In The Matter Of:
 William Whitford, et al., vs.
 Gerald Nichol, et al.

Deposition of SIMON JACKMAN
 March 16, 2016

Verbatim Reporting, Limited

2 East Mifflin Street, Suite 102
Madison, Wisconsin 53703
www.Verbatim-Madison.com
verbatim@tds.net
608.255.7700

HIDMTIT

V ER B A T I M

REPORTING. LIMITED
"Excellence in Reporting Since 1988"

IN THE UNITED STATES DISTRICT COURT FOR THE WESTERN DISTRICT OF WISCONSIN = WILLIAM WHITFORD, et al., Plaintiffs, -vs- Case No. 15-cv-421-bbc GERALD NICHOL, et al., Defendants. Deposition of: SIMON JACKMAN Madison, Wisconsin March 16, 2016 Reported by: Lisa L. Lafler, RPR, CRR, CLR	Deposition of SIMON JACKMAN 3-16-16 DEPOSITION of SIMON JACKMAN, called as a witness, taken at the instance of the Defendants, under the provisions of the Federal Rules of Civil Procedure, pursuant to Notice, before Lisa L. Lafler, a Registered Professional Reporter, Certified Realtime Reporter, Certified Livenote Reporter, and Notary Public in and for the State of Wisconsin, at the State of Wisconsin Department of Justice, 17 West Main Street, City of Madison, County of Dane, and State of Wisconsin, on the 16th day of March, 2016, commencing at 9:09 in the forenoon. APREARANCES DOUGLAS M. POLAND, Attorney, RATHJE WOODWARD 10 East Doty Street, Suite 800, Madison, Wisconsin 53703, appearing on behalf of the Plaintiffs. dpoland@rathjewoodward.com 608-441-5104 RUTH GREENWOOD and ANNABELLE HARLESS, Attorneys, CHICAGO LAWYERS' COMMITTEE FOR CIVIL RIGHTS UNDER LAW, INC. 3018 North Sheridan Road, Apartment 1S, Chicago, Illinois 60657, appearing on behalf of the Plaintiffs. ruthgreenwood2@gmail.com 202-560-0590 BRIAN P. KEENAN, Attorney, STATE OF WISCONSIN DEPARTMENT OF JUSTICE 17 West Main Street, Madison, Wisconsin 53703, appearing on behalf of the Defendants. keenanbp@doj.state.wi.us 608-266-0020
Deposition of SIMON JACKMAN 3-16-16 I N D EX	SIMON JACKMAN, called as a witness, being first duly sworn, testified on oath, as follows: (Exhibit No. 56 marked for identification) EXAMINATION BY MR. KEENAN: Q. Good morning. Professor Jackman, as you remember, I'm Brian Keenan. I'm an attorney for the defendants in this case. You're here for a second deposition. Since you just had a deposition a few months ago, I'm not going to go over all the preliminary stuff in great detail, but I will say that if you don't understand a question I ask, please make sure to let me know and I'll try to rephrase or we can have the court reporter repeat it. Do you understand? A. I do. Q. And then just as a reminder, to respond verbally with yes-no answers and try not to cut me off in my question, I'll try not to cut you off in your answer, so we can get a clean transcript. Do you understand? A. I do.

Deposition of SIMON JACKMAN 3-16-16 Page 9	Deposition of SIMON JACKMAN 3-16-16 Page 11
A. The cycle immediately preceding the plan at issue 2 yeah.	1 -- the effects of that are being felt and any harm 2 is being felt.
3 Q. Your report criticizes Dr. Goedert for not	3 So it would seem to me that the appropriate
4 understanding that the efficiency gap is a measure	4 moment might be when we've seen one election from
5	5 the plan. That -- that's probably, I think,
	6 hitting the sweet spot between uncertainty as to
7 A.	at the plan will do over the rest of the
8 Q. And why is it your opinion that a large efficiency	8 decade -- over the elections we will observe over
9 gap should be a problem when a map is enacted	9 the rest of the decade under that plan, if allowed
10 partisan intent but not when it's enacted with no	10 to stand, versus I think the -- the more
	11 speculative exercise of taking a plan to court.
12 A. I think the question	12 And particularly under this criteria, we
13 trigger for judicial scrutiny is beyond my area of	13 haven't seen an election yet so we don't know what
14 expertise. What I can testify to is a large	14 its efficiency gap is, or if we did, we would be
efficiency gap, though, is certainly evidence of	15 engaged in, I think, a more speculative exercise.
16 partisan -- systematic, rather, partisan advantage	16 So that's why I think the appropriate number in
17 one way or the other, and on that basis, it is	17 terms of triggering litigation is -- is that one
18 something that a court might be interested in.	18 election, that first election.
19 Q. And that systematic partisan advantage, though, 20 would exist in a state that had a high efficiency	19 Q. But, obviously, you'd agree that's just one piece 20 of data about the plan?
21 gap regardless of the intent that went into	21
22 enacting	22 Q. And a plan -- you'd agree that a plan would
23 A. Well, again, that's right. That's right. I would 24 agree with that.	23 produce a range of results over its lifetime under 24 different electoral conditions, correct?
25 Q. Moving on to the paragraph starting "Second,"	25 A. And, indeed, that was considered at great length
Deposition of SIMON JACKMAN 3-16-16 Page 10	Deposition of SIMON JACKMAN 3-16-16 Page 12
ll go in order here so	in my original report. That's righ
2 A. Okay.	2 Q. Yeah. Now, is there any particular reason why the
3 Q. -- this will be logical. You say that, '	sorry. Strike that questio
4 appropriate universe for plaintiffs, defendants,	Do you think it's relevant in looking at the
5 and courts is limited to the first elections held	5 number of elections that exceed a particular
6 under plans." Why do you say that?	6 efficiency-gap threshold in any election under a
7 A. That is -- it would seem to me that's the	7 plan is at all relevant in determining the
8 operative moment to go to court, as it were, or to	8 usefulness of the efficiency gap as a standard
9 begin the process of judicial scrutiny. It's	$9 \quad$ going forward into the future?
10 possible you might even begin the process of	10 A. I think that -- that would -- I think there are
scrutiny with zero elections, right? The plan was	11 two senses of the word "threshold" that l'd want
just a plan at that point, perhaps, passed by the	12 to keep distinct. So it's the value we observe --
13 legislature, but we're yet to see an election	13 the value of the efficiency gap that we observe in
generated underneath it. Seems to me you could --	14 the first election held under the plan, and we've
you could do th	15 talked about that being a trigger for judicial
But the thing about	16 scrutiny. And then there's a second sense of the
now we have a piece of data generated from the	17 word "threshold," and that is, what is the -- you
actual plan as it is operating, and it seems to me	18 know, what values of the efficiency gap are we
19 it's not -- you know, the idea that we would wait	19 observing in the second, third, fourth?
20 for two or three elections under the plan so as to	20 Sol -- so -- so one -- if I were to answer
21 build a more reliable picture of how the plan is	21 -- the best answer to your question might be to
22 performing seems sort of unrealistic. At that	22 say that conditional on the first election under
23 point, we're closer to the end of the plan than	23 the plan triggering the threshold that we've
24 the beginning and any damage, if you will, or	24 promulgated as -- as should apply to those -- that
25 partisan advantage manifest in the plan is being	25 set of first elections. It is, indeed, a

Deposition of SIMON JACKMAN 3-16-16 Page 13	Deposition of SIMON JACKMAN 3-16-16 Page 15
1 pertinent question to ask what is the behavior of	1 Wisconsin in 2002 is negative 0 -- a negative
2 the efficiency gap over -- over the lif	2
3 plan; and then, indeed, the question that	3 Q. And that's a good topic. You like to refer to
4 concerned myself with in my original report was	4 things in proportions; is that correct?
5 whether that subsequent sequence of efficiency-gap	5 A. Oh, I -- I'm happy to call that minus 7.5. We can
6 values lay on the same sign of zero that was -- it	6 multiply by 100 to stop all the decimals and
7 was either negative or positive, had the same sign	7 zeroes in the transcript if that's --
8 indicating the direction of partisan advantage as	8 Q. It's fine to do it the way you want. I just
9 we observed in that first electio	$9 \quad$ wanted to establish that negative 7.5 is the same
10 So that's, I think, the probative	$10 \quad$ thing as negative 0.075.
11 you will, of the sequence of values we observe in	11 A. That's right.
12 elections two, three, four, and five put up	12 Q. My mind works in percentages.
13 against the value we observed -- or the efficiency	13 A. No. No. Th
14 gap we observe in election	14 MR. POLAND: Just so we can be
15 Q. And your analysis has examined historica	15 clear about if we're talking percentages, if
16 elections under plans and looked at the first	16 we're actually talking decimal points.
17 election that actually happened under that plan;	17 MR. KEENAN: Yeah.
18	18 THE WITNESS:
19 A. That is correct	19 Q. And you were referring to Figure 35 on page 72 of
20 Q. And then analyzed the future elections based on	20 your report?
21 the efficiency gap observed in that first	21 A. Correct. I was reading -- literally reading that
22 election?	22 data point off the graph, yeah
23 A. Correc	23 Q. And so when Wisconsin's 2000's plan is analyzed --
24 Q. Okay. Now, for plans that have actually had a	24 when you analyze that plan in your -- in your
Deposition of SIMON JACKMAN 3-16-16 Page 14	Deposition of SIMON JACKMAN 3-16-16 Page 16
to examine plans from the 1970s, '80s, '90s, and	$1 \quad 7.5$ percent efficiency gap in its first election?
$2 \quad 2000 \mathrm{~s}$; is that correc	2 A. (No verbal response.)
3 A. That's correct.	3 Q. Is that correct?
4 Q. So the majority of these first elections would	4 A. Correct.
5 have been in 1972, 1982, 1992, and 2002?	5 Q. Now, we know that the plan, though, also went on
6 A. Yes, and 2012 we have a couple there as well.	6 to produce a variety of results, correct?
7 Q. Okay. But in the 2012 --	7 A . That is correct.
8 A. Yeah, I know.	8 Q. So what were the other efficiency gaps observed in
9 Q. -- we haven't been able to see the full results	9 Wisconsin's 2000's plan? We can go in order.
10 over a full ten-year period, right?	10 A. Sure. Again, reading off the graph, in 2004, it's
11 A. Gotcha. Gotcha.	11 close to negative 10 percent. In 2006, it's
12 Q. And just looking at Wisconsin in the 2000's	12 approximately negative 12 percent. In 2008, it's
13 decade, the first efficiency gap observed in 2002,	13 approximately negative 5 percent. And in 2010, it
14 I believe, was a negative 7 and a half about; is	14 is approximately negative 4 percent.
15 that --	15 Q. Okay. So we have a range from negative 4 to
16 A. I -- l'd want to look at my original repor	16 negative 12; is that correct?
17 Q. Sure.	17 A. That is correc
18 A. I think l've got that exactly there. Do you mind?	18 Q. Now, in your analysis, is there any particular
19 Thanks.	19 political science reason why negative 0 -- or
20 Q. Mr. Jackman's original report was marked as	20 negative 7.5 percent was the result that was --
21 Exhibit 11 previously, and he's referring to a	21 happened to be seen in 2002?
22 copy of it here.	22 A. No. There's nothing from the literature per se
23 A. So you asked me about which election?	23 that -- that led me to -- oh, you mean the value
24 Q. 2002.	24 per se?
25 A. Yeah. The estimate of the efficiency gap for	25 Q. Yeah.

Deposition of SIMON JACKMAN 3-16-16 Page 17	Deposition of SIMON JACKMAN 3-16-16 Page 19
1 A. I'm sorry. I misunderstood the question. Could	1 you want me to answer all the same?
2 you ask	2 MR. POLAND: Well, it's up to you.
3 Q. Sure. In 2002, Wisconsin sa	$3 \quad \mathrm{l}$ just objected to form. It's just an
$4 \quad 7.5$ percent efficiency gap. Is there	4 objection. If you can answer, you can
5 particular reason why 2002 saw that number of	5
6 efficiency gap	6 THE WITNESS: Okay.
7 A. There's -- no. There's nothing in the literature	7 A. It -- okay. So it did, indeed, produce that
8 that would -- would look at a given election and	8 that range of values. The value of the first one,
9 make a -- a -- a sharp p	9 we -- we didn't have a -- you know, it would be an
10 say the precise value we would probably not be	10 interesting analysis to engage in. We've got a
11 able to predict, but there's analysis around to	11 little bit of that in the rebuttal report. But
12 suggest that depending on prevailing conditions,	12 certainly at the time I was -- at this stage of my
13 you know, in particular who drew the plan, we	13 investigation of the efficiency gap, I was not
14 might -- we might form expectations as to whether	14 engaged in that exercise nor has it been a
15 we're going to see one side -- you know, positive	15 particularly strong focus of my work on the
16 or negative efficiency-gap value	16 efficiency gap thus far.
17 Now, I note that in this plan -- this was a	17 Q. But under your analysis that you've performed, had
18 plan that was drawn by a court. So, in this case,	18 the 2010 election result occurred in $20-$-2002,
19 we wouldn't have particularly strong expectations	19 the Wisconsin plan would present itself as an
20 as to what the sign nor the magnitude of the -- of	20 initial plan with a negative 4 percent efficiency
21 the first efficiency gap that we see under the	21 gap; is that correct?
22	22 MR. POLAND: Object to the form of
23 Q. And you'd agree that the plan could conceivably	23 thequestion.
24 produce an election anywhere from negative 4 to	24 A. It's -- it's a -- it's a -- it's a bit
25 negative 12 percent efficiency gap? The Wisconsin	25 counterfactual for me to try to grasp, frankly.
Deposition of SIMON JACKMAN 3-16-16 Page 18	Deposition of SIMON JACKMAN 3-16-16 Page 20
2000's plan could have produced an efficiency gap	1 Had everything that produced the 2010 election
2 anywhere from negative 4 percent to negative 12	2 holding constant the district lines, which were
3 percent depending on the electoral circumstances?	3 held constant, would -- would we have seen the
4 MR. POLAND: I'm going to object to	4 same efficiency-gap number? I -- I -- that's a
5 the form of the question.	5 rather speculative counterfactual I'm -- I'm sort
6 Q. Well, you'd -- let me re -- you'd agree that the	6 of being asked to entertain there and one that l'm
7 Wisconsin 2000's plan was capable of producing a	7 not quite sure I can -- I can -- I can answer with
8 range of results; is that correct?	8 any great confidence or precision.
9 A. We observed that it, in fact, did.	9 Q. Okay. So you understand that you're -- the
10 Q. And, in fact, it did produce negative 4 to	10 standard you're presenting is being asked to be
11 negative 12 percent; is that correct?	11 applied by courts that would go into the future,
12 A. That's correct.	12 correct?
13 Q. So before the 2012 -- or 2002 election, no one	13 A. Ido.
14 knows what the efficiency gap's going to be,	14 Q. So it would apply to the 2020 round of
15 correct?	15 redistricting if it was adopted by the courts?
16 A. Not with any great	16 A. Yes.
17 Q. Okay. And so it happened to produce an efficiency	17 Q. Okay. And so do we know what type of election's
18 gap of negative 7.5 percent. That's correct?	18 going to occur in 2022?
19 A. That's correct.	19 MR. POLAND: Object to the form of
20 Q. But it was capable of producing efficiency gaps	20 the question. The "type of election" is
21 that were perhaps as low as negative 4 percent or	21 vague.
22 as high as negative 12 percent. That's correct?	22 A. Are you asking me --
23 MR. POLAND: Object to the form of	23 Q. Yeah. Do you know -- we don't know what
24 the question.	24 percentage of the vote the Democrats versus the
25 THE WITNESS: You're asking -- do	25 Republicans are going to get in 2022?

