

	5		7
1	best of your ability?	1	(Exhibit 12 is marked for identification)
2	A Yes.	2	Q And if you could identify what Exhibit 12 is for
3	Q If ever you don't understand a question just let	3	us?
4	me know, and I'll be happy to rephrase it or we	4	A It's a copy of my curriculum vita dated
5	can have the court reporter read it out loud	5	May 11, 2015.
6	again. Do you understand?	6	Q And is this a current version of your CV?
7	A I do.	7	A Current as of May, but yeah, there are no
8	Q We can take some breaks, so if ever you feel like	8	substantial changes.
9	you have to go to the bathroom or something, just	9	Q All right. So if I wanted to get your educational
10	let me know and we'll take a break. I will say if	10	history and the jobs you've had, if I look at
11	there's a pending question, you'll have to answer	11	what's listed here in Exhibit 12, that would tell
12	the question and then you can take a break.	12	me all that information?
13	A I understand.	13	A That's correct.
14	Q What did you do to prepare for the deposition	14	Q Okay. So I don't think we need to have you repeat
15	today?	15	what's already on this page, so that's why I did
16	A In addition to writing the report, we did a few	16	that.
17	phone calls with the team here and we had a	17	A Okay.
18	day-long meeting here yesterday.	18	MR. EARLE: In deference to the
19	Q And who all was at that meeting yesterday?	19	snow, that's a good idea.
20	A Everybody you see to my right here with the	20	MR. KEENAN: Yeah.
21	exception of Emma down at the end of the table.	21	Q What is your current position right now?
22	Q And how long do you think that meeting lasted?	22	A I'm a professor of political science at Stanford
23	A About four and a half hours.	23	University.
24	Q Okay. I'm just going to mark some documents as	24	Q Okay. And what do you do in that position?
25	exhibits and we'll refer to them.	25	A I teach classes in the Department of Political
	6		8
1	A You bet.	1	Science, I'm a researcher, and a reasonable amount
2	MR. KEENAN: I was going to	2	of administrative responsibilities as well that
3	continuously mark exhibits. So we had left	3	accompany a professorial position.
4	off at 10 , so I was going to mark the first	4	Q What classes do you teach?
5	one as 11.	5	A Primarily statistical methods for master's and
6	MR. STRAUSS: That's a great idea.	6	Ph.D. students in the Department of Political
7	MR. EARLE: So we're going to do	7	Science.
8	this consistently through the whole case?	8	Q And then you said primarily; are there any other
9	MR. KEENAN: I'd be happy with	9	classes you teach outside of --
10	that.	10	A Yeah, and American politics are the other classes
11	MR. EARLE: Okay, go ahead.	11	I teach.
12	Sometimes people do that, they start that way	12	Q Any specific classes in American politics?
13	and then they switch, and things get	13	A Elections, public opinion are the topics in
14	complicated when that happens.	14	American politics that recent teaching has
15	MR. KEENAN: Yeah. So we'll mark	15	covered.
16	this as No. 11.	16	Q And you said you're a researcher; what are the
17	(Exhibit 11 is marked for identification)	17	topics that you've researched?
18	Q So for Exhibit 11, perhaps you could just identify	18	A Most recently I've been directing the American
19	what Exhibit 11 is for us.	19	National Election Studies, but over my career I've
20	A It's the report I produced at the request of the	20	done a lot of work on electoral systems, on the
21	plaintiffs.	21	application of statistical methods in many realms
22	Q Okay. And so keep that handy. I'm actually going	22	of political science but again with a heavy
23	to go on to some other things, but it made more	23	emphasis on American politics.
24	sense to mark this as the first exhibit at this	24	Q You mentioned the American National Elections
25	deposition. So I've got another one.	25	Studies.
Pages 5 to 8			
MADISON FREELANCE REPORTERS, LLC			

	9		11
1	A Uh-huh.	1	about computing it, examining the robustness of
2	Q What is that organization?	2	the resulting estimates of the efficiency gap and
3	A Okay, sure. That is a large survey-based study of	3	ultimately to produce an assessment of the extent
4	American political attitudes. It is the single	4	to which recent values of the efficiency gap from
5	biggest piece of political science funded by the	5	Wisconsin, how they stacked up against that -- in
6	National Science Foundation. It's a study that	6	light of that historical analysis.
7	has been in existence in one form or another since	7	Q You used the term "robustness" which is a term
8	1952 and is currently a co-production of Stanford	8	I've seen. Could you explain what you mean by
9	University and the University of Michigan.	9	that?
10	Q And then I see on your CV that it says principal	10	A Yeah. A simple definition might be the extent to
11	investigator; is that your title?	11	which you get the same answer when you do
12	A Yeah. For the purposes of that project, that is	12	different things and make different assumptions
13	my title.	13	about the way you treat the data.
14	Q And then what are your responsibilities as the	14	Q And you also mentioned a Law Review article by
15	principal investigator?	15	McGhee and Stephanopoulos. At the time you had
16	A Stewardship of the NSF grant dollars, making	16	first been --
17	decisions about the science that we're conducting,	17	MR. EARLE: Excuse me, did you say
18	the design of given presidential cycles, survey	18	large?
19	work, the dissemination of the data, the extent to	19	MR. KEENAN: Law Review.
20	which we rely on our Advisory Board for	20	MR. EARLE: Oh, Law Review, okay.
21	assistance, directing a small staff at Stanford	21	I thought you said large. I'm sorry, go
22	and partnering with our opposite numbers at the	22	ahead.
23	University of Michigan.	23	Q Law Review article by McGhee and Stephanopoulos.
24	Q And then I see that there's a website listed here,	24	At the time you were approached to work on this
25	www.electionstudies.org; is that the website for	25	case, were you already familiar with that Law
	10		12
1	the American National Election Studies?	1	Review article?
2	A It is, yeah. That's hosted out of the University	2	A No, I was not.
3	of Michigan.	3	Q Were you familiar with the, not the specific
4	Q Have you ever served as an expert witness in a	4	article, with the efficiency gap measure that was
5	legal case before?	5	outlined in the article?
6	A No.	6	A No.
7	Q All right. When did you start working as an	7	(Exhibit 13 is marked for identification)
8	expert in this case?	8	Q Could you identify what Exhibit 13 is?
9	A Late last year.	9	A It's my letter of engagement.
10	Q And how did it come about that you ended up	10	Q For your work in this case?
11	getting involved with this case?	11	A Uh-huh.
12	A I don't exactly recall, but I believe it was I	12	Q All right. I think the copy that I received from
13	think Ruth Greenwood e-mailed me and asked me if	13	your attorneys doesn't have your signature on it,
14	I'd be interested in coming on board, either Ruth	14	but is this still the engagement letter even
15	or Nick Stephanopoulos.	15	though it doesn't look like it has your signature
16	Q And during that initial contact with you, what was	16	on it?
17	it suggested that you would do on behalf of the	17	A Yes.
18	plaintiffs in this case?	18	Q You're not disputing that it's the engagement
19	A Would I look at the properties of this measure	19	letter?
20	that McGhee and Stephanopoulos had written about	20	A No, no.
21	in a Law Review article, examine its -- generate	21	Q All right. And then looking at the engagement
22	measures of the efficiency gap for a large set of	22	letter, is it your understanding that this
23	state legislative elections, as many as we could	23	encapsulates what you were asked to do in this
24	possibly manage, examining the properties of that	24	case?
25	measure, examining some of the ways we might go	25	A Uh-huh.

	13		15
1	Q And if you look at the second page, there's a	1	and ask you questions about it.
2	series of numbers. The number 3 you can see, it's	2	A Okay.
3	italicized, it says Partisan Gerrymandering and	3	Q And the way it's organized, it has an introduction
4	the Efficiency Gap, 82 U.Chi.L.Rev. Is that the	4	section and then some more detail behind. So I
5	Stephanopoulos and McGhee article you were	5	thought maybe we could start with the introduction
6	referencing?	6	but then perhaps jump to the substance later and
7	A Yes, that's right.	7	then we might have to jump back and forth.
8	Q Okay, let's put that aside. And then your rate is	8	MR. EARLE: Why don't we -- okay.
9	\$250 per hour, is that correct?	9	MS. GREENWOOD: Yeah, just let
10	A That's correct.	10	Simon look on his own copy there.
11	(Exhibit 14 is marked for identification)	11	MR. EARLE: Okay.
12	Q And perhaps I should back up. You understood that	12	Q So I understand you have your own copy.
13	you were supposed to produce documents in your	13	A Yeah.
14	possession to your attorney that then would be	14	Q But I believe it's the same document.
15	produced to me, correct?	15	A It is the same document, right.
16	A Yes.	16	Q All right. If you look at No. 3, Section 3 is the
17	Q And you produced all the materials that you relied	17	Summary.
18	on in formulating your report to your attorneys,	18	A Uh-huh.
19	correct?	19	Q Start with Paragraph 1 there.
20	A Yes, I did.	20	A Uh-huh.
21	Q All right. When I went through those materials, I	21	MR. EARLE: Can we pause for a
22	found these two invoices which are contained in	22	second?
23	Exhibit 14.	23	MR. KEENAN: Sure.
24	A Uh-huh.	24	(Discussion off the record)
25	Q And my main question is are these the only two	25	Q So just looking at that first paragraph,
	14		16
1	invoices you've submitted to the plaintiffs in the	1	Paragraph 1, the second sentence says, "Wasted
2	case?	2	votes are votes for a party in excess of what the
3	A That's correct.	3	party needed to win a given district or votes cast
4	Q And the first invoice is dated June 8th, 2015.	4	for a party in districts that the party doesn't
5	And if I understand that correctly, that would	5	win."
6	cover all of the work you did from whenever the	6	Where did you get that definition of wasted
7	first engagement was up until that date?	7	votes from?
8	A That's correct.	8	A From McGhee and Stephanopoulos.
9	Q And then have the plaintiffs paid the invoices	9	Q And what's your understanding of -- did McGhee and
10	that you submitted to them?	10	Stephanopoulos, I guess for lack of a better word,
11	A Yes.	11	create this wasted votes measure?
12	Q Are there any other outstanding invoices, not	12	A I think the concept of wasted votes is well
13	invoices I guess, but any outstanding work that	13	rehearsed in the literature. I think it's given
14	you haven't billed yet to the plaintiffs?	14	an extremely precise definition here, but I think
15	A Yes.	15	the concept itself is well known in the literature
16	Q Okay. And do you have any estimate of how much	16	on partisan gerrymandering.
17	that is?	17	Q And then continue on, "Differences in wasted vote
18	A Ten to 12 hours.	18	rates between political parties measure the extent
19	Q Okay. But you will be submitting an invoice for	19	of partisan gerrymandering."
20	that to the plaintiffs?	20	Why is it your opinion that differences in
21	A I will.	21	wasted votes measure the extent of partisan
22	Q All right. So now we can get back to your report.	22	gerrymandering?
23	You can maybe have Exhibit 11 in front of you.	23	A Because fundamentally differences in wasted vote
24	A Uh-huh.	24	rates between parties are measuring the extent to
25	Q And I thought I would just go through the report	25	which district lines are systematically treating
Pages 13 to 16			
MADISON FREELANCE REPORTERS, LLC			

	17		19
1	voters of different parties unequally.	1	report, differences in wasted vote rates was the
2	Q And is it your opinion that any districting system	2	indicator that I relied on to measure partisan
3	that systematically treats voters of different	3	gerrymandering.
4	parties unequally is a product of gerrymandering?	4	Q I guess I'm just trying to figure out why rely on
5	A No. I think very specifically it's through the	5	that as your indicator?
6	districting or it's the districting that generates	6	A Because it's available in such a wide array of
7	that unequal treatment. You know, there are other	7	states and years and made possible the analysis
8	ways an electoral system might treat voters	8	that I did.
9	unequally. But this is a very precise meaning in	9	Q And your analysis, just kind of following up on
10	this context, and it's with respect to the	10	your prior answer, is based solely on the end
11	districts and the district boundaries.	11	results of the various elections in the states you
12	Q Okay. So any decision on districting that treats	12	measured?
13	voters of different parties unequally would be	13	MR. EARLE: I'm going to object to
14	considered gerrymandering?	14	the form of the question, ambiguous.
15	MR. EARLE: I'm going to object to	15	A Okay. Could you repeat the question?
16	the form of the question and to the extent	16	Q Sure. You mentioned that you were just looking at
17	that you're asking him for a legal	17	the results of the elections and didn't look at
18	conclusion. Subject to that objection, you	18	the intent of any of the bodies that were doing
19	can answer the question if you understand it.	19	any of the districting; that's correct?
20	A Yeah. Could you repeat the question then?	20	A Yes, in large effect. The one additional piece of
21	Q Sure. Is it your opinion that any districting	21	data that I did have at my disposal was, you know,
22	decision that results in districts that treat	22	under which plan an election took place. But I
23	voters of different parties unequally constitutes	23	didn't take into account who drew the plan, and I
24	gerrymandering?	24	have no room to measure this to whatever was in
25	MR. EARLE: Same objection, go	25	their minds when they draw the plan.
	18		20
1	ahead.	1	Q Yeah. And so your analysis just looks at what the
2	A The word "treat" in that sentence is key and	2	results of those plans were in the various
3	perhaps subject to a little ambiguity. I think if	3	elections that took place under those plans?
4	operationally the plan, the districting plan	4	A Yes.
5	produces differences in wasted vote rates of the	5	Q Okay. I was just going to skip ahead to --
6	sort that I elaborate in this report, then we're	6	actually maybe we'll just go to No. 2, Paragraph 2
7	on the road to establishing partisan	7	where it says, "The efficiency gap, EG, is a
8	gerrymandering.	8	relative, wasted vote measure, the ratio of one
9	Q And did you say you're on the road to establishing	9	party's wasted vote rate to the other party's
10	partisan gerrymandering?	10	wasted vote rate."
11	A Uh-huh.	11	A Uh-huh.
12	Q That's a yes?	12	Q And I think we've talked about this before, but
13	A Yes.	13	you got this definition of the efficiency gap from
14	Q Sorry. But does the just difference in wasted	14	the Stephanopoulos and McGhee article; is that
15	votes alone establish partisan gerrymandering?	15	correct?
16	MR. EARLE: Same objection. I'll	16	A That's right.
17	just note that for the record without	17	Q Have you written any articles that were published
18	repeating and elaborating on it, but go ahead	18	about the efficiency gap?
19	and answer the question if you understand the	19	A No.
20	question.	20	Q And then you say in No. 3 that, "The efficiency
21	A From my perspective, absent any data about the	21	gap is an excess seats measure reflecting the
22	intent of people who were drawing the lines,	22	nature of a partisan gerrymander."
23	that's why I got hung up on the word treat in your	23	When you say excess seats, excess in
24	earlier question. But the data I observe and in	24	comparison to what?
25	particular the data I had at my disposal for this	25	A An efficiency gap of zero and an assumption that
Pages 17 to 20			
MADISON FREELANCE REPORTERS, LLC			

	21		23
1	there's an equal number of voters in every	1	MR. KEENAN: No, I have color.
2	district. Under those two assumptions, we have a	2	MR. EARLE: Oh, this is my copy.
3	very precise relationship between statewide vote	3	MR. KEENAN: Yeah, his is in black
4	share and seat share for a given party. And it's	4	and white.
5	with respect to that very precise relationship	5	MR. EARLE: Oh, I see. Oh, it is.
6	that I'm using the term excess seats. So it's	6	MR. KEENAN: Yeah, the official one
7	with reference to a world, hypothetical world in	7	is in color. There's some of these graphs
8	which the efficiency gap is zero, all right.	8	that --
9	Against that standard we can assess what happens	9	MR. EARLE: Okay. Page 7, got it.
10	in real world elections, the extent to which the	10	Q And now that we have the color version, the red, I
11	seats won given the votes won is above or below	11	take it the red line there is Wisconsin; is that
12	the level that the zero efficiency gap standard	12	correct?
13	would imply.	13	A That is the average of the efficiency gap measures
14	Q And you said that it assumes that there's equal	14	for Wisconsin 2012 and Wisconsin 2014.
15	voters in each district. Can you just explain	15	Q And you say average, so that would be?
16	what that means?	16	A It's just the average of two numbers.
17	A Right. That's a simplification that generates a	17	Q Two numbers. And then the bar is there, there's a
18	very simple representation of the mapping from	18	dot in the middle and then there's bars on the
19	votes to seats when the efficiency gap is zero.	19	side. What does that line represent?
20	So if we were able or willing to make the	20	A In this graph the horizontal lines are 95 percent
21	assumption that there were equal number of voters	21	confidence intervals around each average.
22	in every district and if the efficiency gap was a	22	Q Okay. So the right most, for example, line is the
23	preset value, let's say zero for the sake of	23	furthest -- I'm just trying to figure out if
24	argument, then we have an expectation as to how	24	that's actually your calculation of the efficiency
25	many seats we should see for a given level of vote	25	gap for I guess what would be the most favorable
	22		24
1	-- statewide vote. Now, the equal number of	1	democratic year in a plan or does that extend even
2	voters per seat means just that, that in every	2	further right based on some sort of confidence
3	district we have the same number of people voting.	3	interval?
4	Q And the same number of people voting would be the	4	MR. EARLE: I'm going to object to
5	total votes, not the number of people that live in	5	the form of the question. I think I know
6	the district?	6	what you're asking, but answer the question
7	A That's correct.	7	if you understand it.
8	Q Okay. So it assumed that District 1, 20,000	8	A That's not the interpretation I would give --
9	people voted and District 2, 20,000 people voted,	9	Q Okay. Why don't you explain what you would give?
10	all the way down the line?	10	MR. EARLE: Let him finish his
11	A That's right.	11	sentence.
12	Q Okay. I'm just going to jump ahead a little bit	12	MR. KEENAN: Sure.
13	and we can get into these things in a little more	13	MR. EARLE: There you go.
14	detail.	14	A The right most edge or the limit at the end there
15	A Uh-huh.	15	of the red horizontal line is the point at which
16	Q Looking at Figure 1 which is on Page 7.	16	there is only a 2.5 percent chance that the
17	A Uh-huh.	17	average efficiency gap lies to the right of that
18	Q The exhibit is in color, so if that's a little --	18	point. And similarly there is only a 2.5 percent
19	A Yeah, that is helpful.	19	chance that the average efficiency gap score for
20	Q I printed it in black and white and realized it	20	Wisconsin 2012, 2014 lies to the left of the
21	didn't make much sense, so then I printed it in	21	left-hand end of the red line. So the single
22	color.	22	point estimate is the dot that is unknown -- our
23	MR. EARLE: We need to increase the	23	uncertainty about that point estimate is
24	budget of the AG's office and have a color	24	concentrated around that red dot, and the line is
25	printer.	25	giving a graphical summary of how large that

	25		27
1	uncertainty is.	1	efficiency gap might actually be to the right of
2	Q And I'll just follow that up. So in Wisconsin in	2	whatever the number was calculated for 2012?
3	this red line, there's only two efficiency gap	3	A Okay. So the uncertainty in that average, that
4	calculations, correct?	4	95 percent confidence interval that's been drawn
5	A That's right.	5	around the average, reflects the uncertainty in
6	Q And so later on you give what those are for	6	the estimate for 2012 and 2014. So to the extent
7	Wisconsin. And I guess I might be phrasing this	7	we're uncertain about those point estimates, that
8	poorly but, for example, if you put two dots at	8	uncertainty is reflected and that's what's
9	where your calculation for the efficiency gap for	9	generating the confidence interval that you see
10	2012 and 2014 --	10	graphed for the average.
11	A That's correct.	11	Q And this graph represents the average efficiency
12	Q -- would those be inside the outermost edges there	12	gap scores it says for 206 districting plans; is
13	or would they be at the outermost edges there?	13	that correct?
14	A The individual estimates for each year lie on	14	A Uh-huh, that's correct.
15	either side of the average, right, so the average	15	Q Is that all of the districting plans you looked
16	by definition will be in the middle. And since we	16	at?
17	only have two, the 2012 estimate will be on one	17	A Yes.
18	side and the 2014 estimate will be on the other.	18	Q And so I take it that Wisconsin obviously only has
19	In this case the 2012 estimate is to the left and	19	two elections under its plan, but some of these
20	the 2014 estimate is to the right. Just looking	20	elections that are here have a full five elections
21	at my numbers, the individual point estimates for	21	under the plan?
22	2012 and 2014, the 2012 estimate would lie on that	22	A That's correct.
23	red line, and the 2014 estimate, yes, probably	23	Q Okay. I guess we can move to 4.1, the Seats-Votes
24	does as well, probably right up towards the	24	Curves. We had been talking about this a little
25	right-hand edge, the right-hand end of that red	25	bit before I believe, perhaps we can get into it a
	26		28
1	horizontal line.	1	little more here.
2	Q Okay. And I guess I was trying to be a little bit	2	A Uh-huh.
3	simpler in that those two numbers, we have two and	3	Q I note that there's like a Footnote 1 that talks
4	then we have an average. If we had bigger dots to	4	about the Cube Law. Can you just explain what the
5	represent the 2012 and 2014 numbers, would they	5	Cube Law is?
6	lie at the very extreme of this red line or would	6	A Sure. The Cube Law really isn't a law. It's a
7	they be somewhat inside of it?	7	law in the sense that social scientists sometimes
8	A They'd be as I just said, one would be towards the	8	use that term when talking about what might be
9	left-hand end but still on that line, and the	9	better described as an apparent empirical
10	other would be towards the end but I think still	10	regularity.
11	-- it would still be on the red line.	11	The Cube Law dates back to the very beginning
12	MR. EARLE: Just so the record is	12	of systematic study of electoral systems when turn
13	clear, the deponent was referencing	13	of the 20th Century British statisticians started
14	Figure 35.	14	looking at the relationship between vote shares
15	A I was eyeballing, literally sort of doing the	15	and seat shares in single-member district systems
16	transposition, picking up those two estimates	16	in the UK House of Commons in particular. And
17	there at the end of Figure 35 and plunking them	17	what was observed was a nonlinear relationship
18	down on Figure 1.	18	between vote shares and seat shares for a given
19	MR. EARLE: And for the ease of	19	party. And literally through fitting what might
20	anybody reading the transcript, Figure 35 is	20	be the right curve to fit to that nonlinear
21	on Page 72.	21	relationship, it was speculated that that
22	Q And you said it's a long line. I guess I'm just	22	particular equation shown in Figure 1 would
23	trying to figure out if it's at the very end of	23	produce a good fit to the data that that group of
24	the line or if the line you have depicted on	24	early investigators of this topic were seeing in
25	Figure 1 accounts for some uncertainty that the	25	the UK House of Commons data.

