IN THE UNITED STATES DISTRICT COURT FOR THE WESTERN DISTRICT OF WISCONSIN

WILLIAM WHITFORD, et al., Plaintiffs,

VS.
Case No. 15-CV-421-bbc
GERALD NICHOL, et al.,
Defendants.

DEPOSITION OF NICHOLAS GOEDERT

Milwaukee, Wisconsin
December 15, 2015
8:42 a.m. to 3:27 p.m.

Laura L. Kolnik, RPR/RMR/CRR

William Whitford v. Gerald Nichol

 Nicholas Goedert| | Page 10 | | Page 12 |
| :---: | :---: | :---: | :---: |
| 1 | would be burdensome for producing. | 1 | Did you -- do you have any knowledge of prior |
| 2 | THE WITNESS: (Witness reading.) | 2 | litigation involving Act 43? |
| 3 | BY MR. EARLE: | 3 | A. Not beyond what was mentioned in the complaints that |
| 4 | Q. Want the question reread? | 4 | I read. |
| 5 | A. Sorry? | 5 | Q. Okay. |
| 6 | Q. Do you want the question reread to you? | 6 | A. Or the other -- the other filings in this case. |
| 7 | A. I'm just reviewing everything. I want to make sure. | 7 | Q. Did you ask to see any discovery from prior |
| 8 | (Witness reading.) I believe I did with the | 8 | litigation relating to Act 43? |
| 9 | exception of number 16. I didn't provide copies of | 9 | A. No. |
| 10 | the -- the Wonkblog or Monkey Cage blog posts. | 10 | Q. Is there a reason you did not ask to see discovery |
| 11 | Q. Why didn't you do that? | 11 | documents from prior litigation? |
| 12 | A. It was an oversight. I -- I did not rely on those | 12 | A. It didn't strike me as relevant to my report. |
| 13 | in the -- in this case. | 13 | Q. Okay. Let's go to your -- to your resumT. |
| 14 | Q. This is a compulsory process. I asked you to | 14 | Before -- before we do that, let me ask you |
| 15 | produce them in a subpoena to a deposition. And the | 15 | another couple questions. Who all did you speak to |
| 16 | reason that you didn't do that is you -- it was an | 16 | to prepare for this deposition other than counsel? |
| 17 | oversight? | 17 | A. I didn't speak to anyone. |
| 18 | A. Yes. | 18 | Q. You didn't speak to Nolan McCarty? |
| 19 | Q. Okay. | 19 | A. I did not. |
| 20 | MR. KEENAN: Would you like to Google them so | 20 | Q. How about Joey Chen? |
| 21 | you can get them? | 21 | A. I did not. I will say that I mentioned to Brandice |
| 22 | MR. EARLE: Well, I would ask that the -- so | 22 | Canes-Wrone that I was considering serving as an |
| 23 | that I don't miss one, that the deponent during one | 23 | expert witness in this case and asked her opinion on |
| 24 | of the breaks Google them and perhaps email them to | 24 | it. This was prior to my coming on as a -- as a |
| 25 | me and I'll print them out. | 25 | witness in the first place. |
| Page 11 | | | |
| 1 | THE WITNESS: Okay. | 1 Q. Okay. And so who was this person you -- | |
| 2 | BY MR. EARLE: | 2 A. Brandice Canes-Wrone. She is a professor of | |
| 3 | Q. Is that acceptable? | 3 politics at Princeton. She was my graduate school | |
| 4 | A. That's fine. | 4 advisor. | |
| 5 | Q. Okay. Good. Anything else? | 5 Q. And would you spell her name for the court reporter? | |
| | A. I don't believe so. | 6 A. B-R-A-N-D-I-C-E is her first name. Last name is | |
| 7 | Q. Okay. Just out of -- as an aside, did you review | 7 Canes, C-A-N-E-S hyphen W-R-O-N-E, Canes-Wrone. | |
| 8 | any materials from the Baldus case? | 8 Q. Would you describe that conversation in more detail, 9 please? | |
| 9 | A. No. | | |
| 10 | Q. Are you familiar with what the Baldus case is? | 10 A. It was an email correspondence. | |
| 11 | A. Not particularly familiar | 11 Q. Uh-huh. | |
| 12 | Q. Okay. Do you have any idea what the Baldus case is | 12 A. I had just emailed her mentioning that an attorney | |
| 13 | A. I recall it being referred to in the -- some of the | 13 | |
| 14 | filings for this case. | 14 | |
| 15 | Q. Okay. And what do you recall about that? | 15 witness. I mentioned a couple | |
| 16 | A. Not very much. | 16 witnesses -- I mentioned both of the ex | |
| 17 | Q. Okay. Are you familiar with whether there was prior | 17 witnesses that were testifying on the plaintiffs' | |
| 18 | litigation involving Act 43? | 18 side, and I think I gave her a little one-sentence | |
| 19 | A. I am vaguely aware that there was litigation | 19 | |
| 20 | involving Latino representation in one or two | 20 thought it was a good idea to serve as an expert | |
| 21 | particular districts. | 21 witness in the case given that I had never served | |
| 22 | Q. Okay. And anything else? | $22 \text { an exp }$ | |
| 23 | A. I -- | 23 She replied back the next day that she saw | |
| 24 | Q. Well, I guess let's back up. I'll withdraw that | 24 problem with it and thought it was a perfectly fine | |
| 25 | question and rephrase. | 25 idea. That's -- that is the only correspondence | |


```
A. Okay.
Q. -- in the -- in the job application process.
A. I believe during the time that I have been applying
    for tenure track jobs I have received five
    interviews in some form or other for tenure track
    jobs.
Q. And how many applications have you placed with
    colleges and universities?
A. Over what time period?
Q. Over the entire time period you've been applying for
    tenure track positions.
A. I don't have a precise number. It would be over 100
    and less than 200.
        MR. EARLE: Can we take a quick break?
        (Discussion held off the record.)
BY MR. EARLE:
Q. So we went off the record. You indicated that you
    applied for more than }100\mathrm{ positions, but less than
    200?
A. Yes.
Q. And you got five interviews?
A. Let me just -- yes. I believe that's correct.
Q. And where were those five interviews?
A. One was at Bard College, one was at Lafayette
    College, one was at -- I am -- I'm slightly hesitant
```

 Page 19
 to talk about interviews that are ongoing in some
 sense if this is public record.
 Q. Well, the problem, Nick, is that I'm trying to
assess the -- the quality of your experience,
knowledge, and qualifications, and we -- they're
being presented to the court in the context of this
case as a person who's an expert. And the court's
going to have to evaluate the extent to which you're
qualified to give opinions, and -- and in academia,
being able to get hired by a university or college
is important.

MR. KEENAN: I would just object to the speech as to the importance not necessarily to the court,
but I think you should answer the questions.
THE WITNESS: Okay. Old Dominion University in
Virginia.
BY MR. EARLE:
Q. Old?
A. Dominion. Virginia Tech and University of North
Carolina-Wilmington, I believe.
Q. Did any of those five give you reasons as to why you
were not hired?
A. In the case of some of those I am not sure that I
have not been hired. They have not completed the
process of deciding on who to hire yet.
Q. Okay. So you have applications pending at this
moment?
A. I have many applications pending. Yes.
Q. Okay. And you have -- but you identified the
universities or colleges for which you have
applications pending where you have been
interviewed?
A. Old Dominion, Lafayette, Virginia Tech.
Q. Okay. Okay. And Lafayette is where you're
currently visiting --
A. Yes. I'm sorry.
Q. -- as an assistant professor? Yeah, we have to take
turns. See how easy it is to lapse into comfortable
conversation?
Okay. Did any of these folks, and for the ones
that did not hire you, indicate why?
A. You're speaking of the two where I had interviews in
previous years?
Q. Uh-huh.
A. No.
Q. Do you have any perception yourself as to why you
have not been successful in landing a tenure track
position at this point in your career?
A. I don't have any specific knowledge.
Q. No, but I asked you if you had a perception.
Page 21

MR. KEENAN: I'll just object to the relevance of someone's perception. If you have one, you can answer.

THE WITNESS: I don't have a perception.
BY MR. EARLE:
Q. Are you confident that you're going to get a tenure track position in the near future?
A. Depends on what you mean by "near future."
Q. Well, in the next couple of years?
A. Yes.
Q. How long has your application for a tenure track position at Lafayette College been pending?
A. Six weeks.
Q. So you put that application in after you started working as a visiting citizen -- visiting assistant professor, correct?
A. Yes.
Q. All right. When you were a post-doctoral research associate at Washington University, who did you work for?
A. I was doing my own independent research. I suppose indirectly you could say I worked for Jim Spriggs, but I was not working on his research projects. I was working on my own research projects.
Q. What was his name?

William Whitford v. Gerald Nichol

 Nicholas Goedert| Page 22 | Page 24 |
| :---: | :---: |
| 1 A. Jim Spriggs or James Spriggs. | 1 specifically legislative redistricting very well. I |
| 2 Q. James Spriggs. Okay. | 2 don't know that he has published recently |
| 3 A. S-P-R-I-G-G-S. | 3 specifically on legislative redistricting. I think |
| 4 Q. And he was your supervisor? | 4 that he is generally a very qualified political |
| 5 A. Only in the sense that he was the one who hired me. | 5 scientist. |
| 6 He did not directly supervise my research in any | 6 BY MR. EARLE: |
| 7 meaningful way. | 7 Q. Have you read Jackman's article with Richard Niemi, |
| 8 Q. Okay. And what was the research you were working or | 8 is it, on legislative redistricting? |
| 9 in that position? | 9 A. Yes, I'm fairly certain that I have. If I recall |
| 10 A. I was working on my research dealing with various | 10 correctly this is an article from at least 20 years |
| 11 aspects of legislative elections, including turning | 11 ago. I don't know if I could specifically |
| 12 my dissertation into publishable articles and other | 12 characterize anything in the article off the top of |
| 13 articles related to legislative elections. | 13 my head. |
| 14 Q. Anything else? | 14 Q. All right. Let's turn to Professor Mayer. Are you |
| 15 A. I don't think so. | 15 familiar with Professor Ken Mayer's work? |
| 16 Q. Okay. Do you know Simon Jackman? | 16 A. Only vaguely. It is my -- prior to this -- reading |
| 17 A. I have met him very briefly. It was several years | 17 his report in this case, it was my impression that |
| 18 ago while I was a graduate student at Princeton. I | 18 most of his work dealt with institutions and |
| 19 know like him by reputation. | 19 especially executive institutions as opposed to |
| 20 Q. Okay. Would you describe that reputation for me, | 20 legislative elections so I would say I was much less |
| 21 please? Or at least your perce | 21 aware of his work than -- sorry. |
| 22 A. My perception -- | 22 Q. No. Go ahead. Finish. I did not mean to -- |
| 23 Q. Wait a minute. Hold it. We have -- would you | 23 A. I would say than other scholars who deal more |
| 24 please -- I'll withdraw | 24 closely in the fields that I study. |
| 25 Will you please describe your perception of the | 25 Q. Okay. Do you consider Professor Mayer to be |
| Page 23 | Page 25 |
| 1 reputation of Simon Jackman? | 1 experienced in the political science field of |
| 2 A. My perception is that he has an excellent reputation | 2 elections? |
| 3 overall in political science, particularly in | 3 A. Yes, only in the sense that I am aware that he has |
| 4 dealing with quantitative methodology and developing | 4 worked in this area for a very long -- for a |
| 5 statistical packages for use in political science. | 5 relatively long time and published several articles |
| 6 Q. Do you consider him authoritative? | 6 related to elections. |
| $7 \quad$ A. I think you'd have to be a little bit more specific. | 7 Q. Do you consider him qualified? |
| 8 Q. Well, do you consider his work to be authoritative | 8 A. Yes. |
| 9 in the field in which it's published | 9 Q. So in your view qualified and experienced to render |
| 10 A. I consider his work to be very good. | 10 opinions in this case? |
| 11 Q. Okay. Do you think that his peers in his profession | 11 MR. KEENAN: Objection to the relevance and |
| 12 consider him to be an authority in his field? | 12 calling for a legal conclusion. |
| 13 A. Yes, I think that's fair. | 13 THE WITNESS: In a casual sense, yes. |
| 14 Q. And in fact, you have relied on him yourself in | 14 BY MR. EARLE: |
| 15 constructing your models, correct? | 15 Q. Okay. Occasionally during the course of the |
| 16 A. Yes. | 16 deposition, counsel is going to interpose |
| 17 Q. How about Professor Mayer? Wait. Let me withdraw | 17 objections, and those are for the record. They have |
| 18 that question. | 18 nothing to do with what's going on between you and |
| 19 On Professor Jackman, do you consider him to be | 19 me. I get to ask you questions, and you get to |
| 20 experienced? | 20 answer them, and he's making a record -- |
| 21 A. Yes. | 21 A. Okay. |
| 22 Q. He's in your view qualified to render opinions on | 22 Q. -- for subsequent use. And so it has no bearing on |
| 23 legislative redistricting matters; is that correct? | 23 your answer to the question. You understand that? |
| 24 MR. KEENAN: Object to the question as vague. | 24 A. So I should always answer the question even if there |
| 25 THE WITNESS: I don't know his work on | 25 is an objection? |

Q. Unless he instructs you not to.	1
A. Okay.	2
Q. Okay. If he does instruct you not to, I'll ask him	3
why.	4
MR. KEENAN: That deals with issues of	5
attorney-client privilege and work product and	6
things, but with just phrasing of questions, there	7
won't be an instruction not to answer.	8
THE WITNESS: Okay.	9
BY MR. EARLE:	10
Q. Yeah. And so you understand that. Just so it's --	11
because you've never been in a deposition before,	12
right?	13
A. Right.	14
Q. You've never taken a deposition?	15
A. No.	16
Q. Okay. Are you nervous?	17
A. Slightly.	18
Q. Okay. And why do you think you're nervous?	19
A. It's an unfamiliar situation.	20
Q. Uh-huh. Could it have anything to do with your lack	21
of experience?	22
MR. KEENAN: Object as vague. Experience with	23
what?	24
THE WITNESS: I think it would definitely have	25

Page 27
to do with my lack of experience in testifying in
depositions, yes
BY MR. EARLE:
Q. How about your lack of experience at being an expert?
A. As it would relate to my lack of experience in testifying at depositions, yes.
Q. Okay. Well, how about as your lack of experience as being an expert and rendering opinions for consideration by a court?
A. I don't think in general I'm uncomfortable at rendering opinions. I think -- I think that being in an official court circumstance when someone is inexperienced in that circumstance would likely make people nervous in general.
Q. I don't want to belabor your -- your CV too much, I mean at this point, but I guess I just want to be able to -- to have nailed down in this record here the extent of your experience. And as I look at your resumT and your background, it seems to me that you're -- you're kind of new. I think it would be fair to call it -- characterize you as -- as an inexperienced expert. Do you think that's right?
A. I have never served as an expert witness in a case so in that sense I am inexperienced.

Page 28
Q. And you're relatively inexperienced as a scholar; isn't that true?
A. Relative to what?
Q. Relative to somebody like Simon Jackman
A. Yes, Simon Jackman is a more experienced scholar than I am.
Q. Same is true with Ken Mayer, correct?
A. I suppose that would be accurate.
Q. Okay. We'll move off of your -- your resumT for now.

If you take the body of your work in political science related to elections, is it fair to say that you've mostly concentrated on congressional elections and not state legislative elections?
A. Yes.
Q. There's a different dynamic between the two, isn't there?

MR. KEENAN: Object.
THE WITNESS: That's rather vague
BY MR. EARLE
Q. You beat counsel to the -- to the objection. Your dissertation was on congressional redistricting, correct?
A. Yes.
Q. And your published work has all been focused on
congressional redistricting, correct?
A. My published work related to redistricting has focused on congressional redistricting.
Q. Okay. That's a good example of a clarifying answer to -- to a question, a precise answer. That's good. All right.

And so we can also say that none of your published work has focused on legislative redistricting at a state level?
A. Certainly I think there would be applications to state legislative redistricting in -- in my work. To the extent that I have relied on empirical data in my work, it has all come from congressional data.
Q. All right. So one of the things I would like you to try to do is answer the questions I ask, and as opposed to advocating in a nuanced way in -- instead of answering the question I asked.

MR. EARLE: Can you repeat the question I asked to the deponent, please?
(Question read: And so we can also say that none of your published work has focused on legislative redistricting at a state level?)

THE WITNESS: I think it's fair to say that none of my published work has focused on legislative redistricting. I think that's a complete statement.

William Whitford v. Gerald Nichol Nicholas Goedert

Page 30	Page 32
1 BY MR. EARLE:	1 drawing of legislative district lines to subordinate
2 Q. So the answer is yes? It's fair to say that, right?	2 adherents of one political party and entrench the
3 A. If by focus you mean was the primary subject matter	3 rival party in power, correct?
4 of any of my published work legislative	4 MR. KEENAN: Object to the extent it calls for
5 redistrict -- state legislative redistricting, the	5 a legal conclusion, but you can answer your
$6 \quad$ answer is yes.	6 understanding.
7 Q. Okay. All right. So and just to understand some --	7 THE WITNESS: I believe that there are maps
8 some of the concepts here, a state legislative	8 drawn with that intent.
9 redistricting plan has component parts, right?	9 BY MR. EARLE:
10 Individual districts, right?	10 Q. Okay. Wisconsin is one of those maps that was drawn
11 A. Yes.	11 with that intent?
12 Q. And where -- while you're looking at congressional	12 A. You're referring to state legislative map in
13 redistricting at a national level, there's no	13 Wisconsin?
14 national congressional redistricting plan, is there?	14 Q. Yeah. Uh-huh.
15 A. No.	15 A. My only knowledge of Wisconsin is what I had read in
16 Q. So the two are not equivalent in that regard,	16 the complaint so my only knowledge of what the
17 correct?	17 intent was would be as it was characterized by the
18 MR. KEENAN: Object as vague	18 plaintiffs in their complaint.
19 THE WITNESS: When states draw congressional	19 Q. Okay. All right. But just so let's just nail down
20 maps they also have districts.	20 this, the definition. Is it accurate to say that
21 BY MR. EARLE:	21 partisan gerrymandering is the drawing of
22 Q. Excuse me?	22 legislative district lines to subordinate the
23 A. When states draw congressional maps, of course they	23 adherents of one political party and to entrench the
24 also have districts just like you were	24 rival party in power?
25 characterizing state legislative maps.	25 A. That is not how I define partisan gerrymandering in
Page 31	Page 33
1 Q. But there are 50 of those, aren't there?	1 my own work. So I don't know that I would agree
2 A. There are $\mathbf{5 0}$ states that draw congressional maps	2 with that.
3 that all feed into the U.S. Congress, yes.	3 Q. So you think that the -- that the author of that
4 Q. There is not a single United States congressional	4 definition is ill informed or wrong?
5 redistricting plan?	5 A. I think the term is vague. I think many people have
6 A. True.	6 different definitions of what they mean by the term
7 Q. There are 50 congressional redistricting plans?	7 so no, I wouldn't say that the particular definition
8 A. Yes.	8 that I use is more authoritative than what other
9 Q. And to be precise, we have to exclude those states	9 people might use.
10 that have a single congressman, correct?	10 The way that I use it in my work is somewhat
11 A. Sure.	11 different and does not rely on intent. And it does
12 Q. Okay. Let's get some other basic definitions down	12 not rely on empirical results of elections. I'm
13 as we go forward here. Because we're going to be	13 just looking at the process.
14 talking about stuff, but I want to make sure that	14 Q. Okay. Could you explain to me what is wrong with
15 we're always on -- using the same language. All	15 that definition?
16 right?	16 MR. KEENAN: Which definition?
17 You would agree that partisan gerrymandering	17 MR. EARLE: The definition I just provided to
18 exists, correct?	18 the deponent.
19 MR. KEENAN: Object as vague as to what	19 BY MR. EARLE:
20 "partisan gerrymandering" is.	20 Q. Partisan gerrymandering is the drawing of
21 THE WITNESS: I don't feel like I can answer	21 legislative district lines to subordinate adherents
22 the question unless you give a more precise	22 of one political party and entrench a rival party in
23 definition of partisan gerrymandering.	23 power.
24 BY MR. EARLE:	24 A. I think how that you define a term like that is
25 Q. You would agree that partisan gerrymandering is the	25 going to depend on the context in which you're --

	$\text { Page } 34$		$\text { Page } 36$
	you're using it. That term may be appropriate in a	1	that question and rephrase my question.
2	context that's different than the way that I am	2	Is it your opinion that there is no such thing
3	using it in my own work. So I would not	3	as a partisan -- a successful partisan gerrymander?
4	characterize it as wrong so much as inappropriate	4	A. In the way that I define partisan gerrymandering in
5	for how I am analyzing gerrymandering in my own	5	my work, that would not be a meaningful statement
6	work.	6	because I define partisan gerrymandering as
7	Q. Do you consider that definition I just gave you to	7	something related to the process of gerrymandering.
8	be irrelevant to this case as you understand this	8	Now, I -- in a casual sense you do observe some
9	case?	9	partisan gerrymanders winning more seats for the
10	A. As I understand this case, the plaintiffs are	10	gerrymandering party than others, so if you are
1	arguing -- as I understand this case, there -- the	11	relating partisan gerrymandering and the definition
12	use of partisan gerrymandering in the context would	12	to the intent to -- again I don't remember the exact
13	essentially be a legal conclusion. I don't have any	13	quote that you used. Some partisan gerrymanders are
1	opinion on whether that definition is appropriate in	14	more successful than others, I suppose, but I'm
15	this case.	15	using the term here very casually, and I don't -- in
16	Q. Do you know who the author of that opinion is, I	16	neither the way I would define it in my work nor the
17	mean that definition is that I just gave you?	17	way I would expect a court to define it, even though
18	A. I believe it comes from a Supreme Court opinion.		I'm not -- not offering it as an opinion on how I
19	Whether it is -- because the quote is familiar to	19	would expect a court to define it.
20	me. Whether it comes from Bandemer or one of the	20	Q. You're not offering an opinion as to how you would
21	later cases, I can't recall off the top of my head.	21	expect the court to define partisan gerrymandering?
22	Q. It's Justice Ginsburg in the Arizona case.		A. Right.
23	A. Oh, okay.		Q. Okay. And you will not be doing that at trial?
24	Q. Okay. Now, Justice Ginsburg in that decision also		A. I will be doing that at trial.
25	said that partisan gerrymanders are incompatible	25	Q. Okay.
	Page 35		Page 37
1	with democratic principles. You agree with that	1	A. I don't think that the way that I would characterize
2	statement, right?	2	partisan gerrymandering would be compatible with
	A. Not in the way that I define partisan gerrymandering	3	the -- I'm sorry, I will be doing that at trial.
4	in my own work.	4	If you can go back to the previous question,
5	Q. Okay. So you don't think that partisa	5	you can refresh my memory as to what you're asking.
6	gerrymandering is incompatible with democratic	6	I have forgotten it.
7	principles?	7	Q. Why don't we go back and refresh the deponent's
8	A. The statement is very vague, both with respec	8	recollection of the preceding question before that
9	partisan gerrymandering and democratic principles.	9	one. If you can read the question and then his
10	Q. Well, we've just defined partisan gerrymandering,	10	answer, and then you can elaborate if you wish.
11	how Justice Ginsburg from the Arizona case. So	11	A. I'm sorry, the previous question was to how to
12	what's ambiguous about democratic principles?	12	expect a court to define partisan gerrymandering?
1	A. It sounds like you're asking for something which is	13	MR. KEENAN: She'll read it back.
14	very -- it sounds like you're asking for a personal	14	Y MR. EARLE:
15	opinion outside of the subject that I have been	15	Q. Just so you're clear, I'm not trying to play got you
16	recruited to ask as an expert on.	16	with you, so I'm going to have the court reporter
17	Q. Okay. So can you identify what the democratic	17	read the question -- the first question that you
18	principles are that are injured by a successful	18	gave an answer to, and then my follow-up question
19	partisan gerrymander?	19	that you struggled with answering, okay? So that --
20	MR. KEENAN: Object as vague.	20	(Question and answer read: Is it your opinion
21	THE WITNESS: Given the way that I think about	21	that there is no such thing as a partisan -- a
22	partisan gerrymandering, I would not know what a	22	successful partisan gerrymander?
23	successful partisan gerrymander was.	23	Answer: In the way that I define partisan
24	BY MR. EARLE:	24	gerrymandering in my work, that would not be a
25	Q. Okay. Why do you say that? Well, let me withdraw	25	meaningful statement because I define partisan

	Page 38		$\text { Page } 40$
1	gerrymandering as something related to the process	1	the process for gerrymandering works in a particular
2	of gerrymandering.)	2	case or a particular state.
3	MR. EARLE: It's the question before that.	3	Q. And you define that as a partisan gerrymandering
4	MR. STEPHANOPOULOS: The one after.	4	because one partisan party control the process?
5	THE COURT REPORTER: The one after is -	5	A. Yes, in a formal way.
6	(Question and answer read: You're not offering	6	Q. Okay. Now, how would you define intentional
7	an opinion as to how you would expect the court to	7	partisan gerrymandering?
8	define partisan gerrymandering?	8	A. I would not define that term. I don't think it's a
9	Answer: Right.	9	meaningful term in the context of my work.
10	Question: Okay. And you will not be doing	10	Q. What about in the context of what happened in
11	that at trial?	11	Wisconsin with Act 43?
12	Answer: I will be doing that at trial.)	12	A. Can you be more specific what you're asking?
13	(Discussion held off the record.)	13	Q. How would you define intentional partisan
14	MR. EARLE: He wants to amend his answer.	14	gerrymandering?
15	THE WITNESS: I am not offering an opinion on	15	A. I would not define intentional partisan
16	how I would expect a court to define partisan	16	gerrymandering. I don't think it's a meaningful --
17	gerrymandering because I am not offering an opinion	17	I -- in the context of my work.
18	about what I think judges will do. I am offering an	18	Q. I'm asking you in the context of Act 43, how would
19	opinion on how the court should define partisan	19	you define intentional partisan gerrymandering?
20	gerrymandering.	20	MR. KEENAN: Just object as vague. He says it
21	BY MR. EARLE:	21	doesn't make any sense. He's asked and answered
22	Q. And what is your opinion -- is that opinion stated	22	this like twice now.
23	in your report?	23	MR. EARLE: Could you read the question to the
24	A. I don't think it is directly stated in my report.	24	witness?
25	And to the extent that it's -- okay. Sorry. To the	25	(Question read: I'm asking you in the context
	Page 39		Page 41
1	extent that it is not stated in my report, I don't	1	of Act 43, how would you define intentional partisan
2	know that I expect to offer that particular opinion.	2	gerrymandering?)
3	I don't know exactly what I would be asked at a	3	THE WITNESS: The question is not meaningful in
4	trial or something like that if that's what you're	4	a way that I can answer it.
5	asking.	5	BY MR. EARLE:
6	Q. So we're pretty much all over the map on	6	Q. Well, do you think it's a relevant question in the
7	because you've started by saying that you weren't	7	context of this case in which you've been hired to
8	going to do one thing, but then you were going to do	8	render opinions?
9	that thing, and then you had a different version of	9	You're -- it looks like you're about ready to
10	that thing that applied to your work and that you're	10	nswer the question. Just so the record is clear,
11	not sure how the court would do it so we've kind of	11	this is a transcript, and it's not time coded.
12	like gone all over the place on this. So let's just	12	So --
13	go straight to the question.	13	A. That's fine.
14	A. Can I --	14	Q. You've sat silently for quite some time, and you
15	Q. Okay	15	appear to be thinking, and I don't want to interfere
16	A. Okay.	16	with that. I just want the record to reflect that
17	Q. Exactly what is your definition of partisan	17	there has been the passage of time between the
18	gerrymandering?	18	statement of the question and -- and the answer.
19	A. The definition of partisan gerrymandering I use in	19	Take your time.
20	my work is it would be a redistricting plan which is	20	A. It sounds like the question is asking for a legal
21	done under the complete control of one party. So	21	conclusion related to intent, which I don't think I
22	typically where one party has control of the process	22	am -- is related to what I have been recruited to
23	of districting, and typically that would mean they	23	act as an expert on.
24	have control over both houses of the state	24	Q. Okay. So is it correct to say that under your
25	legislature and the governorship depending on how	25	definition of Wisconsin's current -- under your

	$\text { Page } 42$		$\text { Page } 44$
	definition, Wisconsin's current plan, Act 43, is a	1	than what the intent was, but it is still in some
2	partisan gerrymander, correct?	2	way the result of that intent, combined with other
3	A. In the context of how I code partisan gerrymandering	3	variables.
4	in my work, I would code it as a partisan		BY MR. EARLE
5	gerrymander, yes.		Q. I'm not asking you about your beliefs. I'm asking
6	Q. That's because one party had complete control ove	6	whether you're going to be rendering an opinion very
7	the entire process, correct?	7	specifically and I'll ask the question be reread
8	A. As I understand the legislative control in	8	again. And listen very carefully to the question
9	Wisconsin	9	and answer the question that I asked. Okay?
10	Q. Is it correct that your definition does not tak	10	(Question read: And you're not going to be
11	into account the	11	endering any opinion as to whether the impact of
12	A. My work studies the electoral impact of a plan. It	12	Act 43 was the intentional result of the design of
13	studies the impact of partisan gerrymanders. It	13	Act 43, correct?)
14	does not take into account their impact, whether I	14	THE WITNESS: I will not be rendering an
15	define them as partisan gerrymanders or not	15	opinion on the intent behind Act 43. I will be --
16	Q. You do not connect the outcome of a plan to the	16	most of the opinions that I am giving in this case
17	ent of the plan, correct?	17	relate to the impact of adopting the standard for
18	A. I do not connect the outcome of the plan to whether	18	what would constitute unconstitutional partisan
19	I code it as a partisan gerrymander or not.	19	gerrymander as presented in the plaintiffs'
20	Q. And you're not going to be rendering any opin	20	complaint. That would also relate to Act 43 and the
21	to whether the impact of Act 43 was the intentiona	21	specific facts presented in this case.
22	result of the design of Act 43, correct?	22	Y MR. EARLE:
	A. I am not rendering an opinion on the specific intent	23	Q. We're going to move on.
24	of anyone who was crafting Act 43.	24	Would you characterize your coding of partisan
25	MR. EARLE: Okay. Could you read the question	25	gerrymanders as idiosyncratic?
	Page 43		Page 45
1	to the deponent again?		A. No, there are certainly cases in which there is a
2	(Question read: And you're not going to be	2	estion as to how something could be coded and it
3	rendering any opinion as to whether the impact of	3	might recall -- require a judgment call in certain
4	Act 43 was the intentional result of the design of	4	specific cases.
5	Act 43, correct?)	5	Q. Can you point to any legal or political science
6	THE WITNESS: Certainly I believe that the	6	literature that codes plans in the same way that you
7	impact of a map is the result of intentional acts by	7	did?
8	the people who were drawing the map in addition to	8	A. That codes all of the plans in the exact same way
9	several other variables. I believe there is intent	9	at I did? There are -- there are -- is other
10	behind the drawing of legislative maps, and I'm sure	10	literature that codes plans in a similar way that I
11	that's true in this case as well.	11	ould and for the most part, yes, relies on the same
12	MR. EARLE:	12	sort of standards and judgments that I use.
13	Q. I need you to answer the question I asked you,	13	Q. Can you identify those, please?
14	though.	14	A. There's an article by Michael McDonald in 2004. I
15	A. Okay.	15	n't know the title off the top of my head, but it
16	MR. EARLE: Read it again. And on the	16	certainly codes congressional plans in a similar
17	transcript each time could we have you re-print the	17	way, and in part I have relied on that.
18	question in parentheses?	18	There is an article by Squire from the early
19	(Question read: And you're not going to be	19	1980s that codes plans from the 1970s I believe in a
20	rendering any opinion as to whether the impact of	20	similar way. Again I am not recalling the titles
21	Act 43 was the intentional result of the design of	21	ff the top of my head. I could look them up if
22	Act 43, correct?)	22	that's necessary.
23	THE WITNESS: I believe that the impact of any	23	Q. Okay. Are you familiar with Andrew Gelman and Gary
24	legislative map is in some way the result of the	24	King's measure of partisan symmetry?
25	intent behind that map. The impact may be different		A. Yes.

	$\text { Page } 62$		Page 64
1	vote.	1	Once a plan is deemed presumptively
2	Subsequent to that, it's giving I presume an	2	unconstitutional, that the defendants could offer
3	estimate for what percent of the vote each party	3	evidence that some other factor should redeem it and
4	would win in a 50/50 election. Again it doesn't	4	make it constitutional instead.
5	specify it in this paragraph. I assume that's using	5	Q. What is the first step of the plaintiffs' proposed
6	a uniform swing across districts. If that is true,	6	test?
7	there is nothing specific in the data here that I	7	A. My impression is that the first step of the
8	would object to.	8	plaintiffs' proposed test differs in the complaint
9	Q. Okay. Let's go to paragraph 10 .	9	from other documents that I have read that the
10	A. (Witness reading.) I would certainly disagree with	10	plaintiffs have filed in the case. So it is unclear
11	the last sentence as implied by the previous	11	to me what the plaintiffs' first step in the
12	sentences.	12	proposed test is.
13	Q. Okay. Read what -- what you're referring to.	13	Q. Okay. You don't understand the first step of the
14	A. The last sentence is, "Thus, defendants cannot	14	test to be a showing that the plan was adopted with
15	salvage the current plan on the theory that	15	the express intent to subordinate the opposing
16	adherence to redistricting criteria or the state's	16	party --
17	underlying political geography made an unfair plan	17	A. That --
18	unavoidable."	18	Q. -- through a process of cracking and packing?
19	Q. What's your quibble with that sentence?	19	A. That first step is not clear to me from the
20	A. My quibble with that sentence is that the fact that	20	complaint.
21	a single plan can be drawn that would display	21	Q. Okay. Is it clear to you from subsequent filings in
22	different characteristics under measures like	22	the case that that is the first step of the
23	partisan bias or efficiency gap under a particular	23	plaintiffs' test?
24	election result, the fact that a single plan can be		A. I believe that subsequent filings from the
25	drawn that would display those characteristics would	25	plaintiffs claim that they would use as a first step
	Page 63		Page 65
1	imply that the state's underlying political	1	some sort of subjective measure of partisan intent
2	geography would not contribute to how -- I mean this	2	or evaluation of partisan intent. Again that's not
3	is not exactly what the sentence is stating, but	3	clear from the complaint so I -- given that the --
4	that a state's underlying political geography would	4	the various documents are contradictory, it is not
5	not contribute to how a typical plan would be drawn	5	clear what the plaintiffs' test to me is.
6	up or how one might expect a plan to be drawn up,	6	Q. Okay. Now, you used the word "contradictory."
7	even absent specific partisan control.	7	Contradictory means the documents take
8	Q. Let me see if we can -- well, let's finish paragraph	8	non-reconcilable positions, right? What -- where is
9	11 then, and then we'll go back on some of this	9	anything in this complaint contradictory to any
10	stuff here. Do you quibble with paragraph 11?	10	other document you've seen filed in this case?
11	A. I don't know what a neutral plan would be. I mean	11	A. I believe so let me find it. So paragraph 84 of the
12	this relates to the plaintiffs' intent -- sorry.	12	complaint, "The same two-part approach should be
13	Q. All right. Let -- let's get -- let's nail down what	13	applied to partisan gerrymandering claims, only with
14	your understanding of the proposed test that the	14	the efficiency gap substituted for total population
15	plaintiffs have in this case is.	15	deviation. The first step in the analysis is
16	A. Sure.	16	whether a plan's efficiency gap exceeds a numerical
17	Q. What is it?	17	threshold."
18	A. My understanding from the complaint of the	18	Q. Why don't you read paragraph 89.
19	plaintiffs' test is that they would propose that you	19	A. "Finally, there is no doubt that the current plan
20	would measure the efficiency gap in an election	20	was specifically intended and indeed designed to
21	result in the first election following a	21	benefit republican candidates, and to disadvantage
22	redistricting cycle. If that cleared a certain	22	democratic candidates, to the greatest possible
23	threshold, and I believe that the complaint suggests	23	extent. Thus, the current plan had both the purpose
24	that threshold should be seven percent, that the	24	and effect of subordinating the adherents of one
25	plan should be presumptively unconstitutional.	25	political party and entrenching a rival party in

	Page 66		Page 68
	power, in violation of their right to equal	1	explained in the complaint.
2	protection under the law."	2	Q. Has anybody instructed you to assume a two-part test
3	Q. You understand and -- would you read paragraph 31 ?	3	as opposed to a three-part test?
	A. I should mention I think there is another part of		A. No one has instructed me to assume that.
5	the complaint that I would want to highlight, but I	5	Q. You arrived at this conclusion yourself by reading
6	am having a little bit of trouble finding it.	6	the complaint?
7	Paragraph 31. "The current plan was drafted	7	A. This is what the complaint states. It repeatedly
8	and enacted with the specific intent to maximize the	8	states a two-part test.
9	electoral advantage of republicans and harm	9	Q. Okay.
10	democrats to the great possible extent, by packing	10	A. I also think that -- am I allowed to refer to my own
11	and cracking democratic voters and thus wasting as	11	notes with respect to this complaint?
12	many democratic votes as possible. Indeed, after a	12	Q. If you show them to me. You have notes? Were they
13	trial in prior litigation, a three-judge court	13	produced in response to the subpoena?
14	characterized claims by the current plan's drafters	14	A. I have some handwritten things that are highlights
15	that they had not been influenced by partisan	15	that I put on the complaint.
16	factors as 'almost laughable' and concluded that	16	Q. Okay. And you want to use them now? Okay. Let me
17	'partisan motivation' clearly lay behind Act 43."	17	look at them.
18	Q. Now, did you go to that citation?	18	MR. KEENAN: Do you think you need to use them?
19	A. The citation to Baldus?	19	THE WITNESS: Okay. As long as I have --
20	Q. Yeah.	20	BY MR. EARLE:
21	A. I did not go to that citation.		Q. If it would make your testimony more efficient, you
22	Q. Do you question the content of paragraph 31?	22	ca
2	A. I don't question the content. I just don't		A. I can reread the complaint.
24	understand how it relates to what you were asking me	24	Q. Well --
25	previously.	25	A. Find --
	Page 67		Page 69
	Q. Well, okay. I want you to assume that the	1	Q. -- not on my clock you can't. I have seven hours
2	plaintiffs' test has three parts: First, a showing	2	with you, and if you have notes that are going to
3	of intent to discriminate on the basis of	3	make it faster, you can go ahead and look at those
	partisanship. All right? Second, a showing of	4	otes.
	effects as measured by the efficiency gap. And	5	MR. KEENAN: You don't have to do it.
6	third, an opportunity for the defendants to make a	6	BY MR. EARLE:
	showing that the plan was the result of legitimate	7	Q. You can show them to me first before you -- before
8	public purpose or public policy or geography. All	8	you use them.
	right? Is that familiar to you?	9	A. I believe there is a statement in the plaintiffs'
10	A. Previously you asked me whether anything in the	10	filings that over a certain threshold of efficiency
11	complaint was contradictory to anything in the later	11	gap partisan intent can be assumed.
12	filings.	12	Q. Okay.
13	Q. Uh-huh.	13	A. That's what I'm trying to look for.
14	A. The test as expressed by the plaintiffs in the	14	MR. KEENAN: Which we just saw in paragraph --
15	complaint is contradictory to what you just said.	15	MR. EARLE: Well -- okay. Let's just move on.
16	Q. How is that so?	16	MR. KEENAN: Paragraph 6.
17	A. The test as explicitly laid out in the complaint has	17	THE WITNESS: It's paragraph 6?
18	two steps. It does not include the first step.	18	BY MR. EARLE:
19	Q. How would you characterize paragraphs 31 through 41	19	Q. I want to go into another -- another area now of
20	And 43. I'm sorry.	20	questioning.
21	A. I would characterize them as providing factual	21	A. It's -- sorry. That's not actually the part that
22	background. I would not certainly -- I would	22	I'm referring to. But I --
23	certainly not characterize them as in any way	23	Q. So you want to --
24	expressing a legal test that would be integrated		A. I think it -- go ahead.
25	into part of the express two-part approach as it's	25	Q. Okay. All right. What is the commonly accepted

	Page 70		Page 72
1	error rate in social sciences?	1	MR. KEENAN: Yes.
2	A. Error rate?	2	MR. EARLE: And we're going to -- I want to go
3	Q. Yeah.	3	to equation number one.
4	A. Can you define "error rate"?	4	MR. KEENAN: Can I get a copy of --
5	Q. You don't understand what error rate means?	5	MR. EARLE: Oh, sure.
6	A. If you're referring to a standard of statistical	6	BY MR. EARLE:
7	significance?	7	Q. I want to draw your attention to page 16?
8	Q. Okay. Yeah.	8	MS. GREENWOOD: Page 16. Yep.
9	A. Yes.	9	Q. Equation one. I'm sorry. Equation one, in
10	Q. Yeah.	10	paragraph 6.1, the efficiency gap when districts are
11	A. I would say the most common threshold would be five	11	of equal size. And the first sentence reads: Under
12	percent.	12	the assumption of equally sized districts, McGhee,
13	Q. Okay. All right. I want to draw your attention to	13	parens 2014 comma 80 re-expresses the efficiency gap
14	your quote on page 5 of your report.	14	as, and then there's a formula -- formula number
15	MR. KEENAN: Exhibit 17.	15	one?
16	BY MR. EARLE:	16	A. Yes.
17	Q. It's the quote is at the bottom second to last	17	Q. That's what you're referring to in that sentence
18	sentence of the first full paragraph. "I concur	18	from page 5 of your report, correct?
19	that this shortcut is an appropriate and useful	19	A. Yes.
20	summary measure of efficiency gap and also use it in	20	Q. Okay. And you have yourself repeatedly calculated
21	subsequent examples in this report."	21	plans' biases by comparing the parties' actual seats
22	Do you see that there?	22	to their expected seat shares given a responsiveness
23	A. Yes.	23	of two, correct?
24	Q. Okay. You're referring to Jackman's report,	24	A. Yes.
25	correct?	25	Q. And that is essentially identical to the efficiency
	Page 71		Page 73
1	A. Yes.	1	gap, correct?
2	Q. Okay. And you're referring to the methodology used	2	A. Yes.
3	by Jackman in calculating the efficiency gap?	3	Q. Okay. Now, let's move over to your article.
4	A. I'm referring to a part of his methodology. Yes.	4	Gerrymandering or Geography -- well, two articles.
5	Q. Let's nail that down. Can we look at page 16 -- is	5	Gerrymandering or Geography or Disappearing Biases?
6	Jackman's report in -- it's already been marked as	6	A. Yes.
7	an exhibit.	7	Q. You're familiar with those, right?
8	MS. GREENWOOD: It's 11.	8	A. Yes.
9	Q. Okay. So we -- let me -- I'm going to show you what	9	(Exhibits Nos. 20 and 21 marked for
10	has been marked as Exhibit 11 in this case. On this	10	identification.)
11	exhibit it's marked Exhibit 3 because it's Exhibit 3	11	BY MR. EARLE:
12	to the complaint. Okay. So assuming the reader of	12	Q. Now -- so -- okay. Do you think your models in
13	this transcript figures that out, we --	13	these two articles are reliable?
14	MR. KEENAN: There was an issue with the copy	14	A. You know, you haven't given me a copy of my
15	that has the exhibit sticker on it having all the	15	articles.
16	pages. So that's why we're using this one.	16	Q. Oh, I'm sorry, your lawyer has them.
17	MR. EARLE: Oh, there is?	17	A. Okay. Can you repeat the question?
18	MR. KEENAN: The court reporter I think scanned	18	Q. Okay. Are your -- are your models reliable?
19	the one with the 11 sticker wrong so there's some	19	A. What do you mean by "reliable"?
20	missing pages. So that's why I said we could just	20	Q. How would you -- I mean the term reliable has
21	use the one that's attached to the complaint because	21	substantive meaning in your profession, doesn't it?
22	it's an identical document, just doesn't have the	22	A. Yes, I believe that -- so what I am seeking to do in
23	exhibit sticker on it.	23	these articles is to characterize from an historical
24	MR. EARLE: He cites a correct version of	24	perspective how many seats a party would expect to
25	Exhibit 11 in the record of these depositions?	25	win given a vote -- particular vote share.

	Page 74		Page 76
1	Given that, I think that I have used a very	1	what will be in the published version. I think
2	simple model which could be made I believe slightly	2	there are some copy edits that I made to the text
3	more accurate by increasing the complexity, but for	3	which wouldn't substantively alter anything in the
4	the simplicity of the model that I am using, which I	4	art
5	think is appropriate given the venue that I'm	5	BY MR. EARLE:
6	publishing, I believe that the model is reliable.	6	Q. Good. So let's proceed. Okay. The design of -- of
7	Q. Given the venue that you're publishing. What does	7	this regression exercise on table 3, it enables us
8	that mean?	8	to differentiate between the effects of the
9	A. So the -- the journal Research \& Politics is an	9	redistricting institution on bias and the effect of
10	open-access journal which I believe is trying to	10	other demographic and political information,
11	target, in addition to academics, other people who	11	correct?
12	are interested in empirical political science	12	A. Right.
13	research. Does that make sense?	13	Q. Okay. This design also lets us make predictions
14	Q. Yeah.	14	about what a state's bias would be under
15	A. Okay.	15	hypothetical conditions, correct?
16	Q. Do these models reflect modern political science	16	A. Well, I don't know if it would enable you to do
17	techniques?	17	that.
18	A. Yes.	18	Q. Well, for example, we could predict what a state's
	Q. And you would trust their predictions for 2012 and	19	bias would be if its map was a democratic
20	2014?	20	gerrymander or a republican gerrymander or a
21	MR. KEENAN: Object as vague as to predictions.	21	partisan or court-drawn plan, correct?
22	THE WITNESS: I do not believe that these	22	A. It would give a prediction about the average impact
23	models are providing predictions.	23	of republican control of the process given that the
24	BY MR. EARLE:	24	electoral conditions are identical to the electoral
25	Q. Okay. Go to table 3 in each of those articles.	25	conditions in a particular election. Right. So it
	Page 75		Page 77
1	Yeah, the table 3, the regression results.	1	shows that the impact of gerrymandering is, for
2	A. Yes.	2	instance, different depending on the electoral
3	Q. In the Disappearing Bias article.	3	conditions as they differed between 2012 and 2014.
4	A. I'm sorry, this is the --	4	Q. So predictions for 2012, 2014 are covered by the
5	MR. KEENAN: Which number?	5	model, right?
6	THE WITNESS: Is this 21?	6	A. Yes. That is what covered by the model.
7	MR. STEPHANOPOULOS: Exhibit 21	7	Q. All right. So you present models -- okay. So what
8	BY MR. EARLE:	8	is the dependent variable in your model?
9	Q. Twenty-one. Page 13.	9	A. The dependent variable is the deviation in
10	A. Okay.	10	democratic seats won from historical expectation
11	Q. You trust the predictions here?	11	given a certain vote share.
12	A. Can I ask as an aside, do you know where you	12	Q. Okay. And the -- and this dependent variable is
13	acquired this from?	13	essentially identical to the efficiency gap, right?
14	Q. Website.	14	A. No. It uses a slightly different functional form
15	A. You acquired this from my website. Okay. So this	15	than efficiency gap does.
16	is the current version. Because this a forthcoming	16	Q. Okay. Explain that.
17	article which I have very recently made some edits	17	A. I'm using a probit functional form that I think is
18	to before it's being --	18	better adapted to extreme -- extreme election
19	Q. Why don't we do this. Let's take a very quick	19	results on one side or other. So it ends up --
20	break, look at the article, make sure it's the	20	when -- the model that I use ends up I think rather
21	latest version and make sure we're not operating off	21	coincidentally being very close to efficiency gap
22	of a previously edited version.	22	when one party wins say between 40 and 60 percent of
23	(Break taken 10:39 a.m. to 10:43 a.m.)	23	the vote. They deviate fairly strongly when one
24	THE WITNESS: So it appears that all of the	24	party wins an overwhelming percentage of the vote.
25	data in this version of the article is identical to	25	Q. Okay. So other than that, would you expect there to

	Page 82		Page 84
1	which the census deems as urbanized. I don't know	1	what -- what bias would your model predict in 2012
2	if I would conclude that that is a measure of	2	and 2014 if Wisconsin had a bipartisan or
3	geography as a whole.	3	court-drawn plan?
4	Q. Okay.	4	A. Bipartisan.
5	A. But I think it is a -- it is a test of the impact of	5	Q. Okay.
6	urbanization, and that is a facet of geography, and	6	MR. KEENAN: For congressional districts?
7	also partisan control of redistricting. Yes.	7	MR. EARLE: Okay.
8	Q. Okay. So I'd like to go through an exercise here.	8	MS. GREENWOOD: Are you okay with Mac? Do you
9	Okay. And what I'm going to ask you to do is to	9	want a PC?
10	plug in some values for Wisconsin into your model	10	THE WITNESS: That's fine.
11	and see what we find. Okay?	11	(Discussion held off the record.)
12	A. Okay.	12	MR. EARLE: Back on the record.
13	Q. Okay. So you've got a pen and paper? I think what	13	BY MR. EARLE:
14	we should do, the easiest way to do this is on	14	Q. All right. So your findings for what your model
15	Exhibit No. --	15	predict for 2012 and 2014 if Wisconsin had a
16	MS. GREENWOOD: I can give you an Excel if you	16	bipartisan or court-drawn plan?
17	want to use Excel.	17	A. Oh, I didn't do 2014 yet. I'm sorry.
18	BY MR. EARLE:	18	Q. Oh, you didn't do 2014?
19	Q. But on Exhibit 21, what we're going to do is I'm	19	A. I didn't do 2014.
20	going to give you some Wisconsin values, and then we	20	(Discussion held off the record.)
21	can offer you -- you can write those down in red on	21	MR. EARLE: Back on the record.
22	Exhibit No. 21, and then what we're going to do is	22	BY MR. EARLE:
23	provide you with a -- a Excel worksheet where you	23	Q. Okay. So the question -- okay. So your answer to
24	can do your math and put your answers down on	24	the question which is what bias would your model
25	Exhibit 21. That will become part of the record.	25	predict in 2012 and 2014 if Wisconsin had a
	Page 83		Page 85
1	Okay?	1	bipartisan or court-drawn plan?
2	A. Okay.	2	A. This model would predict that Wisconsin would have
3	Q. Ready?	3	a -- in both years, I mean the number is rounded to
4	A. Sure.	4	the same percentage, the same both years would be
5	Q. Okay. Wisconsin is 6.6 percent black.	5	four percent in favor of the democratics in both
6	A. Okay.	6	years.
7	Q. Okay. It's 6.5 percent Hispanic.	7	Q. Do you want to check your 2012 calculation?
8	A. Okay.	8	A. My 2012 calculation is $\mathbf{5}$ point -- sorry, 3.58.
9	Q. 70.2 percent urbanized.	9	Q. Is it 3.58?
10	A. Okay.	10	A. Sorry, what is the -- let me just make sure I have
11	MR. KEENAN: 72 point what?	11	all the -- oh, you're right. You're right. I
12	MR. EARLE: This is based on the 2010 --	12	did -- Sorry.
13	THE WITNESS: 70.2?	13	Q. So you have to make another adjustment here?
14	BY MR. EARLE:	14	A. Yeah, I just typed in one of the numerals wrong.
15	Q. 70.2 urbanized. Okay. That's based on the 2010	15	Sorry, I'm getting $\mathbf{1 . 8 5}$.
16	census. And its democratic vote share was 50.8	16	Q. 1.85?
17	percent.	17	A. Yes.
18	MR. KEENAN: Democratic vote share of what?	18	Q. And 4.392 for '14?
19	MR. EARLE: In 2012.	19	A. I'm getting 4.2. Are you -- are you adjusting
20	MR. KEENAN: Of what election?	20	for -- oh, 47.2. 4.392. Yes.
21	BY MR. EARLE:	21	Q. So the record is going to be a little jumbled there
22	Q. Congressional elections. And 47.2 percent in 2014.	22	in terms of clear questions and clear answers so
23	It has eight congressional seats. Okay. So I'm	23	what I'd like you to do at this point now is to
24	going to give you the -- the Excel here, and the	24	write down your findings in red at the bottom of
25	question that you're going to answer for me here is	25	table 3 on Exhibit 21.

	Page 86		Page 88
	And so you agree that your models -- as you	1	Q. Anticipating the next -- Okay. That's fine. All
2	have said, your models predict that if Wisconsin had	2	right. As far as the exercise we just went
3	a bipartisan or court-drawn map, it would have a	3	through --
4	modest pro democratic bias in both 2012 and 2014,	4	A. Right.
5	correct?	5	Q. -- we had enough congressional seats that we don't
6	A. I don't know that I would be able to say with any	6	have that problem?
7	confidence that it had a pro democratic bias	7	A. Yes.
8	considering like a two percent bias in favor of the	8	Q. Okay. Good. All right. So now, a model -- we're
9	democratics would be a small fraction of a seat,	9	going to apply your model in blue ink, and you've
10	right? It would be like $1 / 10$ of a seat.	10	written down your results on table 3 in red ink for
1	Q. Okay. But it's still a bias in favor of the	11	Wisconsin given the demographic independent
12	democratics, right, given the state's actual	12	variables we just gave you, right?
13	urbanization, its racial demographics, and the	13	A. Uh-huh.
14	political environment, correct?	14	Q. Now we're going to do the state -- a state that
15	A. Yes. I mean again I wouldn't characterize the	15	looks like the United States as a whole. Okay?
16	confidence that I would -- of the bias.	16	According to the 2010 census, the United States was
17	Q. There's no republican bias?	17	13.2 percent black, 17.4 percent Hispanic, 80.7
18	A. I certainly could not confidently say that there is	18	percent urbanized.
19	a republican bias generated from the model. Yes.	19	A. Uh-huh.
20	Q. All right. Let's do one more exercise, okay? I'll	20	Q. And according to your papers, the democratic share
2	give you some more numbers. We're going to do --	21	of the two-party congressional vote was 51 percent
22	now let's plug in the values for a state that looks	22	in 2012 and 47 percent in 2014. And the average
23	like America as a whole, the United States as a	23	state had nine congressional districts. Okay?
24	whole.	24	Using these variables, what would be the predicted
25	A. Okay.	25	bias if the average state had a bipartisan or
	Page 87		Page 89
1	Q. Okay. So according to the 2010 census -- now why		court-drawn map in 2012 and 2014? Okay. Plug thos
2	don't you write this -- write this one in blue ink.	2	numbers in. And we'll go off the record while you
3	A. I should -- so I should mention the --	3	do the math.
4	Q. Let's -- you don't have a question so unless	4	(Discussion held off the record.)
5	you're --	5	MR. EARLE: Back on the record.
6	A. I	6	MR. KEENAN: I'm just going to interpose an
7	Q. -- modifying	7	objection that this hypothetical has no basis in
8	A. No, I'm not.	8	fact, but you can answer.
9	Q. You're not modifying a prior answer. Okay.	9	MR. EARLE: Did you get the objection?
10	A. Well, I would -- so I would like to modify a prior	10	THE COURT REPORTER: Yeah.
11	answer.	11	MR. EARLE: You're objecting to the
12	Q. All right. Which answer -- which question are you	12	hypothetical?
13	modifying the answer to?	13	MR. KEENAN: Yeah, I mean you can ask
1	A. When you asked me whether these are reliable	14	hypotheticals, but you have to have a basis and
15	estimates for bias, whether the model -- I believe	15	evidence in fact, and I'm saying it's not.
16	the model generates reliable estimates for bias.	16	MR. EARLE: I think it's the United States
17	Q. Right.	17	census 2010.
18	A. This model is only predicting for states -- for	18	MR. KEENAN: Well, you're asking to assume that
19	medium or large states that have greater than six	19	every state has the same --
20	congressional districts. I would not say that I am	20	MR. EARLE: It is a hypothetical with a state
21	trying to provide an estimate of bias for smaller	21	with an average number of congressional districts
22	states than that. So if you're giving me data	22	matches a proportion of the United States census
23	that's drawn from smaller states than that, I would	23	demographics, and it's plugged into his model to see
24	not necessarily say that this model provides a	24	what kind of result it gives.
25	reliable --		BY MR. EARLE:

	Page 94		Page 96
	that you wrote entitled Redistricting, Risk, and		slope --
2	Representation: How Five State Gerrymanders	2	A. Yes.
3	Weathered the Tides of the 2000s. We'll mark that	3	Q. A slope of 2 would not qualify as
	as Exhibit 23.	4	hyper-responsiveness, correct?
5	(Exhibit No. 23 marked for identification.)	5	A. Given how I'm defining hyper-responsiveness in this
6	BY MR. EARLE:	6	article, yes.
7	Q. This is an article you authored, right?	7	Q. Okay. All right. Now, and that's contradictory to
8	A. Yes.	8	what you wrote in your report on page 5, correct?
9	Q. It's a peer-reviewed article?	9	I'm sorry, page 6. You're right. Page 6.
10	A. Yes.	10	A. I don't think I define hyper-responsiveness in my
1	Q. Okay. And drawing your attention to page 8, I	11	report, and I think I stated earlier that I used the
1	guess, of the article, the section that's Section 2,	12	term casually.
1	Dimensions of Representation, and under that	13	Q. That's what you meant by using the term casually,
14	subsection A, Bias and Responsiveness. And if you	14	you were stretching that in -- in your report from
15	look at the second column, right above the reference	15	what you indicated substantively in your article?
16	to table 1 in the middle of the page, there's a	16	A. What I indicated substantively in the article was
17	quote there that I have in mind, which is --	17	that I was defining hyper-responsiveness for the
18	begins -- the words begin, "The relationship between	18	purpose of the article as a deviation from
19	seats..."	19	historical average. I don't think that is
20	A. Yes.	20	necessarily how a lay person would define
2	Q. Would you read that quote for the -- from tha	21	responsiveness, particularly in the context of
22	sentence through the end of the paragraph?	22	comparing it to proportionate representation, which
	A. The relationship between seats and votes under one	23	is what I ' m doing in the report.
2	regime could be considered unresponsive if it		Q. Okay. So in your report at the bottom of page 5,
25	displays a higher -- if it displays -- excuse me --	25	you say -- and I'm reading from your report, the
	Page 95		Page 97
1	if it displays a responsiveness slope much below 2 ,	1	bottom page 5. You tell me if I read this
2	and hyper-responsive if this slope is substantially	2	incorrectly. And the court has additionally been
3	greater than 2.	3	wary of adopting a standard for partisan
	Q. Okay. And okay. And given your article, do you	4	gerrymanders that would amount to proportional
5	think it's fair to characterize a responsiveness --	5	representation, yet the efficiency gap test would
	well, that's an accurate statement, right? I mean	6	codify a very specific translation of seats to votes
	you stand by that statement in your article?	7	that is essentially -- essentially, quote,
	A. Yes. Given -- defining responsiveness as how much a	8	hyper-proportional, close quote, representation.
	change in votes change the number of seats a party	9	Did I read that correctly?
10	won compared to an historical average, yes, that is	10	A. Yes.
1	accurate.	11	Q. All right. So you're using that term as -- and the
12	Q. So it would have to be substantially off the slope,	12	efficiency gap does not deviate from the slope of 2 ,
13	right, greater than 2 for it to be hyper-responsive?	13	does it?
14	A. Right.	14	A. The -- the term that you're using in your quote is
15	Q. Correct?	15	hyper-proportional, not hyper-responsive. It's a
16	A. Yes.	16	different term.
17	Q. Okay. And how would you characterize a	17	Q. Five minutes ago you said the terms were equivalent.
18	responsiveness of 2, exactly 2 ?	18	A. I said in the report I casually used the term
19	A. I would characterize that as average responsiveness	19	hyper-responsive to be equivalent to
20	compared to historical trends or historical	20	hyper-proportional. It is clearly defined in the
21	averages, historical observations.	21	article that you gave me as being a certain
22	Q. Okay. I lost my spot here. Hold on a second. And	22	definition, which I think would not be the same as
23	based on your definition of hyper-responsiveness in	23	hyper-proportional.
24	this article, that would not qualify as	24	Q. Okay. In your report, subsection B on page 6, you
25	hyper-responsiveness? A slope of 2 would not -- a	25	say that an efficiency gap may discourage drawing

Page 98	Page 100
1 competitive districts. Do you read that there?	1 reasoning and the support that you have for those
2 A. I'm sorry, can you point out it again?	2 opinions, correct?
3 Q. It's page 6.	3 A. Okay. Yes.
4 A. Oh, yes.	4 Q. Yes. Okay. And I just want to go through and see
5 Q. Okay. You say, "An efficiency gap standard may	5 if we can just kind of corral those a little bit
6 discourage the drawing of competitive districts"?	6 more precisely.
7 A. Yes.	7 A. Okay.
8 Q. And you say this is an example of a normative value.	8 Q. You understand that under Rule 26, you have to state
9 What are normative values in your mind?	9 all of your opinions in your report, and as worded
10 A. Values that a person who is designing a political	10 by the rule itself, that your report must contain a
11 system may wish to imbue their system with in order	11 complete statement of all opinions that the witness
12 to represent some idea of good government.	12 will express and the bases and reasons for them, and
13 Q. Okay. Do you know whether competitive districts is	13 all the facts and data that you considered in
14 a -- a value defined in Wisconsin law for purposes	14 forming your opinions and any exhibits that will be
15 of redistricting?	15 used to summarize or support those facts or data.
16 A. I do not know. No, I don't know.	16 All right? You understand that?
17 Q. Okay. Do you know what the values are that are	17 A. Yes. It sounds like you were saying that what I
18 defined for purposes of redistricting in Wisconsin?	18 will be expressing -- yes, I understand that.
19 A. Can you be more specific?	19 Q. Okay. So I'm looking at your report, and in the
20 Q. Well, do you know what they are? I don't want to	20 context of Rule 26 requirements, and you have five
21 answer the question I just gave you. I want your	21 opinions that you will express, and you expand upon
22 answer to the question.	22 the bases and reasons for those opinions in the body
23 A. I don't know that Wisconsin law states that the	23 of the report that corresponds to each of the five
24 drawing of maps requires the consideration of	24 opinions, correct?
25 certain values.	25 A. Yes.
Page 99	Page 101
1 Q. You don't know that?	1 Q. Okay. And the first opinion you have -- and I'm
2 A. Specific to Wisconsin law I don't know.	2 going to state it to you as I understand it, and you
3 Q. Okay. What are Wisconsin's legal requirements for	3 tell me if I'm right or wrong, all right?
4 redistricting plans? Do you know?	4 A. Okay.
5 A. I don't know specifically Wisconsin's legal	5 Q. Your first opinion is that a high efficiency gap
6 requirements beyond the standard federal	6 doesn't mean an unbalanced map, rather a high
7 requirements.	7 efficiency gap implies a deviation from a
8 Q. Okay.	8 pre-determined seat/vote curve that discourages
9 MR. EARLE: This is a good time to take a	9 normatively desirable objectives such as maximizing
10 break. Let's take a break for lunch.	10 competition and proportionality. Correct?
11 (Lunch break taken 11:31 a.m. to 12:25 p.m.)	11 A. Okay. I -- the last clause I think you'd have to --
12 BY MR. EARLE:	12 I'm not saying that a high efficiency gap itself
13 Q. Nick, do you know Keith Gaddie?	13 discourages those particular -- use of those
14 A. Are you asking if I know him personally?	14 particular normative standards. I'm saying that
15 Q. Yeah.	15 adopting -- adopting a legal standard where a high
16 A. No.	16 efficiency gap would imply presumptive
17 Q. Have you read any of his work?	17 unconstitutionality of a map, adopting that standard
18 A. I don't recall specifically. I feel like I have,	18 could potentially discourage the use of those
19 but it's -- nothing is --I -- yeah, I don't recall	19 normative values in the drawing of districts. Does
20 specifically.	20 that make sense?
21 Q. Okay. All right. Now, in your report, you have	21 Q. No, it doesn't make sense because as I would
22 basically five opinions?	22 understand this those normative values would be
23 A. Okay.	23 responses that would legitimize the map in the face
24 Q. Correct? And each of those opinions is -- is	24 of the inference. Isn't that correct?
25 expanded upon in the body of the report with your	25 A. Could you repeat the question?