Deposition of SIMON JACKMAN 3-16-16 Page 21	Deposition of SIMON JACKMAN 3-16-16 Page 23
1 A. No, we don	1 Q. Well, after the first election
2 Q. We don't know whether it's going to be a 50/50	2 A. Oh, after we see it. Yes. We could then look at
3 election or a wave election one way or the other	3 how it lined up with the now considerable several
4 A. I'll -- I'll -- I'll accept what we mean by "wave	4 hundred values of the efficiency gap that we've
5 election" there, but -- but -- what we might mean	5 seen if -- indeed, first election under the plan
6 by wave election there, but, no, we don't know the	6 efficiency gaps that we've now seen from the
7 exact vote share that Democrats or Republicans	7 historical analysis.
8 will get in the 2022 Wisconsin state election.	8 Q. So you'd have to refer back to your historical
9 Q. And that would be the election that would trigger	9 analysis of the prior decades; is that correct?
10 judicial review under the standard that you're	10 A. I would, ye
11 advoca	11 Q. Okay. If we move on to the next paragraph in your
12 A. Or may n	12 report -- and you can keep the other report handy
13 Q. Sure. Yes. It would be the election which	13 just in case you need to refer back to it.
14 determines whether there's judicial review or not?	14 A. Sure, certainly.
15 A. If -- if the standard were adopted and if it	15 Q. There's some discussion of the differences in
16 tripped the -- the propose	16 durability between pro-Democratic efficiency gaps
17 Q. And before a plan -- there's an election under a	17 and pro-Republican efficiency gaps; is that
18 plan, is there a way that people can know what	18
19 type of election's going to occur in the first	19 A. That's correct.
20 election under a plan	20 Q. Do you have an opinion as to why the efficiency
21 A. Well, I -- again, in answe	21 gap shows that Republican plans are more durable
22 question, this is the election -- zero-election	22 than Democratic pla
23 problem. All we have are the plan boundaries.	23 A. I don't have a well-formed hypothesis as to why
24 We're yet to see an election conducted under the	24 that is the case. The most obvious one that comes
25 plan's boundaries. I can imagine a research	25 to mind is Caprice, that -- that -- that first
Deposition of SIMON JACKMAN 3-16-16 Page 22	Deposition of SIMON JACKMAN 3-16-16 Page 24
agenda that would try to forecast efficiency-gap	$1 \quad$ value we got is a draw from a distribution that
estimates based on some kind of statistical	2 lies actually closer to zero and that those
3 modeling or based on some sort of forecast as to	3 relatively small number of cases where we do see
4 what we thought was going to happen statewide,	4 an apparent pro-Democratic advantage in the first
5 what was going to happen seat by seat, taking into	5 election. When the plan is allowed to run its
6 account factors like incumbency, or what -- you	6 course, we learn that, in fact, that, on average,
know, on my feet I can think out loud about what	7 it tends to be the case that there's no systematic
8 such a research program might look like. But at	8 or long-run advantage to Democrats. So that would
9 the end of the day, that would be -- it would be a	9 suggest that the relatively few -- as I said, in
10 lot of modeling and it would be considerable	10 the relatively few instances we're seeing such a
11 uncertainty attaching to any capitalization of the	11 positive pro-Democratic first value of the
12 plan before we've seen a real actual election	12 efficiency gap, it -- it -- that's why they're not
13 conducted under the district lines.	13 durable or as durable as the ones we see on the
14 Q. The first election's just going to be one data	14 other side, yeah.
15 point about the plan though, correct?	15 Q. So why are then the Republican -- pro-Republican
16 A. It is one data point. It is one value of the	16 advantages more durable than the Democratic
17 efficiency gap.	17 advantages seen?
18 Q. And the potential efficiency gaps are going to	18 A. The hypothesis that you -- the conclusion that
19 span a range of possibilities, correct?	19 you're sort of led to is that Republican plans,
20 A. That's correct.	20 plans that are generating Republican advantage,
21 Q. And is there a way to determine where along the	21 are consistent with -- they were drawn that way.
22 spectrum of that range the first efficiency gap	22 They're producing the results and they were
23 the experience under a plan is, on the high end,	23 designed to -- to do so, certainly consistent with
24 the low end, or the middle?	24 our argument, let's say, you know, dispositive
25 A. Before we see it?	25 with respect to partisan intent -- we've been down

Deposition of SIMON JACKMAN 3-16-16 Page 25	Deposition of SIMON JACKMAN 3-16-16 Page 27
road -- but it would seem to be consistent	1 that the lines subject, you know, constraints --
2 with there being a systematic Republican advantage	2 legal and sometimes and traditional redistricting
3 in more plans, particularly in the '90s, 2000s,	3 criteria, that does impose constraints on line
$4 \quad 2010$ s period than in the earlier period.	4 drawers, but line drawers also have many, many
Q. Is it that Republicans are	5 degrees of freedom to produce the districts they
6 gerrymandering than Democrats?	6
7 A. I'd resist, perhaps, that exact form of words for	7 And we have it -- you know, l've done some
$8 \quad$ what's going on, but something like that might --	8 subsequent analysis that suggests, perhaps, one of
9 might be the -- might be the case, that the	9 the biggest drivers of the efficiency gaps that we
10 that the plans that are being drawn to -- that	10 observe is who controlled the redistricting
11 generate Republican advantage are -- yes, have	11 process, not so much -- that would suggest that
12 been done, perhaps, more strongly, more	12 that's -- that's an incredibly important predictor
13 systematically. Maybe that does that up better.	13 more so than anything to do with the speculation
14 Q. Do you have any opinion on whether the underlying	14 about the distribution of partisans through --
15 political geography on which any map is going to	15 through -- through the state.
16 be drawn just happens to be more favorable to the	16 Q. And the analysis you just referred to, that's
17 Republicans than the Democrats regardless of who's	17 contained in your rebuttal report?
18 drawing the lines?	18 A. It is.
19 A. I try to resist -- we talk about political	19 Q. So we'll get to that later.
20 geography, but it's not geography in the sense of	20 A. Okay.
21 lakes and rivers and mountains. Political	21 Q. We'll talk about that.
22 geography arises through the very exercise that	22 But based on your testimony, your analysis
23 we're scrutinizing here, and that is, line	23 has only looked at the results of the elections
24 drawing, right? We break up states into	24 that have been seen and hasn't factored into
25 districts. We note that some districts after that	25 account at all the potential distribution of
Deposition of SIMON JACKMAN 3-16-16 Page 26	Deposition of SIMON JACKMAN 3-16-16 Page 28
xercise tend to be more Democratic or more	$1 \quad$ partisans in a particular state?
Republican in their election results or other data	2 A. No. I -- I -- no. That's -- no.
3 that might point that way. But I -- I try not to	3 Q. A little bit ambiguous, but --
4 put -- it's almost putting the cart before the	4 A. No.
5 horse a little bit to say -- at the same time I'm	5 Q. Your analysis just looked at the results seen in
6 being asked to examine properties of a -- of a	6 various elections. That's correc
7 districting system to then ask about was there	7 A. Yes.
8 some underlying, quote, political geography that	8 Q. And it doesn't go back and try to adjust anything
9 made it the outcome the way it had to be? It's --	9 to establish any sort of like baseline efficiency
10 you know, I'm sort of conflating the sort of cause	10 gap that would be expected under traditional
11 and consequence there.	11 districting principles?
2 Q. Sure. And maybe the term "political geography"	12 A. I did not consider alternative plans.
13 might be poor.	13 Q. And it measures all plans against a baseline of
14 But what about the distribution of a party's	14 zero efficiency gap?
15 voters throughout the state? Is there any -- do	15 A. No. It -- it -- it computes the efficiency gap
16 you have an opinion on whether a particular	16 election by election; and it could be positive, it
17 party's voters are more advantageously distributed	17 could be negative, but there's nothing magic about
18 throughout the state to the other party?	18 zero. It didn't -- zero didn't play any role in
19 A. Well, what I do know is that's a very active area	19 -- in my analysis.
20 of debate inside political science and, in	20 Q. Why do you say that?
21 particular, among political scientists interested	21 A. In the sense that -- it's not like I -- I -- we
22 in redistricting. But -- but my position would be	22 compute an efficiency-gap number for each
23 to say that, you know, in particular, the words	23 election. Some are positive, some are negative.
24 "natural political geography," I tend to bristle	24 We just let literally the chips fall where they
25 at that. The whole point of the exercise is -- is	25 may and observe the distribution of efficiency-gap

Deposition of SIMON JACKMAN 3-16-16 Page 29	Deposition of SIMON JACKMAN 3-16-16 Page 31
1 values afterwards. But there's nothing -- and	And then we can ask about how good an
2 zero -- as a theoretical matter, a zero efficiency	2 indicator the actual underlying condition, -- that
3 gap does have a special status, right? That's a	3 is, partisan advantage one way or the other -- is
4 plan that shows no advantage one way or the other.	4 that test result, right? And so if over the life
5 But in terms of doing my analysis, the fact	5 of the plan -- you know, there are various ways
6 that zero -- you know, the special theoretical	6 that Markham might be wrong, and the one I
7 status of a zero efficiency gap played -- played	7 considered in my original report was at any point
8 no role. It was purely an emp	8 over the life of the plan in election two, three,
9 investigation, an empirical investigation of -- of	9 four, or five did we see a value of the efficiency
10 -- of the efficiency-gap values in that historical	10 gap that contradicted the signal we got from the
11 data set.	11 first election. And in such a case, we have a
12 Q. I think we'll	12 first election has tripped the threshold, so it
13 A. Okay.	13 has tested positive but, in fact, it is a negative
14 Q. I think maybe it would be helpful to look at the	14 case. That plan as allowed to run generated
15 chart on page 6 --	15 values of efficiency gap that contradicted the
16 A. Yeah.	16 initial sign, and so that's a false positive, all
17 Q. -- that talks about true positives, false	17 right? So such cases would fall in the top right
18 positives, false negatives, and true negatives,	18 corner of the two-by-two table that appears on the
19 and just have you explain -- maybe l'll just go in	19 bottom half of page 6.
20 order.	20 Q. Maybe I can just stop you. So a false positive is
21 What is a true positive for purposes of your	21 a plan that triggered the threshold, but then
22 test?	22 actually went on to produce an election with an EG
23 A. Okay.	23 of the opposite sign?
24 MR. POLAND: So objection; vague.	24 A. Correct.
25 Can you give him specific questions to take	25 Q. Okay.
Deposition of SIMON JACKMAN 3-16-16 Page 30	Deposition of SIMON JACKMAN 3-16-16 Page 32
1 him through it?	1 A. A true positive, on the other hand though, right,
	2 is now we've tripped the threshold and, indeed,
3 Q. I mean, well, first why don't you explain what you	3 the -- over the life of the plan the subsequent
4 did in terms of the -- Section 2? I don't want to	4 sequence of efficiency-gap values stayed on that
5 characterize it as a particular thing.	5 same side of zero as, indeed, case in point would
$6 \quad$ What type of tests were you doing in	6 be the Wisconsin plan 2002 through 2010 we were
7 Section 2?	discussing.
8 A. I -- okay. What I did was to put ourselves in the	8 Q. And then what are the -- what's a false negative?
9 position of something akin to a doctor making a	9 A. Let's talk about those. So negative is that that
10 diagnosis, almost like a medical test; and so we	10 first election we've got a small -- in magnitude a
11 observed the efficiency gap from the first	11 small value of the efficiency gap, and so based on
12 election under a plan -- and that's a number. And	12 the proposed threshold, we'd say there's nothing
13 we've also proposed a threshold; and just as you	13 to see here. Your cholesterol is normal, right?
14 might with your doctor, your cholesterol is above	14 But then as we allow the plan to run, we -- we,
15 a certain number, the doctor's going to do	15 indeed, observe that it produces values that are
16 something. They will suggest you do something,	16 large.
17 perhaps.	17 And then a true -- a true negative is just
18 And here it's exactly analogous, right? We	18 the other case. It tested negative. It looked
19 are proposing that if we see a first value of the	19 like there was nothing -- it didn't trigger a
20 efficiency-gap line above the threshold, that such	20 threshold in the first election and, indeed, went
21 a plan would invite scrutiny. And, that is to	21 on to small values of the efficiency gap or even
22 say, if the first election under the plan exceeds	22 values of the efficiency gap that alternated in
23 that threshold, we say it has tested positive just	23 sign. Sometimes it looked like there was a
24 in the same way that your blood cholesterol, for	24 Republican advantage. Sometimes it looked like a
25 instance, has tripped a threshold.	25 negative. So that's a true negative; and that

Deposition of SIMON JACKMAN 3-16-16 Page 33	Deposition of SIMON JACKMAN 3-16-16 Page 35
1 is -- you know, you've got low cholesterol and	will the average test score be in other math
2 turns out that was the right call. What -- we	2 tests. You know, what does that 70 percent tell
n't need to make an invention in those -- in	3 us? Now we're asking what's the probability we
4 that cas	4 will ever see a score below 50, say? And that's a
$5 \quad$ And so this is a conventional way of looking	5 -- that's a -- we're asking just one election,
6 at the behavior of any prognostic procedure that	6 right, taking on the other sign is enough for us
s a binary outcome, would trip a threshold or	7 to say, no, that has sent us the wrong message.
8 not, positive or negative, so it admits this	8 So I thought -- I thought, as I did my
9 rather simple two-by-two classification of the	9 initial report, what's an extremely strenuous test
10 possibilities, you know, the relationship between	10 we could submit the efficiency gap to such that --
11 what we see with the initial test and then the	11 right? Because at the end of the day what we're
12 underlying behavior of -- of the plan over the	12 in the business of doing is trying to promulgate a
13 rest of the decade.	13 standard here that we'd want people to be able to
14 Q. Okay. And so just to clarify on the negative, is	14 rely on. So we want to have pretty high
15 the negative based on a sign flip or is it based	15 confidence that when we were calling something a
16 on a magnitude?	16 positive, it was, indeed, a positive.
17 A. Being a true negative, a true negative is -- is --	17 So that's why -- and the -- and a true
18 let me be clear on that. Yeah. A true negative	18 positive -- what -- a true positive or true
19 is -- it's -- it's, in fact, bouncing around.	19 negative being, you know, held up to this high --
20 It's changing sign over the life of the plan.	20 not just the on average or the median, but just do
21 Q. And so would a false negative be a plan that came	21 you ever see an efficiency-gap score taking on --
22 in below the threshold and, thus, escaped your	22 there's even one election where the efficiency gap
23 view but then never changed signs	23 bounces over to the other side of zero would be
24 A. Well, a false -- a false negative is a case th	24 enough to say no.
25 tested negative, but that was the wrong call.	25 And so that struck me at the time of my
Deposition of SIMON JACKMAN 3-16-16 Page 34	Deposition of SIMON JACKMAN 3-16-16 Page 36
1 Q. And why was it the wrong call? Is it because it	$1 \quad$ initial report as -- as one of the more strenuous
2 was the same sign throughout its existence?	2 tests I could submit the efficiency gap and,
3 A. Yeah.	3 indeed, what -- what the -- the efficiency gap
4 Q. Okay.	4 from the first election submitting --
5 A. That's righ	5 investigating the prognostic value of that -- that
6 Q. So this is -- these positives and negatives are	6 number.
7 based on whether a change in the efficiency-gap	7 Q. First, a clarification question. In your
8 sign occurs or not?	8 analysis, are you using the point estimate of the
9 A. Yeah. Yeah. Describing under the columns	9 efficiency gap and not the confidence interval in
10 "actual," that's what we mean, yeah, yeah.	10 terms of the sign change?
11 Q. And why is the sign flip the determining factor	11 A. Everything -- for instance, the -- if I could
12 for whether a plan should trigger the threshold or	12 direct your attention --
13 not -- or sorry. That was a poor question.	13 Q. Sure.
14 Why is the sign flip the determining factor	14 A. -- to -- to -- to, say, just for example, to
15 for whether the threshold is accurately capturing	15 Figure 1 in my rebuttal report on page 8, the
16 the positives and negatives?	16 shaded regions around each of those lines are, in
17 A. Yeah. The answer to that is I -- in my initial	17 fact, 95 percent confidence intervals on each of
18 report, I seized on that -- I thought that was	18 those quantities on the prognostic measures that
19 the -- absolute one of the most rigorous,	19 in turn stem from the fact that we have confidence
20 strenuous tests we could submit the efficiency-gap	20 intervals that are some certainty accompanying the
21 measure to.	21 value of the efficiency gap in the first election
22 Let's take another analogy from the world of	22 and, indeed, in subsequent elections as well. So
23 testing, one we might be familiar with. We ask	23 that uncertainty is, if you will, propagated down
24 here -- your kid takes a math test and scores	24 through other things I say about the efficiency
2570 percent, say. Now we're asking not just what	25 gap or the prognostic value of the first

Deposition of SIMON JACKMAN 3-16-16 Page 37	Deposition of SIMON JACKMAN 3-16-16 Page 39
efficiency gap under a plan	1 quantitative sciences, is allow us to propagate
2 Q. But the -- would the lines themselves be based on	2 uncertainty in quantities up here in the analysis
3 the point estimates	3 down through the analysis such that bottom-line
4 A . In some c	4 things like, for instance, the things I'm
5 Q. Yeah. I guess maybe an exa	5 reporting in Figure 1 reflect the uncertainty and
6 for m	6 the inp
7 So say a plan -- in determining whether it's	7 Q. So -- it's not a binary yes-or-no decision whether
8 a positive or a negative, a plan was all of the	8 a plan counts as a positive or a negative. It
9	9 could vary depending on the particular Monte Carlo
11 Would that count as a positive or a negative?	11 A. In any given Monte Carlo simulation, the answer is
12 A. Well	12 yes. Averaged over Monte Carlo simulations we get
13 MR. POLAND: I'm going to obj	13 -- that's why we attach a probability to that
14 Just object to the form of the question. You	14 threshold number, the probability that we will see
15 can answer, if you	15 a sign flip given the first election -- efficiency
16 A. As a -- as a practical matter, yes. The way this	16 gap above or below a threshold. That's where that
17 is done is with -- I don't want to get too	17 language of -- of probability comes from
18 technical here, but the way this is done is with	18 Q. And then stepping back, is there a theoretical or
19 Monte Carlo simulation. So the efficiency gap for	19 reason why you're using a sign flip from positive
20	20 to negative or negative to positive as the -- the
21 distribution, right, and we can summarize that	21 focal point of this analysis?
22 distribution with the mean and we call that	22 A. Yeah. And now we're back to the special meaning
23 conventionally the point estimate; and we als	23 of zero, right? Right, because zero represents an
24 summarize the width of that distribution with	24 unbiased -- or a plan that has no apparent
25 something like	25 advantage one way or the other, right? Seeing
Deposition of SIMON JACKMAN 3-16-16 Page 38	Deposition of SIMON JACKMAN 3-16-16 Page 40
But for the purposes of generating, ag	something on the other side of zero, as it were,
wnstream quantities, if you will, such as the	2 you know, the plan is generating an election
3 prognostic value of the first efficiency gap,	3 that's got a different message now to -- to the
4 there's -- I use something that's called a	4 other messages you may have got, particularly the
5 Monte Carlo method and, that is, to sample out of	5 message, say, from the first election.
t distribution that characterizes our	So that's why -- and -- and -- that's why I
uncertainty with respect to any given efficiency	thought that was, like I said, a strong test that
8 gap; and, indeed, for all efficiency gaps I do	8 -- that -- you know, you get a -- to the extent,
9 this.	9 right -- think about it the other way. If you get
And then if you will, then live got	10 all the efficiency-gap values, what we're calling
11 sequence of efficiency gaps for that decade and	11 positive, they're all on the same side of zero,
12 they're each being drawn from the predictive	12 you've never seen it tell you anything other than
13 distributions -- posterior distributions, rather,	13 there is partisan advantage for one side or the
14 and then -- and it's wash, rinse, repeat. You	14 other here versus, oh, in one election it did.
15 literally are counting how many times you see a	15 And so that's why I thought that was a -- you
16 sign flip under that draw and you've stacked	16 know, the -- your ability to characterize a plan
17 you know, you literally count that across plans	17 in those terms struck me as really strong. We
18 and then you take another draw.	18 have never -- in five out of five elections, it
19 So sometimes, right, the efficiency gap	19 never -- given all the vagaries and wave
20 you're working with for a given election -- on any	20 elections, all that stuff, right, we never saw it
21 given iteration of that scheme, the efficiency gap	21 send a contrary message, and that struck me kind
22 value you're working with for -- for a particular	22 of intuitively as a -- as a -- as a strong set,
23 election will be above the mean or below the mean,	23 right? It's not the average. It's not the
24 but that uncertainty is -- is -- and this is what	24 median. It's did it ever say anything different
25 Monte Carlo methods do for us in -- in the	25 to what we saw in the first election? Yeah.