	29		31
1	And if I were to describe it to you, you get	1	THE WITNESS: Oh, pardon me.
2	an S-shaped curve of the sort that I've graphed in	2	Footnote 1, location of the formula, yes.
3	Figure 2 on Page 10, and that appeared to fit	3	Q And then just digging into that answer a little
4	those early data reasonably well. And it was	4	bit, you mentioned that sometimes instead of a
5	speculated that maybe there was something about	5	cube you get a three, you get something higher or
6	the nature of single-member district systems that	6	lower. If you go higher, does that make the shape
7	would produce S -shaped curves and indeed maybe	7	of the curve steeper?
8	S-shaped curves where the right power function	8	A Exactly.
9	there is cubic; hence, the Cube Rule or the Cube	9	Q And lower is flatter?
10	Law. But over time as we've investigated many,	10	A Flatter, exactly.
11	many single-member district systems over the	11	Q You mentioned that this Cube Law differs from
12	years, we've come to realize that sometimes we see	12	system to system, some systems have higher or
13	values higher than three and sometimes we see	13	lower. Is there a study about like what the
14	values lower than three.	14	proportion is in United States state legislature
15	Proportional representation is a special	15	elections?
16	case. It's not a district system at all, right,	16	A Yes, indeed. So just keep in mind it's not the
17	it's just allocated seats in proportion to vote	17	Cube Law that varies; it's the Cube Law proposes
18	shares. That gives you a 45-degree line. It's	18	three, that's where you empirically go about
19	essentially taking the three you see there in the	19	trying to estimate these curves. Jurisdiction to
20	Cube Law and setting up to one. And then there	20	jurisdiction or context to context, we see
21	are even more extreme versions. You know,	21	variation in the number that belongs there. And
22	districting plans that are extremely protective of	22	there's a large literature, you know, offering
23	incumbents, actually the value drops below one.	23	ways of estimating that number in state
24	And you get sort of an inverted S-shaped curve, a	24	legislative elections comparing state legislative
25	curve that is steep at the ends but largely flat	25	elections to house elections to an institution
	30		32
1	over vote shares between say 25 to 75 percent, or	1	like the electoral college winner take all by
2	if not quite flat then close to it.	2	state with the exception of Maine and Nebraska.
3	And so the Cube Law lives on in the	3	So yeah, there are estimates like that out there.
4	literature. It's a nice way to introduce people	4	Q Does your calculation of the efficiency gap rely
5	to the topic. And it still does express -- I	5	on a seats-votes curve?
6	think the thing to take away from it is that in	6	A Strictly speaking, no, no, although a seats-votes
7	single-member district systems you don't get	7	curve is implied by the efficiency gap. If you
8	45-degree lines, you get a quite abrupt	8	assume the efficiency gap is zero, an underlying
9	nonlinearity. Single-member district systems hand	9	seats-votes curve is implied.
10	out harsh punishment to parties whose vote share	10	Q What is the underlying seats-votes curve implied
11	falls into the teens or the twenties or the	11	that you're mentioning?
12	thirties. Seat shares tend to rapidly improve as	12	A Okay. Figure 4 of Page 18 of my report, I show in
13	your vote share moves up towards into the forties,	13	orange the seats-votes curve that's implied by an
14	fifties and then tends to plateau out once	14	efficiency gap of zero. And it's what we would
15	statewide, jurisdiction-wide vote shares get	15	call formally a piecewise linear function that is
16	largely beyond 70, 80 percent. And that's a	16	flat, horizontal when vote shares lie between zero
17	regularity that holds up, and the Cube Law lives	17	and .25, has a slope of two between vote shares of
18	on in the sense that it was one of the first	18	25 percent and 75 percent, and is again flat or
19	attempts to formalize that empirical regularity.	19	horizontal from the point at which vote share is
20	MR. EARLE: Before you ask the next	20	75 percent through to 100 percent.
21	question, just for the record I think there	21	Q Okay. So if I look at the orange line here on
22	was a misspeak at the beginning of that	22	Figure 4 and if a seats-votes result in a
23	answer where you referred to Figure 1 as	23	particular election lies on that line, there'd be
24	opposed to Footnote 1 as to the location of	24	a zero efficiency gap?
25	the formula.	25	A Subject to some assumptions here, right, that that

	33		35
1	would be subject to the equal votes in each	1	going on here, that conditional on winning 60
2	district assumption, sure.	2	percent of the votes under the zero efficiency gap
3	Q Okay. And then just to make sure I'm visualizing	3	standard, we'd expect 70. Under your scenario
4	this correctly, is the vote share going to the	4	they won 50; that difference is a deficit relative
5	right, that's the democratic vote share?	5	to what we would expect under a zero efficiency
6	A It could be, it need not be. We're in a two-party	6	gap.
7	system here is what all of this presumes, and	7	Q Okay. And then like just to view a different side
8	those curves are perfectly symmetric, about 50/50.	8	of the coin, if they got 40 percent of the vote
9	So it's just a point of convenience what you	9	but got 50 percent of the seats, what would the
10	choose. But for sake of argument and the way I've	10	efficiency gap be in that circumstance?
11	done the analysis, I took it to be democratic vote	11	A If they won 50 percent of the seats with
12	share.	12	40 percent of the vote, in that case the
13	Q That's what I was going to ask. The way you did	13	efficiency gap is -- that would be a positive .2.
14	the analysis, was that the democratic votes -- V	14	Q And then if we were -- say we just flip this to
15	is democratic vote share?	15	look at it from the republican perspective, it
16	A That's right.	16	would be just a mirror image. That would be --
17	Q And so if I wanted to plot out, you know, the	17	A Yeah, one minus everything, right.
18	democratic vote at 60 percent, I'd have to go	18	MR. EARLE: We're getting a little
19	to 6 on your map?	19	conversational here. One of the things about
20	A That's right.	20	depositions is when you discuss something,
21	Q And just for example, if democrats had 60 percent	21	you get conversational and you sometimes
22	of the vote, so I'd go to the 0.6 ?	22	speak over each other a little bit. And
23	A Uh-huh.	23	there was a little bit of that there. So if
24	Q But they got 50 percent of the seats, I'd go up	24	you could try to keep the question separated
25	to .5 ?	25	from the answer, that would be great.
	34		36
1	A Uh-huh.	1	Q I think I understand that now, so I'm just going
2	Q And I guess if I compare that to where the line is	2	to go backwards in the report to Page 16, and
3	there, the line says it should be at .7 percent of	3	there are some equations here.
4	the seats but they're at .5 , what's the efficiency	4	A Uh-huh.
5	gap under that condition?	5	Q Could you just start with the first one there, it
6	A Right. It's --	6	starts with EG.
7	MR. EARLE: I'm going to object to	7	A Uh-huh.
8	the form of the question only because you	8	Q What does that equation represent?
9	were diagramming on your copy of the exhibit	9	A That's the definition of the efficiency gap as the
10	with your finger, and that's not going to	10	difference of two wasted -- two numbers of wasted
11	appear on the transcript.	11	votes.
12	Q Did you understand the question?	12	Q So is WB, that's the wasted votes for --
13	A I did.	13	A For Party B, and WA are the wasted votes for
14	Q Okay.	14	Party A. And we've divided in both cases by the
15	A I did. Well, there's a very simple formula. So	15	total number of in this case the jurisdictions,
16	the scenario you sketched is that they won	16	the number of jurisdictions in the -- actually I
17	50 percent of the seats with 60 percent of the	17	misspoke. In this particular formulation, these
18	vote. And so in such a case, the efficiency gap	18	are proportions, these are not numbers, these are
19	there would be negative .2.	19	proportions.
20	Q Okay. And that's just the difference between	20	Q Okay. So maybe just explain that then.
21	where that orange line intersects with 6 and	21	A Yeah, right. The constituent parts of WA and WB
22	where the actual seats number is?	22	are these quantities S and V . V is a vote
23	A Yeah, that's right. And that's the sense in which	23	proportion, in particular a share of the two-party
24	earlier I referred to the efficiency gap measure	24	vote for Party A, I express those as proportion.
25	or as inducing excess seats, understanding what's	25	Q Okay. So some of these examples we've been using,
Pages 33 to 36			
MADISON FREELANCE REPORTERS, LLC			

	37		39
1	if Party A got 40 percent of the vote, is WA	1	Party A won or a seat that Party A did not win.
2	40 percent?	2	Q Okay. So this is a calculation to determine the
3	A No, that's their wasted vote.	3	wasted votes in a particular district; is that
4	Q Oh, okay.	4	correct?
5	A Not the statewide vote.	5	A But summed over all districts.
6	Q Okay, I see. So the next equation down is WA	6	Q Yeah, I'm sorry. WA is the wasted votes in a
7	equals a bunch of things that I don't understand,	7	particular district --
8	so maybe you could just --	8	A No, no, for the whole jurisdiction.
9	MR. EARLE: Just so the transcript	9	MR. EARLE: Hold on, we're getting
10	is clear, you're now discussing the second	10	conversational again. Why don't we start
11	formula --	11	over with the next question and rephrase it.
12	MR. KEENAN: On Page 16.	12	MR. KEENAN: Okay.
13	MR. EARLE: -- from the top of	13	Q So the sum means that you do this sigma, is that
14	Page 16, okay.	14	the correct --
15	Q What does this equation for WA mean?	15	A Correct, yes.
16	A Okay. So there's a summation operator there, so	16	Q You do that calculation for each and every
17	over all districts we do the following: The vote	17	district; is that correct?
18	share one -- okay, so these shares are defined	18	A Subscript I indexes districts, so the summation
19	with respect to Party A. So VI is the vote share	19	over I takes us across districts. So now we've
20	of Party A in District I, and we're assuming it's	20	got a jurisdiction-wide quantity; WA is
21	a two-party system. So if VI exceeds .5, then	21	jurisdiction wide or in this case statewide as is
22	Party A wins the district.	22	EG, the efficiency gap itself.
23	Q Right.	23	What's happening down at the district level
24	A So the wasted votes for Party A are in seats where	24	are these vote shares, VI and SI which is just
25	it won the proportion of votes in excess of what	25	telling us where the VI is above .5 , and not
	38		40
1	it needed to win, so that's why we've got VI	1	telling us who won the district.
2	minus .5 , all right, multiplied by SI. Now, SI	2	Q All right. And as I understand it, you did not
3	takes the value one when the party wins the seat	3	actually perform this particular calculation in
4	and takes the value zero when it doesn't. So when	4	every district across every election that you
5	SI is one, we're talking about seats that Party A	5	looked at?
6	won.	6	A Actually I used a very similar form of this after
7	And then the second piece of the second	7	I was able to -- my version of the efficiency gap
8	equation on Page 16, one minus SI, well, if SI is	8	calculation, my calculations are extremely similar
9	one, then one minus SI is only one when SI equals	9	to this in that I substitute -- I have a vote
10	zero. And so now that part of the equation is	10	share for each and every district. So I did come
11	picking up wasted votes and seats that Party A did	11	up with a VI for every district.
12	not win, and in that case the VI in that case	12	Q Okay. So maybe I should just ask you how you
13	they're all below .5. And the definition of	13	calculated the efficiency gap for a particular
14	wasted votes is any votes you cast that are cast	14	state in a particular year.
15	for a party in seats that it goes on to lose are	15	A Okay, sure. Well, why don't we take an easy case
16	wasted votes.	16	where every district is contested and so VI is
17	So we've essentially summed up all the	17	observed for every district. And we're limiting
18	districts now, right. Every district is won by	18	ourselves or ignoring minor party candidates;
19	either Party A or Party B. Wasted votes in the	19	we're focused on two-party competition. In that
20	seats that Party A wins are the vote shares in	20	case, the efficiency gap calculations are
21	excess of .5. And in the seats that Party A loses	21	identical under either the form given in the top
22	it's just the vote share, so it's just VI in those	22	half of Page 16 as we've just been discussing and
23	cases. And then we're just summing now of all	23	unpacking the three equations in the top half of
24	districts. So every district is appearing	24	that page, or we could use the formulation given
25	somewhere in that equation, either a seat that	25	in Equation 1 on the lower half of Page 16 where
Pages 37 to 40			
MADISON FREELANCE REPORTERS, LLC			

	41		43
1	we can rely quite simply on the statewide	1	race where there happened to be a third party
2	aggregate numbers S -- the seat share for Party A	2	candidate perhaps even only getting two percent of
3	in this case the way I set it up, the democrats --	3	the vote or some small amount, what did you do
4	and V, the average of the district vote shares.	4	with that party candidate's vote?
5	Q So did you, in calculating the efficiency gap for	5	MR. EARLE: I'm going to object to
6	all the various states that you looked at, did you	6	the form of the question. Go ahead and
7	use the equation here in 6.1 or the one above it	7	answer if you understand the question.
8	in 6.0?	8	A In such a case, everything I did is defined by
9	A Well, under the assumption of equal size	9	computing the democrats' share of the two-party
10	districts, there's a strict correspondence between	10	vote. So it would be D over D plus R and putting
11	the two and so I assumed that. And so the	11	votes for any other candidates out of the
12	distinction between the two forms is immaterial.	12	analysis.
13	Q Yeah, and that may be. I'm just trying to figure	13	Q Okay. And then looking at the bottom of Page 16
14	out, though, like when you actually did the	14	it says, "I operationalize V as the average over
15	calculation, did you use the 6.1 equation or the	15	districts of the democratic share of the two-party
16	one above it?	16	vote, in seats won by either a democratic or
17	A Okay. To be perfectly clear, I used the equation	17	republican candidate."
18	labeled 1 on the bottom half of Page 16 but note	18	What did you do with a seat that wasn't won
19	that it has an input, to wit, V, which has these	19	by a democratic or a republican candidate?
20	VI, V subscript I, quantities which are analogous	20	A And again, they're out of the analysis.
21	to the VI quantities on the top half of the --	21	Q So, for example, if in Wisconsin there's 99 seats
22	MR. EARLE: Just so the transcript	22	and one of them is won by some other party, then
23	is clear, you're referencing the sentence	23	the analysis proceeds just looking at the 98 other
24	immediately below Formula 1 in 6.1 where V	24	seats?
25	equals, and then you have a formula.	25	A That's correct.
	42		44
1	THE WITNESS: That's right.	1	Q What does the average over districts of democratic
2	MR. EARLE: Okay.	2	share of the two-party vote mean?
3	Q And you mentioned -- it says there's an assumption	3	A It means that you compute the democratic share of
4	of equally-sized districts.	4	the two-party vote in every district, you sum that
5	A Yes.	5	up over districts, and you divide by the number of
6	Q Other parts of the deposition you talked about	6	districts.
7	we've assumed equal number of voters. Is this	7	Q So that will give you a number, a percentage?
8	equal number of voters or is it a different	8	A Yeah.
9	assumption?	9	Q And then you say, "If districts are of equal size
10	A No, equal number of voters.	10	and ignoring seats won by independents and minor
11	Q Okay. Because the districts could be equally	11	party candidates, then this average over districts
12	sized and have different numbers of voters.	12	will correspond to the democratic share of the
13	A I understand.	13	statewide, two-party vote."
14	MR. EARLE: You want to take a	14	Okay. I think I understand that, so I don't
15	break now?	15	need to ask more about it.
16	MR. KEENAN: Yeah, we can take a	16	MR. EARLE: So there's no question?
17	break.	17	MR. KEENAN: No.
18	(Recess)	18	MR. EARLE: All right.
19	Q We're back on the record. You were in the middle	19	Q We already went over the seats-votes curve, so I
20	of explaining how you calculated the efficiency	20	guess we can pass over that.
21	gap, and I think we're on Page 16 of your report.	21	A Uh-huh.
22	A Sure.	22	Q Why don't you explain the set of legislative
23	Q Going back to something you had said, you	23	elections that you analyzed for your report?
24	mentioned that you were looking at the two-party	24	A Sure. So the data -- well, the set of state
25	vote. Just so I understand that correctly, in a	25	elections I rely on span 1972 to 2014. I looked

	45		47
1	at general election contests for State Lower House	1	used in your study?
2	elections held under single-member district	2	A He is the current steward of this large canonical,
3	electoral systems. Or there are also a small	3	in political science at least, canonical
4	number of districts and races in there that are	4	collection of data on state legislative election
5	multimember districts, but multimember districts	5	returns. And he supplied me with the data for up
6	with slots or positions. So we're able to	6	through 2014 which was the current append to the
7	identify which candidates were running for which	7	longer historical data collection that runs 1967
8	slot and in effect treat them as if they were the	8	to 2012.
9	functional equivalent of single-member districts.	9	Q Was Mr. Klarner the only source of your election
10	Q Okay. So you only looked at elections that were	10	data or did you go to some other sources as well?
11	the State Lower House; that's correct?	11	A On the state legislative election returns, the
12	A That's correct.	12	collection that he is currently the steward of and
13	Q So the Wisconsin State Senate, for example, that	13	the append for 2014 he gave me, that's where that
14	wasn't considered?	14	data came from. There are of course other data
15	A Not in this analysis.	15	used in the analysis that came from other sources.
16	Q And then if there was any elections that had	16	But in terms of the state legislative election
17	multimember, any multimember districts?	17	outcomes, that data collection is the only source
18	A There are some multimember districts in the	18	for those data.
19	analysis, but as I said earlier in answer to the	19	Q Okay. So I see here 786 elections across 41
20	previous question, only of a particular type.	20	states.
21	MR. EARLE: Pause a little bit	21	A Could you tell me --
22	before answering the question so I can insert	22	Q Page 20 at the very bottom.
23	an objection if necessary. And I will, post	23	MR. EARLE: It's the last sentence
24	hoc, make an objection to the form of that	24	on Page 20.
25	last question.	25	A Correct.
	46		48
1	Q So just so I understand, if there was like a State	1	Q And then are all those 786 elections reflected on
2	Lower House that had most of its seats were	2	Figure 5?
3	single-member but there was a few that were	3	A Yes.
4	multimember but not of this slotted type, then	4	Q Moving to 7.2, the uncontested races, you
5	that election was not considered?	5	mentioned this a little bit before but why don't
6	A There are a couple of cases in the data where I	6	you explain how you accounted for uncontested
7	did keep elections of that type. There aren't	7	races in your analysis?
8	many, but I put the multimember districts to one	8	A Okay. So in the what is an uncontested race, it's
9	side that were not of that slotted position type.	9	where we do not have a democrat facing off against
10	Q But you could still run an efficiency gap on the	10	a republican, and so we don't have votes from both
11	remaining --	11	a democrat and republican. In such a case, in
12	A That's right, yeah.	12	order to come up with a vote share for that
13	Q If you look at Figure 5 on Page 21, I just want to	13	district, I relied on a modeling procedure that
14	make sure that I'm understanding correctly that if	14	used presidential vote tabulated by state
15	there's an orange dot for the state in a	15	legislative district from the most temporally
16	particular year, that's an election that you did	16	proximate presidential election. And I also took
17	consider in your analysis?	17	into account if the candidate who did -- the only
18	A That's correct.	18	candidate who did show up and was returned
19	Q And if there's not a dot, then that election was	19	unopposed was an incumbent or not and of which
20	not considered?	20	party. So was it a republican incumbent, was it a
21	A Or there was not an election in that year, that's	21	democratic incumbent or was there no incumbent.
22	right.	22	Now, what I did was to run regression
23	Q Fair enough. Who is Karl Klarner?	23	analysis of the relationship between vote shares
24	A He's a political scientist.	24	and the state legislative elections against
25	Q And what role did he have in the data that you	25	presidential vote in districts where we did have a
Pages 45 to 48			
MADISON FREELANCE REPORTERS, LLC			

	49		51
1	contested race, so we get to observe both of these	1	if the unopposed candidate is not actually an
2	things in those cases. Then on the basis of what	2	incumbent?
3	that analysis tells us about the relationship	3	A The same type of calculation but leveraging off a
4	between those two variables taking into account	4	different set of data.
5	incumbency, we're able then to make a prediction	5	Q Is the vote total that you're trying to find, is
6	as to the vote share in an uncontested race	6	it just a percentage or is it an actual like
7	because even in the uncontested races, races that	7	number of votes?
8	aren't contested in the state legislative	8	A It's actually -- I'm trying to model a percentage,
9	election, nonetheless we do have presidential vote	9	not a count.
10	share available in that district. And so the	10	Q So in the report on Page 26 through 29, it
11	regression procedure is able to produce a	11	mentions two different imputation models?
12	prediction for those cases.	12	A Right.
13	Q Okay. Let's just get into some specifics there.	13	Q What are the two different imputation models?
14	So you said the presidential vote in the most	14	A For prior to the 2000s, we don't have presidential
15	recent or proximate presidential election.	15	vote share tabulated at the level of state
16	A Typically the preceding one.	16	legislative districts or at least that's not
17	Q Preceding one. For example 2014, would you have	17	widely available. So there I relied on a
18	looked at the 2012 presidential election?	18	different procedure, one that attempted to build
19	A Exactly, yes.	19	an over time sequence. So inside a districting
20	MR. EARLE: Slipping into	20	plan if we take a given district, suppose it was
21	conversation again, but --	21	contested in one year and then it was uncontested
22	THE WITNESS: Sure.	22	in the following year but contested in the year
23	MR. EARLE: -- that's fine.	23	after, in the election after that, then we had a
24	Q And then for the 2012 election where there was a	24	basis for interpolating what the missing vote
25	presidential election that year, would you have	25	share would have been. Again taking into account
	50		52
1	just used the 2012 presidential election?	1	incumbency and also statewide factors, you could
2	A Yes.	2	say it was a particularly good year or not so good
3	Q Okay. And then the regression analysis, was that	3	year for the party in that state in that year. So
4	done -- I guess against which unit is that done?	4	that was the procedure I relied on in that case.
5	Was that done for each state in each election or	5	I engaged in some comparisons of how that
6	is it a nationwide thing?	6	method performed against the method I was able to
7	A No. That regression analysis is run in each	7	use and I prefer to use for the period 2000
8	election -- each state, each election.	8	forward where presidential vote shares were
9	Q So there's a separate calculation for Wisconsin	9	available and was reasonably satisfied that I was
10	2012 from Michigan 2012?	10	getting similar results. And although while I
11	A Yeah. And moreover, there's a separate	11	would much prefer to rely on presidential vote
12	calculation for Wisconsin 2012 republican	12	when I've got it as a basis for imputation, I was
13	incumbents versus Wisconsin 2012 democratic	13	reasonably satisfied with the performance of that
14	incumbents versus Wisconsin 2012 open seats.	14	ultimate procedure based on the time periods where
15	Q So when you say an incumbent, does that refer to	15	I had both methods so I could perform both
16	the candidate that's running unopposed whether	16	methods. So I did a check of the performance of
17	they're an incumbent or not?	17	the two methods.
18	A That's right.	18	Q Under the imputation model that didn't have
19	Q Okay. So you're trying to or what you're trying	19	presidential vote share available, how were you
20	to do is model the share of votes that incumbent	20	able to determine the share of votes when a
21	running would have received if there was an actual	21	district was always uncontested?
22	opponent?	22	A Right. That poses a real challenge. And at that
23	A If in fact they had attracted a challenger, that's	23	point you're only able to rely on the identity of
24	right.	24	the incumbent and your estimate of the statewide
25	Q Okay. And you're running a separate calculation	25	vote share. And so in those cases, the estimates
Pages 49 to 52			
MADISON FREELANCE REPORTERS, LLC			

	53		55
	of vote shares in such a district are relatively	1	getting the data down to one record per district
2	imprecise.	2	per election per state. Then at the level of each
3	Q Okay. So if I understand, 8.1, Imputation model	3	election, we then compute those quantities that go
4	deals with the 2000 through the post 2000s that we	4	into the computation of the efficiency gap. So
5	have presidential vote share data?	5	referring to my report, and I think we were
6	A Well, you're actually also able to do a lot of the	6	discussing those equations earlier.
7	nineties as well because the 2000 presidential	7	MS. GREENWOOD: Page 16.
8	election takes place with the same districting	8	THE WITNESS: Thank you.
9	plan in place for a lot of the elections of the	9	A So for instance, Equation 1 on Page 16 then is
10	nineties in a lot of jurisdictions.	10	computed for every election in this data set. And
11	Q Okay. So you actually used the 2000 presidential	11	so in this instance, this analysis, 786 separate
12	election and went backwards so to speak to impute	12	calculations of Equation 1. And again a program
13	election results into the nineties?	13	like R, this is rather straightforward, looping
14	A Yeah.	14	over the states and the years and keeping states
15	Q Okay.	15	grouped, you know, according to tagging them with
16	A Only in cases where the same plan's in place	16	a redistricting plan. That's precisely the sort
17	obviously.	17	of task that a computing environment like R is
18	Q Understood. I guess now we'll get in to your	18	extremely well suited for, along with producing
19	actual calculations of the efficiency gap by the	19	the graphs that appear throughout the report.
20	state in each election.	20	Q Yeah. And there are a lot of graphs, and I was
21	A Sure.	21	just wondering if there was a -- do you have a
22	MR. EARLE: Which page do we move	22	master list anywhere, or perhaps it could be
23	to?	23	generated, that lists the efficiency gap as
24	MR. KEENAN: 32.	24	calculated by you for each state and each election
25	Q Did you use some sort of computer program to run	25	that you analyzed?
	54		56
1	the -- or programs to run the calculations?	1	MR. EARLE: Okay, that's a request.
2	A Yes.	2	MR. KEENAN: Well, I was just
3	Q And can you just explain what you did to get the	3	wondering if -- it doesn't exist in the
4	efficiency gaps in terms of, you know, running	4	documents.
5	through computer programs?	5	MR. EARLE: Well, let's break it
6	MR. EARLE: I'm going to object to	6	down into two things. You have a request and
7	the form of that question.	7	you have a question.
8	MR. KEENAN: Sure.	8	MR. KEENAN: Yeah.
9	MR. EARLE: Do you understand the	9	MR. EARLE: Do the question first
10	question?	10	and then we'll respond to the request.
11	THE WITNESS: No.	11	MR. KEENAN: Sure.
12	A I need you to be a bit more specific for me.	12	Q Have you generated such a report, a spreadsheet or
13	Q I understand that obviously you have a lot of data	13	something that contains that information?
14	and I know that there's like -- I've seen some	14	A Yes.
15	document production of a program called R ?	15	Q And was it provided to your attorneys do you know?
16	A Uh-huh.	16	A Yes.
17	Q Could you explain how you used R in calculating	17	Q Okay. So it should be in the data set that has
18	the efficiency gap? On a general level; I don't	18	been provided to me?
19	need you to get into the --	19	MS. GREENWOOD: We can talk about
20	A Okay. R is a widely used statistical data	20	that. I don't think it's in the data set
21	processing program used widely in the social and	21	provided to you.
22	-- in science and in industry. I wrote programs	22	MR. KEENAN: Okay.
23	in R that took the original data from the, as we	23	MS. GREENWOOD: Because of what was
24	were discussing earlier, the Karl Klarner	24	-- we can take about that.
25	collection. There's a lot of preprocessing	25	MR. KEENAN: Okay. I think I would
Pages 53 to 56			

	57		59
1	like to have something like that, just like a	1	gap and the vertical bars extending outward from
2	spreadsheet or something.	2	each box indicating length of a 95 percent
3	MR. EARLE: Okay. So you want a	3	confidence interval around each
4	copy -- to the extent that it exists, you	4	election-by-election estimate. And the data of
5	want a copy of the spreadsheet that includes	5	course are grouped by state and ordered by time.
6	the analysis from 1972 for the entire, all	6	Q Is there a reason Vermont is listed at the top
7	786 --	7	left?
8	MS. GREENWOOD: The efficiency gap.	8	MR. EARLE: Were you finished with
9	MR. EARLE: All 786 efficiency gap?	9	your question?
10	MR. KEENAN: Yeah. I mean, there	10	MR. KEENAN: Yes.
11	are data points on various graphs and things,	11	MR. EARLE: Okay.
12	but you don't actually know what the specific	12	A That's a peculiarity of R. If you look, it's a
13	number is and like which state is this one	13	reverse alphabetical order going from bottom left
14	and things like that.	14	through to the top right.
15	MR. EARLE: We'll get back to you	15	Q Okay.
16	on that.	16	A That's all that is.
17	MS. GREENWOOD: Yeah.	17	Q It confused me so --
18	MR. KEENAN: All right.	18	A Yeah.
19	Q Looking at Figure 11 on Page 33, what does the	19	Q I was just going to go through the -- on the next
20	orange line represent?	20	page on 35 there's numbers with some points here.
21	A That is the seats-votes curve corresponding to an	21	A Uh-huh.
22	efficiency gap of zero.	22	MR. EARLE: When you say numbers,
23	Q Okay. And then if we see a -- it looks like	23	you mean numbered paragraphs?
24	they're represented by boxes?	24	MR. KEENAN: Yeah, numbered
25	A Uh-huh.	25	paragraphs.
	58		60
1	Q What does each little box represent?	1	MR. EARLE: Okay.
2	A A plotted square is the particular vote share and	2	Q So in Paragraph 4, is it true that New York had
3	seat share, all right -- so a vote share on the	3	the lowest median efficiency gap estimates in your
4	horizontal axis, seat share on the vertical axis	4	study?
5	-- from each of the 786 elections in the analysis.	5	A Yes.
6	Q And then elections that are I guess I want to say	6	Q And what is -- maybe just explain what a median
7	above and to the left of the orange line, would	7	estimate gap is.
8	those be positive or negative efficiency gaps?	8	A The plural in estimates there may be misleading.
9	A Right. The vertical distance of a plotted square,	9	The lowest median -- if you took the median of all
10	if you project up or down to the orange line,	10	of New York's efficiency gap estimates, right, and
11	gives you the efficiency gap. And so a data point	11	then you did that for each state, New York has the
12	that lies vertically above the orange line	12	lowest of those medians across the states. That's
13	indicates a positive efficiency gap and a data	13	what I'm trying to say in the opening of
14	point that lies below in a vertical distance, and	14	Paragraph 4 on Page 35.
15	vertical distance vertically below the orange	15	Q Okay, that makes sense. And for a low efficiency
16	line, indicates a negative estimate of the	16	gap, that means favorable to republicans and
17	efficiency gap -- would correspond to a negative	17	unfavorable to democrats?
18	estimate of the efficiency gap.	18	A That's right.
19	Q Just turning to the next page, Figure 12, looking	19	Q And No. 5 says Arkansas has the highest median
20	at that, can you explain what Figure 12	20	efficiency gap score?
21	represents?	21	A That's right.
22	A Figure 12 represents the individual	22	Q So that would be the highest median that's
23	election-by-election efficiency gap estimates	23	favorable to democrats?
24	ordered by time left to right, and with the box	24	A That's right.
25	indicating the point estimate of each efficiency	25	Q And I believe you found Michigan was the third
Pages 57 to 60			
MADISON FREELANCE REPORTERS, LLC			