	Page 102		Page 104
	Q. I'll have the court reporter read it to you.	1	percent increase in votes would correspond with a
2	(Question read: No. It doesn't make sense	2	one percent increase in seats.
3	because as I would understand this those normative	3	Q. That's what you think?
4	values would be responses that would legitimize the	4	A. Hyper-proportionate -- that's how I would describe
5	map in the face of the inference. Isn't that	5	proportionate or proportional representation. Yes.
6	correct?)	6	Q. Okay. And where does -- you would agree that the
7	MR. KEENAN: I'm going to object as vague to	7	United States has exhibited a hyper-proportionate
8	the extent that it's asking Mr. Goedert to apply the	8	eats/vote curve over the history -- over history?
9	burden shifting frame of plaintiffs' test.	9	A. Yes. The historical average responsiveness of --
10	MR. EARLE: In other words, you're objecting to	10	d I have in particular studied congressional
11	the form of the question?	11	elections -- of the congressional elections that
12	MR. KEENAN: Yep.	12	I've studied does display a hyper-proportionate
13	MR. EARLE: As opposed to trying to answer the	13	response to changes in vote share, on average.
14	question yourself?	14	Q. Okay. So this is your first opinion. We'll --
15	MR. KEENAN: Well --	15	e'll elaborate on that in a little bit. I just
16	THE WITNESS: I think that adopting a test that	16	want to nail down that's the first opinion you've
17	would make something presumptively unconstitutiona	17	got?
18	would discourage the drawing of maps that would be	18	A. Yes.
19	presumptively unconstitutional even if they could be	19	Q. Okay. Second opinion, that an EG threshold of sever
20	rebutted by some other standard.	20	percent is a highly -- highly unstable metric and
21	BY MR. EARLE:	21	doesn't inform future efficiency gaps or durability.
22	Q. Okay. All right. So I guess what I'm trying to	22	Is that your second opinion?
23	figure out here is what is the meat of that first	23	A. Are you quoting from something here?
24	opinion?	24	Q. No, I'm reading -- I'm just characterizing.
25	A. Okay.	25	A. I don't know if I would say it doesn't inform at
	Page 103		Page 105
	Q. And as I understand it, that -- that a -- first, a	1	all. I would say it is a very weakly informative
2	high efficiency gap in your view does not mean an	2	signal of future efficiency gaps.
3	unbalanced map. Is that a part of your opinion?	3	Q. And the basis for that is?
	A. Yes, an observation of a high efficiency gap does	4	A. The basis for that is prior research on efficiency
5	not imply that a map is unbalanced.	5	gaps as well as the expert report of Jackman.
6	Q. Okay. That's -- that's the basic opinion in the	6	Q. Okay. What is the prior research?
7	first opinion that you have, right?	7	A. Stephanopoulos and McGhee.
8	A. Yes.	8	Q. So your interpretation of Stephanopoulos --
9	Q. Okay. And then you go on and elaborate that the		A. My interpretation of Stephanopoulos and McGhee --
10	a large efficiency	10	Q. We can't talk over each other.
11	pre-determined vote/seat curve representing	11	A. Sorry.
12	hyper-proportionate or hyper-responsive	12	Q. So your interpretation of the Stephanopoulos and
13	representation?	13	McGhee article is that it supports your view that
14	A. Yes.	14	the efficiency gap threshold of seven percent is
15	Q. All right? But a high efficiency gap is based on	15	highly unstable and is a weak informer of future
16	what kind of a -- of a -- of seats-to-votes curve?	16	efficiency gaps and durability, correct?
17	A. It's based on a curve that would -- that a one	17	A. Yes.
18	percent increase in the number of votes that a party	18	MR. EARLE: Okay. Mark this exhibit.
19	receives should correspond with a two percent	19	(Exhibit No. 24 marked for identification.)
20	increase in the number of seats.	20	Q. Showing you what's been marked as Exhibit 24.
21	Q. So your use of the term hyper-proportionate and	21	Please show me where in this report you draw that.
22	hyper-responsive representation being a dev -- a	22	A. (Witness reading.) Page -- page 26, second full
23	deviation, right, is wrong, right?	23	paragraph.
	A. I'm sorry, I would think that hyper-proportionate --	24	Q. Okay.
25	so proportionate would mean a one percent -- a one		A. The second most specifically -- I would say the

	Page 106		Page 108
	paragraph as a whole, most specifically the second	1	elections.
2	to last sentence beginning specifically.	2	Q. Okay. Let's go to the third one. Would you state
3	"Specifically, a plan's efficiency gap in one	3	your third opinion in one or two sentences?
4	election is a relatively weak predictor of its gap	4	A. The third opinion is differentiating between the
5	in the next election, coefficient equals 0.23 , in a	5	standard as expressed in the complaint and the
6	model that also includes a variety of other factors.	6	standard as expressed in the other academic research
7	Many partisan gerrymanders, therefore" --	7	or suggested in the other academic research as to
8	(Court reporter interrupted.)	8	how efficiency gap should be applied to determine
9	THE WITNESS: I'll stop there.	9	constitutionality. The other academic research,
10	Q. So when the efficiency gap is small, it's not a good	10	specifically the Stephanopoulos and McGhee article
11	predictor is what you're saying?	11	that I was referring to, also requires that a
12	A. This is overall measures of efficiency gap are a	12	sensitivity step -- a sensitivity test be applied to
13	relatively weak predictor as I interpret the	13	measure I suppose the hypothetical durability of a
14	statement.	14	map sufficiency gap, and that this is not stated in
15	Q. Okay.	15	the complaint, that this is not part of the -- the
16	A. I could find other instances where you have -- I	16	test as stated in the complaint, and that this is
17	also think that if you look at the graphs that they	17	really -- something along these lines is essential
18	show -- and my reference to that is a little bit	18	to determine durability of an efficiency gap. And
19	awkward considering one of the authors is in the	19	also I am not certain that the test as expressed in
20	room.	20	even in the Stephanopoulos and McGhee is sufficient
21	MR. STEPHANOPOULOS: Criticize all you want.	21	to establish the durability of the efficiency gap in
22	BY MR. EARLE:	22	a map.
23	Q. What page?		Q. That was a lot more than two sentences.
	A. So this is on page 38 and 39. You can see that many		A. I'm sorry.
25	of the maps which exceed their threshold, which I		Q. Give me two sentences. What is the opinion?
	Page 107		Page 109
1	believe is -- so on page 39, eight percent in one	1	A. The opinion is that the complaint does not
2	direction or another, many of the maps that exceed	2	sufficiently establish the durability -- the test
3	that threshold when observed throughout the decade	3	suggested in the complaint does not sufficiently
4	observe a wide range of efficiency gaps in other	4	establish the durability of a efficiency gap.
5	years in the decade, including efficiency gaps that	5	Q. That's your third opinion?
6	cross over to the other side of bias.	6	A. Yes.
7	Q. All right. And then you say the other basis that	7	Q. Okay. And what is your fourth opinion? Is it
8	you have is the Jackman report?	8	accurate to say that your fourth opinion is that Ken
9	A. Yes.	9	Mayer's demonstration map is hindsight based on 2012
10	Q. Okay. You've got that exhibit in front of you?	10	results not available at the time of drawing?
1	A. Oh, it's right there.	11	A. Yes.
12	Q. Let's hold off on that. We'll come back to this. I	12	Q. That's it?
13	just want to try to get these opinions reduced to	13	A. There are some other I think less important quibbles
14	to a clear couple of sentences. Okay. So how would	14	hat I would have with the -- the way that Mayer
15	you state your second opinion then in a couple	15	is -- is drawing up his demonstration plan, but that
16	sentences?	16	is the most important point that I am making in
17	A. Let me just look at my report to make sure I'm	17	the --
18	referring to the right --	18	Q. And your fifth opinion is that any judgment about
19	Q. Yeah, you summarize them on the -- on page 2 .	19	partisan bias must account for the political
20	A. Yeah.	20	geography that favors republicans supposedly?
21	Q. State it in two sentences.	21	A. Yes.
22	A. I would say that the plaintiffs' alleged threshold	22	Q. And that's an accurate statement of your fifth
23	for unconstitutionality of seven percent in a single	23	opinion?
24	election is not a strong or particularly informative		A. I think I say should account for bias, but --
25	signal of what an efficiency gap will be in future	25	Q. Okay. So those are -- those are the five opinions

Page 110	Page 112
1 that you're going -- that you've rendered in your	1 follows on page 24. You want to open the report?
2 report, and the rest of the report represents your	2 A. This is the Jackman report?
3 reasoning basis for each of those opinions, correct?	3 Q. Yeah. Uh-huh.
4 A. Yes.	4 A. Okay.
5 Q. Okay. All right. So you -- you assert that -- that	5 Q. All right. And we're going to look at page 24. And
6 increasing competitiveness or achieving proportiona	6 so Professor Jackman quotes Stephanopoulos and
7 representation are legitimate goals that might	$7 \quad$ McGhee as, quote, we strongly discourage analysts
8 result in a large efficiency gap, correct?	8 from either dropping uncontested races from the
9 A. Yes.	9 computation or treating them as if they produced
10 Q. Okay. And but you have no reason to think that Act	10 unanimous support for a party. The former approach
1143 was intended to increase competitiveness or	11 eliminates important information about a plan, while
12 achieve proportional representation, do you?	12 the latter assumes that coerced votes accurately
13 A. I have no specific knowledge that would suggest that	13 reflect political support, period, close quote. I
14 was a goal.	14 concur with this advice, close quote. All right.
15 Q. Okay.	15 Do you agree with Jackman, Stephanopoulos, and
16 A. But I don't have any specific knowledge related to	16 McGhee that uncontested races should neither be
17 much about the intent behind that act.	17 dropped nor treated as if they produced
18 Q. Okay. How many states other than Arizona include	18 100-percent-to-zero outcomes?
19 competitiveness as a legal criteria for district	19 A. I think it depends on context.
20 lines?	20 Q. Okay. And yeah, what's the context that matters to
21 A. It is certainly a minority difference betwee	21 you in answering that question?
22 congressional and state legislative maps. I don't	22 A. I think there are a variety of perfectly acceptable
23 know the number off the top of my head.	23 things that could be done to -- in the treatment of
24 Q. It's zero, isn't it?	24 uncontested races, and Stephanopoulos and McGhee
25 A. I don't --	25 adopt one method and Jackman adopts two different
Page 111	Page 113
1 Q. Now, you paused. So I'll --	1 methods, and of course the Mayer report adopts a
2 A. If you're talking about stated in the law, that	2 totally different method. I don't have any specific
3 might be true.	3 objection to any of those.
4 Q. Okay. You can't name any other state other tha	4 Q. Okay. So in your opinion -- in your opinion you
5 Arizona as you sit here in this deposition; isn't	5 don't object to any of those?
6 that true?	6 A. Not for the purpose of measuring -- estimating
7 A. Sure.	7 efficiency gap in a particular election.
8 Q. Okay. And how many states include the achievement	8 Q. Okay. Let's go -- let's go on to what you did then
9 of proportional representation as a legal criteria	9 because when you calculated the efficiency gap for
10 for districting plans?	10 Arizona's congressional map from 2002 to 2012 on
11 A. I'm fairly sure that none do.	11 pages 7 and 8 of your report, and the California
12 Q. Okay. Are you familiar with -- you use -- so it's	12 congressional map in 2008 at page 10 of your report,
13 zero, right?	13 didn't you treat uncontested races as if they
14 A. I believe -- I'm not aware of any.	14 produced 100-percent-to-zero-percent outcomes?
15 Q. Okay. So the answer is that it's zero. Zero states	15 A. I did not do any imputation for uncontested races.
16 require that, correct?	16 That's true.
17 A. I believe that's true.	17 Q. Right. So you --
18 Q. Okay. You use examples from Arizona and California,	18 A. Yes.
19 right?	19 Q. You treated them as -- as producing a
20 A. Yes.	20 100-percent-to-zero-percent outcome?
21 Q. In your report. And these are both congressional	21 A. I believe that's accurate.
22 examples, not state legislative examples?	22 Q. Isn't it correct that you don't know what the plan's
23 A. Yes, they're both congressional examples.	23 efficiency gaps would have been if you hadn't
24 Q. Now, Chen and Rodden -- I'm sorry. In his expert	24 treated uncontested races that way?
25 report Jackman quotes Stephanopoulos and McGhee as	25 A. Well, because I have not done any particular

	Page 114		Page 116
	imputations for uncontested races, that's true, I do		A. Okay.
2	not know what the results would have been if	,	Q. And you agree that that approach is reasonable,
3	uncontested races had been imputed with some sort	3	correct?
4	of -- under one of the methodologies of the report		A. A reasonable way of reporting the data?
5	or the scholarship. That's true.	5	Q. Yeah.
6	Q. In their article Stephanopoulos and McGhee state,		A. I -- yes, I think it's reasonable.
7	quote, we -- we report the efficiency gap in seat	7	Q. Okay. And so why do you report your efficiency gaps
8	for congressional plans and in seat shares for	8	r California and Arizona in percentages rathe
9	house -- state house plans. What matters in	9	an seats since those are congressional?
10	congressional plans is their impact on the total	10	A. Because I think my approach is reasonable as well.
11	number of seats held by each party at the national	11	Q. Okay. Do you know what the efficiency gaps would be
12	level. Conversely, state houses are self-contained	12	in seats rather than percentages?
13	bodies of varying sizes for which seat shares reveal	13	A. I could refer to my report and figure out what
14	the scale of parties' advantages and enable temporal	14	the -- very quickly off the top of my head. I mean
15	and spatial compatibility, close quote. That's at	15	Arizona had eight congressional seats in 2002 to
16	page 868 -- 869 of the Stephanopoulos and McGhee	16	2010 and nine in 2012. So the greatest efficiency
17	article, the final version.	17	gap it looks like would be a little over one seat in
18	MR. STEPHANOPOULOS: This is -- this is the	18	2002 or a little over one seat in 2012. In the case
19	same text but without the final page numbers.	19	of Arizona -- did you just ask me about Arizona or
20	MR. EARLE: Okay. So what page is that on?	20	are you asking about California as well?
21	MR. STEPHANOPOULOS: I don't know. I'll have	21	Q. Arizona. Arizona is fine.
22	to find that.	22	A. So slightly over one seat would be the greatest
23	MR. EARLE: We'll take a quick break and g	23	deviation.
24	that for you because there's a variation between the	24	Q. And what would be -- what would it be under
25	exhibit and the -- my notes here.	25	Stephanopoulos and McGhee's? And that -- oh, I'm
	Page 115		Page 117
1	THE WITNESS: If you know what section it is,	1	sorry. And that would be -- I'm trying to -- and
2	you could probably find it more easily	2	hat would be under Stephanopoulos and McGhee's
3	MR. EARLE: We've got it right here. It's	3	proposed two-seat threshold at all times, correct?
4	coming up.	4	A. Well, you asked me if I thought it was a reasonable
5	MR. STEPHANOPOULOS: Page 29	5	way to report the data. You didn't ask me about the
6	MR. EARLE: Page 29.	6	reasonableness of the threshold.
7	MR. STEPHANOPOULOS: The bottom of page 29 t	7	Q. Okay. Okay. Let's go to the next section. Okay.
8	page 30 .	8	On page 11 of your report, I draw your
9	MR. EARLE: To page 30.	9	attention to the quote: "Yet both the academic
10	THE WITNESS: Okay. I see where you're talking	10	research and data presented by the plaintiffs'
11	about.	11	expert show that such intent cannot be inferred."
12	BY MR. EARLE:	12	It's the last sentence on the first paragraph of
13	Q. Yeah. All right. So you see the quote. And you	13	page 11 .
14	heard the quote that I read?	14	A. Yes.
15	A. Can you tell me where you're getting the quote	15	Q. Do you have any objection to efficiency gap scores
16	again?	16	when they're being used to establish effect rather
17	Q. We report the efficiency gap in seats for	17	than intent?
18	congressional plans and in seat shares for state	18	MR. KEENAN: Just object as vague.
19	house plans. What matters in congressional plans is	19	THE WITNESS: I do not object to them being
20	their impact on the total number of seats held by	20	used as a summary measure for deviation from a
21	each party at the national level. Conversely, state	21	pre-determined seats/votes curve.
22	houses are self-contained bodies of varying sizes	22	BY MR. EARLE:
23	for which seat shares reveal the scale of the	23	Q. So it's --
24	parties' advantage and enable temporal or spatial	24	A. So I wouldn't necessarily say that a particular
25	comparability. All right?	25	efficiency gap implies that some particular factor

the sensitivity testing be carried out since I'm not the one proposing the test. Q. Okay. But if you were asked to carry out sensitivity testing for that work, for those calculations, how would you do it as a matter of methodology? A. So if you're asking if I were asked what is the likelihood that an efficiency gap would -- observed in a particular election would -- Q. No, observed in the first election after the map -the decennial cycle, the first election after the map is drawn. A. That an efficiency gap observed in the first election after a particular cycle -- if I were being asked what the likelihood that that efficiency gap would persist throughout potential future elections in the decade, with the caveat that I am not suggesting that this should be the test for constitutionality, just if I was asked to do that from an academic perspective, I think what I would want to do is develop some sort of measure for the plausibility of future overall electoral environments in some way -- Q. I'm sorry, future what? A. The plausibility of future electoral environments,	Q. And now, in their article, Stephanopoulos and McGhe make this determination by looking at the variation that has historically occurred in state legislative elections using the entire range from the 10th to the 19th -- 90th percentile of this historical variation. You -- you agree this is a reasonable approach? A. Can you point to where in the article you're finding that? Q. Sure. Coming right up. MR. STEPHANOPOULOS: Look on page -- MR. EARLE: Look on page -- MR. STEPHANOPOULOS: -- 35. MR. EARLE: 35. MR. STEPHANOPOULOS: So it's the beginning of section 3B. THE WITNESS: This is footnote 153 that you're drawing from? MR. STEPHANOPOULOS: Yeah. MR. EARLE: Yeah. THE WITNESS: And is your question whether I would object with the -- BY MR. EARLE: Q. No, the question is that this is a reasonable approach, isn't it?
and by that I mean the overall statewide vote share for a particular party. All right. So there could be an electoral environment where there is a democratic wave where the democrats get 58 percent, and that might occur with some probability. You know, you might have a 50/50 election with some probability. You might have a 60/40 republican election with low probability, but some probability. So you'd probably want to develop some sort of methodology to think about what the range of possible electoral environments would be. Q. So is that a long-worded way of saying that you would recommend using a uniform swing assumption? A. Right. And then applying that range and situating the current -- the immediately previous or the observed election results within that range, I would probably do something like applying a uniform swing. Q. Okay. So -- A. I think -- I think that's not -- off the top of my head that's the sort of a reasonable way to do that. Q. Okay. So you would base that -- that -- that uniform swing assumption based on future electoral environments based on past electoral data, election data, correct? A. Yes. Based on past election data. Yes.	A. What I think is not particularly reasonable about this specific approach is that you are taking the result of a particular election and swinging that result, rather than trying to situate that particular election result within the context of possible election results and altering your swings based on where that particular wave that you're observing happened within the range of possible election results. Q. I'm not sure I got what you just said. Can you -could you restate that? Because the question is the methodology or approach exemplified by the Stephanopoulos and McGhee in the footnote 53, that's a reasonable approach? A. Can I give an example of where I think it might not be reasonable that might eliminate this? Q. Well, first from a methodological point of view is it a reasonable approach? A. I think there are aspects of it that are not reasonable. Q. Okay. What would you recommend instead? A. Again stating that this is not what I would recommend as a test of constitutionality, but specifically if I were asked the empirical question of what is the likelihood that an efficiency gap

	Page 130		Page 132
1	However, what he is not looking at is given the wave	1	standard. So like --
2	election that occurred in $1994-1992$ was a roughly	2	MR. EARLE: How you would -- I'm asking -
3	evenly balanced national election, 1994 was not. He	3	well, you can call it a legal standard. We're
4	doesn't include any elections in his baseline here	4	asking him to set the threshold.
5	that would be considered wave elections at a	5	THE WITNESS: I would not set a threshold
6	national level.	6	because I don't believe efficiency gap is an
7	And there's no reason why if we're applying	7	appropriate measure of the constitutionality of a
8	this in the future we wouldn't observe a wave	8	gerrymander.
9	election at a national or statewide level during the	9	BY MR. EARLE:
10	first election following redistricting.	10	Q. You told us how you would do it with sensitivity.
11	Q. Well, in order to develop or determine that	11	Now tell us how you would do it with past election
12	likelihood, he considers all election results --	12	results.
13	A. That's not --	13	A. You were asking an empirical question with respect
14	Q. -- not just the 1972, 1982, et cetera; isn't that	14	to sensitivity testing. All right? How would I
15	so?	15	determine the likelihood that X will happen given Y ?
16	A. No, he is not -- this graph has nothing to do with	16	Now you're asking me to make a judgment about the
17	the likelihood that a wave election will occur.	17	constitutionality.
18	He's observing the likelihood that an efficiency gap	18	Q. No, I'm asking how you -- same question. I'm not --
19	will be observed given a wave election.	19	read -- read the question. Listen to it carefully.
20	Q. Right.	20	And I understand you want -- you're anxious to
21	A. Not -- not the likelihood that a wave election will	21	advocate your -- you know, your position and your
22	occur. And what I'm saying here is that there is a	22	opposition to using the efficiency gap, but that's
23	completely reasonable likelihood that a wave	23	not what I'm asking you.
24	election could occur in the first election cycle		A. Okay. Read the question.
25	following redistricting, which would generate	25	(Question read: You told us how you would do
	Page 131		Page 133
1	completely different results with respect to the	1	it with sensitivity. Now tell us how you would do
2	durability of the efficiency gap during the election	2	it with past election results.)
3	subsequent in that decade than what Jackman observes	3	THE WITNESS: Can you define "it"?
4	in his graph.	4	BY MR. EARLE:
5	Q. Do you agree that a uniform swing assumption is not	5	Q. How you would develop a re -- a robustness check, if
6	entirely reliable?	6	you will, a reliability for testing durability, a
	A. I agree that it's not entirely reliable.	7	reliable way of testing durability of the first --
8	Q. Do you agree that Jackman's approach avoids the	8	A. I think I answered that with respect to the
9	reliance on the uniform swing assumption?	9	sensitivity testing.
10	A. Yes, Jack -- well, Jackman's approach does not	10	Q. Right. Now if you were limited to using past
11	perhaps have some of the problems that a uniform	11	election results, how would you -- how would you
12	swing assumption might have, but I think his	12	check that robustness, if you will, of the
13	methodology is much more problematic in other ways.	13	durability measure?
14	Q. All right. If you -- if you weren't going to carry	14	A. I see. So you're asking if I was not allowed to use
15	out sensitivity testing, how would you recommend	15	a hypothetical -- use a uniform swing or develop
16	setting the efficiency gap threshold using past	16	hypothetical --
17	electoral data?	17	Q. Right.
18	A. I'm not recommending setting a threshold for	18	A. Now I understand it better. I think at a minimum
19	constitutionality of an efficiency gap.	19	you would want to look at all election results, say
20	Q. But if you were asked to do that, how would you do	20	given not just the first election after
21	it?	21	redistricting. You'd want to look at given any
22	MR. KEENAN: Objection. Calls for a legal	22	election, what is the probability of a deviation in
23	conclusion.	23	the sign of the -- of the efficiency gap at some
24	MR. EARLE: No, I'm asking how he would do it.	24	other point during the decade or at some other point
25	MR. KEENAN: Yeah, how he would set a legal	25	given some time period that you're interested in,

	Page 134		Page 136
	but you wouldn't want to only highlight those	1	conduct, yes.
2	particular -- arbitrarily highlight only those	2	Q. How different would you say figures 27 and 28 are
3	particular elections that occurred in the first	3	from figures 29 and 30?
4	decade after redistricting, which I think rather	4	A. I think they're very different.
5	coincidentally don't include any wave elections	5	Q. How?
6	where I think the least durability is going to be	6	A. They show a much greater number of plans having an
7	observed.	7	efficiency gap the opposite sign given a particular
8	Q. Okay. Look at now figures 27 and 28. Got them?	8	threshold.
9	Those take into account all elections, don't they?	9	Q. What exactly are those differences? Can you
10	Not just the first election after redistricting?	10	quantify them?
11	A. So the point estimates here are the proportion of	11	A. Well, I believe if you look at say a efficiency gap
12	elections that display an efficiency gap at least	12	of negative .7 , right, it's showing that like 35
13	that large, including all elections in Jackman's	13	percent of plans at that threshold, negative .7,
14	data set.	14	have an efficiency gap of the -- show an efficiency
15	Q. Right.	15	gap of the opposite sign at some point during the
16	A. Yes. Sorry, I -- okay. This is the blue dots.	16	decade. I believe I am interpreting this correctly.
17	Right?	17	Again the figure's a little bit complicated so --
18	Q. Right.	18	Q. Okay. Compare the EG of minus seven percent in
19	A. Yes.	19	figure 27 and figure 29. What are the corresponding
20	Q. That's what it says.	20	blue and red dots?
21	A. The blue dots. That's what I'm defining. Is there	21	MR. KEENAN: Object as vague. I don't
22	another question? I'm sorry.	22	understand it. If you do, you can answer.
23	Q. Read the -- read the -- could you read the question,	23	THE WITNESS: So this is only showing the first
24	please?	24	election? 29?
25	A. And the red dots show the proportion among all	25	BY MR. EARLE:
	Page 135		Page 137
	plans --	1	Q. Yeah. 27 is all elections. 29 is the first
2	Q. Exceeding --	2	election.
3	A. -- that have -- exceeding threshold to have an EG	3	A. Well, in this case it does look like he's showing
4	with opposite sign.	4	that an efficiency gap of negative .7 will have an
5	Q. Right.	5	opposite sign efficiency gap at 25 percent at
6	A. And this is at some other point during the decade?	6	negative . 7.
7	Again he has a lot of figures here so I forget	7	Q. Okay.
8	exactly which figures are showing what.	8	A. Which is a little bit -- seems a little bit
9	Q. Well, you're looking at figure 27 and you're looking	9	inconsistent with his confidence estimates in the
10	at figure 28. Do you understand those?	10	later graphs so I'm not completely sure why he's
11	A. I do understand them. Yes.	11	getting those confidence estimates.
12	Q. Okay. So now I'll have the question read to you.	12	Q. What's the figure for 29? What's the figure --
13	(Question read: Okay. Look at now figures 27	13	what's it for 29?
14	and 28. Got them? Those take into account all	14	A. For figure 29? I think at negative $\mathbf{7}$ it was
15	elections, don't they? Not just the first election	15	showing something like 25 percent. Again I'm just
16	after redistricting?)	16	looking at the graph and eyeballing.
17	THE WITNESS: Yes.	17	Q. Compare 27 and 29 then.
18	BY MR. EARLE:	18	A. So 27 was 35 percent and 36 percent, something like
19	Q. That's the question you have before you. What's the	19	that. 29 was 24 percent, 25 percent, something like
20	answer?	20	that.
21	A. Yes.	21	Q. Okay. So that's the entirety of the gap that comes
22	Q. Okay. And so they're the kind of analysis you would	22	from considering just the first election, right?
23	want to conduct, right, that you just described a		A. It looks like figure 9 --
24	few moments ago?		Q. Versus all elections?
25	A. This is closer to the analysis that I want to		A. First election or all elections?

	Page 138		Page 140
	Q. No, first election.	1	the map for the state, the expert hired by the state
	A. Twenty-nine shows the first election.	2	to help them draw the map came up with a model to
3	Q. Uh-huh.	3	predict partisan performance? You think that's
	A. And it's showing that at a point -- an efficiency	4	irrelevant?
5	gap observed in the first election of negative . 7	5	A. Irrelevant to what?
6	there is about a 24 percent chance that it will	6	Q. To determining whether or not there's been an
7	change in sign at some point during the next decade.	7	intentional gerrymander here.
8	Again I believe I'm interpreting this correctly.	8	MR. KEENAN: Object to the extent it calls for
9	Q. Okay. All right. Buried the theme a little bit	9	a legal conclusion.
10	here.	10	THE WITNESS: I don't believe that I have been
11	The second sentence of the first paragraph on	11	hired as an expert to determine intent.
12	page 16 of your report, when, quote -- you write,	12	MR. EARLE: Okay.
13	when measuring the bias in a map from an academic	13	(Exhibit No. 25 marked for identification.)
14	standpoint, imputing vote share in unopposed races	14	BY MR. EARLE:
15	seems entirely appropriate as do the specific	15	Q. Showing you what's been marked as Exhibit 25, and
16	methods used in both reports to make these	16	will represent to you that this was a memo written
17	imputations, close quote. All right.	17	by Keith Gaddie dated April 17, 2011 and was
18	Did I read that accurately?	18	produced by him as part of his reliance material,
19	A. Yes.	19	and he provided testimony on behalf of the GAB in
20	Q. And that's your position, right, that Jackman	20	the Baldus case. Take a look at it.
21	imputed vote share in unopposed races in an entirely	21	A. Okay.
22	appropriate method?	22	Q. Take a moment to read it.
23	A. Yes, I do not have any objection to the imputation		A. (Witness reading.)
24	decisions in the Jackman re	24	MR. KEENAN: So you're representing that?
25	Q. Do you know what Sean Trende said about that?	25	MR. EARLE: Yes.
	Page 139		Page 141
	A. No, I don't.	1	MR. KEENAN: We don't have the actual document?
2	Q. Okay. Haven't you used presidential election	2	MR. EARLE: You have it. You guys produced it
3	results in your work to measure districts'	3	to us. The State of Wisconsin attorney general
4	underlying partisanship?	4	representing the GAB produced it to us in -- at the
5	A. Yes.	5	Keith Gaddie deposition when they produced his thump
6	Q. And don't these assume all districts are contested	6	drive of his --
7	and there's no incumbent when you do it?	7	MR. KEENAN: Is this the actual document that
8	A. Yes, but I am not doing it to predict future	8	was produced?
9	election results.	9	MR. EARLE: It's a print of his thumb drive
10	Q. Okay. Didn't Wisconsin's own redistricting advisor,	10	that was produced.
11	Keith Gaddie, assume no incumbents in coming up wit	11	MR. KEENAN: But I'm asking did you copy --
12	his predictions for Act 43?	12	MR. EARLE: This is a printout of what was
13	A. The only knowledge I have of this is what was	13	on --
14	written in the plaintiffs' filings.	14	MR. KEENAN: Of what was on -- like the exact
15	Q. Well, do you find it curious that you have been	15	thing?
16	hired by the State of Wisconsin, the GAB, to defend	16	MR. EARLE: The metadata would show that this
17	the map and criticize the EG, and they didn't	17	was drafted by Keith Gaddie, and his testimony would
18	provide you with this information?	18	say that this was drafted by him on April 17, 2011.
19	A. No.	19	MR. KEENAN: Okay. I just wanted to know
20	Q. If the state in formulating the map came up with an	20	whether it was an actual document or just like a --
21	analysis, wouldn't you want to see it, that	21	MR. EARLE: No, this was -- and it was the
22	predicted partisan performance?	22	subject of deposition testimony as well.
23	A. I don't think it's particularly relevant to the	23	THE WITNESS: Okay.
24	opinions that I'm offering.		BY MR. EARLE:
25	Q. You think it's irrelevant that the person drawing		Q. Okay. So you read the document?

	Page 142		Page 144
1	A. Yes.		A. If I were asked to --
2	Q. Okay. Now, don't you think it would be useful for		Q. Your confidence. I'm sorry.
3	you to have the data that the State of Wisconsin	3	ke
4	used, the authors of the Act 43 used to calculate		A. I'm sorry.
5	and predict partisan performance in the remap	5	Q. If -- how would you recommend that Ken Mayer take
6	process as they redistricted?	6	incumbency into account in order to satisfy your
7	A. Not necessarily. I don't see how this particular	7	confidence in his work?
8	data would be particularly informative to my report.	8	A. I would not -- I would not recommend anything to
9	Q. Okay. Do you think it would be significant to	9	ake incumbency into account. I would just discount
10	compare the predicted partisanship performance to	10	he effectiveness of this particular methodology in
11	the actual partisan performance after the passage of	11	eneral in rebutting a presumption of
12	the act?	12	constitutionality if we're accepting the plaintiffs'
13	A. Can you repeat the question?	13	test in the first place.
14	(Question read: Do you think it would be	14	Q. You've criticized him for not taking it into
15	significant to compare the predicted partisanship	15	account, right? Am I understanding that properly?
16	performance to the actual partisan performance after	16	A. I am not --
17	the passage of the act?)	17	Q. Am I understanding that properly that you criticize
18	THE WITNESS: Depends what you mean by	18	Ken Mayer for not taking incumbency into account?
19	"significant." I am not surprised that the election	19	MR. KEENAN: I object as it calls for
20	results in 2012 would conform well to predicted	20	speculation as to what Mr. Earle understands.
21	partisan performance based on an even baseline of	21	THE WITNESS: Okay. I object to making the --
22	partisan balance. Because that was the actual	22	drawing the conclusion that this is a plausible map
23	result in 2012, that you had a result that was very	23	that could have been drawn because there are so many
24	even on the basis	24	other factors that are different from the time when
25	So it would certainly not surprise me that the	25	the map actually had to be drawn. The amount of
	Page 143		Page 145
1	sults were very close in that particular election.	1	knowledge that he both uses and does not use is so
2	I don't think that's necessarily informative for	2	much different from that which the legislature knew
3	future elections.	3	and didn't know at the time when they had to draw
4	BY MR. EARLE:	4	the map.
5	Q. Okay. Do you know -- do you know if Ken Mayer had a	5	BY MR. EARLE:
6	variable for incumbency in his report?	6	Q. So it would be more realistic to take incumbency
7	A. Well, he does have a variable for whether an	7	into account then, right?
8	incumbent was running in a particular seat.	8	A. It would be realistic if we were predicting what
9	Q. Okay. You criticized Mayer for assuming that all	9	type of map a legislature will draw.
10	districts didn't have incumbents, right?	10	Q. Answer the question I asked. I'll have the court
11	A. In the demonstration plan, the performance in the	11	reporter read it to you.
12	demonstration plan, I believe I am accurate in his	12	(Question read: So it would be more realistic
13	assumption that there are no incumbents -- or there	13	to take incumbency into account then, right?)
14	is no incumbency effect in any district.	14	THE WITNESS: I think you would generate more
15	Q. How do you recommend that Mayer take into account	15	real -- you would probably generate more realistic
16	which districts have incumbents?	16	results for the particular election that you are
17	A. I am not recommending that Mayer necessarily take	17	generating counter factual results for if you did
18	that into account, but I think the fact that that is	18	take incumbency into account.
19	not taken into account reflects the possibility --	19	BY MR. EARLE:
20	reflects the plausibility of the expectation that a	20	Q. How would you do it?
21	legislature could draw such a map or would draw such	21	A. Well, I suppose that you know where the incumbents
22	a map in a hypothetical circumstance.	22	live and you know which incumbents actually did run
23	Q. Okay. Well, but if you were to take it into	23	in the election so you could apply the incumbency
24	account, how would you recommend he do it in order	24	advantage in those elections that are in districts
25	to meet with your satisfaction?	25	where the incumbents live.

Q. Okay. Do you criticize -- you criticize Mayer for using 2012 election results to calculate his plan's efficiency gap, right? A. I -- I don't -- I criticize using that as a conclusion for what the legislature would have expected the efficiency gap in 2012 to be. Q. Okay. So how would you recommend that Mayer use pre-2012 election results to calculate a plan's efficiency gap? A. To calculate what the efficiency gap in 2012 would have been? Q. Right. A. Again I don't have an objection to that, but from the perspective of the legislature prior to knowing what the election result in 2012 would have been, if he's trying to simulate what they would have guessed the efficiency gap of a plan would be, they would not know the 2012 election result. Q. If they had to make the prediction, what data would you use? A. I suppose you would use a range of possible election results judging from the historical range -- drawn from the historical range of observed historical election results. Q. If you're -- if these approaches that you've now	A. Right? I suppose the best estimate for something like that would be to look at the range of historical election results, perhaps overweighting by recent election results, and estimate what the probability of an overall say statewide result would be. And then you would want to, for each probability, weighted probability, you would want to generate the efficiency gap under that election result, and then you would compile the -- right, essentially you would be integrating across that whole range of election results. Q. Okay. And that would satisfy your concerns? A. It would satisfy my concerns about what the expected efficiency gap of this particular plan would be in a hypothetical election where you didn't know the result. Q. Right. It would satisfy your concerns about knowability? A. Correct. Q. How close is what Gaddie did to your preferred approach? A. I don't know what Gaddie did. MS. GREENWOOD: Exhibit 25. Q. Exhibit 25. A. As far as I know, the Wisconsin legislature did not
stated had been used by Mayer, would you still have an objection to his choice of data? A. I'm trying to picture how that data would -- how that would actually be incorporated into his methodology. Certainly I think it was unrealistic to expect a legislature to actually use that sort of methodology. It is -- it is entirely unclear to me if you were to ask a legislature to draw a map that will have a low efficiency gap in the next election, without knowing what the next election would be, I would have no idea how to instruct the legislature to do that. Q. Okay. So to sum up, if you were given the assignment before 2012, okay, of estimating the efficiency gap that the demonstration plan would exhibit in 2012, exactly how would you do it? I want you to take what you've testified -- A. So before -- so before an election has actually happened -- Q. Right. A. -- how would I estimate what would -- what would be the efficiency gap in this plan without knowing what the overall election result in a particular year will be? Q. Yeah.	attempt to estimate an efficiency gap so I couldn't tell you. Q. Well, you have a description of what he did here, right, in Exhibit 25? A. Yes, he provided data to the legislature, but I don't know how they used this data. Q. He described what he -- how he organized the data, correct? He says he -- he created a measure of partisanship? A. Yes. So he is creating -- sorry. Go ahead. Q. He -- he went through the electoral data for state office and built a partisan score for the assembly districts that was based on a regression analysis of the assembly vote from 2006, 2008, and 2010, and it was based on prior election indicators of future election performance, right? A. Right. Q. Okay. Now, how similar is that to what -- what your approach is? A. It's not very similar. Q. How -- how is that different? A. It sounds like what Gaddie is doing is he's determining a single partisanship score for each sub unit, whatever the sub units are. This is the district, for each hypothetical district, a single

A. Yes.
Q. Okay. And one of those is comparing the bias
observed in Wisconsin to other comparable states
during the same period, correct? That's at page 18
of your --
A. Yes.
Q. -- report? We have to -- you have to wait until I
finish before you say yes. Okay. So the answer is
yes?
A. Yes.
Q. Okay. What other comparable states during that sam
period are you referring to?
A. Well, no particular -- no specific states in
particular, but I would say states that are similar
to Wisconsin hypothetically on a range of possible
factors that, you know, I look at in some of the
research that I've done, like urbanization or like
underlying partisan propensity or state size, right?
So you wouldn't want to necessarily compare it to a
very small or very large state.
Q. So you didn't have any states in mind when you wrote
that in your report on page 18 ?
A. Well, I think I probably would say I had states in
mind that were of similar size to Wisconsin, but
again it was not referring specifically to any

Page 152

particular states.

Q. What states of similar size did you have in mind?
A. Hypothetically perhaps something like Michigan or Missouri.
Q. Did you carry out any quantitative comparison between Wisconsin and any other states?
A. For this report, no.
Q. Okay. Do you have a methodology in mind as to how that comparison would be executed?
A. Well, in the article that you referred to that I had published earlier in the deposition, I do compare the bias that it's generated in different states. Again for congressional maps of course I'm only looking at a couple of election cycles and with a very simplified model. So that's the idea that I have in mind.
Q. Is Pennsylvania one of those?
A. Yes, I think it's fair to say Pennsylvania would probably be a fairly comparable state.
Q. You think that the dynamic, the geo political dynamic of the Philadelphia metropolitan area is similar to that of the Milwaukee metropolitan area? Let me rephrase that.

Do you think that the geographic clustering of partisans in the Philadelphia metropolitan area is
analogous to the geographic clustering of partisans in the Milwaukee metropolitan area?
A. This is an empirical question which I have not done any specific measurements for. I would tend to think that there are probably similarities based on my background knowledge.
Q. Is this -- would you be applying an eyeball test to that?
A. Eyeball test. I suppose that's fair.
Q. What?
A. I suppose that's a fair characterization.
Q. Would you ever rely on an eyeball test?
A. Occasionally it's probably sufficient.
Q. You think it's sufficient for providing an opinion to a court?
A. Well, if I see someone shoot another person, I'm seeing that with my eyeballs and I would testify to that in court so that would be an eyeball test.
Q. But you're not here as a witness to a murder. You're here as an expert providing the court or trying to provide the court with expert opinion.
A. Yes.
Q. Presumably grounded in standards that govern your profession, correct? An eyeball test meet those standards?

	Page 158	
	Q. Okay. Are there any studies to your knowledge that do that?	2
3	A. That use efficiency gap in particular? No, not as	3
4	far as I know.	4
5	Q. Are there any studies that try to tease out partisan	5
6	control of the legislative process as opposed to	6
7	partisan geographic clustering as the basis or the	7
8	contribution to bias?	8
9	A. Well, of course my article does that in a fairly	9
10	simplistic way with respect to the congressional	10
11	election results in 2012, 2014.	11
12	Q. You have no idea what the relative contribution to	12
13	republican bias in Wisconsin is as a result of	13
14	political geography, do you?	14
15	A. I have not generated a specific estimate of that.	15
16	Q. Okay. And you're not going to be providing an	16
17	opinion about that in the course of this case; isn't	17
18	that right?	18
19	A. I have not been asked to provide an opinion about	19
20	that specifically.	20
21	Q. It's not in your report, right?	21
22	A. It is not in my report. No.	22
23	Q. And, therefore, it will not enter this case,	23
24	correct?	24
25	A. I don't know if I'm -- at some future point I'm	25
	Page 159	
1	allowed to provide another report or something like	1
2	that.	2
3	Q. It's true that republicans controlled many more	3
4	state legislatures in 2010 and 2000 cycles than in	4
5	previous cycles; isn't that true?	5
6	A. Yes. Well, than in at least immediately previous	6
7	cycles. Yes.	7
8	Q. Are you aware of any studies on the trends in	8
9	partisan clustering over time?	9
10	A. Studies on the trends in partisan clustering over	10
11	time. There are certainly studies on the bias over	11
12	time in election results.	12
13	Q. Uh-huh. The question was partisan clustering.	13
14	A. There are studies about the way that people are	14
15	increasingly identify -- or increasingly correlating	15
16	where they live and what their partisanship is.	16
17	Q. What are the studies?	17
18	A. It was a book by Levendusky on partisan sorting. I	18
19	mean I'd have to get back to you off the top of my	19
20	head.	20
21	Q. Are you aware of Glazer's work in finding --	21
22	A. Oh, well, this isn't -- can you -- I believe I am	22
23	somewhat aware of this, yes, but if you can be more	23
24	specific.	24
25	Q. Well, I asked you if you can identify any studies	25

	Page 162		Page 164
	population data does.		A. This is the red bar?
2	Q. Okay. Let's compare the -- the heights of the bars	2	Q. Yeah.
3	here in the 40 to 50 percent range.	3	A. It looks like it's about $\mathbf{2 6}$ percent.
4	A. Okay.	4	Q. That's a pretty high number. It shows a republican
5	Q. The democrat and the $60-$ the 50 to 60 democratic	5	skew, right?
6	range. Do you see those two there?	6	A. Yes.
7	A. Yes. I do see them.	7	Q. Uh-huh. This has already been marked as Exhibit No
8	Q. Okay. And first of all, what are those heights?	8	1 in the deposition, the Ken Mayer report. Page 41.
9	Compare them. Tell me what they would represent.	9	Compare the height of the Mayer bar at 50 to 60
10	A. The fact that the bars in the $\mathbf{4 0}$ to $\mathbf{5 0}$ percent range	10	republican.
11	are higher than the bars in the 50 to $\mathbf{6 0}$ percent	11	A. I should mention this includes an annex that I did
12	range suggest that there are more wards that	12	not receive.
13	marginally lean republican than there are wards that	13	Q. It's a part of the report itself on page 41.
14	marginally lean democratic.	14	A. Okay.
15	Q. Okay. And what are the heights? What's the	15	Q. It's not an annex.
16	difference?	16	A. Okay.
17	A. In which bars? The blue bars or the --	17	Q. You did see this, right?
18	Q. The red bars.	18	A. Yes.
	A. In the red bars. Well, it looks like it's about 27	19	Q. Okay. Can you compare that? How many districts?
20	percent in the case of these lean republican	20	A. Compare it in what way?
21	districts and about 22 percent in the case of the	21	Q. Well, I'm going to ask you a question. How many
22	lean democratic.	22	districts are in the 50 to 60 percent range in
23	Q. Is that a significant difference?	23	the -- in the chart --
	A. I think it is a -- I think it is a substantively	24	A. This is --
25	significant difference. I would also include the	25	Q. -- on figure 12?
	Page 163		Page 165
1	bars that are in other places on the graph showing a	1	A. So this is -- the $\mathbf{5 5}$ percent bar?
2	substantively significant difference.	2	Q. Fifty all the way to 60. So --
3	Q. That's not the question.	3	A. The 55 percent bar is 17 , the 60 percent bar is 25 .
4	MR. EARLE: Read the question back	4	Is that what you're asking?
5	(Question read: Is that a significant	5	Q. Yeah. What's the sum of that? How many districts
6	difference?)	6	is that?
7	THE WITNESS: If you're speaking of statistical	7	A. Forty-two.
8	significance, that doesn't have a particular meaning	8	Q. And that's --
	in this case because I'm not drawing from the	9	A. Forty-two percent of districts. Is that -- so I
10	sample. This is the entire universe of Wisconsin	10	guess out of 99 so it's pretty close, right?
11	wards. So it is a difference.	11	Q. Uh-huh. That's a significant difference, right?
12	BY MR. EARLE:	12	A. That is a large number of districts I suppose.
13	Q. Do you think that it's a substantively large	13	Q. So 42 percent of the districts. How does that
14	difference?	14	percentage compare to the share of wards in the 50
15	A. Yes, I think it's a substantively large difference.	15	to 60 percent range on your chart?
16	Q. Three percent is a substantively large difference?	16	A. Well, it's somewhat larger.
17	A. I think it's a little more like four or five	17	Q. In the $50-\mathrm{5} 0$ to 60 percent republican bar?
18	percent, but --	18	A. The number of districts in that range is somewhat
19	Q. Why don't you give us a precise difference.	19	larger than the number of wards in that range as a
20	A. Well, okay. I don't have the figures. It's	20	percentage of population in Wisconsin. Yes.
21	probably about four percent. Right?	21	Q. Right. It's fair to say that the district
22	Q. Okay.	22	distribution under Act 43 does not look like the
23	A. I think that is -- I think that is a fairly large	23	ward distribution on your chart; isn't that right?
24	difference if you're talking about bias.	24	A. I think there are -- there are differences. I think
25	Q. What is the height of just the 40 or 50 dem column?	25	that's fair to say.

	Page 170		Page 172
	your academic home page, and it's the section that's	1	counsel? Because I believe they are -- it is my
2	captioned "Media"?	2	opinion that they are responsive to the subpoena.
3	A. Okay.	3	A. Okay. I will try to find them. I'm not completely
4	Q. Do you recognize it?	4	certain that they would be saved, but I don't see
5	A. I do.	5	why they wouldn't be. I can look for them.
6	Q. Now, you listed these items on there because you	6	Q. Okay. And we'll mark -- and we'll ask the court
7	consider them to be relevant representations of your	7	reporter to mark this section as a document request
8	work in the area of political science and elections,	8	to -- as a -- I guess a deferred compliance with the
9	correct?	9	subpoena that we'll get later. Okay?
10	A. Yes.	10	A. Okay.
11	Q. In particular gerrymandering, correct?	11	Q. Can you do that in the next week?
12	A. Yes.	12	A. Yes.
13	Q. And on there you have a citation to The Monkey Cage	13	Q. Okay. Okay. Then we'd like to actually ideally get
14	blog, correct?	14	it before our rebuttal report is due.
15	A. Yes.	15	MR. KEENAN: Yeah, can you just look this week
16	Q. And didn't -- you also have posted on another blog.	16	then?
17	What's it called?	17	THE WITNESS: Yeah.
18	A. Oh, okay. So I think Wonkblog. I think what the	18	MR. EARLE: Okay. Good.
19	Wonkblog -- I think Wonkblog just posted linking to	19	THE WITNESS: That's fine.
20	one of my Monkey Cage articles. It's part of the	20	MR. EARLE: All right. Great.
21	Washington Post website. It's just two sections.	21	BY MR. EARLE:
22	Q. Okay. So off -- we had an off-the-record discussion	22	Q. Now, as I look at Exhibit 26, I'm assuming that what
23	relative to the subpoena duces tecum in which you	23	you list here is material that you consider to be
24	indicated that you would later produce to us	24	credible, right?
25	printouts of the -- all the Monkey Cage material	25	A. Yes.
	Page 171		Page 173
1	that you've offered?	1	Q. Okay. And -- and your -- you list amongst these
2	A. Yes.	2	things a caption that's called What is
3	Q. Authored, correct?	3	Gerrymandering? Discussion -- and you cite it as
4	A. Yes.	4	"discussion of my research in gerrymandering primer
5	Q. And you'll provide that to counsel and counsel will	5	on Vox.com" dated April of 2014. Are you familiar
6	provide it to us at your convenience --	6	with that?
7	A. Sure.	7	A. I am familiar with it. I don't exactly recall the
8	Q. -- after this deposition	8	details of what the -- the whole article was.
9	A. Yes.	9	Q. Okay. Well, you -- you're placing it as an example
10	Q. Okay. Now, did you post anything on the Wonkblog	10	of your work, right?
11	yourself, any -- any entries, any commentary?	11	A. Yes.
12	A. No, I believe that the Wonkblog entry I'm referring	12	Q. On --
13	to is simply a link to one of my Monkey Cage posts.	13	A. Yes. If I recall correctly the way that Vox.com
14	Q. Okay. The -- okay. Your Monkey Cage posts, are	14	formats this sort of article is it's a series of
15	there comments that you've placed on the Monkey Cage	15	like cards. It's almost like a slide show, and my
16	website in response to other posts by other people?	16	esearch is discussed on one slide in the slide
17	In other words, have you participated in discussion	17	show. I don't remember the content of what all of
18	on the Monkey Cage web page regarding the postings	18	the slides in this -- what they call a card stack
19	of other authors regarding redistricting?	19	referred to in the gerrymandering primer.
20	A. Oh, have I made comments about other articles on the	20	Q. Well, do you consider the card stack to be an
21	Monkey Cage website?	21	accurate description of the substance that's within
22	Q. Right.	22	it?
23	A. I think I might have at the old Monkey Cage website	23	A. Well, I would imagine the card stack includes
24	before it was associated with the Washington Post.	24	opinions from many -- from both journalists and
25	Q. Okay. Would you include those in your production to	25	politicians and various political scientists with

	Page 174		Page 1
1	various opinions on subjects related to	1	in a data set or use that in casual conversation.
2	gerrymandering, some of which I would consider	2	Q. Okay. Would you like to distance yourself from the
3	reliable and some of which I perhaps would not.	3	definition that's used here in What is
	Q. Okay. Well, we'll figure that out then. Mark this	4	Gerrymandering, Exhibit 27?
5	as Exhibit 27.	5	A. I wouldn't say I would want to explicitly distance
6	(Exhibit No. 27 marked for identification.)	6	yself in that here it's being used in a very casual
7	THE WITNESS: Can I get a copy of this?	7	way. People use -- people use terms to refer to
8	MR. EARLE: Yes, I'm sorry. Here you go. Now,	8	many different things.
9	I just selected various pages.	9	Q. Okay. At the back of the -- further on the other
10	MS. GREENWOOD: This is just card one.	10	side of the maps on the last page of Exhibit 27, it
11	MR. EARLE: This is just card one. Okay.	11	reads, "Gerrymandering can affect any legislative
12	MS. GREENWOOD: I marked them separately.	12	body that has to have districts drawn, which
13	BY MR. EARLE:	13	includes both the U.S. House of Representatives and
	Q. This is card one, and it's captioned What is	14	every state legislature. And since political power
15	Gerrymandering? And it reads, in the U.S., every	15	is at stake, fights over redistricting are often
16	state elects a certain number of people to the House	16	quite intense."
17	of Representatives, a number that's based on the	17	Do you disagree with anything that I just read?
18	U -- on the census count of the state's population,	18	A. I don't see anything that I would disagree with
19	Pennsylvania, for instance, elects 18 House member	19	th
20	so Pennsylvania has to be divided into 18	20	Q. Okay.
21	congressional districts with roughly equal	21	MS. GREENWOOD: Next? This is 28.
22	populations. In most U.S. states this process is	22	(Exhibit No. 28 marked for identification.)
23	controlled by the majority party in the state	23	BY MR. EARLE:
24	legislature	24	Q. Showing you what's been marked as Exhibit 28. Thi $\$$
25	Did I read that correctly	25	is another page.
	Page 175		Page 177
	A. Yes.	1	A. Okay.
2	Q. Partisan gerrymandering occurs when this map-drawing	2	Q. Okay. And it's captioned How Does Gerrymandering
	process is intentionally used to benefit a politica	3	Work? Okay. Would you read into the record the -
4	party -- a particular political party to help that	4	the first paragraph?
5	party win more seats in the legislature or more	5	A. "The idea behind gerrymandering is pretty simple.
6	easily protect the ones it has	6	You pack your opponent's supporters together into
7	create many districts that will elect members of one	7	ery few districts. Then you make other districts
8	party and only a few that will elect members of the	8	latively more balanced, but you place enough of
9	opposite party. You can see Pennsylvania's	9	our supporters in most of them to give you an
10	congressional district map below. And there's a	10	advantage. The hoped-for result is that your party
11	portrayal of the map. Correct?	11	loses a few districts hugely, yet wins a majority of
12	Do you have any substantive disagreement with	12	districts comfortably. All partisan gerrymanders
13	the two paragraphs that I just read under the	13	boil down to that basic concept, Eric McGhee of the
14	caption What is Gerrymandering?	14	Public Policy Institute of California told me in
15	A. Well, I assume you're referring to their ostensible	15	2014."
16	definition of partisan gerrymandering which I think	16	Q. Do you have any argument with Eric McGhee's quote on
17	I've already clarified is not the definition that I	17	his Exhibit 28?
18	use in coding partisan gerrymanders in my research.	18	A. I would agree that in general partisan bodies who
19	Q. But do you think that from the perspective of a	19	re drawing political maps tend to use the technique
20	political scientist studying	20	of packing opponent supporters together into very
21	gerrymandering, that that's an inaccurate	21	few districts.
22	definition?	22	Q. And they also use the technique of cracking?
	A. I don't think there is a uniform definition among	23	A. And making the other districts relatively more
24	political scientists of what they would call	24	balanced but place enough supporters in most -- I
25	partisan gerrymandering or how they would code that	25	think that is a fair description of the way that

	Page 178		Page 180
1	most partisan gerrymanders operate. Yes.	1	(Question read: Did you -- are you aware of
2	Q. So you would agree that the efficiency gap is a	2	any facts in Wisconsin that would indicate that what
3	tally of all the cracking and all the packing that	3	you just described was a part of the gerrymandering
4	goes on in a given plan?	4	process here in Wisconsin?)
5	A. No.	5	THE WITNESS: I think it's possible that
6	Q. What is the basis of your disagreement with that?	6	districts drawn in Wisconsin, you could observe a
7	A. I believe that efficiency gap -- that gap -- the	7	reverse efficiency gap if the electoral environment
8	efficiency gaps can be generated from many sources,	8	was strongly favoring the democrats enough. That
9	of which packing and cracking could potentially be	9	would not be evidence of packing and cracking on the
10	one, but there are many other sources I think as I	10	democratic side. I think again this is a
11	observe in my report where you could observe a large	11	hypothetical.
12	efficiency gap that would not result from packing	12	BY MR. EARLE:
13	and cracking, nor would packing and cracking	13	Q. Okay. Let's go to the next one. If we define --
14	necessarily generate a high efficiency gap depending	14	one more question. If we define packing as
15	on the overall electoral environment.	15	districts that one party wins by a large margin and
16	Q. List the other factors.	16	cracking as districts that the one party loses --
17	A. Well, I think as I demonstrated, a desire to create	17	that party loses by a relatively smaller margin in a
18	competitive elections in a balanced way would not be	18	particular election, can anything other than packing
19	evidence of packing and cracking, yet in certain	19	or cracking result in a large efficiency gap?
20	electoral environments that would display a high	20	A. I think I listed various other factors that could
21	efficiency gap.	21	result in a larger efficiency gap in the previous
22	My example of proportional representation,	22	wer.
23	right, in certain electoral environments, for	23	Q. Wouldn't those other factors simply result in
24	instance, favoring strongly one party would display	24	packing and cracking?
25	an efficiency gap against that party because	25	A. What I'm suggesting is if you were to draw a map in
	Page 179		Page 181
1	proportionate representation -- it would be	1	hich every district was competitive, you could
2	proportionate rather than the hyper-proportionate	2	bserve a large efficiency gap in the case of a
3	representation that would be described by the	3	relatively mild wave election in which one party won
4	neutral efficiency gap. And also you could, for	4	a super majority of seats. That would not be the
5	instance, have an electoral environment in which the	5	result of what I would consider packing and
6	districts that are relatively more balanced in a	6	cracking.
7	packing and cracking scenario, you'd have an	7	Q. The fact that it's a small margin despite a wave
8	electoral environment in which the districts that	8	election means it's the result of cracking, isn't
9	are relatively more balanced, but slightly	9	it?
10	advantageous towards the gerrymandering party in a	10	A. No, no, I'm sorry. Let's say you have democrats --
11	50/50 baseline scenario would instead all be won by	11	there was a wave election in which democrats won 55
12	the out party, the non-gerrymandering party in a	12	percent of the statewide vote. If all of the seats
13	wave election favoring them. That would generate an	13	were drawn to be roughly $50 / 50$ or $51 / 49$ or 52/48 --
14	efficiency gap in favor of the party that did not	14	Q. Some of the seats are cracked or I mean some of the
15	gerrymander the map.	15	seats are packed.
16	Q. Did you -- are you aware of any facts in Wisconsin	16	A. You're saying factors outside of packing and
17	that would indicate that what you just described was	17	cracking?
18	a part of the gerrymandering process here in	18	Q. Right.
19	Wisconsin?	19	A. Your question was factors outside of packing and
20	A. I am not aware of any facts that considered, for	20	cracking. I'm suggesting factors outside of packing
21	instance, competitiveness or proportional	21	and cracking that could generate a large efficiency
22	representation.	22	gap. Now, if you're adding on seats that are
23	Q. Answer the question I asked you, please.	23	intentionally packed or cracked, then that seems to
24	MR. EARLE: Can you read it -- read the	24	be -- I'm not understanding the premise of your
25	question to him, please?	25	question now.

