that doesn't count as a
23	long axis to the short axis of a district. So if you	23	split, right, or does it?
24	have a district that's very, very long and thin, that		Will, as I understand, it is a municipality that is
25	would tend to give you a high number as opposed to a	25	split into more than one districts. 112

1 Q	When you have a number that says there's this many --		Jefferson County. So Jefferson County, it was
2	I'm trying to find the table where you list the --	2	possible to place that in a single district and there
3	MS. GREENWOOD: Page 37.	3	was a little finger from Waukesha, that that would
4	MR. KEENAN: Which one?	4	count as a split in Jefferson County.
5	MS. GREENWOOD: Page 37.	5 Q	Okay. And then what about, now going to the smaller
62	Okay. Yeah, so I'm just trying to figure out what	6	levels, like dealing with the villages, if there's a
7	goes into the 64 city, town, village splits and 55	7	village that can fit entirely within one district,
8	county splits, and then Act 43 has 62 city, town,	8	maybe there's two of them even right next to each
9	village splits.	9	other and they're totally encircled in a district,
10	So if Milwaukee, for example, has like seven	10	that would be zero splits?
11	districts or six districts, I don't know how many,	11 A	Correct.
12	but does that -- but you need to have that just	12 Q	Okay. But then if -- I guess if one of those
13	because of the equal population, you know, like	13	districts, half of it is in one district and half is
14	there's nothing wrong with having six districts in	14	in the other --
15	Milwaukee, does that count as six splits, or does it	15	MR. STRAUSS: Object to the form. You
16	count as zero splits?	16	said two districts. You mean two towns?
17 A	No, it counts as one split.	17	MR. KEENAN: Yeah, sorry.
18 Q	One split?	18 Q	Yeah, like two villages -- or, no, sorry. If there's
19 A	Yeah. At least that's how I understand how Maptitude	19	like one village, but then it ends up getting cut in
20	does it. The dividing line is whether a municipality		half between two districts, that counts as one split?
21	is split.	21 A	Correct.
22 Q	But that split is going to happen under anyone's	22 Q	Okay. But then if that town or village had been
23	plan, I guess, because you just can't draw Milwaukee		carved into three -- instead of two, it had been like
24	into --		divided up into three different districts, would that
25 A	correct.	25	still be one split?
	113		115
18	And the same with some of these bigger cities?	1 A	I believe that it would still count as one split.
2 A	It would be the same in any larger jurisdiction that	28	Okay. Is there a list that was generated that shows
3	exceeded the ideal of population.	3	like what are the splits in the demonstration plan
42	And then Milwaukee County I guess would be the same		like when you run the report or something that gives
5	thing, that would count as a county split?	5	you that information?
6 A	I believe so, yes.	6 A	It does produce a report, yes.
78	And then, now, say that there's a bunch of districts	78	But does it just have a number?
8	in Milwaukee, but then now we have one district that	8 A	And it shows the locations of the splits.
9	loops between Milwaukee and Waukesha. Is that still		Okay. Do you know if you'd say there's a version of
10	just one split, or is it one county split, or is it	10	that document or report that would have been
11	now do we have two county splits?	11	produced?
12 A	I believe -- I would have to go back and check --	12 A	So I don't know that that was -- I actually submitted
13	that that would count as -- it would depend on how	13	that report because what I was interested in was just
14	many other splits that there were. So if -- because	14	the number.
15	my understanding is that it's not the number of	15 Q	When you were districting, did you attempt to keep
16	splits that a jurisdiction is put into. It's whether	16	cormunities of interest together?
17	or not it is split. So I believe that that would	17 A	As a rule, yes.
18	count as one split.	18 2	So how did you go about trying to do that?
192	Okay. And then now that we've split Waukesha County	19 A	Well, the cormunities of interest standard is very
20	at least once, it's now -- it can only count as one	20	subjective and -- but part of that is keeping
21	split, even once then you could split it with	21	subdivisions together, but I tried to not have too
22	Jefferson -- I don't know what the border is, but	22	many divisions or districts that combined vastly
23	some other county on the border, there's still one	23	different parts of the state to ensure that different
24	split?	24	regions of the state were kept together.
25 A	Well, but that could also count as a split in	25 Q	Are you offering an opinion that the demonstration
114			116

1	plan keeps cormunities of interest together better	1	Where that was not possible or whether when I created
2	than Act 43?	2	a district that in order to achieve population
3 A	I don't know that I would make the statement that it	3	equality, I couldn't do that, then I worked with
4	was better because I made an effort to keep that in	4	census blocks.
5	mind. But that's a very loose and subjective	5 Q	And then each of your districts is made up of a
6	standard that can be difficult to do.	6	certain subset of the census blocks and
0	Why don't you turn to Table 7, which is your	7	jurisdictions?
8	calculation of the efficiency gap under the	8 A	Well, it's a combination of again you can select
9	demonstration plan?	9	entire jurisdictions, which can be efficient, and you
10	MS. HPRLESS: What page is that?	10	can also build a district or create the district by
11	MR. KEENAN: 48.	11	selecting individual census blocks.
12 Q	And I will mark a similar spreadsheet there which is	12 Q	And then for your demonstration, District 1 is
13	the demonstration plan version.	13	obviously different from Act 43, District 1, correct?
14	(Exhibit 10 is marked for identification)	14 A	Correct.
15 Q	And Exhibit 10 is similar to what you've seen before,	15 Q	And so for your District 1, how did you determine the
16	but I printed out the tab on the efficiency gap	16	predicted Democratic vote and the predicted
17	spreadsheet, and I think it was titled All Open Seat	17	Republican vote?
18	Data.	18 A	Once I had generated the expected Republican and
19 A	Right.	19	Democratic votes at the -- using the original model,
20 Q	Which I think is what I understood to be the	20	I then disaggregated or allocated those ward level
21	demonstration plan calculations. Is that what it is?	21	results to the blocks inside that ward using the
22 A	I believe so, yes.	22	percentage of the voting eligible population in that
23 8	So I guess we can look at either Exhibit 10 or the	23	ward. And so once that was done, I had a file that
24	Table 7 in the report. How did you go about	24	for each block in the state of the 250,000, 252,000
25	calculating the efficiency gap for the demonstration	25	or so blocks, each block had an expected number of
	117		119
1	plan?	1	Democratic and Republican votes again for the no
2 A	The same way that I did for the Act 43, that I had	2	incumbent baseline, and that would allow me to draw a
3	essentially block level estimates of the number of	3	hypothetical demonstration plan and generate
4	Republican and Democratic votes, the demonstration	4	estimates of what the partisanship, what the voting
5	plan was created out of those blocks and so that	5	would be in those districts.
6	meant that each district had a predicted number of	0	How is the total number of votes in the district
7	Democratic and Republican votes which formed the	7	determined? For example, I'm just looking at
8	first two columns and then I calculated the	8	District 1, and it looks like your predictions show
9	efficiency gap in the same way as I did for Act 43,	9	about 32,000-some votes. I realize that's a function
10	calculating the lost and surplus votes for both	10	of some sort of your equation, but I'm just trying to
11	parties.	11	figure out how does it get to that number?
12 Q	Now, for -- if I take it the -- your districts are	12 A	That's simply adding up the number of Democratic and
13	made out of -- did you define your districts in the	13	Republican -- predicted Democratic and predicted
14	demonstration plan based on specific ward numbers in	14	Republican votes in each block as you build that
15	various municipalities?	15	block into the district. That's the number that
16 A	No.	16	results.
17 Q	What were they made up of?	17 Q	Okay. What's your definition of gerrymandering?
18 A	I made them -- I did not use wards, and the reason I	18	MR. STRAUSS: Object to the form of
19	didn't use wards is those wards were actually created	19	the question to the extent it calls for a legal
20	after Act 43 went into effect and so if I built the	20	conclusion. But you can answer.
21	new districts out of those wards, I would be building	21 A	So there are a variety of different ways of defining
22	them using essentially a template for -- that was	22	that. As a political scientist, it's most cormonly
23	used for Act 43.	23	defined as the drawing of district lines in a manner
24	I constructed them where I could out of entire	24	that intentionally provides a political benefit to
25	jurisdictions, whether it's counties, municipalities.	25	one party over the other. 120