Deposition of SIMON JACKMAN 3-16-16 Page 41	Deposition of SIMON JACKMAN 3-16-16 Page 43
Q. And so a false negative, would that cover a plan that -- using a negative 7 percent threshold that its first election was under negative 7 percent, let's just say negative 5 or something like that. A. Right. Q. And then it could have subsequent efficiency gaps of negative 3 , negative 2 , negative 1 , negative 4. That's a false negative? A. That would count. Q. Yeah. A. It didn't trip the threshold in election one and went on to state -- nonetheless, went on to rack up values of the efficiency gap all in the same side of zero as the first one. Q. And that would work the same way for a positive number as well? A. Yes. I know. There's many senses of the word "positive" and "negative" being thrown around at the moment. But, yes, I know what you mean and you're right, yes. Q. So why don't we -- maybe I can just get you to explain the -- there's seven different -- A. Yes. Q. -- measures here and we can go -- go through them one by one starting with --	A. That's right. And that's to help you out with the table, right? Each one of these quantities is essentially adding and dividing different quantities if you had populated the four entries in that two-by-two table. So sometimes we're going by -- by rows and sometimes we're going by -- by columns. But the abbreviations map back to the interior of that table we were just discussing. Q. And just to be complete, FP is false positive -- A. False positive. Q. -- where we see it later on? A. Yep. Q. And then TN is true negative? A. Correct. Q. Okay. So I think I understand true negative now after you've explained it. A. Okay. Q. Can you explain what balanced accuracy is? A. Okay. So balanced accuracy, right? So now we've got a true positive rate. We've got a true negative rate. So balanced accuracy is -- is the average of the two, right, because why would we want to average them? And the answer is because the true positive rate, we're just looking at
```None \\ A. Sure. \\ Q. -- sensitivity or the true positive rate. What is that? \\ A. Well, let me just back up by saying these are all quite standard in the literature on assessing diagnostic performance, right, and indeed, the first two are straight out of the -- the -- the medical literature. \\ So the true positive rate, known in the medical literature as -- as the sensitivity, is simply the proportion of positives that test positive. So it's cases -- in this case, a definition of positive, right, is that we're seeing the plan have a sequence of efficiency-gap values that are all on one side of zero or all on the other side of zero, and the test, right, is what we saw in the first election. Did it trip some threshold? And so it's just a proportion of all those positives that would have tested positive, yeah. \\ Q. Okay. And just so -- with all these, there's some abbreviations here. \\ So TP stands for true positive? \\ A. Correct. \\ Q. And then FN is false negative? ```	Deposition of SIMON JACKMAN 3-16-16    1 positives that test positive. The true negative   2 rate, we're just looking at negatives that test   3 negative. We want to talk about the overall   4 behavior of the test. We've sort of got to put   5 those two together, either the two rows or the two   6 columns together. And in this case, the balanced   7 accuracy measure is a way of combining the   8 performance with respect to positives and the   9 performance with respect to negatives in a single   10 number, and it's called balanced accuracy for --   11 as opposed to accuracy. We just confuse   12 everybody. That's fine.   13 Q. Yeah. There's also accuracy. Could you explain   14 what that is?   15 A. Yeah. That's right. So now -- now these are the   16 -- now we're doing something else which is --   17 right? There are many ways to -- a surprisingly   18 large number of ways to analyze a two-by-two table   19 and -- and ltem 4 there, accuracy, is -- is -- if   20 you will, is summing the diagonal. How many of   21 the elements line up on the diagonal, because   22 they're right calls, right?   23 So a true positive, it tested positive and,   24 in fact, was positive; and true negative and it   25 was, in fact, negative and you -- you know, what


Deposition of SIMON JACKMAN 3-16-16 Page 45	Deposition of SIMON JACKMAN 3-16-16 Page 47
$1 \quad$-- what percentage of your cases fall on the	1 doctor setting the correct level of -- the healthy
2 diagonal of this table is essentially the	2 value of the cholesterol to zero so we all test --
3 proportion of, if you will, correct calls out o	3 we all have high cholesterol, and that, by
4 the whole universe of -- of cases being tested,	4 definition, captures the people who, in fact, do
5 not just positives, not just negatives.	5 have high cholesterol or heart disease, right?
6 Q. Okay. And, I guess, maybe we should just go	6 So -- so -- and so as you move -- sorry to
7 and do all the rest of them. What is the fals	7 interrupt, but as we move from left to right in
8 positive	8 each panel, it's the -- the corresponding measure
9 A. Okay. The	9 of prognostic performance is -- is changing and --
10 of -- of negative cases that -- that -- that te	10 but what l've just called rate, you know, panel by
11 positive. That's why we say it's a false	11 panel we could just substitute in whether we're
12 positive, right? It's -- it's tested positive,	12 talking about sensitivity, whether we're talking
13 but in -- but in -- but, in fact, it's actually a	13 about specificity, and so on across the seven
14 negative case.	14 panels there.
15 Q. And then the f	15 Q. And so in using percentages, 1.0 would be
16 A. Right. The false discovery rate is -- and, you	16100 percent?
17 know, we call it discovery because we think we've	17 A. Correct. We're back to that again, yes.
18 made a discovery that is with our case that has	18 Q. And then . 75 would be 75 percent --
19 tested positive, but it's -- but it's -- but it's	19 A. Correct.
20 actually negative. So it's of your -- right, the	20 Q. -- and so on down the row? And then on the -- the
21 denominator there, your -- your cases that have	21 horizontal axis, does that refer to the efficiency
22 tested positive, but you -- in the numerator, it's	22 gap in the first election held under a plan?
23 the -- it's the number of false positives.	23 A. That's right.
24 Q. And then the false omission rate?	24 Q. Okay.
25 A. Right. And this is cases that tested negative but	25 A. On the absolute value of the efficiency gap.
Deposition of SIMON JACKMAN 3-16-16 Page 46	Deposition of SIMON JACKMAN 3-16-16 Page 48
1 actually turned out to be positive.	1 Q. Correct.
2 Q. And then you have several figu	2 A. Okay.
3 A. Yes.	3 MR. KEENAN: We've been going about
4 Q. -- that represent these? Figure 1, it says it's	4 an hour. I don't know if you want a break.
5 the absolute EG threshold. Does it mean it's the	5 I can keep going, but --
6 absolute value with --	6 MR. POLAND: I could use a
7 A. That's right.	7 two-or-three-minute break.
8 Q. -- respect to sign	8 MR. KEENAN: Okay. Let's do that.
9 A. Yeah. So we don't take into account whether it's	9 THE WITNESS: Yeah. Cool.
10 Republican advantage or Democratic advantage.	10 (Recess)
11 It's just tripped because that's what the sign	11 MR. KEENAN: We're back on the
12 tells us, so yeah.	12 record.
13 Q. And why don't we just go to Figure 1.	13 Q. Going back to Figure 1, which we were examining
14 A. Yep.	14 before the break, just a couple of finalizing
15 Q. And just to make sure I'm understanding this	15 things. I take it that the label at the top of
16 right, on the vertical axis there's the rate. So	16 each graph refers back to the various tests we
17 maybe just explain what does 1.00 mean there?	17 were just referring to in your testimony?
18 A. So, for instance, let's take -- or sensitivity is	18 A. That is correct.
19 a very good one, right? Remember that sensitivity	19 Q. And then in reading the caption to Figure 1, this
20 is the proportion of positives that test positive;	20 says that it spans all the state legislative
21 and if you set the threshold to zero, then	21 elections and district plans 1972 to 2014?
22 everything tests positive and they fall -- all of	22 A. That's correct.
23 -- all of your positives tested positive because	23 Q. So this analysis does include the plans enacted in
24 everything tested positive and -- and you end up	24 the 2010s?
25 with a sensitivity of 1.0. That's like your	25 A. We had the same question last time, and I -- I


| Deposition of SIMON JACKMAN 3-16-16 | Page 49 | Dep |
| :---: | :---: | ---: | ---: |
| 1 | would need to check whether I kept them in -- I | 1 |
| 2 | remember -- and just to -- you know, I'm sure, as | 2 |
| 3 | you know, we had this discussion last time. We've | 3 |
| 4 | only observed two and -- and I don't -- you know, | 4 |
| 5 | I don't think you want the mean. But I would -- | 5 |
| 6 | and I -- on the basis of our conversation the last | 6 |
| 7 | time we spoke, I -- I -- I thought l'd kept them | 7 |
| 8 | out, but I can -- I can -- I can verify whether I | 8 |
| 9 | did or not. | 9 |
| 10 | Q. Yeah. That would be -- | 10 |
| 11 | A. Off the top -- from memory I can't recall. I'd | 11 |
| 12 | need to consult something to verify if that's the | 12 |
| 13 | case. | 13 |
| 14 | Q. And that would be fine. Do you have your computer | 14 |
| 15 | here where you'd be able to do that? | 15 |
| 16 | A. I could do that if you wished me to. | 16 |
| 17 | Q. I don't need to do it right now, but I think it | 17 |
| 18 | would be fine at a certain point. We can have you | 18 |
| 19 | get the computer out and check any information | 19 |
| 20 | that you don't know offhand that you need to check | 20 |
| 21 | your computer. | 21 |
| 22 | A. Yeah. Yeah. | 22 |
| 23 | Q. Okay. So just moving to -- we'll go to Figures 2 | 23 |
| 24 | and 3. So if you could just explain to me what | 24 |
| 25 | Figure 2 is. | 25 |
|  |  |  |

would need to check whether I kept them in -- I rember -- and just to -- you know, I'm sure, as only observed two and -- and I don't -- you know, I don't think you want the mean. But I would -and I -- on the basis of our conversation the last time we spoke, I -- I -- I thought l'd kept them out, but I can -- I can -- I can verify whether I did or not.
Q. Yeah. That would be --
A. Off the top -- from memory I can't recall. I'd need to consult something to verify if that's the case.
And that would be fine. Do you have your computer
A. I could do that if you wished me to.
Q. I don't need to do it right now, but I think it would be fine at a certain point. We can have you get the computer out and check any information that you don't know offhand that you need to check your computer.
A. Yeah. Yeah. and 3. So if you could just explain to me what Figure 2 is.
A. Right. Figure 2 is a -- in effect a rerun of Figure 1 but now restricting our attention to where we've seen the -- the first election under a plan has produced a negative score of the efficiency gap and, of course, a negative score is consistent with the plan having an advantage for Republicans. So it's a subset of the data shown in Figure 1.

And, moreover, that's why some of the lines have a different shape, because now we're coming in from negative values to -- along the horizontal axis -- negative values all the way up to zero versus the previous graph that was with respect to absolute values and went from zero up through positive scores.
Q. And so the right-most line on each of these graphs is zero?
A. Yeah. Each panel the X axis terminates at zero.
Q. And then what is Figure 3?
A. Pardon me?
Q. Figure 3, just referring to that.
A. Figure 3 does the opposite now. Now, it's looking at plans that -- whose first value of the efficiency gap is positive, indicative of Democratic advantage, and now we're considering Figure 1 but now restricting our attention
the prognostic performance of a threshold; hypothetically, you know, moving the threshold over. You know, it's obviously now bounded on the left at zero right up through, you know, extremely high values of the efficiency gap -- positive values of the efficiency gap left to right.
Q. And I believe you testified to this earlier, but the -- there's a line here and there's also like gray area surrounding the line. Could you just explain what those two things are?
A. Yeah. The -- the line shows what happens when we plug in, you know -- as you correctly referred to them -- all the point estimates and do the computation with the point estimates ignoring the uncertainty accompanying any point estimate of the efficiency gap. And the -- the vertical shading indicates how variable, right, the corresponding prognostic measure is given the uncertainty in the underlying inputs; that is, the uncertainty in the efficiency gap measures themselves. And so those shaded lines span what in statistics we call a 95 percent confidence interval.
Q. Okay. So we'll go back to page 7. I'm referring to the text that's describing these graphs. A. Yes.

1 Q. So you say that the .07 threshold is conservative because the rate of false positives is reasonably low at 25 percent and the -- without letting the false emission rate -- omission rate go above 50 percent; is that correct?
A. Yes.
Q. So at the .07 threshold absolute value, the rate of false positives is $\mathbf{2 5}$ percent?
A. Yeah. Yep.
Q. And then what -- you say that the false omission rate does not go above 50 percent. Do you know what the actual false omission rate is?
A. Oh, at .07 ?
Q. Yeah.
A. No. I'm just doing my best to read it off the graph at this -- at this point. But it's -- it's right around -- getting close to .5 , perhaps may not have -- it might be around .5 , yeah.
Q. And then what would the false discovery rate be? Could you --
A. Okay. At .07, it's roughly 32 percent, meaning that, right, the -- of -- of cases that trip the threshold that they go on to -- the proportion of cases that trip the threshold that are actually negative cases, yep. graph myself. But, I believe, in the -- in the text, I don't refer to those two measures per se, but I'm -- so l'll just read them off the graph as best I can. About -- about -- again, about -- at .07, the sensitivity is about 32 percent and the specificity is -- is much higher in Figure 1. That's up at about point -- almost .7, high .6s, pushing .7 .
Q. And then the balanced accuracy?
A. Uh-huh.
Q. Can you tell me what that is at $.07 ?$
A. It's about point -- I'm just seeing if the actual number appears in the report. No. So it is -again, reading off the graph, it is slightly above . 5.
Q. And then the same with --
A. With balanced accuracy?
Q. Right.
A. It's perhaps a tiny bit higher, about, say -well, again, just this is a rough guess based on
just eyeballing the graph, but about 55 percent.
Q. Is 55 percent the accuracy or the balanced accuracy?
A. Again, I'm just doing my best here with the --
Q. Yeah. Just like you gave slightly about --
A. They're about the same, actually --
Q. Okay.
A. -- as I -- as I kind of lean right in and squint at the graph hard, yeah.
Q. Okay.
A. Yeah. In the -- in the -- yeah, about 55 percent each.
Q. Turning back to page 7 --
A. Uh-huh.
Q. -- the last sentence you say, "To reiterate, the proposed standard for judicial scrutiny is cautious and conservative erring on the side of letting even durably skewed plans stand."
A. Uh-huh.
Q. What do you mean by "durably skewed plan"?
A. Well, a durably skewed plan there is a synonym for an actual positive and the threshold is -- is letting -- at .07, you've set the threshold high that the -- that you're letting -- a lot of actual positives are actually testing negative. So the

Page 53 Deposition of SIMON JACKMAN 3-16-16
1 -- the false omission rate, things that you should have thrown a flag on but you don't, with the threshold at .07 is -- is actually -- is actually getting up pretty high. What we've done there at .07 is done -- we're literally trading off -that's the sense in which it's conservative. We're willing to let cases like that go through more so than we're willing to throw a flag when, in fact, we should -- we're quite conservative in setting .07 inviting scrutiny in the first instance.
Q. So durably skewed means a plan that had elections all with the same EG sign?
A. That's correct.
Q. Would I be able to get you to give the point -sorry, the values at a . 1 EG threshold on Figure 1?
A. For -- for each of the seven quantities?
Q. Yeah, for each of the panels. Or is that something that would be easier to do with your computer?
A. I could provide that later on, if we wished --
Q. Okay.
A. -- and take the guesswork out of it, yeah.
Q. Okay.
A. Yeah. Happy to help like that, yep.
Q. And I think, perhaps, I'll have you do the same thing for Figures 2 and 3. We can just get the exact answers from the code.
A. Okay. And the idea is we'll just do that orally or you want me to --
Q. I'm fine asking you the question and having you tell the answer on the record.
A. And just read it off the machine later?
Q. Yes.
A. Is that --

MR. POLAND: We could do that or we could also -- I mean, we could take a break and we can look it all up and we could have that, you know, ready to go.

MR. KEENAN: Whatever's easiest, I mean.

MR. POLAND: Okay.
THE WITNESS: Okay.
Q. I'm not as familiar with how "R" code works and how it would be easiest for you to do it. So going to page 10 --
A. Yes.
Q. -- you talk about an asymmetry in the results. What asymmetry did you see between the

Deposition of SIMON JACKMAN 3-16-16 Page 57	Deposition of SIMON JACKMAN 3-16-16 Page 59
1 pro-Democratic and pro-Republican?	1 saw? So it's asking about where is the average
2 A. Well, at .07, you're -- you're letting plans that	2 now rather than will you ever see a draw from that
3 begin life with a Democratic advantage -- so let's	3 distribution with one or more of the -- of the
4 just go to that graph. That's Figure 3. You're	4 draws being on the other side of zero to the first
-- you're making some -- some false discoveries	5 dra
6 there more so than you would for Republican	6 So it's a less strenuous test of the proposed
7 advantage. In Figure 2, you'll observe that. If	7 standard, and that's reflected in the behavior of
8 you were to compare the panel labeled false	8 it as a prognostic -- we have -- you know, has
9 discovery in Figure 3 with Figure 2, it's my sense	9 better prognostic -- the first election is a
10 that those are offset by -- by a -- by a -- by a	10 better predictor of that subsequent behavior than
11 -- a considerable -- they're considerably	11 -- than the more extreme test we were subjecting
12 different from	12 the first election to in the previous analysis.
13 So the false discovery, right, for plans that	13 Q. Now, in this calculation, the first election's EG
14 trip negative .07, that is Republican advantage,	14 will be a component of the plan average, correct?
15 is -- is -- is -- is quite low, but up -- up to	15 A. That's right.
16 about three times as high on -- on -- on the	16 Q. So how do you account for that, or do you?
17 Democratic sid	17 A. Well, that is -- this is what it is, right? You
18 So you'd be actually submitting -- on that	18 can do it two ways. You can compute the average
19 set of plans on the Democratic side, you'd be	19 holding out the first one or you can have the --
20 inviting -- didn't think it would turn out this	20 have -- you know, are we going to have -- compute
21 way, but as it turns out, you'd be inviting more	21 an average of five observations or are we going to