	61		63
1	lowest median efficiency gap score by state. Is	1	unbroken run of negative EG estimates from 1998 to
2	there a list in here of each state's median?	2	2014; is that correct?
3	A Not that I'm aware of.	3	A That's correct.
4	Q Okay. No. 8 on the next page deals with Wisconsin	4	Q Looking at Figure 13 on Page 37, there's a series
5	specifically. It says Wisconsin's EG estimates	5	of plotted squares -- is that the correct term?
6	range from negative .14 to .02 . So is . 02 the	6	A That will work.
7	most favorable efficiency gap to democrats that	7	Q -- that are connected by a line. I was just, my
8	you observed in Wisconsin?	8	question was whether that line -- does that line
9	A Yes.	9	move temporally from, for example, 1972 to 1974 or
10	Q Okay. And when you say efficiency gap estimates,	10	is it just the nearest dot?
11	what do you mean by that?	11	A No. It's difficult to see in this case but what I
12	A Okay. I used the language of estimate; the word	12	-- I was indeed trying to demonstrate the temporal
13	"estimate" appears because of the modeling that	13	sequence, and I used a solid box to indicate the
14	went into handling uncontested seats. And that's	14	end of the sequence so that's 2014. And you can
15	just the way I think any social scientist would	15	kind of make out backward through time the way
16	refer to a calculation that came out of a	16	that sequence of efficiency gap estimates in
17	procedure like that. In three cases we could drop	17	Georgia in this case, in Figure 13 we're looking
18	the word estimate, in three cases where every seat	18	at Georgia, the evolution that the sequence of
19	was contested, but there are only three out of	19	efficiency gap estimates can literally be read off
20	786. So for the rest of the time, I prefer the	20	that graph, you know, regard from being below the
21	word estimate.	21	orange line in recent elections to earlier in time
22	Q And are those three elections that are not	22	to be considerably above the orange line in an
23	estimates, is that because they had no uncontested	23	earlier phase in Georgia.
24	seats at all?	24	Q Okay. So I noticed that there's a similar type of
25	A That's right. And hence nothing had to be done,	25	graph, looks like every page, 37 through 42; do
	62		64
1	yeah, for the uncontested seats.	1	you see that?
2	Q Is the level of confidence in a particular	2	A Indeed, yeah.
3	efficiency gap estimate -- sorry, I'll start over	3	Q For each of these, did you use the same procedure
4	again. Does the level of confidence in a	4	of having a solid box for the most recent election
5	particular efficiency gap estimate change from	5	and then connecting the line to the --
6	election to election and state to state?	6	A Yeah, that's correct.
7	A Yes.	7	Q Okay. So for each of these if I start at the
8	Q And what factors affect that?	8	solid box, then I go from there and work my way
9	A The proportion of seats that are uncontested.	9	backwards through time?
10	Q Okay. And I would take it that a lower proportion	10	A Well, it can be difficult when the lines overlap,
11	of uncontested seats would give you more	11	but absent that problem, that would be correct,
12	confidence in your calculation?	12	yeah.
13	A And the limiting case is of course zero	13	Q And again looking at each of these plotted
14	uncontested seats in which case the confidence	14	squares, the ones that are below on the vertical
15	interval around an estimate collapses onto a point	15	axis from the orange line are negative efficiency
16	estimate itself. And in such a case, we could	16	gaps?
17	dispense with the word estimate.	17	A That's correct.
18	Q And you looked at Wisconsin's election results for	18	Q And the ones that are above are positive
19	every year from 1972 to 2014 ?	19	efficiency gaps?
20	A That's correct.	20	A That's correct.
21	Q And among that whole time, the most favorable	21	Q And then going to 42 is Figure 18, Wisconsin, so
22	efficiency gap to democrats was .02 ; is that	22	this shows graphical plot of all the efficiency
23	correct?	23	gaps you calculated in Wisconsin from 1972 to
24	A That's correct.	24	2014?
25	Q And you found that Wisconsin has recorded an	25	A Well, one can figure out what the efficiency gap
Pages 61 to 64			
MADISON FREELANCE		REPORTERS, LLC	

	65		67
1	estimates are in the sense I was talking about	1	efficiency gap?
2	earlier in that they're the vertical distance of	2	A That's right. Positive values of the efficiency gap are indicative of plans favorable to
3	each plotted square from the orange line with the	3	
4	last two, 2014, being the solid point there in the	4	democrats. And so as you go vertically up the graph, you're in positive territory up in the
5	lower left quadrant of the graph. And you can see	5	
6	the line taking us back in time to the immediately	6	graph, you're in positive territory up in the very, all right, above zero there in the top half
7	preceding election in 2012.	7	of the graph. And for the contrary, for negative
8	Q Going on to Page 44 now, Section 9.2.	8	territory on the vertical axis, the bottom half of the graph, negative estimates of the efficiency
9	A Uh-huh.	9	
10	Q It's titled Over-time change in the efficiency	10	the graph, negative estimates of the efficiency
11	gap.	11	gap indicative of plans that are not advantageous to democrats.
12	A Uh-huh.	12	Q So the lower most dot would be the plan that's
3	Q What did you find with respect to any changes in	13	most favorable to republicans as measured by the efficiency gap?
14	the efficiency gap over time from the beginning of	14	
15	the 1972 period that you looked at till today?	15	A That's right.
16	A At a high level of generality, the general trend	16	Q And there's three blue lines on the graph; could you explain what those are?
17	in the distribution of efficiency gap estimates	17	
18	across states is for a roughly -- we see plans	18	A Yeah. That's estimating -- the middle blue line
19	more favorable to democrats, at least as measured	19	is an estimate of the median across states, all right. So in any given year, looking at that
20	by the efficiency gap, in the earlier decades of	20	
21	this analysis. But in the late nineties and	21	spread of points in the vertical dimension
22	particularly 2000s onwards, that shifts and on	22	estimating where the median is but performing a
23	average, efficiency gap estimates from the mid	23	little bit of what we call smoothing so to produce
24	nineties onwards on average are indicative of	24	
25	plans that are favoring republicans. So negative	25	a trend over time in both. So the middle line is the smoothed over time estimate of the median
	66		68
1	efficiency gap estimates are tending to be the	1	efficiency gap.
2	norm although there's considerable -- I think it's	2	The upper blue line is a smooth estimate of
3	important to note that at any given time point,	3	the 75 th percentile, the point at which only
4	there's considerable spread in the distribution.	4	one-quarter of elections are producing efficiency
5	So that's sort of a weak trend in the overall	5	gap estimates more extreme than that. And the
6	distribution.	6	lower blue line is the smooth estimate of the 25 th
7	Q Yeah, let's look at Figure 20 which I believe	7	percentile of the distribution of efficiency gap
8	you're referring to.	8	estimates, the point at which only 25 percent of
9	A Uh-huh.	9	elections are producing efficiency gap estimates
10	Q Could you explain what the -- to look at it, the	10	more advantageous to republicans than where the
11	bottom, I guess the horizontal axis has time,	11	blue line is, the lower blue line.
12	1970, 1980, 1990, 2000, 2010, vertical is the	12	Q So looking at just like one election --
13	efficiency gap, and there's a series of black	13	A Uh-huh.
14	dots.	14	Q -- you plotted each, or plotted might not be the
15	A Uh-huh.	15	best word, but plotted each efficiency gap that
16	Q What does each black dot represent?	16	you calculated on that line, and then the median
17	A Each black dot is an efficiency gap estimate from	17	is the one that's in the middle when you line them
18	a specific election. So they're grouped by the	18	up lowest to highest?
19	year of the election. Typically most of these	19	A Yeah. The median is the middle of the efficiency
20	states, the elections have been held in	20	gap estimates arrayed from lower to high, and the
21	even-numbered years.	21	only qualification is that we've smoothed --
22	Q Okay. And then so if you look at any one	22	there's a little bit of smoothing going on.
23	particular year, the highest dot would be the plan	23	Otherwise the estimate of that median would be
24	that's the most -- or the election that's the most	24	quite jagged if we did it with respect to every
25	favorable to democrats as measured by the	25	two years. So we employed a little statistical

	69		71
1	technique called smoothing to just make that less	1	below .5 meaning it's more likely than not that
2	jagged and easier to visualize than it would be	2	efficiency gap estimates from that election year
3	otherwise.	3	are negative. That happens in the mid nineties,
4	MR. EARLE: And just for the record	4	and it's largely that way say for that line 50/50
5	to make it clear, the deponent was using his	5	result in 2010 as indicated on Figure 21.
6	hands to symbolize a sawtooth pattern as he	6	Q So is this, looking at like 2006 because it's
7	was describing the word "jagged."	7	almost precisely on that .25 percent line --
8	Q So if I'm reading this correctly, since about it	8	A Uh-huh.
9	looks like as you said the mid nineties, the	9	Q -- does that mean that 25 percent of plans were
10	median plan has been an efficiency gap that's	10	efficiency gap positive and 75 percent of plans
11	favorable to republicans?	11	were efficiency gap negative that year?
12	A That's right. Well, strictly speaking, the median	12	A Of elections held under plans in that year,
13	efficiency gap estimate, right, so plans span	13	25 percent of the efficiency gap estimates
14	multiple elections. But substantially the	14	produced in that election year indicated
15	characterization that plans is correct, but	15	democratic advantage, 75 percent indicated
16	technically the graph is displaying	16	republican advantage.
17	election-by-election estimates of the efficiency	17	Q Okay. And going back to Figure 20, is each state
18	gap.	18	weighted equally --
19	Q Yeah. So the median efficiency gap that you	19	A Yes.
20	calculated for that particular election year?	20	Q -- in these graphs?
21	A Election year, correct.	21	A Yes.
22	MR. EARLE: That's fine. The	22	Q And then I did note that on Figure 20 it said at
23	question wasn't complete, he was referencing	23	the very end on the little caption it says,
24	the prior question. But that's okay, the	24	"weighted by the precision of each EG measure."
25	transcript will reflect that.	25	What does that mean?
	70		2
1	Q Turning to Figure 21 on the next page, could you	1	A Okay. So when the median is computed, an estimate
2	explain what Figure 21 represents?	2	of the efficiency gap that is imprecise
3	A Right. So for each efficiency gap estimate, each	3	contributes less weight to the computation of the
4	one comes equipped with some uncertainty. And	4	estimate of where the median is than one that's
5	what I've attempted to do in Figure 21 is to take	5	estimated precisely, more precisely. So it is not
6	into account that uncertainty and produce,	6	the case that each state is weighted equally.
7	averaging over all efficiency gap estimates	7	They're precision weighted estimates of the median
8	produced in a given year and taking into account	8	of the 25 th percentile and of the 75 th percentile.
9	the uncertainty that accompanies each one,	9	Q Turning to Figure 22, what does this graph
10	nonetheless, what's the probability that a given	10	represent?
11	efficiency gap number from a given election year	11	A This is in a sense folding the efficiency gap
12	is positive or negative, all right.	12	estimates now. So now we're looking at the
13	So here I've plotted the probability that an	13	absolute value in magnitude, not -- so we're just
14	efficiency gap estimate from 1972 is positive, and	14	literally asking irrespective of the partisan
15	remember positive means would favor democrats, and	15	advantage that may or may not indicate, just are
16	in 1972 we see that that's just above 50 percent.	16	the raw values in absolute value terms of a
17	We see that cluster -- we see a bunch of estimates	17	changing over time. And here the answer seems to
18	above 50 percent through to the mid nineties, and	18	be that's reasonably stable over time.
19	this largely tracks, you know, it's another	19	Q So when you say absolute value, what does that
20	summary of the distribution of the data presented	20	mea
21	in Figure 20, all right.	21	A It literally means a number that is negative, you
22	And so as the data in Figure 20 we saw the	22	would call a positive sign. The positive numbers
23	median fall below zero in the mid nineties.	23	stay the same. We're just literally looking at
24	Likewise, this estimate of the probability that an	24	magnitudes now, not -- we're wiping out the sign,
25	efficiency gap estimate is positive, it falls		we're ignoring the sign of a given efficiency gap
Pages 69 to 72			
MADISON FREELANCE REPORTERS, LLC			

	73		75
1	estimate.	1	between-plan variation." What does that mean?
2	Q Okay. So a negative 10 and a positive 10 now	2	A Okay. So suppose you took all the efficiency gap
3	become --	3	estimates, 786 of them, and you want to assess the
4	A Are treated the same, yeah, for the purposes of	4	extent to which the efficiency gap is more or less
5	Figure 22.	5	stable over the life of a plan and hence would
6	Q Okay.	6	bolster up confidence that we're measuring a
7	MR. EARLE: Yeah, we had a little	7	characteristic of the plan and not these
8	overlap there. And maybe, Brian, you want to	8	election-to-election vagaries that you just led me
9	clear that up.	9	through.
10	MR. KEENAN: Sure.	10	What we observe is that 76 percent of the
11	Q For the purposes of Figure 22, a negative 10 and a	11	variation is due to if we clustered the efficiency
12	positive 10 would both be plotted out at the . 10	12	gap estimates by what plan they belong to, if we
13	level?	13	group them by that, the variation across those
14	A That's correct.	14	groups now is 76 percent of the total variation we
15	Q Going to 9.3 which is titled Within-plan variation	15	saw which means that 100 minus 76,24 percent of
16	in the efficiency gap.	16	the variation we see in efficiency gap estimates
17	MR. EARLE: So you're on Page 48?	17	is within-plan variation. And so that means by a
18	MR. KEENAN: Yes, 48.	18	ratio of about three to one, all right, it's what
19	Q So you did note that within a particular plan the	19	plan I'm in is three times as important in telling
20	efficiency gap will change over the course of that	20	me what level of efficiency gap I'm going to see
21	plan; is that correct?	21	than other factors such as these
22	A That is correct.	22	election-to-election vagaries.
23	Q And it's your opinion that some of this change is	23	So this bolsters my confidence that the
24	caused by districts displaying demographic drift	24	efficiency gap is measuring something about the
25	which is gradually changing the political	25	plan and isn't varying so much election to
	74		76
1	complexion of those districts; is that correct?	1	election that who knows what it's telling us about
2	A That's one reason.	2	the plan. The strong clustering by plan in the
3	Q And then another one would be incumbent losing or	3	efficiency gap scores is what that between-plan
4	not running again for some reason; that's true?	4	variation reference is getting at.
5	A That's true.	5	Q Did you do any analysis of analyzing, comparing
6	Q And then you also found that a variation in	6	the differences between just specific states
7	turn-out most prominently from an on-year to an	7	between plans and whether a factor was just the
8	off-year election will cause the distribution of	8	underlying nature of the state?
9	vote shares to vary from election to election; is	9	MR. EARLE: I'm going to object to
10	that correct?	10	the form of that question but go ahead, you
11	A That's correct.	11	can answer.
12	Q And an on-year election, that's a presidential	12	A I didn't quite catch the last part of it.
13	election, correct?	13	Q Sure. Did you do any analysis of examining the
14	A That's what I mean by that, yes.	14	difference in efficiency gap just looking at the
15	Q And then an off-year is an election that takes	15	variations in states over time through different
16	place in a year when there's not a presidential	16	plans and whether there was any correlation
17	election?	17	between the efficiency gap in just the particular
18	A Right.	18	state that was being measured?
19	Q So, for example, in Wisconsin in 2012, that would	19	MR. EARLE: I'm going to object to
20	be an on-year election?	20	the form of the question as ambiguous. Are
21	A That's correct.	21	you referring to the variables that you went
22	Q And then 2014 is an off-year election?	22	through before being the factors? I mean, I
23	A That's correct.	23	don't understand the question, I guess.
24	Q Going down to the third paragraph it says, "About	24	MR. KEENAN: No, he's talking about
25	76 percent of the variation in the EG estimates is	25	that he saw that variations in plans,
Pages 73 to 76			
MADISON FREELANCE REPORTERS, LLC			

	77		79
1	76 percent, you know, there's clustering by	1	efficiency gap number associated with it, right.
2	plan.	2	And then the standard deviation measures variation
3	Q Did you do any analysis of clustering by states	3	in efficiency gap estimates over the life of the
4	around efficiency gap numbers through time?	4	plan. And averaged over all plans, that
5	A Well, clustering by state, holding time, bundling	5	variation, the median standard deviation is .03 .
6	all efficiency gap estimates by time, if that's	6	Now, how to interpret that. If, and it's an
7	what you mean, the answer is no, I haven't	7	if, efficiency gap estimates followed say a normal
8	performed that specific analysis.	8	distribution, then we could expect that it would
9	MR. EARLE: You completed your	9	be extremely unlikely to see an efficiency gap for
10	answer?	10	a given election more than two standard deviations
11	THE WITNESS: Yes.	11	away from the average efficiency gap estimate for
12	MR. EARLE: Okay.	12	the plan. So that would be in this case plus or
13	Q Going to Page 49, there's a second paragraph	13	minus .06. That would be an extremely
14	there, it says, "A plan with moderate variability	14	conservative bound on how much variation you see
15	in the EG. The median, within-plan standard	15	in efficiency gap estimates over the life of a
16	deviation of the EG is about .03." What does that	16	plan around the average efficiency gap estimate we
17	mean?	17	see over the plan.
18	A Okay. So recall that we begin with an efficiency	18	Q Okay. So just in my head, like if the average
19	gap estimate for each election. Elections are	19	efficiency gap is .05 , one standard deviation away
20	then bundled into plans. And so for a given plan,	20	is .08 ?
21	we may have up to as many as five say estimates of	21	A Uh-huh.
22	the efficiency gap, all right. So now we're up at	22	Q And then two would be .11?
23	the level of plans.	23	A Yeah.
24	For each plan, we can compute a measure of	24	Q It would be unlikely to get -- statistically
25	how variable the efficiency gap is over the life	25	unlikely to get higher than .11?
	78		80
1	of the plan. And the particular measure of	1	A Yeah.
2	variability I used is the standard deviation, the	2	Q Okay. But then it could go the other way as
3	square root of the variance. And now I have one	3	well; .05 could go down to .02 , correct, for one
4	of those numbers for each plan, and I simply	4	standard deviation?
5	computed the median of those standard deviations	5	A Well, two --
6	across the 200 odd plans in this analysis.	6	MR. EARLE: You're getting
7	Q Okay. And in thinking about just what that means	7	conversational again.
8	for a particular plan specific efficiency gap	8	Q So if the average is . 05 , if the standard
9	calculation, what does that .03 mean? Does that	9	deviation goes the other way, one standard
10	mean that like the median plan would deviate	10	deviation is down to .02 ?
11	between .03 and .06 or like .3 from the middle of	11	A Uh-huh.
12	the plan, the median efficiency gap calculated	12	Q Okay. And then two standard deviations away would
13	under that plan? I mean, I just ask you to help	13	be going to the other side of zero to --
14	me understand.	14	A Yeah, negative 01.
15	A Sure, sure.	15	Q Okay. Makes sense.
16	MR. EARLE: So the question is	16	MR. EARLE: You said it makes
17	you're asking him to help you understand --	17	sense?
18	MR. KEENAN: Yeah, what this means.	18	MR. KEENAN: It makes sense to me
19	MR. EARLE: -- the ambiguous	19	now.
20	question, which I was struggling with the	20	Q How did you go about measuring the durability of
21	same thing. But I just want to clear that	21	an efficiency gap over the course of a plan?
22	up. Go ahead.	22	A I did a number of things. One of the first things
23	A See if I can clarify here a little. One way to	23	I did was to compute just pair-wise election to
24	think of it, let's suppose a plan has -- we don't	24	election under a plan how often or the probability
25	have to suppose. A plan will have an average	25	that a temporally adjacent pair of efficiency gap
Pages 77 to 80			
MADISON FREELANCE REPORTERS, LLC			

	85		87
1	percent?	1	proposition the plan is advantaging one side or
2	A Well, negative .076.	2	the other than if the efficiency gap estimates
3	Q Okay. And negative -- I'll ask it again.	3	were to alternate sign or to be of mixed sign over
4	A Or we could say negative . 7 --	4	the life of the plan. So consistency of sign of
5	Q Negative 7.6 percent?	5	the efficiency gap estimate I took to be a signal,
6	A If we wish, yes.	6	a reliable signal of the partisan advantage of the
7	Q And then the efficiency gap minimum which I guess	7	plan.
8	would be the plan, the calculation that was most	8	Q In this Page 56 it says EG with a little star
9	favorable to republicans and least favorable to	9	after it. What does that refer to?
10	democrats was negative .118; is that correct?	10	A That's the threshold or the putative, the proposed
11	A That's correct.	11	threshold, yeah.
12	Q And then the efficiency gap max which would be the	12	Q Going down you say that, "Plans with at least one
13	plan that was --	13	election with an efficiency gap greater than .07
14	MR. EARLE: Hold on a second, I	14	are reasonably common."
15	think he's looking at -- in response to the	15	So you found that there was a 20 percent
16	last question.	16	chance that a plan will have at least one election
17	A Yep.	17	that has an efficiency gap that's greater
18	Q And then the efficiency gap max is the plan that	18	than .07?
19	is most favorable to democrats and least favorable	19	MR. EARLE: You're referring to the
20	to republicans, and that's negative . 039 ?	20	second to last paragraph of Section 10 on
21	A That's correct.	21	Page 56, correct?
22	Q Okay.	22	MR. KEENAN: Yes.
23	MR. KEENAN: I think now is a good	23	MS. GREENWOOD: Maybe you should
24	time for a break.	24	just explain when you have EG between --
25	MS. GREENWOOD: Yeah, sure.	25	THE WITNESS: Sure.
	86		88
1	(Discussion off the record)	1	A On the page, on Page 56 in that second to last
2	(Recess)	2	paragraph, EG appears with two vertical bars
3	Q Professor Jackman, you understand you're still	3	around it. That's a mathematical notation for
4	under oath?	4	absolute value. So irrespective of sign, just in
5	A Yes.	5	terms of raw magnitude, seven percent positive or
6	Q All right. Let's turn to Page 56 of your report	6	negative is reasonably common is the way to read
7	which is Section 10. Why don't you describe how	7	that. And that again is taking into account the
8	you determined a threshold for determining if the	8	uncertainty that accompanies the efficiency gap
9	EG is a large and enduring characteristic of a	9	estimates.
10	plan.	10	Q Okay. Looking at Figure 27, could you explain
11	A Sure. In this part of the report, what I sought	11	what's represented here?
12	about finding was a particular threshold value of	12	A Sure. Okay. So there are two quantities plotted
13	the efficiency gap such that if you saw a value of	13	on Figure 27, and the color version of the report
14	the efficiency gap that large or larger, there's a	14	makes the two quantities clear. In blue is the
15	low probability that you would see an efficiency	15	proportion of plans that have an efficiency gap
16	gap with the opposite sign elsewhere over the life	16	estimate in excess of where we are on the
17	of the plan.	17	horizontal axis. So let's just take, for
18	Q Okay. And why did you base your test on seeing an	18	instance, to the immediate left of zero we have
19	election with the opposite sign over the course of	19	negative not much, negative a little bit. And
20	the plan?	20	there are lots of plans, right, that produce an
21	A Well, remember that the sign of the efficiency gap	21	efficiency gap in excess of that threshold; about
22	is indicative of passing advantage one way or the	22	75 percent of plans will do that.
23	other. So if a plan were to produce a sequence of	23	But you'll note that as we move away from
24	efficiency gap values all of the same sign, that's	24	zero on the horizontal axis of the graph, as we
25	evidence that's more consistent with the	25	move out to more extreme values of the efficiency
Pages 85 to 88			

	89		1
1	gap in either direction, positive or negative, the	1	vertical axis.
2	probability -- the blue dots are going down	2	Q Sure. We looked at the negative .10 in the blue
3	meaning that the probability of or the proportion	3	and it looks like there's I think you said
4	of plans that are recording a value of the	4	18 percent of plans would have an efficiency gap
5	efficiency gap in excess of that threshold is	5	in excess of that.
6	getting smaller and smaller, right. It's a more	6	A Uh-huh.
7	extreme event, all right, to record an efficiency	7	Q If we also look at the .1 positive for the
8	gap -- let's go right out, say, on the left-hand	8	democrats
9	side of the chart out to say a negative .10. At	9	A Yep.
10	that point we see the blue square there is down	10	Q -- and there's another, I don't know what that is,
11	now below .2 ; roughly about 18 percent of plans	11	15 percent?
12	recording an efficiency gap estimate in excess to	12	A Yeah, let's call it, sure.
13	the left, in this case of negative .10 , and the	13	Q So would that mean that in total when you're
14	corresponding number out on the right of the chart	14	looking at the absolute values, that 33 percent of
15	is a positive .10 , you know, about 14 percent of	15	plans have a value greater than .1?
16	plans record a value in excess of that. So	16	A Thirty-three percent of plans will, over the whole
17	straight away we see that extreme values of the	17	analysis, have recorded at least one efficiency
18	efficiency gap are relatively rare, all right.	18	gap estimate greater than .10 in magnitude.
19	And then there's a second quantity plotted,	19	Q And then I take it the same -- when we look at the
20	and that's the quantity in red. And then that	20	red ones as well then, they are also -- the sign
21	asks conditional on having -- so now we're looking	21	matters where if you look at .1 on the red and you
22	at a plan and we're looking at the sequence of	22	look at .1 on the -- negative .1 and positive .1 ,
23	efficiency gap estimates that are racked up over	23	in order to determine the absolute value of plans
24	the life of a plan. And so now let's just take	24	that had one election exceeding that threshold,
25	the case at negative .10. Conditional on one	25	you'd have to add those two percentages together?
	90		92
1	plan, at least one plan exceeding negative .10 , of	1	A I just think we have to be very careful with
2	the set of plans that trip that threshold, what's	2	exactly what the red dot -- it says conditional on
3	the probability that in the same plan we'll get an	3	a plan tripping that threshold, what's the
4	estimate of the efficiency gap that's actually	4	probability of a sign flip. And so provided we
5	positive, right, it is on the other side of zero,	5	keep that interpretation very foremost in our
6	all right. And you can see the general pattern is	6	minds, that's right. Conditional in exceeding
7	that that goes down as well as the threshold	7	positive .1, there's about a 37 percent chance it
8	becomes more stern.	8	would flip back over to the negative side.
9	So in the case of negative .10 where I've	9	Conditional on going below negative .1, there's
10	referred us on Figure 27, conditional on seeing	10	about a 15 percent chance it would flip and see
11	one efficiency gap estimate at negative .10 or	11	something on the positive side?
12	even more extreme, the probability that we'd also	12	Q And if I look at the efficiency gap thresholds,
13	see an estimate, a positive, right, sort of a	13	the positive efficiency gap thresholds for the red
14	different signal, right, advantage going the other	14	plotted squares, I'm just noticing that the shape
15	way, positive advantage going the other way, that	15	looks a little different from --
16	probability is about 15 percent and so on. So you	16	A Yeah.
17	can see that that probability continues to track	17	Q -- when you look at the negative efficiency gap.
18	down as we get further out into the tails of the	18	Can you explain what the difference in the shape
19	distribution of efficiency gap estimates.	19	means?
20	Q Focusing on the blue ones, are these values in --	20	A Yeah, that was a very interesting feature of the
21	are they absolute values or does the sign matter?	21	analysis. The interpretation of that is that,
22	A Sign matters in this graph with respect to the	22	okay, remember what a positive efficiency gap
23	horizontal axis. But since what's been plotted on	23	means, that's advantage for democrats. What this
24	the vertical axis here is a proportion, that's	24	says is that a plan that trips that threshold
25	always going to lie between zero and one on the	25	indicative of -- you know, let's go right out,
Pages 89 to 92			
MADISON FREELANCE REPORTERS, LLC			