	Page 182		Page 184
	Q. Yeah. Yeah. Okay. We'll -- we'll end our quibble	1	with?
2	over the definition of packing and cracking.	2	A. I don't think I ever explicitly characterized any
3	A. Okay.	3	map as an egregious partisan gerrymander. If they
4	Q. Okay. Let's go to Exhibit 29	4	are referring to me as among all of analysts,
5	(Exhibit No. 29 marked for identification.)	5	ey're probably just referring to the data that was
6	Q. Showing you what's been marked as Exhibit 29	6	provided in my article. I certainly don't think I
7	A. Yes.	7	gave a quote suggesting that, you know, there are
8	Q. This is the section or the card in the Vox.com we	8	truly some egregious partisan gerrymanders that
9	page that contains your quotes. Okay?	9	affected 2012 results. I certainly would not have
10	A. Okay.	10	characterized a partisan gerrymander as egregious.
	Q. I draw your attention to category number	11	Q. You don't think there were any egregious
12	Geography as a GOP Bias.	12	gerrymanders affecting 2012 results; is that what
13	A. Okay.	13	your testimony is?
14	Q. Okay. You're quoted as saying -- and I'll read the	14	A. That's not what my testimony is. My testimony is
15	quote in the -- it says, "And Nicholas Goedert" --	15	hat I was -- that it would not be correct to assume
16	A. It's go Goedert.	16	that I was an analyst quoted agreeing that there
17	Q. -- "Goedert, a post-	17	were egregious partisan gerrymanders.
18	University in St. Louis, wrote a paper that found	18	Q. I gotcha. A follow-up question?
19	geography was more important in explaining the 2012	19	A. All right.
20	House results than gerrymandering was."	20	Q. Is it your position that there were no egregious
21	Did I read that correctly?	21	partisan gerrymandering affecting the 2012
22	A. Yes.	22	congressional election results?
	Q. Okay. And a little bit further down, it says,		A. Well, I would -- I think the term egregious is
24	quote, but the more you account for incumben	24	asking for a personal opinion rather than an expert
25	less the intentional partisan gerrymandering is	25	opinion drawn from political science. I think that
	Page 183		Page 185
1	going to matter, close quote, Goedert told me in	1	I impulsively believe that there were some
2	2014.	2	republican gerrymanders that were egregious in the
3	Is that an accurate quote?	3	sense that I am personally a democrat and I would
4	A. I'm sure it's an accurate quote. Yes.	4	like to see democrats elected, and the fact that the
5	Q. Now, the most important one, the one -- principal	5	democrats were not able to be elected in the 2012
6	one I wanted to read to you is the first sentence of	6	results in some of these elections, was -- you know,
7	section 3. And it says Partisan Gerrymandering.	7	made me unhappy.
8	And it says, "Finally, all of the analysts	8	Q. Now, in your view all political discourse that
9	quoted above," and that includes you, "agree that	9	ccurs about the existence or non-existence -- well,
10	there truly were some egregious partisan	10	about the existence of supposedly egregious
11	gerrymanders that affected 2012 results. For	11	gerrymanders is they're all wrong, they're -- it's
12	instance, Ohio, Pennsylvania, North Carolina, and	12	just political geography?
13	Virginia. Republican candidates won 49 percent and	13	A. No, no, no, no. I don't -- I don't think that -- it
14	53 percent of the House vote in each state, yet each	14	certainly not my position that the bias generated
15	state's congressional delegation ended up about 70	15	n the maps in 2012 was entirely the -- was entirely
16	percent republican. States such as Michigan and	16	the effect of political geography. I certainly
17	Florida on the GOP side and Illinois and Maryland on	17	think there was an intentional gerrymander on these
18	the" republican -- "on the democrat side are also	18	maps, yes.
19	frequently pointed to as being gerrymandered. But	19	Q. I'm going into a slightly different subject here.
20	any analysts blaming the democrats' failure to take	20	When examining partisan trends within a state,
21	the House solely on gerrymandering is probably too	21	do you agree that the -- that the optimal geographic
22	simplistic."	22	unit is one that has roughly the same population?
23	Did I read that accurately?	23	A. Same population as -- you mean --
24	A. Yes.	24	Q. Each other.
25	Q. Is there anything I just read that you disagree		A. -- across time you should be analyzing population

	Page 190		Page 192
	median difference between wards of the same partisan	1	actually given a lot of detailed thought to.
2	composition?	2	I think that using a median would not be
3	A. Difference of what?	3	inappropriate there, but again, I'd have to think
4	Q. Huh?	4	through this a lot more.
5	A. Difference between what?	5	BY MR. EARLE:
6	Q. Between the wards	6	Q. Okay. Do you agree that it would be easy to draw a
7	A. The partisan composition of the wards?	7	district around wards of the same partisan
8	Q. Yeah. Uh-huh.	8	composition that are geographically distant but
9	A. I don't understand what you mean by the mean or the	9	adjacent to one another?
10	median in terms of partisan composition.	10	A. Yes, but in general I think it's fairly easy to draw
11	Q. Of the distance.	11	districts in many ways.
	A. I haven't advocated for using any measure of	12	Q. Do you agree that it would be difficult to draw a
13	distance.	13	district around wards of the same partisan
14	Q. Okay. Yeah, hypothetically I'm saying.	14	composition that are geographically close but not
	A. I would advocate for using the mean or the median	15	adjacent to each other?
	distance between wards? You mean --		A. That are geographically close but not adjacent to
17	MR. KEENAN: I'm just going to object as	17	each other?
18	incomplete hypothetical, but --	18	Q. Right.
19	THE WITNESS: Okay. So you mean some measure		A. I believe there are examples of districts that
20	of the cen -- like the centroid of the ward compared	20	include those sort of wards in many cases so I don't
21	to the centroid of the other ward as opposed to the	21	necessarily think it would be difficult.
22	distance of all points in a ward compared to all	22	Q. Can you identify any peer-reviewed literature that
23	points in another ward that -- that mean distance?	23	has studied geographic clustering this way?
24	BY MR. EARLE:		A. Not off the top of my head.
25	Q. Yeah.	25	Q. Does this method strike you as an accurate and
	Page 191		Page 193
	A. Yes?	1	reliable way to study the geographic clustering of
2	Q. Yeah. Uh-huh.	2	democratic and republican voters in Wisconsin?
3	A. I think those would be relatively equivalent. I	3	A. I don't know, I'd have to think about it more.
	would think that using the -- the distance between	4	Q. Well, how would you approach it while you're
5	centroids of a ward would probably be sufficient to	5	thinking about it? What would be the criteria that
6	satisfy any minor differences that they would --	6	you would contemplate?
7	like using the distance between the centroids of the	7	A. Well, I think -- I actually think that the Rodden
8	wards seems like a reasonable -- a reasonable	8	and Chen methodology is a fairly good one in that it
9	method. Using the mean, that's a very -- that's	9	doesn't -- it -- it doesn't really prescribe any
10	very complicated.	10	particular method for drawing districts other than
11	Q. Well, we're comparing the mean distance between	11	sort of adjustable parameters for contiguity and
12	wards of same composition and the median distance	12	compactness.
13	between such wards. Which is better, mean or	13	So to the extent that they would describe a
14	median?	14	district as easy to draw if it's easy to randomly
15	A. I see. So you're saying -- okay. Now I understand	15	generate, maybe you could measure something along
16	what you're saying.	16	those lines. If you're -- like it sounds like the
17	Q. Which is better? The question is which is better?	17	study that you're suggesting is something like is
18	MR. KEENAN: Object again as incomplete	18	the av -- like are districts -- are districts or
19	hypothetical.	19	wards or counties or something like that of similar
20	THE WITNESS: Well, the advantage of median in	20	political persuasion close to each other? If you're
21	general is that -- is that it -- it doesn't distort	21	asking like throughout the state, well, I don't know
22	your data for outliers, right? So in that sense I	22	that's a good measure, right?
23	can certainly see there being outliers in that sort	23	Philadelphia and Pittsburgh are very far away
24	of data that you wouldn't want to -- again you're	24	from each other within the context of Pennsylvania
25	talking about a hypothetical that I have not	25	and those might have similar political persuasions.

	Page 194		Page 196
1	So the fact that Philadelphia is far from Pittsburgh	1	context to actually come up with a reasonably
2	doesn't say anything about the actual concentration	2	informed critique.
3	of voters within those particular cities. And	3	Q. So if you ran this analysis, what would it tell you?
4	depending on the size of the district, you could	4	A. I've -- you're --
5	very well draw many districts that would just	5	Q. In terms of your type of clustering.
6	include packed democrats in Pittsburgh or just	6	A. You're reading me -- without even showing me the
7	include packed democrats in Pennsylvania.	7	like -- what would it tell me?
8	Q. Okay. I'm going to read something to you. All	8	Q. Yeah. About geographic clustering.
9	right?	9	A. It sounds like it would tell you for a particular
10	A. Okay.	10	rtisan -- for a unit with a particular partisan
11	Q. Next, the distance to the nearest neighbor for each	11	makeup, it would tell you on average how close the
12	ward was calculated for each subset of partisan	12	earest district was that had the same partisan
13	indices. To visualize this, imagine creating a grid	13	makeup. That sounds to me like what it's telling
14	with all of the D plus 1 wards listed both	14	me.
15	horizontally and vertically, parens, if you prefer	15	Q. Okay. Would it tell you what wards are adjacent to
16	an IXJ matrix where both dimensions are defined as	16	each other for purposes of remapping?
17	including the number of wards, close parens. The	17	A. I don't think that in itself would tell me what
18	distance from the first ward to every other ward is	18	wards were adjacent to each other.
19	calculated filling in the first row of our grid.	19	Q. Let's go to Exhibit 20.
20	The smallest value is noted, which represents the	20	A. Do I have Exhibit 20?
21	distance from ward 1 to the nearest other ward of	21	Q. Yeah, it's your article Gerrymandering or Geography?
22	similar partisan index. The process then repeats	22	A. Okay.
23	for ward 2, 3, and so forth. At the end, the median	23	Q. I believe it's Exhibit 20. You have it in front of
24	of the smalles	24	u there. It should be in that stack.
25	us an idea how close the D plus 1 wards are to each	25	A. Yes. I do.
	Page 195		Page 197
1	other.	1	Q. All right. I'm going to draw your attention to page
2	I utilized the median rather than the mean here	2	4.
3	because outlying wards such as Menomonee County	3	A. Okay.
4	exert an undue amount of leverage on averages.	4	Q. And don't you refer to Wisconsin as a republican
5	Okay. The process is then repeated for D plus 2, D	5	gerrymander here on page 4 ?
6	plus 3 and so forth. Okay?	6	A. Yes.
7	Does that seem like -- are you familiar with	7	Q. Okay. Didn't Wisconsin also exhibit a pro
8	any literature that supports that approach?	8	republican efficiency gap of 15 percent?
	A. Not off the top of my head.	9	A. Are you referring to the data in the table here?
10	Q. What problems can you think of with this approach?	10	Q. Yeah.
11	A. Off the top of my head I don't see any problems, but	11	A. So I -- I am not measuring exactly efficiency gap
12	again it's a little bit out of context for what it's	12	here. I'm using a slightly different methodology.
13	trying to determine.	13	Q. Right.
14	Q. How so?	14	A. I would estimate that it's probably fairly close to
15	A. You haven't determined what it's test -- you haven't	15	the efficiency gap. Yes.
16	told me what it's testing. I will say --	16	Q. Okay. All right. On page 6.
17	Q. Does this strike you as a good way to -- to measure	17	A. Yes.
18	the clustering of partisanship?	18	Q. Okay. In two of your remodels, the more thorough
19	A. It does not strike me off the top of my head as an	19	ones, don't you find that democratic gerrymanders
20	inappropriate way to -- an inappropriate methodology	20	result in a bigger advantage than republican
21	given what you've just told me, but again it's still	21	gerrymanders?
22	out of context. Like, for instance, the use of the	22	A. I wouldn't characterize it that way because the
23	median as opposed to a mean there sounds totally	23	difference between those coefficients is not
24	fine to me. Right? You'd have to let me like	24	statistically significant.
25	inspect it a little more closely and give me more	25	Q. The republican ones are not bigger than the

	Page 198		Page 200
	democratic ones, right?		Q. -- to be fair. Okay. Page 14 -- well, that doesn't
2	A. True.	2	make any sense.
3	Q. Doesn't this suggest that both parties can	3	MR. STEPHANOPOULOS: It's a footnote.
4	significantly benefit themselves through	4	THE WITNESS: Is this footnote 3?
5	gerrymandering regardless of political geography?	5	BY MR. EARLE:
6	A. This suggests that in 2012 both parties did benefit	6	Q. Footnote 3. Okay. Good. So the question again, I
7	themselves through gerrymander.	7	will reword it. All right.
8	Q. Regardless of political geography?	8	Is it right that you determined the bias
9	A. Holding constant political geography.	9	supposedly due to geography simply by assuming it's
10	Q. Yeah. Using presidential election results, isn't it	10	the bias in states with court-drawn or bipartisan
1	true that the pro republican bias under bipartisan	11	maps?
12	and court gerrymanders largely disappears according	12	A. Yes.
13	to your work on page 6?	13	Q. Okay. As you put it, you, quote, assumed the
14	A. Let me refresh my -- yes. And I think this speaks	14	average bias observed in bipartisan states in 2014
15	to the variation that I see in effects of both	15	and two thousand -- let me repeat that.
16	gerrymandering and geography when the overall	16	As you put it you, quote, assumed the average
17	election environment is different than it was in the	17	bias observed in bipartisan states is the overall
18	2012 congressional environment.	18	bias due to geography, correct?
19	Q. Doesn't this suggest that there's no inherent bias	19	A. In the context of this article. Yes.
20	in favor of either side when a plan is drawn without	20	Q. In coming up with this estimate, it's correct that
21	partisan intent?	21	you don't control for any aspects of the state's
22	A. It shows that there is not necessarily a bias in	22	demographics, urbanization, or political
23	favor of one side or another across all possible	23	environment; isn't that right?
24	election results.	24	A. For this estimate. That's true, yes.
25	Q. Okay. All right. Let's go to Exhibit 21. We'll	25	Q. All right. Let's go to Exhibit 23. Draw your
	Page 199		Page 201
1	cruise through your articles real fast here.	1	attention to page 2. Don't you agree that when
2	A. Okay.	2	parties have complete control of redistricting,
3	Q. I draw your attention again to page 6 here. Okay.	3	they, quote, pack members of the opposed party into
4	And don't you find that geography on this page, page	4	a small number of ideologically homogeneous
5	6 , don't you find that geography produced a bias of	5	districts creating some safe incumbents and create a
6	only two percent in 2014?	6	large number of districts that favor their own
7	A. That is the estimate that I come up with, yes.	7	party?
8	Q. Don't you also find that urbanization doesn't have a	8	A. Yes, that is how I characterize most partisan
9	statistically significant impact on bias in the --	9	gerrymanders or the general operation of partisan
10	in your 2014 model on page --	10	gerrymanders.
11	A. Yes.	11	Q. Okay. I think we're done. Just we -- you owe us
12	Q. --7?	12	the documents.
13	A. Yes.	13	A. Okay.
14	Q. Is it right that you determined the bias supposedly	14	Q. And --
15	due to geography simply by assuming that it's a bias	15	MR. STEPHANOPOULOS: Give us two seconds?
16	in states with court-drawn or bipartisan maps?	16	MR. KEENAN: Yeah, let's take a short break.
17	A. In this article. Yes.	17	I'll even think if I have anything to ask. I may
18	Q. As you put it, you, quote, assumed the average bias	18	not have anything.
19	observed in bipartisan states, parens, seven percent	19	(Break taken 3:24 p.m. to 3:26 p.m.)
20	and two percent in 2012 and 2014 is the overall bias	20	MR. EARLE: Do you have anything?
21	due to geography?	21	MR. KEENAN: I'm not going to have anything.
22	A. Can you tell me --	22	MR. EARLE: I think we're done.
23	Q. Page 14. I'm sorry, I'm on page 14. Let me -- and	23	MR. KEENAN: We'd like to sign.
24	I'll start over --	24	MR. EARLE: We've asked for an expedited copy.
25	A. Okay.	25	(Deposition ended at 3:27 p.m.)

William Whitford v. Gerald Nichol Nicholas Goedert

```
STATE OF WISCONSIN }
    } SS:
COUNTY OF WALWORTH }
    I, LAURA L. KOLNIK, Registered Professional
Reporter and Notary Public in and for the State of
Wisconsin, do hereby certify that the foregoing
proceedings were taken before me on the ____ day of
_, 20
                                20
    That the appearances were as noted initially.
    That before said witness testified, he was first
duly sworn by me to testify the truth, the whole truth
and nothing but the truth relative to said cause.
    I further certify that I am neither counsel for,
related to, nor employed by any of the parties to the
action in which this proceeding was taken; and, further,
that I am not a relative or employee of any attorney or
counsel employed by the parties hereto, nor financially
interested, or otherwise, in the outcome of this action.
    That the foregoing proceedings are true and correct
as reflected by my original machine shorthand notes taken
at said time and place.
    Dated this
```

\qquad

``` day of
``` \(\qquad\)
```

$\overline{\text { LAURA L. KOLNIK, RPR/RMR/CRR }}$ Notary Public
State of Wisconsin
My commission expires
February 23, 2018

```

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 53 of 80
William Whitford v. Gerald Nichol Nicholas Goedert
\begin{tabular}{|c|c|c|c|c|}
\hline A & 43:5,21,22 & advice 112:14 & 196:3 & 18:18 39:10 \\
\hline able 17:8 19:10 & 44:12,13,15,20 & advisor 13:4 & analyst 184:16 & 65:13 108:8,12 \\
\hline 27:18 55:4,17 & 59:9,12,23 & 139:10 & analysts \(112: 7\) & apply 17:12 88:9 \\
\hline 86:6 185:5 & 66:17 110:10 & advocate 132:21 & 183:8,20 184:4 & 92:7 102:8 \\
\hline absent 63:7 & 110:17 139:12 & 90:1 & analyzing \(4: 3\) & 145:23 \\
\hline academia 16:9 & 142:4,12,17 & advocated & 34:5 185:25 & applying 17:11 \\
\hline 19:9 & 154:23 165:22 & 190:12 & Andrew 45:23 & 17:11 18:3,10 \\
\hline academic 4:12 & 168:22 & advocating & ANNABELLE & 123:14,17 \\
\hline 15:7 17:12 & action 202:11 & 29:16 & 2:13 & 130:7 153:7 \\
\hline 108:6,7,9 & 202:13 & affect 176:1 & annex 164:11,15 & approach 65:12 \\
\hline 117:9 122:20 & acts 43:7 & ago 16:15 22:18 & answer 7:2,13 & 67:25 112:10 \\
\hline 138:13 170:1 & actual 72:21 & 24:11 97:17 & 7:17,19 8:3,11 & 116:2,10 124:7 \\
\hline academics & 86:12 126:13 & 135:24 & 8:12,20 19:14 & 124:25 125:2 \\
\hline 74:11 & 129:6 141:1,7 & agree 31:17,2 & 21:3 25:20,23 & 125:12,14,18 \\
\hline acceptable 11:3 & 141:20 142:11 & 33:1 35:1 & 25:24 26:8 & 131:8,10 \\
\hline 112:22 & 142:16,22 & 55:14,19,20 & 29:4,5,15 30:2 & 148:21 149:19 \\
\hline accepted 69:25 & 188:19 194:2 & 56:4,8 57:12 & 30:6 31:21 & 155:9 189:6,10 \\
\hline accepting & Adam 47:22 & 58:22 59:8 & 32:5 37:10,18 & 189:17 193:4 \\
\hline 144:12 & 48:6 \(77: 18\) & 81:6 86: & 37:20,23 38:6 & 195:8,10 \\
\hline account 42:11 & adapted 77:18 & 104:6 112:15 & 38:9,12,14 & approached 15:2 \\
\hline 42:14 109:19 & adding 181:22 & 116:2 124:6 & 41:4,10,18 & 150:21 \\
\hline 109:24 127:22 & addition 43:8 & 131:5,7,8 & 43:13 44:9 & approaches \\
\hline 128:10 134:9 & 74:11 & 169:6 177:18 & 79:22 81:17 & 146:25 \\
\hline 135:14 143:15 & additionally & 178:2 183:9 & 83:25 84:23 & appropriate 34:1 \\
\hline 143:18,19,24 & 97:2 & 185:21 186:5 & 87:7,9,11,12 & 34:14 70:19 \\
\hline 144:6,9,15,18 & adherence 62:1 & 192:6,12 201:1 & 87:13 89:8 & 74:5 132:7 \\
\hline 145:7,13,18 & adherents 32:2 & agreeing 184:16 & 90:6,9,10,11 & 138:15,22 \\
\hline 154:23 161:23 & 32:23 33:21 & aharless@clcc... & 91:1,5 98:21 & April 140:17 \\
\hline 182:24 & 55:4,17,23 & 2:17 & 98:22 102:13 & 141:18 173:5 \\
\hline accounting & 56:6,12,15 & ahead 24:22 & 111:15 121:7 & arbitrarily 80:11 \\
\hline 80:22 & 57:3,23 58:2,6 & 69:3,24 149:10 & 135:20 136:22 & 134:2 \\
\hline accurate 7:8 & 58:9 65:24 & al 1:4,7 & 145:10 151:8 & area 25:4 69:19 \\
\hline 15:24 28:8 & adjacent 189:6 & alleged 107 & 168:12 179:23 & 152:21,22,25 \\
\hline 32:20 53:2 & 189:11,15 & allot 157:3 & 180:22 & 153:2 170:8 \\
\hline 74:3 95:6,11 & 192:9,15,16 & allowed 68:10 & answered 40:21 & areas 51:15,21 \\
\hline 109:8,22 & 196:15,18 & 133:14 159:1 & 58:4 133:8 & 160:18 186:23 \\
\hline 113:21 127:15 & adjustable & al & answering 7:7 & arguing 34:11 \\
\hline 143:12 173:21 & 193:11 & altering 60:2 & 29:17 37:19 & argument \\
\hline 183:3,4 187:14 & adjusting 85:19 & 125:6 & 112:21 & 177:16 \\
\hline 187:15,18 & adjustment & ambiguou & answers 82:24 & Arizona 34:22 \\
\hline 192:25 & 5:13 & 35:12 & 85:22 & 35:11 110:18 \\
\hline accurately & adopt 112:25 & amend 38:14 & anticipated 5:23 & 111:5,18 116:8 \\
\hline 112:12 138:18 & adopted 64:14 & America 86:23 & Anticipating & 116:15,19,19 \\
\hline 168:22 183:23 & adopting 44:17 & amount 97:4 & 88:1 & 116:21,21 \\
\hline 186:21 & 97:3 101:15,15 & 144:25 155:18 & anxious 132:20 & Arizona's 113:10 \\
\hline chieve 110:12 & 101:17 102:16 & 195 & anybody 7:17 & rrived 68: \\
\hline achievement & adopts 112:25 & analogous 153 & 7:4 68: & art 120: \\
\hline 111:8 & 113:1 & analysis \(4: 18\) & appear 41:15 & artfully 8:11 \\
\hline achieving 110:6 & advantage 66:9 & 48:20 65:15 & appearances & article 6:5,6 \\
\hline acknowledge & 115:24 118:23 & 135:22,25 & 202:7 & 24:7,10,12 \\
\hline 92:3 & 145:24 177:10 & 139:21 149:1 & appears 75:24 & 45:14,18 50:1 \\
\hline acquired 7:10 & 191:20 197:20 & 160:19,24 & application 18:2 & 50:11,14,16,18 \\
\hline 75:13,15 & advantageous & 186:24 187:2,3 & 21:11,14 & 73:3 75:3,17 \\
\hline act 11:18 12:2,8 & 179:10 & 187:6,10,19,21 & applications & 75:20,25 76:4 \\
\hline 40:11,18 41:1 & advantages & 187:22,25 & 18:7 20:1,3,6 & 93:25 94:7,9 \\
\hline 41:23 42:1,21 & 114:14 & 188:18,21 & 29:10 & 94:12 95:4,7 \\
\hline 42:22,24 43:4 & adverse 57:23 & 189:12,23 & applied 17:2,3 & 95:24 96:6,15 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 54 of 80
William Whitford v. Gerald Nichol
Nicholas Goedert
\begin{tabular}{|c|c|c|c|c|}
\hline 96:16,18 97:21 & 79:12 & available 9:25 & base 123:21 & 159:22 171:12 \\
\hline 105:13 108:10 & assignment & 15:5 109:10 & based 46:14 & 172:1 178:7 \\
\hline 114:6,17 124:1 & 147:14 & 128:2,11 & 51:25 54:19 & 185:1 192:19 \\
\hline 124:8 152:10 & assistant 3:3 & average 76:22 & 83:12,15 95:23 & 196:23 \\
\hline 155:5,14 158:9 & 20:12 21:15 & 88:22,25 89:21 & 103:15,17 & benefit 65:21 \\
\hline 173:8,14 184:6 & associate 21:19 & 93:20 95:10,19 & 109:9 123:22 & 175:3 198:4,6 \\
\hline 196:21 199:17 & 150:1 & 96:19 104:9,13 & 123:23,25 & best \(148: 1\) \\
\hline 200:19 & associated & 157:6 188:6 & 125:7 142:21 & better 77:18 \\
\hline articles 5:21,25 & 120:24 128:9 & 189:1 196:11 & 149:13,15 & 133:18 154:2 \\
\hline 6:2 15:4,8,18 & 171:24 & 199:18 200:14 & 153:5 154:18 & 191:13,17,17 \\
\hline 22:12,13 25:5 & assume 6:17 & 200:16 & 166:17,22 & beyond 12:3 \\
\hline 73:4,13,15,23 & 7:18 56:3 57:1 & averages 95:21 & 174:17 187:22 & 99:6 155:22 \\
\hline 74:25 170:20 & 57:8 60:17 & 195:4 & baseline 46:17 & bias 4:7 61:23 \\
\hline 171:20 199:1 & 61:14,16 62:5 & avoid 8:17 & 130:4 142:21 & 62:23 75:3 \\
\hline articulate 8:3 & 67:1 68:2,4 & avoids 131:8 & 157:13 161:20 & 76:9,14,19 \\
\hline aside 11:775:12 & 89:18 139:6,11 & aware 11:19 & 179:11 & 84:1,24 86:4,7 \\
\hline asked 10:14 & 175:15 184:15 & 15:16 24:21 & bases 100:12,22 & 86:8,11,16,17 \\
\hline 12:23 13:13,19 & 186:19 & 25:3 49:14 & basic 6:17 31:12 & 86:19 87:15,16 \\
\hline 20:25 29:17,18 & assumed 69:11 & 111:14 156:10 & 103:6 177:13 & 87:21 88:25 \\
\hline 39:3 40:21 & 199:18 200:13 & 159:8,21,23 & basically 99:22 & 90:12,19,22 \\
\hline 43:13 44:9 & 200:16 & 160:7,14,15 & basis 67:3 89:7 & 91:11,14,23 \\
\hline 48:25 50:3 & assumes 112:12 & 179:16,20 & 89:14 105:3,4 & 92:2 94:14 \\
\hline 58:4 61:7 & assuming 56:13 & 180:1 & 107:7 110:3 & 107:6 109:19 \\
\hline 67:10 79:23 & 61:10 71:12 & awkward 106:19 & 142:24 158:7 & 109:24 118:6,7 \\
\hline 87:14 117:4 & 143:9 172:22 & a.m 1:17 48:9 & 178:6 & 138:13 150:14 \\
\hline 122:3,7,15,19 & 199:15 200:9 & 75:23,23 99:11 & bearing 25:22 & 150:19 151:2 \\
\hline 125:24 129:3 & assumption & & beat 28:21 & 152:12 154:6 \\
\hline 131:20 144:1 & 72:12 123:13 & B & beginning 106:2 & 157:3,6 158:8 \\
\hline 145:10 158:19 & 123:22 131:5,9 & B 4:1 97:24 & 124:15 & 158:13 159:11 \\
\hline 159:25 160:7 & 131:12 143:13 & back 11:24 & begins 94:18 & 163:24 168:8 \\
\hline 167:6 179:23 & attach 93:4 & 13:23 37:4,7 & behalf 140:19 & 168:13 182:12 \\
\hline 201:24 & attached 3:21 & 37:13 63:9 & belabor 27:16 & 185:14 198:11 \\
\hline asking 35:13,14 & 16:5 71:21 & 84:12,21 89:5 & beliefs 44:5 & 198:19,22 \\
\hline 37:5 39:5 & attempt 149:1 & 92:22 93:7 & 54:19 & 199:5,9,14,15 \\
\hline 40:12, 18,25 & attention 9:13 & 107:12 121:13 & believe 6:12,14 & 199:18,20 \\
\hline 41:20 44:5,5 & 70:13 72:7 & 121:16 159:19 & 10:8 11:6 15:7 & 200:8,10,14,17 \\
\hline 56:23 58:11 & 93:25 94:11 & 163:4 176:9 & 18:3,22 19:20 & 200:18 \\
\hline 66:24 89:18 & 117:9 182:11 & background & 32:7 34:18 & biases 72:21 \\
\hline 99:14 102:8 & 197:1 199:3 & 8:22 13:19 & 43:6,9,23 & 73:5 \\
\hline 116:20 122:7 & 201:1 & 14:9 15:6,8 & 45:19 47:18 & bigger 197:20,25 \\
\hline 131:24 132:2,4 & attorney \(2: 11,13\) & 17:11 27:20 & 49:2 51:3 & bill 59:17 \\
\hline 132:13,16,18 & 3:3,20 13:12 & 67:22 153:6 & 52:23 53:1 & bin 166:12,18,20 \\
\hline 132:23 133:14 & 141:3 202:12 & balance 142:22 & 59:19 61:6 & bipartisan 84:2 \\
\hline 141:11 160:13 & attorney-client & balanced 130:3 & 63:23 64:24 & 84:4,16 85:1 \\
\hline 165:4 184:24 & 26:6 & 177:8,24 & 65:11 69:9 & 86:3 88:25 \\
\hline 193:21 & author 33:3 & 178:18 179:6,9 & 73:22 74:2,6 & 198:11 199:16 \\
\hline aspects 22:11 & 34:16 & Baldus 11:8,10 & 74:10,22 87:15 & 199:19 200:10 \\
\hline 125:19 200:21 & authored 94:7 & 11:12 66:19 & 107:1 111:14 & 200:14,17 \\
\hline assembled & 171:3 & 140:20 & 111:17 113:21 & bit 5:22 23:7 \\
\hline 120:14,15 & authoritative & ballots 142:24 & 120:8,23 & 59:6 66:6 \\
\hline assembly 60:4 & 23:6,8 33:8 & Bandemer 34:20 & 127:24 128:3 & 100:5 104:15 \\
\hline 149:12,14 & 49:8,14,18 & bar 164:1,9 & 129:8 132:6 & 106:18 136:17 \\
\hline assert 9:23 & authority 23:12 & 165:1,3,3,17 & 136:11,16 & 137:8,8 138:9 \\
\hline 110:5 & authors 48:3 & Bard 18:24 & 138:8 140:10 & 161:8 182:23 \\
\hline assess 19:4 81:7 & 50:19 106:19 & bars 162:2,10,11 & 143:12 155:1 & 195:12 \\
\hline 81:22 & 142:4 171:19 & 162:17,17,18 & 155:16,23 & black 81:3 83:5 \\
\hline assessing 4:17 & av 193:18 & 162:19 163:1 & 157:16,22 & 88:17 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65
Filed: 01/25/16
Page 55 of 80
William Whitford v. Gerald Nichol Nicholas Goedert
\begin{tabular}{|c|c|c|c|c|}
\hline blaming 183:20 & calculates & 11:12,14 12:6 & certainly 29:10 & 27:13,14 56:4 \\
\hline blog 4:23 10:10 & 127:17 128:8 & 12:23 13:19,21 & 43:6 45:1,16 & 143:22 \\
\hline 170:14,16 & calculating 71:3 & 14:4,9,15,16 & 49:15 52:13 & circumstances \\
\hline blue 87:2 88:9 & 119:6,9,11 & 14:21,22,24,25 & 62:10 67:22,23 & 56:2 78:18 \\
\hline 134:16,21 & calculation 85:7 & 15:2,20 19:7 & 80:7 86:18 & 91:7 \\
\hline 136:20 162:17 & 85:8 166:17 & 19:23 24:17 & 110:21 142:25 & citation 66:18 \\
\hline bodies 114:13 & calculations & 25:10 27:24 & 147:5 155:15 & 66:19,21 \\
\hline 115:22 177:18 & 78:2,3 93:7,10 & 34:8,9,10,11 & 156:18 159:11 & 170:13 \\
\hline body 28:11 & 93:19 122:5 & 34:15,22 35:11 & 184:6,9 185:14 & cite 173:3 \\
\hline 60:18 99:25 & California & 40:2 41:7 & 185:16 191:23 & cited 6:14 \\
\hline 100:22 176:12 & 111:18 113:11 & 43:11 44:16,21 & certify 202:5,10 & cites 71:24 \\
\hline boil 177:13 & 116:8,20 & 54:18 57:18 & cetera 130:14 & cities 194:3 \\
\hline book 159:18 & 177:14 & 63:15 64:10,22 & chance 50:3 & citing 53:9 \\
\hline books 9:25 & call 5:9,11 27:22 & 65:10 71:10 & 138:6 & citizen 21:15 \\
\hline bottom 70:17 & 45:3 132:3 & 116:18 137:3 & change \(81: 15\) & CIVIL 2:9 \\
\hline 85:24 96:24 & 173:18 175:24 & 140:20 158:17 & 95:9,9 138:7 & claim 64:25 \\
\hline 97:1 115:7 & called 5:2 13:13 & 158:23 162:20 & changes 104:13 & claims 65:13 \\
\hline bound 155:6 & 170:17 173:2 & 162:21 163:9 & characteristics & 66:14 \\
\hline Box 3:5 & calling 25:12 & 166:2 181:2 & 62:22,25 & clarified 175:17 \\
\hline Brandice 12 & calls 32:4 & cases 34:21 45:1 & characterizati. & clarify 7:21 \\
\hline 13:2 & 131:22 140:8 & 45:4 53:15 & 78:12 153:11 & clarifying 29:4 \\
\hline break 18:14 48:8 & 144:19 & 78:4,21 80:11 & 186:4 187:15 & classes 49:16 \\
\hline 48:9 75:20,23 & campus 17:23 & 90:13 192:20 & characterize 6:2 & clause 53:20,21 \\
\hline 93:12 99:10,10 & candid 8:10,20 & casual 25:13 & 24:12 27:22 & 101:11 \\
\hline 99:11 114:23 & candidate 188:7 & 36:8 176:1,6 & 34:4 37:1 & clear 14:19 \\
\hline 121:10,11,12 & candidates & casually \(15: 19\) & 44:24 67:19,21 & 15:17 37:15 \\
\hline 150:10 169:16 & 65:21,22 & 36:15 92:15,17 & 67:23 73:23 & 41:10 51:24 \\
\hline 169:17,18 & 183:13 & 92:21 96:12,13 & 79:8,11,16 & 55:21 61:11 \\
\hline 201:16,19 & Canes 13:' & 97:18 & 80:4 86:15 & 64:19,21 65:3 \\
\hline breaks 10:24 & Canes-Wrone & categories 9:18 & 95:5,17,19 & 65:5 85:22,22 \\
\hline Brian 3:3 5:22 & 12:22 13:2,7 & category 9:17 & 186:21,21 & 107:14 \\
\hline 15:3 16:1 93:3 & caption 173:2 & 182:11 & 197:22 201:8 & cleared 63:22 \\
\hline briefly 5:20 9:20 & 175:14 & cause 126:16 & characterized & clearly 66:17 \\
\hline 22:17 & captioned 170:2 & 156:14 202:9 & 32:17 66:14 & 97:20 \\
\hline ruce 14:12 & 174:14 177:2 & caveat 91:15 & 184:2,10 & clock 69:1 \\
\hline bucket 167:5 & capture 128:18 & 122:17 & characterizin & close 77:21 \\
\hline built 149:12 & captured 186:24 & cells 93: & 30:25 91:17 & 78:21,22 97:8 \\
\hline burden 102:9 & card 173:18,20 & cen 190:20 & 104:24 & 112:13,14 \\
\hline burdensome & 173:23 174:10 & census 82:1 & charge 81:2 & 114:15 118:18 \\
\hline 10:1 & 174:11,14 & 83:16 87:1 & chart 164:23 & 138:17 143:1 \\
\hline Buried 138:9 & 182:8 & 88:16 89:17,22 & 165:15,23 & 148:20 165:10 \\
\hline B-R-A-N-D-I-C-E & cards 173:15 & 92:4 174:18 & 166:23 167:20 & 183:1 188:25 \\
\hline 13:6 & career 20:23 & centroid 190:20 & 167:22,25 & 192:14,16 \\
\hline & carefully 44:8 & 190:21 & 168:5,7,12,17 & 193:20 194:17 \\
\hline C & 51:6,7,8,13,19 & centroids 191:5 & 168:18 & 194:25 196:11 \\
\hline C 2:1 5:1 & 132:19 & 191:7 & check 85:7 & 197:14 \\
\hline Cage 4:22,23 & Carolina 183:12 & certain 15:3,10 & 133:5,12 & closely 6:8 \\
\hline 10:10 170:13 & Carolina-Wilm. & 24:9 45:3 46:4 & Chen 12:20 & 24:24 195:25 \\
\hline 170:20,25 & 19:20 & 63:22 69:10 & 48:22 111:2 & closer 135:25 \\
\hline 171:13,14,15 & carried 121:24 & 77:11 97:21 & 154:16,20 & clustering 48:19 \\
\hline 171:18,21,23 & 122:1 & 98:25 108:19 & 155:24 156:6 & 49:22 152:24 \\
\hline calculate 142:4 & carry 122:3 & 120:10,11 & 156:16,19,22 & 153:1 158:7 \\
\hline 146:2,8,10 & 131:14 152:5 & 127:18 128:4 & 156:22 193:8 & 159:9,10,13 \\
\hline 188:6,25 & carrying 187:1 & 154:18 172:4 & Chicago 2:9,15 & 160:1,9 186:22 \\
\hline calculated 47:7 & case 1:6 4:7 & 174:16 178:19 & 2:20,22 & 188:2,9,15 \\
\hline 72:20 113:9 & 5:18,22 6:3,4 & 178:23 188:24 & choice 147:2 & 189:3 192:23 \\
\hline 194:12,19,24 & 10:13 11:8,10 & 189:7,11 & circumstance & 193:1 195:18 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 196:5,8 & 155:2 & complete 8:21 & 136:1 & 130:12 \\
\hline code 42:3,4,19 & compact 155:8 & 14:19 29:25 & confidence 86:7 & consist 155:7 \\
\hline 59:20 60:10 & 160:17 189:5 & 39:21 42:6 & 86:16 91:18,21 & 161:18 \\
\hline 175:25 & compactness & 100:11 201:2 & 119:19 120:9 & constant 198:9 \\
\hline coded 41:11 & 4:4 154:19 & completed & 120:11,24 & constitute 44:18 \\
\hline 45:2 & 155:17 156:5 & 19:24 & 121:2 128:8 & Constitution \\
\hline codes 45:6,8,10 & 193:12 & completely 8:6 & 137:9,11 144:2 & 155:5 \\
\hline 45:16,19 & comparability & 8:10 130:23 & 144:7 & constitutional \\
\hline codify 97:6 & 115:25 & 131:1 137:10 & confident 21:6 & 64:4 155:5 \\
\hline coding 44:24 & comparable & 172:3 & 119:1 & constitutional... \\
\hline 60:9 175:18 & 151:3,11 & complexity 74:3 & confidently & 108:9 122:19 \\
\hline coefficient & 152:19 & compliance & 86:18 & 125:23 131:19 \\
\hline 91:17,22 106:5 & comparative & 172:8 & conform 142:20 & 132:7,17 \\
\hline coefficients & 160:25 & complicated & confused 161:8 & 144:12 \\
\hline 197:23 & compare 136:18 & 136:17 191:10 & Congress 4:6 & construct 47:23 \\
\hline coerced 112:12 & 137:17 142:10 & comply 154:24 & 31:3 & constructing \\
\hline coincidentally & 142:15 151:19 & 155:9 & congressional & 23:15 \\
\hline 77:21 134:5 & 152:11 162:2,9 & component 30:9 & 28:13,22 29:1 & consultation \\
\hline colleagues 14:7 & 164:9,19,20 & composition & 29:3,13 30:12 & 60:1 \\
\hline 14:8 & 165:14 & 188:25 189:2,7 & 30:14, 19,23 & contacting 15:9 \\
\hline college 16:21 & compared 95:10 & 189:11 190:2,7 & 31:2,4,7 45:16 & contain 100:10 \\
\hline 17:8 18:24,25 & 95:20 190:20 & 190:10 191:12 & 83:22,23 84:6 & contains 182:9 \\
\hline 19:10 21:12 & 190:22 & 192:8,14 & 87:20 88:5,21 & contemplate \\
\hline colleges 18:8 & comparing & compound 81:9 & 88:23 89:21 & 193:6 \\
\hline 20:5 & 72:21 96:22 & 81:11 & 104:10,11 & content 52:12 \\
\hline column 94:15 & 151:2 191:11 & compulsory & 110:22 111:21 & 59:8,11,22 \\
\hline 163:25 & comparison & 10:14 & 111:23 113:10 & 66:22,23 \\
\hline combined 44:2 & 152:5,9 & computation & 113:12 114:8 & 173:17 \\
\hline come 17:4 29:13 & compatibility & 112:9 & 114:10 115:18 & contested 139:6 \\
\hline 90:16 92:3 & 114:15 & concentrated & 115:19 116:9 & context 8:13 \\
\hline 107:12 127:3 & compatible 37:2 & 28:13 160:21 & 116:15 126:20 & 19:6 33:25 \\
\hline 161:10 196:1 & competition & 160:22 & 152:13 157:2,8 & 34:2,12 40:9 \\
\hline 199:7 & 101:10 & concentration & 158:10 174:21 & 40:10,17,18,25 \\
\hline comes 34:18,20 & competitive & 160:17 161:1,4 & 175:10 183:15 & 41:7 42:3 47:8 \\
\hline 137:21 & 98:1,6,13 & 194:2 & 184:22 198:18 & 47:9 53:2,6,11 \\
\hline comfort 7:10 & 178:18 181 & concept 92:16 & congressman & 96:21 100:20 \\
\hline comfortable 7:9 & competitiven... & 92:18 177:13 & 31:10 & 112:19,20 \\
\hline 20:13 & 110:6,11,19 & concepts 30:8 & connect 42:16 & 125:5 166:25 \\
\hline comfortably & 179:21 & concerned 59:23 & 42:18 & 193:24 195:12 \\
\hline 177:12 & compile 61:1 & concerns 148:12 & consider 23:6,8 & 195:22 196:1 \\
\hline coming 12:24 & 148:9 & 148:13,17 & 23:10,12,19 & 200:19 \\
\hline 115:4 124:10 & complaint 4:5 & conclude 82:2 & 24:25 25:7 & contexts 80:14 \\
\hline 139:11 156:7 & 32:16,18 44:20 & concluded 66:16 & 34:7 129:16 & contiguity \\
\hline 200:20 & 50:21,22 51:1 & conclusion & 155:20 170:7 & 155:16 156:4 \\
\hline comma 72:13 & 51:4,20 53:4,5 & 25:12 32:5 & 172:23 173:20 & 193:11 \\
\hline commentary & 53:6,9 58:21 & 34:13 41:21 & 174:2 181:5 & contiguous \\
\hline 171:11 & 60:17,18 61:12 & 68:5 131:23 & consideration & 155:8 \\
\hline comments 4:22 & 63:18,23 64:8 & 140:9 144:22 & 27:10 98:24 & continuity \\
\hline 171:15,20 & 64:20 65:3,9 & 146:5 & considerations & 154:19 \\
\hline commission & 65:12 66:5 & conclusion & 154:23 & contradicting \\
\hline 202:19 & 67:11,15,17 & 187:20 & considered & 52:11 \\
\hline COMMITTEE & 68:1,6,7,11,15 & concur 70:18 & 94:24 100:13 & contradictory \\
\hline 2:9 & 68:23 71:12,21 & 112:14 & 130:5 179:20 & 65:4,6,7,9 \\
\hline common 70:11 & 108:5,15,16 & conditions & considering & 67:11,15 96:7 \\
\hline commonly & 109:1,3 119:15 & 76:15,24,25 & 12:22 86:8 & contrary 52:13 \\
\hline \[
69: 25121: 2
\] & \[
121: 18
\] & \[
77: 3
\] & \[
106: 19 \text { 137:22 }
\] & \[
54: 6,8 \text { 59:4,5 }
\] \\
\hline communities & complaints 12:3 & conduct 135:23 & considers & contribute 63:2 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 57 of 80
William Whitford v. Gerald Nichol Nicholas Goedert

Page 207
\begin{tabular}{|c|c|c|c|c|}
\hline 63:5 & 155:21 158:24 & 71:18 89:10 & CV 16:4 27:16 & decision 34:24 \\
\hline contribution & 160:5 166:9 & 91:2,4 97:2 & cycle 56:1,22 & decisions \\
\hline 158:8,12 & 167:16,24 & 102:1 106:8 & 57:8 58:1 & 138:24 \\
\hline control 4:15 & 168:19 170:9 & 145:10 153:15 & 63:22 122:11 & declared 52:24 \\
\hline 39:21,22,24 & 170:11,14 & 153:18,20,21 & 122:14 130:24 & deemed 52:18 \\
\hline 40:4 42:6,8 & 171:3 175:11 & 172:6 198:12 & cycles 56:17 & 53:8 64:1 \\
\hline 63:7 76:23 & 184:15 200:18 & court's 19:7 & 78:17 152:14 & deems 82:1 \\
\hline 81:8,23 82:7 & 200:20 202:14 & court-drawn & 159:4,5,7 & defend 139:16 \\
\hline 157:19 158:6 & correctly \(24: 10\) & 76:21 84:3,16 & C-A-N-E-S 13:7 & defendants 1:8 \\
\hline 200:21 201:2 & 97:9 136:16 & 85:1 86:3 89:1 & C-H-E-N 48:23 & 3:1 14:22 \\
\hline controlled 60:12 & 138:8 173:13 & 199:16 200:10 & & 62:14 64:2 \\
\hline 159:3 174:23 & 174:25 182:21 & covered 77:4,6 & D & 67:6 \\
\hline convenience & correlate 189:22 & Cox 47:22 48:6 & D 3:10 5:1 & deferred 172:8 \\
\hline 171:6 & correlating & Crack 48:2 & 194:14,25 & define 32:25 \\
\hline conversation & 159:15 & cracked 57:4 & 195:5,5 & 33:24 35:3 \\
\hline 7:8 13:8 20:14 & correspond & 181:14,23 & data 29:12,13 & 36:4,6,16,17 \\
\hline 176:1 & 14:17 103:19 & cracking 57:24 & 46:15 60:24 & 36:19,21 37:12 \\
\hline conversational & 104:1 & 64:18 66:11 & 61:1,1,1,2,4 & 37:23,25 38:8 \\
\hline 7:6 & correspondence & 177:22 178:3,9 & 62:7 75:25 & 38:16,19 40:3 \\
\hline Conversely & 13:10,25 & 178:13,13,19 & 80:13 87:22 & 40:6,8,13,15 \\
\hline 114:12 115:21 & corresponding & 179:7 180:9,16 & 100:13,15 & 40:19 41:1 \\
\hline copies 10:9 & 136:19 & 180:19,24 & 116:4 117:5,10 & 42:15 46:1 \\
\hline copy 9:6 50:22 & corresponds & 181:6,8,17,20 & 119:17,18 & 70:4 80:12,13 \\
\hline 71:14 72:4 & 100:23 & 181:21 182:2 & 120:18,22 & 96:10,20 \\
\hline 73:14 76:2 & counsel 12:16 & crafting 42:24 & 123:23,24,25 & 121:20 133:3 \\
\hline 141:11 174:7 & 14:22 25:16 & create 175:7 & 128:1,11,15 & 169:14 180:13 \\
\hline 201:24 & 28:21 171:5,5 & 178:17 201:5 & 131:17 134:14 & 180:14 \\
\hline corral 100:5 & 172:1 202:10 & created 149:8 & 142:3,8 146:19 & defined 35:10 \\
\hline correct 6:18,22 & 202:12 & creating 149:10 & 147:2,3 149:5 & 60:18,20 97:20 \\
\hline 16:9,21 18:22 & count 174:18 & 194:13 201:5 & 149:6,7,11 & 98:14,18 \\
\hline 21:16 23:15,23 & counter 145:17 & credible 172:24 & 161:19,23,25 & 194:16 \\
\hline 28:7,23 29:1 & counties 51:15 & crime 8:6 & 162:1 176:1 & defines 46:25 \\
\hline 30:17 31:10,18 & 51:20 186:5,10 & criteria 60:6,10 & 184:5 186:25 & 47:2 \\
\hline 32:3 41:24 & 186:17,19,20 & 62:16 110:19 & 188:18 191:22 & defining 55:11 \\
\hline 42:2,7,10,17 & 186:23,24 & 111:9 193:5 & 191:24 197:9 & 57:16 61:23 \\
\hline 42:22 43:5,22 & 187:2 193:19 & criticism 156:10 & dated 140:17 & 95:8 96:5,17 \\
\hline 44:13 58:3 & county 155:7 & criticize 106:21 & 173:5 202:16 & 134:21 \\
\hline 59:4 60:5 & 187:20 195:3 & 139:17 144:17 & day 13:23 202:6 & definitely 26:25 \\
\hline 70:25 71:24 & 202:3 & 146:1,1,4 & 202:16 & 155:20 \\
\hline 72:18,23 73:1 & county-level & criticized 143:9 & deal 24:23 51:20 & definition 31:23 \\
\hline 76:11,15,21 & 186:12 & 144:14 156:6 & dealing 22:10 & 32:20 33:4,7 \\
\hline 78:11,20 79:2 & couple 12:15 & critique 196:2 & 23:4 & 33:15,16,17 \\
\hline 79:25 80:2 & 13:15 21:9 & cross 107:6 & deals 26:5 & 34:7,14,17 \\
\hline 81:23 86:5,14 & 107:14,15 & crucial 121:18 & dealt \(24: 18\) & 36:11 39:17,19 \\
\hline 90:22 91:14 & 152:14 & cruise 199:1 & debate 4:8 60:5 & 41:25 42:1,10 \\
\hline 92:4 95:15 & course 25:15 & curious 139:15 & decade 107:3,5 & 46:2 56:20 \\
\hline 96:4,8 99:24 & 30:23 113:1 & current \(4: 17,18\) & 118:17 119:20 & 57:15 59:10 \\
\hline 100:2,24 & 152:13 156:4 & 16:19 41:25 & 120:12 122:17 & 61:10,13,14,16 \\
\hline 101:10,24 & 158:9,17 & 42:1 58:21 & 127:16 131:3 & 95:23 97:22 \\
\hline 102:6 105:16 & court 1:1 6:24 & 62:15 65:19,23 & 133:24 134:4 & 175:16,17,22 \\
\hline 110:3,8 111:16 & 7:11,18 13:5 & 66:7,14 75:16 & 135:6 136:16 & 175:23 176:3 \\
\hline 113:22 116:3 & 19:6,13 27:10 & 123:15 168:22 & 138:7 & 182:2 \\
\hline 117:3 120:17 & 27:13 34:18 & currently 20:10 & December 1:16 & definitions \\
\hline 120:21 121:21 & 36:17,19,21 & curve 101:8 & decennial 55:25 & 31:12 33:6 \\
\hline 123:24 128:14 & 37:12,16 38:5 & 103:11,16,17 & 56:21 57:8 & 61:6 \\
\hline 148:19 149:8 & 38:7,16,19 & 104:8 117:21 & 58:1 122:11 & degree 6:21 \\
\hline 151:4 153:24 & 39:11 66:13 & 118:9,14 & deciding 19:25 & delegation \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 58 of 80
William Whitford v. Gerald Nichol Nicholas Goedert
\begin{tabular}{|c|c|c|c|c|}
\hline 183:15 & 194:4 & determining & difficult 192:12 & 104:12 134:12 \\
\hline deliberately & depends 16:10 & 140:6 149:23 & 192:21 & 178:20,24 \\
\hline 155:3 & 21:8 80:10,11 & 157:13 & dimension & displaying 120:6 \\
\hline dem 163:25 & 112:19 142:18 & dev 103:22 & 94:13 194:16 & displays 94:25 \\
\hline democrat 162:5 & 169:12,14 & develop 122:21 & direction 107:2 & 94:25 95:1 \\
\hline 183:18 185:3 & deponent 10:23 & 123:9 130:11 & 119:4,22 & dissertation \\
\hline democratic 35:1 & 29:19 33:18 & 133:5,15 & 126:17,22 & 22:12 28:22 \\
\hline 35:6,9,12,17 & 43:1 & developing 23:4 & 127:9,10 166:9 & dissimilarity \\
\hline 65:22 66:11,12 & deponents 8:9 & deviate 77:23 & 166:15 169:8 & 48:17 \\
\hline 76:19 77:10 & deponent's 37:7 & 78:4 97:12 & 169:10 & distance 176:2,5 \\
\hline 78:10,14 81:5 & deposed 6:18,19 & 126:16,21 & directly 22:6 & 189:8 190:11 \\
\hline 83:16,18 86:4 & deposition 1:13 & 129:24 & 38:24 & 190:13,16,22 \\
\hline 86:7 88:20 & 4:9 5:14,23 & deviation 46:16 & disadvantage & 190:23 191:4,7 \\
\hline 90:19,22 91:11 & 6:22 7:5 8:2,7 & 65:15 77:9 & 54:19 65:21 & 191:11,12 \\
\hline 91:13 123:4 & 8:18 10:15 & 79:14 96:18 & disadvantaged & 194:11,18,21 \\
\hline 127:9 160:17 & 12:16 25:16 & 101:7 103:10 & 55:4,16 56:6 & distances \\
\hline 162:5,14,22 & 26:12,15 93:24 & 103:23 116:23 & 58:2 & 194:24 \\
\hline 180:10 188:2,5 & 111:5 141:5,22 & 117:20 118:8 & disadvantages & distant 192:8 \\
\hline 193:2 197:19 & 152:11 164:8 & 118:13 133:22 & 55:23 & distort 8:12 \\
\hline 198:1 & 171:8 201:25 & dialectic 90:8 & disadvantaging & 191:21 \\
\hline democrat & depositions 27:2 & differed 77:3 & 56 & distorts 167:22 \\
\hline 85:5 86:9,12 & 27:7 71:25 & difference 47:5 & disagree 54:23 & 168:3 \\
\hline 90:13 & 90:5 & 110:21 162:16 & 54:24 55:6,10 & distribution \\
\hline democrats 4:6 & describe 8:15 & 162:23,25 & 58:14, 15,17,23 & 61:4 165:22,23 \\
\hline 46:5 60:1 & 13:8 22:20,25 & 163:2,6,11,14 & 62:10 121:4 & 166:8 169:3,5 \\
\hline 66:10 123:4 & 104:4 120:5 & 163:15,16,19 & 176:17,18 & 169:7,9 188:12 \\
\hline 126:19 160:21 & 193:13 & 163:24 165:11 & 183:25 & district 1:1,2 \\
\hline 180:8 181:10 & described & 166:22 167:2,3 & disagreement & 4:19 32:1,22 \\
\hline 181:11 183:20 & 135:23 149:7 & 167:9,11 & 175:12 178:6 & 33:21 110:19 \\
\hline 185:4,5 194:6 & 179:3,17 180:3 & 169:13 186:8 & Disappearing & 143:14 149:25 \\
\hline 194:7 & 188:16 & 190:1,3,5 & 4:7 73:5 75:3 & 149:25 150:7 \\
\hline demographic & describing 51:11 & 197:23 & disappears & 165:21 166:7 \\
\hline 76:10 79:1 & 51:12 & differences 78:1 & 198:12 & 168:2,4 169:7 \\
\hline 88:11 & description & 136:9 165:24 & discount 144:9 & 175:10 181:1 \\
\hline demographics & 149:3 173:21 & 166:1,5 191:6 & discourage & 189:5 192:7,13 \\
\hline 86:13 89:23 & 177:25 & different 28:16 & 97:25 98:6 & 193:14 194:4 \\
\hline 200:22 & design 42 & 33:6,11 34:2 & 101:18 102:18 & 196:12 \\
\hline demonstrate & 43:4,21 44:12 & 39:9 43:25 & 112:7 & districting 4:4 \\
\hline 118:11,16 & 76:6,13 150:15 & 49:22 62:22 & discourages & 4:17 39:23 \\
\hline 150:17 & designed 65:20 & 77:2,14 78:3 & 101:8,13 & 111:10 161:7 \\
\hline demonstrated & designing 98:10 & 97:16 112:25 & discourse 185:8 & districts 11:21 \\
\hline 178:17 & desirable 101:9 & 113:2 127:25 & discovery 12:7 & 30:10,20,24 \\
\hline demonstration & desire 178:17 & 128:9 131:1 & 12:10 & 46:14,18,19 \\
\hline 4:19 109:9,15 & despite 181:7 & 136:2,4 144:24 & discriminate & 47:20 51:16,22 \\
\hline 143:11,12 & detail 6:16 13:8 & 145:2 149:21 & 67:3 & 55:22 57:4,5 \\
\hline 147:15 & detailed 192:1 & 152:12 161:10 & discuss 17:10 & 62:6 72:10,12 \\
\hline department 3:2 & details 173:8 & 176:8 185:19 & discussed 5:22 & 84:6 87:20 \\
\hline 14:18 16:20 & determination & 186:23 197:12 & 14:21,23 & 88:23 89:21 \\
\hline depend 33:25 & 124:2 & 198:17 & 173:16 & 98:1,6,13 \\
\hline 57:15 60:20 & determine 46:10 & differentiate & discussion & 101:19 128:5 \\
\hline 166:10 187:25 & 46:18 108:8,18 & 76:8 & 18:15 38:13 & 139:3,6 143:10 \\
\hline dependent 77:8 & 129:4 130:11 & differentiating & 51:14 84:11,20 & 143:16 145:24 \\
\hline 77:9,12 78:1 & 132:15 140:11 & 108:4 & 89:4 93:14 & 149:13 150:5 \\
\hline 78:19,22 79:13 & 195:13 & differentiation & 170:22 171:17 & 154:8,12,15,18 \\
\hline 80:24 & determined & 80:23 & 173:3,4 & 155:6 156:24 \\
\hline depending 39:25 & 195:15 199:14 & differs 46:23 & dispersion 16:2 & 157:2,3,4,5,6 \\
\hline 77:2 178:14 & 200:8 & 64:8 & display 62:21,25 & 160:23,24 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 59 of 80