22 scrutiny of -- of -- of -- of Democratic plans	22 have to compute an average of four observations,
23 that actually turn out to be negative cases. And	23 you know, typically? And -- and we could -- we
24 that goes back to the earlier point we were	24 could do it either way and, indeed, I may have
25 talking about about the durability of apparent	25 played with that. It's ringing a bell that that
Deposition of SIMON JACKMAN 3-16-16 Page 58	Deposition of SIMON JACKMAN 3-16-16 Page 60
e first election in a	1 might have been something I looked at, but -- but,
sequence under a plan. That's -- those two are	2 you know, it's part of the sequence. It's -- it's
3 essentially analogous things, equivalent things	3 -- it's -- it's -- the first election is still,
4 we're seeing, yeah	4 nonetheless, indicative of what the average will
5 Q. So the reasons for this asymmetry, your opinions	5 be, you know.
6 for the -- about the reasons for this asymmetry	6 Q. Sure.
7 would be the same testimony you gave previously to	7 A. We --
8 that?	8 Q. Sure. And your calculations include the first
9 A. Yeah. Yeah. What explains this -- because it is	9 election in the calculation?
10 the same phenomena, so the explanation for one is	10 A. I believe so, but I -- I'm happy to verify that
11 the explanation for this behavior as well.	11 when we take that break and go at some of the
12 Q. Go on to Section 3, the plan -- the plan	
13 average --	13 Q. And then there is a series -- Figures 4, 5, and 6
14 A. Yes	14 here.
15 Q. -- efficiency-gap sign. Maybe you could just	15 A. Yep.
16 explain what type of analysis you did that's	16 Q. I don't think we need to go into them as much
17 listed here in Section 3.	17 detail as we
18 A. Okay. Okay. So this asks a different question to	18 A. For sure.
19 what l've asked hitherto. Now we're asking --	19 Q. But the -- the horizontal/vertical axis and labels
20 we've got the same threshold testing in mind, what	20 correspond to what we talked about before with
21 is the value of the efficiency gap we observe	21 respect to Figures 1, 2, and 3; is that right?
22 under the first election, but now we're asking not	22 A. Precisely. And, if you will, even sequentially 1 ,
23 do we have to see a sign flip. Now we're asking	23 2, and 3 have respectively -- they're analogs now
24 does the average efficiency-gap value under the	24 with 4,5 , and 6.
25 plan have the same sign as the first value you	25 Q. All right. So I think we can move on from


Deposition of SIMON JACKMAN 3-16-16 Page 61	Deposition of SIMON JACKMAN 3-16-16 Page 63
1 Section 3	1 some reasonably predictable relationship between
2 A. Oka	2 any one of those data points; the first, the
3 Q. -- on to Section 4	3 second, but it doesn't really matter, but -- and
4 A. Oh, right, y	4 the average, right? And we can take the absurd
5 Q. Could you explain the analysis that you did that's	5 case of where we have the average just based on
6 contained in S	6 one case in which it's that case and that would
7 A. Yeah. Well, it's closely related to what we were	7 give us a perfect relationship. So now we're up
8 just discussing about Section 3. This is the	8 to computing an average based on four, typically
9 extent to which the first election efficiency-gap	9 five cases, and we're asking what's the
10 reading and -- that is to say, the efficiency-gap	10 relationship between the first of that sequence of
11 value you get from the first election under a plan	11 four or five values and the average of the four or
12 is -- is predictive of the average efficiency gap	12 five values?
13 you'll see over the totality of elections under	13 So that is to say -- and in statistics, okay,
14 the -- under the -- under that plan.	14 regression to the mean, that -- that language
15 And, for instance, Figure 7 is essentially a	15 refers to a well -- you know, if -- if you have
16 summary of that. We're talking about the	16 data of that sort, as we do here, one ought to
17 relationship between two numbers now. The first	17 expect some kind of relationship between the two.
18 value of the -- the first election efficiency-gap	18 It would be kind of implausible that the
19 score and the plan average efficiency gap; and the	19 relationship there didn't bear some -- some kind
20 idea is, you know, let's investigate the	20 of relationship.
21 relationship between those two quantities.	21 But regression to the mean picks up on the
22 Q. And	22 fact that often on any one draw, if it's an
23 A. You'd like there to be a relationship, or at least	23 extremely low score, it -- the corresponding mean
24 one -- one could imagine being interested in the	24 will lie further towards the interior of the data
25 extent to which there is a relationship between	25 than, you know, a typical score close to -- in
Deposition of SIMON JACKMAN 3-16-16 Page 62	Deposition of SIMON JACKMAN 3-16-16 Page 64
de two given everything l just said, you kno	is case, close to -- zero is going to be close
2 Q. And I see in this paragraph -- the paragraph that	2 to the mean, closer to the mean, and with an
3 starts Figure 7 on page 15, it says that, "Only	3 extreme value.
4 plans with a" -- "with three or more elections are	You see, the phrase comes from, actually, the
5 included," so that means that the most recent	5 very first users of the word "regression" in
6 A. That's right	6 statistics where people noticed that the children
7 Q. -- round has been ex	7 of exceptionally tall parents tended not to have
8 A. Would be out, yes, would be out, right, and it --	8 quite as tall, and the children of exceptionally
9 and Figure 7 has the same restriction.	9 short people, their kids tended not to be --
10 Q. I'm in the middle of that paragraph. There's a	10 tended to be shorter than average but not quite as
11 sentence that says, "Instead, we see a classic	11 short as -- as the parents, and that's -- the
12 'regression-to-the-mean' pattern with a positive	12 phrase has stuck. And anytime we have sort of
13 regression slope of less than one," and it says in	13 patterns like that, we -- we -- in statistics, at
14 parentheses "(as indeed we should given that the	14 least, refer to that with the shorthand regression
st election EG on the houl	15 to the mean, and we have some of that going on in
16 contributes to the average plotted on the vertical	16 Figure 7.
17 axis).	17 Q. Sure. And it says that -- continuing on a couple
18 Maybe you can just explain what you mean	18 sentences later it says, "The variation in plan
19 there to someone who's not as well versed in	19 average efficiency gaps explained by this
20 statistics as you are.	20 regression is quite large --
21 A. Yes. I believe you -- you hit on it in about	21 A. Uh-huh.
22 three or four questions ago; and that is, if	22 Q. -- about 73 percent."
23 you're analyzing the relationship between the	23 A. Uh-huh.
24 average for -- based on a small number of cases,	24 Q. And then there's some language above the
25 it's a mathematical fact that there's going to be	25 confidence intervals.


Deposition of SIMON JACKMAN 3-16-16 Page 65	Deposition of SIMON JACKMAN 3-16-16 Page 67
$1 \quad$ What do you mean by "the variation in plan	1 Q. Okay. So I'm reading this correctly, Vermont 4,
2 average is explained by regression"?	2 that would be the 19 -- or 2000's plans?
3 A. Literally what we mean is, if I could refer to	3 A. '70s, '80s, '90s, yes, yes.
$4 \quad$ Figure 7 in answering that, the vertical spread of	4 Q. It started out with a negative efficiency gap in
5 the data, the spread of the data in the vertical	5 its first election of, I don't know, maybe
6 dimension is well accounted for by the spread of	$6 \quad$ negative . 04 or 5?
7 the data in the horizontal dimension, and that is	7 A. Maybe not that big, but yeah.
8 merely to say that $X$ is a good predictor; in fact,	8 Q. All right.
9 you might even say a very good predictor of $Y$	9 A. Or clos
10 here. The preceding language about regression to	10 Q. And then it -- but then its average ended up
11 the mean is indicating we shouldn't be too	11 being --
12 surprised that there's some relationship, right?	12 A. Yes.
13 As you noted in your earlier question, you know,	13 Q. -- positive?
14 there has to be some kind of relationship between	14 A. Right, 5 or -- 05 or 5 perce
15 data point one and the mean of the succeeding four	15 Q. Okay. And then if we look at another one, WA3,
16 or five data points.	16 would that be Washington from the 1990s?
17 But what I'm noting with that comment about	17 A. Exactly right, and that's gone the other way where
18 the amount of variation explained is that it -- by	18 the first election produced a positive value of
19 social science standards, that's a pretty good	19 the efficiency gap, right, of about, let's call
20 fit, might be even a very good fit, to the data.	20 it, 6 percent, but has gone on to produce a plan
21 You can do a pretty good job, perhaps even a very	21 average of, you know, negative -- what is that,
22 good job, of predicting plan average efficiency	22 yeah, negative 6 percent, yeah.
23 gap given the efficiency gap you see from the	23 Q. If we think of the Wisconsin 2000's plan, it had a
24 first election.	24 first election that was negative . 75 and the
25 Q. And then it says it's 73 percent. What would we	25 average was fairly close to that as well. Would
Deposition of SIMON JACKMAN 3-16-16 Page 66	Deposition of SIMON JACKMAN 3-16-16 Page 68
nk of the other 27 percent that's not accounted	1 its data point then be close to the -- the
2 for here?	2 diagonal -- black diagonal line that goes from
3 A. Yeah. That's where the first election is	3 corner to corne
4 unusually different from what the plan turned out	4 A. Correct.
5 to be. That's -- that's -- that's where -- so	5 Q. Okay.
6 indeed, you know, there's a few cases labeled on	6 A. Absolutely correct. To the extent the first data
7 the graph where the first election lies a long way	7 point -- if -- indeed, if it was a perfect
8 from -- from the -- from the mean. So there's a	8 relationship between the first efficiency gap and
9 -- there's some of the more extreme examples that	9 the average, if -- if we hit the average dead on
10 are labeled on the graph. But, in general, the	10 every time, all the data would lie on that
11 pattern is one of a strong relationship between	11 45-degree line. But you're right. I think that
12 first election efficiency gap and the plan average	12 Wisconsin case would be -- would lie very close to
13 efficiency gap.	13 the 45-degree line for the '00 decade.
14 Q. And, I guess, we can look at that Figure 7.	14 Q. And then going to the next page --
15 A. Sure.	15 A. Sure.
16 Q. And you mentioned a couple of labels there. For	16 Q. -- the top paragraph on page 16 --
17 example, I see VT4 --	17 A. I'm sorry. Yep.
18 A. Uh-huh.	18 Q. I'm sorry.
19 Q. -- listed there. What does VT4 mean?	19 A. No. I got it.
20 A. Okay, VT4. VT is Vermont, so it's just the	20 Q. I meant the previous page. The paragraph says,
21 two-letter abbreviation for each state. Then the	21 "The historical relationship between first
22 number is the -- refers to the decade. And the	22 election EG and plan average EG shown in Figure 7
23 way this works is conventionally that '70s plan is	23 indicates that a first election EG of negative . 07
24 one, '80s are two, '90s are three, '00s are four,	24 is typically associated with a plan average EG of
	25 about negative .053." Did I read that correctly?

A. Yes.
Q. So -- and then I noticed it has a 95 percent confidence interval. That's what Cl means, right?
A. That's correct.
Q. Of negative .111 to .004 . That seems like a large confidence interval to me. Can you explain why it's such a large range?
A. Well, because it doesn't fit the data perfectly, right? It's not a -- right. The data are -there's some variability around the fitted regression line, which is the blue line on -- if you've got a color copy of Figure 7 on -- on page 17. It won't be a perfect relationship between the first election efficiency gap.

And the other thing why -- confidence interval why, is we're out in the tail of the data too. Recall -- keep that in mind. Now, when we predict out of a regression model, the imprecision accompanying a prediction is a function of how unusual the hypothetical case you're considering is as -- as an input to the regression.

So the input we're considering is a first election EG of negative .07, right, which is unusual or relatively unusual in -- in -- in these data and, therefore, the regression prediction's
conditional on an unusual event. Subsequent predictions tend to be accompanied with more uncertainty than if we're predicting, say, at the middle of the data set.

So that's why that confidence interval will -- is as large as it is. I -- I point out the -the words that appear in the -- in the -- in the very next line, that "conditional on a first election efficiency gap of negative .07." Even taking into account the confidence interval accompanying this unusual scenario, the probability that resulting expected plan average efficiency gap is negative -- is 96 and a half percent, all right? So that confidence interval does -- 95 percent does just touch positive territory, as you pointed out in your question to me; but, indeed, that's why the next remark appears indicating that the probability -- we would expect to see a negative average value of the efficiency gap is still above 95 percent and, indeed, it's 96.5.
Q. And then the -- going on it says, "The first election EG of positive .07, there's typically a plan average EG of .037." Do you see that?
A. That's right. That's right.
Q. But, in this case, the probability that the resulting expected plan average is positive is 89.8 percent; is that correct?
A. That's right.
Q. And is this another instance of the asymmetry we've been talking about?
A. Exactly. Now, there's the third manifestation this morning of the -- of that -- of that behavior, that the apparent pro-Democratic advantage, as evident in the first efficiency gap reading under a plan, does not appear to be as durable. Therefore, in this case, as we try to predict the average value of the efficiency gap, we'll see over the life of the plan it's accompanied with more uncertainty, right?

So two things to note there: That the prediction has come much further back in toward zero, right, all right, where we go from negative .07 and the prediction about the average is now negative .053. If we saw positive .07 , our prediction for the plan average comes all the way back into .037 and -- and the confidence interval has to at that point have more mass on -- on the other side of zero, yeah.
Q. For both positive and negative .07 , we see that

Deposition of SIMON JACKMAN 3-16-16
Page 72
1 the plan average is closer to zero than the first election; is that correct?
A. Yes, and that's regression to the mean, that regression-to-the-mean phenomenon I was describing.
Q. Is that true for each -- each possible first election EG you calculated?
A. And, indeed, that's what the regression line describes. The -- and the regression line, just so I'm being perfectly clear, is the blue line on Figure 7. And if you -- that provides the -- if you will, the set of predictions about plan average efficiency gap given first election efficiency gap, and you can literally project up from the horizontal axis, hit that blue line, and project over to the vertical axis will give you a prediction in every instance.
Q. So, on average, after we see one data point in the first election, we would expect that the plan average would be closer to zero than what we see in the first election?
A. That's correct.
Q. I guess, I suppose, I'd say for like a positive EG it would be closer to --
5 A. Less positive.

Deposition of SIMON JACKMAN 3-16-16 Page 73	Deposition of SIMON JACKMAN 3-16-16 Page 75
1 Q. Less positive, and a negative EG would be less	1 bell-shaped curve spills over into -- into
2 negative?	2 positive territory. That is -- you would --
3 A. Less negative, yes, yes.	3 right? What's the probability th
4 though, right? This is the key thing abo	4 nonetheless, we were at a point estimate of
5 regression to the mean; that is, it's	5 negative -- for the average of negative 9 and a
6 self-decreasing as we get closer to zero. So if	6 half percent. There's some uncertainty around
7 you started close to zero, you wouldn't go as	7 that. I just want to be perfectly clear, right,
8 close to zero, right, as if you'd -- if you're ou	8 that we're up to -- we're better than 99.9 percent
9 in the tails, and we would just hark back to that	9 sure that given the historical relationship
10 discussion, the analogy about regression to the	10 between first plan efficiency gap and average --
11 mean, yeah.	11 plan average efficiency gap, that the Wisconsin
12 Q. The regression back to the mean is larger the	12 plan, if left to run, will -- will have a -- a --
13 further away from zero you are?	13 a pro-Republican average efficiency gap.
14 A. Correc	14 Q. And --
15 Q. All right. I'm learning. Okay. Going on in the	15 A. So they're less than 0.1. Perhaps the more
16 next paragraph, it talks about Wisconsin in	16 dramatic way of putting that might be more than
17 2012--	1799.9 of -- of -- of continuing to show Republican
18 A. Righ	18 advantage.
19 Q. -- and the initial efficiency gap of negative	19 Q. And then just -- maybe we could just go to
20 .133. Could you explain why you predict that the	$20 \quad$ Figure 7 and I can ask the same questions on that
21 probability that it will have an averag	21 just to make sure I can understand it and apply
22 efficiency gap of positive is less than . 1	
23 percen	23 A. Sure. Uh-
24 A. Could you	24 Q. So maybe we could just take a look at negative . 07
25 Q. Su	25 on the horizonta
Deposition of SIMON JACKMAN 3-16-16 Page 74	Deposition of SIMON JACKMAN 3-16-16 Page 76
1 A. Oh, oh, right, the end of the paragraph. I'm	1 A. Yeah.
sorry. I see. Okay. So -- okay. So l'll just	2 Q. So that horizontal axis refers to the
3 walk you through, if you don't mind --	3 A. That's correc
4 Q. Sure.	4 Q. -- election efficiency gap? And so if I -- if
5 A. -- the -- the logic in -- in that -- in tha	5 there's an election with a negative . 07 and I go
6 paragraph. Now we -- we take as an input to this	6 up from there to the blue line --
7 exercise the first value of the efficiency gap we	7 A. Uh-huh.
8 see in Wisconsin in 2012. What we have now with	8 Q. -- that would tell me what the expected average
9 reference to Figure 7, we're starting off now at	$9 \quad$ efficiency gap would be?
10 negative . 133 on the horizontal axis, right,	10 A. That's correct.
11 almost at the very edge of the observed data, all	11 Q. Okay.
12 right, and perhaps maybe even slightly to the left	12 A. If we were then to project over to the vertical
13 of it. I'm not quite sure. And then we project	13 axis, that's right.
14 up and we hit the blue line; and then we go over	14 Q. And then that would apply for any observed first
15 against the vertical axis to get our prediction of	15 efficiency gap. I would go to the relevant spot
16 what the plan average efficiency gap will be and	16 on the horizontal axis and move up to the blue
17 we arrive at .095, or negative 9.5 percent.	17 line?
18 Now, we're able to put a confidence interval	18 A. That's correct.
19 on that prediction and that confidence interval is	19 Q. Okay. All right. I think it might be helpful to
20 bounded, right? They're both negative numbers,	20 maybe get the computer now and we can talk about