0	Do you have an opinion of whether the plan that was		those two columns?
2	in effect in the 2000s assembly districts, whether	2 A	Yes.
3	that was a gerrymander?	3 Q	If I wanted to look at a particular district under
4	MR. STRAUSS: Again object to the		your demonstration plan and determine what your view
5	extent it calls for a legal conclusion. If you	5	of the underlying partisanship is, those are the two
6	understand the question.	6	columns I'd look at?
7 A	Yeah, I mean that one was produced by courts and	7 A	Correct, if you were interested in the percentages.
8	courts generally do not take partisanship into	8 8	Yeah. So like, for example, when it says party
9	account. At the same time, my understanding of the	9	split, 48 to 51 on Page 46 of your report, that's
10	way that the 2001 plan was drawn is that the judges	10	looking at those two columns and seeing where --
11	in that case accepted submissions from the parties.	11	which party's over 50 percent?
12	There were a number of maps the Democrats	12 A	Correct.
13	submitted, there were a number of maps that	132	And just doing this again, I think I know the answer,
14	Republicans submitted and that they incorporated that	14	but those are two party percentages, so just the
15	into their drawing of the map. So the -- I'll leave	15	two-party vote?
16	it at that.	16 A	Correct.
17 2	Do you know how many times the Democrats have won the	17 2	So someone is going to be 50 percent over in each one
18	Wisconsin Assembly in the last 20 years?	18	of those races?
19 A	I could look. I don't know off the top of my head.	19 A	Correct.
20 Q	Does your demonstration plan, would it give them --	20	MR. KEENAN: I think I want to take a
21	give Democrats an advantage in terms of attempting to	21	break.
22	like control the assembly?	22	(Short recess is taken)
23 A	I would have to look at the results. I'm not sure	232	Well, back on the record. I just have a few more
24	what the expected -- I think there's a table in there	24	follow-up questions. Where did you get the number of
25	somewhere. Let me look.	25	municipal splits that Act 43 had? Where did you get
	121		123
1	So on Page 46 there's a table that shows the	1	that number from?
2	summary statistics and it shows that my plan would be	2 A	I believe I got that from within Maptitude using the
3	expected to produce a 51 to 48 Democratic majority in		same method, but I'm not sure.
4	the assembly.	48	So you think you imported the Act 43 districts into
5 Q	Okay. And that's based off of just looking at the	5	your Maptitude program and ran a report like that?
6	2012 election data, though, right, your calculations?	6 A	I think so.
7 A	I just want to make sure I give a precise answer.	7 Q	So I guess if that's the case, Maptitude was using
8	That that's based on the underlying model, which is	8	the same measurements?
9	based on the 2012 election results.	9 A	I believe so. I would have to go back and double
10 Q	Yes, that's sort of what I meant to say. So yes.	10	check.
11 A	Okay.	11 Q	Are you expressing an opinion about the durability of
12 Q	But thank you for clarifying. And do you know if	12	the efficiency gap in Wisconsin over the course of --
13	that baseline partisanship would then hold under an	13 A	I think on that I will defer to Professor Jackman and
14	election that -- in like 2014 where a Republican won	14	his report.
15	the highest office on the ballot that year?	15 Q	Very good.
16 A	Well, I haven't done the numbers, but it's quite	16	MR. KEENAN: That's all I have.
17	possible that if you did that result for 2014 that it	17	MR. STRRUSS: Just give us a minute
18	would show a Republican majority, but I don't know.	18	and let us talk and see if we have any questions
192	And then just going back to your demonstration plan	19	to ask.
20	partisanship model, I'm looking at Exhibit 10, but I	20	(Short recess is taken)
21	guess it's probably the same. The column D percent	21	MR. STRAUSS: So on the record.
22	and R percent are PCT, but I think it's percent, it's	22	EXAMINATION
23	about the seventh one in, it says D PCT?	23	BY MR. STRAUSS:
24 A	Okay.	242	In your calculations of the efficiency gap, you used
25 Q	And then the ninth one, it says R percent, do you see	25	what you described as estimates. What do you mean by
122			

Case: 3:15-cv-00421-bbc

117:24, 121:24, 122:1. tabs 65:11. tabuation 14:9. talked 44:23, 45:11, 83:23. tasks 13:16. taught $6: 18,6: 20$. teach6:14, 6:20. Technology 14:7, tells 28:10, 48:22. template 118:22. tend 15:13, 47:8, 50:2, 52:25, 108:15, 110:25, 111:12. term $13: 4,34: 9$, $38: 15,42: 23$, ๙:8. terms 12:23, 12224, 14:2, 15:2, 15:10, 22:22, 29:25, 35:21, 37:25,38:1, 40:7, 41:21, 53:6, $59: 8,65: 16,75: 7$, $81: 4,84: 21,90: 22$, 105:15, 105:20, 107:18, 107:23, 108:17, test 50:6, 110:16, 110:20, 111:18. tested 104:5. testified 4:5, $8: 6$, 9:12, 9:18. testify $9: 14$. testimony 4:19, 16:4, 27:16, 83:4. textbook 101:8. tharks 85:21. theoretical 38:5, 54:18. they'Il 24:5, 24:6. thin 110:24. thinking85:10. third 33:14, 79:11.		track 31:25. traditional 105:9. transcript 2:28, 4:20. transfer 16:10. transferving 74:8. transition 104:11. translate $29: 25$. translated 105:22. treat 99:5, 105:19. treated 29:24, 106:6. trial 9:13, 9:14, 9:16, 9:17, 9:18, $9: 20$. tried 19:3, 116:21. trivial $35: 4$. true $27: 21,34: 10$, 52:24, 70:20, 70:24, 80:20, 102:23, 111:16, 112:2, 128:10. truth 4:26. truthful $5: 3$. try 4:2:, 5:4, 25:4, 25:5, $28: 8$. trying 15:18, 16:6, 17:21, 34:17, 46:24, 48:10, 48:13, 55:11, 67:20, $69: 19,75: 8$, 76:12, 88:17, 98:16, 105:14 105:19, 113:2 113:6, 116:18, 120:10. tum 18:12, 18:22, 49:13, 102:14 117:7. tumed 18:5, 18:6. tumoit 72:21, 72:25, 73:1, 81:19, $84: 25,86: 20,87: 1$, $87: 2,87: 12,89: 16$,	90:4, 91:11, 92:5, 92:13, 92:24, 93:12, 95:21, 96:2 96:7, 96:16, 96:22, 97:3, 97:11 two-party $33: 19$, 33:21, 34:24, 36:14, 36:16, 41:23, 61:10, 61:12 61:18, 66:24, 67:2, 67:11, 72:9, 80:25, 123:15. type 13:6, 99:11. types 17:2. typical 52:9. typically 17:10, 30:5, 33:18, 39:25, 53:21, 66:9, typographical 20:5. <U>. ultimately 40:15. Unhum 19:2, 77:24. uncontested $31: 1$, 64:4, 64:5, 76:13, 83:22, 84:2, 84:11, 84:18, 84:19, 84:22, 85:13, 85:14, 85:22 86:21, 87:2 87:7, 96:24,97:7. undergraduate 5:12, 6:14. underlying 30:21, 30:25, 31:10, 32:13, 39:24, 40:11, 41:6, 43:2 46:9, 63:17, 63:23, $74: 9,74: 25,75: 2$, 75:3, 76:1, 76:4, 79:22, 83:9, 88:15, 90:16, 93:14, 103:9, 122:8, 123:5, 125:3,		```Witness 2:1, 4:3, 7:1, 7:3, 9:13, 20:13, 127:2 128:21 won \(32: 2,32: 5,61: 2\), 61:4, 61:6, 61:16, 69:16, 71:16, 88:5, 94:23, 102:8, 102:16, 102:18, 102:24, 121:17, 122:14. word 25:12, 125:18, 125:20. work 12:14, 12:21, 19:5, 19:7, 19:8, 19:10, 19:24, 20:12, 55:11, 88:24, 98:5. worked 10:10, 10:12, 13:2, 67:22, 119:3. working \(6: 3,10: 21\), 16:8, 22:16, 72:3. world 37:6. wite 44:4, 66:10. witing \(128: 15\). \\ \(<\mathrm{Y}>\). \\ Yale \(5: 14,5: 19,5: 20\), 6:2. \\ year 6:3, 39:9, 39:10, 88:14, 89:5, 89:9, 89:10, 89:11, 89:17, 89:18, 89:23, 90:2, 90:3, 94:13, 94:14, 94:19, 95:20, 95:21, 122:15. years \(5: 11,8: 1,9: 5\), 94:18, 100:24, 121:18. yield 91:5, \(91: 6\). yourself 39:13, 60:2. \\ <Z>. \\ Zamanipa 85:15,```	$\begin{gathered} \text { 86:10. } \\ \text { zero 40:23, 52:11, } \\ 52: 18,53: 23, \\ 60: 10,64: 6,71: 22, \\ 113: 16,15: 10 \text {, } \\ \text { zero. } 50: 7,50: 10 \text {. } \\ \text { 60:14, } 73: 23 . \end{gathered}$	151
			37:16, 37:17, 37:23, 38:1, 38:3, 64:18, 64:23, 65:2, 65:3, 67:16, 68:6, $68: 25,71: 15,79: 8$, 79:19, 82:21, 82:25, 88:2, 98:6, 96:4, 96:6, 97:1, 97:4, 97:13. Waukesha57:22, 114:9, 114:19, 115:3. ways 13:1, 24:16, 90:16, 108:19, 108:21, 108:22, 110:19, 111:10, 120:21. website 69:7, 69:9. weeds 94:6. weighted $53: 18$. well-known 76:10, 89:21. Wendelberger 8:5. West $2: 7,2: 23$, 128:13. WESTERN1:4. whatever 35:23, 45:17, 70:22, 80:22. whenever 22:15. whereas 91:1. whereof 128:21. whether 8:13, 23:7, 25:17, 33:8, 37:19, 55:11, 71:12 74:18, 104:7, 113:20, 114:16, 118:25, 119:1, 121:1, $121: 2$. White 47:5. Whites 46:3. Whitford 1:7, 127:4. whole 17:18. whom $13: 2$. Will 16:16, 21:14, $21: 25,23: 6,24: 7$, 30:8, 30:24, 33:18,				