Page 209
\begin{tabular}{|c|c|c|c|c|}
\hline 162:21 164:19 & 43:8,10 94:11 & 50:6,12,15 & 118:1,5,6 & egregious \\
\hline 164:22 165:5,9 & 97:25 98:6,24 & 56:10 58:12 & 143:14 185:16 & 183:10 184:3,8 \\
\hline 165:12,13,18 & 101:19 102:18 & 60:8 68:20 & effectiveness & 184:10,11,17 \\
\hline 166:12,18 & 109:10,15 & 69:6,15,18 & 144:10 & 184:20,23 \\
\hline 167:4,17 & 124:18 139:25 & 70:16 71:17,24 & effects 53:16,22 & 185:2,10 \\
\hline 168:22 169:3,4 & 144:22 163:9 & 72:2,5,6 73:11 & 56:1 67:5 76:8 & eight 83:23 \\
\hline 174:21 175:7 & 177:19 193:10 & 74:24 75:8 & 79:13 198:15 & 107:1 116:15 \\
\hline 176:12 177:7,7 & drawn 32:8,10 & 76:5 79:10 & efficiency 4:3 & 127:2 \\
\hline 177:11,12,21 & 56:18 59:24 & 81:14 82:18 & 4:11,18 46:24 & either 57:3 \\
\hline 177:23 179:6,8 & 62:21,25 63:5 & 83:12,14,19,21 & 46:25 47:1,2,6 & 112:8 126:22 \\
\hline 180:6,15,16 & 63:6 87:23 & 84:7,12,13,21 & 52:16,17,25 & 198:20 \\
\hline 192:11,19 & 122:12 144:23 & 84:22 89:5,9 & 53:25 54:11 & elaborate 37:10 \\
\hline 193:10,18,18 & 144:25 146:22 & 89:11,16,20,25 & 55:12 62:23 & 103:9 104:15 \\
\hline 194:5 201:5,6 & 176:12 180:6 & 90:25 91:9,19 & 63:20 65:14,16 & elect 56:15 57:6 \\
\hline divide 188:5 & 181:13 184:25 & 92:8 93:2,11 & 67:5 69:10 & 58:7 175:7,8 \\
\hline divided 51:21 & 198:20 & 93:16 94:6 & 70:20 71:3 & elected 185:4,5 \\
\hline 174:20 & drive 141:6,9 & 99:9,12 102:10 & 72:10,13,25 & election 46:11 \\
\hline division 51:14 & dropped 112:17 & 102:13,21 & 77:13,15,21 & 56:21 57:6,10 \\
\hline document 9:11 & dropping 112:8 & 105:18 106:22 & 78:2,7,18,23 & 62:4,24 63:20 \\
\hline 65:10 71:22 & duces 170:23 & 114:20,23 & 97:5,12,25 & 63:21 76:25 \\
\hline 92:25 141:1,7 & due 157:19 & 115:3,6,9,12 & 98:5 101:5,7 & 77:18 78:17 \\
\hline 141:20,25 & 172:14 199:15 & 117:22 121:11 & 101:12,16 & 83:20 106:4,5 \\
\hline 172:7 & 199:21 200:9 & 121:13,14 & 103:2,4,10,15 & 107:24 113:7 \\
\hline documents 9:14 & 200:18 & 124:12,14,20 & 104:21 105:2,4 & 118:24 119:3,4 \\
\hline 9:18 12:11 & duly 5:3 202:9 & 124:23 131:24 & 105:14,16 & 120:10 122:9 \\
\hline 58:24 64:9 & durability & 132:2,9 133:4 & 106:3,10,12 & 122:10,11,14 \\
\hline 65:4,7 201:12 & 104:21 105:16 & 135:18 136:25 & 107:4,5,25 & 123:6,8,16,23 \\
\hline doing 14:10,18 & 108:13,18,21 & 140:12,14,25 & 108:8,18,21 & 123:25 125:3,5 \\
\hline 16:1 21:21 & 109:2,4 129:4 & 141:2,9,12,16 & 109:4 110:8 & 125:6,9 126:1 \\
\hline 36:23,24 37:3 & 129:18 131:2 & 141:21,24 & 113:7,9,23 & 126:3,6,9,10 \\
\hline 38:10,12 96:23 & 133:6,7,13 & 143:4 144:20 & 114:7 115:17 & 126:10,24,25 \\
\hline 127:7 139:8 & 134:6 & 145:5,19 & 116:7,11,16 & 127:4,6,19 \\
\hline 149:22 & durable 55:3, 13 & 150:11 160:12 & 117:15,25 & 128:20 129:9 \\
\hline Dominion 19:15 & 55:16,25 56:24 & 163:4,12 166:6 & 118:3 119:2,3 & 129:17,23 \\
\hline 19:19 20:8 & 57:7,16,16 & 168:10,15 & 119:9,19,21 & 130:2,3,9,10 \\
\hline dots 134:16,21 & 58:1,6 120:11 & 169:1,17,19,22 & 120:9 122:8,13 & 130:12,17,19 \\
\hline 134:25 136:20 & dynamic 28:16 & 172:18,20,21 & 122:15 125:25 & 130:21,24,24 \\
\hline doubt 65:19 & 152:20,21 & 174:8,11,13 & 127:16,18 & 131:2 132:11 \\
\hline drafted 59:17 & & 176:23 179:24 & 128:9 130:18 & 133:2,11,19,20 \\
\hline 66:7 141:17,18 & E & 180:12 190:24 & 131:2,16,19 & 133:22 134:10 \\
\hline drafters 66:14 & E 2:1,1 3:10 4:1 & 192:5 200:5 & 132:6,22 & 135:15 136:24 \\
\hline dramatically & 5:1,1 & 201:20,22,24 & 133:23 134:12 & 137:2,22,25 \\
\hline 167:22 186:5 & Earle 2:3,4 3:12 & earlier 50:3,11 & 136:7,11,14,14 & 138:1,2,5 \\
\hline draw 30:19,23 & 5:6 10:3,22 & 51:25 96:11 & 137:4,5 138:4 & 139:2,9 142:19 \\
\hline 31:2 70:13 & 11:2 18:14,16 & 152:11 166:22 & 146:3,6,9,10 & 143:1 145:16 \\
\hline 72:7 93:25 & 19:17 21:5 & early 45:18 & 146:17 147:9 & 145:23 146:2,8 \\
\hline 105:21 117:8 & 24:6 25:14 & easiest 82:14 & 147:15,22 & 146:15,18,21 \\
\hline 140:2 143:21 & 26:10 27:3 & easily \(115: 2\) & 148:8,14 149:1 & 146:24 147:9 \\
\hline 143:21 145:3,9 & 28:20 29:18 & 175:6 & 150:16,18 & 147:10,18,23 \\
\hline 147:8 180:25 & 30:1,21 31:24 & East 2:21 & 158:3 178:2,7 & 148:3,4,8,11 \\
\hline 182:11 192:6 & 32:9 33:17,19 & easy 20:13 & 178:8,12,14,21 & 148:15 149:15 \\
\hline 192:10,12 & 35:24 37:14 & 189:4 192:6,10 & 178:25 179:4 & 149:16 150:4,4 \\
\hline 193:14 194:5 & 38:3,14,21 & 193:14,14 & 179:14 180:7 & 152:14 156:20 \\
\hline 197:1 199:3 & 40:23 41:5 & edited 75:22 & 180:19,21 & 157:11 158:11 \\
\hline 200:25 & 42:25 43:12,16 & edits 75:17 76:2 & 181:2,21 197:8 & 159:12 161:22 \\
\hline drawing 9:13 & 44:4,22 47:14 & effect 65:24 & 197:11,15 & 179:13 180:18 \\
\hline 32:1,21 33:20 & 48:8,10 49:25 & 76:9 117:16 & efficient 68:21 & 181:3,8,11 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 60 of 80
William Whitford v. Gerald Nichol Nicholas Goedert
\begin{tabular}{|c|c|c|c|c|}
\hline 184:22 198:10 & endure 126:1 & 197:14 199:7 & 86:20 88:2 & 28:5 \\
\hline 198:17,24 & enormous & 200:20,24 & exert 195:4 & expert 12:23 \\
\hline elections 22:11 & 118:17 & estimates 87:15 & exhibit 4:2,3,4,5 & 13:14,15,16,20 \\
\hline 22:13 24:20 & enter 158:23 & 87:16 134:11 & 4:5,7,8,9,11,12 & 13:22 14:25 \\
\hline 25:2,6 28:12 & entire 18:10 & 137:9,11 & \(4: 12,13,14,14\) & 15:2,11 19:7 \\
\hline 28:14,14 33:12 & 42:7 55:25 & estimating & 4:17,18 9:5,8,9 & 27:5,9,23,24 \\
\hline 83:22 104:11 & 57:8 58:1 & 113:6 147:14 & 9:14,19 16:6,7 & 35:16 41:23 \\
\hline 104:11 108:1 & 124:4 163:10 & et \(1: 4,7130: 14\) & 50:5,7,24,25 & 105:5 111:24 \\
\hline 122:16 124:4 & entirely 53:2 & evaluate 19:8 & 70:15 71:7,10 & 117:11 140:1 \\
\hline 129:16,20,21 & 131:6,7 138:15 & 150:13 154:5 & 71:11,11,11,15 & 140:11 153:20 \\
\hline 129:25 130:4,5 & 138:21 147:7 & evaluation 65:2 & 71:23,25 75:7 & 153:21 184:24 \\
\hline 134:3,5,9,12 & 185:15,15 & evenly 130:3 & 82:15,19,22,25 & experts 5:19 \\
\hline 134:13 135:15 & 186:21 & event 53:16 & 85:25 93:15,18 & 154:3 \\
\hline 137:1,24,25 & entirety 137:21 & evidence 64:3 & 94:4,5 105:18 & expires 202:19 \\
\hline 143:3 145:24 & entitled 94:1 & 89:15 160:16 & 105:19,20 & explain 33:14 \\
\hline 170:8 178:18 & entrench 32:2 & 178:19 180:9 & 107:10 114:25 & 46:23 77:16 \\
\hline 185:6 & 32:23 33:22 & exact 36:12 45:8 & 128:16 140:13 & 120:5 \\
\hline electoral 42:11 & entrenching & 141:14 187:25 & 140:15 147:16 & explained 68:1 \\
\hline 42:12 55:22 & 65:25 & exactly 39:3,17 & 148:23,24 & explaining \\
\hline 66:9 76:24,24 & entries 171:11 & 63:3 95:18 & 149:4 164:7 & 182:19 \\
\hline 77:2 122:22,25 & entry 171:12 & 135:8 136:9 & 169:20,21,23 & explicitly 67:17 \\
\hline 123:3,11,22,23 & environment & 147:16 173:7 & 169:25 172:22 & 176:5 184:2 \\
\hline 129:6,11,14 & 86:14 123:3 & 197:11 & 174:5,6 176:4 & express 64:15 \\
\hline 131:17 149:11 & 157:9 178:15 & EXAMINATION & 176:10,22,24 & 67:25 100:12 \\
\hline 157:8 178:15 & 179:5,8 180:7 & 5:5 & 177:17 182:4,5 & 100:21 \\
\hline 178:20,23 & 198:17,18 & examined 5:3 & 182:6 196:19 & expressed 67:14 \\
\hline 179:5,8 180:7 & 200:23 & examining & 196:20,23 & 108:5,6,19 \\
\hline elects 174:16,19 & environments & 185:20 186:2 & 197:7 198:25 & expressing \\
\hline eliminate & 122:23,25 & example 29:4 & 200:25 & 67:24 100:18 \\
\hline 125:16 & 123:11,23 & 76:18 98:8 & exhibited 104:7 & extent 19:8 \\
\hline eliminates & 129:6,7,9,12 & 125:15 173:9 & exhibits 3:21 & 27:19 29:12 \\
\hline 112:11 & 129:14 178:20 & 178:22 & 73:9 100:14 & 32:4 38:25 \\
\hline email 10:24 & 178:23 & examples 70:21 & exist 56:21 & 39:1 65:23 \\
\hline 13:10 & equal 61:17 66:1 & 111:18,22,22 & existed 52:18 & 66:10 102:8 \\
\hline emailed 13:12 & 72:11 78:19 & 111:23 192:19 & existence 56:3 & 140:8 168:16 \\
\hline empirical 29:12 & 174:21 & exceed 106:25 & 185:9,10 & 188:9 189:3 \\
\hline 33:12 74:12 & equally \(72: 12\) & 107:2 & exists 31:18 & 193:13 \\
\hline 121:19 125:24 & equals 106:5 & exceeding 135:2 & expand 100:21 & extreme 60:25 \\
\hline 132:13 153:3 & equation \(72: 3,9\) & 135:3 & expanded 99:25 & 77:18,18 127:6 \\
\hline empirically & 72:9 & exceeds 65:16 & expect 36:17,19 & 129:17 \\
\hline 187:12 & equivalent & Excel 82:16,17 & 36:21 37:12 & extremely 55:3 \\
\hline employed & 30:16 52:17 & 82:23 83:24 & 38:7,16 39:2 & 55:13,15 56:24 \\
\hline 202:11,12 & 97:17,19 191:3 & 92:25 & 63:6 73:24 & eyeball 153:7,9 \\
\hline employee & Eric 177:13,16 & excellent \(23: 2\) & 77:25 147:6 & 153:12,18,24 \\
\hline 202:12 & error 70: \(1,2,4,5\) & exception 10:9 & expectation & eyeballing \\
\hline enable 76:16 & especially \(24: 19\) & 54:15 & 77:10 79:15 & 137:16 \\
\hline 114:14 115:24 & essential 108:17 & exclude 31:9 & 143:20 & eyeballs 153:17 \\
\hline enables 76:7 & essentially & excludes 127:24 & expected 72:22 & eyes 49:12 \\
\hline enacted 59:17 & 34:13 72:25 & 128:4 & 146:6 148:13 & \\
\hline 66:8 & 77:13 97:7,7 & excuse 30:22 & expedited & F \\
\hline enactment & 148:10 & 94:25 & 201:24 & face 101:23 \\
\hline 58:20 & establish 108:21 & executed 152:9 & experience & 102:5 \\
\hline encompass & 109:2,4 117:16 & executive 24:19 & 16:16 19:4 & facet 82:6 \\
\hline 129:13 & estimate 62:3 & exemplified & 26:22,23 27:1 & fact 23:14 55:15 \\
\hline ended 183:15 & 87:21 127:15 & 125:12 & 27:4,6,8,19 & 55:25 62:20,24 \\
\hline 201:25 & 147:21 148:1,4 & exercise 4:8 & experienced & 89:8,15 119:14 \\
\hline ends 77:19,20 & 149:1 158:15 & 76:7 82:8 & 23:20 25:1,9 & 129:15 143:18 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 61 of 80
William Whitford v. Gerald Nichol
Nicholas Goedert
Page 211
\begin{tabular}{|c|c|c|c|c|}
\hline 162:10 181:7 & favoring 178:24 & findings \(84: 14\) & 128:20 130:10 & 182:23 202:10 \\
\hline 185:4 194:1 & 179:13 180:8 & 85:24 & 130:25 & 202:11 \\
\hline factor 64:3 & favors 109:20 & fine 11:4 13:24 & follows 5:4 & future \(21: 7,8\) \\
\hline 117:25 & February 202:20 & 41:13 84:10 & 112:1 & 104:21 105:2 \\
\hline factors 66:16 & federal 99:6 & 88:1 91:7 & follow-up 37:18 & 105:15 107:25 \\
\hline 106:6 144:24 & feed 31:3 & 116:21 172:19 & 184:18 & 121:6,21 \\
\hline 151:16 155:20 & feedback 17:7 & 195:24 & footnote 124:17 & 122:16,22,24 \\
\hline 178:16 180:20 & 17:14 & finish 7:14 & 125:13 200:3,4 & 122:25 123:22 \\
\hline 180:23 181:16 & feel 31:21 99:18 & 24:22 63:8 & 200:6 & 126:1 129:15 \\
\hline 181:19,20 & fellow 182:17 & 151:8 & foregoing 202:5 & 129:25 130:8 \\
\hline facts 8:21 44:21 & field 16:9 23:9 & first 5:3 12:25 & 202:14 & 139:8 143:3 \\
\hline 100:13,15 & 23:12 25:1 & 13:6 37:17 & forget 135:7 & 149:15 150:4 \\
\hline 179:16,20 & fields 24:24 & 52:20 53:10,20 & forgotten 37:6 & 158:25 \\
\hline 180:2 & fifth 109:18,22 & 53:21 54:1,1 & form 18:5 77:14 & \\
\hline factual 67:21 & Fifty 165:2 & 63:21 64:5,7 & 77:17 91:3 & G \\
\hline 145:17 & fights 176:15 & 64:11,13,19,22 & 102:11 155:8 & G 5:1 \\
\hline failure 183:20 & figure 102:23 & 64:25 65:15 & 187:25 & GAB 139:16 \\
\hline fair 16:8 23:13 & 116:13 120:1,6 & 67:2,18 69:7 & formal 40:5 & 140:19 141:4 \\
\hline 27:22 28:12 & 120:14 126:8 & 70:18 72:11 & formats 173:14 & Gaddie 4:12 \\
\hline 29:23 30:2 & 135:9,10 & 80:7 81:17 & former 112:10 & 99:13 139:11 \\
\hline 46:25 47:2 & 136:19,19 & 101:1,5 102:23 & forming 100:14 & 140:17 141:5 \\
\hline 49:4 51:6 52:1 & 137:12,12,14 & 103:1,7 104:14 & formula \(72: 14\) & 141:17 148:20 \\
\hline 52:3 78:12 & 137:23 161:11 & 104:16 117:12 & 72:14 & 148:22 149:22 \\
\hline 95:5 152:18 & 164:25 167:14 & 118:11,23 & formulating & gap 4:3,11,18 \\
\hline 153:9,11 & 167:23 168:18 & 119:20 120:10 & 139:20 & 46:24,25 47:1 \\
\hline 165:21,25 & 174:4 186:13 & 122:10,11,13 & forth 8:22 & 47:2,6 52:16 \\
\hline 166:7 177:25 & 188:11 & 125:17 126:4,5 & 194:23 195:6 & 52:25 53:25 \\
\hline 186:4 200:1 & figures 71:13 & 127:19 128:20 & forthcoming & 54:11 55:12 \\
\hline fairly 16:8 24:9 & 120:7 127:20 & 129:4 130:10 & 8:14 75:16 & 62:23 63:20 \\
\hline 77:23 78:21,22 & 128:11,12 & 130:24 133:7 & Forty-two 165:7 & 65:14,16 67:5 \\
\hline 80:9 111:11 & 134:8 135:7,8 & 133:20 134:3 & 165:9 & 69:11 70:20 \\
\hline 127:14 152:19 & 135:13 136:2,3 & 134:10 135:15 & forward 31:13 & 71:3 72:10,13 \\
\hline 158:9 163:23 & 163:20 & 136:23 137:1 & found 160:1 & 73:1 77:13,15 \\
\hline 192:10 193:8 & figure's 136:17 & 137:22,25 & 182:18 & 77:21 78:2,7 \\
\hline 197:14 & file 92:25 & 138:1,2,5,11 & four 51:5 85:5 & 78:19,23 97:5 \\
\hline familiar 11:10 & filed 5:15 64:10 & 144:13 162:8 & 129:12 163:17 & 97:12,25 98:5 \\
\hline 11:11,17 24:15 & 65:10 & 177:4 183:6 & 163:21 166:21 & 101:5,7,12,16 \\
\hline 34:19 45:23 & filing 56:11 & 194:18,19 & 167:19 & 103:2,4,10,15 \\
\hline 47:16,19,22 & filings 5:18 & 202:8 & fourth 109:7,8 & 105:14 106:3,4 \\
\hline 48:4,7 49:7 & 11:14 12:6 & five \(4: 1018: 4,21\) & fraction 86:9 & 106:10,12 \\
\hline 50:18,19 51:2 & 64:21,24 67:12 & 18:23 19:21 & frame 102:9 & 107:25 108:8 \\
\hline 67:9 73:7 & 69:10 139:14 & 70:11 94:2 & frequently & 108:14,18,21 \\
\hline 111:12 173:5,7 & filling 194:19 & 97:17 99:22 & 183:19 & 109:4 110:8 \\
\hline 195:7 & final 114:17, 19 & 100:20,23 & Friedman 47:23 & 113:7,9 114:7 \\
\hline family \(14: 3\) & Finally 65:19 & 109:25 163:17 & 48:6 & 115:17 116:17 \\
\hline far 59:22 60:25 & 183:8 & fix 81:18 & friends 14:1,3 & 117:15,25 \\
\hline 88:2 148:25 & financially & flaws 120:13,15 & front 90:6 91:8 & 118:3 119:2,3 \\
\hline 158:4 193:23 & 202:12 & 154:20 & 107:10 161:13 & 119:9,20,21 \\
\hline 194:1 & find 65:11 68:25 & flip 127:19 & 196:23 & 120:9 122:8,13 \\
\hline fast 199:1 & 82:11 106:16 & Florida 157:1,1 & Fryer 47:16 50:1 & 122:15 125:25 \\
\hline faster 69:3 & 114:22 115:2 & 157:4,4,5 & full 70:18 & 127:16,18 \\
\hline 79:22 & 139:15 172:3 & 183:17 & 105:22 & 128:9 130:18 \\
\hline favor 85:5 86:8 & 197:19 199:4,5 & focus 30:3 & fully \(8: 13,20\) & 131:2,16,19 \\
\hline 86:11 90:12 & 199:8 & focused 28:25 & functional 77:14 & 132:6,22 \\
\hline 179:14 198:20 & finding 66:6 & 29:3,8,21,24 & 77:17 & 133:23 134:12 \\
\hline 198:23 201:6 & 124:8 159:21 & folks 20:15 & further 59:7 & 136:7,11,14,15 \\
\hline favorable 60:2 & 160:8 & following 63:21 & 60:18 176:9 & 137:4,5,21 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 62 of 80
William Whitford v. Gerald Nichol Nicholas Goedert
\begin{tabular}{|c|c|c|c|c|}
\hline 138:5 146:3,6 & 150:14 154:6 & 4:10 34:25 & Glazer's 159:21 & 98:12 99:9 \\
\hline 146:9,10,17 & 157:21 158:14 & 36:9,13 42:13 & 160:8 & 106:10 172:18 \\
\hline 147:9,15,22 & 167:25 168:6,8 & 42:15 44:25 & global 48:11 & 193:8,22 \\
\hline 148:8,14 149:1 & 168:14,21 & 55:2 59:21 & go 12:13 16:4 & 195:17 200:6 \\
\hline 150:16, 18 & 182:12,19 & 94:2 97:4 & 24:22 31:13 & Google 10:20,24 \\
\hline 158:3 178:2,7 & 185:12,16 & 106:7 175:18 & 37:4,7 39:13 & GOP 182:12 \\
\hline 178:7,12,14,21 & 196:21 198:5,8 & 177:12 178:1 & 54:4 59:2,7 & 183:17 \\
\hline 178:25 179:4 & 198:9,16 199:4 & 183:11 184:8 & 60:13 62:9 & gotcha 78:24 \\
\hline 179:14 180:7 & 199:5,15,21 & 184:12,17 & 63:9 66:18,21 & 184:18 \\
\hline 180:19,21 & 200:9,18 & 185:2,11 & 69:3,19,24 & govern 153:23 \\
\hline 181:2,22 197:8 & GERALD 1:7 & 197:19,21 & 72:2 74:25 & government \\
\hline 197:11,15 & Gerhard 50:2 & 198:12 201:9 & 82:8 89:2 & 16:20 98:12 \\
\hline gaps \(52: 17\) & gerrymander & 201:10 & 100:4 103:9 & governor 56:16 \\
\hline 104:21 105:2,5 & 35:19,23 36:3 & getting 85:15,19 & 108:2 113:8,8 & 56:16 59:19 \\
\hline 105:16 107:4,5 & 37:22 42:2,5 & 90:12 115:15 & 117:7 118:15 & governorship \\
\hline 113:23 116:7 & 42:19 44:19 & 137:11 & 118:22 120:1 & 39:25 \\
\hline 116:11 178:8 & 47:24 54:2,20 & Ginsburg 34:22 & 149:10 161:10 & graduate 13:3 \\
\hline Gary 45:23 & 55:11,13,15,22 & 34:24 35:11 & 174:8 180:13 & 22:18 \\
\hline Gelman 45:23 & 55:24 56:13,23 & give 9:7 14:9 & 182:4,16 & graph 128:19 \\
\hline 46:10,21 & 57:2 59:10,13 & 19:9,21 31:22 & 196:19 198:25 & 130:16 131:4 \\
\hline general 3:3 & 59:16,20,23 & 50:3 76:22 & 200:25 & 137:16 163:1 \\
\hline 27:11,15 53:20 & 60:11 76:20,20 & 80:14 82:16,20 & goal 110:14 & 167:13 \\
\hline 80:13 141:3 & 132:8 140:7 & 83:24 86:21 & 175:6 & graphs 106:17 \\
\hline 144:11 177:18 & 179:15 184:3 & 90:1 91:6 & goals 110:7 & 137:10 \\
\hline 191:21 192:10 & 184:10 185:17 & 108:25 120:7 & Goedert 1:14 & great 66:10 \\
\hline 201:9 & 197:5 198:7 & 125:15 126:23 & 3:11 4:12 5:2 & 172:20 \\
\hline generally 24:4 & gerrymandered & 126:24 127:14 & 9:16,17 102:8 & greater 54:12 \\
\hline 46:12 & 183:19 & 155:19 163:19 & 182:15,16,17 & 80:25 87:19 \\
\hline generate 129:17 & gerrymandering & 177:9 195:25 & 183:1 & 95:3,13 128:16 \\
\hline 130:25 145:14 & 4:3,5,7,11,13 & 201:15 & goes 79:22 & 136:6 157:19 \\
\hline 145:15 148:8 & 4:14,14 31:17 & given 13:21 & 178:4 & 166:11 \\
\hline 150:14 154:6 & 31:20,23,25 & 35:21 46:2,4 & going 7:8,11 9:7 & greatest 65:22 \\
\hline 178:14 179:13 & 32:21,25 33:20 & 58:19,19 61:17 & 19:8 21:6 & 116:16,22 \\
\hline 181:21 193:15 & 34:5,12 35:3,6 & 65:3 72:22 & 25:16,18 31:13 & Greenwood 2:11 \\
\hline generated 86:19 & 35:9,10,22 & 73:14,25 74:1 & 33:25 37:16 & 3:20 71:8 72:8 \\
\hline 152:12 157:1 & 36:4,6,7,10,11 & 74:5,7 76:23 & 39:8,8 42:20 & 82:16 84:8 \\
\hline 158:15 178:8 & 36:21 37:2,12 & 77:11 81:2,21 & 43:2,19 44:6 & 92:23 93:1,6 \\
\hline 185:14 & 37:24 38:1,2,8 & 86:12 88:11 & 44:10,23 49:23 & 121:10 148:23 \\
\hline generates 87:16 & 38:17,20 39:18 & 90:19,20 91:11 & 59:3 69:2 71:9 & 169:16 174:10 \\
\hline generating & 39:19 40:1,3,7 & 91:12,15,25 & 72:2 81:18 & 174:12 176:21 \\
\hline 145:17 154:17 & 40:14, 16, 19 & 95:4,8 96:5 & 82:9,19,20,22 & grid 194:13,19 \\
\hline geo 152:20 & 41:2 42:3 48:1 & 118:17 126:2 & 83:24,25 85:21 & grounded \\
\hline geographic & 53:17,22 65:13 & 129:23 130:1 & 86:21 88:9,14 & 153:23 \\
\hline 49:21 152:24 & 73:4,5 77:1 & 130:19 132:15 & 89:6 91:4 & group 188:8 \\
\hline 153:1 158:7 & 156:14 170:11 & 133:20,21,25 & 101:2 102:7 & groups 49:22 \\
\hline 185:21 188:1,9 & 173:3,4,19 & 136:7 147:13 & 110:1 112:5 & 188:6 \\
\hline 188:15,19 & 174:2,15 175:2 & 156:2 157:1 & 121:16 131:14 & guess 11:24 14:6 \\
\hline 189:3,18,19,21 & 175:14,16,21 & 178:4 192:1 & 134:6 158:16 & 16:5 27:17 \\
\hline 189:24 192:23 & 175:25 176:4 & 195:21 & 164:21 183:1 & 53:2 94:12 \\
\hline 193:1 196:8 & 176:11 177:2,5 & givens 56:2,25 & 185:19 186:17 & 102:22 121:17 \\
\hline geographically & 179:10,18 & 57:9 & 186:20 190:17 & 155:12 165:10 \\
\hline 192:8,14, 16 & 180:3 182:20 & gives 89:24 & 194:8 197:1 & 167:17 172:8 \\
\hline geography 4:5,8 & 182:25 183:7 & 194:24 & 201:21 & guessed 146:16 \\
\hline 62:17 63:2,4 & 183:21 184:21 & giving 44:16 & good 5:7,11 8:24 & GUYON 2:4 \\
\hline 67:8 73:4,5 & 196:21 198:5 & 62:2 87:22 & 11:5 13:20 & guys 141:2 \\
\hline 81:8,18,23 & 198:16 & 90:20 91:11 & 23:10 29:4,5 & \\
\hline 82:3,6 109:20 & gerrymanders & Glazer 160:14 & 76:6 88:8 & H \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65
Filed: 01/25/16
Page 63 of 80
William Whitford v. Gerald Nichol
Nicholas Goedert
Page 213
\begin{tabular}{|c|c|c|c|c|}
\hline H 4:1 & 95:20,21 96:19 & hypothetically & imply \(17: 16,17\) & 147:4 \\
\hline handwritten & 104:9 124:5 & 151:15 152:3 & 17:19 63:1 & incorrectly 97:2 \\
\hline 68:14 & 146:22,23,23 & 190:14 & 101:16 103:5 & increase 103:18 \\
\hline happen 121:5 & 148:3 & hypotheticals & 119:21 & 103:20 104:1,2 \\
\hline 129:14 132:15 & historically & 89:14 & implying 80:20 & 110:11 160:1,9 \\
\hline happened 40:10 & 124:3 129:9 & & importance & increasing 74:3 \\
\hline 125:8 126:25 & history 104:8,8 & I & 19:13 & 110:6 \\
\hline 147:19 & hold 22:23 95:22 & idea 6:22 11:12 & important 4:14 & increasingly \\
\hline HARLESS 2:13 & 107:12 & 13:20,25 98:12 & 7:3 19:11 & 159:15,15 \\
\hline harm 66:9 & Holden 47:17,23 & 147:11 152:15 & 109:13,16 & incumbency \\
\hline head 24:13 & 48:6 50:2,2 & 158:12 177:5 & 112:11 182:19 & 143:6,14 144:6 \\
\hline 34:21 45:15,21 & Holding 198:9 & 194:25 & 183:5 & 144:9,18 145:6 \\
\hline 110:23 116:14 & home 4:13 170:1 & ideally 172:13 & imposed 57:22 & 145:13,18,23 \\
\hline 123:20 159:20 & homogeneous & identical 71:22 & impossible & 182:24 \\
\hline 186:11 188:17 & 201:4 & 72:25 75:25 & 57:11,12,17 & incumbent \\
\hline 192:24 195:9 & hoped-for & 76:24 77:13 & imprecise & 139:7 143:8 \\
\hline 195:11,19 & 177:10 & 169:5 & 166:24 & incumbents \\
\hline heard 48:11 & horizontally & identification & impression 15:3 & 139:11 143:10 \\
\hline 115:14 & 194:15 & 9:8 16:7 50:5 & 24:17 46:12 & 143:13,16 \\
\hline heavily 57: & hours 69:1 & 50:24 73:10 & 64:7 & 145:21,22,25 \\
\hline 160:21 & house 4:15 & 93:15 94:5 & impulsively & 201:5 \\
\hline height 163: & 114:9,9 115 & 105:19 140:13 & 185:1 & independent \\
\hline 164:9 & 174:16,19 & 169:21 174:6 & imputation & 21:21 78:24 \\
\hline heights 162:2,8 & 176:13 182:20 & 176:22 182:5 & 113:15 138:23 & 79:14 80:23 \\
\hline 162:15 & 183:14,21 & identified 20:4 & imputations & 81:21 88:11 \\
\hline held 18:15 38:13 & houses 39:24 & identify 35:17 & 114:1 138:1 & 91:25 \\
\hline 84:11,20 89:4 & 114:12 115:22 & 45:13 49:20 & imputed 114:3 & index 48:15,17 \\
\hline 93:14 114:11 & hugely \(177: 11\) & 54:5 120:13 & 138:21 & 194:22 \\
\hline 115:20 & Huh 190:4 & 154:20 159:15 & imputing 138:14 & indicate 20:16 \\
\hline help 140:2 175:4 & hu-ugh 7:25 & 159:25 160:2 & inaccurate & 179:17 180:2 \\
\hline helpful 187:6,7 & hyper 92:12 & 188:14 192:22 & 175:21 & indicated 18:17 \\
\hline hereto 202:12 & hyper & ideologi & inappropriat & 96:15,16 \\
\hline hesitant 18:25 & 97:8,15,20,23 & 201:4 & 34:4 192:3 & 170:24 \\
\hline high 80:4,17 & hyper-proport... & idiosync & 195:20,20 & indicators \\
\hline 101:5,6,12,15 & 92:12 103:12 & 44:25 & include 67:18 & 149:15 \\
\hline 103:2,4,15 & 103:21,24 & ill 33:4 & 78:25 110:18 & indices 194:13 \\
\hline 118:13 164:4 & 104:4,7,12 & Illinois 2:15,22 & 111:8 121:18 & indirectly 21:22 \\
\hline 178:14,20 & 179:2 & 183:17 & 129:15 130:4 & Individual 30:10 \\
\hline higher 80:7 & hyper-respons... & imagine 173:23 & 134:5 162:25 & inexperienced \\
\hline 94:25 162:11 & 92:10 95:2,13 & 188:4 194:13 & 171:25 192:20 & 27:14,23,25 \\
\hline highlight 66:5 & 97:15,19 & imbue 98:11 & 194:6,7 & 28:1 \\
\hline 134:1,2 & 103:12,22 & immediately & includes 92:6 & inference \\
\hline highlights 68:14 & hyper-respons... & 123:15 159:6 & 106:6 128:3 & 101:24 102:5 \\
\hline highly 104:20 & 95:23,25 96:4 & impact 42:11,12 & 164:11 173:23 & inferred 54:20 \\
\hline 104:20 105:15 & 96:5,10,17 & 42:13,14,21 & 176:13 183:9 & 117:11 \\
\hline hindsight 109:9 & hyphen 13:7 & 43:3,7,20,23 & including 7:18 & influenced \\
\hline hire 17:6 19:25 & hypothetical & 43:25 44:11,17 & 22:11 107:5 & 66:15 189:17 \\
\hline 20:16 & 46:11 57:1 & 76:22 77:1 & 134:13 194:17 & 189:19,23 \\
\hline hired 17:4 19:10 & 76:15 89:7,12 & 81:7,17,23,25 & incompatible & inform 59:15 \\
\hline 19:22,24 22:5 & 89:20 108:13 & 82:5 114:10 & 34:25 35:6 & 104:21,25 \\
\hline 41:7 139:16 & 133:15,16 & 115:20 199:9 & incomplete & information \\
\hline 140:1,11 & 143:22 148:15 & implication & 190:18 191:18 & 4:21 14:15 \\
\hline Hispanic 81:3 & 149:25 150:15 & 118:21,24 & inconsistent & 58:22 76:10 \\
\hline 83:7 88:17 & 154:13,14 & implied 62:11 & 137:9 168:17 & 79:2 112:11 \\
\hline historical 54:12 & 180:11 188:21 & implies 101:7 & incorporate & 139:18 \\
\hline 73:23 77:10 & 189:12 190:18 & 103:10 117:25 & 46:22 188:18 & informative \\
\hline 79:14 95:10,20 & 191:19,25 & 118:4,4 119:3 & incorporated & 105:1 107:24 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 64 of 80
William Whitford v. Gerald Nichol Nicholas Goedert

Page 214
\begin{tabular}{|c|c|c|c|c|}
\hline 142:8 143:2 & 43:4,7,21 & Jackman's 24:7 & 166:3 168:24 & 193:21 \\
\hline 187:9,10 189:4 & 44:12 140:7 & 49:1 70:24 & 172:15 190:17 & knowability \\
\hline informed 33:4 & 161:7 182:25 & 71:6 119:5 & 191:18 201:16 & 148:18 \\
\hline 196:2 & 185:17 & 120:9 131:8,10 & 201:21,23 & knowing 146:14 \\
\hline informer 105:15 & intentionally & 134:13 & keenanbp@do... & 147:10,22 \\
\hline informs 59:11 & 17:16 57:22 & James 22:1,2 & 3:7 & knowledge 12:1 \\
\hline inherent 198:19 & 79:19 175:3 & Jefferson 2:5 & Keith 4:12 99:13 & 14:2,4,9 15:24 \\
\hline initially 202:7 & 181:23 & Jim 21:22 22:1 & 139:11 140:17 & 17:5 19:5 \\
\hline injured 35:18 & interchangeably & job 17:5,13 18:2 & 141:5,17 & 20:24 32:15,16 \\
\hline ink 87:2 88:9,10 & 92:14 & jobs 17:11, 12 & Ken 24:15 28:7 & 58:19 110:13 \\
\hline insight 14:16 & interested 13:14 & 18:4,6 & 109:8 143:5 & 110:16 139:13 \\
\hline inspect 195:25 & 74:12 133:25 & Joey 12:20 & 144:5,18 & 145:1 153:6 \\
\hline instability & 202:13 & John 47:22 48:6 & 150:12 164:8 & 158:1 \\
\hline 118:17 & interests 155:2 & Joshua 14:13 & 167:24 168:17 & Kolnik 1:19 \\
\hline instance 55:12 & interfere 41:15 & journal 74:9,10 & kind 7:6 8:10 & 202:4,18 \\
\hline 56:15 59:13 & interpose 25:16 & journalist 15:16 & 17:25 27:21 & \\
\hline 77:2 78:5 & 89:6 & journalists & 39:11 89:24 & L \\
\hline 126:18 129:23 & interpret 106:13 & 173:24 & 100:5 103:16 & L 1:19 202:4, 18 \\
\hline 154:22 174:19 & interpretation & judges 38:18 & 135:22 188:18 & label 93:10,11 \\
\hline 178:24 179:5 & 105:8,9,12 & judging 146:22 & kinds 7:25 & lack 26:21 27:1 \\
\hline 179:21 183:12 & interpreting & judgment 45:3 & King 46:10 & 27:4,6,8 \\
\hline 195:22 & 136:16 138:8 & 109:18 132:16 & King's 45:24 & Lafayette 14:13 \\
\hline instances & interrupted & judgments & 46:21 & 14:14 16:20 \\
\hline 106:16 & 106:8 & 45:12 & knew 145:2 & 18:24 20:8,9 \\
\hline Institute 177:14 & interview 17:13 & jumbled 85:21 & know 6:20 7:7 & 21:12 \\
\hline institution 76:9 & 17:22,25 & Justice 3:2 & 8:14 15:1,14 & laid 67:17 \\
\hline 78:25 & interviewed & 34:22,24 35:11 & 15:15,19 17:10 & lakefront 120:5 \\
\hline institutions & 20:7 & & 22:16,19 23:25 & landing 20:22 \\
\hline 24:18,19 & interviews 17:18 & K & 24:2,11 33:1 & language 31:15 \\
\hline instruct 26:3 & 17:21,23 18:5 & Keenan 3:3 5:23 & 34:16 35:22 & lapse 7:5 20:13 \\
\hline 147:11 & 18:21,23 19:1 & 9:23 10:20 & 39:2,3 45:15 & laptop 92:22 \\
\hline instructed 68:2 & 20:17 & 15:4 16:1 & 47:19 48:3 & large 54:11 \\
\hline 68:4 & introductory & 19:12 21:1 & 49:17 51:17 & 55:11 87:19 \\
\hline instruction 26:8 & 60:16 & 23:24 25:11 & 53:24,25 58:22 & 103:10 110:8 \\
\hline instructs 26:1 & involving 11:18 & 26:5,23 28:18 & 61:5 63:11 & 134:13 151:20 \\
\hline integrated 67:24 & 11:20 12:2 & 30:18 31:19 & 73:14 75:12 & 163:13,15,16 \\
\hline integrating & irrelevant 34:8 & 32:4 33:16 & 76:16 80:25 & 163:23 165:12 \\
\hline 148:10 & 139:25 140:4,5 & 35:20 37:13 & 82:1 86:6 & 178:11 180:15 \\
\hline intended 57:21 & isolation 48:15 & 40:20 47:10 & 98:13,16,16,17 & 180:19 181:2 \\
\hline 65:20 110:11 & issue \(71: 14\) & 49:23 50:10 & 98:20,23 99:1 & 181:21 186:8 \\
\hline intense 176:16 & issues 26:5 & 56:7 58:4 60:7 & 99:2,4,5,13,14 & 186:17,24 \\
\hline intent 32:8,11 & items 9:22 & 68:18 69:5,14 & 104:25 110:23 & 201:6 \\
\hline 32:17 33:11 & 170:6 & 69:16 70:15 & 113:22 114:2 & largely 198:12 \\
\hline 36:12 41:21 & IV 155:5 & 71:14,18 72:1 & 114:21 115:1 & larger 90:3 \\
\hline 42:17,23 43:9 & IXJ 194:16 & 72:4 74:21 & 116:11 118:21 & 165:16,19 \\
\hline 43:25 44:1,2 & & 75:5 79:6 81:9 & 118:22,25 & 166:25 167:1 \\
\hline 44:15 53:15 & J & 81:11 83:11,18 & 119:22 123:6 & 167:19,21 \\
\hline 54:18 60:2 & Jack 131:10 & 83:20 84:6 & 132:21 138:25 & 180:21 \\
\hline 63:12 64:15 & Jackman 22:16 & 89:6,13,18 & 141:19 143:5,5 & largest 186:19 \\
\hline 65:1,2 66:8 & 23:1,19 28:4,5 & 90:23 92:5,24 & 145:3,21,22 & LaSalle 2:14 \\
\hline 67:3 69:11 & 71:3 105:5 & 93:9 102:7,12 & 146:18 148:15 & latest 75:21 \\
\hline 110:17 117:11 & 107:8 111:25 & 102:15 117:18 & 148:22,25 & Latino 11:20 \\
\hline 117:17 140:11 & 112:2,6,15,25 & 131:22,25 & 149:6 151:16 & laughable 66:16 \\
\hline 198:21 & 120:1,6,13 & 136:21 140:8 & 154:15,22 & Laura 1:19 \\
\hline intentional 7:19 & 127:17 128:8 & 140:24 141:1,7 & 158:4,25 184:7 & 202:4,18 \\
\hline 40:6,13, 15,19 & 131:3 138:20 & 141:11,14,19 & 185:6 186:8 & law 2:3,10,20 \\
\hline 41:1 42:21 & 138:24 & 144:19 160:11 & 187:13 193:3 & 6:21 16:20 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 65 of 80
William Whitford v. Gerald Nichol
Nicholas Goedert
Page 215
\begin{tabular}{|c|c|c|c|c|}
\hline 66:2 98:14,23 & 75:19 76:6 & 59:6 66:6 & 192:1,4 & mark 9:5 16:5 \\
\hline 99:2 111:2 & 81:18 86:20,22 & 85:21 100:5 & Louis 182:18 & 50:1 93:3,12 \\
\hline lawsuit 56:11 & 87:4 90:17 & 104:15 106:18 & low 80:9,18 & 94:3 105:18 \\
\hline lawyer 6:20 & 93:2,2,3 99:10 & 116:17,18 & 123:8 147:9 & 169:19 172:6,7 \\
\hline 73:16 & 107:12 108:2 & 136:17 137:8,8 & lower 80:20 & 174:4 \\
\hline LAWYERS 2:9 & 113:8,8 117:7 & 138:9 161:8 & lunch 99:10,11 & marked 9:8,9 \\
\hline lay 66:17 96:20 & 162:2 180:13 & 163:17 182:23 & & 16:7 50:5,7,23 \\
\hline lead 2:11 78:3 & 181:10 182:4 & 195:12,25 & M & 50:24,25 71:6 \\
\hline leadership 59:25 & 196:19 198:25 & live \(145: 22,25\) & Mac 84:8 & 71:10,11 73:9 \\
\hline lean 162:13, 14 & 200:25 201:16 & 159:16 & machine 202:15 & 93:15,17 94:5 \\
\hline 162:20,22 & level 7:10 29:9 & lived 51:13 & Madison 3:6 & 105:19,20 \\
\hline leaning 188:6 & 29:22 30:13 & lives 166:20 & Main 3:4 & 140:13,15 \\
\hline legal 25:12 32:5 & 91:18,21 & local 48:13 & majority 174:23 & 164:7 169:21 \\
\hline 34:13 41:20 & 114:12 115:21 & location 188:19 & 177:11 181:4 & 169:23 174:6 \\
\hline 45:5 67:24 & 130:6,9 155:23 & long 21:11 25:4 & makeup 196:11 & 174:12 176:22 \\
\hline 99:3,5 101:15 & 160:20 186:13 & 25:5 68:19 & 196:13 & 176:24 182:5,6 \\
\hline 110:19 111:9 & 186:14,25 & long-worded & making 25:20 & Maryland \\
\hline 131:22,25 & 187:11,19,21 & 123:12 & 109:16 144:21 & 183:17 \\
\hline 132:3 140:9 & 187:21,22 & look 27:19 45:21 & 177:23 & Massachusetts \\
\hline legislation & Levendusky & 50:4,14 51:1 & map 32:12 39:6 & 78:5,7,9 \\
\hline 56:14 & 159:18 & 68:17 69:3,13 & 43:7,8,24,25 & matches 89:22 \\
\hline legislative 4:17 & leverage 195:4 & 71:5 75:20 & 46:25 47:2 & material 78:1 \\
\hline 4:18 22:11,13 & lie 127:5 & 90:15 94:15 & 52:18,24 60:2 & 140:18 170:25 \\
\hline 23:23 24:1,3,8 & lied 127:5 & 106:17 107:17 & 76:19 86:3 & 172:23 \\
\hline 24:20 28:14 & lifetime 127:20 & 112:5 124:11 & 89:1 101:6,17 & materials 11:8 \\
\hline 29:8,11,22,24 & light 81:16 & 124:12 133:19 & 101:23 102:5 & math 4:8 82:24 \\
\hline 30:4,5,8,25 & likelihood 122:8 & 133:21 134:8 & 103:3,5 108:14 & 89:3 \\
\hline 32:1,12,22 & 122:15 125:25 & 135:13 136:11 & 108:22 109:9 & matrix 194:16 \\
\hline 33:21 42:8 & 127:15 129:22 & 137:3 140:20 & 113:10,12 & matter 30:3 \\
\hline 43:10,24 47:9 & 129:24 130:12 & 148:2 151:16 & 118:13 122:10 & 55:24 122:5 \\
\hline 110:22 111:22 & 130:17,18,21 & 157:2 161:4 & 122:12 138:13 & 183:1 \\
\hline 124:3 156:20 & 130:23 132:15 & 165:22 172:5 & 139:17,20 & matters 23:23 \\
\hline 157:8 158:6 & limited 133:10 & 172:15,22 & 140:1,2 143:21 & 112:20 114:9 \\
\hline 161:3,5 176:11 & lines 32:1,22 & looked 5:19,20 & 143:22 144:22 & 115:19 \\
\hline legislature & 33:21 56:18 & 15:8 & 144:25 145:4,9 & maximize 66:8 \\
\hline 39:25 59:18 & 108:17 110:20 & looking 30:12 & 147:8 168:2,4 & maximizing \\
\hline 143:21 145:2,9 & 155:7,12,13 & 33:13 50:16 & 175:10,11 & 101:9 \\
\hline 146:5,14 147:6 & 156:5 193:16 & 100:19 124:2 & 179:15 180:25 & Mayer 23:17 \\
\hline 147:8,11 & link 171:13 & 128:20 129:5 & 184:3 & 24:14,25 28:7 \\
\hline 148:25 149:5 & 189:5 & 129:11,19,19 & maps 30:20,23 & 109:14 113:1 \\
\hline 174:24 175:5 & linking 170:19 & 130:1 135:9,9 & 30:25 31:2 & 143:5,9,15,17 \\
\hline 176:14 & list 5:25 172:23 & 137:16 150:5,5 & 32:7,10 43:10 & 144:5,18 146:1 \\
\hline legislatures & 173:1 178:16 & 150:6 152:14 & 98:24 102:18 & 146:7 147:1 \\
\hline 159:4 & listed 9:22 170:6 & 186:18 & 106:25 107:2 & 164:8,9 167:13 \\
\hline legitimate 67:7 & 180:20 194:14 & looks 41:9 86:22 & 110:22 152:13 & Mayer's 24:15 \\
\hline 110:7 & listen 44:8 & 88:15 116:17 & 156:17,20,23 & 109:9 150:12 \\
\hline legitimize & 132:19 & 120:4 121:1 & 156:25 176:10 & 167:24 168:18 \\
\hline 101:23 102:4 & literal 8:12 & 137:23 162:19 & 177:19 185:15 & McCarty 12:18 \\
\hline let's 6:17 9:2 & literature 45:6 & 164:3 166:16 & 185:18 199:16 & McDonald 45:14 \\
\hline 11:24 12:13 & 45:10 188:14 & loose 49:20 & 200:11 & McGhee 72:12 \\
\hline 16:4,18 24:14 & 192:22 195:8 & loses 177:11 & map-drawing & 105:7,9,13 \\
\hline 31:12 32:19 & litigating 161:6 & 180:16,17 & 175:2 & 108:10,20 \\
\hline 39:12 48:8 & litigation 11:18 & lost 4:6 95:22 & margin 180:15 & 111:25 112:7 \\
\hline 52:15 60:13 & 11:19 12:2,8 & lot 79:22 80:15 & 180:17 181:7 & 112:16,24 \\
\hline 62:9 63:8,13 & 12:11 66:13 & 91:16 108:23 & 188:6 & 114:6,16 124:1 \\
\hline 63:13 69:15 & little 5:22 13:18 & 120:7 135:7 & marginally & 125:13 177:13 \\
\hline 71:5 73:3 & 23:7 46:13 & 160:20 167:1 & 162:13,14 & McGhee's 6:5 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65
Filed: 01/25/16
Page 66 of 80
William Whitford v. Gerald Nichol Nicholas Goedert
\begin{tabular}{|c|c|c|c|c|}
\hline 116:25 117:2 & measures 49:21 & metric 104:20 & moments & 179:4 \\
\hline 177:16 & 62:22 106:12 & metropolitan & 135:24 & never 6:18,19 \\
\hline mean 5:15 6:7 & measuring 4:4 & 152:21,22,25 & Monkey 4:22,23 & 13:21 15:15,22 \\
\hline 16:10 21:8 & 113:6 138:13 & 153:2 & 10:10 170:13 & 26:12,15 27:24 \\
\hline 24:22 27:17 & 197:11 & Michael 45:14 & 170:20,25 & 48:2 \\
\hline 30:3 33:6 & meat 102:23 & Michigan 152:3 & 171:13,14,15 & new 6:11, 12 \\
\hline 34:17 39:23 & Media 170:2 & 183:16 & 171:18,21,23 & 16:8,10 27:21 \\
\hline 46:12 60:23 & median 190:1,10 & middle 94:16 & Moran's 48:11 & NICHOL \(1: 7\) \\
\hline 63:2,11 73:19 & 190:15 191:12 & mild 181:3 & 48:13 & Nicholas 1:14 \\
\hline 73:20 74:8 & 191:14,20 & Miller 14:13 & morning 5:7,8 & 2:19 3:11 5:2 \\
\hline 85:3 86:15 & 192:2 194:23 & Milwaukee 1:15 & motivation & 9:15 182:15 \\
\hline 89:13 92:20 & 195:2,23 & 2:6 152:22 & 66:17 & Nick 4:12 5:9,13 \\
\hline 95:6 101:6 & medium 87:19 & 153:2 & move 28:9 44:23 & 19:3 99:13 \\
\hline 103:2,25 & meet 128:3 & mind 5:9 94:17 & 69:15 73:3 & Niemi 24:7 \\
\hline 116:14 119:8,8 & 143:25 153:24 & 98:9 151:21,24 & multimember & nine 88:23 \\
\hline 120:17 121:1 & members 58:7 & 152:2,8,16 & 128:5 & 116:16 \\
\hline 123:1 142:18 & 174:19 175:7,8 & 154:10 & murder 153:19 & noises 7:25 \\
\hline 154:2,12 & 201:3 & minimum & Murphy 14:12 & Nolan 12:18 \\
\hline 157:13 159:19 & memo 4:12 & 133:18 & museum 120:4 & non-existence \\
\hline 166:10 167:2 & 140:16 & minor 191:6 & & 185:9 \\
\hline 168:2 169:2,12 & memory \(37: 5\) & minority 110:21 & N & non-gerryman... \\
\hline 181:14 185:23 & 50:17 & minus 120:25 & N 2:1 3:10 5:1 & 179:12 \\
\hline 187:13,15 & Menomonee & 136:18 166:18 & nail 32:19 63:13 & non-partisan \\
\hline 189:20,25 & 195:3 & 166:19 & 71:5 104:16 & 154:8,12 \\
\hline 190:9,9,15,16 & mention 14:16 & minute 22:23 & nailed 27:18 & non-reconcila... \\
\hline 190:19,23 & 66:4 87:3 90:2 & minutes 97:17 & name 13:5,6,6 & 65:8 \\
\hline 191:9,11,13 & 154:7,16 & missing 71:20 & 21:25 111:4 & norm 54:12 \\
\hline 195:2,23 & 164:11 & Missouri 152:4 & narrow 129:5 & normal 7:9 \\
\hline meaning 8:13 & mentioned 12:3 & mode 7:6 & national 30:13 & 56:14 59:17 \\
\hline 73:21 163:8 & 12:21 13:15,16 & model 74:2,4,6 & 30:14 114:11 & 60:11 \\
\hline meaningful 22:7 & 14:7,20 50:10 & 77:5,6,8,20 & 115:21 127:2 & normally 129:16 \\
\hline 36:5 37:25 & mentioning & 79:18,24 80:2 & 130:3,6,9 & normative 98:8 \\
\hline 40:9,16 41:3 & 13:12 & 80:12,21,25 & nationwide & 98:9 101:14,19 \\
\hline means 7:10 & met 15:15 22:17 & 81:6,22,24 & 126:20 & 101:22 102:3 \\
\hline 53:10 59:9,22 & metadata & 82:10 84:1,14 & near 21:7,8 & normatively \\
\hline 60:5 65:7 70:5 & 141:16 & 84:24 85:2 & nearest 194:11 & 101:9 \\
\hline 181:8 & method 112:25 & 86:19 87:15,16 & 194:21 196:12 & North 2:5,14 \\
\hline meant 51:17 & 113:2 121:4 & 87:18,24 88:8 & necessarily & 19:19 183:12 \\
\hline 92:7 96:13 & 138:22 154:17 & 88:9 89:23 & 19:13 54:2 & Nos 73:9 \\
\hline 128:6 & 191:9 192:25 & 90:2 92:1,7 & 80:20 87:24 & Notary 202:5,18 \\
\hline measure 45:24 & 193:10 & 106:6 140:2 & 96:20 117:24 & note 119:17 \\
\hline 46:23 47:7,11 & methodological & 152:15 199:10 & 142:7 143:2,17 & noted 194:20 \\
\hline 47:12 63:20 & 125:17 & models 23:15 & 151:19 178:14 & 202:7 \\
\hline 65:1 70:20 & methodologies & 73:12,18 74:16 & 187:4 192:21 & notes 68:11, 12 \\
\hline 82:2 108:13 & 114:4 & 74:23 77:7 & 198:22 & 69:2,4 114:25 \\
\hline 117:20 118:4,6 & methodology & 79:16 86:1,2 & necessary 45:22 & 202:15 \\
\hline 118:7,7 119:2 & 23:4 49:3,8,9 & 90:21 91:13,23 & need \(7: 13,21\) & noticeable 166:4 \\
\hline 121:5 122:21 & 49:13,15,16 & model's 79:4 & 43:13 68:18 & noticeably \\
\hline 132:7 133:13 & 71:2,4 119:5,9 & modern 74:16 & negative 136:12 & 169:15 \\
\hline 139:3 149:8 & 122:6 123:10 & modest 86:4 & 136:13 137:4,6 & notion 55:10 \\
\hline 150:19 157:5 & 125:12 131:13 & modify \(81: 15\) & 137:14 138:5 & notwithstandi... \\
\hline 188:1 190:12 & 144:10 147:5,7 & 87:10 & neighbor 194:11 & 187:8 \\
\hline 190:19 193:15 & 152:8 154:21 & modifying 87:7 & neither 36:16 & nsteph@uchic... \\
\hline 193:22 195:17 & 156:3 193:8 & 87:9,13 & 112:16 202:10 & 2:23 \\
\hline measured 67:5 & 195:20 197:12 & moment 20:2 & nervous 26:17 & nuanced 29:16 \\
\hline measurements & methods 113:1 & 50:8 51:1 & 26:19 27:15 & number 10:9 \\
\hline 153:4 & 138:16 & 120:7 140:22 & neutral 63:11 & 18:12 53:11 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 67 of 80
\begin{tabular}{|c|c|c|c|c|}
\hline 61:6,17,19 & observations & 6:11,13,16,20 & 93:23,24 94:11 & 172:13,13,18 \\
\hline 72:3,14 75:5 & 95:21 & 6:24 7:14,15 & 95:4,4,17,22 & 173:1,9 174:4 \\
\hline 81:5 85:3 & observe 36:8 & 7:16,23,24 8:3 & 96:7,24 97:24 & 174:11 176:2,9 \\
\hline 89:21 95:9 & 107:4 130:8 & 8:4,9,20,24,24 & 98:5,13,17 & 176:20 177:1,2 \\
\hline 103:18,20 & 178:11,11 & 9:2,5,10,13,21 & 99:3,8,21,23 & 177:3 180:13 \\
\hline 110:23 114:11 & 180:6 181:2 & 10:19 11:1,5,7 & 100:3,4,7,19 & 182:1,3,4,9,10 \\
\hline 115:20 120:10 & observed 107:3 & 11:12,15,17,22 & 101:1,4,11 & 182:13,14,23 \\
\hline 121:17 127:24 & 120:9 122:8,10 & 12:5,13 13:1 & 102:22,25 & 186:8 188:14 \\
\hline 136:6 154:13 & 122:13 123:16 & 14:5 15:1,12 & 103:6,9 104:6 & 188:24 189:17 \\
\hline 155:17 156:23 & 126:14 127:5 & 15:20 16:4,8 & 104:14,19 & 190:14,19 \\
\hline 157:6,9 161:16 & 130:19 134:7 & 16:18,23 17:20 & 105:6,18,24 & 191:15 192:6 \\
\hline 161:23,25 & 138:5 146:23 & 18:1 19:15 & 106:15 107:10 & 194:8,10 195:5 \\
\hline 164:4 165:12 & 151:3 157:3 & 20:1,4,9,9,15 & 107:14 108:2 & 195:6 196:15 \\
\hline 165:18,19 & 199:19 200:14 & 22:2,8,16,20 & 109:7,25 110:5 & 196:22 197:3,7 \\
\hline 168:18 174:16 & 200:17 & 23:11 24:25 & 110:10, 15,18 & 197:16,18 \\
\hline 174:17 182:11 & observes 131:3 & 25:15,21 26:2 & 111:4,8,12,15 & 198:25 199:2,3 \\
\hline 194:17 201:4,6 & observing 125:8 & 26:3,9,17,19 & 111:18 112:4 & 199:25 200:1,6 \\
\hline numbers 86:21 & 129:22 130:18 & 27:8 28:9 29:4 & 112:20 113:4,8 & 200:13 201:11 \\
\hline 89:2 114:19 & 150:3 & 30:7 31:12 & 114:20 115:10 & 201:13 \\
\hline numerals \(85: 14\) & obtain 57:6 & 32:10,19 33:14 & 116:1,7,11 & old 19:15,18 \\
\hline numerical 65:16 & Occasionally & 34:23,24 35:5 & 117:7,7,7 & 20:8 171:23 \\
\hline & 25:15 153:13 & 35:17,25 36:23 & 118:10,15,20 & Once 64:1 \\
\hline 0 & occur 123:5 & 36:25 37:19 & 118:21119:5 & ones 20:15 \\
\hline O 5:1 & 130:17,22,24 & 38:10,25 39:15 & 120:3,13 121:9 & 175:6 197:19 \\
\hline oath 8:5 & 186:22 & 39:16 40:6 & 121:15,17 & 197:25 198:1 \\
\hline object 19:12 & occurred 124:3 & 41:24 42:25 & 122:3 123:18 & one-sentence \\
\hline 21:1 23:24 & 129:7,12,20 & 43:15 44:9 & 123:21 125:21 & 13:18 \\
\hline 26:23 28:18 & 130:2 134:3 & 45:23 48:19 & 127:11,17 & ongoing 19:1 \\
\hline 30:18 31:19 & occurs 175:2 & 49:7,20 50:19 & 128:13 132:24 & online 15:5 \\
\hline 32:4 35:20 & 185:9 & 50:21 51:24 & 134:8,16 & open 112:1 \\
\hline 40:20 47:10 & odds 127:18 & 52:4 53:5,10 & 135:12,13,22 & 161:15 \\
\hline 49:23 56:7 & ODYSSEAS 2:19 & 53:14 54:14,22 & 136:18 137:7 & openly 90:7 \\
\hline 60:7 62:8 & offer 39:2 52:11 & 55:6 57:2,14 & 137:21 138:9 & open-access \\
\hline 74:21 79:6 & 52:13 64:2 & 58:17,24 60:14 & 139:2,10 & 74:10 \\
\hline 81:9 90:23 & 82:21 & 61:14 62:9,13 & 140:12,21 & operate 178:1 \\
\hline 91:16 102:7 & offered 53:12 & 64:13,21 65:6 & 141:19,23,25 & operating 75:21 \\
\hline 113:5 117:18 & 171:1 & 67:1 68:9,16 & 142:2,9 143:5 & operation 201:9 \\
\hline 117:19 124:22 & offering 36:18 & 68:16,19 69:12 & 143:9,23 & operationaliz... \\
\hline 136:21 140:8 & 36:20 38:6,15 & 69:15,25 70:8 & 144:21 146:1,7 & 78:9 \\
\hline 144:19,21 & 38:17,18 59:3 & 70:13,24 71:2 & 147:13,14 & opinion 12:23 \\
\hline 166:3 168:24 & 59:5 139:24 & 71:9,12 72:20 & 148:12 149:18 & 34:14,16,18 \\
\hline 190:17 191:18 & office 2:3 & 73:3,12,17,18 & 150:9,22 151:2 & 35:15 36:2,18 \\
\hline objecting 89:11 & 149:12 & 74:15,25 75:10 & 151:8,11 152:8 & 36:20 37:20 \\
\hline 102:10 & official 27:13 & 75:15 76:6,13 & 154:24 155:2 & 38:7, 15,17,19 \\
\hline objection 9:23 & off-the-record & 77:7,12,16,25 & 155:24 156:19 & 38:22,22 39:2 \\
\hline 9:24 25:11,25 & 170:22 & 78:18,24 79:4 & 157:17 158:1 & 42:20,23 43:3 \\
\hline 28:21 53:21 & oh 34:23 47:12 & 79:22,23 81:2 & 158:16 160:4,7 & 43:20 44:6,11 \\
\hline 58:4 81:10,11 & 48:5 71:17 & 82:4,8,9,11,12 & 160:10 161:15 & 44:15 52:1,5 \\
\hline 81:16 89:7,9 & 72:5 73:16 & 82:13 83:1,2,5 & 162:2,4,8,15 & 52:11,13 54:7 \\
\hline 91:3 92:5 & 84:17,18 85:11 & 83:6,7,8,10,15 & 163:20,22 & 54:8 59:12,15 \\
\hline 113:3 117:15 & 85:20 90:17 & 83:23 84:5,7,8 & 164:14,16,19 & 101:1,5 102:24 \\
\hline 131:22 138:23 & 98:4 107:11 & 84:23,23 86:11 & 166:14,17 & 103:3,6,7 \\
\hline 146:13 147:2 & 116:25 119:14 & 86:20,25 87:1 & 167:4,22 169:3 & 104:14,16,19 \\
\hline objections 25:17 & 159:22 167:6 & 87:9 88:1,8,15 & 169:7 170:3,18 & 104:22 107:15 \\
\hline objectives 101:9 & 170:18 171:20 & 88:23 89:1 & 170:22 171:10 & 108:3,4,25 \\
\hline observation & Ohio 183:12 & 90:4,8,10,15 & 171:14,14,25 & 109:1,5,7,8,18 \\
\hline 103:4 119:20 & okay \(5: 11,126: 4\) & 92:9,20 93:6 & 172:3,6,9,10 & 109:23 113:4,4 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 68 of 80
\begin{tabular}{|c|c|c|c|c|}
\hline 121:17 153:14 & 14:24 15:18 & 199:4,10,23,23 & 104:10 113:7 & 118:18 139:22 \\
\hline 153:21 158:17 & 35:15 181:16 & 200:1 201:1 & 113:25 117:24 & 140:3 142:5,11 \\
\hline 158:19 172:2 & 181:19,20 & pages 9:18 71:16 & 117:25 118:3,4 & 142:16,21,22 \\
\hline 184:24,25 & overall 23:3 & 71:20 113:11 & 119:2 121:25 & 142:24 149:12 \\
\hline opinions 19:9 & 106:12 122:22 & 174:9 & 122:9,14 123:2 & 151:18 157:20 \\
\hline 23:22 25:10 & 123:1 126:9,19 & paper 82:13 & 125:3,5,7 & 158:5,7 159:9 \\
\hline 27:9,12 41:8 & 126:19 147:23 & 182:18 & 126:2,3 127:4 & 159:10,13,18 \\
\hline 44:16 52:8 & 148:5 157:18 & papers 88:20 & 134:2,3 136:7 & 160:1,9 168:6 \\
\hline 99:22,24 100:2 & 178:15 198:16 & paragraph 52:14 & 142:7 143:1,8 & 168:8,14 175:2 \\
\hline 100:9,11,14,21 & 199:20 200:17 & 52:15 53:11,14 & 144:10 145:16 & 175:16,18,25 \\
\hline 100:22,24 & oversight 10:12 & 54:6,14,22 & 147:23 148:14 & 177:12,18 \\
\hline 107:13 109:25 & 10:17 & 58:15,17,23,25 & 150:16 151:13 & 178:1 182:25 \\
\hline 110:3 139:24 & overweighting & 59:2,4,6,6,7,7 & 151:14 152:1 & 183:7,10 184:3 \\
\hline 173:24 174:1 & 148:3 & 59:9,11,22,24 & 158:3 161:20 & 184:8,10,17,21 \\
\hline opponent & overwhelming & 61:12,21,23 & 161:21 163:8 & 185:20 188:24 \\
\hline 177:20 & 77:24 & 62:5,9 63:8,10 & 170:11 175:4 & 189:1,7,11 \\
\hline opponent's & owe 201:11 & 65:11,18 66:3 & 180:18 193:10 & 190:1,7,10 \\
\hline 177:6 & & 66:7,22 69:14 & 194:3 196:9,10 & 192:7,13 \\
\hline opportunity & P & 69:16,17 70:18 & particularly & 194:12,22 \\
\hline 60:4 67:6 90:7 & P 2:1,1 3:3 5:1 & 72:10 94:22 & 11:11 23:3 & 196:10,10,12 \\
\hline opposed 24:19 & pack 48:2 177:6 & 105:23 106:1 & 49:18 53:24 & 198:21 201:8,9 \\
\hline 29:16 68:3 & 201:3 & 117:12 138:11 & 96:21 107:24 & partisans \\
\hline 102:13 158:6 & packages 23:5 & 177:4 & 119:1 125:1 & 152:25 153:1 \\
\hline 161:7 190:21 & packed 57:3 & paragraphs & 139:23 142:8 & partisanship \\
\hline 195:23 201:3 & 181:15,23 & 51:11,12 52:2 & 160:14 & 67:4 139:4 \\
\hline opposing 58:6,9 & 194:6,7 & 52:4,4,6,8,10 & parties 46:3 & 142:10,15 \\
\hline 64:15 & packing 57:25 & 52:10,12 58:13 & 51:11 61:18 & 149:9,23 150:1 \\
\hline opposite 135:4 & 64:18 66:10 & 67:19 175:13 & 72:21 78:21 & 150:2 157:14 \\
\hline 136:7,15 137:5 & 177:20 178:3,9 & parameters & 114:14 115:24 & 159:16 161:20 \\
\hline 175:9 & 178:12,13,19 & 193:11 & 198:3,6 201:2 & 169:4,5 187:2 \\
\hline opposition & 179:7 180:9,14 & parens 72:13 & 202:11,12 & 187:16 188:13 \\
\hline 132:22 & 180:18,24 & 194:15,17 & partisan 4:3,11 & 189:22 195:18 \\
\hline optimal 47:24 & 181:5,16,19,20 & 199:19 & 16:2 31:17,20 & parts 30:9 51:7 \\
\hline 47:24 48:1 & 182:2 & parentheses & 31:23,25 32:21 & 51:8,9,19 67:2 \\
\hline 185:21 & page 4:13 9:13 & 43:18 & 32:25 33:20 & party 32:2,3,23 \\
\hline order 98:11 & 70:14 71:5 & parody 78:5,22 & 34:12,25 35:3 & 32:24 33:22,22 \\
\hline 130:11 143:24 & 72:7,8,18 75:9 & part 45:11,17 & 35:5,9,10,19 & 36:10 39:21,22 \\
\hline 144:6 & 94:11,16 96:8 & 60:16 61:2,3 & 35:22,23 36:3 & 40:4 42:6 46:5 \\
\hline ordinary 59:14 & 96:9,9,24 97:1 & 66:4 67:25 & 36:3,4,6,9,11 & 55:24 56:6,16 \\
\hline 59:16 & 97:24 98:3 & 69:21 71:4 & 36:13,21 37:2 & 57:3,11,13,17 \\
\hline organized 149:7 & 105:22,22 & 82:25 93:23 & 37:12,21,22,23 & 57:23 58:6,7 \\
\hline original 3:20,21 & 106:23,24 & 103:3 108:15 & 37:25 38:8,16 & 60:12 61:17,24 \\
\hline 3:21 202:15 & 107:1,19 112:1 & 121:19 140:18 & 38:19 39:17,19 & 62:3 64:16 \\
\hline ostensible & 112:5 113:12 & 155:11 164:13 & 40:3,4,7,13,15 & 65:25,25 73:24 \\
\hline 175:15 & 114:16,19,20 & 170:20 179:18 & 40:19 41:1 & 77:22,24 78:6 \\
\hline outcome 42:16 & 115:5,6,7,8,9 & 180:3 & 42:2,3,4,13,15 & 81:2 95:9 \\
\hline 42:18 46:10 & 117:8,13 & participated & 42:19 44:18,24 & 103:18 112:10 \\
\hline 113:20 150:4 & 118:16 120:2 & 171:17 & 45:24 47:4,6 & 114:11 115:21 \\
\hline 202:13 & 121:15 124:11 & particular 11:21 & 59:10,12,16,20 & 118:23 123:2 \\
\hline outcomes & 124:12 138:12 & 14:2,3 17:5 & 59:21,23 60:10 & 174:23 175:4,4 \\
\hline 112:18 113:14 & 151:4,22 154:7 & 33:7 39:2 40:1 & 61:5,7,23 & 175:5,8,9 \\
\hline outlier 60:22,23 & 164:8,13 & 40:2 51:12,15 & 62:23 63:7 & 177:10 178:24 \\
\hline 60:24 & 168:18 170:1 & 51:20,21 55:8 & 65:1,2,13 & 178:25 179:10 \\
\hline outliers 191:22 & 171:18 176:10 & 55:12 61:18,20 & 66:15,17 69:11 & 179:12,12,14 \\
\hline 191:23 & 176:25 182:9 & 62:23 73:25 & 76:21 81:8,23 & 180:15,16,17 \\
\hline outlying 195:3 & 197:1,5,16 & 76:25 81:24 & 82:7 97:3 & 181:3 201:3,7 \\
\hline outside 14:1,21 & 198:13 199:3,4 & 101:13,14 & 106:7 109:19 & party's 55:4,17 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 69 of 80
William Whitford v. Gerald Nichol Nicholas Goedert