21 the limits of confidence interval. And, moreover,	21 the -
22 you can even ask a further question -- and	22 A. Oh, because you were ready to --
23 remember, I'm -- let the record show I'm	23 Q. Move on.
24 describing a bell-shaped curve with my -- with my	24 A. -- go on to five and -- yeah. Okay.
25 finger here, one of the -- how much of that	25 MR. KEENAN: So we can take a short


Deposition of SIMON JACKMAN 3-16-16 Page 77	Deposition of SIMON JACKMAN 3-16-16 Page 79
1 brea	1 Q. -- and use .10.
2 THE WITNESS: Will that be okay	2 A. Correct. We go .11, . 95 -- I'm sorry. I'll read
3 before I--	3 each one. Balanced accuracy, .53; accuracy, .64;
4 MR. POLAND: Yeah. That's fine	4 false positive, .05; false discovery, .43; and
5	5 false omission,
6 MR. KEENAN: We're back on the	6 Q. Okay. Thank you. And now we can turn to
7	7 Section 5. This deals with party control.
8 Q. So we're back from a short break, and I was going	8 A. Let's go to that then. Great.
9 to follow up with some questions that I postponed	9 Q. And maybe I -- we'll mark two exhibits.
	10 A. Oh, right. Yes, yes, ye
11 A	11 MR. KEENAN:
12 Q. -- to allow you to consult with your "R" code to	12 (Exhibit Nos. 57 and
13 get the answers. Have you been able to do that	13 marked for identification)
14 during the break?	14 Q. First, could you just identify what Exhibit 57 is?
15 A. I hav	15 A. 57 appears to be an email from
16 Q. Okay. So I think the first question was in	16 Nicholas Stephanopolous to myself with some other
17 looking at the analysis in Section 2	17 parties
18 A. Yeah.	18 Q. And what was Mr. Stephanopolous sending you
19 Q. -- whether that analysis included the plans that	19 attached to this email?
20 were enacted following the 2010 census or whether	20 A. There were two attachments to the email, two Excel
21 they were exclude	21 spreadshe
22 A. They're	22 Q. And what was your understanding of what the data
23 Q. Included, okay. And then we also had	23 that would be on those spreadsheets was?
24 questions on -- I had some questions on the	24 A. One would contain efficiency-gap values for
25 precise values of some of the graphs that are	25 congressional elections. The other contained data
Deposition of SIMON JACKMAN 3-16-16 Page 78	Deposition of SIMON JACKMAN 3-16-16 Page 80
1 contained, like Figure 1, 2, and 3, and were you	1 indicating which group, partisan or otherwise, was
2 able to look at that informatio	2 nominally designated as controlling the
3 A. Yeah. What we did was to get the number exactly	3 redistricting process in a given state in a given
4 corresponding to . 1	year
5 Q. Correct.	5 Q. And, for the record, I have not made a copy of the
6 A. -- I believe, on the -- is what you're asking. So	6 congressional EG data attachment, because I wasn't
7 I've got those viable for Figures 1, 2, and 3.	7 going to ask you about it. So to save some trees,
8 Q. Okay. So why don't we just -- we'll go in order,	8 I haven't done that, but if you could identify
9 Figure 1, and then we'll start with sensitivity	$9 \quad$ what Exhibit 58 is.
10 A. Exactly.	10 A. Yes. Exhibit 58
11 Q. -- and work our way to the right	11 Q. And it's a -- it's a two-sided document --
12 A. Yes. From left to right, the corresponding	12 A. Yes. I've got it.
13 numbers go: Sensitivity, .20; specificity, .91;	13 Q. -- so you know.
14 balanced accuracy, .56; accuracy, .52; false	14 A. I'm familiar with this. This is a printout of the
15 positive, .08; false discovery, .26; and false	15 Excel spreadsheet, the second one I referenced,
16 omission, .51. And that's all conditional on	16 the party control Excel spreadsheet
17 the -- being at . 10 on the horizontal axis.	17 Q. Could you explain the information that's contained
18 Q. Okay. So then, I guess, we move to Figure 2,	18 on Exhibit 58?
19 which would be now negative .1.	19 A. Yes. It is organized in -- each record -- each
20 A. Exactly. The numbers run in sequen	20 row of the spreadsheet is a state election year
21 Sensitivity, .17; specificity, .98; balanced	21 combination and it's blank, has no data for
22 accuracy, .58; accuracy, .65; false positive, .02;	22 election year, it appears, in 1970. But beginning
23 false discovery, .12; and false omission, .38.	23 in 1972, it contains an indicator for whether the
24 Q. Okay. And then head to Figure 3 --	24 redistricting plan under, which the corresponding
25 A. Uh-huh.	25 election was held, whether that redistricting plan


Deposition of SIMON JACKMAN 3-16-16 Page 81	Deposition of SIMON JACKMAN 3-16-16 Page 83
1 was -- came -- was the product of an independent	1 document, it will have a 55 next to it
2 commission, a court, and then there's also	2 A. It shou
3 indicators for whether it came out of a process	3 Q. Okay. And every other state will have a unique
4 controlled by the legislature or the state	,
5 government more generally, and if so, was that	5 A. Yeah, just as it's got a unique two -- two-letter
6 state government under unified Democratic control	6 postal abbreviation
7 or unified Republican control or, as we call it,	7 Q. And then just sol understand it, if there's
8 divided government; say, a mismatch between the	8 multiple elections under the same plan, are those
9 party of the governor and the parties that were	9 elections listed multiple different times in this
10 controlling the state legislature would be an	
11 indicator -- that would be an instance of what we	11 A. That's the way these data are organized. Perhaps
12 meant by divided governme	12 not efficiently, right? It means there are
13 Q. So did your historical analysis, both in your	13 redundant rows, but they're being organized at the
14 original report and in the rebuttal report, did it	14 level of state election when the more efficient
15 consider elections in the y	15 rendering, perhaps, might be, as the question
16 A. No	16 presupposes, you know, election plan, yeah.
17 Q. Okay. So we can ignore those	17 Q. Okay. So just, for example, like Wisconsin 2012
18 A. Okay. Yes.	18 and 2014 will be listed two times even though it's
19 Q. And then if we could -- what does -- maybe you can	19 under the same plan?
20 just explain what a zero or one indicates in	20 A. Let me just -- I'll verify that. Well, so there's
21 particular colum	21 -- right. There's an entry for Wisconsin 2012 and
22 A. It's -- it's -- literally, zero connotes no and	22 another entry for -- where was it? Oh.
one means yes -   24 Q. Okay.	23 Q. I notice that some of them are a little bit out of 24 order, but --
25 A. -- for -- for the -- for the attribute indicated	25 A. No. It was just on the back page. Yeah. That --
Deposition of SIMON JACKMAN 3-16-16 Page 82	Deposition of SIMON JACKMAN 3-16-16 Page 84
1 by the column head	1 that's correct.
2 Q. And then we see the state name. That's pretty 3 obvious --	2 Q. But elections under the plans -- same plans should 3 have the same zeros and ones in the same columns?
4 A. Uh-huh	4 A. That's my understanding of the organization of
5 Q. -- I would think. And then the abbreviation for	5 this data set.
6 the stat	6 Q. And is it your understanding that this chart would
7 A. Uh-huh	7 refer to the body that instituted both state
8 Q. What does the number in the FIP column stand for?	$8 \quad$ legislative plans and congressional plans?
9 A. Oh, that's a FIPS code, which is a	9 A. That I don't know.
10 Federal Information Processing Stand	10 Q. But it's your understanding it definitely covers
11 Sometimes states are labeled with a -- with their	11 state legislative plans?
12 so-called FIP code, and that's helpful to have	12 A. That's my understanding of these data.
13 depending on -- as you would with these data,	13 Q. All right. And then was this document the source
14 you'd be merging them against some other data set	14 of the information for your party control analysis
15 and in that other data set where the state's	15 that is reflected in Section 5 of your report?
16 labeled by the full name, their posta	16 A. That's correct.
17 abbreviation code, or by their FIPS code, and	17 Q. So you can put that aside. I don't know that
18 you've got three butts of the cherry there, as it	18 we'll refer to it, but --
19 were, to help you if you want to bring othe	19 A. Okay.
20 other data sets to bear, which is what we're going	20 Q. So there has been a change in the party control of
21 to do with these data.	21 the districting process over time, correct?
22 Q. Okay. And so, for example, if I see Wisconsin is	22 A. That's correct.
23 listed here with -- on the second page with $55-$	23 Q. And so can I just get you to outline what the
24 A. That's its FIPS code.	24 party control was in terms of Republicans and
25 Q. And so every time Wisconsin appears in this	25 Democrats? And then I don't know what the correct


Deposition of SIMON JACKMAN 3-16-16 Page 85	Deposition of SIMON JACKMAN 3-16-16 Page 87
1 term should be for a nonpartisan or bipartisan	1 plans 1990s and we go from preponderance of -- to
2 body. What should we call tha	2 the extent they are unified, one side of politics
3 A. All others	3 or the other controlling the redistricting
4 Q. Okay	4 process, we go from that being a predominantly
5 A. So everything from commissions to cour	5 Democratic phenomenon in the 1990s to a
6 that were brought up under divided governme	6 predominantly, you know, Republican phenomenon by
7 yeah.	7 the 2010s, yeah.
8	8 Q. And the other institution in the 1990s at
9 A. So it's	960 percent?
10 richer than this, but we've -- we've broken it out	10 A. Yeah. That's about right, 60, 60, you know, falls
11 just into three categories -- collapsing that	11 slightly to the -- just above the Republican --
12 information into three categories: Unified	12 unified Republican proportion by the time of the
13 Democratic, unified Republican, and the rest.	
14 Q. Okay. So if I could get you to identify the	14 Q. And then in the 2010s is it -- looks about
15 breakdown between the three categories for the	$15 \quad 60$ percent as well?
16 1990's plan	16 A. No. To my eye
17 A. Yes. So Figure 8 does -- does this for you. In	17 Q. Sorry. The 2000s. I misspoke.
18 Figure 8, we see that going back to the 1990s, the	18 A. Oh, pardon me, yes, yes. That's right.
19 proportion of plans brought up under -- that were	19 Q. And then, I believe you say, it's 40 percent in
20 brought up through the legislature and control of	20 the 2010
21 the redistricting -- well, the state government	21 A. Uh-huh. Yes.
22 itself, right, where that was Republican governor	22 Q. So could you explain -- and your report references
23 and Republican legislators. There was a	23 a regression analysis you performed on this data.
24 relatively small number of such plans in the -- in	$24 \text { A. S }$
25 the 1990s around -- and the number there, you	25 Q. Could you explain what you did?
Deposition of SIMON JACKMAN 3-16-16 Page 86	Deposition of SIMON JACKMAN 3-16-16 Page 88
ow, again, reading off the graph is -- the exact	1 A. Okay. So in each decade, you run a regression
2 number might appear in the report, but, yeah,	2 that predicts the magnitude of the efficiency gap
3 about 10 percent. That's right	3 based on which one of these three categories, as
That goes up as we -- you know, and these	4 we were just talking about, the given election
5 data are just for the three -- the last three	5 falls in; that is, is it an election under a plan
6 decades, 1990s, 2000s, 2010s, left to right, and	6 that was designed entirely with Democrats
7 that goes up. So that by the time we get to 2010,	7 controlling the process, with entirely Republicans
8 we're up to about 40 percent of plans were	8 controlling the process, or in that third category
9 produced under that condition we're labeling	9 of none of the above, all other possibilities?
10 unified Republican control.	10 You run that regression analysis, as I said, and
11 Q. And in the 2000s, is that about 20 percent?	11 it's a very simple regression analysis. You're
12 A. Yeah. Let's go ahead and -- that's -- that's	12 essentially just classifying -- you know, you're
13 about right, yeah	13 basically breaking out efficiency gaps by those
14 Q. And then Democrats -- I believe you said that	14 three categories, and you do that in each of the
15 1990s it started at 30 percent in the report?	15 -- of the three decades. And that leads us to
16 A. Yeah.	16 then the analysis that's presented in -- in
17 Q. And then how does that change as we move to the	17 Figure 9.
$18 \quad 2000$ s and then the 2010	18 Q. Okay. So why don't we talk about what you did to
19 A. Well, that falls down to a roundabout 20 percen	19 each specific category within a decade to run this
20 by -- 20 versus 15 into 2000s; and then in 2010,	20 analysis.
21 we're down to less than 20 percent designed by --	21 A. Oh, okay. So you -- literally it's -- it's
22 under unified Democratic control.	22 extraordinarily simple. You just literally
23 Q. Okay.	23 clump -- gather up elections according to which
24 A. So the point is we essentially invert the	24 one of those three categories they fit in, all
25 preponderance -- the relative preponderance of	25 right, and then -- and then it's -- it's --


Deposition of SIMON JACKMAN 3-16-16 Page 89	Deposition of SIMON JACKMAN 3-16-16 Page 91
$1 \quad$ it's -- literally what you're doing is computing	1 the statistical machinery wants to compute it.
ge efficiency gap conditional on who	haps isn't a helpful way to put it to a lay
3 controlled the redistricting, is perhaps the	3 audience,
4 simple way whereby, quote, who controlled the	4 Q. Maybe you can just explain how the other
5 redistricting, unquote; we mean which one of those	5 institution served as the baseline in the
6 three categories, right, with that three-fold	6 calcu
7 classification of control, yeah	7 A. It's -- well, it's arbitrary as to which category
8 Q. And is this an average of all the elections or is	8 appears as the baseline. It's really -- you know,
9 it an average	9 everybody -- there's this baseline group that
10 A. It's an average of -- they'd be the same, but it's	10 you're either in or not and now we're going to
11 a -- it's each individual election appears as a	11 estimate differences, right? So I can recover the
12 data point in -- in that analys	12 average of any group by its baseline plus the
13 Q. Okay. S	13 difference between baseline and that group, right,
14 Republican-drawn plans in the '90s had an average	14 and so it doesn't really have -- it's of no
15 efficiency gap of a certa	15 statistical -- this is more a math thing than a
16 A. Ye	16 stats thing, if you will. This is do I want to
17 Q. -- you just add them all up and divide it by the	17 estimate B or do I want to estimate B and the
18 number and that's your average?	18 difference between $B$ and $A$ and add that to get $B$
19 A. That's righ	19 is $A$ plus the difference between $B$ and $A$ might be
20 Q. And you would do that for each of the -- each	20 one way of putting it. If -- I'm not sure that's
21 the other components of Democrats and th	21 helpful, but it's -- it's -- this is really to do
22 Republicans?	22 with, if you will, tricking regression analysis to
23 A. Yea	23 do difference of means and, hence, the means by
24 Q. And so then you did that for the ' 90 s, the 2000 s, 25 and 2010s?	24 group. And it's -- it's a very standard usage of 25 the term here, one that I understand in this
Deposition of SIMON JACKMAN 3-16-16 Page 90	Deposition of SIMON JACKMAN 3-16-16 Page 92
1 A.	context might be prompting a question or two.
2 Q. Page 19, in the paragraph right underneath the	Q. Sure. And then just to kind of go back to the
3 figure has a parenthetical that talks about the	3 data s
4 omitted category --	4 A. Sure.
5 A. Ye	5 Q. -- the specific plans that are grouped in each
6 Q. -- being the other institutions. W	6 category change over time, correct, between the
7 mean to be in an omitted category?	7 decades?
8 A. Yeah. Right. That's -- that's unhelpful to a	8 A. If control of the plan change -- control of the
9 nonstatistical reader. So let me -- let me	redistricting process changed, yes.
10 expla	10 Q. So, for example, in your 1990's decade, the
11 When we use regression analysis to	11 Wisconsin plan is counted as an other institution?
12 something extraordinarily simple, that is, compute	12 A. Yeah. Yeah. We could verify that.
13 three averages, the way we do that with regression	13 Q. Because it was drawn by a court?
14 analysis is to arbitrarily define one of the three	14 A. And, indeed, it is.
15 categories as the baseline and then estimate	15 Q. And then the 2000's plan is also treated as a --
16 differences -- two differences relative to	16 Wisconsin plan is also treated under the other
17 baseline. So the better word, rather, than	17 category because it was drawn by a court?
18 omitted, which has prompted the question, I think,	18 A. And, indeed, it is.
19 the -- the better label there would have been	19 Q. But then in the 2010s, the Wisconsin plan was
20 baseline. And then we -- you can estimate the	20 treated as a Republican plan because it was drawn
21 three averages as three averages or you can	21 by Republicans, correct?
22 estimate an overall average and then two	22 A. The 2012 election would be the first election
23 differences from -- you can estimate the baseline	23 under. So let's just check that one. Oh, indeed,
24 and then two differences from that baseline. And	242014 is the same, you know, and -- and there --
25 So that's all -- that's really a function of how	25 there we've got, yes, unified government and a


Deposition of SIMON JACKMAN 3-16-16 Page 93	Deposition of SIMON JACKMAN 3-16-16 Page 95
1 flag also for unified Republican government for 20	1 Q. Okay. So perhaps we could walk through like the
2 -- yeah, yeah, for those latter Wisconsin entries	2 2000's calculati
3 in the data	3
4 Q. And then why don't we look at Figure 9 then --	4 Q. Did you calculate an average efficiency gap for
5 A. Sure.	5 all Republican plans that were in place in the
6 Q. -- which contains like a graphical representation	6 2000s?
7 of the regression analy	7 A.
8 A. Uh-hu	8 Q. Okay.
9 Q. What does the solid line repres	9 A. And then what you do literally is just change the
10 A. Okay. The -- the solid line is just showing th	10 number of plans, right, back to what the 1990
11 average efficiency gap by decade, the -- and it's	11 number plans looks like to sort of readjust the
12 blue on -- on my version of the report as well.	12 average to account for the fact that there's --
13 Q. Yeah. I have a black-and-white copy.	13 there's just a different balance of partisan
14 A. That's okay.	14 control of redistricting in the earlier decades,
15 Q. And then is that -- are the points there th	15 yeah.
16 average of every election in that decade's	16 Q. And then you also calculated an average efficiency
17 efficiency gap and then the average -- just flat	17 gap for Democratic-drawn p
18 average of all of them	18 A.
19 A. That's correct	19 Q. And then also one for the other drawn plans?
20 Q. Okay. Regardless of what type of body implemented	20 A. That's right, yeah, yeah. There were three
21 that pla	21 averages at the three data points, yeah, yep, and
22 A. Yes.	22 -- but the counterfactual exercise comprises of
23 Q. Okay. So then why don't we explain what the	23 changing the amount of data -- when you get the
24 dotted line represents.	24 overall average reducing those three averages to a
25 A. Okay. So the dotted line is using -- is a	25 single number, you do so by imagining that we're