	93		95
1	let's go out to 10 , that's substantial advantage	1	advantage in them, we tend to get a more similar
2	for democrats it would appear. The probability	2	sequence of efficiency gap estimates out of those
3	that we will, over the life of the plan we will	3	plans than out of plans that at various points in
4	also see an efficiency gap estimate indicating	4	time seem to be indicative of democratic
5	republican advantage is reasonably large, it's	5	advantage. And that is there in the entire data
6	about 40 percent.	6	set, Figure 27, but is even more pronounced in the
7	So there's an asymmetry here that the signal	7	analysis that focuses on recent decades as done in
8	as it were or a single efficiency gap estimate	8	Figure 28.
9	tripping this threshold of 10 or of democratic	9	Q So the trend that was seen in Figure 27 shows up
10	advantage is not especially reliable or not as	10	stronger when you look at just the data from 1991
11	reliable as the signal on the other side. Plans	11	to the present?
12	that when we're getting indications of democratic	12	A That's correct.
13	advantage, at least over the data available to us,	13	Q Okay.
14	it appears that that's not a durable feature -- as	14	A Well, the asymmetry in Figure 27 is more
15	durable a feature of the underlying plan as is the	15	pronounced in Figure 28.
16	signal, the opposite signal, and that is saying	16	Q Okay. And if we look at like some specific
17	negative .10, indicative of advantage for	17	numbers on Figure 28, just using the positive .1,
18	republicans. That tends to be a more durable	18	looks like there's, you know, about a 56 percent
19	feature of a plan.	19	or something chance that there will be one
20	So the take away there is that democratic	20	election over the course of the plan that would
21	advantage or apparent democratic advantage from	21	have a negative sign; is that correct?
22	any given reading of the efficiency gap isn't as	22	A Yeah, that's the correct interpretation.
23	durable, as reliable as the opposite signal. So	23	Q Okay. But then if we look at the republicans at
24	these negative efficiency gap estimates tend to	24	negative .1 , there's maybe only a 14 percent
25	recur, are more likely to recur, to stay negative,	25	chance or something that there's an election with
	94		96
1	than a positive estimate of the efficiency gap.	1	a positive sign?
2	That's far more likely to flip back and cross the	2	A That's correct.
3	road to the other sign.	3	Q Moving on to Page 60 and Section 10.1, it's titled
4	Q There's a somewhat similar figure on Figure 28,	4	Conditioning on the first election in a
5	Page 59. Maybe you could just explain what the	5	districting plan.
6	Figure 28 on Page 59 represents.	6	A Right.
7	A Yeah. Now, what I did there, let me just read	7	Q Can you just explain what conditioning on the
8	carefully. Yeah, so Figure 28 is a replay of	8	first election in a districting plan means?
9	Figure 27 if you will, subset to redistricting	9	A Right. So here I tried to put myself in the shoes
10	plans from the 1990s forward. So putting the data	10	of litigants frankly and people trying to
11	from 1970 and 1980 aside, just focusing on more	11	adjudicate these matters. And that is it's fine
12	recent decades, and a couple of things happen.	12	for me as an analyst to come through and look at
13	The red dots if you will even drift a little	13	these historical data and get to observe all five
14	higher above the blue dots on the right of the	14	elections, up to five elections that we may
15	graph. And the red dots on the left of the graph	15	observe over the life of a plan. But people that
16	come down relative to where they were in	16	want to take issue with a redistricting plan, the
17	Figure 27.	17	idea we have to wait to see with the five
18	So let me explain that. The reliability of	18	elections -- you know, typically if you're going
19	seeing a single efficiency gap estimate indicative	19	to intervene, you've got to intervene early before
20	of democratic advantage is less informative as to	20	we've seen much data at all from the plan, the
21	what you're going to see over the life of the plan	21	election results the plan is throwing off.
22	than the corresponding signal on the other side	22	So what I set about to do was to ask how
23	with respect to -- so you saw the same magnitude	23	informative is the signal we get from the first
24	of signal with respect to republican advantage. A	24	efficiency gap reading under a plan. So in
25	single plans that appear to have republican	25	particular, what can you take away from the fact
Pages 93 to 96			
MADISON FREELANCE REPORTERS, LLC			

	97		99
1	that there's a new plan in place, we see the first	1	that is a first election under the plan with an
2	election under that plan, and it generates a	2	efficiency gap at least as extreme as where we are
3	positive efficiency gap reading or negative one.	3	on the horizontal axis, then how many of that set
4	So how much can you rely on that particular number	4	of plans, what's the proportion of them that go on
5	as a characterization of what you would see over	5	over the life of the plan to produce an efficiency
6	the life of the plan. How much does the first	6	gap estimate of the opposite sign.
7	election or the efficiency gap estimate produced	7	And so at negative .10 , eight percent of
8	under the first election tell you about the plan.	8	plans begin life with an efficiency gap reading
9	And in particular, what's the critical threshold	9	that large or more extreme. Of that eight
10	of -- how big does that first efficiency gap	10	percent, about -- what is that, that looks about
11	estimate have to be before you can feel confident	11	just reading off the graph, I don't have the exact
12	that you're seeing something about a plan that is	12	number, I'm reading off the graph -- but about 12
13	not a one-off or a fluke, that you've seen	13	or 13 percent of them go on over the life of the
14	something that gives you enough confidence to	14	plan to produce an efficiency gap reading that
15	believe this plan is manifesting advantage one way	15	conveys a different message, all right, would
16	or the other. That's the goal of this part of the	16	convey in this case democratic advantage. So the
17	analysis.	17	plan opens up with the first reading is negative,
18	Q Okay. And then is your analysis of conditioning	18	that's republican advantage. Of the set of plans
19	on the first election in a districting plan	19	with sending an extreme signal like that or as
20	contained in Figure 29?	20	extreme as that one, 12 or 13 percent of them flip
21	A That is one of the graphs that summarizes the	21	sign.
22	results of this analysis.	22	We go out and we do the same exercise on the
23	Q And Figure 29 contains the results from all the	23	right-hand side of the graph. At 10 we're
24	elections that you looked at?	24	talking about eight percent of plans open up with
25	A Yes, that's 1972 to the present.	25	apparent democratic advantage that large or
	98		100
1	Q And why don't we just go ahead again and explain	1	larger, but of that eight percent, 40 percent of
2	what the graph means, both the blue dots and the	2	those go on to produce an efficiency gap estimate
3	red dots.	3	over the life of a plan that sends the opposite
4	A Okay. So the blue dots and the red dots have the	4	message; that is, would send a message consistent
5	same interpretation, an analogous interpretation	5	with a republican advantage.
6	to the previous discussion. But this time now	6	So again, the take away there is a similar
7	that the event is the efficiency gap reading we	7	one to what we saw in the earlier graphs, and that
8	get out of the first election under the plan.	8	is this asymmetry here, how reliable a signal that
9	So let's take an example. Let's say we're at	9	first efficiency gap reading is. It's far more
10	negative 10 on the horizontal axis and we see the	10	reliable as to what you're going to see over the
11	blue dot tells us -- the height of the blue dot,	11	life of the plan if it's indicating in the first
12	right, we read over against the vertical axis,	12	election republican advantage than the reliability
13	tells us that about eight percent of districting	13	we get from an initial reading that points us in
14	plans have a first election efficiency gap reading	14	the direction of saying we've got a democratic
15	at that level or more extreme to the left in a	15	advantage. Democratic advantage doesn't seem to
16	negative direction. All right. So that's the	16	be as durable as republican advantage.
17	blue dot.	17	Q In looking at the plans that were analyzed here,
18	If we went out to the corresponding blue dot	18	did you include plans from the 2010s where you
19	on the positive side, we would get, you know, it's	19	have two elections? Are they a data point here or
20	almost the same number actually. The proportion	20	not?
21	of plans that have as their first efficiency gap	21	MR. EARLE: I'm going to object to
22	reading . 10 or more or larger, more positive, is	22	the form of the question only because you're
23	about eight percent.	23	asking if there were two elections in 2010?
24	Now, the red dots, all right. Now,	24	MR. KEENAN: No.
25	conditional on having seen the blue dot event,	25	Q Like, for example, Wisconsin has a 2012 election
Pages 97 to 100			
MADISON FREELANCE REPORTERS, LLC			

	101		103
1	and a 2014 election. You could condition a test	1	if they're at particular value points?
2	on that 2012 election, but there's only one	2	A They're in steps of 005.
3	subsequent election for which it could possibly	3	Q Okay. So to get to .01 , we're at the second dot?
4	flip signs. And I was just wondering if those	4	A That's correct.
5	2012, 2014 elections are represented in this	5	Q Okay. All right, makes sense. And that would be
6	Figure 29 data or not?	6	the -- is that the same for the ones we looked at
7	A I would want to consult my R code or my lab notes	7	before, Figure 27?
8	on that one before I answered one way. I take the	8	A Yeah, that's right, that's right.
9	point, right, given only two elections, and I know	9	Q Okay. Now, looking at Figure 30, what does
10	at other points I've restricted analyses of the	10	Figure 30 represent?
11	plans for three or more elections. So I would	11	A Figure 30 is a rerun of Figure 29 but subset to
12	need to consult my notes on that.	12	data 1991 onwards again, this idea of separating
13	Q Would you be able to do that? I mean, we don't	13	out what's been going on in recent decades from
14	need to do it right now. But your computer is	14	the entire historical analysis.
15	here, would you be able to do that during the	15	Q And what changes did you see when comparing the
16	course of the deposition, like on a break?	16	post 1990 data to the entire data set?
17	MS. GREENWOOD: Yeah.	17	A Sure. Well, for one thing, there are fewer plans
18	MR. EARLE: Yeah, he can go in the	18	that open with as large advantage to democrats.
19	R code and look at that.	19	So if you were to look at the right-hand side of
20	MR. KEENAN: Okay.	20	Figure 29 and compare it with the right-hand side
21	Q We don't need to do it right now, we can do it at	21	of Figure 30, you'd see that the blue, the
22	a time that works.	22	distribution of blue squares is pushed down the
23	A Okay.	23	graph in Figure 30, right.
24	MR. EARLE: Do you want to mark the	24	So now let's take that number we were playing
25	question so when we come back, we can	25	with earlier, the 10 . The proportion of plans in
	102		104
1	respond?	1	recent decades that begin life with an efficiency
2	Q And then looking at, for example, the negative . 1	2	gap that advantageous to democrats or even more
3	percent efficiency gap and then the positive .1	3	advantageous is down to about five percent,
4	percent -- or not percent, .1 efficiency gap, we	4	whereas it was up around eight, nine percent in
5	had about eight percent for each of those numbers.	5	earlier decades.
6	Does that mean that in total about 16 percent of	6	The other thing you see is that on the
7	plans had an efficiency gap as an absolute matter	7	left-hand side of the graph, the distribution of
8	that were greater than .1?	8	red dots has come down a little bit, and that's
9	A That's right.	9	consistent with that initial reading of a
10	Q And the same would hold true for if we're trying	10	particular efficiency gap reading that you get
11	to find absolute values for any one of these	11	from the first election under a plan that appears
12	efficiency gap thresholds, we'd have to add the	12	to be more durable, a more reliable signal as to
13	percent in on both the positive and the negative	13	what you'll see over the life of the plan, a more
14	side?	14	reliable signal in recent decades than in the
15	A That's right.	15	entire data set as a whole. We're less likely to
16	Q Looking at these dots, just for example, like are	16	see plans that initially manifest that level, a
17	the dots on hold numbers or are they on a certain	17	given level of republican advantage go on to
18	percentage --	18	produce a contrary signal over the life of the
19	A Oh, yeah, they're on a grid, yeah. So literally	19	plan in recent decades than in the entire data
20	the R code shifts that threshold in discrete steps	20	set.
21	out from zero.	21	Q And everything we've held before about like the
22	Q And I was just sort of curious. For example, like	22	placement of the dots, that holds for this graph?
23	the first one to the left of one, is that at a --	23	A Oh, the grid spacing you referred to earlier?
24	are those at particular places like .25 or .5 or	24	Q Yes.
25	is it -- or maybe I could just ask you if you know		A Yes, that's the same. I used the same grid
Pages 101 to 104			
MADISON FREELANCE REPORTERS, LLC			

	105		107
1	stepping in all the graphs that have this layout.	1	right dot -- that's about 18 percent.
2	Q Okay. Now, you've proposed I believe a threshold	2	Q Okay. And then of that --
3	of seven percent; is that correct?	3	MR. EARLE: Wait, are you done?
4	A Uh-huh.	4	Were you done with the answer?
5	Q For an efficiency gap in the first election?	5	THE WITNESS: Uh-huh.
6	A Uh-huh.	6	MR. EARLE: Okay.
7	Q How did you come to that number?	7	Q And then the red dot there would represent the
8	A Through the calculations and indeed the graphs we	8	proportion of those plans that would change sign
9	were just discussing, I set about asking what	9	over the length of a plan; is that correct?
10	would be a threshold such that we're either going	10	A Of those, how many then go on to flip, yeah.
11	to leave plans unquestioned, right, so plans don't	11	Q And where is the red dot when we look at
12	trigger the threshold at all, or the probability	12	negative . 07 ?
13	of them flipping sign is sufficiently low that	13	A Yeah, 22.
14	we've seen that that first election signal is	14	Q So 22 percent of that 18 percent would change
15	sufficient to trigger investigation at a	15	sign?
16	reasonably high level.	16	A Uh-huh.
17	Now, by reasonably high, I chose a	17	Q And then if we look at positive .07, the blue dot,
18	conventional 95 percent standard; that's fairly	18	where's the blue dot for that?
19	typical in the social sciences. And indeed, you	19	A Yeah, that's about 18 percent as well maybe, yep.
20	know, went a little bit beyond that. If anything,	20	Q Okay. And then the red dot is up at -- where is
21	it's closer to 99 percent. It's roughly 10	21	that, about four?
22	percent of plans exceed the threshold, and of	22	A Forty, yep.
23	those only 10 percent flip sign. So, you know, in	23	Q So using the .07 percent efficiency gap standard,
24	a sense your error rate there is, you know,	24	we find that 18 percent plus 18 percent, so
25	10 percent of 10 percent. It is down to one	25	36 percent of plans would exceed that in their
	106		108
1	percent.	1	first election?
2	So I thought -- what I was aiming for was a	2	A Yep. I'm going to -- okay, so I'm going to
3	fairly conservative standard before on the basis	3	qualify my answer here because the blue dots are
4	of just one election we could say hey, there's	4	the single best estimates. There is some
5	something to look at here. This is a plan that on	5	uncertainty around each of them, and the folding
6	the basis of the first election has sent a	6	exercise that you're proposing, it's not going to
7	sufficiently strong signal that we ought to take a	7	be strictly additive in the way as you've been
8	closer look.	8	proposing in the questions. That would come out,
9	Q But the key fact you're trying to project would be	9	and indeed the confidence interval around that
10	whether the efficiency gap would flip sign	10	won't be simply putting the two together. So the
11	throughout the course of the plan?	11	better way to do that would be to compute it with
12	A That's right. And I relied on the historical	12	respect to the absolute value directly rather than
13	analysis that we were just talking about to come	13	popping it off, reading it off this graph
14	up with a threshold.	14	directly.
15	Q Did you think that there should be a different	15	Q Do you have that absolute value calculated here?
16	threshold for positive versus negative efficiency	16	A Well, that analysis is the analysis reported in
17	gaps given the difference we saw in the durability	17	Figure 32. That takes, that performs that
18	between the two?	18	calculation about the confidence that I was
19	A No, I didn't. I thought if it was to be a	19	referring to earlier. So the more appropriate way
20	threshold, it ought to be symmetric with respect	20	to get at the level of confidence we have in a
21	to democratic or republican advantage.	21	given threshold is summarized by the calculations
22	Q And just looking at, for example, Figure 29, so if	22	that appear in Figure 32 than in this exercise
23	we look at the blue dots, what's the proportion of	23	that we're performing with respect to Figure 29 or
24	plans that have an EG in excess of negative . 07 ?	24	alternatively Figure 30.
25	A That's about -- let me make sure I'm reading the	25	Q So maybe we could just explain why, why is it
Pages 105 to 108			
MADISON FREELANCE REPORTERS, LLC			

	109		111
1	better to use the Figure 32 method than the --	1	A That means that at that threshold, 96 percent of
2	A Okay. Because it's taking into account, okay, if	2	plans are either not tripping that threshold or if
3	we went down the road we were on with respect to	3	they are, they're continuing to produce efficiency
4	Figure 29, we would say that 18 percent of plans,	4	gaps on that side of zero. So it's basically
5	all right, exceed .07 or greater in the first	5	saying what proportion of plans would be correct
6	election, and then of those, 22 percent change	6	decisions if that was your actionable standard.
7	sign. So we'd have 22 percent of 18 which is, I	7	And so you'd be wrong, you're going to be wrong at
8	can't quite do that but we'll call it 20 percent	8	least according to historical analysis, you know,
9	of 18 if you --	9	let's call it like three plus or minus, not much,
10	MR. STRAUSS: Looks like about	10	percent of the time, out at that standard. And as
11	three percent.	11	you make the standard more stringent, you can see
12	THE WITNESS: Right.	12	there are fewer plans you're going to look at,
13	A But again, it's the way the uncertainty	13	right. And so the error rate obviously falls away
14	propagates. You want to, you know, once you're	14	to zero meaning our confidence rate goes up
15	bound on that and you're confidence bound on that,	15	towards 100.
16	and to do that you just don't literally multiply	16	Q I think I understand. So any plan that never gets
17	-- you know, you can multiply those two	17	above or that doesn't start above the .7 threshold
18	percentages together and get down to roughly three	18	-- . 07 threshold, that's undisturbed?
19	percent. But to put a bound on that, you've	19	A Yeah, right, right, yes.
20	actually got to engage in some brute force	20	Q And then you're also adding in plans that are
21	computation. And the summary of that brute force	21	above that threshold but would never change sign
22	computation is what I produced in Figure 30 and	22	over the course of the term?
23	Figure 32. So we land somewhere close to, you	23	A Yeah, yeah. And you can go the other way, right.
24	know, 100 minus three, .97 in Figure 32. And the	24	So suppose we took a really permissive stand and
25	bound on that -- by that I mean if we went out	25	said hey, if a plan trips -- suppose you took a
	110		112
1	to .7 , a negative .07 on the horizontal axis on	1	really small negative reading, you know, you'd be
2	Figure 32 and project it out, we'd arrive at	2	making errors 20 percent of the time, right. Or
3	roughly that 100 minus three something, close	3	on the other side, a small positive reading, you'd
4	to .97 there.	4	be wrong, you know, 78 percent -- you'd be correct
5	But the key is that that confidence interval	5	78 percent of the time; you'd be making errors
6	is, this one is sort of an honest computation if	6	22 percent of the time.
7	you will, one that I believe more than just sort	7	So as you push the threshold out, two things
8	of, you know, reading off numbers from this graph,	8	are happening. One, fewer things are tripping it,
9	multiplying them together and we're not really --	9	but you're also -- because it's a more stringent
10	on Figure 29 reading off numbers, multiplying them	10	threshold, you're more confident that plans are
11	together and sort of finger to the wind in trying	11	going to stick. Conditional in the first plan
12	to come up with estimates of the corresponding	12	getting over that hurdle, it's increasingly
13	error rates. Those are computed directly if you	13	likely that subsequent elections under the plan
14	will in Figure 32.	14	will be there as well. But I was just hesitant to
15	Q Sure. Let's go into Figure 32.	15	read -- I mean, I've done the calculation I think
16	A Sure.	16	you were going for directly in Figure 32, you
17	Q Which dot represents the negative .07 ? Would it	17	know.
18	be the first one after that line at 6 or the	18	Q Sure. But if we wanted to --
19	second one?	19	MR. EARLE: You were referencing
20	A I believe I used the same gridding, yeah.	20	Figure 29 as you were --
21	Q So it's the second one?	21	THE WITNESS: Figure 29, right.
22	A I believe so.	22	Q If we wanted to calculate just the total overall
23	Q And so that's at about 96 percent or .96 ?	23	percentage of plans that would trigger the initial
24	A Thereabouts, yeah.	24	threshold, could we look at Figure 29 and look at
25	Q So what does that mean, that 96 ?	25	whichever threshold you want to pick.
Pages 109 to 112			
MADISON FREELANCE REPORTERS, LLC			

	113		115
1	A Sure.	1	on the left, not many. That's a far fewer
2	Q Look at the blue dot and then add the proportion	2	proportion than --
3	of plans on both the positive and the negative	3	Q On the left it looks like --
4	side that are in excess of that efficiency gap?	4	MR. EARLE: Finish your answer.
5	MR. EARLE: So your question's	5	A On Figure 30 at negative .07 , right, we're at
6	about Figure 29?	6	about 22 percent. At positive .07 we're at about,
7	MR. KEENAN: Yeah.	7	what's that, about 12 percent.
8	A Figure 29 --	8	Q So that's 34 percent total of plans are in excess
9	Q Yeah, just trying to figure out like instead of	9	of the .07 efficiency gap?
10	the number of plans where we're confident that	10	MR. EARLE: Are you asking him to
11	we're right, the number of plans that just would	11	confirm that?
12	get swept into this threshold?	12	MR. KEENAN: Yes.
13	A Right.	13	MR. EARLE: He's asking if what he
14	MR. EARLE: What's the question?	14	just said is correct. Can we have the court
15	Q How would we determine that from looking at	15	reporter read it back?
16	Figure 29?	16	(Question read)
17	MR. STRAUSS: I think the question	17	A Yes.
18	is how would you determine by looking at	18	Q All right. Let's move on to the -- okay, just
19	Figure 29 what percentage of plans would have	19	maybe to clear up, Figure 33, that looks to be an
20	numbers more than an absolute value of .07 ;	20	analogous graph to Figure 32 but just using the
21	is that the question?	21	data from the 1990 plans to the current?
22	MR. KEENAN: Yes.	22	A That's right.
23	A Yeah, and the answer is -- the answer is if you're	23	Q So everything we talked about in Figure 32 we can
24	looking at the first election, the answer is over	24	transfer over to Figure 33?
25	the entire historical period, 18 percent of plans	25	A That's right, with the caveat that the data in
	114		116
1	have a first efficiency gap reading in excess of	1	Figure 33 covers latter decades.
2	that.	2	Q Let's go to like number -- well actually, it's
3	Q On the negative side?	3	12:30. I don't know if you guys want to take a
4	A Yes, sir.	4	break or --
5	Q But then on the positive side, we'd have to look	5	(Discussion off the record)
6	at that one as well?	6	(Recess)
7	A Yeah.	7	Q So we're back on the record. And we had an
8	Q And then for each, if we want to change that	8	earlier question that, Professor Jackman, you said
9	threshold from .07 to .1 , we could run that same	9	you didn't know and you wanted to consult your
10	exercise just looking at the dots on this --	10	R code on the answer. And I was asking you about
11	A That's right, that's right. That's what the graph	11	in Figure 29 whether this calculation that
12	is reporting, the proportion of plans with a first	12	conditions certain things on the first election in
13	efficiency gap reading at or beyond the specified	13	a cycle, whether the elections from 2012 and 2014
14	threshold on the horizontal axis.	14	were included in this data set. You've had a
15	Q And if we go to Figure 30, this represents the	15	chance to look at your R code and what is your
16	same data we were looking at in Figure 29 but just	16	answer to that question?
17	for the 1991 through the present?	17	A The answer is yes, elections from 2012 and 2014
18	A Yeah, yeah.	18	are included in this analysis, this part of the
19	Q So if we wanted to do the same thing and find out	19	analysis.
20	how many plans triggered -- what proportion of	20	Q All right. So we can go back to Page 69 which
21	plans triggered the threshold, we would have to	21	deals with the Wisconsin plan.
22	look at the blue dots --	22	A Uh-huh.
23	A That's right.	23	Q What did you conclude with respect to Wisconsin's
24	Q -- on each side of the zero, correct?	24	plan that was enacted for the 2012 election?
25	A Uh-huh. Yeah, so quite a few plans trigger that	25	A The Wisconsin plan 2012, and we've had two
Pages 113 to 116			
MADISON FREELANCE REPORTERS, LLC			

	117		119
1	elections under that plan, 2012 and 2014, has	1	efficiency gap, yes.
2	produced efficiency gap estimates of negative . 13	2	Q And to determine the efficiency gap -- I guess,
3	in 2012 and negative .10 in 2014. Those are large	3	sorry, just scrap all that. What percentage of
	and negative -- large, negative estimates of the	4	seats did the democrats win in the 2012 election?
5	efficiency gap.	5	A They won 39 of 99 seats or 39.4 percent of the
6	Q In determining the efficiency gap for Wisconsin in	6	seats.
7	2012, what did you calculate the democratic share	7	Q So then is the efficiency gap equivalent to
8	of the vote to be?	8	subtracting 39.4 percent from 52.8 percent?
9	A After imputations for uncontestedness, 51.4.	9	A The efficiency gap is equivalent to subtracting --
10	Q And 2014, did you calculate it to be 48.0 percent?	10	to be perfectly explicit and if you don't mind,
11	A That's correct.	11	I'll work in proportions. So it's . 394 minus . 5
12	Q And if we wanted to visualize that, if we go back	12	minus two times . 514 minus .5. And so if you do
13	to Figure 4 on Page 18 --	13	that you should get negative .13.
14	A Yeah.	14	Q And you round to the tenth?
15	Q So if we go to -- we'd have to estimate sort of,	15	A Yeah. When Im reporting negative .13 and
16	but where 51.4 percent is, that shows that the --	16	negative .10 in the report and in testimony, Im
17	we would have to see where the orange line,	17	rounding to digits of precision.
18	Page 18 --	18	Q Looking at Figure 35, what's represented on
19	A Yeah, I'm trying to --	19	Figure 35?
20	MR. EARLE: Yeah, but wait for a	20	A Figure 35 presents a sequence of efficiency gap
21	complete question, though. I think he's	21	estimates for Wisconsin arrayed left to right from
22	trying to frame the question, hasn't gotten	22	1972 to 2014. Each plotted point is the estimate
23	it out yet.	23	of the efficiency gap, and the vertical bars
24	Q So I was just trying to figure out how we could --	24	indicate the size of the 95 percent confidence
25	so the orange line would say that with	25	interval accompanying each estimate.
	118		120
1	51.4 percent of the votes, the democrats should	1	Q And if we look at that, looks to me that the last
2	receive I'm not sure exactly but perhaps, you	2	positive efficiency gap that Wisconsin saw was in
3	know, 53, 55 percent of the vote. Do you know	3	199 -- is that 1994?
4	exactly what they should receive with 51.4 percent	4	A That last positive point estimate was 1994.
5	of the votes?	5	Q That's a good point, the positive point estimate
6	MR. EARLE: I'm going to object to	6	was 1994. 1996 the point estimate is a negative
7	the form of the question. Go ahead and	7	efficiency gap; is that correct?
8	answer it if you can.	8	A The point estimate is negative.
9	A I can answer the question under the scenario the	9	Q But the confidence interval spans to the positive
10	maintained hypothesis of a zero efficiency gap.	10	side?
11	So under a zero efficiency gap, should democrats	11	A That's right. That is indistinguishable from zero
12	win 51.4 percent of the vote, we can infer that	12	at conventional levels of statistical
13	they should win -- and it's pretty simple but I'll	13	significance.
14	look up the exact formula. So they've exceeded	14	Q Then from 1998 onwards, would you say that
15	50 percent of the vote by . 14 or .014 so	15	Wisconsin has experienced an unambiguously
16	that's .028 , should be that they should bring	16	negative efficiency gap?
17	52.8 percent of the seats.	17	A Yes.
18	Q With 51.4 percent, did they exceed by 1.4 percent?	18	Q And none of the confidence intervals go to the
19	I thought you used a . 014 .	19	positive side?
20	A I was converting that 1.4 percent to a proportion.	20	A And indeed terminate considerable distance in
21	Q Okay, that makes sense. I should assume that you	21	negative territory.
22	know how to do this better than I do, so that my	22	Q Okay. You calculated an average efficiency gap
23	mistake. And so 51.4 percent of the votes	23	for the elections conducted under the 2000s plan
24	translates to 52.8 percent of the seats?	24	for Wisconsin; is that correct?
25	A Under the maintained hypothesis of the zero	25	A Yes.