Page 219
\begin{tabular}{|c|c|c|c|c|}
\hline 58:9 & 167:16,18,19 & 39:12 144:13 & please 13:9 & politics 13:3 \\
\hline passage 41:17 & 167:21 181:12 & 177:8,24 & 22:21,24,25 & 15:17 74:9 \\
\hline 142:11,17 & 183:13,14,16 & 202:15 & 29:19 45:13 & poorly \(52: 6\) \\
\hline passed 60:3 & 197:8 199:6,19 & placed 18:7 & 105:21 134:24 & pop 186:1 \\
\hline paused 111:1 & 199:20 & 171:15 & 179:23,25 & popular 4:6 \\
\hline PC 84:9 & percentage 46:4 & places 163:1 & plug 82:10 86:22 & 126:20 \\
\hline peers 23: & 77:24 81:25 & placing 173:9 & 89:1 & populated 57:4 \\
\hline peer-reviewed & 85:4 165:14,20 & plaintiffs 1:5 2:2 & plugged 89:23 & population \\
\hline 94:9 188:14 & 166:11,18,19 & 4:19 5:18,20 & plus 194:14,25 & 65:14 81:3 \\
\hline 192:22 & 169:13 & 13:17 32:18 & 195:5,6 & 161:17,18,24 \\
\hline pen \(82: 13\) & percentages & 34:10 44:19 & plus/minus & 162:1 165:20 \\
\hline pending 20:1,3 & 116:8,12 & 51:12 63:12,15 & 119:6,10 & 166:20 174:18 \\
\hline 20:6 21:12 & percentile 124:5 & 63:19 64:5,8 & point 20:23 & 185:22,23,25 \\
\hline Pennsylvania & perception & 64:10,11,23,25 & 27:17 45:5 & 186:2,22 187:8 \\
\hline 152:17,18 & 20:21,25 21:2 & 65:5 67:2,14 & 60:24 61:1,3 & populations \\
\hline 174:19,20 & 21:4 22:21,22 & 69:9 102:9 & 83:11 85:8,23 & 174:22 186:3,6 \\
\hline 183:12 193:24 & 22:25 23:2 & 107:22 117:10 & 98:2 109:16 & populous 186:9 \\
\hline 194:7 & perfectly 13:24 & 119:24 121:18 & 124:8 125:17 & 186:9 \\
\hline Pennsylvania's & 112:22 & 139:14 144:12 & 133:24,24 & portrayal 175:11 \\
\hline 175:9 & performance & 154:3 & 134:11 135:6 & position 16:19 \\
\hline people 7:5 8:1 & 139:22 140:3 & plan 4:17,19,19 & 136:15 138:4,7 & 16:23,25 17:1 \\
\hline 8:11 14:14,18 & 142:5,10,11,16 & 30:9,14 31:5 & 154:4 158:25 & 17:8 20:23 \\
\hline 14:20,24 27:15 & 142:16,21 & 39:20 42:1,11 & pointed 183:19 & 21:7,12 22:9 \\
\hline 33:5,9 43:8 & 143:11 149:16 & 42:12,16,17,18 & points 128:15 & 132:21 138:20 \\
\hline 74:11 91:16 & period 18:9,10 & 47:9 58:21 & 190:22,23 & 184:20 185:14 \\
\hline 159:14 171:16 & 112:13 133:25 & 62:15,17,21,24 & Polarization & positions 18:11 \\
\hline 174:16 176:7,7 & 151:4,12 & 63:5,6,11,25 & 156:15 & 18:18 65:8 \\
\hline percent 46:6,8 & persist 122:1 & 64:1,14 65:19 & policy 67:8 & possibility \\
\hline 61:25 62:3 & 127:16 & 65:23 66:7 & 177:14 & 143:19 150:7 \\
\hline 63:24 70:12 & person 13:1 & 67:7 76:21 & political 4:4 & possible 56:9 \\
\hline 77:22 78:6,8 & 15:16 19:7 & 84:3,16 85:1 & 23:3,5 24:4 & 65:22 66:10,12 \\
\hline 78:11,15 83:5 & 96:20 98:10 & 109:15 112:11 & 25:1 28:11 & 123:11 125:6,8 \\
\hline 83:7,9,17,22 & 139:25 153:16 & 118:22 127:18 & 32:2,23 33:22 & 126:9,9,23,25 \\
\hline 85:5 86:8 & personal 35:14 & 143:11,12 & 45:5 53:18,23 & 127:6 129:13 \\
\hline 88:17,17,18,21 & 184:24 & 146:17 147:15 & 54:3,19 55:5 & 146:21 151:15 \\
\hline 88:22 90:12,13 & personally 15:15 & 147:22 148:14 & 55:18 56:5 & 155:25 156:2 \\
\hline 90:14 103:18 & 99:14 185:3 & 150:16 178:4 & 58:2 59:14,16 & 156:23 157:9 \\
\hline 103:19,25 & perspective & 198:20 & 60:12 62:17 & 180:5 189:21 \\
\hline 104:1,2,20 & 73:24 122:20 & plans 4:4 31:7 & 63:1,4 65:25 & 198:23 \\
\hline 105:14 107:1 & 146:14 175:19 & 45:6,8,10,16 & 74:12,16 76:10 & post 170:21 \\
\hline 107:23 119:6 & persuasion & 45:19 47:20 & 79:1 80:5,5,8,9 & 171:10,24 \\
\hline 119:10 120:25 & 193:20 & 48:22 72:21 & 86:14 98:10 & posted 170:16 \\
\hline 121:2 123:4 & persuasions & 99:4 111:10 & 109:19 112:13 & 170:19 \\
\hline 126:20,21,22 & 193:25 & 114:8,9,10 & 152:20 154:25 & postings 171:18 \\
\hline 127:2 136:13 & Peter 2:4 5:11 & 115:18,19,19 & 155:21 156:12 & posts 4:23 10:10 \\
\hline 136:18 137:5 & peter@earle-la... & 127:22,24 & 156:13 157:20 & 171:13,14,16 \\
\hline 137:15,18,18 & 2:7 & 128:1,3,10,16 & 158:14 167:23 & post-doc 182:17 \\
\hline 137:19,19 & Philadelphia & 135:1 136:6,13 & 170:8 173:25 & post-doctoral \\
\hline 138:6 157:17 & 152:21,25 & 155:24 156:1,2 & 175:3,4,20,24 & 21:18 \\
\hline 162:3,10,11,20 & 193:23 194:1 & plan's 65:16 & 176:14 177:19 & Post-graduate \\
\hline 162:21 163:16 & phrase 168:20 & 66:14 106:3 & 184:25 185:8 & 16:12,14 \\
\hline 163:18,21 & phrasing 26:7 & 113:22 146:2,8 & 185:12,16 & potential 46:21 \\
\hline 164:3,22 165:1 & Ph.D 16:15 & plausibility & 193:20,25 & 122:16 \\
\hline 165:3,3,9,13 & picture 147:3 & 122:22,25 & 198:5,8,9 & potentially \\
\hline 165:15,17 & Pittsburgh & 143:20 & 200:22 & 101:18 178:9 \\
\hline 166:16,22 & 193:23 194:1,6 & plausible 144:22 & politicians & power 32:3,24 \\
\hline 167:5,10,12,12 & place 12:25 & play \(37: 15\) & 173:25 & 33:23 56:18 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65
Filed: 01/25/16
Page 70 of 80
William Whitford v. Gerald Nichol Nicholas Goedert
\begin{tabular}{|c|c|c|c|c|}
\hline 66:1 176:14 & 101:16 121:19 & 191:5 197:14 & 21:24 & purpose 7:1 60:1 \\
\hline practicable & presumptively & probit 77:17 & prominently & 65:23 67:8 \\
\hline 155:9 & 63:25 64:1 & problem 13:24 & 154:15 & 96:18 113:6 \\
\hline practical 167:23 & 102:17,19 & 19:3 88:6 & promise 8:17 & purposes 60:9 \\
\hline preceding 37:8 & pretty 5:24 39:6 & 90:18 & propensity & 98:14,18 \\
\hline precinct 155:7 & 164:4 165:10 & problematic & 150:13,17 & 196:16 \\
\hline 155:12,22 & 177:5 188:10 & 131:13 & 151:18 154:5 & put \(21: 1468: 15\) \\
\hline 156:5 & previous 20:18 & problems 131:11 & properly 144:15 & 82:24 93:7 \\
\hline precise 18:12 & 37:4,11 62:11 & 195:10,11 & 144:17 & 199:18 200:13 \\
\hline 29:5 31:9,22 & 123:15 159:5,6 & proceed 76:6 & proportion & 200:16 \\
\hline 163:19 & 180:21 189:12 & proceeding & 89:22 134:11 & p.m 1:17 99:11 \\
\hline precisely 100:6 & previously 66:25 & 202:11 & 134:25 & 121:12,12 \\
\hline predicated & 67:10 75:22 & proceedings & proportional & 150:10,10 \\
\hline 168:16 & pre-determined & 202:6,14 & 97:4 104:5 & 169:18,18 \\
\hline predict 76:18 & 101:8 103:11 & process 10:14 & 110:6,12 111:9 & 201:19,19,25 \\
\hline 78:7 84:1,15 & 117:21 118:8 & 18:2 19:25 & 178:22 179:21 & P.O 3:5 \\
\hline 84:25 85:2 & 118:14 119:12 & 33:13 36:7 & proportionality & \\
\hline 86:2 139:8 & pre-2012 146:8 & 38:1 39:22 & 101:10 & Q \\
\hline 140:3 142:5 & primary 30:3 & 40:1,4 42:7 & proportionate & qualifications \\
\hline 161:21 & primer 173:4,19 & 53:18,23 54:3 & 96:22 103:25 & 19:5 128:4 \\
\hline predicted 88:24 & Princeton 13:3 & 55:5,18 56:5 & 104:5 179:1,2 & qualified 19:9 \\
\hline 139:22 142:10 & 22:18 156:12 & 56:14 58:20 & proposal 60:3 & 23:22 24:4 \\
\hline 142:15,20 & principal 183:5 & 59:14,17 60:11 & propose 63:19 & 25:7,9 \\
\hline predicting 87:18 & principles 35:1 & 60:12 64:18 & proposed 63:14 & qualify 95:24 \\
\hline 145:8 & 35:7,9,12,18 & 76:23 142:6 & 64:5,8,12 & 96:3 \\
\hline prediction 76:22 & print 10:25 93:3 & 157:20 158:6 & 117:3 & qualitative 49:8 \\
\hline 146:19 & 93:12 141:9 & 174:22 175:3 & proposing 122:2 & 49:9 \\
\hline predictions & printout 4:8,12 & 175:20 179:18 & protect 55:5,17 & quality 19:4 \\
\hline 74:19,21,23 & 93:18 141:12 & 180:4 194:22 & 175:6 & quantify 136:10 \\
\hline 75:11 76:13 & 169:25 & 195:5 & protection 66:2 & 157:17,23 \\
\hline 77:4 79:4,7,9 & printouts & produce 9:21 & provide 10:9 & quantitative \\
\hline 139:12 & 170:25 & 10:15 170:24 & 82:23 87:21 & 23:4 49:12,13 \\
\hline predictor 106:4 & prior 11:17 12:1 & produced 9:14 & 139:18 153:21 & 49:15,16 152:5 \\
\hline 106:11,13 & 12:7,11,24 & 48:22 68:13 & 158:19 159:1 & Quarterly 6:6 \\
\hline preempt 7:6 & 15:9 24:16 & 80:18 112:9,17 & 171:5,6 & question 7:2,7 \\
\hline preexisted & 66:13 87:7,9 & 113:14 140:18 & provided 33:17 & 7:13,16,19,20 \\
\hline 129:10 & 87:10 105:4,6 & 141:2,4,5,8,10 & 140:19 149:5 & 7:21,22 8:11 \\
\hline prefer 194:15 & 146:14 149:15 & 199:5 & 184:6 & 10:4,6 11:25 \\
\hline preferred 148:20 & 188:16 & producing 9:25 & provides 87:24 & 22:24 23:18,24 \\
\hline premise 181:24 & privilege 26:6 & 10:1 113:19 & providing 67:21 & 25:23,24 29:5 \\
\hline prepare 5:13 & pro 86:4,7 90:19 & product 26:6 & 74:23 153:14 & 29:17,18,20 \\
\hline 12:16 & 90:22 91:10,13 & production & 153:20 158:16 & 31:22 36:1,1 \\
\hline prescribe 193:9 & 91:23 92:1 & 171:25 & public 19:2 67:8 & 37:4,8,9,11,17 \\
\hline prescribes 47:3 & 157:18 197:7 & profession 23:11 & 67:8 177:14 & 37:17,18,20 \\
\hline present 77:7 & 198:11 & 73:21 153:24 & 202:5,18 & 38:3,6,10 \\
\hline presented 19:6 & probability & professional & publicly 9:25 & 39:13 40:23,25 \\
\hline 44:19,21 & 123:5,7,8,8 & 14:17 202:4 & publishable & 41:3,6,10,18 \\
\hline 117:10 & 133:22 148:5,7 & professor 13:2 & 22:12 & 41:20 42:25 \\
\hline presidential & 148:7 150:2,3 & 14:12,13 16:19 & published 23:9 & 43:2,13,18,19 \\
\hline 139:2 157:11 & probably \(15: 6\) & 20:12 21:16 & 24:2 25:5 & 44:7,8,9,10 \\
\hline 198:10 & 54:24 115:2 & 23:17,19 24:14 & 28:25 29:2,8 & 45:2 47:15 \\
\hline presumably & 123:9,17 & 24:15,25 112:6 & 29:21,24 30:4 & 57:18,20 58:8 \\
\hline 126:3 153:23 & 145:15 151:23 & program 155:18 & 76:1 152:11 & 66:22,23 73:17 \\
\hline presume 62:2 & 152:19 153:5 & programmed & 156:18 & 79:23 81:16,17 \\
\hline presumption & 153:13 154:1 & 156:3 & publishing 74:6 & 81:19,20 83:25 \\
\hline 54:13 144:11 & 163:21 183:21 & Project 2:12 & 74:7 & 84:23,24 87:4 \\
\hline presumptive & 184:5 186:4,16 & projects 21:23 & purport 168:3 & 87:12 90:9,11 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 71 of 80
William Whitford v. Gerald Nichol Nicholas Goedert
\begin{tabular}{|c|c|c|c|c|}
\hline 91:1,1,3,4,5,6 & 183:9 184:16 & 135:12,13 & recall \(11: 13,15\) & 24:1,3,8 28:22 \\
\hline 91:8,9,10 & quotes 111:25 & 138:18 140:22 & 24:9 34:21 & 29:1,2,3,9,11 \\
\hline 98:21,22 & 112:6 182:9 & 141:25 142:14 & 45:3 99:18,19 & 29:22,25 30:5 \\
\hline 101:25 102:2 & quoting 104:23 & 145:11,12 & 173:7,13 & 30:9,13,14 \\
\hline 102:11,14 & & 163:4,5 168:12 & recalling 45:20 & 31:5,7 39:20 \\
\hline 112:21 120:16 & R & 174:25 175:13 & receive 9:3,4 & 56:17,17 62:16 \\
\hline 121:7 124:21 & r 2:1 5:1 80:17 & 176:17 177:3 & 17:13,17,22 & 63:22 76:9 \\
\hline 124:24 125:11 & races 112:8,16 & 179:24,24 & 46:5,6,7 61:19 & 79:1 81:2 82:7 \\
\hline 125:24 129:3 & 112:24 113:13 & 180:1 182:14 & 164:12 & 94:1 98:15,18 \\
\hline 132:13,18,19 & 113:15,24 & 182:21 183:6 & received 16:15 & 99:4 119:21 \\
\hline 132:24,25 & 114:1,3 138:14 & 183:23,25 & 17:1,19 18:4 & 128:21 130:10 \\
\hline 134:22,23 & 138:21 & 194:8 & 46:8 & 130:25 133:21 \\
\hline 135:12,13,19 & racial 86:13 & readable 7:13 & receives 103:19 & 134:4,10 \\
\hline 142:13,14 & ran 60:3 196:3 & reader 71:12 & receiving 61:25 & 135:16 139:10 \\
\hline 145:10,12 & random 155:25 & reading 7:17 & recognize 170:4 & 155:6 157:20 \\
\hline 153:3 159:13 & 156:7,15 & 10:2,8 15:18 & recollection & 171:19 176:15 \\
\hline 161:9 163:3,4 & randomly & 24:16 50:9 & 37:8 & 201:2 \\
\hline 163:5 164:21 & 154:17,17 & 58:15 62:10 & recommend & redressable \\
\hline 168:20 179:23 & 193:14 & 68:5 96:25 & 121:23 123:13 & 53:17,23 54:3 \\
\hline 179:25 180:1 & range 78:11,11 & 104:24 105:22 & 125:21,23 & reduced 107:13 \\
\hline 180:14 181:19 & 107:4 123:10 & 120:8 140:23 & 131:15 143:15 & refer 68:10 \\
\hline 181:25 184:18 & 123:14,16 & 196:6 & 143:24 144:5,8 & 92:15,17 \\
\hline 188:16 189:9 & 124:4 125:8 & reads 72:11 & 146:7 187:1,4 & 116:13 176:7 \\
\hline 191:17 200:6 & 126:9,14,23 & 174:15 176:11 & 189:25 & 197:4 \\
\hline questioning & 127:6 129:5,13 & ready 41:9 83:3 & recommendat... & reference 94:15 \\
\hline 69:20 & 146:21,22,23 & real 15:17 60:5 & 121:25 & 106:18 \\
\hline questions 8:21 & 148:2,11 & 145:15 199:1 & recommending & referred 4:16 \\
\hline 8:24 12:15 & 151:15 162:3,6 & realistic 118:18 & 131:18 143:17 & 11:13 152:10 \\
\hline 19:14 25:19 & 162:10,12 & 145:6,8,12,15 & record 14:19 & 173:19 \\
\hline 26:7 29:15 & 164:22 165:15 & reality 167:23 & 18:15,17 19:2 & referring 17:23 \\
\hline 85:22 90:6,9 & 165:18,19 & really 80:10 & 25:17,20 27:18 & 17:24,25 32:12 \\
\hline quibble 52:20 & rate \(70: 1,2,4,5\) & 108:17 193:9 & 38:13 41:10,16 & 51:10 62:13 \\
\hline 53:7 60:15,19 & 120:11,24 & reason 7:4 10:16 & 52:15 71:25 & 69:22 70:6,24 \\
\hline 62:19,20 63:10 & 128:8 & 12:10 110:10 & 82:25 84:11,12 & 71:2,4 72:17 \\
\hline 182:1 & reaction 53:19 & 119:25 120:23 & 84:20,21 85:21 & 107:18 108:11 \\
\hline quibbles 109:13 & read 6:5,6,7,7,9 & 130:7 & 89:2,4,5 93:13 & 128:12 151:12 \\
\hline quick 18:14 & 6:11,12,14 & reasonable & 93:14,23 & 151:25 156:9 \\
\hline 75:19 114:23 & 12:4 15:4,17 & 116:2,4,6,10 & 121:13 169:19 & 156:11,14 \\
\hline quickly 116:14 & 15:22,23 24:7 & 117:4 123:20 & 177:3 & 161:2 171:12 \\
\hline quite 41:14 & 29:20 32:15 & 124:6,24 125:1 & recorded 127:22 & 175:15 184:4,5 \\
\hline 176:16 187:10 & 37:9,13,17,20 & 125:14,16,18 & 128:10,16 & 197:9 \\
\hline quote 34:19 & 38:6 40:23,25 & 125:20 130:23 & recourse 56:4,19 & reflect 41:16 \\
\hline 36:13 70:14,17 & 42:25 43:2,16 & 191:8,8 & 56:20 58:3 & 74:16 112:13 \\
\hline 94:17,21 97:7 & 43:19 44:10 & reasonableness & recourses 56:9 & reflected 161:19 \\
\hline 97:8,14 112:7 & 48:1 49:1 & 117:6 & 56:12 & 168:22 202:15 \\
\hline 112:13,14 & 50:21 51:4,22 & reasonably & recruited 15:10 & reflects 143:19 \\
\hline 114:7,15 & 52:15 54:10,17 & 196:1 & 35:16 41:22 & 143:20 \\
\hline 115:13,14,15 & 55:1 58:21 & reasoning 100:1 & red 82:21 85:24 & refresh 37:5,7 \\
\hline 117:9 118:16 & 62:13 64:9 & 110:3 & 88:10 134:25 & 198:14 \\
\hline 118:19 138:12 & 65:18 66:3 & reasons 19:21 & 136:20 162:18 & regard 30:16 \\
\hline 138:17 177:16 & 91:2,5,9,10 & 52:23 53:8 & 162:19 164:1 & regarding \\
\hline 182:15,24 & 94:21 97:1,9 & 100:12,22 & redeem 64:3 & 171:18,19 \\
\hline 183:1,3,4 & 98:1 99:17 & 127:25 & redistrict 30:5 & regardless 198:5 \\
\hline 184:7 199:18 & 102:1,2 115:14 & rebuttal 172:14 & redistricted & 198:8 \\
\hline 200:13,16 & 132:19,19,24 & rebutted 102:20 & 142:6 & regime 94:24 \\
\hline 201:3 & 132:25 134:23 & rebutting & redistricting 4:9 & Registered \\
\hline quoted 182:14 & 134:23,23 & 144:11 & 15:5 23:23 & 202:4 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65
Filed: 01/25/16
Page 72 of 80
William Whitford v. Gerald Nichol Nicholas Goedert

Page 222
\begin{tabular}{|c|c|c|c|c|}
\hline regression 75:1 & remap 142:5 & 159:1 160:19 & 193:2 197:4,8 & rest 53:3,6 54:5 \\
\hline 76:7 81:24 & remapping & 164:8,13 & 197:20,25 & 60:25 61:3 \\
\hline 149:13 & 196:16 & 167:24 168:19 & 198:11 & 110:2 120:12 \\
\hline relate 27:6 & remarkably & 172:14 178:11 & republicans 46:7 & restate 125:11 \\
\hline 44:17,20 & 120:4 & reported 128:1 & 46:8 66:9 & result 42:22 \\
\hline related 5:21 6:3 & remember 36:12 & reporter 6:24 & 109:20 127:1 & 43:4,7,21,24 \\
\hline 6:4 15:5 16:2 & 173:17 & 7:12 13:5 & 159:3 160:22 & 44:2,12 59:14 \\
\hline 22:13 25:6 & remodels 197: & 37:16 38:5 & republican-co... & 62:24 63:21 \\
\hline 28:12 29:2 & render 23:22 & 71:18 89:10 & 59:18 & 67:7 89:24 \\
\hline 36:7 38:1 & 25:9 41:8 & 91:2,5 102:1 & reputation & 110:8 125:3,4 \\
\hline 41:21,22 51: & rendered 110:1 & 106:8 145:11 & 22:19,20 23:1 & 125:5 126:2,13 \\
\hline 53:25 54:2 & rendering 27:9 & 172:7 202:5 & 23:2 & 126:18,25 \\
\hline 58:24 110:16 & 27:12 42:20,23 & reporting 116: & request 92:24 & 127:2 128:20 \\
\hline 174:1 202:11 & 43:3,20 44:6 & reports 5:19 & 172:7 & 142:23,23 \\
\hline relates 54:1 & 44:11,14 & 138:16 & REQUESTE & 146:15,18 \\
\hline 63:12 66:24 & repeat \(29: 18\) & represent 98:12 & 4:21 & 147:23 148:5,9 \\
\hline relating 12:8 & 73:17 101:25 & 140:16 155:4 & require 45:3 & 148:16 158:13 \\
\hline 36:11 & 142:13 168:11 & 162:9 & 111:16 & 161:6,8 177:10 \\
\hline relationship & 200:15 & representation & requirements & 178:12 180:19 \\
\hline 94:18,23 & repeated 195:5 & 4:9 11:20 & 99:3,6,7 & 180:21,23 \\
\hline relative 28:3,4 & repeatedly 68:7 & 57:12,13,18 & 100:20 & 181:5,8 197:20 \\
\hline 81:7,17,22,24 & 72:20 & 58:10 94:2,13 & requires 98:24 & results 33:12 \\
\hline 150:6 158:12 & repeats 194:22 & 96:22 97:5,8 & 108:11 & 75:1 77:19 \\
\hline 170:23 202:9 & rephrase 7:23 & 103:13,22 & reread 5:17,17 & 78:3 80:18 \\
\hline 202:12 & 11:25 36:1 & 104:5 110:7,12 & 10:4,6 44:7 & 88:10 109:10 \\
\hline relatively \(25: 5\) & 47:15 52:9 & 111:9 120:18 & 51:19,23 68:23 & 114:2 118:16 \\
\hline 28:1 52:16 & 81:20 152:23 & 120:21 168:1,4 & 81:19 & 121:21 123:16 \\
\hline 106:4,13 177:8 & 161:10 189:9 & 168:5 178:22 & research 21:18 & 125:6,9 126:2 \\
\hline 177:23 179:6,9 & replied 13:23 & 179:1,3,22 & 21:21,23,24 & 126:10,10,24 \\
\hline 180:17 181:3 & report 4:3 5:15 & representations & 22:6,8,10 74:9 & 127:6,12 \\
\hline 191:3 & 5:17 6:15 & 170:7 & 74:13 80:16,17 & 129:17,23 \\
\hline relevance 21:1 & 12:12 15:20,22 & Representatives & 105:4,6 108:6 & 130:12 131:1 \\
\hline 25:11 & 15:23,25 16:3 & 174:17 176:13 & 108:7,9 117:10 & 132:12 133:2 \\
\hline relevant 8:21 & 16:5 24:17 & represented & 151:17 173:4 & 133:11,19 \\
\hline 12:12 41:6 & 38:23,24 39:1 & 167:23 & 173:16 175:18 & 139:3,9 142:20 \\
\hline 47:5 52:1,5 & 53:3 70:14,21 & representing & respect 35:8 & 143:1 145:16 \\
\hline 139:23 170:7 & 70:24 71:6 & 103:11 120:19 & 68:11 119:18 & 145:17 146:2,8 \\
\hline reliability 133:6 & 72:18 92:18 & 120:22 140:24 & 119:19 131:1 & 146:22,24 \\
\hline reliable 73:13,18 & 96:8,11,14,23 & 141:4 & 132:13 133:8 & 148:3,4,11 \\
\hline 73:19,20 74:6 & 96:24,25 97:18 & represents & 154:24 155:2 & 156:20 157:11 \\
\hline 79:16,20 80:21 & 97:24 99:21,25 & 110:2 120:8 & 155:12,15,16 & 158:11 159:12 \\
\hline 81:7,22 87:14 & 100:9,10,19,23 & 121:5 194:20 & 156:4 158:10 & 182:20 183:11 \\
\hline 87:16,25 & 105:5,21 107:8 & republican \(4: 15\) & response 68:13 & 184:9,12,22 \\
\hline 127:12 131:6,7 & 107:17 110:2,2 & 59:19,25 65:21 & 104:13 171:16 & 185:6 198:10 \\
\hline 133:7 174:3 & 111:21,25 & 76:20,23 86:17 & responses & 198:24 \\
\hline 187:12,13 & 112:1,2 113: & 86:19 91:23 & 101:23 102: & resum' 12:13 \\
\hline 193:1 & 113:11,12 & 92:2 123:7 & responsibility & 16:4,13 27:20 \\
\hline reliance 131:9 & 114:4,7 115:17 & 127:9 157:18 & 14:17 & 28:9 \\
\hline 140:18 & 116:7,13 117:5 & 157:19 158:13 & responsible & reveal 114:13 \\
\hline relied 23:14 & 117:8 118:12 & 162:13,20 & 78:25 & 115:23 \\
\hline 29:12 45:17 & 119:17 120:1 & 164:4,10 & responsive & reverse 180:7 \\
\hline 49:17 & 121:15 138:12 & 165:17 166:9 & 172:2 & review 9:17 11:7 \\
\hline relies 45:11 & 138:24 142:8 & 167:5,10 168:8 & responsiveness & 15:20 \\
\hline rely 10:12 33:11 & 143:6 150:20 & 168:13 169:8 & 47:3 72:22 & reviewed 5:25 \\
\hline 33:12 153:12 & 151:7,22 152:7 & 169:10 183:13 & 94:14 95:1,5,8 & reviewing 10:7 \\
\hline remaining 54:4 & 154:7,16 & 183:16,18 & 95:18,19 96:21 & reword 200:7 \\
\hline 57:5 & 158:21,22 & 185:2 188:2,5 & 104:9 & re-expresses \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 73 of 80
\begin{tabular}{|c|c|c|c|c|}
\hline 72:13 & 148:1,9,17 & salvage 62:15 & 86:9,10 114:8 & 185:4 191:15 \\
\hline re-print 43:17 & 149:4,16,17 & sample 155:25 & 114:13 115:18 & 191:23 195:11 \\
\hline rgreenwood@... & 150:14,23 & 156:2,7 163:10 & 115:23 116:17 & 198:15 \\
\hline 2:16 & 151:18 156:16 & sampling 156:15 & 116:18,22 & seeing 153:17 \\
\hline Richard 24:7 & 156:24 158:18 & sat 41:14 & 143:8 167:2 & seeking 73:22 \\
\hline 47:17,23 48:6 & 158:21 160:2,3 & satisfaction & seats 36:9 46:4 & seen 9:11 65:10 \\
\hline right 5:13 8:22 & 163:21 164:5 & 143:25 & 46:7 61:17,19 & selected 17:15 \\
\hline 21:18 24:14 & 164:17 165:10 & satisfies 60:5 & 61:24 72:21 & 174:9 \\
\hline 26:13,14 27:23 & 165:11,21,23 & satisfy \(144: 6\) & 73:24 77:10 & selecting 154:17 \\
\hline 29:6,14 30:2,7 & 166:2 171:22 & 148:12,13,17 & 78:8 81:6 & self-contained \\
\hline 30:9,10 31:16 & 172:20,24 & 191:6 & 83:23 88:5 & 114:12 115:22 \\
\hline 32:19 35:2 & 173:10 178:23 & save 92:24 & 94:19,23 95:9 & send 93:1 \\
\hline 36:22 38:9 & 181:18 184:19 & saved 172:4 & 97:6 103:20 & sens 121:20 \\
\hline 56:1,3,25 57:6 & 187:17 188:3 & saw 13:23 69:14 & 104:2 114:7,11 & sense 19:2 22:5 \\
\hline 59:10 60:6 & 191:22 192:18 & saying 39:7 & 115:17,20 & 25:3,13 27:25 \\
\hline 61:5,8 63:13 & 193:22 194:9 & 50:10 89:15 & 116:9,12,15 & 36:8 40:21 \\
\hline 65:8 66:1 67:4 & 195:24 197:1 & 100:17 101:12 & 157:10 175:5 & 47:21 74:13 \\
\hline 67:9 69:25 & 197:13,16 & 101:14 106:11 & 181:4,12,14,15 & 101:20,21 \\
\hline 70:13 73:7 & 198:1,25 & 123:12 130:22 & 181:22 & 102:2 118:1 \\
\hline 76:12,25 77:5 & 199:14 200:7,8 & 181:16 182:14 & seats-to-votes & 127:3 185:3 \\
\hline 77:7,13 78:5 & 200:23,25 & 190:14 191:15 & 103:16 & 191:22 200:2 \\
\hline 80:15 81:21 & Rights 2:9,11 & 191:16 & seats/vote & sensitivity \\
\hline 84:14 85:11,11 & 154:23 & says 40:20 59:24 & 104:8 & 108:12,12 \\
\hline 86:10,12,20 & Risk 4:9 94:1 & 120:18 134:20 & seats/votes & 118:18 121:21 \\
\hline 87:12,17 88:2 & rival 32:3,24 & 149:8 155:6 & 117:21 118:8 & 121:24 122:1,4 \\
\hline 88:4,8,12 & 33:22 65:25 & 182:15,23 & 118:14 & 127:7,8,12 \\
\hline 90:17,18 91:8 & robustness & 183:7,8 & seat/vote 101:8 & 128:17 131:15 \\
\hline 92:9,10 93:5 & 133:5,12 & scale 114:14 & second 53:14 & 132:10,14 \\
\hline 93:17,23 94:7 & Rodden 48:23 & 115:23 & 61:22 67:4 & 133:1,9 \\
\hline 94:15 95:6,13 & 111:24 154:16 & scanned 71:18 & 70:17 80:7 & sentence 52:20 \\
\hline 95:14 96:7,9 & 154:20 155:24 & scenario 179:7 & 94:15 95:22 & 52:21 53:1,11 \\
\hline 97:11 99:21 & 156:6,16,19,22 & 179:11 & 104:19,22 & 53:14,19 54:1 \\
\hline 100:16 101:3,3 & 156:22 193:7 & scholar 28:1,5 & 105:22,25 & 54:9,10,16,25 \\
\hline 102:22 103:7 & Roland 47:16 & scholars 24:23 & 106:1 107:15 & 55:6,8 61:23 \\
\hline 103:15,23,23 & 50:2,2 & scholarship & 121:19 138:11 & 62:11,14,19,20 \\
\hline 107:7,11,18 & room 106:20 & 114:5 & seconds 201:15 & 63:3 70:18 \\
\hline 110:5 111:13 & roughly 52:16 & school 2:20 13:3 & secret 59:25 & 72:11,17 94:22 \\
\hline 111:19 112:5 & 130:2 174:21 & 14:7 & section 94:12,12 & 106:2 117:12 \\
\hline 112:14 113:17 & 181:13 185:22 & science \(23: 3,5\) & 115:1 117:7 & 138:11 183:6 \\
\hline 115:3,13,25 & rounded 85:3 & 25:1 28:12 & 118:11 124:16 & sentences \(54: 5\) \\
\hline 118:15,19 & row 194:19 & 45:5 74:12,16 & 155:5 170:1 & 54:5 62:12 \\
\hline 121:9,23 123:2 & RPR/RMR/CRR & 80:5,8,10 & 172:7 182:8 & 107:14,16,21 \\
\hline 123:14 124:10 & 1:19 202:18 & 170:8 184:25 & 183:7 & 108:3,23,25 \\
\hline 126:7,11,17,21 & rule \(100: 8,10,20\) & sciences 70:1 & sections 170:21 & separate 93:7,9 \\
\hline 126:23 127:13 & rules 6:17,24 & 121:3 & see \(12: 7,10\) & separately \\
\hline 128:4,11,16,22 & run 145:22 & scientist 24:5 & 16:11 20:13 & 174:12 \\
\hline 128:23 129:10 & running 143:8 & 175:20 & 53:21 58:24 & sequence 7:2 \\
\hline 129:25 130:20 & RUTH 2:11 & scientists & 61:22 63:8 & series 173:14 \\
\hline 131:14 132:14 & R-O-D-D-E-N & 156:13 173:25 & 70:22 82:11 & serve 13:20 15:2 \\
\hline 133:10,17 & 48:23 & 175:24 & 89:23 90:17 & served 13:21 \\
\hline 134:15,17,18 & R-squared 79:24 & score 149:12,23 & 100:4 106:24 & 27:24 \\
\hline 135:5,23 & 80:9,12,15,19 & 150:1,2 & 115:10,13 & serving 12:22 \\
\hline 136:12 137:22 & 80:20,25 & scores 80:4 & 120:3 133:14 & 13:14 14:25 \\
\hline 138:9,17,20 & & 117:15 & 139:21 142:7 & set 57:11 61:1 \\
\hline 143:10 144:15 & S & Sean 15:12,14 & 153:16 162:6,7 & 80:13 119:16 \\
\hline 145:7,13 146:3 & S 2:14:1 5:1 & 138:25 & 164:17 172:4 & 119:23,24,25 \\
\hline 146:12 147:20 & safe 201:5 & seat 72:22 79:15 & 175:9 176:18 & 131:25 132:4,5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 134:14 157:7 & 138:2 160:20 & 156:19 & somewhat 33:10 & 110:13,16 \\
\hline 176:1 & 161:15,16 & simulating & 159:23 165:16 & 113:2 125:2 \\
\hline setting 119:13 & 164:4 167:25 & 47:20 154:7 & 165:18 & 129:7,11,12 \\
\hline 131:16,18 & 198:22 & 156:25 & sorry 5:17 10:5 & 138:15 150:4 \\
\hline seven 63:24 & side 5:20 13:18 & single 31:4,10 & 14:6 20:11 & 151:13 153:4 \\
\hline 69:1 104:19 & 77:19 107:6 & 62:21,24 & 24:21 37:3,11 & 156:9 158:15 \\
\hline 105:14 107:23 & 176:10 180:10 & 107:23 149:23 & 38:25 47:12 & 159:24 \\
\hline 119:6,10 & 183:17,18 & 149:25 150:2 & 48:5 49:9,12 & specifically 24:1 \\
\hline 120:25 127:2 & 198:20,23 & sit 111:5 & 53:5 56:23 & 24:3,11 44:7 \\
\hline 136:18 199:19 & sign 126:1 & situate 125:4 & 61:22 63:12 & 49:24 50:13 \\
\hline Seventeen 167:8 & 133:23 135:4 & 126:13 & 67:20 69:21 & 51:18 65:20 \\
\hline severe 55:2,11 & 136:7,15 137:5 & situating 123:14 & 72:9 73:16 & 99:5,18,20 \\
\hline 55:15,21 57:2 & 138:7 201:23 & situation 26:20 & 75:4 79:13 & 105:25 106:1,2 \\
\hline 57:25 & signal 105:2 & \(\boldsymbol{\operatorname { s i x }} 21: 1387: 19\) & 80:24 81:10 & 106:3 108:10 \\
\hline severity 54:20 & 107:25 & Sixty-seven & 84:17 85:8,10 & 125:24 151:25 \\
\hline share 46:2,3,7 & signed 59:18 & 120:3 & 85:12,15 96:9 & 155:14 156:25 \\
\hline 61:18,20,24 & significance & size 72:11 & 98:2 103:24 & 157:22 158:20 \\
\hline 73:25 77:11 & 70:7 163:8 & 151:18,24 & 105:11 108:24 & specify \(62: 5\) \\
\hline 81:5 83:16,18 & significant & 152:2 189:18 & 111:24 117:1 & speculation \\
\hline 88:20 104:13 & 142:9,15,19 & 189:20,21,24 & 119:8,11 & 144:20 \\
\hline 123:1 138:14 & 162:23,25 & 194:4 & 122:24 134:16 & speech 19:12 \\
\hline 138:21 161:17 & 163:2,5 165:1 & sized 72: & 134:22 144:2,4 & spell 13:5 \\
\hline 161:17,21,25 & 166:1,21,24 & sizes 114:13 & 149:10 168:10 & spoken 15:12 \\
\hline 165:14 166:19 & 197:24 199:9 & 115:22 & 174:8 181:10 & spot 95:22 \\
\hline shares 72:22 & significantly & skew 57:22,24 & 189:9 199:23 & spread 57:4 \\
\hline 78:10,14 81:4 & 169:11,12 & 164:5 166:14 & sort 14:16 45:12 & Spriggs 21:22 \\
\hline 114:8,13 & 198:4 & skewed 166:8 & 65:1 114:3 & 22:1,1,2 \\
\hline 115:18,23 & signs 12 & 169:8,10,11, & 122:21 123:9 & squared 80:17 \\
\hline shave \(8: 12\) & silently 41:14 & skews 55:22 & 123:20 147:6 & Squire 45:18 \\
\hline She'll 37:13 & similar 45:10,16 & slide \(173: 15\), & 155:19 173:14 & SS 202:2 \\
\hline shifting 102:9 & 45:20 149:18 & 173:16 & 191:23 192:20 & St 182:18 \\
\hline shoot 153:16 & 149:20 151:14 & slides 173:18 & 193:11 & stack 173:18,20 \\
\hline short 201:16 & 151:24 152:2 & slight 90:19,22 & sorting 159:18 & 173:23 196:24 \\
\hline shortcut 70:19 & 152:22 186:3 & 91:10,13 & sound 188:23 & Staff 2:13 \\
\hline shorthand & 193:19,25 & slightly \(18: 25\) & sounds 35:13,14 & stake 176:15 \\
\hline 202:15 & 194:22 & 26:18 74:2 & 41:20 57:16 & stand 81:19 95:7 \\
\hline show 68:12 6 & similariti & 77:14 116:22 & 100:17 149:22 & standard 44:17 \\
\hline 71:9 90:22 & 153:5 & 179:9 185:19 & 193:16 195:23 & 70:6 80:5 97:3 \\
\hline 91:13,23 92:1 & Simon 22:16 & 187:18,23,24 & 196:9,13 & 98:5 99:6 \\
\hline 105:21 106:18 & 23:1 28:4,5 & 197:12 & sources 178:8 & 101:15,17 \\
\hline 117:11 118:13 & 49:1 & slope 47:3 95 & 178:10 & 102:20 108:5,6 \\
\hline 134:25 136:6 & simple 74:2 & 95:2,12,25 & spatial 114:1 & 132:1,3 155:19 \\
\hline 136:14 141:16 & 79:18,19 177:5 & 96:1,3 97:12 & 115:24 & standards 45:12 \\
\hline 150:16,18 & simplicity 74:4 & small \(52: 16\) & speak \(12: 15,1\) & 80:6,8 101:14 \\
\hline 173:15,17 & simplified & 53:25 86:9 & 12:18 90:7 & 153:23,25 \\
\hline showing 9:9 & 152:15 & 91:22 106:10 & speaking \(20: 17\) & 154:19 \\
\hline 50:7,25 64:14 & simplistic & 151:20 181:7 & 163:7 & standing 51:9 \\
\hline 67:2,4,7 93:17 & 158:10 183:22 & 201:4 & speaks 198:14 & 51:10 \\
\hline 105:20 135:8 & simply \(171: 13\) & smaller 87:21,23 & specific \(16: 1\) & standpoint \\
\hline 136:12,23 & 180:23 199:15 & 180:17 & 20:24 23:7 & 138:14 \\
\hline 137:3,15 138:4 & 200:9 & smallest 194:20 & 40:12 42:23 & stand-alone \\
\hline 140:15 150:15 & simulate 8:1 & 194:24 & 44:21 45:4 & 52:21 53:1 \\
\hline 163:1 169:23 & 146:16 154:14 & social 70: & 47:1,1,3,21,25 & start 6:17 9:2 \\
\hline 176:24 182:6 & 155:14 156:23 & 121:3 & 51:14,14,22 & 16:18 199:24 \\
\hline 196:6 & 157:7 & solely 18 & 58:20 62:7 & started 21:14 \\
\hline shown 168:17 & simulated 48:22 & somebody 28:4 & 63:7 66:8 97:6 & 39:7 \\
\hline shows 77:1 & 155:24 156:16 & someone's 21:2 & 98:19 99:2 & state 3:2 4:10 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65
Filed: 01/25/16
Page 75 of 80
William Whitford v. Gerald Nichol Nicholas Goedert
\begin{tabular}{|c|c|c|c|c|}
\hline 4:17 5:19 & statewide 61:25 & studied 51:6,7 & 65:14 & 63:16 72:5 \\
\hline 13:13 15:1,10 & 78:10 123:1 & 51:13,18 & subtle 46:13,20 & 75:20,21 83:4 \\
\hline 28:14 29:9,11 & 126:10 130:9 & 104:10,12 & successful 20:22 & 85:10 107:17 \\
\hline 29:22 30:5,8 & 148:5 161:22 & 188:15 192:23 & 35:18,23 36:3 & 111:7,11 \\
\hline 30:25 32:12 & 181:12 & studies 6:6 & 36:14 37:22 & 119:16,25 \\
\hline 39:24 40:2 & state's 62:16 & 42:12,13 158:1 & sufficiency & 124:10 125:10 \\
\hline 56:15 79:2 & 63:1,4 76:14 & 158:5 159:8,10 & 108:14 & 137:10 156:10 \\
\hline 81:3,25 86:22 & 76:18 81:3,4,4 & 159:11,14,17 & sufficient & 168:2 171:7 \\
\hline 88:14,14,23,25 & 81:5 86:12 & 159:25 160:2 & 108:20 153:13 & 183:4 \\
\hline 89:19,20 93:20 & 150:13 154:6 & study 24:24 51:8 & 153:14 191:5 & surprise 142:25 \\
\hline 93:20 94:2 & 174:18 183:15 & 160:15 193:1 & sufficiently & surprised \\
\hline 100:8 101:2 & 200:21 & 193:17 & 109:2,3 & 142:19 \\
\hline 107:15,21 & stating 63:3 & studying 175:20 & suggest 110:13 & swing 46:14, 17 \\
\hline 108:2 110:22 & 125:22 & stuff 6:17 31:14 & 150:20 162:12 & 62:6 123:13,17 \\
\hline 111:4,22 114:6 & statistical 23:5 & 63:10 91:7 & 198:3,19 & 123:22 131:5,9 \\
\hline 114:9,12 & 70:6 91:18,21 & sub 149:23,24 & suggested 108:7 & 131:12 133:15 \\
\hline 115:18,21 & 163:7 & subdivisions & 109:3 & swinging 125:3 \\
\hline 124:3 139:16 & statistically & 154:25 155:21 & suggesting & swings 125:6 \\
\hline 139:20 140:1,1 & 197:24 199:9 & subject \(30: 3\) & 122:18 180:25 & sworn 5:3 202:9 \\
\hline 141:3 142:3 & step 64:5,7,11 & 35:15 141:22 & 181:20 184:7 & symmetry 45:24 \\
\hline 149:11 150:18 & 64:13,19,22,25 & 185:19 & 193:17 & 47:4,6 61:5,7 \\
\hline 151:18,20 & 65:15 67:18 & subjective 65:1 & suggests 63:23 & system 57:10 \\
\hline 152:19 156:20 & 108:12 & subjects 174:1 & 198:6 & 98:11,11 \\
\hline 157:8,21 159:4 & Stephanopoulos & subordinate & Suite 2:14 & systematically \\
\hline 174:16,23 & 2:19 6:5 38:4 & 32:1,22 33:21 & sum 147:13 & 54:18 \\
\hline 176:14 183:14 & 75:7 105:7,8,9 & 64:15 & 165:5 & S-P-R-I-G-G-S \\
\hline 185:20 193:21 & 105:12 106:21 & subordinating & summarize & 22:3 \\
\hline 202:1,5,19 & 108:10,20 & 65:24 & 100:15 107:19 & \\
\hline stated 38:22,24 & 111:25 112:6 & subpoena 4:2 & summary 70:20 & T \\
\hline 39:1 96:11 & 112:15,24 & 9:2,3,24 10:15 & 117:20 & T 4:1 \\
\hline 108:14,16 & 114:6,16,18,21 & 68:13 170:23 & super 181:4 & table 74:25 75:1 \\
\hline 111:2 119:15 & 115:5,7 116:25 & 172:2,9 & supervise 22:6 & 76:7 85:25 \\
\hline 147:1 & 117:2 124:1,11 & subsection & supervisor 22:4 & 88:10 94:16 \\
\hline statement 29:25 & 124:13,15,19 & 94:14 97:24 & supplied 3:20 & 197:9 \\
\hline 35:2,8 36:5 & 125:13 200:3 & 121:15 & support 100:1 & take 18:14 20:12 \\
\hline 37:25 41:18 & 201:15 & subsequent & 100:15 112:10 & 28:11 41:19 \\
\hline 55:14 69:9 & steps 67:18 & 25:22 56:17 & 112:13 & 42:10,14 46:16 \\
\hline 95:6,7 100:11 & sticker 71:15,19 & 62:2 64:21,24 & supporters & 48:8 50:4,8 \\
\hline 106:14 109:22 & 71:23 & 70:21 119:4,22 & 177:6,9,20,24 & 51:1 54:6,8,14 \\
\hline states 1:1 17:9 & stipulating & 131:3 & supports 105:13 & 65:7 75:19 \\
\hline 30:19,23 31:2 & 57:10 58:5 & subset 194:12 & 168:6,7,12 & 93:12 99:9,10 \\
\hline 31:4,9 68:7,8 & stipulation 58:8 & substance & 195:8 & 114:23 121:10 \\
\hline 78:4,10,13,16 & stop 106:9 & 173:21 & suppose 16:10 & 121:11 134:9 \\
\hline 86:23 87:18,19 & straight 39:13 & substantial & 21:21 28:8 & 135:14 140:20 \\
\hline 87:22,23 88:15 & Street 2:5,14,21 & 167:2 & 36:14 108:13 & 140:22 143:15 \\
\hline 88:16 89:16,22 & 3:4 & substantially & 145:21 146:21 & 143:17,23 \\
\hline 90:3 92:4,7 & stretching 96:14 & 95:2,12 166:8 & 148:1 153:9,11 & 144:3,5,9 \\
\hline 93:20 98:23 & strike 12:12 & 166:10 & 155:22 165:12 & 145:6,13,18 \\
\hline 104:7 110:18 & 192:25 195:17 & substantive & supposedly & 147:17 154:22 \\
\hline 111:8,15 151:3 & 195:19 & 57:24 73:21 & 109:20 168:5 & 161:23 169:16 \\
\hline 151:11,13,14 & strong 107:24 & 175:12 & 185:10 199:14 & 169:17 183:20 \\
\hline 151:21,23 & strongly \(77: 23\) & substantively & 200:9 & 188:24 201:16 \\
\hline 152:1,2,6,12 & 78:4 112:7 & 55:23 76:3 & Supreme 34:18 & taken 26:15 \\
\hline 154:18 174:22 & 178:24 180:8 & 96:15,16 & sure 5:10 10:7 & 48:9 49:15 \\
\hline 183:16 199:16 & structure 57:7 & 162:24 163:2 & 19:23 31:11,14 & 75:23 99:11 \\
\hline 199:19 200:10 & struggled 37:19 & 163:13,15,16 & 39:11 43:10 & 121:12 143:19 \\
\hline 200:14,17 & student 22:18 & substituted & 49:5,6 58:10 & 150:10 169:18 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 76 of 80
William Whitford v. Gerald Nichol
Nicholas Goedert
Page 226
\begin{tabular}{|c|c|c|c|c|}
\hline 201:19 202:6 & 64:6,8,12,14 & 33:3,5,5,24 & 185:17 186:4 & times 51:4,23 \\
\hline 202:11,15 & 64:23 65:5 & 35:5,21 37:1 & 186:12,16 & 117:3 \\
\hline takes 127:22 & 67:2,14,17,24 & 38:18,24 40:8 & 187:5,6,9,9,18 & title 45:15 \\
\hline 128:10 & 68:2,3,8 82:5 & 40:16 41:6,21 & 188:10 191:3,4 & titles 45:20 \\
\hline talk 7:3 19:1 & 97:5 102:9,16 & 48:16,18 49:4 & 192:2,3,10,21 & today's 5:14 \\
\hline 105:10 157:18 & 108:12,16,19 & 52:3 54:24 & 193:3,7,7 & told 16:1 132:10 \\
\hline talked 166:22 & 109:2 121:19 & 55:19 56:9 & 195:10 196:17 & 132:25 177:14 \\
\hline talking 8:14 & 122:2,18 & 57:15,19,21,21 & 198:14 201:11 & 183:1 188:11 \\
\hline 31:14 47:13 & 125:23 127:8 & 58:8 59:11 & 201:17,22 & 188:21 189:12 \\
\hline 111:2 115:10 & 144:13 153:7,9 & 66:4 68:10,18 & thinking 41:15 & 195:16,21 \\
\hline 163:24 191:25 & 153:12,18,24 & 69:24 71:18 & 155:1 193:5 & top 24:12 34:21 \\
\hline tally 178:3 & 154:1,2 195:15 & 73:12 74:1,5 & third 9:13 67:6 & 45:15,21 \\
\hline target 74:11 & testified 5:4 & 76:1 77:17,20 & 108:2,3,4 & 110:23 116:14 \\
\hline tautological & 147:17 202:8 & 78:12,15,16 & 109:5 154:5 & 123:19 159:19 \\
\hline 57:19,20 58:8 & testify \(153: 17\) & 79:18 80:10 & thorough 197:18 & 186:11 188:17 \\
\hline teaching 16:16 & 202:9 & 82:5,13 89:16 & thought 5:21 6:1 & 192:24 195:9 \\
\hline tease 158:5 & testifying 13:17 & 90:2,15,15 & 6:2 13:20,24 & 195:11,19 \\
\hline Tech 19:19 20: & 27:1,7 & 95:5 96:10,11 & 117:4 192:1 & top-of-the-tic... \\
\hline technique & testimony 51:25 & 96:19 97:22 & thousand & 188:7 \\
\hline 177:19,22 & 59:3,5 68:21 & 101:11 102:16 & 200:15 & total 65:14 \\
\hline techniques & 91:6 140:19 & 103:24 104:3 & three 16:15,16 & 114:10 115:20 \\
\hline 74:17 & 141:17,22 & 106:17 109:13 & 51:5 67:2 & 128:17 \\
\hline tecum 170:23 & 184:13,14,14 & 109:24 110:10 & 121:17 150:20 & totally 7:9 113:2 \\
\hline tell 7:22 97:1 & testing 80:22 & 112:19,22 & 163:16 166:21 & 195:23 \\
\hline 101:3 115:15 & 121:21,24 & 116:6,10 118:3 & Three-and-a-h... & tough 7:11 \\
\hline 132:11 133:1 & 122:1,4 127:7 & 118:11,25 & 16:17,18 & town 155:7 \\
\hline 149:2 161:15 & 127:12 128:17 & 120:17,21 & three-judge & track 16:23,25 \\
\hline 162:9 188:8,10 & 131:15 132:14 & 122:20 123:10 & 66:13 & 17:1,8 18:4,5 \\
\hline 188:12,12 & 133:6,7,9 & 123:19,19 & three-part 68:3 & 18:11 20:22 \\
\hline 189:2,6,10,15 & 195:16 & 125:1,15,19 & threshold 63:23 & 21:7,11 \\
\hline 196:3,7,9,11 & tests 81:24 & 126:7 127:2,11 & 63:24 65:17 & trade-off 81:13 \\
\hline 196:15,17 & text 76:2 114:19 & 127:14 129:15 & 69:10 70:11 & traditionally \\
\hline 199:22 & textbook 49:1,3 & 131:12 133:8 & 104:19 105:14 & 52:18 \\
\hline telling 14:24 & textbooks 49:8 & 133:18 134:4,6 & 106:25 107:3 & transcript 3:20 \\
\hline 196:13 & 49:14,17 & 136:4 137:14 & 107:22 117:3,6 & 3:21 7:1,12,17 \\
\hline temporal 114:14 & Thank 121:9 & 139:23,25 & 119:7,10,11,11 & 41:11 43:17 \\
\hline 115:24 & 127:17 & 140:3 142:2,9 & 119:15,16,18 & 71:13 \\
\hline tend 80:9 153:4 & theme 138:9 & 142:14 143:2 & 119:23,23 & translate 160:23 \\
\hline 177:19 & theory 62:15 & 143:18 145:14 & 129:1 131:16 & 160:25 \\
\hline tenure 16:23,25 & thesis 168:6,7 & 147:5 151:23 & 131:18 132:4,5 & translation 97:6 \\
\hline 17:1,8 18:4,5 & 168:13,16 & 152:18,20,24 & 135:3 136:8,13 & treat 53:15 \\
\hline 18:11 20:22 & thing 36:2 37:21 & 153:5,14 & thresholds & 113:13 \\
\hline 21:6,11 & 39:8,9,10 & 154:13 155:11 & 128:9 & treated 112:17 \\
\hline term 33:5,6,24 & 118:5 141:15 & 162:24,24 & thumb 141:5,9 & 113:19,24 \\
\hline 34:1 36:15 & 188:11 & 163:13,15,17 & Tides 4:10 94:3 & treating 112:9 \\
\hline 40:8,9 73:20 & things 26:7 & 163:23,23 & tied 46:11,16 & treatment \\
\hline 92:9 96:12,13 & 29:14 68:14 & 165:24,24 & 61:25 & 112:23 \\
\hline 97:11,14,16,18 & 90:4 112:23 & 166:4,24 168:7 & ties 118:18 & trend 157:18 \\
\hline 103:21 184:23 & 128:5 173:2 & 168:12 170:18 & time 14:10 18:3 & Trende 15:12,14 \\
\hline terms 16:3 & 176:8 & 170:18,19 & 18:9,10 25:5 & 138:25 \\
\hline 60:17,21 85:22 & think 8:16 9:1 & 171:23 175:16 & 41:11,14,17,19 & trends 95:20 \\
\hline 92:14,15,17 & 13:18 19:14 & 175:19,23 & 43:17 99:9 & 159:8,10 \\
\hline 97:17 157:13 & 22:15 23:7,11 & 177:25 178:10 & 109:10 133:25 & 185:20 187:16 \\
\hline 166:1 176:7 & 23:13 24:3 & 178:17 180:5 & 144:24 145:3 & trial 36:23,24 \\
\hline 190:10 196:5 & 26:19,25 27:11 & 180:10,20 & 150:8 159:9,11 & 37:3 38:11,12 \\
\hline territory 155:8 & 27:12,12,21,23 & 184:2,6,11,23 & 159:12 160:2 & 39:4 66:13 \\
\hline test 63:14,19 & 29:10,23,25 & 184:25 185:13 & 185:25 202:15 & trials 90:5 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65
Filed: 01/25/16
Page 77 of 80
William Whitford v. Gerald Nichol Nicholas Goedert
\begin{tabular}{|c|c|c|c|c|}
\hline tried 157:17,22 & two-part 65:12 & 25:23 26:11 & unresponsive & 98:8,14 194:20 \\
\hline trigger 50:16 & 67:25 68:2,8 & 30:7 34:8,10 & 94:24 & values \(80: 9,12\) \\
\hline trouble 66:6 & two-party 88:21 & 34:11 42:8 & unstable 104:20 & 80:15,17,19,20 \\
\hline true 28:2,7 31:6 & two-seat 117:3 & 64:13 66:3,24 & 105:15 & 82:10,20 86:22 \\
\hline 43:11 53:24 & type 145:9 & 70:5 90:4 & Update 4:7 & 90:1,21 91:12 \\
\hline 56:22 62:6 & 196:5 & 92:20 100:8,16 & urban 160:18 & 91:25 92:3 \\
\hline 78:15,16 90:5 & typed 85:14 & 100:18 101:2 & 186:20 & 98:9,10,17,25 \\
\hline 91:24 111:3,6 & typical 56:14 & 101:22 102:3 & urbanization & 101:19,22 \\
\hline 111:17 113:16 & 63:5 & 103:1 119:5 & 81:4,25 82:6 & 102:4 \\
\hline 114:1,5 157:16 & typically 17:12 & 128:6 132:20 & 86:13 151:17 & variable \(77: 8,9\) \\
\hline 159:3,5 166:13 & 39:22,23 & 133:18 135:10 & 199:8 200:22 & 77:12 78:2,19 \\
\hline 166:23 168:23 & & 135:11 136:22 & urbanized 82:1 & 78:22 80:24,24 \\
\hline 169:9,11 198:2 & U & 190:9 191:15 & 83:9,15 88:18 & 143:6,7 \\
\hline 198:11 200:24 & U 174:18 & understanding & use \(4: 323: 5\) & variables 43:9 \\
\hline 202:14 & Uh-huh 13:11 & 32:6 63:14,18 & 25:22 33:8,9 & 44:3 46:22 \\
\hline truly 183:10 & 20:19 26:21 & 128:19 144:15 & 33:10 34:12 & 78:24 79:14 \\
\hline 184:8 & 32:14 49:10 & 144:17 181:24 & 39:19 45:12 & 80:22 81:21 \\
\hline trust 74:19 & 55:9 61:9 & understands & 46:13,17 64:25 & 88:12,24 91:25 \\
\hline 75:11 79:4 & 67:13 88:13,19 & 144:20 & 68:16,18 69:8 & variance 187:8 \\
\hline 187:20,21,23 & 112:3 126:12 & understood 7:18 & 70:20 71:21 & variation 114:24 \\
\hline truth 202:9,9,9 & 126:15 127:21 & undue 195:4 & 77:20 82:17 & 124:2,6 128:17 \\
\hline truthful 8:6 & 138:3 159:13 & unequally 53:16 & 92:15,17 & 150:7 198:15 \\
\hline try 8:19 29:15 & 164:7 165:11 & unfair 62:17 & 101:13,18 & variety 106:6 \\
\hline 107:13 155:15 & 189:14 190:8 & unfamiliar & 103:21 111:12 & 112:22 118:12 \\
\hline 155:15,16 & 191:2 & 26:20 & 111:18 133:14 & 154:18 156:23 \\
\hline 158:5 172:3 & Um-hum 7:2 & unhappy 18 & 133:15 145:1 & 157:9 \\
\hline trying 17:17,19 & unanimous & uniform 46:14 & 146:7,20,21 & various 5:17 \\
\hline 19:3 37:15 & 112:10 & 46:17 62:6 & 147:6 156:22 & 22:10 65:4 \\
\hline 69:13 74:10 & unavailable 56:5 & 123:13,17,22 & 157:11 158:3 & 127:24 128:5 \\
\hline 87:21 102:13 & unavoidable & 131:5,9,11 & 175:18 176:1,7 & 173:25 174:1,9 \\
\hline 102:22 117:1 & 62:18 & 133:15 175:23 & 176:7 177:19 & 180:20 188:1 \\
\hline 125:4 146:16 & unbalanced & unit 149:24 & 177:22 187:14 & vary 155:18 \\
\hline 147:3 153:21 & 101:6 103:3,5 & 185:22 187:3 & 195:22 & 186:5 \\
\hline 195:13 & unbiased 118:13 & 196:10 & useful 70:19 & varying 114:13 \\
\hline turn 24:14 & unclear 64:10 & United 1:1 17 & 121:5 142:2 & 115:22 \\
\hline turning 22:11 & 147:7 & 31:4 86:23 & 186:13,14,16 & venue 74:5,7 \\
\hline turns 20:13 & uncomfo & 88:15,16 89:16 & uses 77:14 145:1 & verbatim 6:25 \\
\hline 144:3 & 27:11 & 89:22 92:4 & utilized 195:2 & version 39:9 \\
\hline Twenty-five & unconstitutio... & 93:20 104:7 & U.S 31:3 174:15 & 71:24 75:16,21 \\
\hline 167:16,17 & 44:18 52:19,24 & units 149:24 & 174:22 176:13 & 75:22,25 76:1 \\
\hline Twenty-nine & 53:8 63:25 & 186:1,2 & & 114:17 186:12 \\
\hline 138:2 & 64:2 102:17,19 & universally & V & 186:13,14 \\
\hline Twenty-one & unconstitutio... & 78:15,16 & vague 23:24 & versus 137:24 \\
\hline 75:9 & 54:13 101:17 & universe 155:25 & 26:23 28:19 & 157:20 \\
\hline twice 40:22 & 107:23 121:20 & 156:8 163:10 & 30:18 31:19 & vertically \\
\hline two 6:7 11:20 & uncontested & universities & 33:5 35:8,20 & 194:15 \\
\hline 20:17 28:16 & 112:8,16,24 & 18:8 20:5 & 40:20 47:10 & victory 188:7 \\
\hline 30:16 67:18 & 113:13,15,24 & university 2:20 & 49:23 56:7 & view 23:22 25:9 \\
\hline 72:23 73:4,13 & 114:1,3 & 17:9 19:10,15 & 59:6 74:21 & 103:2 105:13 \\
\hline 86:8 103:19 & underlying & 19:19 21:19 & 79:6 90:23 & 125:17 185:8 \\
\hline 107:21 108:3 & 46:15 62:17 & 182:18 & 92:5 102:7 & violation 66:1 \\
\hline 108:23,25 & 63:1,4 139:4 & unlabeled 93:10 & 117:18 136:21 & Virginia 19:16 \\
\hline 112:25 126:25 & 150:13,17 & unopposed & 166:3 168:24 & 19:19 20:8 \\
\hline 162:6 170:21 & 151:18 154:6 & 138:14,21 & vaguely \(11: 19\) & 183:13 \\
\hline 175:13 197:18 & 167:25 168:21 & unrealistic & 24:16 & visited 15:7 \\
\hline 199:6,20 & understand 7:16 & 147:5 & vaguest 16:3 & visiting 16:19 \\
\hline 200:15 201:15 & 7:20,22 8:5,8 & unrelated 52:25 & value 81:1 91:22 & 20:10 21:15,15 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 78 of 80
\begin{tabular}{|c|c|c|c|c|}
\hline visualize 194:13 & 147:17 148:6,7 & 81:7,22 82:14 & 93:17 112:5 & 168:19 \\
\hline vote 4:6 46:2,4 & 150:19 151:19 & 109:14 113:24 & 121:16 130:7 & witness 5:2 10:2 \\
\hline 46:6,9,18 & 176:5 191:24 & 116:4 117:5 & 132:3 144:12 & 10:2,8 11:1 \\
\hline 61:18,20 62:1 & wanted 119:24 & 122:23 123:12 & 191:11 201:11 & 12:23,25 13:15 \\
\hline 62:3 73:25,25 & 141:19 183:6 & 123:20 133:7 & 201:22 & 13:21,22 14:25 \\
\hline 77:11,23,24 & wants 38:14 & 150:12,12 & we've 7:10 35:10 & 15:11 19:15 \\
\hline 78:6,10,14 & ward 155:7,13 & 154:5 155:1 & 39:11 93:19 & 21:4 23:25 \\
\hline 81:5 83:16,18 & 155:22 160:19 & 158:10 159:14 & 115:3 201:24 & 25:13 26:9,25 \\
\hline 88:21 104:13 & 161:24 165:23 & 161:10 164:20 & WHITFORD 1:4 & 27:24 28:19 \\
\hline 123:1 126:19 & 169:9 186:13 & 165:2 168:20 & wide 107:4 & 29:23 30:19 \\
\hline 126:21 138:14 & 186:14,25 & 173:13 176:7 & WILLIAM 1:4 & 31:21 32:7 \\
\hline 138:21 149:14 & 187:11,19,22 & 177:25 178:18 & win 46:3 57:6,11 & 35:21 38:15 \\
\hline 161:21 181:12 & 189:7,8,11,21 & 188:15 189:22 & 57:13,18 58:9 & 40:24 41:3 \\
\hline 183:14 & 190:20,21,22 & 192:23 193:1 & 61:17,19,24 & 43:6,23 44:14 \\
\hline voters 53:16 & 190:23 191:5 & 195:17,20 & 62:4 73:25 & 47:12 49:24 \\
\hline 54:19 66:11 & 194:12,18,18 & 197:22 & 78:8 175:5 & 50:9,13 56:8 \\
\hline 160:17 161:4 & 194:21,21,23 & ways \(118: 12\) & winning 36:9 & 58:5,15 62:10 \\
\hline 188:2 193:2 & wards 160:20 & 131:13 150:20 & wins 77:22,24 & 68:19 69:17 \\
\hline 194:3 & 161:16,18,23 & 154:14 155:17 & 177:11 180:15 & 74:22 75:6,24 \\
\hline votes 66:12 & 161:25 162:12 & 188:1 192:11 & Wisconsin 1:2 & 79:8 81:10,12 \\
\hline 94:23 95:9 & 162:13 163:11 & weak 105:15 & 1:15 2:6 3:2,6 & 83:13 84:10 \\
\hline 97:6 103:18 & 165:14,19 & 106:4,13 & 4:17 13:13 & 90:24 91:15 \\
\hline 104:1 112:12 & 166:12,19,20 & weakly 105:1 & 15:1,10 16:2 & 92:6 100:11 \\
\hline vote/seat & 169:6 188:5,13 & Weathered 4:10 & 32:10,13,15 & 102:16 105:22 \\
\hline 103:11 & 188:19,20,24 & 94:3 & 40:11 42:9 & 106:9 115:1,10 \\
\hline voting 2:11 & 189:1,5,6,10 & web 171:18 & 51:15,21 82:10 & 117:19 120:8 \\
\hline 154:23 161:18 & 189:15,16,18 & 182:8 & 82:20 83:5 & 124:17,21 \\
\hline 161:19 & 189:20,24 & website 4:22 & 84:2,15,25 & 132:5 133:3 \\
\hline Vox.com 173:5 & 190:1,6,7,16 & 15:7,18 75:14 & 85:2 86:2 & 135:17 136:23 \\
\hline 173:13 182:8 & 191:8,12,13 & 75:15 169:24 & 88:11 93:21 & 140:10,23 \\
\hline vs \(1: 6\) & 192:7,13,20 & 170:21 171:16 & 98:14,18,23 & 141:23 142:18 \\
\hline & 193:19 194:14 & 171:21,23 & 99:2 139:16 & 144:21 145:14 \\
\hline W & 194:17,25 & week 172:11,15 & 141:3 142:3 & 153:19 163:7 \\
\hline wait 22:23 23:17 & 195:3 196:15 & weeks 21:13 & 148:25 151:3 & 166:4 168:25 \\
\hline 151:7 & 196:18 & weight 80:15 & 151:15,24 & 172:17,19 \\
\hline WALWORTH & wary 97:3 & 155:19 & 152:6 155:4,13 & 174:7 180:5 \\
\hline 202:3 & Washington & weighted 148:7 & 155:14,22 & 190:19 191:20 \\
\hline want 10:4,6,7 & 21:19 170:21 & went 18:17 88:2 & 156:17 158:13 & 200:4 202:8 \\
\hline 17:10 27:16,17 & 171:24 182:17 & 149:11 & 160:16,18 & witnesses 13:16 \\
\hline 31:14 41:15,16 & wasting 66:11 & weren't 17:7 & 161:3,5,16 & 13:17 \\
\hline 50:1,14 56:2 & wave 123:4 & 39:7 131:14 & 163:10 165:20 & won 4:6 77:10 \\
\hline 57:1,8 66:5 & 125:7 129:16 & West 3:4 & 168:1,2,4,9,14 & 78:6 95:10 \\
\hline 67:1 68:16 & 130:1,5,8,17 & WESTERN 1:2 & 169:4 179:16 & 126:19 127:1 \\
\hline 69:19,23 70:13 & 130:19,21,23 & we'11 6:16 9:5 & 179:19 180:2,4 & 179:11 181:3 \\
\hline 72:2,7 82:17 & 134:5 179:13 & 16:5 28:9 63:9 & 180:6 186:19 & 181:11 183:13 \\
\hline 84:9 85:7 90:2 & 181:3,7,11 & 81:19 89:2 & 193:2 197:4,7 & Wonkblog 4:23 \\
\hline 90:15 91:6 & way \(8: 1214: 8\) & 93:4,11,12 & 202:1,5,19 & 10:10 170:18 \\
\hline 92:22 93:25 & 22:7 29:16 & 94:3 104:14,15 & Wisconsin's 4:18 & 170:19,19 \\
\hline 98:20,21 100:4 & 33:10 34:2 & 107:12 114:23 & 41:25 42:1 & 171:10,12 \\
\hline 104:16 106:21 & 35:3,21 36:4 & 172:6,6,9 & 99:3,5 139:10 & word 65:6 79:6 \\
\hline 107:13 112:1 & 36:16,17 37:1 & 174:4 182:1,1 & 168:21 186:9 & worded 7:20 \\
\hline 122:21 123:9 & 37:23 40:5 & 198:25 & 187:2 & 52:6 100:9 \\
\hline 126:8,8,13,16 & 41:4 43:24 & we're 31:13, 15 & wish 37:10 & words 94:18 \\
\hline 127:3,8 132:20 & 44:2 45:6,8,10 & 39:6 44:23 & 98:11 & 102:10 171:17 \\
\hline 133:19,21 & 45:17,20 47:25 & 71:16 72:2 & withdraw 11:24 & work 4:14 8:2 \\
\hline 134:1 135:23 & 55:23 57:21 & 75:21 82:19,22 & 22:24 23:17 & 14:18,21,23 \\
\hline 135:25 139:21 & 59:20 67:23 & 86:21 88:8,14 & 35:25 47:15 & 15:19 16:2 \\
\hline
\end{tabular}