Deposition of SIMON JACKMAN 3-16-16 Page 94	Deposition of SIMON JACKMAN 3-16-16 Page 96
counterfactual exercise, the results of a	1 back in -- in -- with the -- the -- that we had
2 counterfactual exercise. The counterfactual being	2 the 1990's control of redistricting in place
3 contemplated is: Suppose partisan control of	3 rather than the ones we actually had in the 2000s
4 redistricting had stayed the way it appeared in --	4 and 2010s.
5 in -- in the -- in the 1990s. If -- what average	5 Q. Sure. And so -- and if I understand it correctly,
6 value of the efficiency gap would we see in the	6 you also did the same thing for the 2010s then as
7 2000s and in the 2010s if instead of the partisan	7 well?
8 control of redistricting that we actually had in	8 A. Exactly, an analogous exercise for the 2010s.
the 2000s, we'd had the partisan control that we	9 Q. And 2010's exercise used the percentages from the
10 had back in the '90s, we -- which, you'll recall,	10 1990s; is that correct?
11 was to the extent any one party dominated the	11 A. Again, it's the same counterfactual. You're
12 other with respect to partisan control, it was --	12 asking if -- if -- in the 2010 round of
13 it was Democrats were -- were controlling more	13 redistricting, what if we'd had the same mix of
14 redistricting plans than Republicans back then.	14 Democratic control, Republican control, and other
15 So it's a -- it's an interesting attempt,	15 that we'd had -- that we observed in the 1990s?
16 kind of nifty, if I do say so myself, to isolate	16 Had that been in place, what -- how would our
17 the -- the effect of one of the things that's	17 expectations as to efficiency gaps -- how would
18 moving here and, that is, who's controlled the	18 they change, yeah.
19 redistricting versus other things that might be	19 Q. And then did you -- for the 2010s, did you do a
20 changing over the period 1990s to -- to 2010, and	20 calculation of what it would look like if you
21 so as you ask, you know, what are the efficiency	21 instead of going all the way back to the 1990s
22 gap -- on average what would be the efficiency-gap	22 just went back to the 2000s?
23 values we'd see had we got -- had we had the same	23 A. I haven't done that.
24 partisan control balance as we had in earlier 25 decades.	24 Q. I think l'd like to get the averages for the three 25 different buckets --


Deposition of SIMON JACKMAN 3-16-16 Page 97	Deposition of SIMON JACKMAN 3-16-16 Page 99
1 A. Su	1 lawful plans. And I take it your criticism is
2 Q. -- for each one for each decade. That may be	2 that it doesn't account for majority/minority
3 anoth	3 districts. It has to be created under the
4 A. That's	$4 \quad$ Voting Rights Act; is that correct?
5 Q. -- computer thing. So we can do that at a certain	5 A. That's correct.
6 point, and then I may come back to have some	6 Q. Okay. Do you have an opinion on whether if Chen
7 questions on this	7 and Rodden did account for the Voting Rights Act,
8 A. Sure.	8 whether that would make their results more or less
9 Q. And if I unders	9 advantageous to Democrats?
10 just to change the number of plans in each bucket	10 A. I don't have a view on that, no
11 to represent what it was like in the 1990s?	11 Q. Okay. Do you know is there literature in the
12 A. It's equivalent to doing that, yeah, yeah.	12 field about whether needing to create
13 Q. I think we can start on the Section 6, the Chen	13 majority/minority districts hurts Democrats'
14 and Rodden.	14 abilities to convert statewide vote totals into
15 A	15
16 MR. POLAND: Now's probably a good	16 A.
17 time to ask. What are your thoughts just in	17 Q. Is there?
18 terms of the amount of time you have left?	18 A. Yes.
19 Not trying to press you for anything.	19 Q. And what does that show?
20 MR. KEENAN: Yeah. I'm thinking	20 A. Well, there's a debate. There's a -- that -- that
21 we'll probably have to take a lunch and come	21 in -- you know, one of the -- and the way l'd
22 back.	22 characterize it, this is a debate that's been
23 MR. POLAND: Okay. Okay	23 around since I was in graduate school. I remember
24 MR. KEENAN: But then I don't	24 being exposed to this. But in the name of
25 anticipate it going all the was	25 creating majority/minority districts, you're
Deposition of SIMON JACKMAN 3-16-16 Page 98	Deposition of SIMON JACKMAN 3-16-16 Page 100
1 five or anything. But, I guess, you never	1 inadvertently engaging in -- in packing, and it's
2 know, it's stats, and see how long it takes	2 pretty simple, pretty simple argument.
3 me to understand things	3 Q. And the argument would be that the minorities who
4 MR. POLAND: Okay.	4 are -- minority voters who are in the minority --
5 MR. KEENAN: -- and get what I	$5 \quad$ majority districts are strong Democratic voters?
6 need.	6 A. Yes.
7 THE WITNESS: Okay.	7 Q. And then you're required to create a district that
8 MR. KEENAN: So I'm thinking maybe	8 has a large number of those so that they can
9 we can go until a convenient time for lunch	9 secure the representative of choice and,
10 and then break and then come back, you know.	10 therefore, you're packing Democrats into a
11 MR. POLAND: That's fine. Sure.	11 district?
12 Q. Okay. So back to Chen and Rodden.	12 A. That -- that's the way the debate goes. That's
13 A. Uh-huh.	13 one of the opening salvos in what's a pretty
14 Q. Are you familiar -- were you familiar with Chen	14 lively debate inside the profession, yes.
15 and Rodden's work before you were retained to be	15 Q. So it's a lively debate. You'd say there hasn't
16 an expert in this case?	16 been a resolution one way or the other?
17 A. Yes.	17 A. Well, it's almost a normative question. I think
18 Q. Okay. And is Professor Rodden a colleague of	18 that's helped -- contributes to its liveliness.
19 yours at Stanford?	19 You're balancing two things that people care
20 A. He is. And Jowei Chen was -- is a graduate of our	20 about. One is more minority representation versus
21 Ph.D. program.	21 not creating lopsided districts and -- yes.
22 Q. Okay. So I see that you said you respect their	22 Q. As an empirical matter, is there still a debate as
23 contribution to the field; is that correct?	23 to whether minority/majority districts end up
24 A. Yes.	24 packing Democrats into -- into districts?
25 Q. Let's go to the first critique about simulating	25 A. I -- I wouldn't like to be drawn into trying to


Deposition of SIMON JACKMAN 3-16-16 Page 101	Deposition of SIMON JACKMAN 3-16-16 Page 103
1 characterize the literature on the -- on the spot.   Q. So we can move on to your second criticism --   A. Sure. Sure.	A. And, indeed, that's precisely the role that presidential vote aggregated to X plays in many redistricting matters, yeah.
4 Q. -- that Chen and Rodden used presidential election	4 Q. And going on to that -- the last sentence in the
5 result	5 -- in the paragraph, it says, 'In fact, this is
6	6 exactly what seems to be occurring at the
7 Q. Are presidential election results indicative	7 congressional level. Efficiency gaps are about
8 what state legislative election results would	86 percent more Republican when they're calculated
9 A.	9 using"
10 Q. What's the, I guess, magnitude of the divergence?	10 A. Ye
11 A. Oh, again, I'm not a -- I couldn't authoritatively	11 Q. -- "when they're calculating using presidential
12 answer that for you. But the mechanism is	12 data than when they are computed on the basis of
13 typically a couple of things. One is -- we're	13 congressional election results"?
14 talking about different districts, so it's -- it's	14 A. Yeah.
15 -- you know, it's not always -- it's sometimes a	15 Q. Where did you get that fact from?
16 technical feat. We're, you know, getting votes	16 A. I believe that's a number I found in
17 for Congress at the level of state legislative	17 Stephanopolous and McGee.
18 district. That's -- that's a technical issue that	18 Q. Do you know if there's a similar figure for -- for
19 you can solve or you can	19 state legislative elections?
20 But then -- then the more operative factor, I	20 A. Versus presidential?
21 think, is -- is the different incumbency	21 Q. This is for congressional level.
22 advantages operating on different levels. You	22 A. Yeah. I got your question now. And the answer is
23 might have a Democratic incumbent for a state and	23 no, I don't, offhand. No, I don
24 you might have a Republican incumbent in the -- in	24 Q. All right. Then moving to the third paragraph
25 the -- because it's a -- you know, up at the	25 starting, "Third, Chen and Rodden's simulated maps
Deposition of SIMON JACKMAN 3-16-16 Page 102	Deposition of SIMON JACKMAN 3-16-16 Page 104
corresponding congressional district, and so that	1 do not constitute a representative sample of the
2 tends to muddy the waters. And then you also have	2 entire plan solution space." What do you mean by
3 the fact -- and tiny number stats. This is	3 that?
4 such a big issue. They're off sequence sometimes.	4 A. Okay. There's another lively debate inside
5 Some states go on numbers -- with the off -- off	5 political science at the moment and as to whether
6 the first state legislative elections. That's not	6 the Chen and Rodden algorithm, in fact, will
7 a huge issue, but just yet another complicating	7 discover all possible plans. As we might say, to
8 factor here.	8 borrow an analogy, the jury's out on -- on that.
9 Q. In terms of establishing a partisan baseline that	9 And I know scholars at Princeton have a different
10 was not contingent on incumbency effects, would	10 view and there's a sense that we're going to need,
11 the presidential election results be useful in	11 perhaps, computer scientists and big-iron
12 determining that?	12 computing to maybe sort this one out. But I think
13 A. Yeah, and that's -- I would tell you	13 there's -- it would be fair to say that there's
14 industry standard for precisely that reason. It's	14 some -- we don't know whether -- and there's
15 the same two candidates appearing everywhere, and	15 reason to doubt that the Chen and Rodden algorithm
16 that's why scholars in the field prize those sorts	16 generates an exploration of all possible plans.
17 of data. Presidential vote aggregated by,	17 Q. Is there any research as to whether a different
18 complete the blank, and we're always in search of,	18 algorithm would lead to different results than the
19 you know, state legislative, congressional,	19 ones that Chen and Rodden discovered?
20 county. People -- people really value that sort	20 A. This is very early days in the automated
21 of data.	21 computer-generated redistricting world, so we
22 Q. Okay. So an analysis that used presidential	22 don't have a lot of guidance on a question of that
23 election results as an input would be relevant to	23 specific gesture.
24 determining the -- the nonincumbent partisan	24 Q. So just to be clear, it's not clear whether that
25 baseline of -- of a particular geographic area?	25 would affect Chen and Rodden's results one way or


Deposition of SIMON JACKMAN 3-16-16 Page 105	Deposition of SIMON JACKMAN 3-16-16 Page 107
1 the other more favorable to Republicans or less   2 favorable?	${ }_{1}$ Q. So I think we can put this one aside.   2 A. Okay. Okay.
3 A. That's right. I think that's fair, yeat	3 MR. KEENAN: We'll mark this one as
4 MR. KEENAN: Mark this as	
5 (Exhibit No. 59 marked	60 mark
for identification)	for identification)
7 Q. The first question on Exhibit 59 is if you could	7 Q. We were going to move down for the -- your next
8 identify what this is?	8 critique, which references an article by Fryer and
9 A. This is a paper by Fifield, Higgins, Imai, and	$9 \quad$ Holden. So l've marked the document as
10 Tarr outlining their attempt at automated -- using	10 Exhibit 60. Can you identify Exhibit 60 for us?
11 a computer to explore the space of all possible	11 A. Yes. This -- this is the paper by Fryer and
12 redistricting plans.	12 Holden looking at the relationship between
13 Q. And is this -- is Exhibit 59 the article that's	13 respecting compactness criteria and various
14 referenced on page 21 of your report in the	14 measures of the quality biasness, whatever. I
15 paragraph starting third where it says Fifield,	15 mean, it's a little imprecise, the bias of
16 et al, 2015?	16 redistricting plans.
17 A. Yeah. That's right.	17 Q. When did you first become aware of Fryer and
18 Q. Do you know if this article is -- has been	18 Holden's research that's reflected in this
19 published in a journal?	19 article?
20 A. I don't know the answer to tha	20 A. Richard Holden hails from the same country as I
21 Q. Okay. And so you don't know if it's been --	21 do. He's a professor of -- in the -- at the
22 this article's been subject to a formal	22 University of New South Wales in
23 peer-review proce	23 Sydney, Australia, and I ran into him -- I've
24 A. I -- I -- I don't know the answer to that. It may	24 never been introduced to him and I was -- somewhat
25 be in the midst of it right now, but -- but I -- I	25 thought l'd be curious to meet someone from
Deposition of SIMON JACKMAN 3-16-16 Page 106	Deposition of SIMON JACKMAN 3-16-16 Page 108
don't know. I saw it -- this is the form l've	Australia, and he's an economist by training.
2 seen it in. I haven't seen an	That's why our paths had never really intersected
3 Q. And when did you first become aware of the Fifield	before. And as we started talking, I didn't -- he
4 article?	$4 \quad$-- he mentioned to me that he's actually done work
5 A. Ooh. Oh, first half of ' 15 , I think, first half	on redistricting, and I said, "That's great. Send
15.	me a paper." And he did, and that was about, oh,
Q. So that would be before you were retained as an	7 first half of last year as well, yeah.
8 expert in this case?	8 Q. And you said he's an economist, correct?
A. Right around there. Certainly, my interest was --	9 A. Uh-huh.
10 was piqued by the prospect of -- of -- of coming	10 Q. So he's not a political science Ph.D.?
11 on, and I know quite well one of -- one of the	11 A. No, he's not. No.
12 authors and they were taking a shot at one of my	12 Q. Do you know about his coauthor here, Roland Fryer?
13 colleagues, so I -- I -- I took it -- I took it --	13 A. No. I don't know much about Roland Fryer.
14 I took an interest.	14 Q. What's your understanding of what Fryer and Holden
15 Q. So which author do you know?	15 did in this article which is titled "Measuring the
16 A. Kosuke Imai. He's a professor at Princeton.	16 Compactness of Political Districting Plans"?
17 Q. And then the "shot" you're referring to would be	17 A. Yeah. Sure. Well, look, I think the key takeaway
18 Professor Rodden?	18 is -- is -- is to show that if you go after -- if
19 A. Yeah. Yeah.	19 what you try to maximize is compactness, what --
20 Q. Okay.	20 you know, what does that do with the -- with these
21 A. Yeah.	21 automated algorithms. So if that was a criteria
22 Q. Although, I note that in the notes it says they	22 that you paid most attention to, what would be the
23 thank Jowei Chen for useful comments and	23 consequences for the -- what sort of plans would
24 sugge	24 -- would -- would you generate, is can you -- can
25 A . Oh, there's plenty of that in our business.	25 you -- can you make a strong statement about that?


Deposition of SIMON JACKMAN 3-16-16 Page 109	Deposition of SIMON JACKMAN 3-16-16 Page 111
And their strong statement is that you get smaller	Q. Okay. So the statements about --
asures of partisan bias almost always.	2 A.
Moreover, the responsiveness of the electoral	3 Q. -- bias being slightly smaller in all states
4 system that you get under maximally -- by trying	4 except one and the statements about responsiveness
5 to maximize compactness, and by responsiveness,	5 are comparisons between the Fryer and Holden
nember, we mean how your seat share changes as	6 maximally compact districts and then the districts
7 your vote share changes. They find that that goes	that were actually in place in those four states?
8 up as well.	8 A. Yeah.
9 And I think what this pape	9 Q. Okay
10 just speaks -- I mean, the sequence of papers	10 MR. KEENAN: I think now might be a
11 we've just seen in Exhibit 59 and 60 speaks to, I	11 good time to break for lunch.
12 think, the unsettled state of the literature at	12 MR. POLAND: Break right now?
13 the moment with respect to what one gets out of	13 Okay. Let's do that.
14 automated redistricting plans, the state of the	14 (Recess)
15 art there and how it links up with the things we	15 MR. KEENAN: Go back on the record
16 care about in -- in -- in the -- in the	16 Q. We're back from our lunch break. And I see,
17 redistricting.	17 Mr. Jackman, It think you have
18 So getting your computer to draw lines is one	18 looking for of the average -- efficiency gaps for
19 thing, what criteria are respecting as it does so,	19 the plans as put in place by Democrats,
20 and what sort of plans does it produce? We're	20 Republicans, and other units for the various
21 slowly filling that in as a body of knowledge, and	21 decades. So why don't we go through those.
22 Fryer and Holden is a contribution to that ongoing	22 A. Y
23 exploration in the field.	23 Q. You can give me the numbers.
24 Q. Is it your understanding that Fryer and Holden 25 generated multiple different districts in a state	24 A. Exactly. So of the three decades and three 25 numbers -- and they are, as you said, the average
Deposition of SIMON JACKMAN 3-16-16 Page 110	Deposition of SIMON JACKMAN 3-16-16 Page 112
st one districting plan?	ncy gap in the corresponding decade or
2 A. Well, I thought they -- my understanding is they	place corresponding to the top of the
3 went for the maximally compact one.	redistricting cycle at the start of the decade.
4 Q. So that would just be one -- one plan that was the	So let's start with the 1990s with plans that
5 most maximally compact?	fall into that omnibus other category. The
6 A. That's my -- that's my recollection of the paper,	average value of the efficiency gap is negative
	029, or if -- for clarity, l'll read these as
8 Q. And then they only looked at -- and their plan was	percentages, so minus 2.9 percent. Same decade,
9 for congressional elections; is that correct?	1990s, Democratic control, 4.4 percent.
10 A. I believe so. Yeah.	10 Q. And that's positive?
11 Q. And, I believe, it was just for the 2000	11 A. Positive, yes, consistent with, yeah. Republican
12 congressional elections in California, New York,	12 control, negative 6.7 percent is the average.
13 Pennsylvania, and Texas; is that correct?	13 Okay. 2000s now, in the same order, other,
14 A. I'll just verify that. Yeah. They're -- they're	14 Democrat, Republican. Other, negative 1.7;
15 examples, right? There's two parts of the paper,	15 Democrats, negative . 4.
16 the theory, but then actual application to -- to	16 MR. POLAND: Do you want to say
17 quote/unquote real -- real elections is limited to	17 percent just to make it --
18 those -- to those cases, yeah.	18 A. Percent, negative .4 percent; Republican, negative
19 Q. And then, as I understand it, they compared the	$19 \quad 4.8$ percent. 2010s, other is negative 1.3
20 results of their maximally compact plan in terms	20 percent; Democrats 2.1, and Republicans negative
21 of bias and responsiveness to the plan that was	218.1 percent. So that should be nine numbers three
22 actually in existence in those states	22 by three
23 A. Yeah.	23 Q. Okay. And so if I understand this, the efficiency