District	Pop	Dev	\% Dev	dhat_open	Dem \%	rhat_open	Rep \%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
1	57220	-224	-0.39\%	16,235	0.49402	16,628	0.50598	16235	-	-	197	16,235	197	16,038	1
2	57649	205	0.36\%	12,398	0.431159	16,357	0.568841	12398	-	-	1,980	12,398	1,980	10,419	1
3	57444	0	0.00\%	12,623	0.431425	16,636	0.568575	12623	-	-	2,006	12,623	2,006	10,617	1
4	57486	42	0.07\%	13,926	0.472034	15,576	0.527966	13926	-	-	825	13,926	825	13,101	1
5	57470	26	0.05\%	12,710	0.442439	16,017	0.557561	12710	-	-	1,654	12,710	1,654	11,056	1
6	57505	61	0.11\%	10,929	0.422505	14,938	0.577495	10929	-	-	2,005	10,929	2,005	8,924	1
7	57498	54	0.09\%	13,793	0.539399	11,778	0.460601	0	11,778	1,007	-	1,007	11,778	$(10,771)$	0
8	57196	-248	-0.43\%	7,342	0.808608	1,738	0.191392	0	1,738	2,802	-	2,802	1,738	1,064	0
9	57283	-161	-0.28\%	10,023	0.688604	4,533	0.311396	0	4,533	2,745	-	2,745	4,533	$(1,787)$	0
10	57428	-16	-0.03\%	25,306	0.897289	2,897	0.102711	0	2,897	11,205	-	11,205	2,897	8,308	0
11	57503	59	0.10\%	21,698	0.865628	3,368	0.134372	0	3,368	9,165	-	9,165	3,368	5,797	0
12	57494	50	0.09\%	19,700	0.79048	5,222	0.20952	0	5,222	7,239	-	7,239	5,222	2,018	0
13	57452	8	0.01\%	13,345	0.39597	20,358	0.60403	13345	-	-	3,506	13,345	3,506	9,839	1
14	57597	153	0.27\%	14,499	0.408139	21,025	0.591861	14499	-	-	3,263	14,499	3,263	11,235	1
15	57372	-72	-0.13\%	13,006	0.429006	17,310	0.570994	13006	-	-	2,152	13,006	2,152	10,853	1
16	57458	14	0.02\%	22,293	0.904922	2,342	0.095078	0	2,342	9,975	-	9,975	2,342	7,633	0
17	57354	-90	-0.16\%	24,088	0.856153	4,047	0.143847	0	4,047	10,020	-	10,020	4,047	5,973	0
18	57480	36	0.06\%	22,204	0.891874	2,692	0.108126	0	2,692	9,756	-	9,756	2,692	7,064	0
19	57546	102	0.18\%	22,759	0.687113	10,364	0.312887	0	10,364	6,198	-	6,198	10,364	$(4,166)$	0
20	57428	-16	-0.03\%	16,066	0.555485	12,856	0.444515	0	12,856	1,605	-	1,605	12,856	$(11,252)$	0
21	57449	5	0.01\%	12,566	0.450565	15,324	0.549435	12566	-	-	1,379	12,566	1,379	11,187	1
22	57495	51	0.09\%	11,290	0.329657	22,958	0.670343	11290	-	-	5,834	11,290	5,834	5,456	1
23	57579	135	0.24\%	14,260	0.397291	21,633	0.602709	14260	-	-	3,687	14,260	3,687	10,573	1
24	57282	-162	-0.28\%	13,885	0.405749	20,335	0.594251	13885	-	-	3,225	13,885	3,225	10,659	1
25	57322	-122	-0.21\%	12,032	0.430255	15,933	0.569745	12032	-	-	1,950	12,032	1,950	10,082	1
26	57581	137	0.24\%	13,639	0.467121	15,559	0.532879	13639	-	-	960	13,639	960	12,679	1
27	57536	92	0.16\%	14,709	0.473423	16,360	0.526577	14709	-	-	826	14,709	826	13,883	1
28	57467	23	0.04\%	12,719	0.453914	15,302	0.546086	12719	-	-	1,291	12,719	1,291	11,428	1
29	57537	93	0.16\%	12,909	0.468215	14,662	0.531785	12909	-	-	876	12,909	876	12,033	1
30	57241	-203	-0.35\%	14,019	0.452666	16,951	0.547334	14019	-	-	1,466	14,019	1,466	12,553	1
31	57240	-204	-0.36\%	13,273	0.459469	15,615	0.540531	13273	-	-	1,171	13,273	1,171	12,102	1
32	57524	80	0.14\%	11,255	0.422892	15,359	0.577108	11255	-	-	2,052	11,255	2,052	9,203	1
33	57565	121	0.21\%	11,226	0.380229	18,298	0.619771	11226	-	-	3,536	11,226	3,536	7,690	1
34	57387	-57	-0.10\%	12,445	0.391359	19,355	0.608641	12445	-	-	3,455	12,445	3,455	8,991	1
35	57562	118	0.21\%	12,270	0.441447	15,525	0.558553	12270	-	-	1,628	12,270	1,628	10,643	1
36	57432	-12	-0.02\%	11,403	0.421178	15,672	0.578822	11403	-	-	2,134	11,403	2,134	9,269	1
37	57507	63	0.11\%	12,707	0.439556	16,202	0.560444	12707	-	-	1,747	12,707	1,747	10,960	1

District	Pop	Dev	\% Dev	dhat_open	Dem \%	rhat open	Rep \%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
38	57493	49	0.09\%	12,668	0.398397	19,129	0.601603	12668	-	-	3,231	12,668	3,231	9,437	1
39	57387	-57	-0.10\%	11,491	0.400349	17,211	0.599651	11491	-	-	2,860	11,491	2,860	8,630	1
40	57366	-78	-0.14\%	11,485	0.457903	13,597	0.542097	11485	-	-	1,056	11,485	1,056	10,429	1
41	57337	-107	-0.19\%	11,719	0.447095	14,492	0.552905	11719	-	-	1,387	11,719	1,387	10,332	1
42	57285	-159	-0.28\%	13,705	0.469871	15,462	0.530129	13705	-	-	879	13,705	879	12,826	1
43	57443	-1	0.00\%	17,380	0.57068	13,075	0.42932	0	13,075	2,153	-	2,153	13,075	$(10,923)$	0
44	57395	-49	-0.09\%	16,680	0.618152	10,304	0.381848	0	10,304	3,188	-	3,188	10,304	$(7,116)$	0
45	57658	214	0.37\%	15,153	0.609941	9,691	0.390059	0	9,691	2,731	-	2,731	9,691	$(6,959)$	0
46	57458	14	0.02\%	19,173	0.624385	11,534	0.375615	0	11,534	3,819	-	3,819	11,534	$(7,714)$	0
47	57465	21	0.04\%	21,609	0.698214	9,340	0.301786	0	9,340	6,135	-	6,135	9,340	$(3,205)$	0
48	57506	62	0.11\%	24,517	0.762539	7,635	0.237461	0	7,635	8,441	-	8,441	7,635	806	0
49	57346	-98	-0.17\%	12,307	0.474661	13,621	0.525339	12307	-	-	657	12,307	657	11,650	1
50	57624	180	0.31\%	12,467	0.502844	12,326	0.497156	0	12,326	71	-	71	12,326	$(12,256)$	0
51	57580	136	0.24\%	14,173	0.520666	13,048	0.479334	0	13,048	563	-	563	13,048	$(12,485)$	0
52	57232	-212	-0.37\%	11,294	0.419067	15,656	0.580933	11294	-	-	2,181	11,294	2,181	9,113	1
53	57240	-204	-0.36\%	9,875	0.37086	16,753	0.62914	9875	-	-	3,439	9,875	3,439	6,437	1
54	57250	-194	-0.34\%	15,180	0.540935	12,882	0.459065	0	12,882	1,149	-	1,149	12,882	$(11,733)$	0
55	57493	49	0.09\%	12,634	0.426748	16,971	0.573252	12634	-	-	2,169	12,634	2,169	10,465	1
56	57582	138	0.24\%	12,564	0.403477	18,576	0.596523	12564	-	-	3,006	12,564	3,006	9,559	1
57	57501	57	0.10\%	14,387	0.551995	11,676	0.448005	0	11,676	1,355	-	1,355	11,676	$(10,321)$	0
58	57227	-217	-0.38\%	8,843	0.282875	22,417	0.717125	8843	,	1,355	6,787	8,843	6,787	2,055	1
59	57391	-53	-0.09\%	8,784	0.287912	21,725	0.712088	8784	-	-	6,471	8,784	6,471	2,313	1
60	57385	-59	-0.10\%	9,848	0.291044	23,989	0.708956	9848	-	-	7,071	9,848	7,071	2,778	1
61	57614	170	0.30\%	13,145	0.44369	16,481	0.55631	13145	-	-	1,668	13,145	1,668	11,477	1
62	57345	-99	-0.17\%	14,828	0.461406	17,309	0.538594	14828	-	-	1,240	14,828	1,240	13,588	1
63	57365	-79	-0.14\%	13,233	0.440164	16,830	0.559836	13233	-	-	1,799	13,233	1,799	11,434	1
64	57270	-174	-0.30\%	15,702	0.581374	11,307	0.418626	0	11,307	2,198	-	2,198	11,307	$(9,109)$	0
65	57455	11	0.02\%	15,105	0.655765	7,929	0.344235	0	7,929	3,588	-	3,588	7,929	$(4,341)$	0
66	57545	101	0.18\%	16,162	0.747076	5,472	0.252924	0	5,472	5,345	-	5,345	5,472	(127)	0
67	57239	-205	-0.36\%	13,769	0.484078	14,674	0.515922	13769	-	-	453	13,769	453	13,316	1
68	57261	-183	-0.32\%	13,663	0.512334	13,005	0.487666	0	13,005	329	-	329	13,005	$(12,676)$	0
69	57649	205	0.36\%	11,083	0.435819	14,347	0.564181	11083	-	-	1,632	11,083	1,632	9,451	1
70	57552	108	0.19\%	12,211	0.459086	14,387	0.540914	12211	-	-	1,088	12,211	1,088	11,123	1
71	57519	75	0.13\%	17,614	0.60744	11,383	0.39256	0	11,383	3,115	-	3,115	11,383	$(8,267)$	0
72	57449	5	0.01\%	14,294	0.50707	13,895	0.49293	0	13,895	199	-	199	13,895	$(13,696)$	0
73	57453	9	0.02\%	17,353	0.616729	10,784	0.383271	0	10,784	3,284	-	3,284	10,784	$(7,500)$	0
74	57494	50	0.09\%	17,095	0.553832	13,772	0.446168	0.	13,772	1,662	-	1,662	13,772	$(12,110)$	0