Case: 3:15-cv-00421-bbc Document \#: 65 Filed: 01/25/16 Page 79 of 80
\begin{tabular}{|c|c|c|c|c|}
\hline 17:12 21:19 & Y & 1/10 86:10 & 174:19,20 & 147:16 158:11 \\
\hline 23:8,10,25 & Y 132:15 & 1:00 121:12 & 182 4:14 & 161:19 182:19 \\
\hline 24:15,18,21 & yeah 5:16 6:5 & 1:10 121:12 & 19 4:5 50:24,25 & 183:11 184:9 \\
\hline 26:6 28:11,25 & 20:12 26:11 & 1:51 150:10 & 19th 124:5 & 184:12,21 \\
\hline 29:2,8,11,13 & 32:14 48:4 & 1:58 150:10 & 1970s 45:19 & 185:5,15 198:6 \\
\hline 29:21,24 30:4 & 50:12 55:9 & 10 62:9 113:12 & 1972 129:7,20 & 198:18 199:20 \\
\hline 33:1,10 34:3,6 & 66:20 70:3,8 & 10th 124:4 & 130:14 & 2014 4:7 6:6 \\
\hline 35:4 36:5,16 & 70:10 74:14 & 10:39 75:23 & 1980s 45:19 & 72:13 74:20 \\
\hline 37:24 39:10,20 & 75:1 85:14 & 10:43 75:23 & 1982 129:7,20 & 77:3,4 79:5,17 \\
\hline 40:9,17 42:4 & 89:10,13 93:6 & 100 2:14 18:12 & 130:14 & 80:2 83:22 \\
\hline 42:12 46:21 & 93:22 99:15,19 & 18:18 78:8 & 1990s 129:25 & 84:2,15,17,18 \\
\hline 47:9,16,20,22 & 107:19,20 & 157:3 & 1992 129:8,21 & 84:19,25 86:4 \\
\hline 59:21 99:17 & 112:3,20 & 100-percent-t... & 129:24 130:2 & 88:22 89:1 \\
\hline 122:4 139:3 & 115:13 116:5 & 112:18 & 1994 130:2,3 & 90:14,15 93:21 \\
\hline 144:7 156:12 & 120:16 121:11 & 100-percent-t... & & 158:11 173:5 \\
\hline 156:15,18 & 124:19,20 & 113:14,20 & 2 & 177:15 183:2 \\
\hline 159:21 160:8 & 128:6 131:25 & 105 4:11 & 2 94:12 95:1,3 & 199:6,10,20 \\
\hline 160:14 170:8 & 137:1 147:25 & 11 52:2,4,11 & 95:13,18,18,25 & 200:14 \\
\hline 173:10 177:3 & 164:2 165:5 & 63:9,10 71:8 & 96:3 97:12 & 2015 1:16 \\
\hline 198:13 & 167:14 169:17 & 71:10,19,25 & 107:19 194:23 & 2018 202:20 \\
\hline worked 21:22 & 172:15,17 & 117:8,13 & 195:5 201:1 & 202-3469 2:18 \\
\hline 25:4 & 182:1,1 186:15 & 118:16 126:19 & 2:24 169:18 & 21 4:7 73:9 75:6 \\
\hline working 21:15 & 188:22 190:8 & 126:21 & 2:38 169:18 & 75:7 82:19,22 \\
\hline 21:23,24 22:8 & 190:14,25 & 11:31 99:11 & 20 4:5 24:10 & 82:25 85:25 \\
\hline 22:10 & 191:2 196:8,21 & 1111 2:21 & 73:9 167:21 & 198:25 \\
\hline works 40:1 & 197:10 198:10 & 12 9:17 164:25 & 196:19,20,23 & 22 4:8 93:15,18 \\
\hline worksheet 82:23 & 201:16 & 167:14,23 & 202:6 & 162:21 \\
\hline wouldn't 33:7 & year 147:2 & 168:18 & 200 18:13,19 & 23 4:9 94:4,5 \\
\hline 56:8 76:3 & years 16:15,16 & 12:25 99:11 & 157:4 & 200:25 202:20 \\
\hline 80:19 86:15 & 20:1821:9 & 13 75:9 121:15 & 2000 159:4 & 24 4:11 105:19 \\
\hline 117:24 126:23 & 22:17 24:10 & \(13.288: 17\) & 2000s 4:10 94:3 & 105:20 112:1,5 \\
\hline 126:24 130:8 & 78:13 85:3,4,6 & 14 85:18 199:23 & 2002 113:10 & 137:19 138:6 \\
\hline 134:1 139:21 & 107:5 119:22 & 199:23 200:1 & 116:15,18 & 248-8145 2:24 \\
\hline 151:19 172:5 & 126:25 129:13 & 140 4:12 & 129:8,21 & 25 4:12 137:5,15 \\
\hline 176:5 180:23 & Yep 72:8 102:12 & \(151: 16166: 16\) & 2004 45:14 & 137:19 140:13 \\
\hline 187:4 189:19 & Yep 72.8102 .12 & 167:2 197:8 & 2006 149:14 & 140:15 148:23 \\
\hline 191:24 197:22 & Z & 15-CV-421-bbc & 2008 113:12 & 148:24 149:4 \\
\hline write 82:21 & zero 110:24 & 1:6 & 126:18 149:14 & 157:2 165:3 \\
\hline 85:24 87:2,2 & \[
111: 13,15,15
\] & \(153124: 17\) & 2010 83:12,15 & 167:15,16,17 \\
\hline 138:12 & 111.13,15,15 & 16 4:2,3 9:8,9 & 87:1 88:16 & 26 4:12 100:8,20 \\
\hline writes 15:17 & 0 & 9:14,19 10:9 & 89:17 92:4 & 105:22 164:3 \\
\hline written 4:12 & \(0.290: 14\) & 71:5 72:7,8 & 116:16 149:14 & 169:21,23,25 \\
\hline 9:24 15:9 & \[
0.23 \text { 106:5 }
\] & 138:12 & 159:4 & 172:22 \\
\hline 48:19 88:10 & 0.57 80:2 & 164 4:18 & 2011 140:17 & 266-0020 3:8 \\
\hline 139:14 140:16 & \[
0.690: 13
\] & 169 4:12 & 141:18 & 27 4:13 134:8 \\
\hline wrong 33:4,14 & 0.83 79:24 & 17 3:4 4:3 9:18 & 2012 4:6 74:19 & 135:9,13 136:2 \\
\hline 34:4 71:19 & 0.8379 .24 & 9:22 16:6,7 & 77:3,4 79:5,17 & 136:19 137:1 \\
\hline 85:14 90:17 & 1 & 70:15 140:17 & 79:24,24 83:19 & 137:17,18 \\
\hline 101:3 103:23 & 1 4:18 9:22 52:2 & 141:18 165:3 & 84:1,15,25 & 157:2 162:19 \\
\hline 185:11 & \[
52: 4,1094: 16
\] & 167:6 & 85:7,8 86:4 & 174:5,6 176:4 \\
\hline wrote 94:1 96:8 & \[
161: 11 \quad 164: 8
\] & 17.4 88:17 & 88:22 89:1 & 176:10 \\
\hline 151:21 182:18 & \[
182: 11 \quad 186: 13
\] & 170 4:23 & 90:13 93:21 & 276-1076 2:8 \\
\hline W-R-O-N-E 13:7 & 188:11 194:14 & 171 4:22 & 109:9 113:10 & 28 4:14 134:8 \\
\hline & 194:21,25 & 174 4:13 & 116:16,18 & 135:10,14 \\
\hline X & \[
19
\] & 176 4:14 & 142:20,23 & 136:2 176:21 \\
\hline X 3:10 4:1 & \(1.6585: 15,16\) & 18 4:4 50:5,7 & 146:2,6,10,15 & 176:22,24 \\
\hline 132:15 & 1.85 85:15,16 & 151:4,22 154:7 & 146:18 147:14 & 177:17 \\
\hline
\end{tabular}

D A DIGITAL ACCESS TO
SH SCHOLARSHIP AT HARVARD

\section*{Measuring the Compactness of Political Districting Plans}

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.
\begin{tabular}{|ll|}
\hline Citation & \begin{tabular}{l}
Fryer, Roland Gerhard, and Richard Holden. 2011. "Measuring \\
the Compactness of Political Districting Plans." Journal of Law \\
and Economics 54 (3): 493-535.
\end{tabular} \\
\hline Published Version & doi:10.1086/661511 \\
\hline Accessed & December 12, 2015 8:01:18 PM EST \\
\hline Citable Link & http://nrs.harvard.edu/urn-3:HUL.InstRepos:13456931 \\
\hline Terms of Use & \begin{tabular}{l}
This article was downloaded from Harvard University's DASH \\
repository, and is made available under the terms and conditions \\
applicable to Other Posted Material, as set forth at \\
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms- \\
of-use\#LAA
\end{tabular} \\
\hline
\end{tabular}
(Article begins on next page)

CHICAGO JOURNALS

\title{
The University of Chicago \\ The Booth School of Business of the University of Chicago \\ The University of Chicago Law School
}

\author{
Measuring the Compactness of Political Districting Plans \\ Author(s): Roland G. Fryer Tr., and Richard Holden \\ Reviewed work(s): \\ Source: Journal of Law and Economics, Vol. 54, No. 3 (August 2011), pp. 493-535 \\ Published by: The University of Chicago Press for The Booth School of Business of the University of Chicago and The University of Chicago Law School \\ Stable URL: http://www.jstor.org/stable/T0.1086/661511 \\ Accessed: 17/05/2012 03:46
}

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

The University of Chicago Press, The University of Chicago, The Booth School of Business of the University of Chicago, The University of Chicago Law School are collaborating with JSTOR to digitize, preserve and extend access to Journal of Law and Economics.

\title{
Measuring the Compactness of Political Districting Plans
}

\author{
Roland G. Fryer, Jr. Harvard University \\ Richard Holden University of New South Wales
}

\begin{abstract}
We develop a measure of compactness based on the distance between voters within the same district relative to the minimum distance achievable, which we coin the relative proximity index. Any compactness measure that satisfies three desirable properties (anonymity of voters, efficient clustering, and invariance to scale, population density, and number of districts) ranks districting plans identically to our index. We then calculate the relative proximity index for the 106th Congress, which requires us to solve for each state's maximal compact-ness-a problem that is nondeterministic polynomial-time hard (NP hard). The correlations between our index and the commonly used measures of dispersion and perimeter are -.37 and -.29 , respectively. We conclude by estimating seatvote curves under maximally compact districts for several large states. The fraction of additional seats a party obtains when its average vote increases is significantly greater under maximally compact districting plans relative to the existing plans.
\end{abstract}

\section*{1. Introduction}

The architecture of political boundaries is at the heart of the political process in the United States. \({ }^{1}\) When preferences over political candidates are sufficiently

\begin{abstract}
We are grateful to Alberto Alesina, Roland Benabou, Rosalind Dixon, Edward Glaeser, Emir Kamenica, Lawrence Katz, Gary King, Glenn Loury, Barry Mazur, Franziska Michor, Peter Michor, David Mumford, Barry Nalebuff, Ariel Pakes, Andrei Shleifer, Andrew Strominger, Jeremy Stein, and seminar participants at Brown University (applied math), Harvard University (labor economics), the National Bureau of Economic Research Summer Institute (law and economics), and the University of Vienna (math) for helpful discussions and suggestions. Shiyang Cao, Alexander Dubbs, Laura Kang, Eric Nielsen, and Andrew Thomas provided excellent research assistance. Financial support was provided by the Alphonse Fletcher Sr. Fellowship. Fryer thanks the Erwin Schrödinger International Institute for Mathematical Physics in Vienna for its hospitality.
\({ }^{1}\) Article 1, section 4, of the U.S. Constitution provides that "[t] he Times, Places and Manner of holding Elections for Senators and Representatives shall be prescribed in each State by the Legislature thereof; but the Congress may at any time by Law make or alter such Regulations, except as to the Places of choosing Senators."
\end{abstract}
[Jourral of Law and Economics, vol. 54 (August 2011)]
© 2011 by The University of Chicago. All rights reserved. 0022-2186/2011/5403-0017\$10.00
heterogeneous, altering the landscape of political districts can have large effects on the composition of elected officials. Prior to the 2003 Texas redistricting, the congressional delegation comprised 17 Democrats and 15 Republicans; after the 2004 elections there were 11 Democrats and 21 Republicans. \({ }^{2}\) Politically and racially motivated districting plans are believed to be a significant reason for the lack of adequate racial representation in state and federal legislatures, and there is a debate as to whether the creation of majority/minority districts to ensure some level of minority representation has led to fewer minority-friendly policies (see Shotts [2002] for an excellent overview and critique).

There are several factors that weigh on the constitutionality of districting plans: (1) equal population (the Supreme Court first established this principle for congressional districts in Wesberry v. Sanders (376 U.S. 1 [1964]), (2) contiguity (which is a requirement in 49 state constitutions), and (3) compactness. This last consideration-distinct from the mathematical notion of a finite subcover of a topological space-refers to how oddly shaped a political district is. The Supreme Court has acknowledged the importance of compactness in assessing districting plans for nearly half a century. \({ }^{3}\) Yet, despite its importance as a factor in adjudicating gerrymandering claims, the court has made it clear that no manageable standards have emerged (see the judgment of Justice Antonin Scalia in Vieth v. Jubelirer, 541 U.S. 267 [2004]). There is no consensus on how to adequately measure compactness. \({ }^{4}\)

In this paper, we propose a simple index of compactness based on the average physical distance between voters and show that this index has a number of attractive features. The index is the ratio of distance between voters in the same political district under a given plan and the minimal such distance achievable by any possible districting plan. The greater this ratio, which we call the relative

\footnotetext{
\({ }^{2}\) In the United States, political boundaries are typically redrawn every 10 years, after the decennial census. The 2003 middecade redistricting in Texas is a notable exception. The Supreme Court recently held that this was not unconstitutional in League of United Latin American Citizens v. Perry, 548 U.S. 399 (2006).
\({ }^{3}\) The apportionment acts of 1842,1901 , and 1911 contained a compactness requirement. In Davis v. Bandemer (476 U.S. 173 [1986]), Justices Lewis Powell and John Paul Stephens pointed to compactness as a major determinant of partisan gerrymandering, and Justices Byron White, William Brennan, Harold Blackmun, and Thurgood Marshall cited it as a useful criterion. Nineteen state constitutions still contain a compactness requirement (Barabas and Jerit 2004).
\({ }^{4}\) An important argument against the use of compactness as a districting principle is that it may disadvantage certain population subgroups. As Justice Scalia put it in Vieth v. Jubelirer (541 U.S. 267, 290), "Consider, for example, a legislature that draws district lines with no objectives in mind except compactness and respect for the lines of political subdivisions. Under that system, political groups that tend to cluster (as is the case with Democratic voters in cities) would be systematically affected by what might be called a natural packing effect. See Bandemer, 478 U.S. 159 (O'Connor, J., concurring in judgment)." First, the courts use compactness as one of several criteria. Second, it is an open question whether more compact districting plans have a positive or negative effect on racial or political representation.
}
proximity index (RPI), the less compact a district. \({ }^{5}\) The index satisfies three desirable properties: (1) voters are treated equally (anonymity), (2) increasing the distances between voters within a political district leads to a larger value of the index (clustering), and (3) the index is invariant to the scale, population density, and number of districts in a state (independence). In Appendix A, we show that any compactness index that satisfies these properties ranks districting plans identically to the relative proximity index.
The RPI has several advantages over existing measures of compactness. First, it is the only compactness index that permits meaningful comparisons across states. Second, the index does not assume (implicitly or otherwise) that voters are uniformly distributed across political districts. Many previously proposed measures adopt a geometric approach (using the perimeter length of political districts, for example) and fail to consider the distribution of voters within a state. Third, our measure is constructed at the state level. Some measures apply to political districts. \({ }^{6}\) Yet the districting problem is fundamentally about partitioning; the shape of one element of the partition affects the shapes of the other elements. Analyzing individual pieces of a larger partition in isolation can be misleading. Fourth, although our index is simple, it is based on desirable properties that compactness measures should satisfy. Existing measures have been proposed in a relatively ad hoc fashion. At a minimum, our approach is a more principled way of narrowing the field of competing measures.
We apply the index to the districting plans of the 106th Congress using tractlevel data from the U.S. census. In doing so, we are required to calculate each state's maximal compactness. This number is the denominator of our index. But calculating this number by brute force, enumerating the set of all feasible partitions and maximizing compactness over this set, is impossible. \({ }^{7}\) Existing algorithms to solve similar problems in computer science and computational biology work only for small samples (\(\approx 100\)) or do not require that partitions have the same size. We develop an algorithm for approximating this partitioning problem that is suitable for very large samples and guarantees nearly equal populations in each partition. The algorithm is based on power diagrams - a generalization of classic Voronoi diagrams-which have been used extensively in algebraic and tropical geometry (Passare and Rullgard 2004; Richter-Gebert,
\({ }^{5}\) For the empirical analysis and characterization of the optimally compact districting plan we use Euclidean distance. But since many of our results are proven in an arbitrary metric space, one can extend much of the analysis here by using driving distance or what many legal scholars refer to as "communities of interest."
\({ }^{6}\) See Young (1988), however, and Section 2.2.
\({ }^{7}\) A back-of-the-envelope calculation reveals that, for California alone, the cardinality of this set is larger than the number of atoms in the observable universe.

Sturmfels, and Theobald 2003), condensed matter physics, and toric geometry and string theory (Diaconescu, Florea, and Grassi 2002). \({ }^{8}\)

The empirical results we obtain on the compactness of districting plans are interesting and in some cases quite surprising. The five states with the most compact districting plans are Idaho, Nebraska, Arkansas, Mississippi, and Minnesota. The five least compact states are Tennessee, Texas, New York, Massachusetts, and New Jersey. The districting plan that solves the minimumpartitioning problem is more than 40 percent more compact than the typical districting plan. States that are more compact tend to be states with a larger share of minorities and a larger difference between the percentages who vote Republican and Democrat. The latter is intuitive: states with more to gain from altering the design of political districts tend to do it more. Whether or not a state is forced to submit its districting plans to the Department of Justice (under section 5 of the Voting Rights Act) is also highly correlated with compactness. With only 43 observations, these estimates are not statistically significant. The rank correlations between the RPI and the most popular indexes of compactness, dispersion, and perimeter are -.37 and -.29 , respectively.

We conclude our analysis by estimating a counterfactual of the 2000 congressional elections in California, New York, Pennsylvania, and Texas using optimally compact districts derived from our algorithm. To better understand the impact that a strict policy of maximal compactness might have on those elected, we estimate a seat-vote curve for the actual and hypothetical districting plans of each state. Seat-vote curves are a common tool that political scientists use to analyze the partisan consequences of districting plans. These curves are characterized by two things: bias and responsiveness. Bias reports, when the vote is split, twice the difference between the seat share the Democrats get and 50 percent. Responsiveness is the fraction of seats the Democrats get if the average vote goes up 1 percent. Responsiveness can be interpreted as a measure of the nature of democracy in the state. For instance, if Responsiveness is 1 , then representation is proportional to the share of the vote. If it is greater than 1 , it is majoritarian, and if it were to be infinity, then it would be winner take all.

The results of this exercise are quite illuminating. California, New York, Pennsylvania, and Texas all have substantially more responsive seat-vote curves under our new partition, but Bias is unchanged. These results show that maximally compact districts would have a statistically significant effect on voting outcomes, making election outcomes more responsive to actual votes.

The structure of the paper is as follows. Section 2 provides a brief legal history of compactness and an overview of existing measures. Section 3 presents the
\({ }^{\mathbf{8}}\) Power diagrams are a powerful tool to partition Euclidean space into cells by minimizing the distance between points in a cell and the centroid of that cell. We prove that maximally compact districts are power diagrams and that the line separating two adjacent districts is perpendicular to the line connecting their centroids, and all such lines separating three adjacent districts meet at a single point. It follows that the resulting districts are convex polygons.
relative proximity index and provides a brief discussion of its properties. Section 4 implements the index using data from the 106th Congress. Section 5 provides a counterfactual estimate of the congressional elections in four large states using the partitions derived from our index. Section 6 concludes with a discussion of potential extensions and generalizations of our approach. There are five appendixes. Appendix A contains an axiomatic derivation of the RPI, showing that any index that satisfies our three axioms will rank districting plans identically to the RPI. Appendix B provides further technical details, including a formal description of the algorithm used to compute maximally compact districts and proofs of all technical results. Appendix C provides a guide to programs to calculate the RPI, Appendix D contains figures comparing actual district maps and those obtained from our algorithm, and Appendix E contains figures comparing seat-vote curves.

\section*{2. Background and Previous Literature}

\subsection*{2.1. A Brief Legal History of Compactness}

Compactness has played a fundamental role in the jurisprudence of gerrymandering, both racial and political. Since Gomillion v. Lightfoot (364 U.S. 339 [1960]), where the court struck down Alabama's plan to redraw the boundaries of the city of Tuskegee, the court has recognized compactness as a relevant factor in considering racial gerrymandering claims. In Gomillion the court referred to the proposed district as "an uncouth 28 -sided figure" (364 U.S. 340). Although Gomillion is considered by many to be a jurisprudential high-water mark, the role of compactness in considering racial gerrymandering claims has been affirmed in other decisions." As Justice Sandra Day O'Connor put it, "We believe that reapportionment is one area in which appearances do matter" (Shaw \(v\). Reno, 509 U.S. 603, 647 [1993]).

Compactness has also played an important role in partisan gerrymandering claims. It has been recognized by the court as a traditional districting principle. In Davis v. Bandemer, Justices Powell and Stevens described compactness as a major criterion (478 U.S. 173), and Justices Byron White, Brennan, Blackmun, and Marshall described it as an important criterion (106 S. Ct. 2797, 2815). In Vieth, the plurality acknowledged compactness as a traditional districting principle. Justice Anthony Kennedy, in his concurring opinion, stated that compactness is an important principle in assessing partisan gerrymandering claims: "We have explained that 'traditional districting principles,' which include 'compactness, contiguity, and respect for political subdivisions,' are 'important not because they are constitutionally required . . . but because they are objective

\footnotetext{
\({ }^{9}\) In Shaw v. Reno (509 U.S. 630 [1993]), the court upheld a challenge to North Carolina's redistricting plan on the basis that the ill compactness of the districts was indicative of racial gerrymandering. See also Thornburg v. Gingles (478 U.S. 30 [1986]) or Growe v. Emison (278 U.S. 109 [1993]).
}
factors that may serve to defeat a claim that a district has been gerrymandered on racial lines.' . . . In my view, the same standards should apply to claims of political gerrymandering, for the essence of a gerrymander is the same regardless of whether the group is identified as political or racial" (541 U.S. 127, 335). Despite different views about what a judicially manageable standard is or might be, the court has been unanimous that it must include some notion of compactness.

\subsection*{2.2. Existing Measures of Compactness}

There is a large literature in political science on the measurement of compactness. Niemi et al. (1990) provide a comprehensive account of the various measures that have been proposed (see also Young 1988). \({ }^{10}\) Niemi et al. (1990) classify existing measures into four categories: (1) dispersion measures, (2) perimeter measures, (3) population measures, and (4) other miscellaneous measures. \({ }^{11}\) The important takeaway is that all of these measures either fail to account for the population distribution or are not invariant to geographical size. As such, meaningful comparisons across states or time cannot be made.

One class of dispersion measures are based on length versus width of a rectangle that circumscribes the district (Harris 1964; Eig and Setizinger 1981; Young 1988). A second uses circumscribing figures other than rectangles and considers the area of these figures. \({ }^{12}\) At least two moment-of-inertia measures have been suggested. Schwartzberg (1966) and Kaiser (1966) consider the variance of the distances from each point in the district to the district's areal center. Boyce and Clark (1964) consider the mean distance from the areal center to a point on the perimeter reached by equally spaced radial lines.

A second set of measures are those based on perimeters. The sum of perimeter lengths was suggested by Adams (1977), Eig and Setizinger (1981), and Wells (1982), but this measure is potentially intractable for reasons highlighted in the classic work of Mandelbrot (1967) on the length of the coastline of Great Britain. In fact, a measure based on fractal dimensions was proposed by Knight (2004). Various authors have proposed measures that compare the perimeter to the area of the district. Cox (1927) considers the ratio of the district area to that of a circle with the same perimeter. \({ }^{13}\)

There are three population-based measures. Hofeller and Grofman (1990) propose two: the ratio of the district population to the convex hull of the district and the ratio of the district population to the smallest circumscribing circle.

\footnotetext{
\({ }^{10}\) Some of these measures were originally proposed for purposes other than those involving legislative districts but were later applied by other authors to that issue. We cite the original authors,
\({ }^{1 "}\) We draw heavily on their summary and classification.
\({ }^{12}\) Reock (1961) proposes a circle, Geisler (1985) a hexagon, Horton (1932) and Gibbs (1961) a circle with diameter equal to the district's longest axis, and still others use the smallest convex figure (see Young 1988),
\({ }^{13}\) For variants of Cox (1927), see Attneave and Arnoult (1956), Horton (1932), Schwartzberg (1966), or Pounds (1972).
}

Weaver and Hess (1963) suggest the population moment of inertia, normalized to lie in the unit interval.

Niemi et al.'s (1990) final miscellaneous category includes three measures: the absolute deviation of district area from average area in the state (Theobald 1970), a measure based on the number of reflexive and nonreflexive interior angles (Taylor 1973), and the sum of all pairwise distances between the centers of subunits of the district, weighted by subunit population (Papayanopolous 1973). Finally, Mehrotra, Johnson, and Nemhauser (1998) use a branch-and-price algorithm to compute a districting plan for South Carolina. Their objective function is how far people are from a graph-theoretic measure of the center of the district.

\section*{3. The Relative Proximity Index}

\subsection*{3.1. Basic Building Blocks}

Let \(\mathbf{S}\) denote a collection of states with typical element \(S \in \mathbf{S}\). A finite set \(S\), whose elements we call individuals or voters, is a metric space with associated distance function \(d_{i j} \geq 0\), which measures the distance between any two elements \(i, j \in S\). Let \(V_{S}=\left\{v_{1}^{S}, \ldots, v_{n}^{S}\right\}\) denote a finite partition of \(S\) into elements \(v_{i} \in V_{s}\), which we shall refer to as voting districts, or districts. We will routinely refer to the partition \(V_{S}\) as a districting plan for state \(S\) and allow \(n\) to represent a generic integer. We restrict voting districts to be equal in size, up to integer rounding. \({ }^{14,15}\) Let \(\mathcal{V}_{S}\) denote the set of all partitions of \(S\) that satisfy this restriction. We say that a districting plan \(V_{S}\) is feasible if and only if \(V_{S} \in \mathcal{V}_{S}\).

Definition 1. A compactness index for a state \(S\) is a map \(c: V_{S} \mapsto \mathbb{R}_{+}\).

\subsection*{3.2. The Relative Proximity Index}

The RPI is the ratio of two components. The numerator sums the pairwise squared distance between voters within each district in a state, as given by the actual districting plan in the state. The denominator is that same sum but for the districting plan that minimizes the sum.

Consider voter \(i\) in element \(v \in V_{S}\) and define
\[
\begin{equation*}
\pi\left(V_{S}\right)=\sum_{v \in V} \sum_{i \in v} \sum_{j \in V}\left(d_{i j}\right)^{2} . \tag{1}
\end{equation*}
\]

\footnotetext{
\({ }^{14}\) This was first held as a requirement by the Court in Baker v. Carr (369 U.S. 186 [1962]) and is becoming a very strict constraint. For instance, a 2002 Pennsylvania redistricting plan was struck down because one district had 19 more people (not even voters) than another. The 2004 Texas redistricting had each district with the same number of people up to integer rounding. Yet the population may grow at drastically different rates across political districts between redistrictings. For instance, in the 2000 census, a typical state had a 23 percent difference in the populations of its smallest and largest districts.
\({ }^{15}\) In symbols, \(\left|v_{r}^{s}\right| \in\left\{\left[|S| /\left|V_{S}\right|\right\rfloor,\left\lceil|S| /\left|V_{s}\right|\right\}\right\}\) for all \(v_{i}^{s} \in V_{s}\), where \(\lceil x \mid=\inf \{n \in \mathbb{Z} \mid x \leq n\}\) and \(\lfloor x\rfloor=\sup \{n \in \mathbb{Z} \mid n \leq x\}\).
}

Similarly, let \(V_{S}^{*}=\arg \min _{V_{S} \in V_{S}}\left\{\pi\left(V_{s}\right)\right\}\). The RPI, for a partition of state \(S\), \(V_{s}\), is given by
\[
\mathrm{RPI}=\frac{\pi\left(V_{S}\right)}{\pi\left(V_{s}^{*}\right)}
\]

The RPI is well defined if \(\pi\left(V_{s}^{*}\right) \neq 0\), which holds so long as all voters are not located at the same point.

In the nondegenerate case, the RPI ranges from 1 to infinity; higher numbers indicate less compactness. The index has an intuitive interpretation: a value of 3 implies that the current districting plan is roughly three times less compact than a state's maximal compactness.

\subsection*{3.3. A Constructive Example}

Consider the state depicted in Figure 1. The nodes represent voters. There are two voting districts separated by the bold dashed line. Voters are spread evenly across the state; each adjacent voter is 1 kilometer apart. Voter 1 is 1 kilometer away from voters 2 and \(4, \sqrt{2}\) kilometers away from voter 5, \(\sqrt{5}\) kilometers away from voter 6, and so on.
There are two steps involved in calculating the RPI. First, we calculate the numerator. For voter 1 the sum of squared distances is 5 , since she is 1 kilometer away from voter 2 and 2 kilometers away from voter 3-and they are the only other voters in her district. For voter 2 the total is \(1^{2}+1^{2}=2\), and for voter 3 it is \(1^{2}+2^{2}=5\). Voters 4,5 , and 6 are symmetric to voters 1,2 , and 3 , respectively. Thus, the numerator of our index is \(2(5+2+5)=24\).
The second step in calculating the RPI is to account for state-specific topography. This will represent the denominator of our index. There are nine other feasible partitions in addition to \(\{\{1,2,3\},\{4,5,6\}\} .^{16}\) We perform the same calculation as above for each of those partitions and then take the minimum of these 10 values. The minimizing partition is \(\{\{1,4,5\},\{2,3,6\}\}\), although \(\{\{1,2,4\},\{3,5,6\}\}\) achieves the same value. That value turns out to be \(2\left(1^{2}+2+1^{2}+2+1^{2}+1^{2}\right)=16\). The index is thus \(24 / 16=3 / 2\).
The example provides a snapshot of the RPI and previews some of its properties. For instance, because the index is calculated relative to a state-specific baseline, neither the size of states nor their population density can solely alter the index. If we increased the distance between any two nodes in Figure 1 to 2 kilometers, the index would not change. Similarly, if we imputed 10 more individuals to each node-thinking of them in terms of neighborhoods rather than households-the index would be unaltered.
\({ }^{16}\) They are \(\{\{1,2,4\},\{3,5,6\}\},\{\{1,2,5\},\{3,4,6\}\},\{\{1,2,6\},\{3,4,5\}\},\{\{1,3,4\},\{2,5,6\}\}\), \(\{\{1,3,5\},\{2,4,6\}\},\{\{1,3,6\},\{2,4,5\}\},\{\{1,4,5\},\{2,3,6\}\},\{\{1,4,6\},\{2,3,5\}\}\), and \(\{\{1,5,6\}\), \(\{2,3,4\}\}\).

Figure 1. A simple example

\subsection*{3.4. Three Desirable Properties}

Any desirable index of compactness should satisfy three properties. (Formal mathematical statements of these properties are provided in Appendix A.)

Anonymity. The index does not depend on the identity of any given voter.
Invariance. The index does not depend on a state's population density, physical size, or number of districts.

Clustering. If two states with the same number of voters, the same number of voting districts, and the same value for the minimum-partitioning problem have different total intradistrict distances, then the state with the larger value is less compact.

It is straightfoward to see from the above example that the RPI satisfies these properties. All voters are weighted equally, so anonymity is satisfied. The denominator of the RPI scales the index so that invariance is satisfied. Finally, clustering is satisfied because the numerator sums pairwise squared distances. In fact, we can say something much stronger:

Theorem 1. Any compactness index that satisfies anonymity, invariance, and efficient clustering ranks districting plans identically to the RPI.

Proof. See Appendix A.
The result is proved by noting that by transforming a given state (expanding the set of individuals and number of districts, for example) it can be compared to another state. Anonymity and independence ensure that this can be done in a way that does not alter the compactness index, and clustering then allows a comparison of two districting plans based on their total intracluster pairwise distances.

\section*{4. Implementing the Relative Proximity Index}

In this section, we apply the RPI to the districting plans of the 106th Congress. The challenge with calculating our index is computing the denominator, which requires finding a districting plan that minimizes the distance between voters. This is a complex combinatorial problem for which existing algorithms are inadequate. We solve this problem by showing that optimal districting plans are akin to so-called power diagrams \({ }^{17}\) and then modifying an algorithm presented in Aurenhammer, Hoffmann, and Aronov (1998) to create a power diagram. The key ingredient in the algorithm is the centroid, or geometric center, of existing districts, \({ }^{18}\) a point that is provided in census data from the GeoLytics database. We apply our algorithm to the data from the 2000 census and calculate both the optimal districting plan following that census and the relative proximity index for the actual districting plans employed to elect the 106th Congress.

\subsection*{4.1. The Minimum-Partitioning Problem}

Calculating the denominator of the relative proximity index is a complicated combinatorial problem. When partitioning \(n\) voters into \(d\) districts, the number of feasible partitions is \(\{(n-1)!/[(n / d-1)!(n-n / d)!]\}^{d-1}\). So, for California alone, using data at the tract level, \(n=6,800\) and \(d=53\). The cardinality of the set of feasible partitions is \(78.4 \times 10^{59,351}\). Technically speaking, the problem is nondeterministic polynomial-time hard (NP hard).
Similar problems arise in fields such as applied mathematics (computer vision), computer science and operations research (the \(k\)-way equipartition problem), and computational biology (gene clustering). The celebrated Mumford-Shah functional is a candidate functional designed to segment images (Mumford and Shah 1989). The structure of the functional contains two penalty functions: one to ensure that the continuous approximation is close to the discrete problem and another to penalize perimeter length. While the Mumford-Shah functional is a powerful tool for myriad problems, it cannot guarantee even nearly equal population size across districts.

If our objective function were simply distance, rather than distance squared, the problem would be precisely the \(k\)-way equipartition problem, which has received considerable attention in computer science and is related to a literature in computational biology employing minimum-spanning trees to partition sim-

\footnotetext{
\({ }^{17}\) Power diagrams are a generalization of Voronoi diagrams due to Aurenhammer (1987). Voronoi diagrams are convex polygons with the important feature that each contains a so-called generator point such that that all other points within the polygon are closer to that generator point than to generator points of adjacent polygons.
\({ }^{18}\) More precisely, a centroid is the intersection of all straight lines that divide the district into two parts of equal moment about the line.
}
ilar genes into clusters. \({ }^{19}\) Good algorithms for the \(k\)-way equipartition problem when sample sizes are small (\(\approx 100\)) can be found in Ji and Mitchell (2005) and Mitchell (2003). This restriction makes these algorithms impractical for our purposes.
Below, we develop an algorithm to approximate the minimum-partitioning problem for large samples, based on power diagrams (a concept we make precise below), that guarantees nearly equal populations in each partition and runs in \(O\left[n \log \left(n^{\prime}\right)\right]\) time, where \(n^{\prime}\) is the number of voters and \(n\) is the number of districts in a state.

\subsection*{4.2. Optimally Compact Districting Plans and Power Diagrams}

In this section, we show that optimally compact districting plans are power diagrams, a generalization of Voronoi diagrams, which were introduced into computational geometry by Aurenhammer (1987). Consider a set of generator points \(m_{1}, \ldots, m_{n}\) in a finite dimensional Euclidean space. The power of a point (voter) \(x \in S\) with respect to a generator point \(m_{i}\), which is some arbitrary point, is given by the function \(\operatorname{pow}_{\lambda}\left(x, m_{i}\right)=\left\|x-m_{i}\right\|^{2}-\lambda_{i}\), where \(\|\cdot\|\) is the Euclidean norm. \({ }^{20}\) The total number of voters assigned to generator point \(m_{i}\) is called its capacity, denoted \(K_{m ;}\). A power diagram is an assignment of voters to generator points such that point \(x\) is assigned to generator point \(m_{i}\) if and only if \(\operatorname{pow}_{\lambda}\left(x, m_{i}\right)<\operatorname{pow}_{\lambda}\left(x, m_{j}\right)\) for all \(j \neq i\). Roughly speaking, voters are placed in the district whose centroid they are closest to. Let the points assigned to generator point \(m_{i}\) be denoted \(D_{i}\), which is referred to as a cell. Note that no two \(D_{i}^{\prime}\) 's can intersect, and furthermore, every \(x \in S\) is in some \(D_{i}\), and hence \(\left\{D_{1}, \ldots, D_{n}\right\}\) is a partition of \(S\). Note also that the dividing line between cells \(D_{i}\) and \(D_{j}\) in a power diagram satisfies \(\left\|x-m_{i}\right\|^{2}-\left\|x-m_{j}\right\|^{2}=\lambda_{i}-\lambda_{j}\).
Definition 2. An optimally compact districting plan for state \(S\) is a feasible districting plan, \(V_{s}\), with an associated total distance \(\sum_{v \leq V_{s}} \Sigma_{i, j e v}\left(d_{i j}\right)^{2}\) such that there does not exist another feasible districting plan, \(V_{s}^{\prime}\), with an associated total distance \(\sum_{v \in v^{\prime} s} \Sigma_{i, j \in v}\left(d_{i j}\right)^{2}\) such that \(\sum_{v \in v^{\prime} s} \Sigma_{i, j v v}\left(d_{i j}\right)^{2}<\sum_{v \in V_{s}} \Sigma_{i, j \in v}\left(d_{i j}\right)^{2}\).
We can now state our second key result:
Theorem 2. Optimally compact districting plans are power diagrams.
Proof. See Appendix B.
This theorem follows from three lemmas that partially characterize an optimal

\footnotetext{
\({ }^{19}\) Without the constraint that each district must have an equal number of voters, the problem is the min-sum \(k\)-clustering problem, which was shown by Sahni and Gonzales (1976) to be nondeterministic polynomial-time (NP) complete. An approximation for it in a general metric space that runs in \(n^{o\left(\nu_{c c}\right)}\) time has been found by Bartal, Charikar, and Raz (2001). It is also closely related to the classic graph-partitioning problem, which is also known to be NP hard.
\({ }^{20}\) When \(\lambda_{1}=\lambda\) for all \(i\), then the power diagram is a Voronoi diagram. Power diagrams are thus a generalization of Voronoi diagrams.
}
districting plan and establish that these characteristics imply a power diagram. The first lemma shows that our objective function is equivalent to a variant of the \(k\)-means objective function. This is important because it allows us to focus attention on district centroids.

The second lemma shows that any pair of districts are separated by a line perpendicular to a line connecting their centroids. This separating line is the locus of points at which the powers of the two centroids are equal. It represents all points at which one is indifferent between placing voters in one district or the other. Finally, we establish that all such lines separating any three adjacent districts meet at a single point; they are concurrent.
To see that these properties imply a power diagram, recall that a power diagram is a set of lines dividing a Euclidean space into a finite number of cells. The line separating two adjacent cells is such that the power of the points along this locus is equal to their respective centroids. And the power of a point is measured as a function of the difference between a point and the centroid of its district, which we have already established is equivalent to our objective function. It is important to note that if the line separating two adjacent districts were not perpendicular to the line connecting their centroids, then one could not be indifferent between points being in one district or the other everywhere along the line. This holds for all such pairs of districts, which implies concurrent lines. Taken together, these imply that optimally compact districtings are power diagrams. \({ }^{21}\) Notice that, since all subsets of a convex set formed by drawing straight lines are convex, it follows that the resulting districts must be convex polygons.

Theorem 2 provides an important insight for building an algorithm, allowing us to use all we know about a partial characterization of optimally compact districts. There are three important caveats. First, we have not yet proven that there is a unique power diagram for every set of starting values. Second, we are able to map optimal districting plans into power diagrams only when distance is quadratic, because this guarantees that optimal districting involves straight lines. Mathematically, this is an obvious limitation. Practically, however, it boils down to assuming that courts punish outliers in a district more. Given this assumption, we are hard pressed to find a principled reason for courts to prefer higher order exponents. Third, power diagrams do not guarantee a global optimum to the minimum-partitioning problem because their structure depends on exogenously given starting values.

Figure 2A depicts the optimally compact districting plan for a hypothetical state. There are nine voters, arranged so that the state is a lattice. The stars

\footnotetext{
\({ }^{21}\) Aurenhammer, Hoffmann, and Aronov (1998) prove a closely related theorem, taking squared distance from the centroid as the objective function. Their proof proceeds by showing that if an algorithm can be designed to find a power diagram, then it is an optimal partition. By contrast, we provide a constructive proof based on the perpendicular- and concurrent-line lemmas. We could, of course, state our lemma on the equivalence of the objective functions and then appeal to their result, but our current proof provides more information about optirnal districtings.
}

Figure 2. Good and bad generator points
represent the centroids of the resulting districts. Note that the line separating districts 1 and 2 is perpendicular to a line connecting their centroids (the same is true for districts 1 and 3 and for 2 and 3). This is an illustration of the perpendicular-line lemma alluded to above. The concurrent-line lemma is also illustrated by the intersection of the lines separating districts 1,2 , and 3 at a single point. The partition depicted is indeed the globally optimal partition. Once one knows that, the centroids of the districts are easy to compute.

In our problem, however, we do not know the optimal districts in advance, and so we must choose generator points that will not in general be the centroids of the optimal districting plan. An important part of the approximation problem is selecting and improving upon the generator points. To illustrate this point, consider Figure 2B, which chooses alternative generator points than those used to partition in Figure 2A. The generator point used for district 1 differs from that used in Figure 2A, resulting in four voters being placed in district 1 and only two in district 2 , thereby violating the equal-size constraint.

\subsection*{4.3. An Algorithm Based on Power Diagrams}

The algorithm we propose is a modification of the second algorithm presented in Aurenhammer, Hoffmann, and Aronov (1998). Since we know by theorem 2 that local optima of the RPI are power diagrams, we search within the set of power diagrams for one that is a feasible districting. However, as power diagrams are generated around sites, which we call \(z_{1}, \ldots, z_{n}\), it is necessary to update the locations of the sites as well as the design of the districts.

We provide a complete formal treatment in Appendix B and here give a heuristic description of the algorithm. The algorithm takes the centroids of existing districts as starting generator points and computes a power diagram. Power diagrams do not require partitions (cells) to be even roughly equal, so, after constructing the diagram, the algorithm adjusts the district boundaries until
the number of voters within each district is equal up to integer rounding. We then recalculate the centroids of the new districts and check to see if any pair of individuals can switch districts and reduce the objective function (total squared distances). Our modification of Aurenhammer, Hoffmann, and Aronov's algorithm continues to check until there are no more pairs that can be switched and reduce the objective function by a predetermined value. The algorithm then repeats itself-recalculating centroids, drawing power diagrams, adjusting boundaries, and so on-until it reaches a value within preset bounds for a stopping rule.

\subsection*{4.4. The Compactness of Political Districting Plans of the 106th Congress}

The ideal data to estimate the relative proximity index would contain the geographical coordinates of every household in the United States, its political district, some measure of distance between any two households within a state, and a precise definition of communities of interest. This information is not available.
In lieu of this, we use tract-level data from the 2000 U.S. census from the GeoLytics database, which contain the latitude and longitude of the geographic centroid of each tract, the political district each centroid is in, and its total population. \({ }^{22}\) Census tracts are small, relatively permanent statistical subdivisions of a county. The spatial size of census tracts varies widely depending on the density of settlement, but they do not cross county boundaries. Census tracts usually have between 2,500 and 8,000 persons and, when first delineated, are designed to be homogeneous with respect to population characteristics, economic status, and living conditions. Our main interest in using this level of aggregation (relative to blocks or block groups) is that census tracts are more likely to contain some notion of communities of interest.
An important consideration in the application of the RPI is how to handle tracts of different densities. The equal-representation constraint-districting plans must have the same number of individuals in each district up to integer rounding-is predicated on individuals, not tracts. Our algorithm, described below, addresses this issue by allowing one to divide tracts into arbitrarily small units. There is an important trade-off between computational burden and the variance in population across districts; the burden will lessen with technological progress. For ease of implementation, we have chosen not to split any tracts. As a robustness check, we split tracts of small states into four smaller parts and assigned them to the same longitude and altered their latitude by .001 degrees. In all cases, accuracy (and computing time) were substantially increased with little effect on the RPI.
To calculate the RPI for each state, we begin with the numerator of the index,

\footnotetext{
\({ }^{22}\) For roughly 5,000 census tracts, information on congressional district was not provided. In these cases, we mapped the coordinates of the centroid of the tract and manually keypunched the congressional district to which it belonged.
}
\(\Sigma_{v \in V} \Sigma_{i, j \in v}\left(d_{i j}\right)^{2}\), where \(i\) and \(j\) are population centroids of tracts and \(v\) are voting districts. We weight the total distances by the population density of each tract. An identical calculation is performed for the denominator, but \(V\) is constructed by our power diagram algorithm.

The empirical results we obtain on the compactness of districting plans are displayed in Table 1. The maximum deviations from equal partitions in the actual data and those resulting from our algorithm are an indication of the degree to which the equal-size constraint holds. The bootstrapping technique that we used for the mean RPI is described below. It is important to realize that for every state, the elements of our partitions are more balanced than what appears in the actual districting plans. Further, the largest deviation from equal partitions in the actual data (Florida, .46) is substantially larger than our largest deviation (California, .22).

Table 1 illustrates that the five states with the most compact districting plans are Idaho, Washington, Arkansas, Mississippi, and New Hampshire. The five most compact states are Idaho, Nebraska, Arkansas, Mississippi, and Minnesota. The five least compact states are Tennessee, Texas, New York, Massachusetts, and New Jersey. The districting plan that solves the minimum-partitioning problem is more than 40 percent more compact than the typical districting plan. The rank correlations between the RPI and the most popular indexes of compactness, dispersion and perimeter, are -.37 and -.29 , respectively.

Axiom 3 (invariance to scale, population density, and number of districts; see Appendix A) ensures that the RPI can be compared across states, but it does not guarantee that the distribution of RPI values across states is the same. It is entirely plausible that it is easier (a lower percentile of the distribution of RPI values from feasible partitions) to obtain a given value of RPI for Texas than, say, Florida. Thus, gleaning an understanding of how sensitive RPI values are for a given state is difficult.

To try to address this issue, we calculated 200 RPI values for each state by randomly generating starting values for the algorithm. Table 1 reports the means and associated standard deviations from this process and in what percentile in the distribution our original RPI value lies, if the distribution of RPI values is assumed to be normal. In all but one case, our original estimates are higher than the mean of the simulated distribution, and in most cases, under the normality assumption, we are at the far extreme of the right tail of the distribution. There are four notable exceptions: Oklahoma, Oregon, Rhode Island, and Wisconsin. In these states, our estimate of the RPI is at the median or below in the simulated distribution. This is likely due to the fact that the current partitions of these states generate starting values that are highly nonoptimal. To obtain maximal compactness in these states, a significant restructuring is likely needed.