24 Q. -- for the 2000 election; is that correct?	24 gap -- the average efficiency gap for the plans in
25 A. That's correct.	25 the other category has been negative in each


Deposition of SIMON JACKMAN 3-16-16 Page 113	Deposition of SIMON JACKMAN 3-16-16 Page 115
decade	1 A. Another hypothesis might be that the plans they
2 A. That is correct. That's what I just read to you.	2 are implementing are especially favorable to them.
3 Q. Oka	3 Q. So much so that even though they constitute only
4 A. By a sm	410 percent of plans, they have that much effect on
5	
6 Q. Is it your opinion that the distribution of	6 A. Well, under the counterfactual scenario they have
$7 \quad$ partisans geographically is a neutral factor even	7 that. But the -- perhaps one of the -- if I
8 though the efficiency-gap plans instituted by	8 you know, it might be helpful to also realize that
9 other bodies has consistently been negative since	9 the prediction for 2010 is almost the same as the
10	10 actual for the 1990s, right? So, to my mind, one
11 A. I'm sorry.	11 of the takeaways from this analysis is that
12 Q. Sure. Does the fact that the efficiency gap has	12 factors that might have changed between 1990 and
13 been negative -- the average efficiency gap has	13 2010, one of those I often hear advanced is the
14 been negative under the other category plans	14 change in political geography, would seem to me
15 consistently since the 1990s, does that show you	15 that you can explain a lot of movement by -- if we
16 that the distribution of partisans geographically	16 -- if we -- we get back to the same level of --
17 weighs against Democrats?	17 it's -- it's about who controlled it -- the
18 MR. POLAND: Object to the form of	18 redistricting would seem to be the -- you know,
19 the question	19 the compelling factor if one had to explain why it
20 A. Well, I'm not quite sure what premises or what	20 is the efficiency-gap numbers look the way they do
21 assumptions we're making about the distribution of	21 now versus the pas
22 partisans over the -- over the three decades.	22 Q. And one thing that changes over time in this
23 Q. Sure. Wouldn't you expect if, you know, the	23 analysis is the category in which a state will
24 normal efficiency gap was going to be zero, that	24 fall into in the analysis in the differe
25 the average for the other category would be about	25 decades?
Deposition of SIMON JACKMAN 3-16-16 Page 114	Deposition of SIMON JACKMAN 3-16-16 Page 116
1 zero?	hat's right, as revealed by Figure 8, yes.
A. It -- it -- it is about zero. It's -- I mean,	2 Q. We can go to No.
$3 \quad$ it's very close to zero.	3 A. For sure.
4 Q. And if we look at Figu	-- which is your analysis of Sean Trende's report.
5 A. Sure.	$5 \quad$ I think it may be helpful in this one to have a
6 Q. -- which is the graphical representation of	6 copy of your first report handy and we can look at
	7 -- it's the table of the unambiguously negative --
8 A. Uh-huh, uh-hu	8 or unambiguous-as-to-sign plans, which is what's
9 Q. -- the 2010's decade predicted number --	9 discussed here.
10 A. Uh-huh.	10 A. Yes. Can you give the actual tab
11 Q. -- the dotted line, that prediction is based on an	11 Q. Yeah.
12 assumption that the Republicans would only have	12 A. -- in the back or page number it appears on?
13 drafted 10 percent of plans in existence?	13 Q. Here, page 55.
14 A. Uh-huh. Yes.	14 A. Thank you.
15 Q. And that Democrats would have put in place	15 Q. Table 1. And so your analysis finds that of these
1630 percent of plan	$16 \quad 17$ plans, 5 of them were enacted with unified
17 A. Y	17 party control over the districting process?
18 Q. And that neutral bodies would have put in place	18 A. Yes. That's right. That's right.
$19 \quad 60$ percent of plans?	19 Q. And so then the implication of that 12 of the 17
20 A. Right	20 plans were implemented without unified partisan
21 Q. And with that distribution of contro	21 control over redistricting?
22 districting processes, wouldn't y	22 A. Right, right.
23 the average efficiency gap would be positive given	23 Q. Okay. And so you've listed the five that were
24 that Republicans are only implementing 10 percent	24 enacted with unified partisan control on pages 22
25 of all plans?	25 and 23, correct?


Deposition of SIMON JACKMAN 3-16-16 Page 117	Deposition of SIMON JACKMAN 3-16-16 Page 119
1 A. Correct. That's right	1 Q. New York in the 1970s?
2 Q. Okay. So given the fact that 12 of these plans	2 A. Uh-huh.
3 were enacted without unified partisan control,	3 Q. And Ohio in the 2000s?
4 you'd agree that an unambiguous-as-to-sign	4 A. Uh-huh.
5 efficiency gap can occur in the absence of any	5 Q. And it's your opinion that these state plans are
6 partisan gerrymandering at all?	6 accurately captured by the test, because they had
7 A. Well, l'd say this is -- efficiency gaps without	7 a large initial efficiency gap and then also never
8 ambiguous sign are -- are an element of what	8 changed sign; is that correct?
9 constitutes a partisan gerrymander; are necessary	9 A. That's right; and, moreover, the reason I singled
10 but not sufficient	10 out these plans is because, as we've discussed
11 guess, strictly speaking, I would disagree with	11 earlier, taking into account the -- the confidence
12 your statement. Without this I wouldn't say we	12 intervals and the uncertainty attaching to any
13 have a partisan gerrymander, but I think we'd need	13 efficiency-gap estimate, these -- even taking that
14 this -- this is an important constituent	14 into account, these came nowhere near close to
15 development on the way to calling something a	15 ever generating an efficiency-gap estimate with
16 partisan gerrymander.	16 the opposite sign to the ones indicated in the
17 Q. Sure. But there are plans that have been put in	17 table.
18 place represented on -- in Table	18 Q. Now, have you taken into account the fact that for
19 A. Uh-hu	19 Michigan, New York, and Ohio, that those plans
20 Q. -- that presented unambiguous efficiency gaps that	20 also appear on this chart for other redistricting
21 were not the product of any sort of partisan	21 periods
22 gerrymandering on behalf of the districting body?	22 A. Oh.
23 A. If by partisan -- if partisan intent is equated	23 Q. -- in a circumstance for which there was no
24 with control of the redistricting process, which	24 partisan control over the districting process?
25 party controlled it, that's right. But I'd agree	25 For example, I see New York is on here four
Deposition of SIMON JACKMAN 3-16-16 Page 118	Deposition of SIMON JACKMAN 3-16-16 Page 120
you -- your conclusion. But, like I said,	1 different times, I believe.
2 this is an element of establishing whether or not	2 A. Uh-huh, uh-huh.
3 we have a partisan gerrymander. It wouldn't --	3 Q. You've identified the Michigan 2002 plan?
4 it's -- it's not unnecessary, but not sufficient	4 A. Uh-huh.
5 condition.	5 Q. But the Michigan 1992-to-2002 plan also appears on
6 By that -- so that that there may be ways,	6 here; is that correct?
7 and this is not a domain in which I'm an expert,	7 A. Uh-huh.
8 of establishing partisan intent that go beyond	8 Q. And then Ohio, you've identified the 2002 plan,
9 simply reading off which party we deemed to have	9 but the 1994-to-2000 plan also appears on here?
10 had control of -- of -- of the process.	10 A. Uh-huh.
11 Q. Okay. And so I'm just going to go through the	11 Q. Do you have any opinion on how that should affect
12 ones that were identified as having unified	12 your analysis of whether the plans implemented
13 partisan contr	13 with unified partisan control should be seen as
14 A. Uh-huh.	14 partisan gerrymandering?
15 Q. So that's Florida's plan in the 1970s, which I see	15 A. None other than to say I think this is a piece of
16 is the bottom --	16 evidence in support of, you know, whether you have
17 A. Uh-h	17 a partisan gerrymandering; I think in these
18 Q. -- listed?	18 particular cases quite compelling. I think the
19 A. Uh-huh, uh-huh.	19 other important component would be to establish
20 Q. And we have Florida's plan in the 2000s?	20 partisan intent through other means, one of which
21 A. Which appears?	21 may be partisan control over the process.
22 Q. At the very top.	22 But, again, I'm -- I'm straying into a part
23 A. Uh-huh.	23 of this matter that -- that -- where my expertise
24 Q. Michigan from the 2000s?	24 starts to run out as to how one might establish
25 A. Uh-huh.	25 partisan intent -- partisan control. I can well


Deposition of SIMON JACKMAN 3-16-16 Page 121	Deposition of SIMON JACKMAN 3-16-16 Page 123
1 imagine, indeed, all of us have two, that would be	1 Q. Moving on in the Trende section of the report --
2 a critical element of it, but there could well be	2 that's Trende, T-r-e-n-d-e -- there's some
3	3 discussion here of the differences between the
4	4
5 should be judged on different efficienc	5 A. Oh, yes
6 criteria -- whether states should be judged on the	6 Q. -- as calculated in congressional plans and with
7 same efficiency-gap standard or whether a	7 respect to legislative plans and how it works
8 different standard should apply to different	8 differently. Did you -- is your -- are your
	9 opinions in that -- those paragraphs based on the
10	10 reasoning in the Stephanopolous and McGee article
11 Q. But you'd agree with me that the effect on voters	11 on the efficiency gap?
12 or a political party that is disadvantaged by a	12 A. Yes, because they are, at this stage at least, the
13 plan is the same regardless of whether that plan	13 canonical piece of scholarship on the performance
14 was enacted with partisan intent or not?	14 of the efficiency gap in that set, and that is the
und.	15 congressional elections setting.
16 Q. Did you understand the ques	16 Q. And, basically, your criticism is that the raw
17 A. If you could repeat it?	17 efficiency data should be translated into a number
18 Q. Sur	18 of congressional seats affected?
19 A.	19 A. Up at the congressional level, that's right, and
20 Q. He can make some objections to the form of $m$	20 that's -- well, I can elaborate as to why, but --
21 question. It probably was a bad questio	21 Q. And I believe that's in your report --
22 re-ask it. But if you do understand it, you can	22 A. -- I did in the report, yeah, yeah, yeah.
23 go ahead and answer when he does that. Will you 24 let me --	23 Q. -- so I don't need to you repeat what's already in 24 there.
25 A. Su	25 But would you agree that analyzing how the
Deposition of SIMON JACKMAN 3-16-16 Page 122	Deposition of SIMON JACKMAN 3-16-16 Page 124
Q. -- recollect my thoughts to see what I was asking	1 efficiency gap works in congressional plans even
2 you about?	2 without converting to seats would shed light on
3 MR. KEENAN: Could you read back	ow well the efficiency gap measures partisan
4 what my question was? I may then rephrase	4 gerrymandering?
5 it, but --	5 A. With -- with one important caveat and, I guess,
6 (Previous question read)	6 the heart of what that is about; and that is, it's
7 MR. POLAND: Same objection just	7 just some states just have so few congressional
8 for the record. You can answer.	8 seats, although they may have many numbers of
9 A. The efficiency gap measures the consequences of a	9 seats in their state legislature. If we could get
10 districting plan and the partisan advantage	10 up to a state -- larger states and -- you know,
11 thereof. It's -- it's a consequence of a	11 let's hark back to the Fryer and Holden, please,
12 districting plan, I think a separate line of	12 for instance. The four states that they chose to
13 inquiry, but not unrelated one, obviously, is to	13 look at were all states with large populations
14 do with -- you tackle the question of intent	14 and, hence, large number of congressional seats.
15 Q. And, I guess, my question is aimed at the	15 That's where we're more apples to apples, if you
16 consequence the efficiency gap is measuring is the	16 will.
17 same regardless of what went into enacting that	17 There's still a caveat, though, that the
18 plan?	18 state delegations are part of a larger body in
19 A. Yes.	19 D.C., but that would be sort of a fairly strictly
20 Q. And your analysis -- your historical analysis in	20 circumscribed set of circumstances where I would
21 both the -- in the initial report -- your	21 think analysis of the efficiency-gap's properties
22 historical analysis in the initial report measured	22 up at the congressional level starts to match up
23 those consequences irrespective of -- of what type	23 as roughly comparable, perhaps, to what I did with
24 of body enacted the plan?	24 state legislatures.
25 A. Yes.	25 Q. Okay. And then you -- further on on page 25 you


Deposition of SIMON JACKMAN 3-16-16 Page 125	Deposition of SIMON JACKMAN 3-16-16 Page 127
discuss the difference between substituting presidential election results and then using them as an imputation for -- for the results, and we went over last time in your deposition the imputation model you used.   A. Uh-huh.   Q. My question is how big of a difference does it make in determining the vote total of an uncontested seat?   A. I -- I -- I can't give you precise answer. I do know that incumbency, particularly congressional elections, is thought to be, you know, a critical -- critical variable, and that no serious scholar of congressional elections would ever ignore it in modeling congressional election outcomes.   Q. And you say that it produces -- Trende's method would produce errors. I believe it says --   A. Well, certainly less credible.   Q. I was just going to say what -- an error as compared to what?   A. Excuse me?   Q. You say that Trende's method is guaranteed to produce errors.   A. Yeah, yeah, by omitting -- in omitting a variable that everybody in the literature agrees is -- is	recent estimates of incumbency advantage have been close to those numbers you just gave to me.   Q. 5 or 6 percent?   A. In the old days, we used to say 8 and, if anything, it's probably come down a little bit. But the point is you -- you estimate it, you know. MR. KEENAN: Another exhibit.   (Exhibit No. 61 marked for identification)   Q. And while you're reviewing Exhibit 61, my first question is going to be if you can just identify what it is.   A. It's an email from -- it's copy of an email from Nick Stephanopolous to myself and some other parties cc'd.   Q. And is it your understanding that this email contains a list of the tasks that you were to carry out in your rebuttal report?   A. Yes.   Q. I'd like to direct your attention to No. 2 in the email.   A. Right.   Q. And then there's a sub $D$ at the end of that paragraph --   A. Right.
Deposition of SIMON JACKMAN 3-16-16    1 critical, such as incumbency. Moreover, just to   2 elaborate this point, the congressional setting is   3 -- is we have a lot of data aggregated up to the   4 level of congressional seats, census aggregates,   5 in a way that are sometimes sketchy for state   6 legislative districts, and that literature also   7 makes a lot of use of those variables. So simply   8 substituting presidential vote at the level of   9 congressional district is -- is -- is a long way   10 from what I think -- where the literature or --   11 or, you know, what -- how -- you -- just how   12 models for congressional elections are done in --   13 in political science.   14 Q. And this is modeling the vote totals for an   15 uncontested seat as if it were contested?   16 A. Well -- and, indeed, to do that, though, one uses   17 the data in the contested ones to help you   18 extrapolate out, so that's -- that's right.   19 Q. And so what -- is there an average incumbency   20 advantage in congressional races that's applied,   21 5 percent, 6 percent, anything like that?   22 A. Well, it is not plugged in. It is estimated as   23 you go; and that's kind of the point, that it does   24 vary cycle to cycle. But it's something you don't   25 have to make an assumption about. But it's --	Q. -- where it says, "Addressing the validity of the Trende analysis of political geography (paras 62 to 105) which relies primarily on data on Wisconsin counties and wards."   A. Uh-huh.   Q. Did you do any analysis of Wisconsin counties and wards in trying to determine the political geography of Wisconsin?   A. No. I did not.   Q. And did you do any analysis in attempting to determine why Wisconsin saw the efficiency gaps it did over the course of the 1990's and 2000's court-drawn plans?   A. No. I did not.   Q. Put that one aside.   A. Okay. Oh, okay.   MR. KEENAN: Go to the next   exhibit, 62.   (Exhibit No. 62 marked for identification)   Q. Could you identify Exhibit 62 for us?   A. This is a supplemental or an extra piece of analysis that I ran looking at the sensitivity of the efficiency gap to -- to uniform swing.   Q. Is there a reason why this analysis was not


Deposition of SIMON JACKMAN 3-16-16 Page 129	Deposition of SIMON JACKMAN 3-16-16 Page 131
$1 \quad$ included in the rebuttal report?	1 get us away from uniform swing back in the -- with
2 A. Overcommitment on my part. It wasn't -- we	2 a -- with a particular view to redistricting
$3 \quad$ weren't quite -- haven't got to it.	3 questions in the -- in the 19 -- early 1990s.
4 Q. You mentioned the term "uniform swing"?	4 Their approach makes -- is -- is -- you have to
5 A. Yep.	5 know a lot of statistics and modeling to implement
6 Q. Could	6 it. You also have to have a lot of data that can
7 A. Certainly. Uniform swing in political science	7 inform your best guesses as to -- informed by the
8 refers to a method for constructing counterfactual	8 model, of course, as to how individual seats
9 elections by taking the set of seat shares -- vote	9 differ. And the second fact to note, at least at
10 shares we observe across seats in a given election	10 the presidential level, and -- and it's an open
11 and then shifting them all by the same quantity	11 question to how much this has happened at Congress
12 either up or down mimicking a jurisdiction-wide	12 or down at state legislature levels, but a funny
13 swing; and the word "uniform" arises there because	13 thing has happened to the United States since the
14 the same swing is being applied to every seat. So	14 1990s; and, that is, uniforms -- swings have
15 it's a very simple technique that assumes away the	15 become more uniform certainly at the presidential
16 fact that, you know, in a real election, election	16 level. So that is sort of reality, as it were, or
17 to election, the different seats swing by -- by --	17 sort of undercut kind of the -- the mythological
18 by different amounts. And just to be clear, the	18 imperative there to do better.
19 word "swing" here, also, what do we mean by that?	19 And so given that it's so fast to do and it
20 We mean the difference in an election outcome,	20 sort of kind of works certainly up at one level of
21 election one to election two.	21 American politics, it -- it -- it still is a go-to
22 Q. And are we looking at the two-party vote share for	22 method for -- for many people in the redistricting
23 each candidate in addition	23 Worla
24 A. Exactly. So that's the number when we have a 25 bunch of those numbers over each seat, and then we	24 Q. And if I understand -- just so I understand it 25 correctly, in your uniform swing, there's swings
Deposition of SIMON JACKMAN 3-16-16 Page 130	Deposition of SIMON JACKMAN 3-16-16 Page 132
	1 of plus and minus?
to the right.	2 A. That's right.
Q. And in your report, you state that it's considered	3 Q. Is the plus -- the plus Democratic vote?