District	Pop	Dev	\% Dev	dhat_open	Dem\%	rhat_open	Rep \%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
75	57462	18	0.03\%	15,000	0.527835	13,418	0.472165	0	13,418	791	-	791	13,418	$(12,627)$	0
76	57617	173	0.30\%	30,939	0.819701	6,805	0.180299	0	6,805	12,067	-	12,067	6,805	5,262	0
77	57433	-11	-0.02\%	26,925	0.816763	6,041	0.183237	0	6,041	10,442	-	10,442	6,041	4,402	0
78	57546	102	0.18\%	24,163	0.710254	9,857	0.289746	0	9,857	7,153	-	7,153	9,857	$(2,704)$	0
79	57461	17	0.03\%	20,753	0.59759	13,975	0.40241	0	13,975	3,389	-	3,389	13,975	$(10,586)$	0
80	57585	141	0.25\%	20,369	0.617747	12,604	0.382253	0	12,604	3,882	-	3,882	12,604	$(8,722)$	0
81	57403	-41	-0.07\%	16,310	0.56896	12,356	0.43104	0	12,356	1,977	-	1,977	12,356	$(10,379)$	0
82	57430	-14	-0.02\%	12,168	0.402209	18,085	0.597791	12168	-	-	2,959	12,168	2,959	9,210	1
83	57423	-21	-0.04\%	10,186	0.300106	23,755	0.699894	10186	-	-	6,784	10,186	6,784	3,401	1
84	57365	-79	-0.14\%	12,503	0.399877	18,765	0.600123	12503	-	-	3,131	12,503	3,131	9,373	1
85	57480	36	0.06\%	13,613	0.512962	12,925	0.487038	0	12,925	344	-	344	12,925	$(12,581)$	0
86	57454	10	0.02\%	13,425	0.439056	17,152	0.560944	13425	-	-	1,863	13,425	1,863	11,561	1
87	57358	-86	-0.15\%	11,780	0.437956	15,118	0.562044	11780	-	-	1,669	11,780	1,669	10,111	1
88	57556	112	0.20\%	13,141	0.477489	14,380	0.522511	13141	-	-	620	13,141	620	12,521	1
89	57634	190	0.33\%	11,610	0.42801	15,516	0.57199	11610	-	-	1,953	11,610	1,953	9,658	1
90	57608	164	0.29\%	12,080	0.623026	7,309	0.376974	0	7,309	2,385	-	2,385	7,309	$(4,924)$	0
91	57359	-85	-0.15\%	17,942	0.603883	11,769	0.396117	0	11,769	3,086	-	3,086	11,769	$(8,683)$	0
92	57431	-13	-0.02\%	14,285	0.555278	11,441	0.444722	0	11,441	1,422	-	1,422	11,441	$(10,019)$	0
93	57548	104	0.18\%	15,268	0.497965	15,393	0.502035	15268	-	-	62	15,268	62	15,206	1
94	57266	-178	-0.31\%	17,408	0.573345	12,954	0.426655	0	12,954	2,227	-	2,227	12,954	$(10,727)$	0
95	57372	-72	-0.13\%	19,804	0.672888	9,627	0.327112	0	9,627	5,088	-	5,088	9,627	$(4,539)$	0
96	57484	40	0.07\%	10,950	0.424041	14,873	0.575959	10950	-	-	1,962	10,950	1,962	8,989	1
97	57279	-165	-0.29\%	10,826	0.375032	18,042	0.624968	10826	-	-	3,608	10,826	3,608	7,219	1
98	57513	69	0.12\%	10,182	0.317822	21,855	0.682178	10182	-	-	5,837	10,182	5,837	4,346	1
99	57496	52	0.09\%	8,346	0.246334	25,535	0.753666	8346	-	-	8,594	8,346	8,594	(248)	1
				1,454,717		1,389,958		702,148	401,975	175,297	142,918	877,445	544,893	332,552	57
														11.690\%	