To understand what state demographic characteristics are correlated with compactness, we estimate a state-level ordinary least squares regression where the dependent variable is the RPI and the independent variables are the percentages

Table 1
The Relative Proximity Index, 2000
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{State} & \multirow[b]{2}{*}{RPI} & \multicolumn{2}{|r|}{Max Deviation} & \multirow[b]{2}{*}{Mean RPI} & \multirow[b]{2}{*}{SD RPI} & \multirow[b]{2}{*}{Percentile} \\
\hline & & Actual & Algorithm & & & \\
\hline Alabama & 1.21 & . 27 & . 05 & . 99 & . 03 & 1.00 \\
\hline Arizona & 1.34 & . 20 & . 15 & 1.27 & . 04 & . 97 \\
\hline Arkansas & 1.08 & . 14 & . 05 & . 78 & . 01 & 1.00 \\
\hline California & 1.49 & . 17 & . 04 & . 96 & . 03 & 1.00 \\
\hline Colorado & 1.59 & . 15 & . 05 & 1.28 & . 02 & 1.00 \\
\hline Connecticut & 1.36 & . 02 & . 01 & 1.09 & . 35 & . 78 \\
\hline Florida & 1.39 & . 46 & . 07 & . 83 & . 08 & 1.00 \\
\hline Georgia & 1.24 & . 14 & . 09 & . 90 & . 01 & 1.00 \\
\hline Hawaii & 1.59 & . 09 & . 04 & 1.48 & . 02 & 1.00 \\
\hline Idaho & . 97 & . 10 & . 02 & . 80 & . 02 & 1.00 \\
\hline Illinois & 1.43 & . 29 & . 11 & . 98 & . 07 & 1.00 \\
\hline Indiana & 1.49 & . 20 & . 06 & 1.05 & . 02 & 1.00 \\
\hline Iowa & 1.38 & . 06 & . 05 & 1.29 & . 01 & 1.00 \\
\hline Kansas & 1.11 & . 08 & . 05 & . 95 & . 01 & 1.00 \\
\hline Kentucky & 1.51 & . 14 & . 05 & 1.22 & . 01 & 1.00 \\
\hline Louisiana & 1.15 & . 13 & . 05 & . 79 & . 43 & . 80 \\
\hline Maine & 1.39 & . 04 & . 03 & 1.15 & . 01 & 1.00 \\
\hline Maryland & 1.52 & . 22 & . 04 & 1.25 & . 02 & 1.00 \\
\hline Massachusetts & 1.87 & . 10 & . 05 & 1.54 & . 01 & 1.00 \\
\hline Michigan & 1.24 & . 13 & . 04 & . 99 & . 02 & 1.00 \\
\hline Minnesota & 1.05 & . 16 & . 05 & . 90 & . 02 & 1.00 \\
\hline Mississippi & 1.02 & . 18 & . 05 & . 87 & . 01 & 1.00 \\
\hline Missouri & 1.38 & . 23 & . 05 & 1.01 & . 16 & . 99 \\
\hline Nebraska & 1.01 & . 05 & . 04 & . 89 & . 23 & . 70 \\
\hline Nevada & 1.38 & . 08 & . 05 & 1.19 & . 01 & 1.00 \\
\hline New Hampshire & 1.10 & . 01 & . 00 & 1.09 & . 00 & . 95 \\
\hline New Jersey & 2.27 & . 21 & . 05 & 1.69 & . 02 & 1.00 \\
\hline New Mexico & 1.23 & . 06 & . 04 & 1.14 & . 01 & 1.00 \\
\hline New York & 1.83 & . 21 & . 10 & 1.45 & . 45 & . 80 \\
\hline North Carolina & 1.33 & . 28 & . 04 & 1.15 & . 09 & . 97 \\
\hline Ohio & 1.62 & . 13 & . 05 & 1.42 & . 01 & 1.00 \\
\hline Oklahoma & 1.24 & . 09 & . 05 & 1.42 & . 36 & . 31 \\
\hline Oregon & 1.26 & . 09 & . 04 & 1.21 & . 28 & . 56 \\
\hline Pennsylvania & 1.81 & . 25 & . 22 & 1.27 & . 05 & 1.00 \\
\hline Rhode Island & 1.18 & . 03 & . 02 & 1.18 & . 01 & . 55 \\
\hline South Carolina & 1.22 & . 21 & . 04 & 1.27 & . 02 & . 00 \\
\hline Tennessee & 2.91 & . 25 & . 04 & 2.59 & . 04 & 1.00 \\
\hline Texas & 1.90 & . 30 & . 22 & 1.24 & . 07 & 1.00 \\
\hline Utah & 1.46 & . 06 & . 04 & 1.40 & . 01 & 1.00 \\
\hline Virginia & 1.38 & . 22 & . 07 & 1.14 & . 04 & 1.00 \\
\hline Washington & 1.17 & . 15 & . 06 & . 77 & . 03 & 1.00 \\
\hline West Virginia & 1.68 & . 06 & . 05 & 1.61 & . 01 & 1.00 \\
\hline Wisconsin & 1.40 & . 11 & . 08 & 1.22 & . 58 & . 62 \\
\hline
\end{tabular}

Note. Relative proximity index (RPI) values are calculated using tract-level data from the 2000 census. Max Deviation is calculated as 1 minus the total population of the largest congressional district divided by the total population of the smallest congressional district. Mean RPI is calculated as the mean of 200 repetitions of the RPI, each having different starting values.
of the populations that are black, Asian, or Hispanic; population density; difference in presidential vote shares between Democrats and Republicans; and whether the state is required to submit its districting plans to the Department of Justice under the preclearance provision of section 5 of the Voting Rights Act (not shown in tabular form). \({ }^{23}\) States that are more compact tend to be states with a larger share of blacks and a larger difference between the percentages who vote Republican and Democrat. The latter is intuitive: states with more to gain from altering the design of political districts tend to do it more. Whether or not a state is forced to submit its districting plans is also highly correlated with compactness. Consistent with axiom 2 (efficient clustering; see Appendix A), the RPI is uncorrelated with population density. It is important to note that none of these partial correlations are statistically significant because of small samples.

Beyond the technical considerations, perhaps the best evidence in favor of our approach can be illustrated visually. The figures in Appendix D present side-by-side comparisons of congressional district maps for actual districting plans and those obtained from our algorithm. \({ }^{24}\) Figures D1 and D2 illustrate this comparison for the least and most compact states, Tennessee and Idaho, respectively. The districts in Tennessee, under the current plan, resemble the salamander-shaped districts drawn by Eldridge Gerry that gave rise to the name "gerrymandering." Under the algorithm, however, Tennessee is transformed into a neat set of convex polygons. Idaho is at the other extreme. Because the state need only be cut into two equal parts, the existing cut and our preferred cut are very similar. Further, our partition provides a more equal distribution of voters across the districts, which explains why the calculated RPI is slightly less than 1.

These figures illustrate three key points. First, the geometric properties discussed above (the perpendicular- and concurrent-line lemmas and the convexity of political districts) are immediately apparent. Second, those states that rank relatively high (low) in terms of the RPI appear to quite different (similar) to the partition resulting from our algorithm. Third, Figures D3 and D6 (Hawaii and Nevada) suggest that communities of interest are an important consideration. In the actual plans, Honolulu and Las Vegas are their own districts, while the rest of the state is contained in another. The issues faced by residents of the outer islands might well be more similar to each other than they are to those of residents in Honolulu. This serves to highlight why compactness is only one factor that weighs on the redistricting question. The RPI in its current implementation ignores this consideration. An RPI with a more general notion of

\footnotetext{
\({ }^{23}\) The states that are subject to the preclearance provision are Alabama, Alaska, Arizona, Georgia, Louisiana, Mississippi, South Carolina, Texas, and Virginia.
\({ }^{24}\) For a complete set of maps, see Roland Fryer, Papers (http://www.economics.harvard.edu/faculty/ fryer/papers_fryer).
}
distance or carefully selected starting values for the power diagram can address this issue.

\subsection*{4.5. How Good an Approximation?}

One wonders how good an approximation our algorithm provides to an exact solution to the minimum-partitioning problem. We have two ways to address this question. The first is to note that the compter science literature on power diagrams and algorithms based on them (see, for example, Aurenhammer, Hoffmann, and Aronov 1998) shows that thse algorithms typically perform very well (to within a few percentage points of the actual optimum). This can be shown by taking hypothetical data sets to which the exact solution can be found (because they are sufficiently small) and then comparing the performance of the algorithm. Yet it is not clear how performance on these algorithms scales.

One might also wonder whether the use of tract-level data (rather than finer grained block-level data) leads to markedly less precision. To address this, we ran several smaller states at the block level. The average RPI calculated at the block level is slightly higher than in the tract-level analysis reported in Table 1. For instance, Nebraska has an RPI of 1.01 in the tract-level data and 1.33 using blocks. The key issue with block-level analysis is our inability to calculate RPI for medium or large states. On computers with eight high-speed processors and 16 gigabytes of RAM (such as the one we used in our analysis), we estimate that large states such as Texas and California would take several years each to finish. \({ }^{25}\)

\section*{5. Election Counterfactuals}

Thus far, we have derived an index of compactness, shown how one implements the index, and provided some basic facts about the most and least compact districting plans and what correlates with these plans. We conclude our analysis with some suggestive evidence on the impact of maximally compact districting plans on election outcomes in four large states.
In winner-take-all election contests, such as elections for representatives to the U.S. Congress and for electoral votes for the U.S. presidency, the winner is determined by which candidate receives the plurality of the votes. In most of these cases, only the top two parties need to be considered, which yields an easy condition for an election win in a district.
Assuming that there are \(n\) districts, labeled \(i \in[1, \ldots, n]\), let \(\phi_{i}\) denote the proportion of the two-party vote received by the candidate from the first

\footnotetext{
\({ }^{25}\) Currently, large clusters or supercomputers can run at above 1.5 petaflops (a petaflop is \(10^{15}\) floating point operations per second), and the IBM Sequoia project is projected to run at 20 petaflops by 2011. That is roughly the power of \(2,000,000\) laptops, or around 11,000 times faster than the machine on which we conducted our analysis. Thus, analysis of our index at the block level will be feasible soon.
}
party (in examples to follow, the Democratic Party). The candidate's victory can then be expressed as \(s_{i}=w_{i} 0\left(\phi_{i}>\frac{1}{2}\right)\), where \(w_{i}\) denotes how many seats are determined by the vote: one for single-member districts or three or more for the electoral college, for example. Two important summary statistics are the average district vote, \(\Phi=(1 / n) \sum_{i=1}^{n} \phi_{i}\), and the seat share, \(S=\sum_{i=1}^{n} s_{i} / \sum_{i=1}^{n} w_{i}\)

Many other statistics can be generated using the vote and seat outcomes directly, but we are particularly interested in partisan bias and responsiveness. Namely, Bias \(=2 E(S \mid \Phi=.5)-1\) estimates the deviation from the median share of seats if each side receives an identical average district vote, and Responsiveness \(=(d S / d \Phi) \mid \Phi\) estimates how a small shift in the average district vote would translate into a shift in the share of seats. This estimate is taken at either the observed average district vote or the median vote. Bias measures the degree to which an evenly divided state would elect an uneven slate of representatives, and Responsiveness is the fraction of seats the Democrats get if the average vote goes up 1 percent.

\subsection*{5.1. Data and Statistical Framework}

Our empirical strategy has four steps. First, we estimate a cross-sectional regression of Democratic vote shares on controls such as past election results and incumbency using the 2000 congressional districting plan. The regression is at the voter tabulation district (VTD) level, a subdivision of congressional districts. Second, using the optimally compact congressional districting plans we devised in Section 4, we reassign voter districts to new congressional districts. Not only will this change how voter district results are aggregated to the congressional district level, it will also change some of the controls for each voter district. Third, we use the coefficient estimates and the estimate of residual variance from the voter district regression to simulate outcomes under both the actual districting plan and the optimally compact districting plan. Finally, we aggregate VTD-level results up to the congressional districts in each simulation and compare the distribution of simulations across the two districting plans.

We use VTD-level election return data from U.S. elections for the 105th and 106th Congresses for four large states: California, New York, Pennsylvania, and Texas. These states were chosen because of their large numbers of congressional districts (roughly 30 or greater) and the availability of vote shares by VTD. There are approximately 300 VTDs in a typical congressional district, although there is substantial variation. In our data, for instance, California has 7,000 VTDs for 50 districts, Texas has 8,000 for 30 , Pennsylvania has 9,000 for 20 , and New York contains 13,000 for 30 .

The intuition behind our approach is straightforward. Consider Figure D7, which depicts the existing districting plan of New York and the plan derived from our algorithm. To fix ideas, concentrate on the western portions of the state. There are roughly 433 VTDs in each congressional district in New York. Suppose an election takes place. Currently, a congressional representative is cho-
sen by aggregating the votes from the VTDs within each district. In Figure D7, this amounts to adding votes from roughly 433 voting centers in districts \(27-\) 31. Now suppose we want to estimate how the choice of representatives would change if the districting plan were drawn to maximize compactness. To do this, we simply take note of which VTDs are in the new partitions and aggregate within each new district. In short, we disaggregate down to the VTD level, take note of the new districting lines, and then aggregate up taking these boundaries into account. As before, the winner of the new districts (in Figure D7 this now amounts to districts \(4,6,8\), and 17) is determined by aggregating the votes from VTDs.
There are a few complications. First, we need to assign candidates to the new districts in a reasonable manner. Second, we need to take into account the results of previous elections and whether the candidate is an incumbent-both of these factors weigh heavily on the prediction of future elections. Third, we need to think about how to get standard errors on our estimates.
To formalize the intuition above, we employ techniques from elementary Bayesian statistics developed in Gelman and King (1994). We provide a terse synopsis of their approach below. The crux of the Gelman-King method is a linear model with two distinct error components of the form
\[
\begin{equation*}
\phi_{i}=X \beta+\gamma_{i}+\varepsilon_{i} . \tag{2}
\end{equation*}
\]

The vector \(X\) consists of an intercept term, results from the previous election, and an incumbent dummy.
To derive precise predictions in this framework, more structure has to be placed on the error terms. Let \(\gamma_{i} \sim N\left(0, \sigma_{\gamma}^{2}\right)\) represent the systematic error component, an expression of the unobserved variables that applied before the election campaign began and would be identical if the election were to be run again. This might include the result in the previous election, the race of the candidates, or a relevant change in election law. The unpredictability of the behavior of voters is also a source of systematic error.
The second source of error is a random component that can be explained by random events during the election, such as the weather on election day or the reaction of the public to an unintentional gaffe. Let \(\varepsilon_{i} \sim N\left(0, \sigma_{\mathrm{e}}^{2}\right)\).
There are two key assumptions in the Gelman-King method. First, errors are expressed in terms of two parameters: \(\sigma^{2}\), the sum of the individual variances \(\sigma_{\gamma}^{2}\) and \(\sigma_{s}^{2}\), and \(\lambda\), the proportion of the total variance attributed to the systematic component; \(\lambda=\sigma_{\gamma}^{2} /\left(\sigma_{\gamma}^{2}+\sigma_{r}^{2}\right)\). Second, the counterfactual assumes that the regrouping of voters into new districts will not have a systematic effect on voting behavior.

\subsection*{5.1.1. Estimating \(\lambda\) and \(\sigma^{2}\)}

In practice, a districting map is constant over a series of elections. Thus, \(\lambda\) and \(\sigma^{2}\) are found by taking the mean of individual estimators from each year.

In each year, \(\sigma^{2}\) is the variance of the random error term in equation (2), and \(\lambda\), the fraction of the error attributed to systematic error, is estimated by including the results of the previous election as an explanatory variable in the current one. By calculating this for each election that did not follow a redistricting (that is, in which the electoral map is identical to that of the previous election) and taking the mean, we have an estimator for \(\lambda_{.}{ }^{26}\)

\subsection*{5.1.2. Generating Hypothetical Future Elections}

To predict the properties of a subsequent election using the same districting plan, a series of hypothetical elections are simulated using the estimates for \(\beta\) and \(\sigma^{2}\). A new set of explanatory variables \(\mathbf{X}\) is used to demonstrate the conditions at the election. Since no information can be derived about the nature of the systematic error component beforehand, one error term is used, \(\omega=\gamma+\varepsilon\), with variance \(\sigma^{2}\). Thus, a single hypothetical election is then generated by drawing from
\[
\begin{equation*}
\phi_{\text {hyp }}=\mathbf{X}_{\text {hyp }} \beta+\delta_{\text {hyp }}+\omega, \tag{3}
\end{equation*}
\]
where \(\beta\) is the posterior distribution, with mean \(\hat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} \phi\) and (with a normality assumption) variance \(\Sigma_{\beta}=\sigma^{2}\left(X^{\prime} X\right)^{-1}\). The \(\delta\) term is used to produce hypothetical elections whose average district vote is desired to be different from the original. Integrating out the conditional parameters \(\beta\) and \(\gamma\), one obtains the marginal distribution:
\[
\phi_{\text {hyp }} \mid \phi \sim N\left[\lambda \mathbf{v}+\left(\mathbf{X}_{\mathrm{hyp}}-\lambda \mathbf{X}\right) \hat{\beta}+\delta,\left(\mathbf{X}_{\mathrm{hyp}}-\lambda \mathbf{X}\right) \Sigma_{\beta}\left(\mathbf{X}_{\mathrm{hyp}}-\lambda \mathbf{X}\right)^{\prime 2}\right] \sigma^{2} I .
\]

To evaluate the election system, let \(\mathbf{X}_{\text {hyp }}=\mathbf{X}\); to evaluate under counterfactual conditions, set \(\mathbf{X}_{\text {hyp }}\) to the desired explanatory variables.

\subsection*{5.1.3. Comparing Districting Plans}

With the above statistical model in hand, we can predict elections under different partitions of a state into voting districts. The procedure is as follows. First, we estimate the model in equation (2). Second, having generated a new map through our algorithm, we determine the values for the explanatory variables for each district (for example, incumbency), either by aggregating and averaging the previous values in each precinct or by making sensible predictions for their value. In terms of vote shares, we simply aggregate the VTDs in the new partitions. For incumbency, we assign each incumbent to the latitude and longitude of the centroid of his or her district. Under the new districting plan, if there is one such incumbent per district, he or she becomes the incumbent used in the model. In the rare cases where there is more than one incumbent assigned to a district under a new districting plan, we break the tie by choosing the incumbent

\footnotetext{
\({ }^{26}\) Ideally, one would have historical votes for many years to tease out the systematic error component. We have only 2 years of such data.
}
closest to the resulting centroid and moving the other incumbent to another district to keep the numbers constant. Finally, with our new map we simulate the model 1,000 times; deriving the relevant parameters is straightforward.

\subsection*{5.2. Analyzing Seat-Vote Curves}

Using the methodology described above, the figures in Appendix E provide seat-vote curves for California, New York, Pennsylvania, and Texas under each state's actual districting plan and the plan that maximizes its compactness. The vertical axes depict the proportion of seats won by Democrats. The horizontal axes depict the share of votes that the Democrats earned in the election. Each figure reports two interesting quantities: Vote is the average district vote the Democrats received in the election, and Seats is the fraction of seats the Democrats received in the election (not the hypothetical seat share). The dark lines represent our estimate of the seat-vote curve, and the two lines parallel to them are 95 percent confidence intervals. One can see that there is a marked difference between the seat-vote curves estimated from the actual data and those estimated from the partition developed by our algorithm in California and New York. The slope of the curve is significantly steeper in both states. The slopes in Texas and Pennsylvania are also slightly steeper, but the difference is much less dramatic.
To get a better sense of the magnitudes involved, Table 2 presents our estimates of Bias and Responsiveness for the actual partition of our four states and those gleaned from the algorithm. We also report the \(t\)-statistic on the difference between them. Under maximally compact districting, measures of Bias are slightly smaller in all states except Pennsylvania, although none of the differences are statistically significant. In terms of responsiveness, however, there are large and statistically significant differences between the existing partitions and those that are maximally compact. New York, in particular, has a fivefold increase, from .482 to 2.51 . In other words, under the current partition, a 1 percent increase in vote share for Democrats results in a .482 percent increase in seats. When districting is maximally compact, however, a 1 percent increase in vote share results in a 2.51 percent increase in seats. The next largest change is in Cali-fornia-increasing from 1.086 to 1.731 . Pennsylvania and Texas show smaller increases, which are statistically significant at the 10 percent level.

\section*{6. Concluding Remarks}

There will be continued debate about the design of districting plans. We have developed a simple but principled measure of compactness. Our measure can be used to compare districting plans across states and time, a feature not found in existing measures, and our algorithm provides a way of approximating the most compact plan. Further, the impact that a maximally compact districting plan can have on the responsive of votes is encouraging. These are first steps

Table 2
Partisan Bias and Responsiveness: Actual versus Maximally Compact Districtings
\begin{tabular}{lccccccc}
\hline & \multicolumn{4}{c}{ Bias } & & \multicolumn{3}{c}{ Responsiveness } \\
\cline { 2 - 3 } & State & Actual & Algorithm & \(t\)-Statistic & & Actual & Algorithm \\
\hline California & .028 & .007 & .469 & & 1.086 & 1.731 & \(-4.327^{*}\) \\
& \((.010)\) & \((.045)\) & & & \((.069)\) & \((.132)\) & \\
New York & .103 & .018 & 1.051 & & .482 & 2.51 & \(-6.540^{*}\) \\
& \((.014)\) & \((.080)\) & & & \((.036)\) & \((.308)\) & \\
Pennsylvania & -.0027 & .031 & -.363 & & 1.138 & 1.562 & \(-1.800^{+}\) \\
& \((.021)\) & \((.076)\) & & & \((.128)\) & \((.198)\) & \\
Texas & .062 & .039 & .334 & & .8872 & 1.305 & \(-1.717^{+}\) \\
& \((.024)\) & \((.064)\) & & & \((.103)\) & \((.221)\) & \\
\hline
\end{tabular}

Note. Estimates are based on voter tabulation district-level election return data for the 105th and 106th Congresses.
- Statistically significant at the \(10 \%\) level.
* Statistically significant at the \(5 \%\) level.
toward a more scientific understanding of districting plans and their effects. Extensions and generalizations abound.

Perhaps the most obvious extension is to consider higher dimensional spaces, generalized distance functions, and communities of interest. Aurenhammer and Klein (2000) provide a comprehensive survey of Voronoi diagrams and how to incorporate generalized notions of distance, including \(p\)-norms, convex and airlift distances, and nonplanar spaces. These extensions are not only mathematically interesting and elegant: they have real-world content. Consider the following thought experiment. Suppose there is a city on a hill. \({ }^{27}\) On the west side is a mild, long incline toward the rest of the city, which is in a plane. On the east side is a steep cliff, either impassable or with just a narrow, winding road that very few people use. While the next residential center to the east is much closer to the hilltop on a horizontal plane, it is much farther in terms of all sorts of distances that we think might matter: transportation time, intensity of social interactions, sets of shared local public goods and common interests, and so forth. Thus, for all practical purposes, one probably wants to include the hilltop in a western district rather than an eastern one. More general notions of distance can handle this. A similar situation arises when there is a natural boundary (for example, a river or highway) that effectively segregates or reduces communication between two population centers that are geographically very close. Conversely, there could be something (such as a tunnel or subway) that makes two nonconnected regions effectively close to each other, or there may be other notions of communities and shared interest that lend themselves to a natural clustering. It is imperative to note that the derivation of our index assumed only a general metric space-many of these ideas fit squarely within our framework. The empirical application of the index, however, required us to only consider Euclidean

\footnotetext{
\({ }^{27}\) We are grateful to Roland Benabou for this illustrative example.
}
distances. The challenge ahead is to incorporate more general notions of distance into an empirically tractable algorithm.

\section*{Appendix A}

\section*{An Axiomatic Derivation of the Relative Proximity Index}

\section*{A1. Three Properties}

We now describe three properties that any compactness index should satisfy and formally discuss each in turn.

\section*{A1.1. Axiom 1: Anonymity}

Axiom 1, an anonymity condition in the same spirit as that typically used in social choice theory (Arrow 1970), requires that all individuals be treated equally. That is, any compactness index should not depend on the particular identities (race, political affiliation, wealth, and so forth) of voters. Consider a state \(S\) with associated partition \(V\) and compactness index \(c(V, S)\). For any bijection \(h\) : \(S \rightarrow S\) and compactness index \(c_{h}(V, S), c_{h}(V, S)=c(V, S)\).

\section*{A1.2. Axiom 2: Clustering}

Compactness is fundamentally a mathematical partitioning problem-deciding who to group with whom in a political district. Clustering is the quintessential objective (Bartal, Charikar, and Raz 2001). \({ }^{28}\) Our second axiom requires that if two states with the same number of voters and voting districts and the same value for the minimum-partitioning problem have different weighted intradistrict distances, then the state with the larger value is less compact.

Let \(\gamma_{k}=\sum_{i, j \in \nu} \alpha_{i j}\left(d_{i j}\right)^{\delta}\) for \(k=\{1, \ldots, n\}\) and let \(g\left(\gamma_{1}, \ldots, \gamma_{n}\right): \mathbb{R}^{n} \rightarrow\) \(\mathbb{R}\) be a monotonic, increasing function. Consider two states, \(S_{1}\) and \(S_{2}\), and partitions \(V\) and \(V\), respectively, such that \(S_{1}\) and \(S_{2}\) have the same number of voters and the same number of districts, and
\[
\min _{V \in \nu_{s_{1}}} g_{s_{1}}\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\min _{V \in s_{s_{1}}} g_{s_{2}}\left(\gamma_{1}, \ldots, \gamma_{n}\right) .
\]

Then
\[
g_{s_{1}}\left(\gamma_{1}, \ldots, \gamma_{1}\right)>g_{s_{2}}\left(\gamma_{1}, \ldots, \gamma_{n}\right) \Rightarrow c\left(V, S_{1}\right)>c\left(V^{\prime}, S_{2}\right)
\]

\section*{A1.3. Axiom 3: Independence}

Our final axiom requires that any measure of the compactness of a state be insensitive to its physical size, population density, and number of districts. This is vital for making cross-state comparisons of districting plans. Before stating the property formally, we need some further notation. We say that a state \(\hat{S}\) is

\footnotetext{
\({ }^{29}\) Other common objectives are distance from the geographic centroid of each partition or distance from a representative (typically the center of a cluster and not necessarily the center of the partition).
}
an \(n\) replica of \(S\) if and only if \(\forall i \in S, \exists j_{1}, \ldots, j_{n} \in \hat{S}\) such that \(d_{i j}=0, \forall i\) and \(d_{j, j k}=0, \forall i, k\). It is also useful to have a shorthand for the realized value of the minimum-partitioning problem. Consider two partitions of state \(S, V\) and \(V^{\prime}\), with \(\rho\) and \(\rho^{\prime}\) elements, respectively. Let \(V_{s}^{\text {min }_{n}}\) and \(V_{s}^{\text {min }_{\rho^{\prime}}}\) be the respective minimizing partitions.

Consider \(S, \hat{S} \in S\) with cardinality \(|S|\) and \(|\hat{S}|\), respectively.
Scale. If \(d_{i j}=\lambda d_{i j}\) for all \(i, j_{\hat{S}} \in S, \hat{S}\) then \(c(V, S)=c(V, S)\) for all \(V\).
Density. If \(|\hat{S}|=\lambda|S|\) and \(\hat{S}\) is a \(\lambda\) replica of \(S\), then \(c(V, S)=c(V, \hat{S})\) for all \(V\).

Number of Districts.
\[
\text { If } \frac{\sum_{v \in V_{s}^{\prime}} \sum_{i \in \nu} \sum_{j \in \nu}\left(d_{i j}\right)^{2}}{V_{S}^{\min _{\rho}}}=\frac{\theta \sum_{v \in V V^{\prime} \sum_{i \in v}} \sum_{j \in \nu}\left(d_{i j}\right)^{2}}{V_{S}^{\min _{\rho^{\prime}}}} \Rightarrow c(V, S)=\theta c\left(V^{\prime}, S\right) .
\]

Density independence means that if we replicate a state by multiplying the number of people in each household by \(\lambda\), the index of compactness is unaltered. For instance, when comparing two voting districts (Cambridge, Mass., and New York City, for example) that differ in their population density, the index provides the same cardinal measure of compactness.

Scale independence provides a similar virtue, permitting comparisons across states that differ in the distances between individuals (Massachusetts and Texas, say), allowing one to increase the distances between all individuals in a state by a constant with no resulting change in the index. Independence with respect to the number of districts is also vital in making cross-state comparisons.

\section*{A2. Uniqueness Result}

Let \(O_{c}=\left(\mathbb{R}_{+}, \succeq\right)\) denote the ordered set generated by the relative proximity index \(c\), and let \(O_{\hat{c}}\) denote the ordered set over elements \(V_{s} \in \mathcal{V}_{s}\) generated by any other compactness index. We say that two indexes, \(c\) and \(\hat{c}\), are ordinally isomorphic if \(O_{c}=O_{\hat{c}}\). We are now equipped to state our main result. The proof of this follows.

\section*{Theorem 1.}
1) The relative proximity index satisfies anonymity, clustering, and independence.
2) Suppose that \(\delta=2\) and that \(g_{s_{i}}(\cdot)\) is symmetric for all \(i\); then any compactness index that satisfies anonymity, clustering, and independence is ordinally isomorphic to the relative proximity index.

\section*{A2.1. Proof of Theorem 1.1}

That the RPI satisfies the three axioms follows from five simple lemmas that we now state and prove.

Lemma 1. The relative proximity index satisfies anonymity.
Proof. Consider a partition \(V\) of state \(S\) and an associated compactness index
\(c(V, S)\). Now consider a bijection \(h: S \rightarrow S\). The term \(\sum_{v \in V_{s}} \sum_{i \in \nu} \sum_{j \in v}\left(d_{i j}\right)^{2}\) is unchanged since \(h\) is a bijection, and hence there are the same number of points in each element of \(V\), and they are at the same points. For identical reasons the denominator of the RPI does not change, and hence \(c(V, S)=c_{h}(V, S)\) for any bijection \(h\).

Lemma 2. The relative proximity index satisfies clustering.
Proof. Let there be two partitions, \(V_{S}^{1}\) and \(V_{S^{2}}{ }^{2}\), such that
\[
\begin{equation*}
\sum_{v \in V_{S}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}>\sum_{v \in V_{S}^{2}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2} . \tag{A1}
\end{equation*}
\]

Clustering requires that
\[
c\left(V_{S}^{1}, S\right)>c\left(V_{s}^{2}, S\right)
\]

Suppose, by way of contradiction, that expression (A1) holds, and
\[
\begin{equation*}
c\left(V_{1}, S\right)<c\left(V_{2}, S\right) \tag{A2}
\end{equation*}
\]

That is,
\[
\begin{equation*}
\frac{\sum_{v \in V_{S}^{\prime}} \sum_{i \in v} \sum_{j \in \nu}\left(d_{i j}\right)^{2}}{\min _{V \in \nu_{S}} \sum_{v \in V} \sum_{i \in \nu} \sum_{j \in v}\left(d_{i j}\right)^{2}}<\frac{\sum_{v \in V_{S}^{2}} \sum_{i \in \nu} \sum_{j \in \nu}\left(d_{i j}\right)^{2}}{\min _{V \in \nu_{S}} \sum_{v \in V} \sum_{i \in \nu} \sum_{j \in v}\left(d_{i j}\right)^{2}} . \tag{A3}
\end{equation*}
\]

The denominators are identical, and hence the supposition requires that
\[
\begin{equation*}
\sum_{v \in V_{S}^{\prime}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}<\sum_{v \in V_{s}^{2}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}, \tag{A4}
\end{equation*}
\]
a contradiction. Q.E.D.
Lemma 3. The relative proximity index satisfies density independence.
Proof. Consider \(S\) and \(\hat{S}\), with \(|S|\) and \(|\hat{S}|\), respectively, and with \(\hat{S}\) a \(\lambda\) replica of \(S\). We need to show that \(\operatorname{RPI}(V, S)=\operatorname{RPI}(V, \hat{S})\) for all \(V \in \mathcal{V}_{s}, V \in \mathcal{V}_{s}\). That is,
\[
\frac{\sum_{v \in V_{s}} \Sigma_{i \in v} \Sigma_{j \in v}\left(d_{i j}\right)^{2}}{\min _{V \in v_{S}} \sum_{v \in V} \sum_{i \in v} \Sigma_{j \in \nu}\left(d_{i j}\right)^{2}}=\frac{\sum_{v \in V_{s}} \Sigma_{i \in v} \Sigma_{j \in v}\left(d_{i j}\right)^{2}}{\min _{V \in \nu_{s}} \sum_{v \in V} \Sigma_{i \in v} \Sigma_{j \in v}\left(d_{i j}\right)^{2}}
\]
for all \(V \in \mathcal{V}_{s}, V \in \mathcal{V}_{\bar{s}}\). By the definition of a \(\lambda\) replica, the right-hand side of the above equation is simply
\[
\frac{\lambda \sum_{v \in V_{s}} \sum_{i \in \nu} \sum_{j \in \nu}\left(d_{i j}\right)^{2}}{\lambda \min _{V \in v_{S}} \sum_{v \in V} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}},
\]
which is clearly equal to the left-hand side for any partition. Q.E.D.
Lemma 4. The relative proximity index satisfies scale independence.

Proof. Scale independence requires that for two states, \(S\) and \(\hat{S}\), with \(d_{j k}=\lambda d_{j k}\) for all \(j, k \in S, \hat{S}\). Then \(c(V, S)=c(V, \hat{S})\) for all \(V \in \mathcal{V}_{s}, V \in \mathcal{V}_{\hat{s}}\). That is,
\[
\frac{\sum_{v \in V_{s}} \sum_{i \in \nu} \Sigma_{j \in \nu}\left(d_{i j}\right)^{2}}{\min _{V \in \nu_{S}} \sum_{v \in V} \Sigma_{i \in \nu} \Sigma_{j \in \nu}\left(d_{i j}\right)^{2}}=\frac{\sum_{v \in V_{s}} \sum_{i \in \nu} \sum_{j \in \nu}\left(d_{i j}\right)^{2}}{\min _{V \in \nu_{S}} \sum_{v \in V} \sum_{i \in v} \Sigma_{j \in \nu}\left(d_{i j}\right)^{2}}
\]
for all \(V \in \mathcal{V}_{s}, V \in \mathcal{V}_{s}\). Scale independence means that the right-hand side of the above equation is simply
\[
\frac{\sum_{v \in V_{s}} \sum_{i \in \nu} \sum_{j \in \nu}\left(\lambda d_{i j}\right)^{2}}{\min _{V \in \nu_{S}} \sum_{v \in V} \sum_{i \in \nu} \sum_{j \in \nu}\left(\lambda d_{i j}\right)^{2}}=\frac{\lambda^{2} \sum_{v \in V_{S}} \sum_{i \in v} \sum_{j \in \nu}\left(d_{i j}\right)^{2}}{\lambda^{2} \min _{V \in \nu_{s}} \sum_{v \in V} \sum_{i \in \nu} \sum_{j \in \nu}\left(d_{i j}\right)^{2}},
\]
which is clearly equal to the left-hand side for any partition.
Lemma 5. The relative proximity index satisfies number-of-districts independence.

Proof. The proof follows immediately from the definition of independence with respect to number of districts. Q.E.D.
We can now prove theorem 1.2. It is proved by transforming a given state so that it can be compared to another state. Anonymity and independence ensure that this can be done in a way that does not alter the compactness index, and clustering then allows a comparison of two districting plans to be made based on their total intracluster pairwise distances.

\section*{A2.2. Proof of Theorem 1.2}

From theorem 1.1 we have \(\operatorname{RPI}\left(V, S_{m}\right)>\operatorname{RPI}\left(\hat{V}, S_{n}\right) \Rightarrow c\left(V, S_{m}\right)>c\left(\hat{V}, S_{n}\right)\) for any \(m, n\). Suppose that theorem 1.2 is not true. This implies that
\[
\begin{equation*}
c\left(V, S_{m}\right)>c\left(\hat{V}, S_{n}\right) \quad \text { and } \quad \operatorname{RPI}\left(V, S_{m}\right)<\operatorname{RPI}\left(\hat{V}, S_{n}\right) \tag{A5}
\end{equation*}
\]
or
\[
c\left(V, S_{n}\right)<c\left(\hat{V}, S_{n}\right) \quad \text { and } \quad \operatorname{RPI}\left(V, S_{m}\right)>\operatorname{RPI}\left(\hat{V}, S_{n}\right)
\]
for some \(m, n\).
If \(S_{m}=S_{n}\), then the argument is straightforward. Begin with the first pair of inequalities. Note that equality implies that \(\mu_{i j}=\mu\) for all \(i\), \(j\) and that symmetry of \(g\) combined with equality implies that \(g\) is additively separable in its arguments. Then by equality and clustering we have
\[
\sum_{V \in V_{S_{m}}} \sum_{i \in \nu} \sum_{j \in \nu}\left(d_{i j}\right)^{2}>\sum_{\nu \in \hat{V}_{S_{n}}} \sum_{i \in \nu} \sum_{j \in v}\left(d_{i j}\right)^{2} \Rightarrow c\left(V, S_{m}\right)>c\left(\hat{V}, S_{n}\right)
\]
since \(\operatorname{RPI}\left(V, S_{m}\right)<\operatorname{RPI}\left(\hat{V}, S_{n}\right)\) and
\[
S_{m v}=S_{n} \Rightarrow \min _{V \in v_{S_{m}}} \sum_{\nu \in V_{S_{m}}} \sum_{i \in v} \sum_{j \in \nu}\left(d_{i j}\right)^{2}=\min _{V \in \nu_{S_{n}}} \sum_{v \in \hat{V}_{S_{n}}} \sum_{i \in \nu} \sum_{j \in v}\left(d_{i j}\right)^{2},
\]
we have
\[
\sum_{\nu \in V_{S_{m}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}<\sum_{\nu \in V_{S_{s}}} \sum_{i \in \nu} \sum_{j \in \nu}\left(d_{i j}\right)^{2} .
\]

By clustering this implies that \(c\left(V, S_{m}\right)<c\left(\hat{V}, S_{n}\right)\), a contradiction. Identical reasoning rules out the case in which
\[
c\left(V, S_{n}\right)<c\left(\hat{V}, S_{n}\right) \quad \text { and } \quad \operatorname{RPI}\left(V, S_{n n}\right)>\operatorname{RPI}\left(\hat{V}, S_{n}\right) .
\]

Now consider the case in which \(S_{m} \neq S_{n}\), and suppose that \(S_{m}\) contains \(\gamma_{m}\) districts and \(S_{n}\) contains \(\gamma_{n}\) districts. Consider the following transformation of state \(n\). First, make a \(\lambda\) replica of \(S_{n}\) and a \(\mu\) replica of \(S_{m}\) so that the number of voters is the same as in the transformed state \(S_{m}\). Note that \(c\left(V, S_{m}\right)\) and \(\operatorname{RPI}\left(V, S_{m}\right)\) are unchanged because of independence. In a slight abuse of notation we will continue to use \(V\) and \(S_{m}\) in reference to the \(\mu\)-replicated state. Second, expand or contract the state in the sense that the distance between any two points—say, \(d_{i j}\)-in state \(S_{n}\) is \(\alpha d_{i j}\) in state \(S_{n^{\prime}}\). Note that any partition of state \(n\) is a well-defined partition of state \(S_{n^{\prime}}\) as it contains the same voters, scaled by \(\alpha\). Choose \(\alpha\) such that
\[
\alpha=\frac{|n| \min _{V \in v V_{S_{n}, n}} \sum_{v \in \hat{V}_{S_{n}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{\mu|m| \min _{V \in V_{S_{m}}} \sum_{v \in V_{S_{m, n}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}},
\]
where \(|n|\) and \(|m|\) are the numbers of voters in states \(S_{n}\) and \(S_{m}\), respectively, and the \(\gamma_{m}\) superscript denotes a partition into \(\gamma_{m}\) elements. Note that
\[
\begin{equation*}
\min _{V \in \nu_{S_{n}}} \sum_{v \in V_{S_{n}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}=\min _{V \in v_{S_{n}},} \sum_{v \in V_{S_{n}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2} . \tag{A6}
\end{equation*}
\]

Third, select a feasible partition of \(S_{n^{\prime}}\) with \(\gamma_{n}\) elements, and denote this par tition \(\hat{V}^{\prime}\). Suppose that
\[
\sum_{v \in \vec{V}_{s_{i}}} \sum_{i \in v} \sum_{j \in \nu}\left(d_{i j}\right)^{2}=\theta \sum_{\nu \in \tilde{V}_{S_{n}}} \sum_{i \in \nu} \sum_{j \in \nu}\left(d_{i j}\right)^{2}
\]
and that
\[
\min _{V \in v_{S_{n}}^{\prime} v} \sum_{v \in \hat{V}_{S_{n}}} \sum_{i \in v} \sum_{j \in v} f\left(d_{i j}\right)=\beta \min _{V \in v \mathcal{S}_{n}^{\prime}, n} \sum_{v \in \hat{V}_{S_{n},}} \sum_{i \in v} \sum_{j \in v} f\left(d_{i j}\right) .
\]

Hence,

By independence,
\[
c\left(\hat{V}^{\prime}, S_{n}\right)=\frac{\theta}{\beta} c\left(\hat{V}, S_{n}\right)
\]
and
\[
\operatorname{RPI}\left(\hat{V}^{\prime}, S_{n}\right)=\frac{\theta}{\beta} \operatorname{RPI}\left(\hat{V}, S_{n}\right) .
\]

From expression (A5),
\[
\begin{equation*}
c\left(V, S_{m}\right)>\frac{\beta}{\theta} c\left(\hat{V}^{\prime}, S_{n}\right) \quad \text { and } \quad \operatorname{RPI}\left(V, S_{m}\right)<\frac{\beta}{\theta} \operatorname{RPI}\left(\hat{V}^{\prime}, S_{n^{\prime}}\right) . \tag{A7}
\end{equation*}
\]

But since \(S_{m}\) and \(S_{n^{\prime}}\) have the same number of voters, the same number of districts, and equation (A6) holds, it follows that expression (A7) implies that \(c\) violates clustering.

Identical reasoning rules out the case in which
\[
c\left(V, S_{m}\right)<c\left(\hat{V}, S_{n}\right) \quad \text { and } \quad \operatorname{RPI}\left(V, S_{m}\right)>\operatorname{RPI}\left(\hat{V}, S_{n}\right)
\]
and hence the proof is complete. Q.E.D.

\section*{Appendix B}

\section*{Proofs and Description of the Algorithm}

\section*{B1. Proof of Theorem 2}

Let districts of state \(S\) be denoted \(D_{1}, \ldots, D_{d}\). A districting plan is feasible if \(\left|D_{i}\right|=n\) for all \(i \in\{1, \ldots, d\}\). The set of feasible districtings is \(\mathcal{V}\). Let the centroid of district \(D_{i}\) be \(m_{i}\), so \(m_{i}=\frac{1}{n} \sum_{x \in D_{i}}(x)\). Define the functions
\[
\psi\left(D_{i}\right)=\sum_{x \in D_{i}}\left\|x-m_{i}\right\|^{2}, \quad \Psi\left(D_{1}, \ldots, D_{d}\right)=\sum_{i=1}^{d} \psi\left(D_{i}\right) .
\]

We say that districting is optimally compact if it minimizes \(\Psi\left(D_{1}, \ldots, D_{d}\right)\) over all \(\left(D_{1}, \ldots, D_{d}\right) \in \mathcal{V}\). For \(z_{1}, \ldots, z_{d} \in \mathbb{R}^{2}\), let
\[
\psi_{z_{i}}\left(D_{i}\right)=\sum_{x \in D_{i}}\left\|x-z_{i}\right\|^{2}, \quad \Psi_{z_{1}, \ldots, z_{d}}\left(D_{i}\right)=\sum_{i=1}^{d} \psi_{z_{i}}\left(D_{i}\right) .
\]

A power diagram with sites \(z_{1}, \ldots, z_{d}\) is a partition of \(\mathbb{R}^{2}\) into districts \(D_{1}, \ldots, D_{d}\) such that for fixed constants \(\lambda_{1}, \ldots, \lambda_{d} \in \mathbb{R}\),
\[
D_{i}=\left\{q \in \mathbb{R}^{2}: i=\arg \min _{j}\left[\left\|q-z_{j}\right\|^{2}-\lambda_{j}\right]\right\}
\]

It is clear that a power diagram is described by its edges and that if \(x\) is on the same side as \(D_{i}\) of any complete set of linear separators between \(D_{i}\) and other districts, then \(x \in D_{i}\), and otherwise not. The edges of \(D_{i}\) are described by the
set of \(q \in \mathbb{R}^{2}\) such that \(\left\|q-z_{i}\right\|^{2}-\lambda_{i}=\left\|q-z_{i}\right\|^{2}-\lambda_{j}\); or \(\left\|q-z_{i}\right\|^{2}-\| q-\) \(z_{i} \|^{2}=\lambda_{i}-\lambda_{j}\).

Lemma 6. The function \(\Psi\left(D_{1}, \ldots, D_{d}\right)\) is proportional to the RPI for \(\left(D_{1}, \ldots, D_{d}\right) \in \mathcal{V}\), so minimizing one is equivalent to minimizing the other. Specifically,
\[
\sum_{i=1}^{d} \sum_{x \in D_{i}} \sum_{y \in D_{i}}\|x-y\|^{2}=2 n \sum_{i=1}^{d} \sum_{x \in D_{i}}\left\|x-m_{i}\right\|^{2}
\]

Proof.
\[
\begin{aligned}
\sum_{i=1}^{d} \sum_{x \in D_{i}} \sum_{y \in D_{i}}\|x-y\|^{2} & =\sum_{i=1}^{d} \sum_{x \in D_{i}} \sum_{y \in D_{i}}\left(\|x\|^{2}+\|y\|^{2}-2 x \times y\right) \\
& =\sum_{i=1}^{d} \sum_{x \in D_{i}}\left(n\|x\|^{2}-2 n m_{i} \times x+\sum_{y \in D_{i}}\|y\|^{2}\right) \\
& =\sum_{i=1}^{d}\left[\sum_{x \in D_{i}}\left(n\|x\|^{2}-2 n m_{i} \times x\right)+n \sum_{y \in D_{i}}\|y\|^{2}\right] \\
& =\sum_{i=1}^{d}\left[\sum_{x \in D_{i}}\left(2 n\|x\|^{2}-2 n m_{i} \times x\right)\right] \\
& =\sum_{i=1}^{d}\left[2 n \sum_{x \in D_{i}}\left(\|x\|^{2}-m_{i} \times x\right)\right] \\
& =\sum_{i=1}^{d} 2 n\left[\sum_{x \in D_{i}}\left(\|x\|^{2}\right)-n\left\|m_{i}\right\|^{2}\right] \\
& =\sum_{i=1}^{d}\left\{2 n\left[\sum_{x \in D_{i}}\left(\|x\|^{2}-2 m_{i} \times x+\left\|m_{i}\right\|^{2}\right)\right]\right\} \\
& =\sum_{i=1}^{d}\left[2 n\left(\sum_{x \in D_{i}}\left\|x-m_{i}\right\|^{2}\right)\right] \\
& =2 n \sum_{i=1}^{d} \sum_{x \in D_{i}}\left\|x-m_{i}\right\|^{2} .
\end{aligned}
\]
Q.E.D.

Lemma 7. For all \(\left(D_{1}, \ldots, D_{d}\right) \in \mathcal{V}\),
\[
\left(m_{1}, \ldots, m_{d}\right)=\underset{\left(z_{1}, \ldots \ldots z_{d}\right)}{\arg \min } \Psi_{z_{1}, \ldots \ldots z_{d}}\left(D_{1}, \ldots, D_{d}\right) .
\]

Proof. It suffices to show that substituting \(m_{\mathbf{i}}\) for \(z_{i}\) minimizes the expression on the right. Its first-order condition with respect to \(z_{i}\) is
\[
\forall D_{i}, 2 \sum_{x \in D_{i}}\left(x-z_{i}\right)=0 \Rightarrow z_{i}=\frac{1}{n} \sum_{x \in D_{i}} x=m_{i}
\]
Q.E.D.

Lemma 8. In an optimally compact districting, every pair of adjacent districts is separated by a line perpendicular to a line connecting their centroids.

Proof. Let (\(D_{1}, \ldots, D_{d}\)) be optimally compact. Without loss of generality we can prove the lemma for districts \(D_{1}\) and \(D_{2}\). By isometry we can assume that \(m_{1}=(0,0)\) and \(m_{2}=(\xi, 0)\). Pick \(v_{1}=\left(x_{1}, y_{1}\right) \in D_{1}\) and \(v_{2}=\left(x_{2}\right.\), \(\left.y_{2}\right) \in D_{2}\). Let \(D_{1}^{\prime}=D_{1} \bigcup\left\{v_{2}\right\}-\left\{v_{1}\right\}\) and \(D_{2}^{\prime}=D_{2} \bigcup\left\{v_{1}\right\}-\left\{v_{2}\right\}\). By the optimality of (\(D_{1}, \ldots, D_{d}\)) and the optimality lemma,
\[
\begin{aligned}
\psi\left(D_{1}\right)+\psi\left(D_{2}\right) & \leq \psi\left(D_{1}^{\prime}\right)+\psi\left(D_{2}^{\prime}\right) \leq \psi_{m_{1}}\left(D_{1}^{\prime}\right)+\psi_{m_{2}}\left(D_{2}^{\prime}\right) \\
& \Rightarrow\left\|v_{1}-m_{1}\right\|^{2}+\left\|v_{2}-m_{2}\right\|^{2} \\
& \leq\left\|v_{1}-m_{2}\right\|^{2}+\left\|v_{2}-m_{1}\right\|^{2} \\
& \Rightarrow-2 v_{1} \times m_{1}-2 v_{2} \times m_{2} \\
& \leq-2 v_{1} \times m_{2}-2 v_{2} \times m_{1} \\
& \Rightarrow\left(v_{2}-v_{1}\right) \times\left(m_{1}-m_{2}\right) \leq 0 \\
& \Rightarrow\left(x_{2}-x_{1}\right) \times(-\xi)+\left(y_{2}-y_{1}\right) \times 0 \leq 0 \\
& \Rightarrow x_{1} \leq x_{2} .
\end{aligned}
\]

Since \(v_{1}\) and \(v_{2}\) are arbitrary, we can pick them such that \(v_{1}\) is the point in \(D_{1}\) with greatest \(x_{1}\) and \(v_{2}\) is the point in \(D_{2}\) with least \(x_{2}\), which shows that there is a line of the form \(x=c\) for \(c \in \mathbb{R}\) separating the two districts. Isometrics preserve perpendicularity, so applying one moving \(m_{1}\) and \(m_{2}\) away from (0 , \(0)\) and \((\xi, 0)\) leaves the separator between \(D_{1}\) and \(D_{2}\) perpendicular to the segment connecting \(m_{1}\) and \(m_{2}\). Q.E.D.

Lemma 9. Let \(\left(D_{1}, \ldots, D_{d}\right)\) be optimal. For every three districts, there exist three concurrent lines, each of which separates two of the three districts, with one line separating each pair of districts.

Proof. Without loss of generality, we prove this lemma for the three districts \(D_{1}, D_{2}\), and \(D_{3}\). By the straight-line lemma, there exist linear separators between \(D_{1}\) and \(D_{2}, D_{2}\) and \(D_{3}\), and \(D_{3}\) and \(D_{1}\) perpendicular to the lines connecting their centroids. We can characterize these lines by the equations \(\left\|r-m_{1}\right\|^{2}-\| r-\) \(m_{2}\left\|^{2}=\mu_{1,2},\right\| s-m_{2}\left\|^{2}-\right\| s-m_{3} \|^{2}=\mu_{2,3}\), and \(\left\|t-m_{3}\right\|^{2}-\left\|t-m_{1}\right\|^{2}=\mu_{3,1}\) for free variables \(r, s, t \in \mathbb{R}^{2}\). If the lines are concurrent, that means that there exists \(q \in \mathbb{R}^{2}\) satisfying all three equations. Adding them together gives \(\mu_{1,2}+\) \(\mu_{2,3}+\mu_{3,1}=0\). Therefore, if the lines are concurrent, then for all \(r, s\), and \(t\) on
the lines,
\[
\begin{gathered}
\left\|r-m_{1}\right\|^{2}-\left\|r-m_{2}\right\|^{2}+\left\|s-m_{2}\right\|^{2}-\left\|s-m_{3}\right\|^{2} \\
\quad+\left\|t-m_{3}\right\|^{2}-\left\|t-m_{1}\right\|^{2}=0 .
\end{gathered}
\]

Assume there is no choice for \(\mu_{1,2}, \mu_{2,3}\), and \(\mu_{3,1}\) such that the lines are concurrent. Then, for all \(r, s\), and \(t\) on the three edges,
\[
\begin{gathered}
\left\|r-m_{1}\right\|^{2}-\left\|r-m_{2}\right\|^{2}+\left\|s-m_{2}\right\|^{2}-\left\|s-m_{3}\right\|^{2} \\
\quad+\left\|t-m_{3}\right\|^{2}-\left\|t-m_{1}\right\|^{2} \neq 0 .
\end{gathered}
\]

If any one of \(\mu_{1,2}, \mu_{2,3}\), or \(\mu_{3,1}\) induces an optimal separator at both the values \(\nu_{1}\) and \(\nu_{2}\) in \(\mathbb{R}^{2}\), then it must also do so at the value \(\lambda \nu_{1}+(1-\lambda) \nu_{2}\) for \(\lambda \in\) \([0,1]\). So the expression above is either strictly greater or strictly less than zero for all permissible values of \(r, s\), and \(t\). We assume without loss of generality that it is greater. Then there exist \(v_{1} \in D_{1}, v_{2} \in D_{2}\), and \(v_{3} \in D_{3}\) such that when they are substituted for \(r, s\), and \(t\), respectively, the above expression reaches a positive infimum. The expression cannot be at an infimum unless the extreme values of \(r, s\), and \(t\) are specifically chosen to be in \(D_{1}, D_{2}\), and \(D_{3}\), respectively; otherwise \(\left\|r-m_{1}\right\|^{2}-\left\|r-m_{2}\right\|^{2}\), for example, could be decreased by moving \(r\) in the direction \(m_{1}-m_{2}\) while still separating \(D_{1}\) and \(D_{2}\). Therefore,
\[
\begin{gathered}
\left\|v_{1}-m_{1}\right\|^{2}-\left\|v_{1}-m_{2}\right\|^{2}+\left\|v_{2}-m_{2}\right\|^{2}-\left\|v_{2}-m_{3}\right\|^{2}+\left\|v_{3}-m_{3}\right\|^{2} \\
-\left\|v_{3}-m_{1}\right\|^{2}>0 \Leftrightarrow\left\|v_{1}-m_{1}\right\|^{2}+\left\|v_{2}-m_{2}\right\|^{2}+\left\|v_{3}-m_{3}\right\|^{2} \\
>\left\|v_{1}-m_{2}\right\|^{2}+\left\|v_{2}-m_{3}\right\|^{2}+\left\|v_{3}-m_{1}\right\|^{2} .
\end{gathered}
\]

Let \(D_{1}^{\prime}=D_{1} \bigcup\left\{v_{3}\right\}-\left\{v_{1}\right\}, D_{2}^{\prime}=D_{2} \cup\left\{v_{1}\right\}-\left\{v_{2}\right\}\), and \(D_{3}^{\prime}=D_{3} \cup\left\{v_{2}\right\}-\) \(\left\{v_{3}\right\}\). Then,
\[
\begin{aligned}
\psi\left(D_{1}\right)+\psi\left(D_{2}\right)+\psi\left(D_{3}\right) & >\psi_{m_{2}}\left(D_{1}^{\prime}\right)+\psi_{m_{2}}\left(D_{2}^{\prime}\right)+\psi_{m_{3}}\left(D_{3}^{\prime}\right) \\
& >\psi\left(D_{1}^{\prime}\right)+\psi\left(D_{2}^{\prime}\right)+\psi\left(D_{3}^{\prime}\right) .
\end{aligned}
\]

This contradicts the optimality of \(D_{1}, \ldots, D_{d}\), and the lemma follows. Q.E.D.
Proof of Theorem 2. We prove that any optimal districting is a power diagram with sites equal to their centroids, \(m_{1}, \ldots, m_{d}\). For any pair of districts \(D_{i}\) and \(D_{j}\) we can pick \(\mu_{i, j}\) such that \(\left\|q-m_{i}\right\|^{2}-\left\|q-m_{j}\right\|^{2}=\mu_{i, j}\) is a linear separator between the districts, and if we add a third district \(D_{j}\), we can similarly pick \(\mu_{j, k}\) and \(\mu_{k, i}\) such that the districting lines are concurrent, or \(\mu_{i, j}+\mu_{j, k}+\) \(\mu_{k, i}=0\). Note that \(\mu_{a, b}=-\mu_{b, a}\). We prove that there exist constants \(\lambda_{1}, \ldots, \lambda_{d}\) such that \(\lambda_{i}-\lambda_{j}=\mu_{i, j}\) by induction. This is obviously true when \(n=2\). Assume that it is true for districts \(D_{1}, \ldots, D_{k}\). For \(i, j<k+1\),
\[
\begin{aligned}
\mu_{i, k+1} & =\mu_{i, j}+\mu_{j, k+1}=\lambda_{i}-\lambda_{j}+\mu_{j, k+1} \\
& \Rightarrow \lambda_{i}-\mu_{i, k+1}=\lambda_{j}-\mu_{j, k+1} .
\end{aligned}
\]

Thus, \(\lambda_{i}-\mu_{i, k+1}\) is constant over choice of \(i\); call the constant \(\lambda_{k+1}\). That makes \(\mu_{i, k+1}=\lambda_{i}-\lambda_{k+1}\) for any \(i\), and the induction is complete. Clearly any \(x \in D_{i}\) is on the \(m_{i}\) side of a boundary line between \(D_{i}\) and another district, so it follows that optimal districtings are power diagrams. Q.E.D.

\section*{B2. Algorithm Details}

The algorithm we propose is a modification of the second algorithm presented in Aurenhammer, Hoffmann, and Aronov (1998). Since we know by theorem 2 that local optima of the RPI are power diagrams, we search within the set of power diagrams for one that is a feasible districting. However, as power diagrams are generated around sites, which we call \(z_{1}, \ldots, z_{n}\), it is necessary to update the locations of the sites as well as the design of the districts.

First we explain the Aurenhammer, Hoffmann, and Aronov (1998) algorithm for finding a power diagram that minimizes \(\Psi_{21, \ldots \ldots z_{d}}\left(D_{1}, \ldots, D_{d}\right)\), with \(\left|D_{i}\right| \approx n\) for all \(i\). Since a power diagram is defined by its sites and their weights, \(\lambda_{1}, \ldots, \lambda_{d}\) assuming fixed sites each district \(D_{i}\) is a function of \(\lambda_{1}, \ldots, \lambda_{d}\) or \(D_{i}=D_{i}\left(\lambda_{1}, \ldots, \lambda_{d}\right)\). We suppress this dependence for simplicity. Let
\[
\xi\left(\lambda_{1}, \ldots, \lambda_{d}\right)=\sum_{i=1}^{d}\left(n-\left|D_{i}\right|\right) \times \lambda_{i}+\Psi_{z_{1}, \ldots, z_{d}}\left(D_{1}, \ldots, D_{d}\right)
\]

Aurenhammer, Hoffmann, and Aronov (1998) simplify the problem by continuing as if each \(D_{i}\) does not change locally with respect to each \(\lambda_{i}\) everywhere, as this is true almost everywhere (at all but finitely many points). Therefore, \(\left|D_{i}\right|\) and \(\Psi_{z_{1}, \ldots, z_{d}}\left(D_{1}, \ldots, D_{d}\right)\) are locally constant with respect to \(\lambda_{i}\), so
\[
\frac{\partial \xi}{\partial \lambda_{i}}=n-\left|D_{i}\right|
\]

Let \(\Lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)\). Using some choice of \(\Lambda_{0}\), we can update it by gradient descent:
\[
\Lambda_{t+1}=\Lambda_{t}+\varepsilon_{t} \times \nabla \xi\left(\Lambda_{t}\right)
\]

In our implementation we set \(\Lambda_{0}\) to be the zero vector. It remains to pick the step sizes \(\left\{\varepsilon_{t}\right\}_{t \geq 0}\). To do this, one first determines an overestimate of the minimum value of \(\xi\); call it \(\bar{\xi}\). This can be done by setting \(\bar{\xi}=\Psi_{z_{1}, \ldots, z_{d}}\left(D_{1}, \ldots, D_{d}\right)\) for any feasible districting (\(D_{1}, \ldots, D_{d}\)). We use the notation \(D_{i}\left(\Lambda_{t}\right)\) to mean one of the districts induced by the power diagram weights contained in the vector \(\Lambda_{t}\), and let
\[
\varepsilon_{\mathrm{t}}=\frac{\bar{\xi}-\xi\left(\Lambda_{t}\right)}{\sum_{i=1}^{d} \mid D_{i}\left(\left.\Lambda_{\mathrm{t}}\right|^{2}\right.} .
\]

This step size is iterated until the minimum is either reached or missed, which happens when \(\sum_{i=1}^{d}\left|D_{i}\left(\Lambda_{i}\right)\right| \times\left|D_{i}\left(\Lambda_{t+1}\right)\right|>0\). Then \(\bar{\xi}\) is updated by solving the equation
\[
\frac{\bar{\xi}-\xi\left(\Lambda_{r}\right)}{\sum_{i=1}^{d}\left|D_{i}\left(\Lambda_{i}\right)\right|^{2}}=\frac{\bar{\xi}-\xi\left(\Lambda_{t+1}\right)}{\sum_{i=1}^{d}\left|D_{i}\left(\Lambda_{++1}\right)\right|^{2}} .
\]

The size \(\varepsilon_{r+1}\) is chosen accordingly. This algorithm is repeated until the \(\left|D_{i}\right|\) 's are within some predetermined error bound around \(n\).
Once optimal districts \(D_{1}, \ldots, D_{d}\) for sites \(z_{1}, \ldots, z_{d}\) are chosen, by lemma 7 (see Appendix Section B1) the function \(\Psi_{z_{1}, \ldots, z_{d}}\left(D_{1}, \ldots, D_{d}\right)\) is improved by moving the \(z_{i}\) 's to the centroids of the \(D_{i}^{\prime} s\) and keeping the \(\lambda_{1}, \ldots, \lambda_{d}\) constant. Yet not all of the \(D_{i}\) 's are necessarily of size \(n\), so they need to be adjusted by the above procedure. This process is repeated until moving the \(z_{1}, \ldots, z_{d}\) still leaves the sizes of the \(D_{i}^{\prime}\) 's within the prescribed error bound.
Note that the algorithm described in Aurenhammer, Hoffmann, and Aronov (1998) tends to fail when one of the districts is randomly set to zero. Our solution to this issue was to move \(z_{i}\) to a random new location if \(\left|D_{i}\right|\) became zero during any point in the process. Random new locations were chosen using a uniform distribution function ranging from the minimum to the maximum of the longitude and the latitude of the state in question.

\section*{Appendix C}

\section*{A Guide to Programs}

All programs to compute feasible districtings minimizing the RPI are written for Matlab. There are two main programs, Main.m and Compute_Index.m, and support programs District.m, getRandGP.m, Psi.m, Weighted_Assign.m, Weighted_FirstTryAssign.m, and Weighted_PowerDiagram.m. We briefly describe each of the main programs below.