	121		123
1	Q And Table 1 indicates that's a negative .076?	1	to the way we discussed the way you calculated the
2	A Could you point me to the page, please?	2	averages for Wisconsin during the 2000s period?
3	Q Sure, Page 55.	3	A Yes.
4	A That's correct.	4	MR. KEENAN: I'm just going to take
5	Q Maybe we could just use this graph to explain how	5	a quick break, make sure I've asked
6	that average is calculated.	6	everything I need to ask.
7	A Oh, okay. So that is an average of the point	7	MR. EARLE: Sure.
8	estimates that begin 2002 and run through '04,	8	(Recess)
9	'06, '08 and '10. And taking into account the	9	MR. KEENAN: Well, we'll go back on
10	uncertainty associated with each point estimate,	10	the record just to say that I don't have any
11	then computing an average and the uncertainty in	11	more questions. So thanks for your time this
12	turn inducing a confidence interval around the	12	morning and afternoon.
13	average.	13	MR. EARLE: We'll read and sign.
14	Q Okay. And then Figure 36, what does this	14	MR. STRAUSS: And that concludes
15	represent?	15	the deposition. Thank you very much.
16	A Figure 36 presents the efficiency gap estimates	16	(Adjourning at 12:59 p.m.)
17	observed in states in the most recent round of	17	
18	redistricting. So for the states here it's	18	
19	typically just a pair of elections; just two	19	
20	elections have been held under the redistricting	20	
21	plan. And the solid square indicates an	21	
22	efficiency gap estimate, and the confidence	22	
23	interval is indicated by the gray bar extending	23	
24	horizontally. And you can see that there are, you	24	
25	know, two estimates per state. And I've ordered	25	
	122		124
1	the states by the average level of efficiency gap	1	STATE OF WISCONSIN)
2	for each state from low at the bottom of the page) ss.
3	to high, positive, at the top of the page.	2	COUNTY OF DANE)
4	Q So Florida had the lowest efficiency gap when	3	I, MARY L. MIXON, a Court Reporter and Notary
5	considering the average of the two elections?	4	Public in and for the State of Wisconsin, do hereby
6	A That's right.	5	certify that the foregoing deposition was taken before
7	Q Okay. And did you calculate the average here in a	6	me at the Wisconsin Department of Justice, 17 West Main
8	similar manner to the way you calculated the	7	Street, in the City of Madison, County of Dane, and
9	average we discussed with respect to Wisconsin	8	State of Wisconsin, on the 20th day of November 2015,
10	in --	9	that it was taken at the request of the Defendants, upon
11	A Yes.	10	verbal interrogatories; that it was taken in shorthand
12	A MR. EARLE: You answered the	11	by me, a competent court reporter and disinterested
12	MR. EARLE: You answered the	12	person, approved by all parties in interest and
13	question before he finished. He was going to	13	thereafter converted to typewriting using computer-aided
14	indicate which figure.	14	transcription; that said transcript is a true record of
15	THE WITNESS: I'm sorry.	15	the deponent's testimony; that the appearances were as
16	Q -- Figure 35 during the 2000s period?	16	shown on Page 2 of the transcript; that the deposition
17	A Well, there is no average indicated on Figure 35.	17	was taken pursuant to notice; that said SIMON D.
18	Q Yeah, but we had discussed it in connection with	18	JACKMAN, Ph.D. before examination was sworn by me to
19	that.	19	testify the truth, the whole truth, and nothing but the
20	A That's right.	20	truth relative to said cause.
21	Q So you --	21	Dated November 25, 2015.
22	MR. EARLE: We want to wait for the	22	
23	whole question to come out.	23	Notary Public, State of Wisconsin
24	MR. KEENAN: Yeah.	24	
25	Q You calculated the averages in Figure 36 similar	25	
Pages 121 to 124			
MADISON FREELANCE REPORTERS, LLC			

A	123:16	8:24 9:4 10:1	93:21 99:25	associated 79:1
a.m 1:16 2:10	adjudicate 96:11	amount 8:1 43:3	appear 34:11	121:10
ability 5:1	administrative	analogous 41:20	55:19 93:2	assume 32
able 21:20 40:7	8:2	98:5 115:20	94:25 108:22	118:21
45:6 49:5,11	advantage 71:15	analyses 101:10	appearances	assumed 22:8
52:6,20,23	71:16 72:15	analysis 11:6	124:15	41:11 42:7
53:6 101:13,15	86:22 87:6	19:7,9 20:1	appeared 29:3	assumes 21:1
above-entitled	90:14,15 92:23	33:11,14 43:12	appearing 2:17	assuming 37:20
2:2	93:1,5,10,13	43:20,23 45:15	2:21,25 38:24	assumption
abrupt 30:8	93:17,21,21	45:19 46:17	appears 61:13	20:25 21:21
absent 18:21	94:20,24 95:1	47:15 48:7,23	88:2 93:14	33:2 41:9 42:3
64:11	95:5 97:15	49:3 50:3,7	104:11	42:9
absolute 72:13	99:16,18,25	55:11 57:6	append 47:6,13	assumptions
72:16,19 88:4	100:5,12,15,15	58:5 65:21	application 8:21	11:12 21:2
90:21 91:14,23	100:16 103:18	76:5,13 77:3,8	approached	32:25
102:7,11	104:17 106:21	78:6 84:17	11:24	asymmetry 93:7
108:12,15	advantageous	91:17 92:21	appropriate	95:14 100:8
113:20	67:10 68:10	95:7 97:17,18	108:19	Attached 3:20
accompanied	104:2,3	97:22 103:14	approved	attempted 51:18
83:5	advantaging	106:13 108:16	124:12	70:5
accompanies	87:1	108:16 111:8	argument	attempts 30:19
70:9 83:13	Advisor	116:18,19	33:10	attention 81:13
88:8	affect 62:80	analyst 96:12	Arkansas	attitudes 9:4
accompa	afternoon	analyzed 44:23	array 19:6	attorney 2:19
accompanying	123:12	55:25 100:17	arrayed 68:20	3:5,23 4:8
119:25	AG's 22:2	analyzing 76:5	119:21	13:14
account 19:23	aggregate 41	ANNABELLE	arrive 110:2	attorneys 2:16
48:17 49:4	ahead 6:11	2:15	article 10:21	2:23 12:13
51:25 70:6,8	11:22 18:1,18	answer 4:19,2	11:14,23 12:	13:18 56:15
82:16,21 88:7	20:5 22:12	5:11 11:11	12:4,5 13:5	attracted 50:23
109:2 121:9	43:6 76:10	17:19 18:19	20:14	available 19:6
accounted 48:6	78:22 98:1	19:10 24:6	articles 20:17	49:10 51:17
accounts 26:25	118:7	30:23 31:3	aside 13:8 94:11	52:9,19 81:14
action 2:2	aiming 10	35:25 43:7	asked 10:13	93:13
actionable 111:6	al 1:4,7	45:19 72:17	12:23 123:5	average 23:13
actual 34:22	allocated 29:17	76:11 77:7,10	asking 4:15	23:15,16,21
50:21 51:6	alphabetical	107:4 108:3	17:17 24:6	24:17,19 25:15
53:19	59:13	113:23,23,24	72:14 78:17	25:15 26:4
add 91:25	alternate 87:3	115:4 116:10	100:23 105:9	27:3,5,10,11
102:12 113:2	alternatively	116:16,17	115:10,13	41:4 43:14
adding 111:20	108:2	118:8,9	116:10	44:1,11 65:23
addition 5:16	ambiguity 18:3	answered 101:8	asks 89:21	65:24 78:25
additional 19:20	ambiguous	122:12	assess 21:9 75:3	79:11,16,18
additive 108:7	19:14 76:20	answering 45:22	Assessing 3:12	80:8 84:24
adjacent 80:25	78:19	answers 4:16,21	assessment 11:3	120:22 121:6,7
Adjourning	American 8:10	anybody 26:20	assistance 9:21	121:11,13
	8:12,14,18,23	apparent 28:9	Assistant 2:19	122:1,5,7,9,17

averaged 79:4	belongs 31:21	109:25	54:1 55:12	certain 102:17
averages 122:25	best 5:1 68:15	boundaries	105:8 108:21	116:12
123:2	108:4	17:11	call 32:15 67:23	certify $124: 5$
averaging 70:7	bet 6:1	box 58:1,24 59:2	72:22 91:12	challenge 52:22
aware 61:3	better 16:10	63:13 64:4,8	109:8 111:9	challenger 50:23
axis 58:4,4 64:15	28:9 108:11	boxes 57:24	called 4:2 54:15	chance 24:16,19
66:11 67:8	109:1 118:22	break 5:10,12	69:1	81:10 82:6,9
88:17,24 90:23	between-plan	42:15,17 56:5	calls 5:17	82:18 87:16
90:24 91:1	75:1 76:3	85:24 101:16	candidate 43:2	92:7,10 95:19
98:10,12 99:3	beyond 30:16	116:4 123:5	43:17,19 48:17	95:25 116:15
110:1 114:14	83:25,25	breaks 5:8	48:18 50:16	change 62:5
	105:20 114:13	Brian 2:19 4:7	51:1	65:10 73:20,23
B	big 97:10	73:8	candidate's 43:4	107:8,14 109:6
B 3:10 36:13	bigger 26:4	bring 118:16	candidates	111:21 114:8
38:19	biggest 9:5	British 28:13	40:18 43:11	changes 7:8
back 13:12	billed 14:14	brute 109:20,21	44:11 45:7	65:13 103:15
14:22 15:7	bit 22:12 26:2	budget 22:24	canonical 47:2,3	changing $72: 17$
28:11 42:19,23	27:25 31:4	build 51:18	caption 71:23	73:25
57:15 65:6	35:22,23 45:21	bunch 37:7	career 8:19	characteristic
71:17 92:8	48:5 54:12	70:17	careful 92:1	75:7 86:9
94:2 101:25	67:23 68:22	bundled 77:20	carefully 94:8	characterization
115:15 116:7	88:19 104:8	bundling 77:5	case 1:6 4:9 6:8	69:15 97:5
116:20 117:12	105:20		10:5,8,11,18	chart 89:9,14
123:9	black 22:20 23:3	C	11:25 12:10,24	check 52:16
backward 63:15	66:13,16,17	C 2:13	14:2 25:19	Chicago 2:15,17
backwards 36:2	blue 67:16,18	calculate 112:22	29:16 34:18	choose 33:10
53:12 64:9	68:2,6,11,11	117:7,10 122:7	35:12 36:15	chose 105:17
bar 23:17 121:23	88:14 89:2,10	calculated 27:2	38:12,12 39:21	circumstance
bars 23:18 59:1	90:20 91:2	40:13 42:20	40:15,20 41:3	35:10
88:2 119:23	94:14 98:2,4	55:24 64:23	43:8 48:11	City 2:8 124:7
base 86:18	98:11,11,17,18	68:16 69:20	52:4 62:13,14	Civil 2:4,16
based 19:10 24:2	98:25 103:21	78:12 108:15	62:16 63:11,17	clarify 78:23
52:14	103:22 106:23	120:22 121:6	72:6 79:12	classes 7:25 8:4
basically 111:4	107:17,18	122:8,25 123:1	89:13,25 90:9	8:9,10,12
basis 49:2 51:24	108:3 113:2	calculating 41:5	99:16	clear 26:13
52:12 106:3,6	114:22	54:17 82:11	cases 36:14	37:10 41:17,23
bathroom 5:9	board 9:20	calculation	38:23 46:6	69:5 73:9
beginning 28:11	10:14	23:24 25:9	49:2,12 52:25	78:21 88:14
30:22 65:14	bodies 19:18	32:4 39:2,16	53:16 61:17,18	115:19
behalf $2: 18,21$	bolster 75:6	40:3,8 41:15	cast 16:3 38:14	close 30:2
2:25 10:17	bolsters 75:23	50:9,12,25	38:14	109:23 110:3
believe 10:12	bottom 41:18	51:3 61:16	catch 76:12	closer 105:21
15:14 27:25	43:13 47:22	62:12 78:9	cause 74:8	106:8
60:25 66:7	59:13 66:11	85:8 108:18	124:20	cluster 70:17
97:15 105:2	67:8 122:2	112:15 116:11	caused 73:24	clustered 75:11
110:7,20,22	bound 79:14	calculations 25:4	caveat 115:25	clustering 76:2
belong 75:12	109:15,15,19	40:8,20 53:19	Century 28:13	77:1,3,5

co-production	complexion 74:1	82:20 83:18,21	31:20,20	87:21 95:12,21
9:8	complicated	97:14 108:9,18	continue 16:17	95:22 96:2
code 101:7,19	6:14	108:20 109:15	continues 90:17	103:4 105:3
102:20 116:10	computation	110:5 111:14	continuing	107:9 111:5
116:15	55:4 72:3	119:24 120:9	111:3	112:4 114:24
$\boldsymbol{\operatorname { c o i n }} 35: 8$	109:21,22	120:18 121:12	continuously 6:3	115:14 117:11
collapses 62:15	110:6	121:22	contrary 67:7	120:7,24 121:4
collection 47:4,7	compute 44:3	confident 97:11	104:18	correctly 14:5
47:12,17 54:25	55:3 77:24	112:10 113:10	contributes 72:3	33:4 42:25
college 32:1	80:23 81:2	confirm 115:11	control 84:18	46:14 69:8
color 22:18,22	108:11	confused 59:17	convenience	correlation
22:24 23:1,7	computed 55:10	connected 63:7	33:9	76:16
23:10 88:13	72:178:5	connecting 64:5	convention	correspond
come 10:10	110:13	connection	105:18 120:12	44:12 58:17
29:12 40:10	computer 53:25	122:18	conversation	correspondence
48:12 94:16	54:5 101:14	conservative	49:21	41:10
96:12 101:25	computer-aided	79:14 106:3	conversational	corresponding
104:8 105:7	124:13	consider 46:17	35:19,21 39:10	57:21 89:14
106:13 108:8	computing 11:1	considerable	80:7	94:22 98:18
110:12 122:23	43:9 55:17	66:2,4 120:20	converted	110:12
comes 70:4	121:11	considerably	124:13	couched 82:23
82:15	concentra	63:22	converting	counsel 3:20
coming 10:14	24:24	considered	118:20	count 51:9
commencing	concept 16:12	7:14 45:1	convey 99:16	County 2:8
2:10	16:15	46:5,20	conveys 99:15	124:2,7
COMMITTEE	conclude 116:23	considering	copies 3:20	couple 46:6
2:15	concludes	122:5	copy 7:4 12:12	94:12
common 87:14	123:14	consistency 87:4	15:10,12 23:2	course 47:14
88:6	conclusion 17:18	consistent 86:25	34:9 57:4,5	59:5 62:13
Commons 28:16	condition 34:5	100:4 104:9	correct 7:13	73:20 80:21
28:25	101:1	consistently 6:8	13:9,10,15,19	81:11 86:19
compare 34:2	conditional 35:1	constituent	14:3,8 19:19	95:20 101:16
103:20	89:21,25 90:10	36:21	20:15 22:7	106:11 111:22
comparing	92:2,6,9 98:25	constitutes	23:12 25:4,11	court 1:1 2:5
31:24 76:5	112:11	17:23	27:13,14,22	4:20 5:5
103:15	conditioning	consult 101:7,12	39:4,14,15,17	115:14 124:3
comparison	96:4,7 97:18	116:9	43:25 45:11,12	124:11
20:24	conditions	contact 10:16	46:18 47:25	cover 14:6
comparisons	116:12	contained 13:22	62:20,23,24	covered 8:15
52:5	conducted	97:20	63:2,3,5 64:6	covers 116:1
competent	120:23	contains 56:13	64:11,17,20	create 16:11
124:11	conducting 9:17	97:23	69:15,21 73:14	critical 97:9
competition	confidence	contested 40:16	73:21,22 74:1	cross 94:2
40:19	23:21 24:2	49:1,8 51:21	74:10,11,13,21	cube 28:4,5,6,11
complete 69:23	27:4,9 59:3	51:22 61:19	74:23 80:3	29:9,9,20 30:3
117:21	62:2,4,12,14	contests 45:1	84:5,11,22,23	30:17 31:5,11
completed 77:9	75:6,23 82:15	context 17:10	85:10,11,21	31:17,17

cubic 29:9	dates 28:11	103:18 104:2	92:18 106:17	58:15 65:2
curious 102:22	day 2:9 124:8	118:1,11 119:4	differences	120:20
current 3:12 7:6	day-long 5:18	democrats' 43:9	16:17,20,23	distinction 41:12
7:7,21 47:2,6	deals 53:4 61:4	demographic	18:5 19:1 76:6	distribution
115:21	116:21	73:24	different 11:12	65:17 66:4,6
currently 9:8	decades 65:20	demonstrate	11:12 17:1,3	68:7 70:20
47:12	94:12 95:7	63:12	17:13,23 35:7	74:879:8
curriculum 3:14	103:13 104:1,5	Department 2:7	42:8,12 51:4	90:19 103:22
7:4	104:14,19	2:20 7:25 8:6	51:11,13,18	104:7
curve 28:20 29:2	116:1	124:6	76:15 90:14	district 1:1,2
29:24,25 31:7	decimal 83:16	depicted 26:24	92:15 99:15	16:3,25 17:11
32:5,7,9,10,13	decision 17:12	deponent 26:13	106:15	21:2,15,22
44:19 57:21	17:22	69:5	differs 31:11	22:3,6,8,9
curves 27:24	decisions	deponen	difficult 63:11	28:15 29:6,11
29:7,8 31:19	111:6	124:15	64:10 81:22	29:16 30:7,9
33:8	defendants	deposed 4:10	digging 31:3	33:2 37:20,22
CV 7:6 9:10	2:3,21 4:8	deposition 1:14	digits 119:17	38:18,24 39:3
cycle 116:13	124:9	2:1 4:9 5:14	dimension 67:21	39:7,17,23
cycles 9:18	deference	6:25 42:6	directing 8:18	40:1,4,10,11
D		101:16 123	9:21	40:16,17 41:4
	def	124	direction 83:	44:4 45:2
D 1:14 2:1 $3: 2$	43:8	depositions	89:1 98:16	48:13,15 49:10
4:1 43:10,10	definition 11:10	35:20	100:14	51:20 52:21
124:17	16:6,14 20:13	describe	directly 108:12	53:1 55:1
Dane 2:8 124:2,7	25:16 36:9	86:7	108:14 110:13	districting 3:12
data 9:19 11:13	38:13	described 28:9	112:16	17:2,6,6,12,21
18:21,24,25	democrat 48:9	describing 69:7	discrete 102:20	18:4 19:19
19:21 28:23,25	48:11	design 9:18	discuss 35:20	27:12,15 29:22
29:4 44:24	democratic 24:1	detail 15:4 22:14	discussed 122:9	51:19 53:8
46:6,25 47:4,5	33:5,11,14,15	determine 39:2	122:18 123:1	84:18 96:5,8
47:7,10,14,14	33:18 43:15,16	52:20 91:23	discussing 37:10	97:19 98:13
47:17,18 51:4	43:19 44:1,3	113:15,18	40:22 54:24	districts 16:4
53:5 54:13,20	44:12 48:21	119:2	55:6 105:9	17:11,22 37:17
54:23 55:1,10	50:13 71:15	determined 86:8	discussion 15:24	38:18,24 39:5
56:17,20 57:11	93:9,12,20,21	determining	86:1 98:6	39:18,19 41:10
58:11,13 59:4	94:20 95:4	86:8 117:6	116:5	42:4,11 43:15
70:20,22 93:13	99:16,25	deviate 78:10	disinterested	44:1,5,6,9,11
94:10 95:5,10	100:14,15	deviation 77:16	124:11	45:4,5,5,9,17
96:13,20	106:21 117:7	78:2 79:2,5,19	dispense 62:17	45:18 46:8
100:19 101:6	democrats 33:21	80:4,9,10	displaying 69:16	48:25 51:16
103:12,16,16	41:3 60:17,23	deviations 78:5	73:24	73:24 74:1
104:15,19	61:7 62:22	79:10 80:12	disposal 18:25	divide 44:5
114:16 115:21	65:19 66:25	diagramming	19:21	divided 36:14
115:25 116:14	67:4,11 70:15	34:9	disputing 12:18	document 15:14
date 14:7	84:10,14 85:10	difference 18:14	dissemination	15:15 54:15
dated 7:4 14:4	85:19 91:8	34:20 35:4	9:19	documents 5:24
124:21	92:23 93:2	36:10 76:14	distance 58:9,14	13:13 56:4

Case: 3:15-cv-00421-bbc Document \#: 53 Filed: 01/05/16 Page 36 of 53

doing 19:18	24:10,13 26:12	24:19 25:3,9	90:19 91:4,17	69:20,21 70:11
26:15	26:19 30:20	27:1,11 32:4,7	92:12,13,17,22	71:2,14 74:8,9
dollars 9:16	34:7 35:18	32:8,14,24	93:4,8,22,24	74:9,12,13,15
dot 23:18 24:22	37:9,13 39:9	34:4,18,24	94:1,19 95:2	74:17,20,22
24:24 46:15,19	41:22 42:2,14	35:2,5,10,13	96:24 97:3,7	75:25 76:1
63:10 66:16,17	43:5 44:16,18	36:9 39:22	97:10 98:7,14	77:19 79:10
66:23 67:12	45:21 47:23	40:7,13,20	98:21 99:2,5,8	80:23,24 86:19
92:2 98:11,11	49:20,23 53:22	41:5 42:20	99:14 100:2,9	87:13,16 91:24
98:17,18,25	54:6,9 56:1,5,9	46:10 53:19	102:3,4,7,12	95:20,25 96:4
103:3 107:1,7	57:3,9,15 59:8	54:4,18 55:4	104:1,10 105:5	96:8,21 97:2,7
107:11,17,18	59:11,22 60:1	55:23 57:8,9	106:10,16	97:8,19 98:8
107:20 110:17	69:4,22 73:7	57:22 58:8,11	107:23 111:3	98:14 99:1
113:2	73:17 76:9,19	58:13,17,18,23	113:4 114:1,13	100:12,25
dots 25:8 26:4	77:9,12 78:16	58:25 60:3,10	115:9 117:2,5	101:1,2,3
66:14 89:2	78:19 80:6,16	60:15,20 61:1	117:6 118:10	104:11 105:5
94:13,14,15	81:23 85:14	61:7,10 62:3,5	118:11 119:1,2	105:14 106:4,6
98:2,3,4,4,24	87:19 100:21	62:22 63:16,19	119:7,9,20,23	108:1 109:6
102:16,17	101:18,24	64:15,19,22,25	120:2,7,16,22	113:24 116:12
104:8,22	107:3,6 112:19	65:10,14,17,20	121:16,22	116:24 119:4
106:23 108	113:5,14 115:4	65:23 66:1,13	122:1,4	election-by-ele...
114:10,22	115:10,13	66:17 67:1,2,9	eight 98:13,23	58:23 59:4
draw 19:25	117:20 118:6	67:14 68:1,4,7	99:7,9,24	69:17
drawing 18:22	122:12,22	68:9,15,19	100:1 102:	election-to-ele...
drawn 27:4	123:7,13	69:10,13,17,19	104:4	75:8,22
drew 19:23	earlier 18:24	70:3,7,11,14	either 10:14	elections 8:13,24
drift 73:24 82:20	34:24 45:19	70:25 71:2,10	25:15 38:19,25	10:23 19:11,17
94:13	54:24 55:6	71:11,13 72:2	40:21 43:16	20:3 21:10
drop 61:17	63:21,23 65:2	72:11,25 73:16	89:1 105:10	27:19,20,20
drops 29:23	65:20 100:7	73:20 75:2,4	111:2	31:15,24,25,25
due 75:11	103:25 104:5	75:11,16,20,24	elaborate 18:6	44:23,25 45:2
duly 4:2	104:23 108:19	76:3,14,17	elaborating	45:10,16 46:7
durability 80:20	116:8	77:4,6,18,22	18:18	47:19 48:1,24
106:17	early 28:24 29:4	77:25 78:8,12	election 8:19	53:9 58:5,6
durable 93:14	96:19	79:1,3,7,9,11	10:1 19:22	61:22 63:21
93:15,18,23	ease 26:19	79:15,16,19	32:23 40:4	66:20 68:4,9
100:16 104:12	easier 69:2	80:21,25 81:3	45:1 46:5,16	69:14 71:12
	easy 40:15	81:5,7,13,15	46:19,21 47:4	77:19 81:6,16
E	edge 24:14 25:25	81:17,20 82:2	47:9,11,16	82:2 96:14,14
E 2:13,13 3:2,10	edges 25:12,13	82:14,16,22	48:16 49:9,15	96:18 97:24
e-mailed 10:13	educational 7:9	83:1,2,4,11,14	49:18,24,25	100:19,23
EARLE 2:22,23	effect 19:20 45:8	84:8,24 85:7	50:1,5,8,8	101:5,9,11
6:7,11 7:18	efficiency 10:22	85:12,18 86:13	51:23 53:8,12	112:13 116:13
11:17,20 15:8	11:2,4 12:4	86:14,15,21,24	53:13,20 55:2	116:17 117:1
15:11,21 17:15	13:4 20:7,13	87:2,5,13,17	55:3,10,24	120:23 121:19
17:25 18:16	20:18,20,25	88:8,15,21,25	62:6,6,18 64:4	121:20 122:5
19:13 22:23	21:8,12,19,22	89:5,7,12,18	65:7 66:18,19	electoral 8:20
23:2,5,9 24:4	23:13,24 24:17	89:23 90:4,11	66:24 68:12	17:8 28:12