Case: 3:15-cv-00421-bbc Document \#: 52-2 Filed: 01/05/16 Page 1 of 1

Final Map							
Assembly				Senate			
OISTRICT	-	Nax	P榢校	DISTBICT	Earabit	Nax	D) ${ }^{\text {a }}$
1	- 51.15%	[EET 51.22%	0.07\%	1	54.04\%	53.73\%	-0.31\%
2	- 54.93%	(1). 54.84%	0.09\%				
3	\% ${ }^{\text {aximi } 56.10 \% ~}$	Wems5.58\%	-0.52\%				
4	23x 53.31\%	FW\% 53.47\%	0.16\%	2	55.44\%	55.23\%	-0.21\%
5	- 53.74%	55\% 54.28%	0.54\%				
6	- 5 59.77\%	- 5 58.33\%	-1.44\%				
7	- 48.20%	5.0. 45.38%	-2.82\%	3	40.52\%	38.12\%	2.40\%
3	1. 22.39%	30.48\%	8.09\%				
,	. 3 36.73\%	E. 29.14\%	.759\%				
10	10.27\%	- 12.59\%	2.32\%	4	17.58\%	19.63\%	2.05\%
11	11.91\%	F 19.58\%	7.67\%				
12	Eze 29.23%	E5 27.51\%	-1.72\%				
13	\% 43.67%	- 5 588.67\%	15.00\%	5	50.62\%	57.72\%	7.10\%
14	- 5 59.06\%	- $\mathrm{Br}^{\text {W }}$ 58.64\%	-0.42\%				
15	Few 48.21%	Fix 55.48%	7.27\%				
16	- 14.21\%	10.54\%	-3.67\%	6	14.12\%	15.55\%	1.43\%
17	- 13.21\%	F 19.84\%	6.63*	\square			
18	- 15.28\%	\% 14.94\%	0.34\%	-			
19	. 29.15\%	- 28.03%	1.12\%	7	41.13\%	40.53\%	-0.60\%
20	-	- 43.12%	-0.59\%				
21	5 51.92\%	73535.94\%	1.02x				
22	E 39.05%	5-65.82\%	27.77\%	8	52.82\%	60.88\%	8.06\%
23	F 51.70%	. $51.64 \times$	5.94\%				
24	Eimb 67.29%	Hes 58.49%	8.80\%				
25	- 52.79%	= 53.26%	0.47\%	9	52.96\%	55.19\%	2.23\%
26	Fan 45.42%	153655.97\%	10.55\%	\square			
27	Fuxi 59.20%	2-3 56.19%	-3.01*				
28	- 54.85%	- 55.00\%	0.15\%	10	53.14\%	53.32\%	0.18\%
29	zrect 51.32%	(5) 50.97\%	-0.35\%				
30	- 53.29%	Ex. 53.78%	0.49\%				
31	Waxi67.57\%	5 56. 56.33%	-11.24*	11	67.64\%	60.13\%	.7.51\%
32	- 6 61.06\%	-us) 62.27%	1.21x				
33	2-1. 72.24%	-3961.81\%	-10.43*				
34	Fex 54.51%	- ${ }^{5}$ 2 55.22%	0.71\%	12	53.37\%	54.39\%	1.02\%
35	- 5 Ske 52.30%	. 7 [ax 52.99%	0.69\%	-			
36		- 54.84%	1.78\%				
37	Fick 51.33\%	2asers 58.11\%	6.78\%	13	59.22\%	60.17\%	0.95\%
38	-6. 65.80%	5 . 60.45%	.5.35\%				
39	- 5 . 60.35%	5xack 62.00%	1.65\%				
40	Fuas 58.50%	18. 58.07%	-0.43x	14	55.86\%	56.02\%	0.16\%
41.	- 60.60%	\% 5 Wix 55.16%	5.44x				
42	Prix 48.54\%	- 54.94%	6.40\%				
43	- ${ }^{\text {a }}$ 44.14\%	.3.0.43.06\%	-1.08\%	15	41.20\%	40.17\%	-1.03\%
44	\% 36.74\%	-3it 37.22\%	0.48\%				
45	- $42.4 .39 \%$	-5. 40.08%	2.31\%				
46	230. 42.07\%	58x 42.39\%	0.32\%	16	39.06\%	34.13\%	-4.93\%
47	-	- 33.35\%	-15.34\%				
48	E. 28.03%	- 27.56\%	-0.47*				
49	Fss9 49.68\%	. $3.4 .59 \%$	0.09\%	17	48.46\%	49.23\%	0.77%
50	Filk 52.08%	\% 5 52.06\%	-0.02\%				
51	-	-3.3 46.23%	2.22\%				
52	-57.39\%	- 0 5059.06\%	1.67\%	18	54.96\%	55.01\%	0.05\%
53	. 6 62.74\%	3531.85\%	0.89\%				
54	\% 45.08\%	- 45.228	0.14%				
55	Fax 49.34\%	ㅍ.3 55.05\%	5.72\%	19	53.32\%	53.02\%	-0.30\%
56	56eer61.05\%	- 5 58.85\%	-2.19\%				
57	- $2.87 .26 \%$	(16. 44.50%	-2.76\%				
58	- $\times 2 \times 20.90 \%$	8 \times 70.54\%	. 0.36%	20	70.55\%	69.46\%	-1.09\%
59	- $3 \times 272.74 \%$	2. 68.31%	4.43*				
60	. 68.12%	\%2. 69.52%	1.40\%				
61	- 35.98\%	20x57.22\%	21.24*	21	49.86\%	57.77\%	7.91\%
62	- 44.35%	-5 56.56%	12.21*	-			
63	. $53.33 .09 \%$	\% 593.64\%	-3.45\%				
64	1-35.66\%	Fin 42.72%	7.06\%	22	47.56\%	36.97\%	-10.59\%
65	=3 45.44\%	- 35.92\%	-9.52x				
66	- 3 \% $59.12 \times$	12. 31.71\%	-27.41\%				
67	- 7 \% 51.72%	- 51.67%	-0.05\%	23	49.98\%	51.75\%	1.77\%
68	530145.01\%	(1) 49.38%	4.37\%				
69	50. 54.06%	- 54.15%	0.10\%				
70	- 49.74%	= 50.73%	0.99\%	24	45.72\%	47.51\%	0.79\%
71	Fime 41.68\%	- 40.72%	0.96\%				
72	- 49.03%	5151.49\%	2.46\%				
73	20.39.55\%	Fer 40.16\%	0.61%	25	44.88\%	44.88\%	0.00%
74	13ili 43.78%	4. 42.89%	0.89\%				
25	Eme 51.71%	-52.18\%	0.47\%				
76	F. 24.29%	- 14.49\%	.9.80\%	26	20.85\%	20.98\%	0.13\%
77	(2) 23.88%	E 19.23\%	4.65\%				
78	P 14.09%	E. 30.84%	16.75\%				
79	537. 37.49%	- 41.80%	4.31*	27	38.38\%	41.49\%	3.11\%
80	-35 42.15%	(2x) 38.55%	-3.60\%				
${ }^{31}$	35 36.16\%	- 44.56%	8.40\%	-			
82	\% 58.59%	- 3 57.08\%	-1.51\%	28	64.48\%	60.93\%	-3.55\%
83	2ubl 69.70%	- 5 . 58.31%	-1.39*				
84	7axici 64.99%		-7.89\%				
85	Far 48.91\%	-	-0.53\%	29	52.00\%	52.47\%	0.47\%
86	. 54.56%	5. 55.08%	0.52\%				
87	5.3.52.16\%	F53k 53.74\%	1.58\%	\square			
88.	- 44.85%	F. 53.19%	8.34\%	30	50.38\%	50.55\%	0.17\%
89	52a. 55.76%	-3x 55.73%	-0.03\%				
90	58\% 49.59%	\% 40.40\%	. 9.19%				
91	- 3 . 45.87%	HiEC 39.57\%	-6.30\%	31	46.89\%	44.94\%	-1.95\%
92	(ax) 50.79\%	35\% 44.30\%	.6.49\%				
93	(1). 44.73%	F 51.10%	6.37\%				
94	- 51.57%	- 51.91%	0.34\%	32	44.43\%	44.63\%	0.20\%
95	36.02\%	\% 36.36\%	0.346				
96	1-45.32x	- 46.40\%	1.08\%				
97.	2653: $59.96 \times$	Ex] 62.91%	2.95\%	33	68.84\%	68.60\%	-0.24*
98	- 70.96%	(1ate 67.02%	-3.94\%				
99	113873.35\%	-3.874.85\%	1.50\%				

CurfentMap			New Map		
	Assembly	Senate		Assembly	Senate
Strong GOP (55\%+)	27	7	Strong GOP (55\%+)	38	12
Lean GOP (52.1-54.9\%):	13	8	New Lean GOP (52.1-54.9\%):	14	5
Total GOP Seats (strong + lean):	40	15	Total GOP Seats (strong + lean):	52	17
Swing (48-52\%):	19	5	New Swing (48-52\%)	10	3
Lean DEM (45.1-47.9\%):	7	3	New Lean DEM (45.1-47.9\%):	4	1
Strong DEM (-45\%):	33	10	Strong DEM (-45\%):	33	12
Total DEM Seats (strong + lean):	40	13	Total DEM Seats (strong + lean):	37	13

District	Pop	Dev	\% Dev	Predicted Dem Votes	Dem \%	Predicted Rep Votes	Rep \%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
1	57220	-224	-0.39\%	15,857	0.4878	16,651	0.5122	15857	-	-	397	15,857	397	15,461	1
2	57649	205	0.36\%	12,983	0.4516	15,766	0.5484	12983	-	-	1,391	12,983	1,391	11,591	1
3	57444	0	0.00\%	12,976	0.4442	16,236	0.5558	12976	-	-	1,630	12,976	1,630	11,346	1
4	57486	42	0.07\%	13,742	0.4653	15,791	0.5347	13742	-	-	1,025	13,742	1,025	12,717	1
5	57470	26	0.05\%	13,134	0.4572	15,593	0.5428	13134	-	-	1,230	13,134	1,230	11,904	1
6	57505	61	0.11\%	10,779	0.4167	15,088	0.5833	10779	-	-	2,155	10,779	2,155	8,624	1
7	57498	54	0.09\%	13,967	0.5462	11,604	0.4538	0	11,604	1,181	-	1,181	11,604	$(10,423)$	0
8	57196	-248	-0.43\%	6,178	0.6952	2,709	0.3048	0	2,709	1,735	-	1,735	2,709	(974)	0
9	57283	-161	-0.28\%	10,173	0.7086	4,184	0.2914	0	4,184	2,995	-	2,995	4,184	$(1,189)$	0
10	57428	-16	-0.03\%	24,623	0.8741	3,547	0.1259	0	3,547	10,538	-	10,538	3,547	6,992	0
11	57503	59	0.10\%	20,235	0.8042	4,927	0.1958	0	4,927	7,654	-	7,654	4,927	2,728	0
12	57494	50	0.09\%	18,066	0.7249	6,856	0.2751	0	6,856	5,605	-	5,605	6,856	$(1,251)$	0
13	57452	8	0.01\%	13,929	0.4133	19,774	0.5867	13929	-	-	2,922	13,929	2,922	11,007	1
14	57597	153	0.27\%	14,693	0.4136	20,831	0.5864	14693	-	-	3,069	14,693	3,069	11,624	1
15	57372	-72	-0.13\%	13,497	0.4452	16,819	0.5548	13497	-	-	1,661	13,497	1,661	11,835	1
16	57458	14	0.02\%	22,223	0.8946	2,618	0.1054	0	2,618	9,803	-	9,803	2,618	7,184	0
17	57354	-90	-0.16\%	22,553	0.8016	5,582	0.1984	0	5,582	8,486	-	8,486	5,582	2,904	0
18	57480	36	0.06\%	21,176	0.8506	3,719	0.1494	0	3,719	8,728	-	8,728	3,719	5,009	0
19	57546	102	0.18\%	23,838	0.7197	9,284	0.2803	0	9,284	7,277	-	7,277	9,284	$(2,007)$	0
20	57428	-16	-0.03\%	16,451	0.5688	12,471	0.4312	0	12,471	1,990	-	1,990	12,471	$(10,482)$	0
21	57449	5	0.01\%	13,125	0.4706	14,765	0.5294	13125	-	-	820	13,125	820	12,305	1
22	57495	51	0.09\%	11,364	0.3318	22,885	0.6682	11364	-	-	5,761	11,364	5,761	5,603	1
23	57579	135	0.24\%	15,182	0.4236	20,658	0.5764	15182	-	-	2,738	15,182	2,738	12,444	1
24	57282	-162	-0.28\%	14,205	0.4151	20,015	0.5849	14205	-	-	2,905	14,205	2,905	11,299	1
25	57322	-122	-0.21\%	13,065	0.4674	14,887	0.5326	13065	-	-	911	13,065	911	12,154	1
26	57581	137	0.24\%	12,853	0.4403	16,338	0.5597	12853	-	-	1,743	12,853	1,743	11,110	1
27	57536	92	0.16\%	13,611	0.4381	17,458	0.5619	13611	-	-	1,923	13,611	1,923	11,688	1
28	57467	23	0.04\%	12,609	0.45	15,412	0.55	12609	-	-	1,401	12,609	1,401	11,208	1
29	57537	93	0.16\%	13,519	0.4903	14,054	0.5097	13519	-	-	267	13,519	267	13,251	1
30	57241	-203	-0.35\%	14,267	0.4622	16,601	0.5378	14267	-	-	1,167	14,267	1,167	13,101	1
31	57240	-204	-0.36\%	12,616	0.4367	16,273	0.5633	12616	-	-	1,829	12,616	1,829	10,787	1
32	57524	80	0.14\%	10,038	0.3773	16,566	0.6227	10038	-	-	3,264	10,038	3,264	6,773	1
33	57565	121	0.21\%	11,274	0.3819	18,247	0.6181	11274	-	-	3,487	11,274	3,487	7,788	1
34	57387	-57	-0.10\%	14,239	0.4478	17,558	0.5522	14239	-	-	1,660	14,239	1,660	12,579	1