Main.m and Compute_Index.m are both shell programs that call District.m, the actual algorithm, and store its output in text files. Typing Compute_Index(File Name, Iterations) reads demographic data about a state from a text file-say, "indiana.out"-and creates a new districting Iterations times. The file should have the latitudes and longitudes of the census tracts of the states in columns 2 and 3, respectively, the federal information processing standards (FIPS) code of the state repeated in every entry of column 4, the current districts of all census tracts in column 5, and the populations of all census tracts in column 6. Compute_Index.m generates two output files. The first, in this case "indiana.out .output," contains the latitudes and longitudes of the census tracts in the first
two columns and their new district numbers in the subsequent columns. Each column after the second represents a different iteration of the algorithm. The second output file, in this case "indiana.out.stats," contains statistics from each iteration of the algorithm on a different row. The first column has the RPIs, the second has the accuracy of the districting, and the third has the accuracy of the current districting. Accuracy is measured as
\[
\max _{i \in \mid 1, \ldots, d_{i}}\left|\frac{\left|D_{i}\right|-n}{n}\right| .
\]

Compute_Index.m has the following hard-coded parameters that are passed to District.m: outside_tol_ratio, tol_ratio, outside_bail, and bail. The parameters tol_ratio and bail are the stopping criteria for the subroutine Weighted_Assign.m, which creates the best districting around randomly initiated sites. If the accuracy falls below tol_ratio or the number of iterations of the gradient-descent procedure rises above bail, the algorithm terminates. Likewise, outside_tol_ratio and outside_bail are the stopping criteria for the larger districting algorithm. If the accuracy of the districting falls below outside_tol_ratio or the number of times the sites are moved rises above outside_bail, the algorithm terminates. The set values for outside_tol_ratio, tol_ratio, outside_bail, and bail are, respectively, . 9 times the real accuracy, whichever is the lesser of .9 times the real accuracy or \(.05,35\) times the number of districts in the state, and 35 times the number of districts in the state.

Main(File Name) reads a list of states and iterations for each state to be run by Compute_Index.m. The file is of the following form:
\begin{tabular}{lc}
states & bootstraps \\
alabama & 4 \\
arizona & 7 \\
arkansas & 3 \\
california & 1
\end{tabular}

Names of states and numbers of iterations are separated by tabs. If "arizona" is written in this file, Compute_Index.m will open a file called "arizona.out." Main.m creates an additional file called "index.txt" that lists the FIPS code for every state next to the best RPI the algorithm has found for it such that the accuracy for the districting corresponding to that RPI is better than the state's current accuracy.
This procedure yields an RPI greater than one and an accuracy better than the current accuracy nearly all of the time for all states other than Connecticut, Idaho, Minnesota, and Nebraska, which already are well districted and usually require quite a few bootstraps to improve on the current districting.

Appendix D
Congressional District Map Comparisons for the 106th Congress

Figure D1. Tennessee

Figure D2. Idaho

Figure D3. Hawaii

Figure D4. Illinois

Figure D5. Massachusetts

Figure D6. Nevada

Figure D7. New York

Figure D8. Pennsylvania

Figure D9. Texas

Figure D10. Florida

\section*{Appendix E}

Comparison of Actual and Maximally Compact Seat-Vote Curves

Figure E1. California

Figure E2. New York

Figure E3. Texas

Figure E4. Pennsylvania

\section*{References}

Adams, Bruce. 1977. A Model State Reapportionment Process: The Continuing Quest for "Fair and Effective Representation." Harvard Journal on Legislation 14:825-904.
Arrow, Kenneth. 1970. Social Choice and Individual Values. Cowles Foundation Monograph Series. New Haven, Conn.: Yale University Press.
Attneave, Fred, and Malcolm D. Arnoult. 1956. The Quantitative Study of Shape and Pattern Perception. Psychological Bulletin 53:452-71.
Aurenhammer, Franz. 1987. Power Diagrams: Properties, Algorithms and Applications. SIAM Journal on Computing 16:78-96.
Aurenhammer, Franz., F. Hoffmann, and B. Aronov. 1998. Minkowski-Type Theorems and Least-Squares Clustering. Algorithmica 20:61-76.
Aurenhammer, Franz, and Rolf Klein. 2000. Voronoi Diagrams. Pp. 201-90 in Handbook
of Computational Geometry, edited by J. Sack and G. Urrutia. Amsterdam: Elsevier Science.
Barabas, Jason, and Jennifer Jerit. 2004. Redistricting Principles and Racial Representation. State Politics and Policy Quarterly 4:415-35.
Bartal, Yair, Moses Charikar, and Danny Raz. 2001. Approximating min-sum k-Clustering in Metric Spaces. Pages 11-20 in Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. New York: Association for Computing Machinery.
Boyce, Ronald R., and W. A. V. Clark. 1964. The Concept of Shape in Geography. Geographical Review 54:561-72.
Cox, E. P. 1927. A Method of Assigning Numerical and Percentage Values to the Degree of Roundness of Sand Grains. Journal of Paleontology 1:179-83.
Diaconescu, D. E., B. Florea, and A. Grassi. 2002. Geometric Transitions, del Pezzo Surfaces and Open String Instantons. Advanced Theoretical and Mathematical Physics 6:643-702.
Eig, Larry M., and Michael V. Seitzinger. 1981. State Constitutional and Statutory Provisions Concerning Congressional and State Legislative Redistricting. Report No. 81-143A. Washington, D.C.: Congressional Research Service.
Geisler, R. Gene. 1985. Measuring Gerrymandering of Legislative Districts. Unpublished manuscript.
—_ 1994. A Unified Method of Evaluating Electoral Systems and Redistricting Plans. American Journal of Political Science 38:514-54.
Gibbs, J. P. 1961. A Method for Comparing the Spatial Shape of Urban Units. Pp. 99106 in Urban Research Methods, edited by J. P. Gibbs. New York: Van Nostrand.
Harris, Curtis C., Jr. 1964. A Scientific Method of Districting. Behavioral Science 9:219-25.
Hofeller, Thomas, and Bernard Grofman. 1990. Comparing the Compactness of California Congressional Districts under Three Different Plans: 1980, 1982, and 1984. Pp. 28188 in Political Gerrymandering and the Courts, edited by Bernard Grofman. New York: Agathon.
Horton, R. E. 1932. Drainage Basin Characteristics. Transactions of the American Geophysical Union 13:350-61.
Ji, Xiaoyun, and John E. Mitchell. 2005. Finding Optimal Realignments in Sports Leagues Using a Branch-and-Cut-and-Price Approach. International Journal of Operations Research 1:101-22.
Kaiser, Henry F. 1966. An Objective Method for Establishing Legislative Districts. Midwest Journal of Political Science 10:200-213.
Knight, Jeffrey L. 2004. GIS Based Compactness Measurement Using Fractal Analysis. Department of Economics, Brown University, Providence, R.I.
Mandelbrot, Benoit B. 1967. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractal Dimension. Science 156:636-38.
Mehrotra, Anuj, Ellis L. Johnson, and George L. Nemhauser. 1998. An Optimization Based Heuristic for Political Districting. Management Science 44:1100-14.
Mitchell, John E. 2003. Realignment in the National Football League: Did They Do It Right? Naval Research Logistics 50:683-701.
Mumford, David, and Jayant Shah. 1989. Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems. Cambridge, Mass.: Harvard University Press.
Niemi, Richard G., Bernard Grofman, CarI Carlucci, and Thomas Hofeller. 1990. Measuring Compactness and the Role of a Compactness Standard in a Test for Partisan and Racial Gerrymandering. Journal of Politics 52:1155-81.

Papayanopolous, L. 1973. Quantitative Principles Underlying Legislative Apportionment. Annals of the New York Academy of Sciences 19:181-91.
Passare, Mikael, and Hans Rullgard. 2004. Amoebas, Monge-Ampere Measures, and Triangulations of the Newton Polytope. Duke Mathematics Journal 121:481-507.
Pounds, Norman J. G. 1972. Political Geography. 2nd ed. New York: McGraw-Hill.
Reock, Ernest C., Jr. 1961. Measuring Compactness as a Requirement of Legislative Apportionment. Midwest Journal of Political Science 5:70-74.
Richter-Gebert, Jurgen, Bernd Sturmfels, and Thorsten Theobald. 2003. First Steps in Tropical Geometry, Unpublished manuscript. Technische Universität München, Zentrum Mathematik, Munich. http://arxiv.org/abs/math/0306366.
Sahni, S., and T. Gonzales. 1976. P-Complete Approximation Problems. Journal of the ACM 23:555-66.
Schwartzberg, Joseph E. 1966. Reapportionment, Gerrymanders, and the Notion of Compactness. Minnesota Law Review 50:443-52.
Shotts, Kenneth W. 2002. Gerrymandering, Legislative Composition, and National Policy Outcomes. American Journal of Political Science 46:398-414.
Taylor, Peter J. 1973. A New Shape Measure for Evaluating Electoral District Patterns. American Political Science Review 67:947-50.
Theobald, H. Rupert. 1970. Equal Representation: A Study of Legislative and Congressional Appointment in Wisconsin. Pp. 71-260 in The State of Wisconsin Blue Book, edited by H. Rupert Theobald and Patricia V. Robbins. Madison: Wisconsin Legislative Reference Bureau.
Weaver, James B., and Sidney W. Hess. 1963. A Procedure for Nonpartisan Districting: Development of Computer Techniques. Yale Law Journal 72:288-308.
Wells, David I. 1982. How to Inhibit Gerrymandering: The Purpose of Districting Criteria. National Civic Review 71:183-87.
Young, H. P. 1988. Measuring the Compactness of Legislative Districts. Legislative Studies Quarterly 13:105-15.

\title{
Gerrymandering or geography? How Democrats won the popular vote but lost the Congress in 2012 Nicholas Goedert \\ Research \& Politics 2014 1: \\ DOI: 10.1177/2053168014528683
}

The online version of this article can be found at:
http://rap.sagepub.com/content/1/1/2053168014528683

\author{
Published by: \\ (4) SAGE \\ http://www.sagepublications.com
}

Additional services and information for Research \& Politics can be found at:
Email Alerts: http://rap.sagepub.com/cgi/alerts
Subscriptions: http://rap.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav
>> Version of Record - Apr 22, 2014
What is This?

\title{
Gerrymandering or geography? How Democrats won the popular vote but lost the Congress in 2012
}

\author{
Nicholas Goedert
}

\begin{abstract}
This article assesses whether the antimajoritarian outcome in the 2012 US congressional elections was due more to deliberate partisan gerrymandering or asymmetric geographic distribution of partisans. The article first estimates an expected seats-votes slope by fitting past election results to a probit curve, and then measures how well parties performed in 2012 compared to this expectation in each state under various redistricting institutions. I find that while both parties exceeded expectations when controlling the redistricting process, a persistent pro-Republican bias is also present even when maps are drawn by courts or bipartisan agreement. This persistent bias is a greater factor in the nationwide disparity between seats and votes than intentional gerrymandering.
\end{abstract}

\section*{Keywords}

Congress, legislative elections, gerrymandering, 2012 American elections

Leading into the 2012 general election in the United States, much of the media's prognostication focused on the possibility that President Barack Obama might win reclection with a majority of the Electoral College yet a minority of the popular vote. In retrospect, Obama won a comfortable popular vote victory, but the same election saw a parallel "antimajoritarian" outcome in the House Representatives: Republicans won just \(49.4 \%\) of the aggregated two-party rote and yet won \(54 \%\) of the seats.

On the surface, Republican partisan gerrymandering appears to explain this disparity. The argument that Democrats underperformed in their seat share due 10 Republican control of redistricting in many large states is relatively simple. Firstly, it is certainly true that Republicans controlled this process in more states, representing more seats. In addition. in each of these states, Democrats won fewer seats than any reasonable allocation of the popular vote would suggest was "fair." For example, Republicans won a large majority of the seats in Pennsylvania, North Carolina, and Michigan, despite losing the mean popular vote by district in each state.

However, the problem for Democrats might actually be more fundamental: the current geographic distribution of partisans now leaves Democrats at a disadvantage so long as congressional representation is based on contiguous
geographic districts. It is unsurprising that Republicans won more than their fair share of seats in states where they drew the maps. However, Democrats also underperformed under bipartisan maps, and gained only small advantages from their own maps, suggesting their main issuc is not gerrymandering, but districting itself.

The observation that Republicans appear to have a natural advantage in the geographic dispersion of their voters is not just a recent one. Erikson studied this phenomenon in northern districts in the 1960 s, concluding that "the tendency toward a Republican gery'mander in the distribution of constituency vote" was "the "natural" state of affairs" and "more an accident of geography than the intentional creation of Republican legislatures" (Erikson, 1972: 1241-1243).

In the 1970s, this bias seemed to reverse to the benefit of Democrats, largely due to overwhelming Democratic control of districting in the South (see e.g. Brunell, 1999: McGhee, 2012). In recent years, however, Erikson's thesis has received

\footnotetext{
Washington University in St. Louis, USA
Corresponding author:
Nicholas Goedert, Postdoctoral Research Associate, Washington University in Sc. Louis, Campus Box 1063, One Brookings Drive, St. Louis, MO 63130, USA,
Email: ngoedert@wustl.edu
}

Figure 1. Seats-votes curve in US congressional elections, 1972-2012.
renewed attention. Hirsch, for example, examines the 2000 redistricting cycle and asserts that "Democratic concentrations in urban areas make it easier for Republicans to gerrymander successfully... [and] relatively harder for Democrats to gerrymander successfully" (Hirsch, 2003: 196).' Chen and Rodden (2013) use random districting simulations of Florida and other states to argue that the Democratic Party is disadvantaged even under neutral districting methods, tracing this bias back to urban population shifts during the industrial revolution. In addition, through a case study of several ideologically neutral proposals to redistrict Virginia, Altman and McDonald conclude "there may be some modest truth to the claim that urban Democrats are inefficiently concentrated within their urban communities from a redistricting standpoint" (Altman and McDonald, 2013: 830).

Several recent trends, however, might cast doubt on the lasting relevance of Erikson's assertion. These include more sophisticated and varied redistricting institutions and tools and changing demographic patterns, particularly the dramatic rise in Hispanic population. This note takes a first cut at adjudicating this question as applied to the 2012 election results.

\section*{Estimating the seats-votes curve}

To assess the bias in maps of individual states, we must first establish how a "fair" map might translate the popular vote
for individual candidates into seats. It has been almost universally observed that electoral systems employing singlemember districts yield seat majorities that exaggerate vote majorities (Lijphart, 1999; McDonald, 2009; Rae, 1967). To the extent that this exaggeration is not biased to favor one party, it is often seen as a feature of such systems rather than a bug, creating governing mandates out of what would otherwise be the confusion of unstable plurality coalitions. The exaggeration tends to take the shape of a probit or logit function, although the slope (i.e. the sensitivity) of the curve has been found to vary widely among electoral systems (e.g. King and Browning, 1987; Taagepera and Shugart, 1989; Tufte, 1973).

Tufte (1973) proposed that a system of districting must pass two tests to be "minimally democratic." Firstly, it must be responsive such that an increase in votes for one party will translate into an increase in seats, and secondly, it must be unbiased in treating both parties alike. We therefore start from the premise that a fair assignment of seats to parties will be not be biased in favor of one party, but also will not require proportional representation. Rather, we will assume that a party should expect to win a proportion of seats in line with historical patterns found in modern congressional elections.

The "fair expectation" for seats given a vote share is thus estimated by imputing a responsiveness slope that is average for all congressional elections since the nationwide implementation of equal-population districts. Figure 1
shows the relationship between national vote share and seats won in congressional elections since 1972, as well as a fit line using both probit (solid line) and ordinary least squares (OLS; dashed line). Within the observed range, these two methods yield almost identical results, indicating that a \(1 \%\) increase in vote share will produce about a \(2 \%\) increase in seat share. Thus, winning \(55 \%\) of the vote will generally yield about \(60 \%\) of the seats. \({ }^{2}\) The estimated 2012 result (not included in the fit line) falls far below this line, demonstrating the Democrats' underperformance compared with historical averages.

The probit curve has a slope coefficient of 0.026 , representing responsiveness, and a constant of -0.040 (where the independent variable is the Republican percentage point advantage in the aggregated popular vote, and the dependent variable is share of seats won). This coefficient of 0.026 is used throughout the analysis to represent the "expected" responsiveness of the seats-votes curve, equivalent to the \(\rho\) term in King and Browning's (1987) model. \({ }^{3}\)

In lieu of using national election data to measure the responsiveness of congressional seats to votes, we can alternately estimate this slope using state-by-state election data from the same 1972-2010 period, using mean two-party vote share by district as the independent variable, and statewide seat share as the dependent variable, similar to the 2012 results presented below. This method (detailed in Table Al of Supplementary Material) yields a slope coefficient of 0.0234 . In addition, unopposed races in the South, particularly in the first two decades, distort this result: the coefficient estimate is 0.0271 if the South is excluded. \({ }^{4}\) Using this method, we can also include fixed effects for decade, none of which are significant. Although the bias in congressional maps appears to vary over time, there is little variation in responsiveness, either within this period or when comparing the last 40 years to earlier decades in the 20 th century. impuling the lowest slope value under this method (0.0234) still yields substantively very similar results (shown in Table A2 of Supplementary Material).

\section*{Methodology for vote share and seat share}

Drawing on the 2012 election results, I have calculated each party's mean vote share across each state's congressional districts, using mean rather than the aggregate share so that each district is weighted equally regardless of turnout and unopposed races can be included. Where a candidate ran completely unopposed, I have assigned that candidate's party \(100 \%\) of the vote; where a candidate ran against only minor parties, I have assigned the opposing party the vote share of the minor candidates. I then compare the mean vote share with the expected seat share under a "fair" map with zero bias and a historically average seatsvotes curve. For example, Michigan Democrats won a mean vote share of \(53 \%\), which, when we apply the slope
estimate above, translates into winning \(56 \%\) of seats. In actuality, however, Democrats won only 5 of Michigan's 14 seats (\(36 \%\)), \(20 \%\) less than the expected number of seats in that state.

Each state is coded for redistricting control by Republicans, Democrats, or some other institution (e.g. commission, court, bipartisan agreement) to assess whether Republicans exceeded their expected seat share more when they controlled the redistricting process. Table 1 shows bias results for five categories of states, with negative numbers in the last column indicating the degree of pro-Republican bias. The first three subheads show states with at least six congressional districts with maps drawn by Republicans, Democrats, and bipartisan agreement/courts, respectively, while the last two subheads show states with the largest Hispanic populations and those in the Deep South, categories that will be analyzed separately.

\section*{Seats won versus seats expected by redistricting control}

If the overall pro-Republican bias in the national election outcome was due predominantly to Republicans controlling the districting process in more states, we should expect to observe opposing biases of similar magnitudes in individual states when Republicans and Democrats controlled the process. In addition, we would expect little or no bias in states where maps were drawn by courts or bipartisan agreement. At first glance, neither of these hypotheses seems true.

In every state districted by Republicans, Democrats won fewer seats than their historical expectation, and in six cases they underperformed by \(20 \%\) or more. It appears as though Republicans gained dramatic benefits across the board from holding the reins of districting.

In contrast, Democrats only slightly exceeded their expected seat share in the three states-Illinois, Massachusetts, and Maryland-where they controlled the process, gaining just a fractional seat above expectation in each. For instance, lllinois Democrats won a smaller majority in their delegation than Republicans won in Pennsylvania or Ohio, despite winning a much larger vote share. Although winning all of Massachusetts' nine districts may seem a wildly inequitable distribution, by winning \(76 \%\) of the mean vote Massachusetts Democrats could expect to win \(91 \%\) of the seats under a "fair" map. If John Tierney had won 1\% less in his MA-6 race, Democrats would have slightly underperformed their expected share. \({ }^{5}\) While Democrats underperformed by an average of \(19 \%\) under Republican gerrymanders, they only exceeded expectation by \(5 \%\) under these Democratic gerrymanders.

In addition, we observe bias even where we should expect none in the redistricting process. Democrats also fell short of expectation in several states with bipartisan or court-drawn maps. For example, despite a constitutional

Table I. Seats won versus mean vote share by gerrymandering party: 2012 congressional elections.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Republican gerrymanders} \\
\hline State & CDs & \begin{tabular}{l}
Dem. \\
Vote share
\end{tabular} & \begin{tabular}{l}
Dem. \\
Seats won
\end{tabular} & Dem. seats Expected & Won-Exp. Difference \\
\hline Indiana & 9 & 46\% & 22\% & 42\% & -20\% \\
\hline Michigan & 14 & 53\% & 36\% & 56\% & -20\% \\
\hline Missouri & 8 & 43\% & 25\% & 36\% & -11\% \\
\hline North Carolina & 13 & 51\% & 31\% & 52\% & -21\% \\
\hline Ohio & 16 & 48\% & 25\% & 46\% & -21\% \\
\hline Pennsylvania & 18 & 51\% & 28\% & 51\% & -23\% \\
\hline Tennessee & 9 & 38\% & 22\% & 28\% & -6\% \\
\hline Virginia & 11 & 49\% & 27\% & 48\% & -21\% \\
\hline Wisconsin & 8 & 51\% & 38\% & 52\% & -15\% \\
\hline Total & 106 & 48\% & 28\% & 47\% & -19\% \\
\hline \multicolumn{6}{|l|}{Democratic gerrymanders} \\
\hline State & CDs & \begin{tabular}{l}
Dem. \\
Vote share
\end{tabular} & \begin{tabular}{l}
Dem. \\
Seats won
\end{tabular} & Dem. seats Expected & Won-Exp. Difference \\
\hline Illinois & 18 & 56\% & 67\% & 63\% & 4\% \\
\hline Massachusetts & 9 & 76\% & 100\% & 91\% & 9\% \\
\hline Maryland & 8 & 64\% & 88\% & 76\% & 11\% \\
\hline Total & 35 & 63\% & 80\% & 75\% & 5\% \\
\hline \multicolumn{6}{|l|}{Bipartisan or court gerrymanders} \\
\hline State & CDs & \begin{tabular}{l}
Dem. \\
Vote share
\end{tabular} & \begin{tabular}{l}
Dem. \\
Seats won
\end{tabular} & Dem. seats Expected & Won-Exp. Difference \\
\hline Colorado & 7 & 50\% & 43\% & 50\% & -7\% \\
\hline Florida & 27 & 48\% & 37\% & 46\% & -9\% \\
\hline Kentucky & 6 & 39\% & 17\% & 29\% & -12\% \\
\hline Minnesota & 8 & 57\% & 63\% & 63\% & -1\% \\
\hline New Jersey & 12 & 57\% & 50\% & 65\% & -15\% \\
\hline New York & 27 & 67\% & 78\% & 81\% & -3\% \\
\hline Washington & 10 & 53\% & 60\% & 57\% & 3\% \\
\hline Total & 97 & 55\% & 54\% & 61\% & -7\% \\
\hline \multicolumn{6}{|l|}{High Hispanic population states} \\
\hline State & CDs & \begin{tabular}{l}
Dem. \\
Vote share
\end{tabular} & \begin{tabular}{l}
Dem. \\
Seats won
\end{tabular} & Dem. seats Expected & Won-Exp. Difference \\
\hline Arizona & 9 & 48\% & 56\% & 45\% & 10\% \\
\hline California & 53 & 60\% & 72\% & 70\% & 2\% \\
\hline New Mexico & 3 & 54\% & 67\% & 59\% & 8\% \\
\hline Nevada & 4 & 51\% & 50\% & 53\% & -3\% \\
\hline Texas & 36 & 43\% & 33\% & 37\% & -3\% \\
\hline Total & 105 & 53\% & 56\% & 56\% & 0\% \\
\hline \multicolumn{6}{|l|}{Deep South states} \\
\hline State & CDs & \begin{tabular}{l}
Dem. \\
Vote share
\end{tabular} & \begin{tabular}{l}
Dem. \\
Seats won
\end{tabular} & \begin{tabular}{l}
Dem. seats \\
Expected
\end{tabular} & Won-Exp. Difference \\
\hline Alabama & 7 & 35\% & 14\% & 21\% & -7\% \\
\hline Georgia & 14 & 39\% & 36\% & 28\% & 8\% \\
\hline Louisiana & 6 & 32\% & 17\% & 20\% & -4\% \\
\hline Mississippi & 4 & 39\% & 25\% & 29\% & -4\% \\
\hline South Carolina & 7 & 41\% & 14\% & 31\% & -17\% \\
\hline Total & 38 & 37\% & 24\% & 26\% & -2\% \\
\hline
\end{tabular}
amendment prohibiting Republican legislators from using partisanship to draw maps in Florida, the GOP nevertheless managed to win 17 seats with \(51.4 \%\) of the vote, surpassing expectation by 2.5 seats. Even under bipartisan gerrymandering in New York, in which Democrats won 21 of 27 seats, their vote share suggested they should have won 22. Across the seven states with bipartisan or courl gerrymanders, Republicans exceeded expectation by an average of \(7 \%\). \({ }^{6}\)

So how many seats did this underlying disadvantage cost the Democrats? If we imagine that these bipartisan or court maps were unbiased, and that Democrats and Republicans received equal benefit from their own maps (for example, a \(12 \%\) advantage as an average), this would have yielded 16 or 17 additional seats, likely getting the Democrats within a couple seats of the majority. By contrast, the disparity between the number of seats gerrymandered by Republicans compared to Democrats likely costs Democrats about nine seats. \({ }^{7}\) This initial analysis reveals that geography is a slightly greater factor than intentional gerrymandering in explaining why Democrats won fewer seats than expected from their vote share.

If there is any area of the country where the geographic distribution of partisans has nol led to an underrepresentation of Democrats, we might expect to observe it where Democratic voting strength does not hew as closely to the black/white or urban/rural divide. In particular, we find this pattern interrupted in areas with very large Hispanic populations, as Hispanics tend to be both less saturated in their support for Democrats and more geographically dispersed than African-Americans living in large urban areas. In the five states with the highest proportion of Hispanics (Arizona, California, New Mexico, Nevada, and Texas), Democrats won a seat share very close to expectation in each state, despite not controlling the process in any of them. It is possible that non-partisan commissions in California and Arizona may have contributed to greater fairness, but the ease of drawing geographically large, majority Hispanic districts in these states, (e.g. AZ-4, CA-16, CA-51, and TX-23) might have also mitigated the advantage Republicans have in other regions given the distribution of their voters

The final subhead of Table 1 depicts results from five states in the Deep South. In these states, voting is highly racial polarized and, unlike most of the rest of the nation, much of the African-American population is rural. In addition, amendments to the Voting Rights Act (VRA) have been interpreted to require the drawing of African-American-majority or African-American-influence districts across rural parts of these states, with district maps requiring Department of Justice preclearance under the VRA. Past research has suggested that this may constrain maps to resemble Republican gerrymanders even when drawn by another party (Goedert, 2012; Hill, 1995; Lublin, 1999), and we do see that results in these states are slightly
biased against Democrats with one exception. \({ }^{8}\) Because we therefore might expect these states to be much differently impacted by both urbanization and the gerrymandering party compared to the rest of the nation, they are excluded from the regression analysis below.

\section*{Regression results}

To more directly approach Chen and Rodden's (2013) argument that Democrats are disadvantaged due to their heavy concentration in cities, I analyzed these results using an OLS regression, including 2010 US Census data on race and urbanization. Table 2 depicts regression results with each state weighted by number of districts, excluding five Deep South states and states with only one or two districts. The dependent variable is the difference between Democratic seats won and the number of seats expected given their vote share. A high positive value is a map distorted in favor of Democrats, while a high negative value is a map distorted in favor of Republicans. Dummy variables are assigned for partisan redistricting procedures; the excluded category is bipartisan or court-drawn maps. In addition, controls are included in some models for the percent of the population that lives in urban areas or that is African-American or Hispanic. The "Hispanic Dummy" in Model 1 is a " 1 " for the five most heavily Hispanic states.

Model 1 reaffirms the three central conclusions from Table 1. Firstly, the effect of partisan control of the districting process is significant and in the expected direction. Secondly, as we can see from the negative and significant constant, which captures the bias in states with a bipartisan or court-drawn map and without a large Hispanic population, maps are distorted in favor of Republicans even when we control for partisan gerrymanders. Finally, this distortion is not present in the case of the most heavily Hispanic states.

Model 2 tests the effect of minority population proportions, includes controls for state size and overall partisanship of the state, and also yields a closer test of the Chen and Rodden (2013) hypothesis by including the urbanization variable. Chen and Rodden hypothesize that the distortion is due to population shifts toward urban areas. If this were true, we would expect more distortion against Democrats in heavily urbanized states. Consistent with Table I and Model 1, a larger Hispanic population reduces bias against Democrats, but the size of the AfricanAmerican population has no significant effect on distortion, and we see no effect for urbanization. \({ }^{\text {a }}\)

Model 3, including only states with more than six districts, paints a different picture, showing a significant negative coefficient for urbanization. Among larger states, which likely include both urban and rural areas, heavily urbanized states (e.g. New Jersey and Pennsylvania) are more often heavily distorted against Democrats than more rural states (e.g. Minnesota and Wisconsin) after

Table 2. Regression results.
\begin{tabular}{|c|c|c|c|}
\hline Democrat \% seats won minus \% seats expected & Hisp. dum Model I & Model 2 & >6 CDs \\
\hline \multirow[t]{2}{*}{Democratic gerrymander} & 9.13* & 10.1** & 16.6** \\
\hline & (4.63) & (4.79) & (4.75) \\
\hline \multirow[t]{2}{*}{Republican gerrymander} & -11.2*** & -4.08 & -13.6** \\
\hline & (2.89) & (3.81) & (4.86) \\
\hline \multirow[t]{2}{*}{Percent African-American} & - & -0.41 & -0.29 \\
\hline & & (0.26) & (0.24) \\
\hline \multirow[t]{2}{*}{Percent Hispanic} & - & 0.58** & 0.77*** \\
\hline & & (0.22) & (0.24) \\
\hline \multirow[t]{2}{*}{Urbanization} & - & 0.046 & -0.72 ** \\
\hline & & (0.22) & (0.34) \\
\hline \multirow[t]{2}{*}{Democratic vote} & - & 0.32 & 0.11 \\
\hline & & (0.21) & (0.24) \\
\hline \multirow[t]{2}{*}{Number of seats} & - & -0.29* & -0.16 \\
\hline & & (0.16) & (0.18) \\
\hline \multirow[t]{2}{*}{Hispanic dummy} & 9.95*** & - & - \\
\hline & (3.11) & & \\
\hline \multirow[t]{2}{*}{Constant} & -5.52** & -25.5 & 45.0 \\
\hline & (2.26) & (15.8) & (29.2) \\
\hline Observations & 33 & 33 & 21 \\
\hline \(R\)-squared & 0.557 & 0.641 & 0.829 \\
\hline
\end{tabular}

Notes: Standard errors in parentheses. Data points weighted by state size. \({ }^{*} * \mathrm{*} p<0.01,{ }^{*} * p<0.05, * p<0.10\).

Table 3. Seats won versus mean vote share by gerrymandering party: 2012 presidential vote (summary).
Summary table
\begin{tabular}{lclllr}
\hline & & Dem. & \begin{tabular}{l}
Dem. \\
Seats won
\end{tabular} & \begin{tabular}{l}
Dem. seats \\
Expected
\end{tabular} & \begin{tabular}{c}
Won-Exp. \\
Difference
\end{tabular} \\
\hline CDs & Vote share & & \(50 \%\) & \(-22 \%\) \\
Republican gerrymanders & 106 & \(50 \%\) & \(28 \%\) & \(80 \%\) & \(8 \%\) \\
Democratic gerrymanders & 35 & \(61 \%\) & \(80 \%\) & \(72 \%\) & \(-1 \%\) \\
Bipartisan or court gerrymanders & 97 & \(57 \%\) & \(63 \%\) & \(64 \%\) & \(-2 \%\) \\
High Hispanic population & 105 & \(55 \%\) & \(57 \%\) & \(59 \%\) & \(-15 \%\) \\
Deep South states & 38 & \(43 \%\) & \(21 \%\) & \(36 \%\) & \\
\hline
\end{tabular}
controlling for the gerrymandering party. Furthermore, the coefficients for partisan maps increase when we limit the sample to larger states, possibly indicating the greater flexibility parties have in drawing districts in such states. \({ }^{10}\)

\section*{Robustness check: Presidential election results}

Although the current congressional map has thus far only seen one cycle of election results, there has been another election held across all 435 of these districts that we can use to test the robustness of this paper's finding: the 2012 presidential election. Despite winning with \(52.0 \%\) of the twoparty popular vote, Obama won only 209 congressional
districts, further suggesting pro-Republican bias. We can substitute Obama's margin for the congressional election result to measure bias under the various redistricting regimes.

The results of replicating Table 1 using presidential election results are summarized in Table 3 and are detailed in Table A3 of Supplementary Material. In the case of partisan maps and heavily Hispanic states, the average bias is very similar to the bias under the actual congressional election results. Notably, the difference in bias between Republican and Democratic gerrymanders remains the same at \(14 \%\). However, the pro-Republican bias under bipartisan and court gerrymanders largely disappears. There are likely two explanations for this difference. Firstly, President Obama won three districts in Minnesota and five districts in New York
with \(52 \%\) or less of the vote, which might be described as luck. However, this result also suggests that the asymmetry in the geographic distribution of partisans is not constant across states and regions. In some "bluish" states, the more conservative areas such as upstate New York and rural Minnesota may be only marginally Republican. These districts may be won by Republicans in a nationally tied electoral environment but captured by Democrats in a climate somewhat more favorable to them, such as Obama's \(4 \%\) popular vote victory. In contrast, in the Deep South where the more conservative regions are deeper "red," probably exaggerated by VRA considerations, the bias against Democrats is actually exacerbated as their vote majority increases.

\section*{Conclusion}

Both the state-by-state results and aggregated regression analysis suggest that while deliberate partisan gerrymandering produces additional seats for the districting party, partisan gerrymandering is not a sufficient explanation for the overall antimajoritarian outcome. Instead, pro-Republican bias is observed under all districting regimes. In addition, the regression results offer possible support for the Chen and Rodden (2013) thesis that urbanization has created bias while also forecasting its possible demise if patterns of rapid Hispanic population growth continue.

It is important to note the limits to these conclusions. Firstly, while asymmetric population distributions are a plausible explanation for persistent bias, and one supported by previous research, they are not the only possible cause. For example, one might claim that incumbency could give Republicans advantages in more marginal districts (see McGhee, 2012). This article does not attempt to isolate that cause."

This analysis does not imply that Democrats are doomed to the minority even for the next decade. It does indicate they are unlikely to retake the House in an essentially tied national election. Yet national elections are not usually this close: Democrats reversed a Republican gerrymander in Pennsylvania, Virginia, Ohio, and Michigan in 2006 or 2008 (all states with aggressive Republican maps). The 2012 maps leave the Democratic Party several openings; for example, Republicans now sit in five Pennsylvania districts won by Obama in 2008. To win these seats, Democrats will need the electorate to look like 2006 or 2008 , but this is far from unprecedented: Democrats won the popular vote by at least 5 points in 12 of the last 20 cycles. But given the unequal concentrations of vote share in most states, not just those with Republican gerrymanders, a Democratic majority will be a bit more difficult than it should be.

\section*{Supplementary Material}

The entire Supplementary Material is available at: http:/bit. ly/IjOtnma

\section*{Declaration of conflicting interest}

The author declares that there is no conflict of interest.

\section*{Funding}

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

\section*{Notes}
1. While Hirsch argues that the combination of redistricting control and geographic imbalance biased the 2002 election results against the Democrats by 25 seats, he does not distinguish between these two factors in that cstimate, and he argues that almost all bias can be located within four states with Republican-controlled districting.
2. The linear method estimates an average slope of 2.02 for the past 40 years, compared with Tufte's (1973) average of 2.09 for the preceding 70 years. Tufte justifies using a linear estimate, as opposed to probit or logit, because the majorparty vote shares rarely fall outside of the \(35-65 \%\) range. However, as vote shares in several states in the 2012 election fall outside of this range, a curve that will deal more appropriately with extreme values is needed for our purpose.
3. The constant in this regression represents approximately a \(3-4 \%\) bias in favor of Democrats over this period. When broken down by decade (shown in Table AI of Supplementary Material), the bias estimate aligus with past research in showing Democratic bias in the 1970s and 1980s, shifting toward Republican bias in the 2000s (c.g. King and Gelman, 1991; McGhee, 2012), possibly due to the same gerrymandering and geography trends observed here for 2012. The sign of this bias is reversed under the state elections data method (also in Table AI of Supplementary Material), with the difference likely attributable to the method of imputation for unopposed raccs. If estimated using a logit function on the national data, the slope cocfficient is .0415 , with all results substantive unchanged.
4. In cases where a candidate runs unopposed and no votes are collceted, no votes are added to the national total, but a \(100 \%\) vote share is imputed into the state result. This will lead to a difference in responsiveness between the methods where unopposed incumbents are predominantly one party. About \(70 \%\) of such races in the data set occur in the South, with about two-thirds of those being Democrats in the 1970s and 1980s.
5. Obviously, Democrats could not have hoped to perform better in Massachusetts than they did. At the state level, however, this example illustrates the national phenomenon of Democrats failing to maximize their vote by oversaturating their support in certain areas. In addition, Democrats controlled the process in Arkansas, but won none of its four seats; earning an average of \(35 \%\) of the vote across this state would have predicted winning one seat under a "fair" map.
6. This avcrage disparity is extremely close to the \(6 \%\) disparity observed nationwide, as the Democrats' \(1 \%\) popular vote advantage is estimated to correspond to \(52 \%\) of seats expected, compared to \(46 \%\) of seats actually won.
7. Reducing the Republican bias by \(7 \%\) in the 238 seats under Republican, Democratic, or Bipartisan control in Table 1 nets
the Democrats \((238 \times .07)=16.7\) seats. If we instead assume the level of bias shown in Table I, but allocate 70 seats to both Democratic and Republican control (rather than 35 and 106, respectively), this reduces the number of Republican seats in Republican-controlled maps by \((36 \times .19)=6.8\) seats, and increases the number of Democrats in Democratic-controlled maps by \((35 \times .05)=1.75\) seats (for a total of 8.6 seats).
8. The exception here is Georgia, which is biased toward the Democrats despite being districted in 201! by Republicans. This is likely attributable to the novel strategy of "minority influence" districts cmployed in a Democratic gerrymander in the 2000 s, a strategy upheld in Georgia : Asheroft (2003), combined with the need to avoid retrogression from this map to achieve VRA clearance in the next decade
9. Because of the inclusion of other controls with continuous values in Models 2 and 3, the valuc of the constant is no longer inherently meaningful.
10. The coefficients for Republican gerrymanders between models are different at \(p<.05\), but not significantly different for Democratic gerrymanders.
11. This explanation seems less plausible given that Mitt Romney won \(52 \%\) of congressional districts despite losing the national populat vote by \(4 \%\).

\section*{References}

Altman M and McDonald MP (2013) A half-century of Virginia redistricting battles: Shifting from rural malapportionment to voting rights to public participation. University of Richmond Law Revien' 47: 771-831.
Brunell TL (1999) Partisan bias in U.S. congressional elections, 1952-1996. American Politics Research 27(3): 316-337.
Chen J and Rodden J (2013) Unintentional gertymandering: Political geography and electoral bias in legislatures. Quarterly. Journal of Polifical Science 8(3): 239-269.
Erikson R (1972) Malapportionment, gerrymandering, and party fortuncs in congressional elections. American Political Science Review 66(4): 1234-1245.

Goedert \(N\) (2012) Southern redistricting under the VRA: A model of partisan tides. In: the 2012 state politics \& policy conference, Houston, TX. Available at: http:// 2012 sppcon ference.blogs.rice.edu/files/2012/02/VRA-Partisan-Tides-SPPC-versionl.pdf.
Hiil KA (1995) Does the creation of majority black districts aid Republicans? An analysis of the 1992 elections in eight southern states. Journal of Politics 57(2): 384-401.
Hirsch S (2003) The United States House of Unrepresentatives: What went wrong in the latest round of congressional redistricting. Election Law Journal 2(2): 179-2|6.
King G and Browning RX (1987) Democratic representation and partisan bias in congressional elcctions. American Political Science Review 81(4): 125|-1273.
King \(G\) and Gelman A (1991) Systemic consequences of incumbency advantage in U.S. Housc Elcetions. American Joumal of Political Science 35(1): 110-138.
Lijphart A (1999) Patterns of Democrack: Government Forms and Performance in Thirty-Six Countries. New Haven, CT: Yale University Press.
Lublin D (1999) The Paradox of Representation. Princeton, NJ: Princeton University Press.
McDonald M (2009) Seats to votes ratios in the United States. Unpublished Paper, George Mason University. Available at: http://www.democracy.uci.edu/files/democracy/docs/con ferences/medonaldgmu,doc (accessed 31 March 2014).
McGhee E (2012) The history of the House votes-seats discrepancy, in two graphs. The Monkey Cage (Political Science blog). Available at: http://themonkeycage.org/ blog/2012/11/19/the-history-of-the-house-votes-seats-dis crepancy-in-two-graphs/ (accessed 31 March 2014).
Rae D (1967) The Political Consequences of Electoral Laws. New Haven, CT: Yale University Press.
Taagepera \(\mathbf{R}\) and Shugart MS (1989) Seats \& Voters: The Effects \& Determinants of Electoral Systems. New Haven, CT: Yale University,
Tufte ER (1973) The relationship between seats and votes in twoparty systems. The American Political Science Review 67(2): 540-554.

\title{
The Case of the Disappearing Bias: \\ A 2014 Update to the "Gerrymandering or Geography" Debate
}

\author{
Nicholas Goedert \\ Lafayette College \\ goedertn@lafayette.edu \\ November, 2015
}

\begin{abstract}
This note observes that the pro-Republican bias in the relationship between seats and votes that characterized the 2012 U.S. congressional elections largely disappeared in the 2014 elections, where Republicans won a six-point victory in the national popular vote but only a handful of additional seats. Replicating analysis from an earlier article on the 2012 elections, I find that the source of the decline in bias supports two theories about the effects of gerrymandering and geography on the U.S. Congress. First, bias declined most sharply in states where maps were drawn by Republicans, suggesting these maps were drawn specifically to maximize seats during a tied national election environment. And second, pro-Republican bias present in bipartisan maps almost entirely disappears, as does the previously observed effect of urbanization on bias, further supporting existing theories about the asymmetric geographic dispersion of partisans.
\end{abstract}

The 2014 midterm elections were by most measures an unmitigated success for the Republican party. In addition to holding 55 Senate seats and 31 Governorships, Republicans won 247 seats in the House of Representatives, the party's largest majority since the Great Depression. But these 247 seats represent a surprisingly small gain considering the difference in the national popular vote for Congress between 2012 and 2014. Two years earlier, Republicans won a 33 -seat majority despite losing the popular vote by \(1 \%\); in 2014, winning the popular vote by almost \(6 \%\) yielded only an additional 13 seats.

And projections from scholars suggest that the modest Republican House gains may have indeed been surprising to given the overall size of the Republican wave on other fronts. The October 2014 issue of PS: Political Science and Politics included five short articles predicting the results of the upcoming elections. On the whole, these predictions were quite accurate in estimating a median Republican gain of 14 seats in the House (Campbell 2014). But while correctly or slightly over-predicting the Republican gains in House, all three articles addressing Senate races predicted the Republican would pick up fewer than the nine Senate seats they did (see Abramowitz 2014; Highton, McGhee and Sides 2014; Lewis-Beck and Tan 2014). Additionally, Abramowitz estimates that a six point Republican lead in the Congressional general ballot should result in a 17 seat gain in the House but a 7 seat gain in the Senate.

As discussed in my previous article "Gerrymandering or Geography?: How Democrats Won the Popular Vote but Lost the Congress in 2012" (2014), the 2012 congressional election result was strongly biased in favor of the Republicans due to a combination of the asymmetric geographic dispersion of partisan and intentional gerrymandering that the Republican party dominated following the 2010 census. But it seems shortsighted to only judge the overall bias of a map with respect to a single, closely contested election. Indeed, recent scholarship such as Stephanopoulos and McGhee (2015) has expanded on the notion that bias should be judged with respect to 50/50 election by measuring vote efficiency in maps across a range of election
environments (see also McGhee 2014). This note replicates my 2012 analysis using the recent election data, and finds that these same factors play a much less certain role in inducing bias during in the Republican popular vote wave of 2014, despite the same maps being in effect.

We observe declining bias in both Republican and bipartisan gerrymanders. This result highlights two aspects of the debate over districting bias in the current cycle of congressional districting. First, bias is the product of the interaction of districts with the national election environment, and not stable across all elections. Maps that appear biased when the election is close may also appear fair when one party wins by a sizeable margin (and vice-versa). And second, the absence of bias in 2014, just like the presence of bias in 2012, is explainable by a combination of intentional gerrymandering and the asymmetric distribution of partisans.

\section*{National Seats-Votes Curve}

Goedert (2014) observed that an historically average seat/votes curve over the past 40 years of U.S. congressional elections can be approximated by a line with a slope of about 2 , or a probit curve with a slope of 0.026 (where the IV is the Republican advantage in the national popular vote, and the DV is Republican share of seats won). This largely matches the findings over the previous century by Tufte (1973). Figure 1 replicates the same table in Goedert 2014 with the addition of a data point for 2014 . While 2012 lies far below both the linear (dashed) and probit (solid) expectation lines, indicating strong Republican bias in the result, 2014 falls much closer to expectation, despite the historically strong Republican seats total. Based on the historical average from 1972-2010, Republicans won 22 more seats than expected in 2012, but only 5 more than expected in 2014.
[Figure 1 about here]
Given the steep decline in Republican bias on the national level, we should also expect to see this bias disappear in many states whose delegations tilted toward Republicans in 2012.

Where should we expect to see bias decline most dramatically? It would be in states where (1) the partisan allocation of seats was biased toward Republicans in 2012; (2) the vote share for Republican increased in 2014; and (3) this increase led to few or no additional seats for the GOP in 2014. In moving from an evenly matched election to a moderate Republican wave, we would expect marginally-Democratic seats to be most likely to flip to Republicans; states with many such seats would see Republican bias increase in 2014, while states with none of these seats would see bias decrease. In other words, we are most likely looking at states that included very few swing or slightly left-leaning districts. Such a pattern would certainly be predicted in the case of Republican gerrymanders, and thus we predict the greatest decline in bias is states with Republican maps. However, the "asymmetric dispersion" theory would also predict this pattern of few lean-leaning swing seats in situations where the geographic dispersion of partisans (most states excepting those with high Hispanic populations) would tend to preclude their creation. So states with bipartisan gerrymanders should also see some decline in the bias generated from asymmetric partisan dispersion, but less than Republican gerrymanders, which deliberately avoid these districts.

In contrast, we would not expect to see bias decline in states containing a lot of slightly Democratic seats that would be vulnerable during a wave like 2014. This would include states with marginally Democratic regions (e.g. rural Hispanics-majority districts) or gerrymanders that would deliberately create them (drawn by Democrats). While Republican bias should not decrease in these states, it is unclear whether it should increase; this would depend on the partisan balance of the state compared to the size of the wave. The reason for this ambiguity is that the few Democratic gerrymanders in the current decade tended to occur in states that already consistently vote heavily Democratic, including Massachusetts and Maryland. It is possible that the Democratic vote is strong enough in these states that even a maximally Democratic
gerrymander would not require drawing many marginally Democratic seats, or that the size of even the 2014 wave would not be enough to overcome their existing partisan lean.

\section*{Breakdown by Gerrymandering Regime}

Table 1 replicates the same table from Goedert 2014, breaking down individual states by the party responsible for gerrymandering at the start of the decade, with separate categories for states with very high Hispanic population and deep South states most affected by Voting Rights Act constraints (as discusses in that article). \({ }^{1}\)
[Table 1 about here]
As shown in Table 1, it appears that bias has responded exactly as hypothesized. We immediately see the biggest difference in the Republican gerrymanders, where Democratic vote share fell most steeply (from an average of \(48 \%\) to \(43 \%\)), but Republicans collectively gained only one seat. The result is that the pro-GOP bias generated from these maps was reduced by more than half. And the change was quite consistent across states: bias fell by at least \(5 \%\) in eight of the nine states. In 2012, six of these states saw a Republican bias of at least \(20 \%\); in 2014, none of them do. It is still notable that Republican gerrymanders remained biased as a whole, as Republicans of course still win virtually all of the seats absent those few deliberately packed with Democrats. The decline in bias is largely due to Republicans winning seats the had already won in 2012, but by larger margins. It may be that bias in swing states Republican gerrymanders could be entirely reversed toward the Democrats under a strong Democratic tide (as was seen in states such as Pennsylvania and Ohio during the 2008 wave election), but this drastic outcome is unlikely during a Republican wave unless the tide was so strong as to make even packed Democratic seats competitive.

Bipartisan maps also see bias decline, though to a lesser extent and less predictably than Republican maps. Overall, these maps went from having a \(7 \%\) Republican bias to less than \(2 \%\),
now appearing collectively very close to fair. Republicans gained \(4 \%\) in vote share in these states, and three additional seats, all in New York; overall both parties won about half the vote and half the seats.

In contrast, we might expect Republicans to gain several seats in Democratic gerrymanders, which generally try to draw slightly pro-Democratic districts to maximize their seat share in close elections. And we see evidence of this in Illinois, the most notable Democratic gerrymander of this decade, where Republicans defeated two incumbents in 2014, destroying the bias that map generated in 2012. Maryland remains highly biased toward the Democrats, largely because the incumbent in MD-06 survived a shockingly close race by \(1 \%\). And the all-Democratic delegation in Massachusetts remained, but their dominant mean vote share predicted Democrats would win every district in the state anyway. Overall, these states remained slightly biased toward Democrats as they had in 2014. \({ }^{2}\) The summarized results in Table 2 suggest that both the intentional gerrymandering and geographic dispersion sources of bias declined by 5 percentage points between 2012 and 2014, from \(12 \%\) to \(7 \%\) in the case of gerrymandering, and from \(7 \%\) to \(2 \%\) in the case of geography. \({ }^{3}\)

The previous article hypothesized that states with the largest Hispanic populations may not have displayed the same Republican bias as other states because Democratic-leaning Hispanics (especially in more rural areas), may have made the drawing of Democratic leaning districts more natural in these states. Conversely, we might expect these same districts to be more vulnerable to a moderate Republican wave. And indeed, Republicans gained a seat in each Arizona, Nevada, and Texas in 2014. \({ }^{4}\) However, overall bias actually moved slightly in favor of Democrats, largely because Democrats were extremely fortunate to win all seven races decided in California by less than 5\%. Bias did not change substantially in the Deep South states because Republican vote share changed very little; we might speculate that vote choice in this region is relatively inelastic.
[Table 2 about here]

\section*{Regression Analysis of Urbanization}

In the previous article, a regression analysis showed that Republican bias correlated with urbanization among medium and large states in the 2012 elections, as a test of Chen and Rodden's (2013) theory that urban population patterns generate Republican bias in legislative maps even under neutral districting procedures. Table 3 replicates that analysis for 2014, with starkly different results. Both the effect of urbanization increasing Republican bias and the effect of Hispanic population decreasing it are reduced to statistically insignificant levels in 2014. The urbanization coefficient declines in 2014 because the forces that created bias in an evenly balanced election (many urban seats won overwhelmingly by Democrats, and less urban seats won narrowly by Republicans) are not as present in an election favoring Republicans. In 2014, those urban seats are still won by Democrats, but less overwhelmingly, while the Republican seats stay Republican by a larger margin. And when urbanization is no longer significantly associated with bias, the lack of bias among heavily-Hispanic states is no longer exceptional, as it was in 2012.

And the effects of partisan gerrymandering also becomes less significant. Although the coefficients on Democratic and Republican gerrymanders decrease only slightly, the uncertainty around them increases: partisan gerrymandering was a less consistent predictor of bias during the Republican wave in 2014 compared to the close election in 2012, a result consistent with state-by-state examples in Table 1. Note that the difference in these coefficients is not significant between 2012 and 2014. However, this is consistent with the general sense that while there is strong evidence of Republican bias due to both gerrymandering and geography, the conclusions we can draw in either direction on either count are much murkier in the case of 2014.
[Table 3 about here]

\section*{Conclusion}

After a startling deviation from historical norms in 2012, the relationship of seats to votes in the 2014 congressional elections returned to a state much closer to expectation. While this evidence remains purely anecdotal based on two consecutive elections, the contrast between them provides further insight as to when to expect to find bias in congressional maps. In particular, the steep decline in bias in Republican-drawn maps suggests they were drawn specifically to maximize seat expectation in a nationally tied election. Additionally, the similar decline in bias in bipartisan maps in a pro-Republican wave election supports the theory that districts are sometimes unintentionally drawn resembling Republican gerrymanders, including many slightly right-leaning seats along with several heavily Democratic seats, due to the geographic dispersion of partisans. This is further supported by the contrasting effect (or lack there of) of urbanization on the bias across these elections.

Finally, the stark differences in results across temporal proximate and superficially similar elections highlights the importance of considering the national election environment, and its potential for wide variation, in evaluating gerrymanders and voting systems. When evaluating the respective effects of intentional gerrymandering and geographic dispersion, it is important to consider the range of possible electoral environments. Partisan gerrymanders may be drawn to be most effective (and this most biased) when then national electoral environment is close. But this same circumstance of a tied national election may also yield significant Republican bias due to geographic dispersion, making Democratic gerrymanders seem less effective, and Republican maps more effective, than they would under a different overall environment. So simply evaluating the context of a close national election may not tell the full story.

Moreover, many pundits have predicted a sustained and unbreakable lock on the House of Representatives through the remainder of the decade as a result of the bias observed in 2012.

But the Republican wave in 2014 demostrates that observation is not constant across time, and just as they did in 2008, Democrats could potentially eliminate this bias, both due to gerrymandering and geography, through a wave in their favor in 2016 or beyond.

\section*{Tables and Figures}

Figure 1. Seats-Votes Curve in Congressional Elections 1972-2014

\section*{Table 1. Seats Won vs. Mean Vote Share By Gerrymandering Party: 2014 Congressional Elections}

\section*{Republican Gerrymanders}
\begin{tabular}{|c|c|c|c|c|c|}
\hline State & CDs & \begin{tabular}{l}
Dem. \\
Vote Share
\end{tabular} & Dem. Seats Won & \begin{tabular}{l}
Dem. Seats \\
Expected
\end{tabular} & \begin{tabular}{l}
Won-Exp. \\
Difference
\end{tabular} \\
\hline Indiana & 9 & 40\% & 22\% & 29\% & -7\% \\
\hline Michigan & 14 & 52\% & 36\% & 54\% & -18\% \\
\hline Missouri & 8 & 39\% & 25\% & 28\% & -3\% \\
\hline North Carolina & 13 & 44\% & 23\% & 37\% & -14\% \\
\hline Ohio & 16 & 41\% & 25\% & 31\% & -6\% \\
\hline Pennsylvania & 18 & 45\% & 28\% & 39\% & -11\% \\
\hline Tennessee & 9 & 35\% & 22\% & 22\% & 0\% \\
\hline Virginia & 11 & 42\% & 27\% & 33\% & -6\% \\
\hline Wisconsin & 8 & 48\% & 38\% & 45\% & -8\% \\
\hline Weighted Average & 106 & 43\% & 27\% & 36\% & -9\% \\
\hline 2012 Average & 106 & 48\% & 28\% & 47\% & -19\% \\
\hline
\end{tabular}

\section*{Democratic Gerrymanders}
\begin{tabular}{lcccccc}
State & CDs & \begin{tabular}{c}
Dem. \\
Vote Share
\end{tabular} & \begin{tabular}{c}
Dem. \\
Seats Won
\end{tabular} & \begin{tabular}{c}
Dem. Seats \\
Expected
\end{tabular} & \begin{tabular}{c}
Won-Exp. \\
Difference
\end{tabular} \\
Illinois & 18 & & \(53 \%\) & & \(56 \%\) & \(57 \%\)
\end{tabular}

\section*{Bipartisan or Court Gerrymanders}
\begin{tabular}{|c|c|c|c|c|c|}
\hline State & CDs & \begin{tabular}{l}
Dem. \\
Vote Share
\end{tabular} & Dem. Seats Won & Dem. Seats Expected & Won-Exp Difference \\
\hline Colorado & 7 & 48\% & 43\% & 46\% & -3\% \\
\hline Florida & 27 & 43\% & 37\% & 35\% & 2\% \\
\hline Kentucky & 6 & 36\% & 17\% & 23\% & -7\% \\
\hline Minnesota & 8 & 52\% & 63\% & 55\% & 8\% \\
\hline New Jersey & 12 & 55\% & 50\% & 59\% & -9\% \\
\hline New York & 27 & 63\% & 67\% & 75\% & -8\% \\
\hline Washington & 10 & 50\% & 60\% & 50\% & 10\% \\
\hline Weighted Average & 97 & 51\% & 51\% & 53\% & -2\% \\
\hline 2012 Average & 97 & 55\% & 54\% & 61\% & -7\% \\
\hline
\end{tabular}

High Hispanic Population States
\begin{tabular}{lccccc}
State & CDs & \begin{tabular}{c}
Dem. \\
Vote Share
\end{tabular} & \begin{tabular}{c}
Dem. \\
Seats Won
\end{tabular} & \begin{tabular}{c}
Dem. Seats \\
Expected
\end{tabular} & \begin{tabular}{c}
Won-Exp. \\
Difference
\end{tabular} \\
\begin{tabular}{lcc}
9 & \(45 \%\)
\end{tabular} & \(44 \%\) & \(40 \%\) & \(5 \%\)
\end{tabular}
\begin{tabular}{lccccc}
California & 53 & \(58 \%\) & \(74 \%\) & \(66 \%\) & \(7 \%\) \\
New Mexico & 3 & \(52 \%\) & \(67 \%\) & \(54 \%\) & \(13 \%\) \\
Nevada & 4 & \(44 \%\) & \(25 \%\) & \(38 \%\) & \(-13 \%\) \\
Texas & 36 & \(39 \%\) & \(31 \%\) & \(29 \%\) & \(2 \%\) \\
Weighted Average & \(\mathbf{1 0 5}\) & \(\mathbf{5 0 \%}\) & \(\mathbf{5 4 \%}\) & \(\mathbf{5 0 \%}\) & \(\mathbf{5 \%}\) \\
2012 Average & \(\mathbf{1 0 5}\) & \(53 \%\) & \(\mathbf{5 6 \%}\) & \(\mathbf{5 6 \%}\) & \(\mathbf{0 \%}\)
\end{tabular}

Deep South States
\begin{tabular}{|c|c|c|c|c|c|}
\hline State & CDs & \begin{tabular}{l}
Dem. \\
Vote Share
\end{tabular} & Dem. Seats Won & Dem. Seats Expected & Won-Exp. Difference \\
\hline Alabama & 7 & 35\% & 14\% & 22\% & -8\% \\
\hline Georgia & 14 & 40\% & 29\% & 31\% & -2\% \\
\hline Louisiana & 6 & 28\% & 17\% & 13\% & 4\% \\
\hline Mississippi & 4 & 38\% & 25\% & 27\% & -2\% \\
\hline South Carolina & 7 & 31\% & 14\% & 17\% & -2\% \\
\hline Weighted Average & 38 & 36\% & 21\% & 23\% & -2\% \\
\hline 2012 Average & 38 & 37\% & 24\% & 26\% & -2\% \\
\hline
\end{tabular}

Table 2. Summary of Bias in 2012 vs. 2014
\begin{tabular}{|c|c|c|c|}
\hline Districting & Seats & 2012 Bias & 2014 Bias \\
\hline Republican & 106 & GOP +19\% & GOP \(+9 \%\) \\
\hline Non/Bipartisan & 97 & GOP + \(7 \%\) & GOP \(+2 \%\) \\
\hline Democratic & 35 & Dem \(+5 \%\) & Dem \(+5 \%\) \\
\hline
\end{tabular}

Table 3. Regression Results

\section*{References}

Abramowitz, Alan I. 2014. "Forecasting the 2014 Midterm Elections with the Generic Ballot Model". PS: Political Science \& Politics 47(2): 772-74.

Campbell, James E. 2014. "The 2014 Midterm Election Forecasts". PS: Political Science \& Politics 47(2): 769-71.

Chen, Jowei and Jonathan Rodden. 2013. "Unintentional Gerrymandering: Political Geography and Electoral Bias in Legislatures". Quarterly Journal of Political Science 8: 239-69.

Goedert, Nicholas. 2014. "Gerrymandering or Geography?: How Democrats Won the Popular Vote but Lost the Congress in 2012". Research \& Politics 1(1): 2053168014528683.

Highton, Benjamin, Eric McGhee and John Sides. "Election Fundamentals and Polls Favoring the Republicans". PS: Political Science \& Politics 47(2): 786-88.

Lewis-Beck, Michael S. and Charle" Tien. 2014. "Congressional Election Forecasting: Structure-X Models for 2014". PS: Political Science \& Politics 47(2): 782-85.

McGhee, Eric. 2014. "Measuring Partisan Bias in Single-Member District Electoral Systems". Legislative Studies Quarterly 39(1): 55-85.

Stephanopoulos, Nicholas O. and Eric M McGhee. 2015. "Partisan Gerrymandering and the Efficiency Gap." Forthcoming in University of Chicago Law Review 82.

Tufte, Edward R. 1973. "The Relationship between Seats and Votes in Two-Party Systems." The American Political Science Review 67(2): 540-54.

\footnotetext{
' In this table, Democratic Vote share is the mean popular vote share across the state by Congressional district, Democratic Seats Expected is the number of seats we estimate Democrats should have won in a fair map given their vote share according to historical average, using a probit curve with a slope of 0.026 and an intercept of 0 .
\({ }^{2}\) The average expected seats in these states declines despite the very little change in mean vote share because vote share increased in MA, where further increase has little effect on expected seats because they were already expected to win almost every seat, but decreased in IL, where expected seats was much more sensitive to the change. Note that Democrats also lost all seven seats in Arkansas and West Virginia, two smaller states where they controlled the gerrymander.
\({ }^{3}\) This breakdown is calculated by assuming the average bias observed in the bipartisan states \((7 \% / 2 \%\) in 2012/2014) is the overall bias due to geography, and then subtracting this from the total bias in the partisan states to yield the portion of bias in partisan maps due to deliberately gerrymandering. (E.g. the total Republican bias in 2014 GOP maps is \(9 \%\), so this is \(7 \%\) due to gerrymandering if it is \(2 \%\) due to geography.) In both the case of 2012 and 2014, this turns out to be the same absolutely bias for Democrats and Republicans.
\({ }^{4}\) All three were swing districts at the national level; the Texas seat was Hispanic majority, while the Nevada and Arizona seats had approximate Hispanic populations of \(30 \%\) and \(20 \%\) respectively.
}

The measure of partisanship should exist to establish the change in the partisan balance of the district. We are not in court this time; we do not need to show that we have created a fair, balanced, or even a reactive map. But, we do need to show to lawmakers the political potential of the district.

I have gone through the electoral data for state office and built a partisan score for the assembly districts. It is based on a regression analysis of the Assembly vote from 2006, 2008, and 2010, and it is based on prior election indicators of future election performance.

I am also building a series of visual aides to demonstrate the partisan structure of Wisconsin politics. The graphs will communicate the top-to-bottom party basis of the state politics. It is evident, from the recent Supreme Court race and also the Milwaukee County executive contest, that the partisanship of Wisconsin is invading the ostensibly nonpartisan races on the ballot this year.```