32:1 45:3	errors 112:2,5	74:25 75:3,12	exceeds 37:21	extending 59:1
Emma 5:21	especially 93:10	75:16 77:6,21	exception 5:21	121:23
emphasis 8:2	essentially 29:19	79:3,7,15 81:1	32:2	extent 9:19 11:3
empirical $28: 9$	38:17 84:2	81:5,17 83:1,2	excess 16:2	11:10 16:18,21
30:19	establish 18:15	83:11,14 87:2	20:21,23,23	16:24 17:16
empiricall	establishing	88:9 89:23	21:6 34:25	21:10 27:6
31:18	18:7,9	90:19 93:24	37:25 38:21	57:4 75:4
employed 68:25	estimate 14:16	95:2 108:4	88:16,21 89:5	extreme 26:6
enacted 116:24	24:22,23 25:17	110:12 117:2,4	89:12,16 91:5	29:21 68:5
encapsulates	25:18,19,20,22	119:21 121:8	106:24 113:4	88:25 89:7,17
12:23	25:23 27:6	121:16,25	114:1 115:8	90:12 98:15
ended 10:10	31:19 52:24	estimating 31:23	Excuse 11:17	99:2,9,19,20
ends 29:25 83:18	58:16,18,25	67:18,22	exercise 99:22	extremely 16:14
enduring 86:9	59:4 60:7	et 1:4,7	108:6,22	29:22 40:8
engage 109:20	61:12,13,18,21	even-numbered	114:10	55:18 79:9,13
engaged 52:5	62:3,5,15,16	66:21	exhibit 3:11 6:17	83:23
engagement	62:17 66:17	event 89:7 98:7	6:18,19,24 7:1	eyeballing 26:15
3:15 12:9,14	67:19,25 68:2	98:25	7:2,11 12:7,8	
12:18,21 14:7	68:6,23 69:13	Everybody 5:20	13:11,23 14:23	F
entire 57:6 95:5	70:3,14,24,25	evidence 86:25	22:18 34:9	facing 48:9
103:14,16	72:1,4 73:1	evolution 63:18	exhibits 5:25 6:3	fact 50:23 82:16
104:15,19	77:19 79:11,16	exact 99:11	exist 56:3	96:25 106:9
113:25	81:3,7 82:14	118:14	existence 9:7	factor 76:7
environm	83:5 87:5	exactly 10:12	exists 57:4	factors 52:1 62:8
55:17	88:16 89:12	31:8,10 49:19	expect 35:3,5	75:21 76:22
equal $21: 1,14,21$	90:4,11,13	92:2 118:2,4	79:8	Fair 46:23
22:1 33:1 41:9	91:18 93:4,8	examination 3:3	expectation	fairly $105: 18$
42:7,8,10 44:9	94:1,19 97:7	4:5 124:18	21:24	106:3
equally $42: 11$	97:11 99:6	examine 10:21	experienc	fall 70:23 81:6
71:18 72:6	100:2 117:15	examining 10:24	120:15	falls 30:11 70:25
equally-sized	119:22,25	10:25 11:1	expert 10:4,8	111:13
42:4	120:4,5,6,8	76:13	explain 11:8	familiar 11:25
equals 37:7 38:9	121:10,22	example 23:22	21:15 24:9	12:3
41:25	estimated 72:5	25:8 33:21	28:4 36:20	far 83:11 94:2
equation 28:22	82:17	43:21 45:13	44:22 48:6	100:9 115:1
36:8 37:6,15	estimates 11:2	49:17 63:9	54:3,17 58:20	favor 70:1
38:8,10,25	25:14,21 26:16	74:19 98:9	60:6 66:10	favorable 23:25
40:25 41:7,15	27:7 32:3	100:25 102:2	67:17 70:2	60:16,23 61:7
41:17 55:9,12	52:25 58:23	102:16,22	87:24 88:10	62:21 65:19
equations 36:3	60:3,8,10 61:5	106:22	92:18 94:5,18	66:25 67:3,13
40:23 55:6	61:10,23 63:1	examples 36:25	96:7 98:1	69:11 84:9,14
equipped 70:4	63:16,19 65:1	exceed 105:22	108:25 121:5	$85: 9,9,19,19$
equivalent 45:9	65:17,23 66:1	107:25 109:5	explaining 42:20	favoring 65:25
119:7,9	67:9 68:5,8,9	118:18	explicit 119:10	feature 92:20
error 84:3	68:20 69:17	exceeded 118:14	express 30:5	93:14,15,19
105:24 110:13	70:7,17 71:2	exceeding 90:1	36:24	Federal 2:4
111:13	71:13 72:7,12	91:24 92:6	extend 24:1	feel 5:8 97:11

fewer 103:17	96:11	followed 79:7	funded 9:5	80:25 81:3,5,7
111:12 112:8	finger 34:10	following 19:9	further 24:2	81:13,15,17,20
115:1	110:11	37:17 51:22	90:18	82:14,17,22
fifties 30:14	finish 24:10	follows 4:3	furthest 23:23	83:1,2,4,11,14
figure 19:4	115:4	Footnote 28:3	G	84:24 85:7,12
22:16 23:23	finished 59:8	30:24 31:2	G	85:18 86:13,14
26:14,17,18,20	122:13	force 109:20,21	G 2:22	86:16,21,24
26:23,25 28:22	first 4:2,12 6:4	foregoing 124:5	gap 10:22 11:2,4	87:2,5,13,17
29:3 30:23	6:24 11:16	foremost 92:5	12:4 13:4 20:7	88:8,15,21
32:12,22 41:13	14:4,7 15:25	form 9:7 17:16	20:13,18,21,25	89:1,5,8,12,18
46:13 48:2	30:18 36:5	19:14 24:5	21:8,12,19,22	89:23 90:4,11
57:19 58:19,20	56:9 80:22	34:8 40:6,21	23:13,25 24:17	90:19 91:4,18
58:22 63:4,17	96:4,8,23 97:1	43:6 45:24	24:19 25:3,9	92:12,13,17,22
64:21,25 66:7	97:6,8,10,19	54:7 76:10,20	27:1,12 32:4,7	93:4,8,22,24
70:1,2,5,21,22	98:8,14,21	100:22 118:7	32:8,14,24	94:1,19 95:2
71:5,17,22	99:1,17 100:9	formalize 30:19	34:5,18,24	96:24 97:3,7
72:9 73:5,11	100:11 102:23	formally $32: 15$	35:2,6,10,13	97:10 98:7,14
88:10,13 90:10	104:11 105:5	forms 41:12	36:9 39:22	98:21 99:2,6,8
94:4,4,6,8,9,17	105:14 106:6	formula 30:25	40:7,13,20	99:14 100:2,9
95:6,8,9,14,15	108:1 109:5	31:2 34:15	41:5 42:21	102:3,4,7,12
95:17 97:20,23	110:18 112:11	37:11 41:24,25	46:10 53:19	104:2,10 105:5
101:6 103:7,9	113:24 114:1	118:14	54:18 55:4,23	106:10 107:23
103:10,11,11	114:12 116:12	formulating	57:8,9,22	113:4 114:1,13
103:20,21,23	fit 28:20,23 29:3	13:18	58:11,13,17,18	115:9 117:2,5
106:22 108:17	fitting 28:19	formulation	58:23 59:1	117:6 118:10
108:22,23,24	five 27:20 77:21	36:17 40:24	60:3,7,10,16	118:11 119:1,2
109:1,4,22,23	96:13,14,17	forth 15:7	60:20 61:1,7	119:7,9,20,23
109:24 110:2	104:3	forties 30:13	61:10 62:3,5	120:2,7,16,22
110:10,14,15	flat 29:25 30:2	Forty 107:22	62:22 63:16,19	121:16,22
112:16,20,21	32:16,18	forward 52:8	64:25 65:11,14	122:1,4
112:24 113:6,8	flatter 31:9,10	81:6 94:10	65:17,20,23	gaps 54:4 58:8
113:9,16,19	flip 35:14 83:15	found 13:22	66:1,13,17	64:16,19,23
114:15,16	92:4,8,10 94:2	60:25 62:25	67:1,3,10,14	82:2 84:8
115:5,19,20,23	99:20 101:4	74:6 83:6	68:1,5,7,9,15	106:17 111:4
115:24 116:1	105:23 106:10	87:15	68:20 69:10,13	general 2:19
116:11 117:13	107:10	Foundation 9:6	69:18,19 70:3	45:1 54:18
117:24 119:18	flipping 105:13	four 5:23 107:21	70:7,11,14,25	65:16 90:6
119:19,20	Florida 84:12	frame 117:22	71:2,10,11,13	generality 65:16
121:14,16	122:4	frankly 96:10	72:2,11,25	generate 10:21
122:14,16,17	fluke 97:13	Friday 1:15	73:16,20 75:2	generated 55:23
122:25	focused 40:19	front 14:23	75:4,12,16,20	56:12
filed 3:23	focuses 95:7	full 27:20	75:24 76:3,14	generates 17:6
find 51:5 65:13	focusing 90:20	function 29:8	76:17 77:4,6	21:17 97:2
81:9 102:11	94:11	32:15	77:19,22,25	generating 27:9
107:24 114:19	folding 72:11	functional 45:9	78:8,12 79:1,3	Georgia 63:17
finding 86:12	108:5	fundamentally	79:7,9,11,15	63:18,23
fine 49:23 69:22	follow 25:2	16:23	79:16,19 80:21	GERALD 1:7

gerrymander	99:22 100:2	98:2 99:11,12	40:23,25 41:18	horizontal 23:20
20:22	101:18 104:17	99:23 103:23	41:21 67:6,8	24:15 26:1
gerrymandering	107:10 110:15	104:7,22	82:8	32:16,19 58:4
13:3 16:16,19	111:23 114:15	108:13 110:8	hand 30:9	66:11 88:17,24
16:22 17:4,14	116:2,20	114:11 115:20	handling 61:14	90:23 98:10
17:24 18:8,10	117:12,15	121:5	hands 69:6	99:3 110:1
18:15 19:3	118:7 120:18	graphed 27:10	handy 6:22	114:14
getting 10:11	123:9	29:2	happen 94:12	horizontally
35:18 39:9	goal 97:16	graphical 24:25	happened 43:1	121:24
43:2 52:10	goes 38:15 80:9	64:22	happening 39:23	hosted 10:2
55:1 76:4 80:6	90:7 111:14	graphs 23:7	112:8	hour 13:9
89:6 93:12	going 5:24 6:2,4	55:19,20 57:11	happens 6:14	hours 5:23 14:18
112:12	6:7,22 17:15	71:20 97:21	21:9 71:3	house 28:16,25
give 4:12,22 $24: 8$	19:13 20:5	100:7 105:1,8	happy 5:4 6:9	31:25 45:1,11
24:9 25:6 44:7	22:12 24:4	gray 121:23	HARLESS 2:15	46:2
62:11 82:1	33:4,13 34:7	great 6:6 35:25	harsh 30:10	hung 18:23
given 9:18 16:3	34:10 35:1	greater 87:13,17	head 79:18	hurdle 112:12
16:13 21:4,11	36:1 42:23	91:15,18 102:8	heavy 8:22	hypothesis
21:25 28:18	43:5 54:6	109:5	height 98:11	118:10,25
40:21,24 51:20	59:13,19 64:21	Greenwood 2:15	held 45:2 66:20	hypothetical
66:3 67:20	65:8 68:22	10:13 15:9	71:12 104:21	21:7
70:8,10,11	71:17 73:15	55:7 56:19,23	121:20	
72:25 77:20	74:24 75:20	57:8,17 85:25	help 78:13,17	$\frac{\text { I }}{}$
79:10 81:3	76:9,19 77:13	87:23 101:17	helpful 22:19	idea 6:67:19
82:18,19,25	80:13 87:12	grid 102:19	hesitant 112:14	96:17 103:12
93:22 101:9	89:2 90:14,15	104:23,25	hey 106:4	identical 40:21
104:17 106:17	90:25 92:9	gridding 110:20	111:25	identification
108:21	94:21 96:18	ground 4:13	high 65:16 68:20	6:17 7:1 12:7
gives 29:18	100:10,21	group 28:23	105:16,17	13:1
58:11 97:14	103:13 105:	75:13	122:3	identify 6:18 7:2
giving 4:15	108:2,2,6	grouped 55:15	higher 29:13	12:8 45:7
24:25	111:7,12	59:5 66:18	31:5,6,12	identity 52:23
go 5:9 6:11,23	112:11,16	groups 75:14	79:25 94:14	ignoring 40:18
10:25 11:21	118:6 122:13	guess 14:13	highest 60:19,22	44:10 72:25
14:25 17:25	123:4	16:10 19:4	66:23 68:18	Illinois 2:17
18:18 20:6	$\boldsymbol{\operatorname { g o o d }} 4: 77119$	3:25 25:7	historical 11:6	image 35:16
24:13 31:6,18	28:23 52:2,2	26:2,22 27:23	47:7 96:13	immaterial
33:18,22,24	85:23 120:5	4:2 44:20	03:14 106:12	41:12
36:2 43:6	gotten 117:22	0:4 53:18	111:8 113:25	immediate 88:18
47:10 55:3	gradually 73:25	8:6 66:11	history 7:10	immediately
59:19 64:8	grant 9:16	6:23 85:7	hoc 45:24	41:24 65:6
67:4 76:10	graph 23:20	119:2	hold 39:9 85:1	implied 32:7,9
78:22 80:2,3	27:11 63:20,25	guys 116:3	102:10,17	32:10,
80:20 82:7	65:5 67:5,7,9		holding 77:5	imply 21:13
83:21 89:8	67:16 69:16	H	holds 30:17	important 66
92:25 93:1	72:9 88:24	H 3:10	104:22	75:19
98:1 99:4,13	90:22 94:15,15	half 5:23 40:22	honest 110:6	imprecise 53:2

72:2	individual 25:14	intervene 96:19	Keenan 2:19 3:5	known 16:15
improve 30:12	25:21 58:22	96:19	3:23 4:6,8 6:2	knows 76:1
imputation	83:4,11	introduce 30:4	6:9,15 7:20	
51:11,13 52:12	inducing 34:25	introduction	11:19 15:23	L
52:18 53:3	121:12	15:3,5	23:1,3,6 24:12	L 1:17 2:5 124:3
imputations	industry 54:22	inverted 29:24	37:12 39:12	La 2:17
117:9	infer 118:12	investigated	42:16 44:17	lab 101:7
impute 53:12	information	29:10	53:24 54:8	labeled 41:18
include 100:18	7:12 56:13	investiga	56:2,8,11,22	ack 16:10
included 116:14	informative	105:15	56:25 57:10,18	land 109:23
116:18	94:20 96:23	investigat	59:10,24 73:10	language 61:12
includes 57	initial 10:16	9:11,15	73:18 76:24	large 9:3 10:22
increase 22:23	100:13 104:9	investigators	78:18 80:18	11:18,21 19:20
increasingly	112:23	28:24	85:23 87:22	24:25 31:22
112:12	initially 104:	invoice 14:4,19	100:24 101:20	47:2 86:9,14
incumbency	input 41:19	invoices 3:16	113:7,22	93:5 99:9,25
49:5 52:1	insert 45:22	13:22 14:1,9	115:12 122:24	103:18 117:3,4
incumbent	inside 25:12	14:12,13	123:4,9	largely 29:25
48:19,20,21,21	26:7 51:19	involved 10:11	keep 6:22 31:16	30:16 70:19
50:15,17,20	instance 2:3	irrespective	35:24 46:7	71:4
51:2 52:24	55:9,11 82:19	72:14 88:4	81:10 92:5	larger 86:14
74:3	88:18	issue 96:16	keeping 55:14	98:22 100:1
incumbents	institution 31:25	italicized 13:3	key 18:2 106:9	lasted 5:22
29:23 50:13,14	intent 18:22		110:5	late 10:9 65:21
independents	19:18	J	kind 19:9 63:15	law 2:16,16,23
44:10	interest 124:12	Jackman 1:1	Klarner 46:23	2:23 10:21
indexes 39:18	interested 10:14	2:1 4:1,7 86:3	47:9 54:24	11:14,19,20,23
indicate 63:13	interesting	116:8 124:18	know 5:4,10	11:25 28:4,5,6
72:15 119:24	92:20	jagged 68:24	17:7 19:21	28:6,7,11
122:14	interpola	69:2,7	24:5 29:21	29:10,20 30:3
indicated 71:5	51:24	Jefferson 2:24	31:22 33:17	30:17 31:11,17
71:14,15	interpret 79:6	jobs 7:10	54:4,14 55:15	31:17
121:23 122:17	interpretation	jump 15:6,7	56:15 57:12	LAWYERS'
indicates 58:13	24:8 92:5,21	22:12	63:20 70:19	2:15
58:16 121:1,21	95:22 98:5,5	June	77:1 82:18	layout 105:1
indicating 58:25	interrogatories	jurisdiction	83:25 89:15	leads 83:6
59:2 93:4	124:10	31:19,20 39:8	91:10 92:25	leave 105:11
100:11	intersects 34:2	39:21	95:18 96:18	led 75:8
indications	interval 24:3	jurisdiction-	98:19 101:9	left 6:3 24:20
93:12	27:4,9 59:3	30:15 39:20	102:25 105:20	25:19 58:7,24
indicative 65:24	62:15 82:15,20	jurisdictions	105:23,24	59:7,13 65:5
67:3,10 86:22	83:18 108:9	36:15,16 53:10	109:14,17,24	88:18 89:13
92:25 93:17	110:5 119:25	Justice 2:7,20	110:8 111:8	94:15 98:15
94:19 95:4	120:9 121:12	124:6	112:1,4,17	102:23 115:1,3
indicator 19:2,5	121:23	K	116:3,9 118:3	119:21
indistinguisha... 120:11	intervals 23:21 83:21 120:18	$\frac{\mathbf{K}}{\text { Karl 46:23 54:24 }}$	$\begin{aligned} & 118: 3,22 \\ & 121: 25 \end{aligned}$	$\begin{array}{\|l} \mid \text { left-hand } 24: 21 \\ 26: 9 ~ 89: 8 \end{array}$

104:7	limit 24:14	live 22:5	looks 20:1 57:23	map 33:19
legal 10:5 17:17	limiting 40:17	lives 30:3,17	63:25 69:9	mapping 21:18
legislative 3:12	62:13	LLC 2:23	84:12 91:3	mark 5:24 6:3,4
10:23 31:24,24	line 22:10 23:11	location 30:24	92:15 95:18	6:15,24 101:24
44:22 47:4,11	23:19,22 24:15	31:2	99:10 109:10	marked 6:17 7:1
47:16 48:15,24	24:21,24 25:3	long 5:22 26:22	115:3,19 120:1	12:7 13:11
49:8 51:16	25:23 26:1,6,9	longer 47:7	looping 55:13	MARY 1:17 2:5
legislature 31:14	26:11,22,24,24	look 7:10 10:19	lose 38:15	124:3
length 59:2	29:18 32:21,23	12:15 13:1	loses 38:21	master 55:22
107:9	34:2,3,21	15:10,16 19:17	losing 74:3	master's 8:5
let's 13:8 21:23	57:20 58:7,10	32:21 35:15	lot 8:20 53:6,9	materials 13:17
49:13 56:5	58:12,16 63:7	46:13 59:12	53:10 54:13,25	13:21
66:7 78:24	63:8,8,21,22	66:7,10,22	55:20	mathematical
86:6 88:17	64:5,15 65:3,6	91:7,19,21,22	lots 88:20	88:3
89:8,24 91:12	67:18,24 68:2	92:12,17 95:10	loud 5:5	matter 90:21
92:25 93:1	68:6,11,11,16	95:16,23 96:12	low 60:15 86:15	102:7
98:9,9 103:24	68:17 71:4,7	101:19 103:19	105:13 122:2	matters 90:22
110:15 111:9	83:19 110:18	106:5,8,23	lower 29:14 31:6	91:21 96:11
115:18 116:2	117:17,25	107:11,17	31:9,13 40:25	$\boldsymbol{\operatorname { m a x }} 85: 12,18$
letter 3:15 12:9	linear 32:15	111:12 112:24	45:1,11 46:2	McGhee 10:20
12:14,19,22	lines 16:25 18:22	112:24 113:2	62:10 65:5	11:15,23 13:5
level 21:12,25	23:20 30:8	114:5,22	67:12 68:6,11	16:8,9 20:14
39:23 51:15	64:10 67:16	116:15 118:14	68:20	mean 11:8 37:15
54:18 55:2	list 55:22 61:2	120:1	lowest 60:3,9,12	44:2 57:10
62:2,4 65:16	listed 7:11 9:24	looked 27:15	61:1 68:18	59:23 61:11
73:13 75:20	59:6 84:4	40:5 41:6	122:4	71:9,25 72:20
77:23 98:15	lists 55:23	44:25 45:10		74:14 75:1
104:16,17	literally 26:15	49:18 62:18	M	76:22 77:7,17
105:16 108:20	28:19 63:19	65:15 91:2	Madison 2:8,21	78:9,10,13
122:1	72:14,21,23	97:24 103:6	124:7	83:10 91:13
levels 120:12	102:19 109:16	looking 12:21	magnitude	101:13 102:6
leveraging 51:3	literature 16:13	15:25 19:16	72:13 88:5	109:25 110:25
lie 25:14,22 26:6	16:15 30:4	22:16 25:20	91:18 94:23	112:15
32:16 90:25	31:22	28:14 42:24	magnitudes	meaning 17:9
lies 24:17,20	litigants 96:10	43:13,23 57:19	72:24	71:1 89:3
32:23 58:12,14	little 18:3 22:12	58:19 63:4,17	main 2:7,20	111:14
83:3	22:13,18 26:2	64:13 67:20	13:25 124:6	means 21:16
life 75:5 77:25	27:24 28:1	68:12 71:6	Maine 32:2	22:2 39:13
79:3,15 82:10	31:3 35:18,22	72:12,23 76:14	maintained	44:3 60:16
86:16 87:4	35:23 45:21	85:15 88:10	118:10,25	70:15 72:21
89:24 93:3	48:5 58:1	89:21,22 91:14	making 9:16	75:15,17 78:7
94:21 96:15	67:23 68:22,25	100:17 102:2	112:2,5	78:18 84:8
97:6 99:5,8,13	71:23 73:7	102:16 103:9	manage 10:24	92:19,23 96:8
100:3,11 104:1	78:23 81:21,21	106:22 113:15	manifest 104:16	98:2 111:1
104:13,18	87:8 88:19	113:18,24	manifesting	measure 10:19
light 11:6	92:15 94:13	114:10,16	97:15	10:25 12:4
Likewise 70:24	104:8 105:20	119:18	manner 122:8	16:11,18,21