District	Pop	Dev	\% Dev	Predicted Dem Votes	Dem \%	Predicted Rep Votes	Rep \%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
35	57562	118	0.21\%	13,067	0.4701	14,729	0.5299	13067	-	-	831	13,067	831	12,236	1
36	57432	-12	-0.02\%	12,227	0.4516	14,848	0.5484	12227	-	-	1,310	12,227	1,310	10,917	
37	57507	63	0.11\%	12,110	0.4189	16,799	0.5811	12110	-	-	2,345	12,110	2,345	9,766	
38.	57493	49	0.09\%	12,574	0.3955	19,218	0.6045	12574	-	-	3,322	12,574	3,322	9,251	
39	57387	-57	-0.10\%	10,899	0.38	17,782	0.62	10899	-	-	3,442	10,899	3,442	7,457	
40	57366	-78	-0.14\%	10,514	0.4193	14,561	0.5807	10514	-	-	2,024	10,514	2,024	8,490	1
41	57337	-107	-0.19\%	11,761	0.4484	14,467	0.5516	11761	-	-	1,353	11,761	1,353	10,407	1
42	57285	-159	-0.28\%	13,152	0.4506	16,036	0.5494	13152	-	-	1,442	13,152	1,442	11,710	1
43	57443	-1	0.00\%	17,339	0.5694	13,113	0.4306	0	13,113	2,113	-	2,113	13,113	$(10,999)$	0
44	57395	-49	-0.09\%	16,941	0.6278	10,043	0.3722	0	10,043	3,449	-	3,449	10,043	$(6,595)$	0
45	57658	214	0.37\%	14,886	0.5992	9,957	0.4008	0	9,957	2,464	-	2,464	9,957	$(7,493)$	0
46	57458	14	0.02\%	17,681	0.5761	13,010	0.4239	0	13,010	2,336	-	2,336	13,010	$(10,674)$	0
47	57465	21	0.04\%	20,628	0.6665	10,322	0.3335	0	10,322	5,153	-	5,153	10,322	$(5,169)$	0
48	57506	62	0.11\%	23,290	0.7244	8,861	0.2756	0	8,861	7,215	-	7,215	8,861	$(1,646)$	0
49	57346	-98	-0.17\%	13,071	0.5041	12,859	0.4959	0	12,859	106	-	106	12,859	$(12,752)$	0
50	57624	180	0.31\%	11,887	0.4794	12,908	0.5206	11887	-	-	511	11,887	511	11,376	1
51	57580	136	0.24\%	14,637	0.5377	12,584	0.4623	0	12,584	1,026	-	1,026	12,584	$(11,558)$	0
52	57232	-212	-0.37\%	11,034	0.4094	15,918	0.5906	11034	-	-	2,442	11,034	2,442	8,592	1
53	57240	-204	-0.36\%	9,930	0.3815	16,099	0.6185	9930	-	-	3,084	9,930	3,084	6,846	
54	57250	-194	-0.34\%	15,372	0.5478	12,690	0.4522	0	12,690	1,341	-	1,341	12,690	$(11,348)$	0
55	57493	49	0.09\%	13,302	0.4494	16,297	0.5506	13302	-	-	1,498	13,302	1,498	11,804	1
56	57582	138	0.24\%	12,809	0.4114	18,326	0.5886	12809	-	-	2,759	12,809	2,759	10,050	1
57	57501	57	0.10\%	14,436	0.555	11,575	0.445	0	11,575	1,431	-	1,431	11,575	$(10,145)$	0
58	57227	-217	-0.38\%	9,211	0.2946	22,056	0.7054	9211	-	-	6,422	9,211	6,422	2,789	1
59	57391	-53	-0.09\%	9,669	0.3169	20,843	0.6831	9669	-	-	5,587	9,669	5,587	4,083	1
60	57385	-59	-0.10\%	10,307	0.3048	23,508	0.6952	10307	-	-	6,601	10,307	6,601	3,706	1
61	57614	170	0.30\%	12,661	0.4278	16,935	0.5722	12661	-	-	2,137	12,661	2,137	10,524	1
62	57345	-99	-0.17\%	13,959	0.4344	18,175	0.5656	13959	-	-	2,108	13,959	2,108	11,851	1
63	57365	-79	-0.14\%	11,973	0.4036	17,692	0.5964	11973	-	-	2,860	11,973	2,860	9,113	1
64	57270	-174	-0.30\%	15,452	0.5728	11,524	0.4272	0	11,524	1,964	-	1,964	11,524	$(9,560)$	0
65	57455	11	0.02\%	14,760	0.6408	8,274	0.3592	0	8,274	3,243	-	3,243	8,274	$(5,031)$	0
66	57545	101	0.18\%	14,776	0.6829	6,861	0.3171	0	6,861	3,957	-	3,957	6,861	$(2,904)$	0
67	57239	-205	-0.36\%	13,748	0.4833	14,698	0.5167	13748	-	-	475	13,748	475	13,273	1
68	57261	-183	-0.32\%	13,508	0.5062	13,177	0.4938	0	13,177	165	-	165	13,177	$(13,011)$	0

District	Pop	Dev	\% Dev	$\begin{array}{\|c\|} \hline \text { Predicted Dem } \\ \text { Votes } \\ \hline \end{array}$	Dem \%	Predicted Rep Votes	Rep\%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
69	57649	205	0.36\%	11,657	0.4584	13,773	0.5416	11657	-	-	1,058	11,657	1,058	10,599	1
70	57552	108	0.19\%	13,105	0.4927	13,493	0.5073	13105	-	-	194	13,105	194	12,911	1
71	57519	75	0.13\%	17,189	0.5928	11,807	0.4072	0	11,807	2,691	-	2,691	11,807	$(9,116)$	0
72	57449	5	0.01\%	13,674	0.4851	14,514	0.5149	13674	-	-	420	13,674	420	13,254	1
73	57453	9	0.02\%	16,837	0.5984	11,300	0.4016	0	11,300	2,769	-	2,769	11,300	$(8,531)$	0
74	57494	50	0.09\%	17,628	0.5711	13,239	0.4289	0	13,239	2,195	-	2,195	13,239	$(11,044)$	0
75	57462	18	0.03\%	13,590	0.4782	14,829	0.5218	13590	-	-	620	13,590	620	12,970	1
76	57617	173	0.30\%	32,275	0.8551	5,469	0.1449	0	5,469	13,403	-	13,403	5,469	7,934	0
77	57433	-11	-0.02\%	26,627	0.8077	6,339	0.1923	0	6,339	10,144	-	10,144	6,339	3,804	0
78	57546	102	0.18\%	23,528	0.6916	10,492	0.3084	0	10,492	6,518	-	6,518	10,492	$(3,974)$	0
79	57461	17	0.03\%	20,211	0.582	14,516	0.418	0	14,516	2,848	-	2,848	14,516	$(11,668)$	0
80	57585	141	0.25\%	20,251	0.6145	12,704	0.3855	0	12,704	3,773	-	3,773	12,704	$(8,931)$	0
81	57403	-41	-0.07\%	15,887	0.5544	12,770	0.4456	0	12,770	1,559	-	1,559	12,770	$(11,211)$	0
82	57430	-14	-0.02\%	12,985	0.4292	17,269	0.5708	12985	-	.	2,142	12,985	2,142	10,843	1
83	57423	-21	-0.04\%	10,756	0.3169	23,185	0.6831	10756	-	-	6,215	10,756	6,215	4,541	1
84	57365	-79	-0.14\%	13,414	0.429	17,854	0.571	13414	-	-	2,220	13,414	2,220	11,194	1
85	57480	36	0.06\%	13,703	0.5162	12,843	0.4838	0	12,843	430	-	430	12,843	$(12,413)$	0
86	57454	10	0.02\%	15,780	0.5162	14,789	0.4838	0	14,789	495	-	495	14,789	$(14,294)$	0
87	57358	-86	-0.15\%	12,413	0.4626	14,420	0.5374	12413	-	-	1,004	12,413	1,004	11,409	1
88	57556	112	0.20\%	12,882	0.4681	14,638	0.5319	12882	-	-	878	12,882	878	12,004	1
89	57634	190	0.33\%	12,009	0.4427	15,118	0.5573	12009	-	-	1,554	12,009	1,554	10,455	1
90	57608	164	0.29\%	11,556	0.596	7,833	0.404	0	7,833	1,861	-	1,861	7,833	$(5,972)$	0
91	57359	-85	-0.15\%	18,044	0.6043	11,816	0.3957	0	11,816	3,114	-	3,114	11,816	$(8,701)$	0
92	57431	-13	-0.02\%	14,313	0.557	11,383	0.443	0	11,383	1,465	-	1,465	11,383	$(9,919)$	0
93	57548	104	0.18\%	15,014	0.489	15,690	0.511	15014	-	-	338	15,014	338	14,676	1
94	57266	-178	-0.31\%	14,601	0.4809	15,761	0.5191	14601	-	-	580	14,601	580	14,022	1
95	57372	-72	-0.13\%	18,730	0.6364	10,701	0.3636	0	10,701	4,014	-	4,014	10,701	$(6,687)$	0
96	57484	40	0.07\%	13,841	0.536	11,982	0.464	0	11,982	930	-	930	11,982	$(11,052)$	0
97	57279	-165	-0.29\%	10,706	0.3709	18,158	0.6291	10706	-	-	3,726	10,706	3,726	6,979	1
98	57513	69	0.12\%	10,566	0.3298	21,472	0.6702	10566	-	-	5,453	10,566	5,453	5,113	1
99	57496	52	0.09\%	8,517	0.2515	25,349	0.7485	8517	-	-	8,416	8,517	8,416	102	1
				1,448,901		1,394,018		726,238	402,334	160,165	132,723	886,403	535,057	351,346	58