\begin{tabular}{|c|c|c|c|c|}
\hline 19:2,24 20:8 \& mind 31:16 \& N \& new 60:2,10,11 \& numbered 59:23 \\
\hline 20:21 34:24 \& 119:10 \& N 2:13 3:2 \& 97:1 \& 59:24 \\
\hline 71:24 77:24 \& minds 19:25 \& name 4:7 \& nice 30:4 \& numbers 9:22 \\
\hline 78:1 \& 92:6 \& National 8:19,24 \& NICHOL 1:7 \& 13:2 23:16,17 \\
\hline measured 19:12 \& minimum 85 \& 9:6 10:1 \& Nick 10:15 \& 25:21 26:3,5 \\
\hline 65:19 66:25 \& minor 40:18 \& nationwide 50:6 \& nine 104:4 \& 36:10,18 41:2 \\
\hline 67:13 76:18 \& 44:10 \& nature 20:22 \& nineties 53:7,10 \& 42:12 59:20,22 \\
\hline measures 10:22 \& minus 35:17 \& 29:6 76:8 \& 53:13 65:21,24 \& 72:22 77:4 \\
\hline 23:13 79:2 \& 38:2,8,9 75:15 \& nearest 63:10 \& 69:9 70:18,23 \& 78:4 95:17 \\
\hline 81:14,15,20 \& 79:13 109:24 \& Nebraska 32:2 \& 71:3 \& 102:5,17 110:8 \\
\hline measuring 16:24 \& 110:3 111:9 \& necessary 45:23 \& nonlinear 28:17 \& 110:10 113:20 \\
\hline 75:6,24 80:20 \& 119:11,12,12 \& need 7:14 22:23 \& 28:20 \& \\
\hline median 60:3,6,9 \& mirror 35:16 \& 33:6 44:15 \& nonlinearit \& 0 \\
\hline 60:9,19,22 \& misleading 60:8 \& :12,19 \& 30:9 \& oath 4:3,17 86:4 \\
\hline 61:1,2 67:19 \& missing 51:24 \& :12,14,21 \& norm 66:2 \& object 17:15 \\
\hline 67:22,25 68:16 \& misspeak 30:22 \& 123:6 \& normal 79:7 \& 19:13 24:4 \\
\hline 68:19,23 69:10 \& misspoke 36:17 \& needed 16:3 \& North 2:17,24 \& 34:7 43:5 54:6 \\
\hline 69:12,19 70:23 \& mistake 118:23 \& 38:1 \& Nos 3:11 \& 76:9,19 100:21 \\
\hline 72:1,4,7 77:15 \& mixed 87:3 \& negative \& Notary 2:6 124:3 \& 118:6 \\
\hline 78:5,10,12 \& MIXON 1:17 \& 58:8,16,17 \& 124:23 \& objection 17:18 \\
\hline 79:5 \& 2:5 124:3 \& :6 \& notation 88:3 \& 17:25 18:16 \\
\hline medians \& model 50:20 \& 4:15 65:25 \& note 18:17 28:3 \& 45:23,24 \\
\hline meeting 5:18,19 \& 51:8 52:18 \& 67:7,9 70:12 \& 41:18 66:3 \& observe 18:24 \\
\hline 5:22 \& 53:3 \& 71:3,11 72:21 \& 71:22 73:19 \& 49:175:10 \\
\hline mentioned 8:24 \& modeling \& 73:2,11 80:14 \& 88:23 \& 96:13,15 \\
\hline 11:14 19:16 \& 61:13 \& 83:12 84:8,22 \& notes 101:7,12 \& observed 28:17 \\
\hline 31:4,11 42:3 \& models 51:11,13 \& 84:25 85:2,3,4 \& notice 2:5 \& 40:17 61:8 \\
\hline 42:24 48:5 \& moderate 77:14 \& 85:5,10,20 \& 124:17 \& 121:17

chiously 27.18 \\
\hline mentioning \& morning 4:7 \& 88:6,19,19 \& noticed 63:24 \& obviously 27:18 \\
\hline 32:11 \& 123:12 \& 89:1,9,13,25 \& noticing 92:14 \& 53:17 54:13 \\
\hline mentions \& move 27:23 \& 90:1,9,11 91:2 \& November 1:15 \& 111:13 \\
\hline message 99:15 \& 53:22 63:9 \& 91:22 92:8,9 \& 2:9 124:8,21 \& odd 78:6 \\
\hline 100:4,4 \& 88:23,25 \& 92:17 93:17,24 \& NSF 9:16 \& off-year 74:8,15 \\
\hline method 52:6,6 \& 115:18 \& 93:25 95:21,24 \& number 13:2 \& 74:22 \\
\hline 109:1 \& moves 30:13 \& 97:3 98:10,16 \& 21:1,21 22:1,3 \& offering 31:22 \\
\hline methods 8:5,21 \& Moving 48:4 \& 99:7,17 102:2 \& 22:4,5 27:2 \& office 2:23 22:24 \\
\hline 52:15,16,17 \& 96:3 \& 102:13 106:16 \& 31:21,23 34:22 \& official 23:6 \\
\hline Michigan 9:9,23 \& multimember \& 106:24 107:12 \& 36:15,16 42:7 \& Oh 11:20 23:2,5 \\
\hline 10:3 50:10 \& 45:5,5,17,17 \& 110:1,17 112:1 \& 42:8,10 44:5,7 \& 23:5 31:1 37:4 \\
\hline 60:25 \& 45:18 46:4,8 \& 113:3 114:3 \& 45:4 51:7 \& 102:19 104:23 \\
\hline mid 65:23 69:9 \& multiple 69:14 \& 115:5 117:2,3 \& 57:13 70:11 \& 121:7 \\
\hline 70:18,23 71:3 \& multiplied 38:2 \& 117:4,4 119:13 \& 72:21 79:1 \& okay 4:12,14 \\
\hline middle 23:18 \& multiply 109:16 \& 119:15,16 \& 80:22 89:14 \& 5:24 6:11,22 \\
\hline 25:16 42:19 \& 109:17 \& 120:6,8,16,21 \& 97:4 98:20 \& 7:14,17,24 9:3 \\
\hline 67:18,24 68:17 \& multiplying \& 121:1 \& 99:12 103:24 \& 11:20 13:8 \\
\hline 68:19 78:11 \& 110:9,10 \& never 111:16,21 \& 105:7 113:10 \& 14:16,19 15:2 \\
\hline Milwaukee 2:24 \& \& \& 113:11 116:2 \& 15:8,11 17:12 \\
\hline
\end{tabular}

19:15 20:5	90:20 91:20	Over-time 65:10	part 38:10 76:12	59:12
22:8,12 23:9	103:6	overall 66:5	83:18 86:11	ending 5:11
23:22 24:9	onwards 65:22	112:22	97:16 116:18	people 6:12
26:2 27:3,23	65:24 103:12	overlap 64:10	particular 18:25	18:22 22:3,4,5
32:12,21 33:3	120:14	73:8	28:16,22 32:23	22:9,9 30:4
34:14,20 35:7	open 50:14		36:17,23 39:3	96:10,15
36:20,25 37:4	99:24 103:18	P	39:7 40:3,13	percent 23:20
37:6,14,16,18	opened 81:8	P 2:13,13,19	40:14 45:20	24:16,18 27:4
39:2,12 40:12	opening 60:13	P-A-R-S-E	46:16 58:2	30:1,16 32:18
40:15 41:17	opens 99:17	81:24	62:2,5 66:23	32:18,20,20
42:2,11 43:13	operationalize	p.m 123:16	69:20 73:19	33:18,21,24
44:14 45:10	43:14	page 3:11 7:15	76:17 78:1,8	34:3,17,17
47:19 48:8	operationally	13:1 22:16	86:12 96:25	35:2,8,9,11, 12
49:13 50:3,19	18:4	23:9 26:21	97:4,9 102:24	37:1,2 43:2
50:25 53:3,11	operator 37:	29:3 32:12	103:1 104:10	59:2 68:8
53:15 54:20	opinion 8:13	36:2 37:12,14	particularly	70:16,18 71:7
56:1,17,22,25	16:20 17:2,21	38:8 40:22,24	52:2 65:22	71:9,10,13,15
57:3,23 59:11	73:23	40:25 41:18	parties 16:18,24	74:25 75:10,14
59:15 60:1,15	opponent 50:22	42:21 43:13	17:1,4,13,23	75:15 77:1
61:4,10,12	opposed 30:24	46:13 47:22,24	30:10 124:12	81:18,19 82:5
62:10 63:24	opposite 9:22	51:10 53:22	partisan 13:3	82:6,6,8,9,12
64:7 66:22	86:16,19 93:16	55:7,9 57:19	16:16,19,21	82:12 83:21,22
69:24 71:17	93:23 99:6	58:19 59:20	18:7,10,15	84:2,3 85:1,5
72:1 73:2,6	100:3	60:14 61:4	19:2 20:22	87:15 88:5,22
75:2 77:12,18	orange $32: 13,21$	63:4,25 65:8	72:14 87:6	89:11,15 90:16
78:7 79:18	34:21 46:15	70:1 73:17	partnering 9:22	91:4,11,14,16
80:2,12,15	57:20 58:7,10	77:13 81:12	parts 36:21 42:6	92:7,10 93:6
83:6 84:24	58:12,15 63:21	84:5 86:6 87:8	party 16:2,3,4,4	95:18,24 98:13
85:3,22 86:18	63:22 64:15	87:21 88:1,1	21:4 28:19	98:23 99:7,10
88:10,12 92:22	65:3 117:17,25	94:5,6 96:3	36:13,14,24	99:13,20,24
95:13,16,23	order 48:12	116:20 117:13	37:1,19,20,22	100:1,1 102:3
97:18 98:4	59:13 91:23	117:18 121:2,3	37:24 38:3,5	102:4,4,5,6,13
101:20,23	ordered 58:24	122:2,3 124:16	38:11,15,19,19	104:3,4 105:3
103:3,5,9	59:5 121:25	Page(s) 3:3	38:20,21 39:1	105:18,21,22
105:2 107:2,6	organization 9:2	paid 14:9	39:1 40:18	105:23,25,25
107:20 108:2	organized 15:3	pair 80:25	41:2 43:1,4,22	106:1 107:1,14
109:2,2 115:18	original 3:20,23	121:19	44:11 48:20	107:14,19,23
118:21 120:22	54:23	pair-wise 80:23	52:3 84:18	107:24,24,25
121:7,14 122:7	ought 106:7,20	paragraph 15:19	party's 20:9,9	109:4,6,7,8,11
on-year 74:7,12	outcomes 47:17	15:25 16:1	pass 44:20	109:19 110:23
74:20	outermost 25:12	20:6 60:2,14	passing 86:22	111:1,10 112:2
once $30: 14$	25:13	74:24 77:13	pattern 69:6	112:4,5,6
109:14	outlined	87:20 88:	90:6	113:25 115:6,7
one-off 97:13	outside	paragra	PAUL 2:15	115:8 117:10
one-quarter	outstanding	$59: 23,25$	pause 15:21	117:16 118:1,3
68:4	14:12,13	pardon 31:1	45:21	118:4,12,15,17
ones 64:14,18	outward 59:1	parse 81:22,23	peculiarity	118:18,18,20

118:23,24	places 83:16	71:9,10,12	62:15 65:4	103:16
119:5,8,8,24	102:24	76:7,16,25	66:3 68:3,8	power 29:8
percentage 44:7	plaintiffs 1:5	77:20,23 78:6	81:5 89:10	preceding 49:16
51:6,8 102:18	2:18 6:21	79:4 81:14,18	100:19 101:9	49:17 65:7
112:23 113:19	10:18 14:1,9	81:18 82:1,5,8	119:22 120:4,5	precise 16:14
119:3	14:14,20	83:7,24 84:4,7	120:5,6,8	17:9 21:3,5
percentages	plan 3:12 18:4,4	84:19 87:12	121:2,7,10	precisely 55:16
91:25 109:18	19:22,23,25	88:15,20,22	points 57:11	71:7 72:5,5
percentile 68:3,7	24:1 27:19,21	89:4,11,16	59:20 67:21	precision 71:24
72:8,8	51:20 53:9	90:2 91:4,15	95:3 100:13	72:7 119:17
perfectly 33:8	55:16 66:23	91:16,23 93:11	101:10 103:1	prediction 49:5
41:17 119:10	67:12 69:10	94:10,25 95:3	political 7:22,25	49:12
perform 40:3	73:19,21 75:5	95:3 98:14,21	8:6,22 9:4,5	prefer 52:7,11
52:15	75:7,12,19,25	99:4,8,18,24	16:18 46:24	61:20
performance	76:2,2 77:2,14	100:17,18	47:3 73:25	prepare 5:14
52:13,16	77:20,24 78:1	101:11 102:7	politics 8:10,12	preprocessing
performed 52:6	78:4,8,10,12	103:17,25	8:14,23	54:25
77:8	78:13,24,25	104:16 105:11	poorly 25:8	present 95:11
performing	79:4,12,16,17	105:11,22	popping 108:13	97:25 114:17
67:22 108:23	80:21,24 81:4	106:24 107:8	poses 52:22	presented 70:20
performs 108:17	81:8,10,11	107:25 109:4	position 7:21,24	presents 119:20
period 52:7	82:10,25 84:22	111:2,5,12,20	8:3 46:9	121:16
65:15 113:25	85:8,13,18	112:10,23	positions 45:6	preset 21:23
122:16 123:2	86:10,17,20,23	113:3,10,11,19	positive 35:13	presidential 9:18
periods 52:14	87:1,4,7,16	113:25 114:12	58:8,13 64:18	48:14,16,25
permissive	89:22,24 90:1	114:20,21,25	67:2,5 70:12	49:9,14,15,18
111:24	90:1,3 92:3,24	115:8,21	70:14,15,25	49:25 50:1
person 124:12	93:3,15,19	plateau 30:14	71:10 72:22,22	51:14 52:8,11
perspective	94:21 95:20	playing 103:24	73:2,12 83:12	52:19 53:5,7
18:21 35:15	96:5,8,15,16	please 121:2	88:5 89:1,15	53:11 74:12,16
PETER 2:22,23	96:20,21,24	plot 33:17 64:22	90:5,13,15	presumes 33:7
Ph.D 1:14 2:1	97:1,2,6,8,12	plotted 58:2,9	91:7,22 92:7	pretty 118:13
4:1 8:6 124:18	97:15,19 98:8	63:5 64:13	92:11,13,22	previous 45:20
phase 63:23	99:1,5,14,17	65:3 68:14,14	94:1 95:17	98:6
phone 5:17	100:3,11	68:15 70:13	96:1 97:3	primarily 8:5,8
phrasing 25:7	104:11,13,19	73:12 88:12	98:19,22 102:3	principal 9:10
pick 112:25	106:5,11 107:9	89:19 90:23	102:13 106:16	9:15
picking 26:16	111:16,25	92:14 119:22	107:17 112:3	printed 22:20,21
38:11	112:11,13	plunking 26:17	113:3 114:5	printer 22:25
piece 9:5 19:20	116:21,24,25	plural 60:8	115:6 120:2,4	prior 19:10
38:7	117:1 120:23	plus 43:10 79:12	120:5,9,19	51:14 69:24
piecewise 32:15	121:21	107:24 111:9	122:3	probabilistic
place 19:22 20:3	plan's 53:16	point 24:15,18	possession 13:14	82:24
53:8,9,16	plans 20:2,3	24:22,23 25:21	possible 19:7	probability
74:16 97:1	27:12,15 29:22	27:7 32:19	possibly 10:24	70:10,13,24
placement	65:18,25 67:3	33:9 52:23	101:3	80:24 81:2,4
104:22	67:10 69:13,15	58:11,14,25	post 45:23 53:4	81:16,19 82:3

82:5,12,13	109:14	putting 43:10	102:20 116:10	93:5 105:16,17
83:1,15 86:15	properties 10:19	94:10 108:10	116:15	recall 10:12
89:2,3 90:3,12	10:24	Q	race 43:1 48:	77:18
90:16,17 92:4	proportion	Q	49:1,6	receive 118:2,4
93:2 105:12	29:17 31:14	quadrant	races 45:4 48:4,7	received 12:12
probably 25:23	36:23,24 37:25	qualification	49:7,7	50:21
25:24	62:9,10 88:15	68:21	racked 89:23	Recess 42:18
problem 64:11	89:3 90:24	qualify 1	range 61:6	86:2 116:6
procedure 2:4	98:20 99:4	quantities 36:22	rapidly 30:12	123:8
48:13 49:11	103:25 106:23	41:20,21 55:3	rare 89:18	record 15:24
51:18 52:4,14	107:8 111:5	88:12,14	rate 13:8 20:9,10	18:17 26:12
61:17 64:3	113:2 114:12	quantity 39:20	105:24 111:13	30:21 42:19
proceeds 43:23	114:20 115:2	89:19,20	111:14	55:1 69:4 86:1
processing 54:21	118:20	question 4:22,24	rates 16:18,24	89:7,16 116:5
produce 11:3	Proportional	5:3,11,12	18:5 19:1	116:7 123:10
13:13 28:23	29:15	13:25 17:16,19	110:13	124:14
29:7 49:11	proportions	17:20 18:19,20	ratio 20:8 75:18	recorded 62:25
67:23 70:6	36:18,19	18:24 19:14,15	raw 72:16 88:5	91:17
86:23 88:20	119:11	24:5,6 30:21	read 5:5 63:19	recording 89:4
99:5,14 100:2	proposed 87:10	34:8,12 35:24	84:7 88:6 94:7	89:12
104:18 111:3	105:2	39:11 43:6,7	98:12 112:15	recur 93:25,25
produced 6:20	proposes 31:17	44:16 45:20,22	115:15,16	red 23:10, 11
13:15,17 70:8	proposing 108:6	45:25 54:7,10	123:13	24:15,21,24
71:14 97:7	108:8	56:7,9 59:9	reading 26:20	25:3,23,25
109:22 117:2	proposition 87:1	63:8 69:23,24	69:8 93:22	26:6,11 89:20
produces 18:5	protective 29:22	76:10,20,23	96:24 97:3	91:20,21 92:2
producing 55:18	provided 3:20	78:16,20 85:16	98:7,14,22	92:13 94:13,15
68:4,9	56:15,18,21	100:22 101:25	99:8,11,12,14	98:3,4,24
product 17:4	92:4	113:14,17,21	99:17 100:9,13	104:8 107:7,11
production	provisions 2:3	115:16 116:8	104:9,10	107:20
54:15	proximate 48:16	116:16 117:21	106:25 108:13	redistricting
professor 4:7	49:15	117:22 118:7,9	110:8,10 112:1	55:16 94:9
7:22 86:3	public 2:6 8:13	122:13,23	112:3 114:1,13	96:16 121:18
116:8	124:4,23	question's 113:5	real 21:10 52:22	121:20
professorial 8:3	published 20:17	questions 4:15	realize 29:12	refer 5:25 50:15
program 53:25	punishment	4:25 15:1	realized 22:20	61:16 87:9
54:15,21 55:12	30:10	108:8 123:11	really $28: 682: 13$	reference 21:7
programs 54:1,5	purposes 9:12	quick 123:5	110:9 111:24	76:4
54:22	73:4,11	quite 30:2,8 41:1	112:1	referencing 13:6
project 9:12	pursuant 2:4	68:24 76:12	realms 8:21	26:13 41:23
58:10 106:9	124:17	109:8 114:25	reason 59:6 74:2	69:23 112:19
110:2	push 112:7	R	74:4	referred 30:23
prominently	pushed 103:22		reasonable 8:1	34:24 90:10
74:7	put 13:8 25:8	54:15,17,20,23	83:17	104:23
pronounced	46:8 96:9	54:15,17,20,23 55:13,17 59:12	reasonably 29:4	referring 55:5
95:6,15	109:19	$\begin{aligned} & 55: 13,17 \text { 59:12 } \\ & 101: 7,19 \end{aligned}$	52:9,13 72:18	66:8 76:21
propagates	putative 87:10	101:7,19	87:14 88:6	81:12 87:19

108:19	14:22,25 18:6	rerun 103:11	37:23 38:2,18	105:21 109:18
reflect 69:25	19:1 32:12	researched 8:17	40:2 42:1	110:3
reflected 27:8	36:2 42:21	researcher 8:1	44:18 46:12,22	round 119:14
48:1	44:23 51:10	8:16	50:18,24 51:12	121:17
reflecting 20:21	55:5,19 56:12	respect 17:10	52:22 57:18	rounding 84:2
83:3	81:12 86:6,11	21:5 37:19	58:3,9,24	119:17
reflects 27:5	88:13 119:16	65:13 68:24	59:14 60:10,18	Rule 29:9
regard 63:20	reported 1:17	81:9 90:22	60:21,24 61:25	rules 2:4 4:13
regression 48:22	108:16	94:23,24	67:2,6,15,20	run 46:10 48:22
49:11 50:3,7	reporter 2:5	106:20 108:12	69:12,13 70:3	50:7 53:25
regularity $28: 10$	4:20 5:5	108:23 109:3	70:12,21 74:18	54:1 63:1
30:17,19	115:15 124:3	116:23 122:9	75:18 77:22	114:9 121:8
rehearsed 16:13	124:11	respond 56:10	79:1 81:6 82:1	running 45:7
relationship	reporting 114:12	102:1	83:9 84:6,16	50:16,21,25
21:3,5 28:14	119:15	response 85:15	86:6 88:20	54:4 74:4
28:17,21 48:23	represent 23:19	responsibilities	89:6,7,8,14,18	runs 47:7
49:3	26:5 36:8	8:2 9:14	90:5,6,13,14	Ruth 2:15 10:13
relative 20:8	57:20 58:1	rest 61:20	92:6,25 94:14	10:14
35:4 94:16	66:16 72:10	restrict 81:13	96:6,9 98:12	S
124:20	103:10 107:7	restricted	98:16,24 99:15	S
relatively 53:1	121:15	101:10	101:9,14,21	S 2:13 3:10
83:24 89:18	representation	result 32:22 71:5	102:9,15 103:5	36:22 41:2
reliability 94:18	21:18 29:15	resulting 11:2	103:8,8,23	S-shaped 29:2,7
100:12	represented	results 17:22	105:11 106:12	29:8,24
reliable 87:6	57:24 88:11	19:11,17 20:2	107:1 109:5,12	sake 21:23 33:10
93:10,11,23	101:5 119:18	52:10 53:13	111:13,19,19	Salle 2:17
100:8,10	represents 27:11	62:18 96:21	111:23 112:2	satisfied 52:9,13
104:12,14	58:21,22 70:2	97:22,23	112:21 113:11	saw 70:22 75:15
relied 13:17 19:2	94:6 110:17	retaining 82:9	113:13 114:11	76:25 86:13
48:13 51:17	114:15	returned 48:18	114:11,23	94:23 100:7
52:4 106:12	republican	returns 47:5,11	115:5,18,22,25	106:17 120:2
rely 9:20 19:4	35:15 43:17,19	reverse 59:13	116:20 119:21	sawtooth 69:6
32:4 41:1	48:10,11,20	Review 10:21	120:11 122:6	saying 93:16
44:25 52:11,23	50:12 71:16	11:14,19,20,23	122:20	100:14 111:5
97:4	93:5 94:24,25	12:1	right-hand	says 9:10 13:3
remaining 46:11	99:18 100:5,12	right 5:20 7:9,21	25:25,25 99:23	16:1 20:7
remember 70:15	100:16 104:17	10:7 12:12,21	103:19,20	27:12 34:3
82:14 83:20	106:21	13:7,21 14:22	RIGHTS 2:16	42:3 43:14
86:21 92:22	republicans	15:15,16 20:16	road 18:7,9 94:3	60:19 61:5
repeat 7:14	60:16 65:25	21:8,17 22:11	109:3	71:23 74:24
17:20 19:15	67:13 68:10	23:22 24:2,14	robustness 11:1	77:14 87:8
repeating 18:18	69:11 84:9,15	24:17 25:5,15	11:7	92:2,24
rephrase 5:4	85:9,20 93:18	25:20,24 27:1	role 46:25	scenario 34:16
39:11	95:23	28:20 29:8,16	room 19:24	35:3 118:9
replay 94:8	request 6:20	32:25 33:5,16	root 78:3	science 7:22 8:1
report 3:13 5:16	56:1,6,10	33:20 34:6,23	roughly 65:18	8:7,22 9:5,6,17
6:20 13:18	124:9	35:17 36:21	82:7 89:11	47:3 54:22

sciences 84:1	47:19 57:23	81:4 82:25	124:16	94:4 95:1
105:19	63:11 64:1	83:2 86:23	shows 64:22	100:6 122:8,25
scientist 46:24	65:5,18 70:16	89:22 95:2	84:21 95:9	similarly 24:18
61:15	70:17,17 75:16	119:20	117:16	Simon 1:14 2:1
scientists 28:7	75:20 78:23	sequences 82:2	SI 38:2,2,5,8,8,9	4:1 15:10
score 24:19	79:9,14,17	series 13:2 63:4	38:9 39:24	124:17
60:20 61:1	81:3,5 84:24	66:13	side 23:19 25:15	simple 11:10
scores 27:12	86:15 89:10,17	served 10:4	25:18 35:7	21:18 34:15
76:3	90:6,13,17	set 10:22 41:3	46:9 80:13	118:13
$\boldsymbol{\operatorname { s c r a p }} 119: 3$	92:10 93:4	44:22,24 51:4	83:19 87:1	simpler 26:3
seat 21:4 22:2	94:21 96:17	55:10 56:17,20	89:9 90:5 92:8	simplification
28:15,18 30:12	97:1,5 98:10	83:24 90:2	92:11 93:11	21:17
38:3,25 39:1	100:10 103:15	95:6 96:22	94:22 98:19	simply 41:1 78:4
41:2 43:18	103:21 104:6	99:3,18 103:16	99:23 102:14	108:10
58:3,4 61:18	104:13,16	104:15,20	103:19,20	single 9:4 24:21
seats 20:21,23	111:11 117:17	105:9 116:14	104:7 111:4	93:8 94:19,25
21:6,11,19,25	121:24	setting 29:20	112:3 113:4	108:4
29:17 33:24	seeing 28:24	seven 88:5 105:3	114:3,5,24	single-member
34:4,17,22,25	81:16 83:15	shape 31:6 92:14	120:10,19	28:15 29:6,11
35:9,11 37:24	86:18 90:10	92:18	sigma 39:13	30:7,9 45:2,9
38:5,11,15,20	94:19 97:12	share 21:4,4	sign 72:22,24,25	46:3
38:21 43:16,21	seen 11:8 54:14	30:10,13 32:19	81:1,7,10,17	sir 114:4
43:24 44:10	95:9 96:20	33:4,5,12,15	81:20 82:4,7,9	size 41:9 44:9
46:2 50:14	97:13 98:25	36:23 37:18,19	83:8,15 86:16	119:24
61:14,24 62:1	105:14	38:22 40:10	86:19,21,24	sized 42:12
62:9,11,14	Senate 45:13	41:2 43:9,15	87:3,3,4 88:4	sketched 34:16
118:17,24	send 100:4	44:2,3,12	90:21,22 91:20	skip 20:5
119:4,5,6	sending 99:19	48:12 49:6,10	92:4 94:3	Slipping 49:20
seats-votes	sends 100:3	50:20 51:15,25	95:21 96:1	slope 32:17
27:23 32:5,6,9	sense 6:24 22:21	52:19,20,25	99:6,21 105:13	slot 45:8
32:10,13,22	28:7 30:18	53:5 58:2,3,3,4	105:23 106:10	slots 45:6
44:19 57:21	34:23 60:15	117:7	107:8,15 109:7	slotted 46:4,9
second 13:1	65:1 72:11	shares 28:14,15	111:21 123:13	small 9:21 43:3
15:22 16:1	80:15,17,18	28:18,18 29:18	signal 87:5,6	45:3 83:14,24
37:10 38:7,7	103:5 105:24	30:1,12,15	90:14 93:7,11	112:1,3
77:13 85:14	118:21	32:16,17 37:18	93:16,16,23	smaller 89:6,6
87:20 88:1	sent 106:6	38:20 39:24	94:22,24 96:23	smooth 68:2,6
89:19 103:3	sentence 16:1	41:4 48:23	99:19 100:8	smoothed 67:25
110:19,21	18:2 24:11	52:8 53:1 74:9	104:12,14,18	68:21
section 15:4,16	41:23 47:23	shifts 65:22	105:14 106:7	smoothing 67:23
65:8 86:7	separate 50:9,11	102:20	signature 12:13	68:22 69:1
87:20 96:3	50:25 55:11	shoes 96:9	12:15	snow 7:19
see 5:20 9:10,24	separated 35:24	shorthand	significance	social 28:7 54:21
13:2 21:25	separating	124:10	120:13	61:15 84:1
23:5 27:9	103:12	show 32:1	signs 101:4	105:19
29:12,13,19	sequence 51:19	48:18	similar 40:6,8	solely 19:10
31:20 37:6	63:13,14,16,18	shown 28:22	52:10 63:24	solid 63:13 64:4