District	Pop	Dev	\% Dev	Predicted Dem Votes	Dem \%	$\begin{array}{c\|} \hline \text { Predicted Rep } \\ \text { Votes } \end{array}$	Rep \%	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
						Correlation	1							12.36\%	
					correlation 8th 5		1								
					Corr Gaddie and d		0.80622								
				Corr Gaddie Memo			0.318163								
							All Tot Corr Gaddie								

	District	Pop	Dev	\% Dev	Net D	Predicted Dem	D Pct	Predicted Rep	R PCT	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
	1	57487	43	0.07\%		16,259	49.8\%	16414	50.2\%	16259	-	-	78	16,259	78	16,181	1
	2	57590	146	0.25\%		11,805	54.1\%	10025	45.9\%	0	10,025	890	-	890	10,025	$(9,136)$	0
	3	57686	242	0.42\%		11,243	38.7\%	17807	61.3\%	11243	-	-	3,282	11,243	3,282	7,961	1
	4	57406	-38	-0.07\%		10,881	46.0\%	12790	54.0\%	10881	-	-	955	10,881	955	9,926	1
	5	57633	189	0.33\%		13,497	49.4\%	13845	50.6\%	13497	-	-	174	13,497	174	13,323	1
	6	57480	36	0.06\%		11,045	38.5\%	17627	61.5\%	11045	-	-	3,291	11,045	3,291	7,753	1
	7	57208	-236	-0.41\%		22,822	69.1\%	10214	30.9\%	0	10,214	6,304	-	6,304	10,214	$(3,910)$	0
	8	57196	-248	-0.43\%		7,192	80.9\%	1695	19.1\%	0	1,695	2,749	-	2,749	1,695	1,054	0
	9	57420	-24	-0.04\%		10,497	65.1\%	5635	34.9\%	0	5,635	2,431	-	2,431	5,635	$(3,205)$	0
	10	57195	-249	-0.43\%		25,348	88.6\%	3270	11.4\%	0	3,270	11,039	-	11,039	3,270	7,769	0
	11	57455	11	0.02\%		22,374	82.2\%	4855	17.8\%	0	4,855	8,759	-	8,759	4,855	3,904	0
	12	57420	-24	-0.04\%		20,041	83.2\%	4039	16.8\%	0	4,039	8,001	-	8,001	4,039	3,962	0
	13	57248	-196	-0.34\%		15,950	49.1\%	16510	50.9\%	15950	-	-	280	15,950	280	15,670	1
	14	57333	-111	-0.19\%		13,575	49.6\%	13799	50.4\%	13575	-	-	112	13,575	112	13,464	1
	15	57514	70	0.12\%		13,412	47.4\%	14901	52.6\%	13412	-	-	745	13,412	745	12,667	1
	16	57282	-162	-0.28\%		21,234	88.1\%	2856	11.9\%	0	2,856	9,189	-	9,189	2,856	6,333	0
	17	57437	-7	-0.01\%		21,769	85.9\%	3569	14.1\%	0	3,569	9,100	-	9,100	3,569	5,531	0
	18	57241	-203	-0.35\%		23,817	82.8\%	4954	17.2\%	0	4,954	9,431	-	9,431	4,954	4,477	0
	19	57313	-131	-0.23\%		15,160	58.2\%	10904	41.8\%	0	10,904	2,128	-	2,128	10,904	$(8,776)$	0
	20	57410	-34	-0.06\%		14,118	52.3\%	12901	47.7\%	,	12,901	609	-	609	12,901	$(12,292)$	0
	21	57434	-10	-0.02\%		12,257	42.0\%	16911	58.0\%	12257	-	-	2,327	12,257	2,327	9,930	1
	22	57526	82	0.14\%		18,335	55.3\%	14831	44.7\%	0	14,831	1,752	-	1,752	14,831	$(13,079)$	0
	23	57476	32	0.06\%		10,922	30.0\%	25459	70.0\%	10922	-	-	7,268	10,922	7,268	3,654	1
	24	57369	-75	-0.13\%		8,667	25.1\%	25868	74.9\%	8667	-	-	8,601	8,667	8,601	66	1
	25	57480	36	0.06\%		12,179	40.0\%	18248	60.0\%	12179	-	-	3,034	12,179	3,034	9,145	1
	26	57552	108	0.19\%		13,251	47.7\%	14527	52.3\%	13251	-	-	638	13,251	638	12,613	1
	27	57191	-253	-0.44\%		14,935	56.0\%	11755	44.0\%	0	11,755	1,590	-	1,590	11,755	$(10,165)$	0
	28	57515	71	0.12\%		12,617	44.7\%	15591	55.3\%	12617	-	-	1,487	12,617	1,487	11,131	1
	29	57300	-144	-0.25\%		14,180	52.3\%	12954	47.7\%	0	12,954	613	-	613	12,954	$(12,341)$	0
	30	57407	-37	-0.06\%		11,308	42.7\%	15165	57.3\%	11308	-	-	1,929	11,308	1,929	(12,379	1
	31	57429	-15	-0.03\%		11,304	41.2\%	16117	58.8\%	11304	-	-	2,406	11,304	2,406	8,898	1
	32	57349	-95	-0.17\%		12,685	47.9\%	13787	52.1\%	12685	-	-	551	12,685	551	12,135	1
	33	57391	-53	-0.09\%		14,609	59.0\%	10151	41.0\%	0	10,151	2,229	-	2,229	10,151	$(7,922)$	0
	34	57651	207	0.36\%		13,139	45.6\%	15690	54.4\%	13139	-	-	1,275	13,139	1,275	11,864	1
(10) 0	35	57528	84	0.15\%		11,288	40.6\%	16503	59.4\%	11288	-	-	2,607	11,288	2,607	8,681	1
	36	57377	-67	-0.12\%		11,516	43.4\%	14997	56.6\%	11516	-	-	1,741	11,516	1,741	9,775	1

District	Pop	Dev	\% Dev	Net D	Predicted Dem	D Pct	Predicted Rep	R PCT	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
37	57671	227	0.40\%		9,222	29.3\%	22240	70.7\%	9222	-	-	6,509	9,222	6,509	2,713	1
38	57572	128	0.22\%		9,710	28.0\%	25021	72.0\%	9710	-	-	7,655	9,710	7,655	2,055	1
39	57457	13	0.02\%		10,747	38.0\%	17526	62.0\%	10747	-	-	3,390	10,747	3,390	7,357	1
40	57495	51	0.09\%		15,061	51.9\%	13947	48.1\%	0	13,947	557	-	557	13,947	$(13,391)$	0
41	57671	227	0.40\%		16,784	56.1\%	13120	43.9\%	0	13,120	1,832	-	1,832	13,120	$(11,288)$	0
42	57559	115	0.20\%		13,254	51.9\%	12282	48.1\%	0	12,282	486	-	486	12,282	$(11,796)$	0
43	57444	0	0.00\%		12,658	48.2\%	13606	51.8\%	12658	-	-	474	12,658	474	12,184	1
44	57434	-10	-0.02\%		16,477	60.2\%	10886	39.8\%	0	10,886	2,795	-	2,795	10,886	$(8,091)$	0
45	57242	-202	-0.35\%		16,352	54.6\%	13589	45.4\%	0	13,589	1,382	-	1,382	13,589	$(12,207)$	0
46	57463	19	0.03\%		20,583	64.3\%	11418	35.7\%	0	11,418	4,582	-	4,582	11,418	$(6,835)$	0
47	57494	50	0.09\%		20,208	67.1\%	9888	32.9\%	0	9,888	5,160	-	5,160	9,888	$(4,728)$	0
48	57568	124	0.22\%		24,457	73.5\%	8840	26.5\%	0	8,840	7,808	-	7,808	8,840	$(1,032)$	0
49	57389	-55	-0.10\%		13,625	50.3\%	13477	49.7\%	0	13,477	74	-	74	13,477	$(13,403)$	0
50	57465	21	0.04\%		12,289	47.3\%	13709	52.7\%	12289	-	-	710	12,289	710	11,579	1
51	57247	-197	-0.34\%		14,760	52.6\%	13323	47.4\%	0	13,323	718	-	718	13,323	$(12,605)$	0
52	57384	-60	-0.10\%		12,376	38.9\%	19416	61.1\%	12376	-	-	3,520	12,376	3,520	8,857	1
53	57444	0	0.00\%		12,388	48.1\%	13362	51.9\%	12388	-	-	487	12,388	487	11,902	1
54	57443	-1	0.00\%		14,032	53.4\%	12240	46.6\%	0	12,240	896	-	896	12,240	$(11,344)$	0
55	57446	2	0.00\%		13,565	47.0\%	15300	53.0\%	13565	-	-	868	13,565	868	12,697	1
56	57342	-102	-0.18\%		12,553	46.4\%	14518	53.6\%	12553	-	-	983	12,553	983	11,570	1
57	57404	-40.	-0.07\%		14,897	53.4\%	13016	46.6\%	0	13,016	941	-	941	13,016	$(12,075)$	0
58	57436	-8	-0.01\%		9,325	30.6\%	21180	69.4\%	9325	-	-	5,927	9,325	5,927	3,398	1
59.	57554	110	0.19\%		11,565	34.5\%	21984	65.5\%	11565	-	-	5,209	11,565	5,209	6,356	1
60	57547	103	0.18\%		8,756	28.1\%	22415	71.9\%	8756	-	-	6,830	8,756	6,830	1,926	1
61.	57605	161	0.28\%		12,933	43.8\%	16576	56.2\%	12933	-	-	1,822	12,933	1,822	11,112	1
62	57632	188	0.33\%		15,181	60.3\%	9999	39.7\%	0	9,999	2,591	-	2,591	9,999	$(7,408)$	0
63	57299	-145	-0.25\%		15,640	61.2\%	9902	38.8\%	0	9,902	2,869	-	2,869	9,902	$(7,033)$	0
64	57266	-178	-0.31\%		15,089	52.8\%	13470	47.2\%	0	13,470	810	-	810	13,470	$(12,660)$	0
65	57601	157	0.27\%		12,721	39.1\%	19816	60.9\%	12721	-	-	3,547	12,721	3,547	9,173	1
66	57459	15	0.03\%		16,286	71.9\%	6362	28.1\%	0	6,362	4,962	-	4,962	6,362	$(1,401)$	0
67	57378	-66	-0.11\%		15,321	51.9\%	14226	48.1\%	0	14,226	547	-	547	14,226	$(13,678)$	0
68	57254	-190	-0.33\%		11,958	49.7\%	12124	50.3\%	11958	-	-	83	11,958	83	11,875	1
69.	57424	-20	-0.03\%		17,902	59.8\%	12022	40.2\%	0	12,022	2,940	-	2,940	12,022	$(9,083)$	0
70	57415	-29	-0.05\%		18,661	60.3\%	12266	39.7\%	0	12,266	3,197	-	3,197	12,266	$(9,069)$	0
71	57228	-216	-0.38\%		15,081	52.1\%	13884	47.9\%	0	13,884	599	-	599	13,884	$(13,285)$	0
72	57654	210	0.37\%		11,180	40.3\%	16542	59.7\%	11180	-	-	2,681	11,180	2,681	8,500	1

District	Pop	Dev	\% Dev	Net D	Predicted Dem	D Pct	Predicted Rep	R PCT	D Lost	R Lost	D Surplus	R Surplus	D Wasted	R Wasted	R-D Net	Rep Win
73	57491	47	0.08\%		17,137	61.4\%	10785	38.6\%	0	10,785	3,176	-	3,176	10,785	$(7,609)$	0
74	57320	-124	-0.22\%		17,712	55.5\%	14219	44.5\%	0	14,219	1,747	-	1,747	14,219	$(12,472)$	0
75	57255	-189	-0.33\%		13,902	44.0\%	17700	56.0\%	13902	-	-	1,899	13,902	1,899	12,002	1
76	57586	142	0.25\%		30,929	82.0\%	6811.	18.0\%	0	6,811	12,059	-	12,059	6,811	5,248	0
77	57398	-46	-0.08\%		26,708	81.5\%	6059	18.5\%	0	6,059	10,325	-	10,325	6,059	4,266	0
78	57579	135	0.24\%		24,413	71.3\%	9847	28.7\%	0	9,847	7,283	-	7,283	9,847	$(2,564)$	0
79	57341	-103	-0.18\%		20,439	60.6\%	13294	39.4\%	0	13,294	3,572	-	3,572	13,294	$(9,722)$	0
80	57385	-59	-0.10\%		20,179	63.4\%	11644	36.6\%	0	11,644	4,267	-	4,267	11,644	$(7,377)$	0
81	57266	-178	-0.31\%		13,703	51.8\%	12741	48.2\%	0	12,741	481	-	481	12,741	$(12,260)$	0
82	57641	197	0.34\%		9,871	31.8\%	21201	68.2\%	9871	-	-	5,665	9,871	5,665	4,206	1
83	57612	168	0.29\%		9,241	28.6\%	23075	71.4\%	9241	-	-	6,917	9,241	6,917	2,324	1
84	57375	-69	-0.12\%		11,990	34.6\%	22700	65.4\%	11990	-	-	5,355	11,990	5,355	6,634	1
85	57529	85	0.15\%		10,028	43.2\%	13190	56.8\%	10028	-	-	1,581	10,028	1,581	8,448	1
86	57477	33	0.06\%		13,853	50.7\%	13494	49.3\%	0	13,494	180	-	180	13,494	$(13,314)$	0
87	57661	217	0.38\%		11,358	40.0\%	17003	60.0\%	11358	-	-	2,823	11,358	2,823	8,535	1
88	57533	89	0.15\%		14,209	56.0\%	11142	44.0\%	0	11,142	1,533	-	1,533	11,142	$(9,609)$	0
89	57490	46	0.08\%		13,374	45.9\%	15771	54.1\%	13374	-	-	1,199	13,374	1,199	12,175	1
90	57617	173	0.30\%		11,349	39.4\%	17468	60.6\%	11349	-	-	3,059	11,349	3,059	8,290	1
91	57374	-70	-0.12\%		14,807	51.7\%	13845	48.3\%	0	13,845	481	-	481	13,845	$(13,364)$	0
92	57421	-23.	-0.04\%		14,907	50.5\%	14594	49.5\%	0	14,594	157	-	157	14,594	$(14,437)$	0
93	57280	-164	-0.29\%		12,441	40.8\%	18057	59.2\%	12441	-	-	2,808	12,441	2,808	9,633	1
94	57509	65	0.11\%		16,171	57.9\%	11759	42.1\%	0	11,759	2,206	-	2,206	11,759	$(9,553)$	0
95	57496	52	0.09\%		19,769	66.5\%	9949	33.5\%	0	9,949	4,910	-	4,910	9,949	$(5,040)$	0
96	57406	-38	-0.07\%		14,665	51.5\%	13836	48.5\%	0	13,836	415	-	415	13,836	$(13,421)$	0
97	57487	43	0.07\%		11,492	32.2\%	24222	67.8\%	11492	-	-	6,365	11,492	6,365	5,128	1
98	57485	41	0.07\%		9,864	28.5\%	24773	71.5\%	9864	-	-	7,454	9,864	7,454	2,410	1
99	57657	213	0.37\%		10,783	36.0\%	19160	64.0\%	10783	-	-	4,188	10,783	4,188	6,594	1
	5686986	30	0.86\%		1,454,117		1,388,991		566,634	536,783	175,350	142,787	741,984	679,570	62,414	48

[^0]: 1 age population, Hispanic voting age population separately from total voting age population?
 A Well, the reason I did that was because the propensity to vote the partisanship of different demographic groups varies. Blacks are more likely to be democrats. Hispanics are slightly more likely to be democrats or vote Democratic is the proper way to phrase that. And so it was -- I considered it necessary to include a measure of that as a way of trying to estimate the number of people who vote for one party or the other.
 \& When you eventually did the -- run the numbers for an individual ward, what -- I'm trying to think of the way to ask this. But, for example, like when you put in the Black voting age population, what percentage of that are you assigning to like the Democratic column, or is that --
 A That's purely a function of what the data showed. I wasn't doing any prior assignment.
 \& Okay.
 21 A It was you run the regression, you will get a coefficient that tells you each additional Black voting age person will add a certain number -- in this case a fraction of votes for Democrats or Republicans, so it's not an assumption that I made.