64:8 65:4	ss 124:1	65:18 66:20	stronger 83:20	summed 38:17
121:21	stability 82:22	67:19 76:6,15	95:10	39:5
somewhat 26:7	stable 72:18 75:5	77:3 84:17	struggling 78:20	summing 38:23
94:4	stacked 11	121:17,18	students 8:6	supplied 47:5
sorry 11:21	staff 9:21	122:1	Studies 8:19,25	suppose 51:20
18:14 39:6	stand 111:24	statewide 21:3	10:1	75:2 78:24,25
62:3 119:3	standard 21:9	22:1 30:15	study 9:3,6	111:24,25
122:15	21:12 35:3	37:5 39:21	28:12 31:13	supposed 13:13
sort 18:6 24:2	77:15 78:2,5	41:1 44:13	47:1 60:4	sure 9:3 15:23
26:15 29:2,24	79:2,5,10,19	52:1,24	subject 17:18	17:21 19:16
53:25 55:16	80:4,8,9,12	statistical 8:5,21	18:3 32:25	24:12 28:6
66:5 90:13	83:23 105:18	54:20 68:25	33:1	33:2,3 40:15
102:22 110:6,7	106:3 107:23	120:12	submitted 14:1	42:22 44:24
110:11 117:15	111:6,10,11	statistically	14:10	46:14 49:22
sought 86:11	standards 84:1	79:24	submittin	53:21 54:8
source 47:9,17	Stanford 7:22	statisticians	14:19	56:11 73:10
sources 47:10,15	9:8,21	28:13	subscript 39:18	76:13 78:15,15
spacing 104:23	star 87:8	stay 72:23 93:25	41:20	85:25 86:11
span 44:25	start 6:12 10:7	steep 29:25	subsequent 81:6	87:25 88:12
69:13	15:5,19 36:5	steeper 31:7	101:3 112:13	91:2,12 103:17
spans 120:9	39:10 62:3	Stephanopoulos	subset 94:9	106:25 110:15
speak 35:22	64:7 81:4	10:15,20 11:15	103:11	110:16 112:18
53:12	111:17	11:23 13:5	substance 15:6	113:1 118:2
speaking	started 28	16:8,10 20:14	substantial 7:8	121:3 123:5,7
9:12	starts 36:6	stepping 105:1	93	survey 9:18
special 29:15	state 2:6,9 3:12	steps 102:20	substantially	survey-based
specific 8:12	10:23 31:14,23	103:2	69:14	9:3
12:3 54:12	31:24 32:2	stern 90:8	substitute 40:9	swept 113:12
57:12 66:18	40:14 44:24	steward 47:2,12	subtracting	switch 6:13
76:6 77:8 78:8	45:1,11,13	Stewardship	119:8,9	sworn 4:2,25
95:16	46:1,15 47:4	9:16	sufficient 105:15	124:18
specifically 17:5	47:11,16 48:14	stick 112:11	sufficiently	symbolize 69:6
61:5	48:24 49:8	straight 89:17	83:14 105:13	symmetric $33: 8$
specifics 49:13	50:5,8 51:15	straightforward	106:7	106:20
specified 114:13	52:3 53:20	55:13	suggested 10:17	system 17:2,8
speculated 28:21	55:2,24 57:13	STRAUSS 2:15	Suite 2:17,24	29:16 31:12,12
29:5	59:5 60:11	6:6 109:10	suited 55:18	33:7 37:21
spread 66:4	61:1 62:6,6	113:17 123:14	sum 39:13 44:4	systematic 28:12
67:21	71:17 72:6	Street 2:8,17,20	summarized	systematically
spreadsheet	76:8,18 77:5	2:24 124:7	108:21	16:25 17:3
56:12 57:2,5	121:25 122:2	strict 41:10	summarizes	systems 8:20
square 58:2,9	124:1,4,8,23	strictly 32:6	97:21	28:12,15 29:6
65:3 78:3	state's 61:2	69:12 108:7	summary $15: 17$	29:11 30:7,9
89:10 121:21	states 1:1 19:7	stringent 83:23	24:25 70:20	31:12 45:3
squares 63:5	19:11 31:14	111:11 112:9	109:21	
64:14 92:14	41:6 47:20	strong 76:2	summation	$\frac{T}{T 3.10}$
103:22	55:14,14 60:12	106:7	37:16 39:18	T 3:10

table 5:21 84:4	76:1	think 5:22 7:14	thresholds 92:12	26:16
121:1	tells 49:3 98:11	10:13 12:12	92:13 102:12	treat 11:13 17:8
tabulated 48:14	98:13	16:12,13,14	throwing 96:21	17:22 18:2,23
51:15	temporal 63:12	17:5 18:3	till 65:15	45:8
tagging 55:15	temporally	20:12 24:5	time 4:12 11:15	treated 73:4
tails 90:18	48:15 63:9	26:10 30:6,21	11:24 29:10	treating 16:25
take 4:20 5:8,10	80:25	36:1 42:21	51:19 52:14	treatment 17:7
5:12 19:23	Ten 14:18	44:14 55:5	58:24 59:5	treats 17:3,12
23:11 27:18	tend 30:12 93:24	56:20,25 61:15	61:20 62:21	trend 65:16 66:5
30:6 32:1	95:1	66:2 78:24	63:15,21 64:9	67:24 95:9
40:15 42:14,16	tending 66:1	83:6 85:15,23	65:6,14 66:3	tried 96:9
51:20 56:24	tends 30:14	91:3 92:1	66:11 67:24,25	trigger 105:12
62:10 70:5	93:18	106:15 111:16	72:17,18 76:15	105:15 112:23
82:21 88:17	tenth 119:14	112:15 113:17	77:4,5,6 81:25	114:25
89:24 91:19	term 11:7,7 21:6	117:21	85:24 95:4	triggered 114:20
93:20 96:16,25	28:8 63:5	thinking 78:7	98:6 101:22	114:21
98:9 100:6	111:22	third 43:1 60:25	111:10 112:2,5	trip 90:2
101:8 103:24	terminate	74:24	112:6 123:11	tripping 92:3
106:7 116:3	120:20	thirties 30:12	times 75:19	93:9 111:2
123:4	terms 47:16 54:4	Thirty-three	119:12	112:8
taken 2:2,4	72:16 82:24	91:16	title 9:11,13	trips 92:24
124:5,9,10,17	88:5	thought 11:21	titled 65:10	111:25
takes 38:3,4	territory 67:5,8	14:25 15:5	73:15 96:3	true 60:2 74:4,5
39:19 53:8	120:21	106:2,19	today 5:15 65:15	102:10 124:14
74:15 108:17	test 86:18 101:	118:19	top 37:13 40:21	truth 4:25
talk 4:23 56:19	testified 4:3	three 29:13,14	40:23 41:21	124:19,19,20
82:22	testify 124:19	29:19 31:5,18	59:6,14 67:6	try 4:23 35:24
talked 20:12	testimony	40:23 61:17,18	122:3	trying 19:4
42:6 115:23	119:16 124:15	61:19,22 67:16	topic 28:24 30:5	23:23 26:2,23
talking 27:24	Thank 55:8	75:18,19 81:14	topics 8:13,17	31:19 41:13
28:8 38:5 65:1	123:15	81:15,16 82:1	total 22:5 36:15	50:19,19 51:5
76:24 99:24	thanks 123:11	82:3 101:11	51:5 75:14	51:8 60:13
106:13	Thereabouts	109:11,18,24	91:13 102:6	63:12 96:10
talks 28:3	110:24	110:3 111:9	112:22 115:8	102:10 106:9
task 55:17	They'd 26:8	threshold 86:8	track 90:17	110:11 113:9
teach 7:25 8:4,9	thing 4:19,21	86:12 87:10,11	tracks 70:19	117:19,22,24
8:11	30:6 50:6	88:21 89:5	transcript 3:20	turn 28:12 86:6
teaching 8:14	78:21 81:1	90:2,7 91:24	3:23 26:20	121:12
team 5:17	103:17 104:6	92:3,24 93:9	34:11 37:9	turn-out 74:7
technically	114:19	97:9 102:20	41:22 69:25	turning 58:19
69:16	things 6:13,23	105:2,10,12,22	124:14,16	70:1 72:9
technique 69:1	11:12 22:13	106:14,16,20	transcription	twenties 30:11
teens 30:11	35:19 37:7	108:21 111:1,2	124:14	two 13:22,25
tell 4:25 7:11	49:2 56:6	111:17,18,21	transfer 115:24	21:2 23:16,17
47:21 97:8	57:11,14 80:22	112:7,10,24,25	translates	25:3,8,17 26:3
telling 39:25	80:22 94:12	113:12 114:9	118:24	26:3,16 27:19
40:1 75:19	112:7,8 116:12	114:14,21	transposition	32:17 36:10,10

41:11,12 43:2	114:25 116:22	unequal 17:7	76:21	28:14,18 29:17
49:4 51:11,13	UK 28:16, 25	unequally $17: 1,4$	variance 78:3	30:1,10,13,15
52:17 56:6	ultimate 52:14	17:9,13,23	variation 31:21	32:16,17,19
65:4 68:25	ultimately 11:3	unfavorable	73:15 74:6,25	33:4,5,11,15
79:10,22 80:5	unambiguous	60:17 84:10,15	75:1,11,13,14	33:18,22 34:18
80:12 88:2,12	83:7 84:19	unit 50:4	75:16,17 76:4	35:8,12 36:22
88:14 91:25	unambiguously	United 1:1 31:14	79:2,5,14	36:24 37:1,3,5
100:19,23	84:8,22 120:15	University 7:23	variations 76:15	37:17,19 38:20
101:9 106:18	unbroken 63:1	9:9,9,23 10:2	76:25	38:22 39:24
108:10 109:17	uncertain 27:7	unknown 24:22	varies 31:17	40:9 41:4
112:7 116:25	uncertainty	unopposed	various 19:11	42:25 43:3,4
119:12 121:19	24:23 25:1	48:19 50:16	20:2 41:6	43:10,16 44:2
121:25 122:5	26:25 27:3,5,8	51:1	57:11 95:3	44:4,13 48:12
two-party 33:6	70:4,6,9 82:17	unpacking 40:23	vary 74:9	48:14,23,25
36:23 37:21	82:19 83:4,13	unquestioned	varying 75:25	49:6,9,14 51:5
40:19 42:24	88:8 108:5	105:11	verbal 124:10	51:15,24 52:8
43:9,15 44:2,4	109:13 121:10	upper 68:2	verbally 4:19	52:11,19,25
44:13	121:11	use 28:8 40:24	Vermont 59:6	53:1,5 58:2,3
type 45:20 46:4	uncontested	41:7,15 52:7,7	version 7:6	74:9 117:8
46:7,9 51:3	48:4,6,8 49:6,7	53:25 64:3	23:10 40:7	118:3,12,15
63:24	51:21 52:21	109:1 121:5	88:13	voted 22:9,9
typewriting	61:14,23 62:1	utterly 83:7	versions 29:21	voters 17:1,3,8
124:13	62:9,11,14		versus 50:13,14	17:13,23 21:1
typical 84	uncontested	-	106:16	21:15,21 22:2
105:19	117:9	v 1:6 33:14	vertical 58:4,9	42:7,8,10,12
typically 49:16	underlying 32:8	36:22,22 41:	58:14,15 59:1	votes 16:2,2,3,7
66:19 96:18	32:10 76:8	41:19,20,24	64:14 65:2	16:11,12,21
121:19	93:15	43:14	66:12 67:8,21	18:15 21:11,19
	understand 4:16	vagaries 75:8,22	88:2 90:24	22:5 33:1,14
U	4:24 5:3,6,13	value 21:23	91:1 98:12	35:2 36:11,12
U.Chi.L.Rev	14:5 15:12	29:23 38:3,4	119:23	36:13 37:24,25
13:4	17:19 18:19	72:13,16,19	vertically 58:12	38:11,14,14,16
Uh-huh 9:1	24:7 34:12	86:12,13 88:4	58:15 67:4	38:19 39:3,6
12:11,25 13:24	36:1 37:7 40:2	89:4,16 91:15	VI 37:19,21 38:1	43:11 48:10
14:24 15:18,20	42:13,25 43:7	91:23 103:1	38:12,22 39:24	50:20 51:7
18:11 20:11	44:14 46:1	108:12,15	39:25 40:11,16	52:20 118:1,5
22:15,17 27:14	53:3 54:9,13	113:20	41:20,21	118:23
28:2 33:23	76:23 78:14,17	values 11:4	view 35:7	voting 22:3,4
34:1 36:4,7	81:21 82:13	29:13,14 67:2	visualize 69:2	
44:21 54:16	86:3 111:16	72:16 86:24	117:12	W
57:25 59:21	understanding	88:25 89:17	visualizing 33:3	WA 36:13,21
65:9,12 66:9	12:22 16:9	90:20,21 91:14	vita 7:4	37:1,6,15 39:6
66:15 68:13	34:25 46:14	102:11	Vitae 3:14	39:20
71:879:21	understood	variability 77:14	vote 16:17,23	wait 96:17 107:3
80:11 84:13	13:12 53:18	78:2	18:5 19:1 20:8	117:20 122:22
91:6 105:4,6	undisturbed	variable 77:25	20:9,10 21:3	ant 42:1
107:5,16	111:18	variables 49:4	21:25 22:1	46:13 57:3,5

58:6 73:8 75:3	72:12,13,23,24	winner 32:1	word 16:10 18:2	103:8 107:10
78:21 82:21	72:25 75:6	winning 35:1	18:23 61:12,18	107:13,19
96:16 101:7,24	77:22 83:15,22	wins 37:22 38:3	61:21 62:17	110:20,24
109:14 112:25	83:25 84:2	38:20	68:15 69:7	111:19,23,23
114:8 116:3	89:21,22 93:12	wiping 72:24	work 8:20 9:19	113:7,9,23
122:22	98:9 99:23	Wisconsin 1:2	11:24 12:10	114:7,18,18,25
wanted 7:9	102:10 103:3	2:6,7,9,20,21	14:6,13 63:6	117:14,19,20
33:17 112:18	104:15 105:10	2:24 3:12 11:5	64:8 119:11	119:15 122:18
112:22 114:19	108:23 110:9	23:11,14,14	working 10:7	122:24
116:9 117:12	113:10,11	24:20 25:2,7	works 101:22	year 10:9 24:1
wasn't 43:18	115:5,6 116:7	27:18 43:21	world 21:7,7,10	25:14 40:14
45:14 69:23	we've 20:12	45:13 50:9,12	writing 5:16	46:16,21 49:25
wasted 16:1,6,11	29:10,12 36:14	50:13,14 61:4	written 10:20	51:21,22,22
16:12,17,21,23	36:25 38:1,17	61:8 62:25	20:17	52:2,3,3 62:19
18:5,14 19:1	39:19 40:22	64:21,23 74:19	wrong 111:7,7	66:19,23 67:20
20:8,9,10	42:7 68:21	84:21,25	112:4	69:20,21 70:8
36:10,10,12,13	81:14 96:20	100:25 116:21	wrote 54:22	70:11 71:2,11
37:3,24 38:11	100:14 104:21	116:25 117:6	www.elections...	71:12,14 74:16
38:14,16,19	105:14 116:25	119:21 120:2	9:25	82:19
39:3,6	weak 66:5	0:15,24		years 19:7 29:12
way 6:12 11:13	website 9:24,25	122:9 123:2	X	55:14 66:21
15:3 22:10	weight 72:3	124:1,4,6,8,23	X 3:2,10	68:25
30:4 33:10,13	weighted 71:18	Wisconsin's	Y	уep 85:17 91:9
41:3 61:15	71:24 72:6,7	61:5 62:18	yeah 6:157:7,20	107:19,22
63:15 64:8	went 13:21	116:23	yeah 6:15 7:7,20 $8: 109: 1210: 2$	108:2
71:4 78:23	44:19 53:12	wish 85:6	8:10 9:12 10:2	yesterday 5:18
80:2,9 86:22	61:14 76:21	wit 41:19	10,9,	5:19
88:6 90:15,15	98:18 105:20	within-plan	17:20 20:1	York 60:2,11
97:15 101:8	109:3,25	73:15 75:17	$\begin{aligned} & \text { 22:19 23:3,6 } \\ & 32: 334: 23 \end{aligned}$	York's 60:10
108:7,11,19	West 2:7,20	77:15	35:17 36:21	Z
109:13 111:23	124:6	witness 2:2,25	$39: 641: 13$	$\frac{\mathbf{Z}}{\text { zero } 20 \cdot 2521 \cdot 8}$
122:8 123:1,1	WESTERN	4:2 10:4 31:1	$\begin{aligned} & 39: 641: 13 \\ & 42: 1644: 8 \end{aligned}$	$\begin{gathered} \text { zero 20:25 } 21: 8 \\ 21: 12.19 .23 \end{gathered}$
ways 10:25 17:8	whichever	42:1 49:22	$\begin{aligned} & 42: 16 ~ 44: 8 \\ & 46 \cdot 1250 \cdot 11 \end{aligned}$	$21: 12,19,23$
31:23	112:25	54:11 55:8	$\begin{aligned} & \text { 46:12 50:11 } \\ & 53: 1455: 20 \end{aligned}$	$32: 8,14,16,24$
WB 36:12,21	white 22:20 23:4	77:11 81:24	$\begin{aligned} & 53: 14 \text { 55:20 } \\ & 56: 857: 10,17 \end{aligned}$	35:2,5 38:4,10
we'll 5:10,25	WHITFORD	87:25 107:5	$59: 18,2462: 1$	57:22 62:13
6:15 20:6	1:4	109:12 112:21	$\begin{aligned} & 59: 18,2462: 1 \\ & 64: 2,6,1266: 7 \end{aligned}$	67:6 70:23
53:18 56:10	wide 19:6 39:21	122:15	64:2,6,12 66:7	80:13 82:20
57:15 90:3	widely 51:17	won 21:11,11	67:18 68:19	83:3,12,16
109:8 123:9,13	54:20,21	34:16 35:4,11	69:19 73:4,7	88:18,24 90:5
we're 4:9 6:7	WILLIAM 1:4	37:25 38:6,18	78:18 79:23	90:25 102:21
9:17 18:6 27:7	willing 21:20	39:1 40:1	80:1,14 85:25	111:4,14
33:6 35:18	$\boldsymbol{\operatorname { w i n }} 16: 3,538: 1$	43:16,18,22	87:11 91:12	114:24 118:10
37:20 38:5,23	38:12 39:1	44:10 119:5	92:	118:11,25
39:9 40:17,19	118:12,13	wondering	94:8 95:22	120:11
42:19,21 45:6	119:4	55:21 56:3	101:17,18	0
49:5 63:17	wind 110:11	101:4	102:19,19	0

$0.633: 22$	105:25 117:3	1970 66:12	25:19,22,22	97:23 101:6
005 103:2	119:16 121:9	94:11	26:5 27:2,6	103:11,20
01 80:14 103:3	10.1 96:3	1972 44:25 57:6	47:8 49:18,24	106:22 108:23
014 118:15,19	100 2:17 32:20	62:19 63:9	50:1,10,10,12	109:4 110:10
02 61:6,6 62:22	75:15 84:3	64:23 65:15	50:13,14 65:7	112:20,21,24
80:3,10	109:24 110:3	70:14,16 84:14	74:19 100:25	113:6,8,16,19
028 118:16	111:15	97:25 119:22	101:2,5 116:13	114:16 116:11
03 77:16 78:9,11	$113: 12$ 6:5,16	1974 63:9	116:17,24,25	
79:5	6:17,18,19 7:5	1980 66:12	117:1,3,7	$\frac{\mathbf{3}}{313: 215: 16,16}$
039 85:20	14:23 57:19	84:14 94:11	119:4	3 13:2 15:16,16
04 121:8	79:22,25	199 120:3	2014 23:14	20:20 78:11
$0579: 19$ 80:3,8	11/5/14 3:15	1990 66:12	24:20 25:10,18	30 103:9,10,11
0678:11 79:13	118 85:10	103:16 115:21	25:20,22,23	103:21,23
121:9	123:14,15 7:1,2	1990s 94:10	26:5 27:6	108:24 109:22
07 87:13,18	7:11 14:18	1991 95:10	44:25 47:6,13	114:15 115:5
106:24 107:12	58:19,20,22	103:12 114:17	49:17 62:19	300 2:24
107:17,23	99:12,20 115:7	1994 120:3,4,6	63:2,14 64:24	32 53:24 108:17
109:5 110:1,17	12:30 116:3	1996 120:6	65:4 74:22	108:22 109:1
111:18 113:20	12:59 123:16	1998 63:1	101:1,5 116:13	109:23,24
114:9 115:5,6	133:15,16 12:7	120:14	116:17 117:1,3	110:2,14,15
115:9	12:8 63:4,17		117:10 119:22	112:16 115:20
076 84:25 85:2	99:13,20 117:2	2	2015 1:15 2:9	115:23
121:1	119:13,15	2 20:6,6 22:9	7:5 14:4 124:8	33 57:19 91:14
$0879: 20$ 121:9	143:16 13:11,23	29:3 34:19	124:21	115:19,24
1	61:6 89:15	:13 89:11	206 27:12	116:1
$115: 19$ 16:1	95:24 118:15		20th 2:9 28:13	341
22:8,16 26:18	82:1,5	20 1:15 47:22,24	21 46:13 70:1,2	59:20 60:14
26:25 28:3,22	1590:16 91	66:7 70:21,22	70:5 71:5	81:18 82:4
30:23,24 31:2	92:10	71:17,22 87:15	22 72:9 73:5,11	119:18,19,20
40:25 41:18,24	15-CV-421-bbc	109:8 112:2	107:13,14	122:16,17
55:9,12 84:4	1:6	20,000 22:8,9	109:6,7 112:6	36 107:25
91:7,15,21,22	$1636: 237: 12,14$	$20078: 6$	115:6	121:14,16
91:22,22 92:7	38:8 40:22,25	2000 52:7 53:4,7	24 75:15	122:25
92:9 95:17,24	41:18 42:21	53:11 66:12	25 30:1 32:17,18	37 63:4,25 92:7
102:2,3,4,8	43:13 55:7,9	2000s 51:14 53:4	68:8 71:7,9,13	39 119:5
114:9 121:1	84:7 102:6	65:22 120:23	102:24 124:21	39.4 119:5,8
1.4 118:18,20	172:7,20 83:7	122:16 123:2	250 13:9	394 119:11
10 6:4 29:3 73:2	84:4,7 124:6	2002 84:21,25	25th 68:6 72:8	
73:2,11,12,12	$1832: 12$ 64:21	121:8	26 51:10	$\frac{4}{43 \cdot 532 \cdot 12.22}$
86:7 87:20	89:11 91:4	2006 71:6	27 88:10,13	$43: 532: 12,22$
89:9,13,15,25	107:1,14,19,24	2010 66:12 71:5	90:10 94:9,17	$60: 2,14 \text { 117:13 }$
90:1,9,11 91:2	107:24 109:4,7	84:21,25	95:6,9,14	$4.127: 23$
91:18 93:1,9	109:9 113:25	100:23	103:7	$4035: 8,1237: 1$
93:17 98:10,22	117:13,18	2010s 100:18	28 94:4,6,8 95:8	37:2 93:6
99:7,23 103:25	1952 9:8	2012 23:14	95:15,17	$100: 1$ 4147.19
105:21,23,25	1967 47:7	24:20 25:10,17	29 51:10 97:20	41 47:19

42 63:25 64:21	$69116: 20$
44 65:8	
45-degree 29:18	7
30:8	73:14 22:16
46 82:8	23:9 34:3 85:4
4873:17,18	110:1 111:17
48.0 117:10	7.2 48:4
4977 :13	7.6 85:5
	7/7/15 3:13
5	70 30:16 35:3
$533: 25$ 34:4	72 26:21
37:21 38:2,13	75 30:1 32:18,20
38:21 39:25	71:10,15 82:6
46:13 48:2	82:9,12 88:22
60:19 71:1	75th 68:3 72:8
102:24 119:11	7674:25 75:10
119:12	75:14,15 77:1
$5033: 24$ 34:17	78 112:4,5
35:4,9,11	786 47:19 48:1
70:16,18	55:11 57:7,9
118:15	58:5 61:20
50/50 33:8 71:4	75:3
$51.4117: 9,16$	8
$\begin{aligned} & 118: 1,4,12,18 \\ & 118: 23 \end{aligned}$	861:4
$514119: 12$	8.1 53:3
52.8 118:17,24	80 30:16
119:8	$8213: 4$
53 118:3	839 2:24
53202-3744 2:24	8th 14:4
53703 2:21	9
$5581: 12$ 84:5	
118:3 121:3	9.2 65:8
56 86:6 87:8,21	9.373:15
88:195:18	9:02 1:16 2:10
5994:5,6	$\begin{gathered} 9523: 20 \quad 27: 4 \\ 59: 281: 19 \end{gathered}$
6	82:6,12 83:21
63:13 33:19	84:2 105:18
34:21 110:18	119:24
6.0 41:8	$96110: 23,23,25$
$6.141: 7,15,24$	111:1
$6033: 18,21$	$97109: 24110: 4$
34:17 35:1	98 43:23
96:3	99 43:21 105:21
$6002: 17$	119:5
60602 2:17	99.99999 83:22