4 to be a simplification. But that it still is a	4 A. Exactly, yes. Plus means in a Democratic
5 useful tool. Why is it still useful even if it's	5 direction and negative means in a Republican
$6 \quad$ a simplification?	6 direction.
7 A. Because it's so easy to do. You can code it up	7 Q. And so, for example, in a -- if a seat was one
8 and it zips along extremely quickly and it saves	8 with 50.3 percent of the vote by Democrats and a
9 you from -- if you're going to have -- if you're	9 plus-one swing, you'd make that seat 51.3 percent
10 open to the possibility that every -- the more	10 Democratic?
11 frankly, the more politically realistic assumption	11 A. Exactly right.
12 that each seat is going to change by a differen	12 Q. And then --
13 amount from any other seat, then where is that	13 A. And the same shift for every seat. And we
14 coming from? So instead of now you manipulating	14 typically cap it. If a seat is going to go above
15 many parameters, potentially one for each seat,	15 100, we can't -- we -- we typically truncate them
16 versus just one for the whole jurisdiction-wide	16 at a 100 or don't let them go below 30, but you've
17 swing. So despite some mythological critique over	17 got the idea right.
18 the years of this technique, it enjoys a long life	18 Q. So why don't you explain the uniform swing
19 in political science, and there's a reason in this	19 analysis you did that's reflected in Exhibit 62.
20 context as well.	20 A. Okay. Well, there were various components to it;
21 Q. And there isn't currently an accepted methodology	21 and, essentially, what I set out to do was to
22 of figuring out the amount of swing that would	22 demonstrate another robustness check, if you will;
23 occur in each district individually, is there?	23 how -- we -- we observe -- here's the problem. We
24 A. The closest we have on that is a work by Gary King	24 observe a value for an efficiency gap in one
25 and Andy Gelman going -- who originally tried to	25 election, and our problem is we'd like to know how


Deposition of SIMON JACKMAN 3-16-16 Page 133	Deposition of SIMON JACKMAN 3-16-16 Page 135
1 prognostic that is of -- of what we might see	1 to 50?
2 under the plan. And my initial report provided a	2 A. You've got it exactly. Any seat that previously
3 lot of analysis on that sign flipping and -- and	3 was within that window now will either go right up
4 we've talked at length about th	4 to 50 or over. That's right, yeah.
5 There's another way you might approach that	5 Q. And then in terms of measuring the efficiency gap,
6 problem. That is to ask, well, take that election	6 the expected seat share will also change; is that
7 as given and ask, well, let's perturb that	7 correc
8 election that we actually got and suppose, you	8 A. Well --
9 know, there's a swing to the Democrats of	9 Q. -- based on the vote share?
10 X percent or a swing away from the Democrats of	10 A. Well, it's purely -- the allocation of seats given
11 X percent, what sort of efficiency gap would we	11 votes is purely deterministic, right? So if --
12 get then? And that's -- that's not an	12 right? If we're talking -- we're in this
13 unreasonable way to approach this.	13 two-party world. The magic number's 50. If I'm
14 The one -- as -- as we've been talking, as	14 above 50, I win the seat. If I'm below, you win
15 we've been discussing, this -- the method of	15 it. And we can just as we move -- as we move vote
16 uniform swing is a device for generating	16 shares up, now some are more -- more -- more seats
17 counterfactual or hypothetical elections based off	17 are falling over that threshold or fewer depending
18 an observed set of election results has a -- has a	18 on howeve
19 long and durable legacy in -- in the political	19 Q. Yeah, and I understand that. But then in terms of
20 science world.	20 then calculating the efficiency gap on the --
21 Now, so what I did was to say, you know	21 A.
22 response to criticism of -- of why didn't we do	22 Q. -- uniform swing, if Democratic vote went from 50
23 that, was one of the criticisms of -- of my	23 to 52, the Democrats are now expected to win --
24 initial report, so we did it. I did it.	24 are judged against whether they won 54 seats,
25 Q. And maybe I could just stop you and just -- so you	25 correct, because that's what the zero efficiency
Deposition of SIMON JACKMAN 3-16-16   Page 134	Deposition of SIMON JACKMAN 3-16-16 Page 136
u have an initial efficiency gap of the	hypothesis line would call for; is that
2 actual election, correct?	2 correct?
3 A. Based on an actual election	3 A. That's correct. Very good, very good.
4 Q. And then you did uniform swings of different	4 Q. Okay. First, why don't we just look at
5	5 Figure 1 --
6 A. Uh-huh	6 A. Uh-huh.
7 Q. -- on that same election	7 Q. -- and you can explain what these various -- it
8 A.	8 looks like it's a similar figure multiple times.
9 Q. And then you recalculated the efficiency gap based	9 So maybe we can just look at the first one, swing
10 on the uniform swing?	10 plus .20, and explain what -- what's reflected
11 A. Yes, under the new scenario; because note what	11 here.
12 happens, by the way. As you shift those seat	12 A. Yes. So -- right. So there's a variety of swings
13 shares by some amount, some now flip past 50,	13 presented there, but the one on the top left
14 right, and the seats that you originally were	14 corresponds to where we perturb election results
15 saying were going to be Democratic wins become	15 just in -- right? And this is just down on -- on
16 Republican wins or vice versa. So remember the	16 elections in 2012 and 2014, so there's a
17 efficiency gap compares seat shares against vote	17 relatively small number of elections. Each one
18 shares, essentially, and so that's why the	18 has an actual efficiency gap corresponding to
19 efficiency-gap numbers will change as you -- as	19 their actual election outcome, right, the actual
20 you change the level of statewide vote share.	20 election we observed, and so that's what's plotted
21 You're also changing who wins seats.	21 on the horizontal axis, right?
22 Q. And so just as an example, on a 2.2 percent swing	22 And then on the -- on the vertical axis is
23 in favor of the Democrats, they would end up	23 the efficiency gap for that election you get if
24 winning additional seats -- any seat which they --	24 you apply the designated level of uniform swing.
25 which they had a 48 percent share or great -- up	25 And to use a graphical convention l've used


Deposition of SIMON JACKMAN 3-16-16	Page 137	De
1	elsewhere today, the black line in each panel is a	1
2	45-degree line, right? So if all the efficiency	2
3	gaps lined up were the same as the actual ones --	3
4	and by the way, the limiting case there is right	4
5	in the middle of the plot where the uniform swing	5
6	is zero. We're basically -- that's the trivial	6
7	null case, if you will. We're just replicating	7
8	the same election. All the data are on the	8
9	45-degree line there. And then the idea is to see	9
10	-- as -- as we get different efficiency gaps under	10
11	higher levels of -- of uniform swing, we will	11
12	start to -- we should expect to see and we do see	12
13	efficiency gaps looking increasingly different	13
14	from the ones we got under the actual election.	14
15	And the goal of this analysis is to sort of	15
16	understand the pace at which that happens. Higher	16
17	and higher levels of uniform swing will -- will	17
18	have to generate different election outcomes.	18
19	Possibly different values of the efficiency gap	19
20	would be astonishing if they didn't. The real --	20
21	the real thing to -- to try and understand is how	21
22	much you have to change the election you got to	22
23	get something different with respect to the	23
24	efficiency gap.	24
25	Qnd is it at a certain point in the uniform swing	25
	An	

Deposition of SIMON JACKMAN 3-16-16 Page 138
$1 \quad$ where that difference starts to emerge?
A. Yeah. Just purely seat of the pants here. This is not especially rigorous. But the middle-road swings that aren't especially large, right, you see very little -- the data are almost indistinguishable. And, in particular, keep in mind that any given efficiency gap, because of uncontestedness, is equipped with some uncertainty. You know, where the -- the changes in the uncertainty -- in the efficiency-gap measures that we're getting actual to simulated under different levels of uniform swing, that change is often not large relative to your uncertainty about the efficiency-gap number in a given election to begin with.

So you've really got to go out to quite large swings, two and a half, threes, and higher, before that data starts to really open up and we're starting to see considerable divergence from an actual efficiency gap to a hypothetical efficiency gap that might have arisen had the state swung three points one way or the other from -- from what we actually saw.
Q. Why don't we turn to Figure 2.

25 A. Yes.

And the -- let's just take the first row. The correlations stay between -- actual and simulated efficiency-gap estimates are quite high as we shuck the actual elections even with quite large values of uniform swing. So the takeaway there, say, the top right panel, if you had a high value of the efficiency gap and you considered a fairly broad range of alternative elections held under the same plan, in fact, generated through this methodology called uniform swing, you would end up observing hypothetical values of the efficiency gap that look an awful lot like the ones you actually got.

The efficiency-gap measure is -- is quite robust when it's high to begin with. When it's low, it doesn't take much uniform swing to come up with an efficiency gap value that in some cases has the opposite sign, or even after a while starts to bear very little reliable relationship with the original set of efficiency-gap estimates. So now I'm referring to the top left panel of Figure 2 where some of those correlations start to fall away toward zero. And, remember, zero correlation means there's no relationship between the original efficiency gaps and the simulated

Deposition of SIMON JACKMAN 3-16-16 Page 141	Deposition of SIMON JACKMAN 3-16-16 Page 143
efficiency gaps. And about the only place we see	1 exactly 1.0. There's no confidence interval
that, right, is, again, when you take something	2 around that. That corresponds to that middle
that began life -- an election that began life	3 panel of Figure 1 where we're getting back exactly
4 with a low efficiency gap and you subject it to a	4 the same results. So if I were to -- essentially
5 fairly high level of uniform swing. So this does	5 the correlation is 1.0 there where the data
-- this shows, if you will, the robustness of	6 coincide and will slowly get -- fall away from 1.0
7 efficiency-gap estimates as a function of how	7 as we take on larger and larger values of uniform
large they were to begin with to different levels	8 swing towards the -- the corners of our Figure 1,
of uniform swing.	yeah. So your intuition was absolutely correct.
10 The second row of Figure 2 repeats that	10 Q. And then those lines, the lines on Figure 1 or you
11 exercise using the same sign test that l've used	11 graphically represented, a subset of -- maybe I
12 throughout my original report and at various parts	12 should say like the Figure 1 represents all plans,
13 of the rebuttal as well. And, again, just to --	13 correct?
14 to move this along, the takeaway there is --	14 A. All elections.
15 direct your attention to the bottom right panel of	15 Q. All elections. And then Figure 2 is broken down
16 Figure 2. There's a series of dots there that	16 into different subsets?
17 tell us that the proportion of simulated	17 A. Exactly, subsetting the data by the magnitude of
18 efficiency gaps that have the same sign as the	18 the efficiency gap into three -- three classes,
19 actual efficiency gap we saw. It's essentially	19 low, medium, and high.
20100 percent, and only starts to tail away even a	20 Q. And then the lines on Figure 1 --
21 little once you get up to quite massive amounts of	21 A. Are -- are all the data together.
22 -- of -- of swing in the neighborhood of minus 5	22 Q. And the line -- does the line correspond to the
23 or 5 -- that might dip down to 90, 97 or 98	23 average of all of the plans or -- I may be
24 percent, or something like that.	24 phrasing that wrong. So if you could maybe just
25 So, again, the takeaway, you begin life with	25 explain to me the -- what the line is supposed to
Deposition of SIMON JACKMAN 3-16-16 Page 142	Deposition of SIMON JACKMAN 3-16-16 Page 144
a high level of the efficiency gap. You -- you	
simulate other elections, even some that depart	2 A. It's a -- it's a regression line.
pretty radically from the one you got under this	3 Q. And I don't know if you can explain that maybe in
uniform swing methodology. You -- you make the	4 like more layman's terms.
same conclusion about the efficiency gap under --	5 A. So there's a line of -- if you will, that's often
der that scenario.	a delayed interpretation of regression. There's a
Q. And to be clear, all this analysis is just on the	line of best fit to a -- to two variables that
2012 elections?	8 minimizes some of the squared errors.
A. 2012 and 2014 --	9 Q. So there will be plans -- or, I guess, this would
10 Q. Okay	10 be elections on both sides of those lines or both
11 A. -- I believe.	11 above and below the line?
12 Q. Both of them?	12 A. And, indeed, we -- we can observe just as much
13 A. Yeah.	13 from -- from Figure 1 if we were to sort of strain
14 Q. And --	14 our eyes and investigate what's going on in any
15 A. Yeah.	15 given panel. But by its nature, that's what
16 Q. Okay. And then the correlation?	16 regression will do. It will be trying to balance
17 A. Uh-huh.	17 out points that will lie above the line with
18 Q. Is the correlation number represented in Figure 2	18 points that lie below the line --
19 equivalent to the difference between the slopes of	19 Q. And
$20 \quad$ the lines in Figure 1?	20 A. -- approximate -- to a rough approximation.
21 A. You're on absolutely the right track, okay. So if	MR. KEENAN: Maybe we could take a
22 the data -- okay. So I can -- I can map you from	22 short break.
23 Figure 1 to Figure 2 now. Observe that anytime	MR. POLAND: Sure. Absolutely.
24 the uniform swing -- okay. Figure 2, anytime the	24 (Recess)
25 uniform swing is zero, the correlation is 1.0, and	25 MR. KEENAN: Go back on the record.


Deposition of SIMON JACKMAN 3-16-16 Page 145	Deposition of SIMON JACKMAN 3-16-16 Page 147	
1 Q. We're back from a short break. I just have a few	1	State of wisconsin ) ss:
2 more questions here. Then we can send you on your		
3 way --	3	I, LISA L. LAFLER, a Registered Professional
4 A. Okay.	4	Reporter, Certified Realtime Reporter, Certified
5 Q. -- back home.	5	Livenote Reporter, and Notary Public in and for
6 We put before you what's been marked as	6	the State of Wisconsin, do hereby certify that the
7 Exhibit 63. Could you identify Exhibit 63 for us?	7	foregoing deposition was taken before me at the
8 A. It's a copy of an invoice from myself back to	8	State of Wisconsin Department of Justice, 17 West
9 plaintiffs' attorneys.	9	Main Street, City of Madison, County of Dane, and
10 Q. I believe there's -- I put two documents together.	10	State of Wisconsin, on the 16th day of March,
11 There's a two separate invoices; is that correct?	11	2016; that it was taken at the request of the
12 A. Let me just check the dates on them. You are	12	Defendants, upon verbal interrogatories; that it
13 correct. There are two invoices here. That's	13	was taken in shorthand by me, a competent court
14 right, yes.	14	reporter and disinterested person, approved by all
15 Q. And the last time you were deposed you produced	15	parties in interest and thereafter converted to
16 some documents to your attorneys who gave them to	16	typewriting using computer-aided transcription;
17 me that included some invoices. Do you remember	17	that said deposition is a true record of the
18 that?	18	deponent's testimony; that the deposition was
19 A. Yes.	19	taken pursuant to Notice; that said SIMON JACKMAN
20 Q. And then does Exhibit 63 represent all the	20	before examination was sworn by me to testify to
21 invoices after that time that you've sent to	21	the truth, the whole truth, and nothing but the
22 plaintiffs' counsel?	22	truth relative to said cause.
23 A. That's correct. Yes.	23	Dated March 24th, 2016.
24 Q. And have you been paid for the invoices that	24	
25 you've submitted?	25	Notary Public   In and for the State of Wisconsin
Deposition of SIMON JACKMAN 3-16-16 Page 146		
1 A. Yes, I have.   2 Q. Okay.		
3 MR. KEENAN: And that's all my		
4 questions.		
5 MR. POLAND: We don't have any		
6 questions. So we're all set.		
7 MS. GREENWOOD: Read and sign.		
8 MR. POLAND: Yeah. We'll take a		
9 look at the transcript and reserve signature.		
10 (Adjourning at 2:09 p.m.)		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

William Whitford, et al., vs.
Deposition of SIMON JACKMAN Gerald Nichol, et al.

March 16, 2016

	actual (25)	7:15;9:23;16:10	26:2	12:24;20:14;75:21;
A	10:18;22:12;31:2	17:2;21:21;38:1;47:17;	amount (7)	76:14;121:8;136:24
abbreviation (4)	54:22,24;110:16;	86:1;96:11;101:1	$97: 18 ; 130: 13,22$	131:4;133:5,13
66:21;82:5,17;83:6	115:10;116:10;134:2,	120:22;139:1,5,8;	134:13	appropriate (3)
abbreviations (2)	$3 ; 136: 18,19,19 ; 137: 3$	141:2,13,25	amounts (4) ${ }^{\text {a }}$ (	10:4;11:3,16
42:22;43:7	14;138:11,20;139:7, $11 ; 140: 2,4 ; 141: 19$	against (7) 13:13:28:13:74:15	129:18;134:5;139:7; $141: 21$	$\underset{144: 20}{\operatorname{approximate}(1)}$
$\begin{gathered} \text { abilities (1) } \\ 99: 14 \end{gathered}$	$\begin{aligned} & 11 ; 140: 2,4 ; 141: 19 \\ & \text { actually (24) } \end{aligned}$	$\begin{aligned} & \text { 13:13;28:13;74:15; } \\ & \text { 82:14;113:17;134:17; } \end{aligned}$	$\begin{array}{\|c\|} \text { 141:21 } \\ \text { analogous (3) } \end{array}$	144:20   pproximately (4)
ability (1)	13:17,24;15:16;24:2;	135:24	30:18;58:3;96:8	$5: 12 ; 16: 12,13,14$
40:16	$\begin{aligned} & 31: 22 ; 45: 13,20 ; 46: 1 ; \\ & 52: 24 ; 54: 6,25 ; 55: 3,3 \end{aligned}$	agenda (1) 22:1	$\begin{array}{\|c} \mid \operatorname{analogs}(1) \\ 60: 23 \end{array}$	approximation (1)   144:20
:9;17:11;	$57: 18,23 ; 64: 4 ; 94: 8$	aggregated (3)	analogy (3)	arbitrarily (1)
35:13;49:15;55:15	96:3;108:4;110:22;	102:17;103:2;126:3	34:22;73:10;104:	90:14
74:18;77:13;78:2	111:7;133:8;138:23	$\underset{\text { aggregates (1) }}{ }$	analysis (55)	arbitrary (1)
above (16)	140:1	126:4	13:15;16:18;17:1	91:7
30:14,20;38:23;	add (2)	ago (2)	19:10,17;23:7,9;27:8,	area (4)
39:16;52:4,11;53:19;	89:17;91:18   adding (1)	4:12;62:22 agree (12)	$\begin{aligned} & 16,22 ; 28: 5,19 ; 29: 5 ; \\ & 36: 8 ; 39: 2,3,21 ; 48: 23 \end{aligned}$	$\begin{aligned} & 9: 13 ; 26: 19 ; 51: 9 ; \\ & 100 \cdot 25 \end{aligned}$
$64: 24 ; 70: 20 ; 87: 11 ;$ $88 \cdot 9 \cdot 132 \cdot 14 \cdot 135 \cdot 14$	$\underset{43: 3}{\operatorname{adding}(1)}$	$\begin{aligned} & \text { agree (12) } \\ & 6: 12,20 ; 8: 19 ; 9: 24 \end{aligned}$	36:8;39:2,3,21;48:23; $58: 16 ; 59: 12 ; 61: 5$	$\begin{gathered} \text { 102:25 } \\ \text { argument (3) } \end{gathered}$
139:24;144:11,17	addition (1)	$11: 19,22 ; 17: 23 ; 18: 6$	77:17,19;81:13;84:14;	24:24;100:2,3
absence (2)	129:23	117:4,25;121:11;	87:23;88:10,11,16,20;	arisen (1)
8:3;117:5	additional (2)	123:25	89:12;90:11,14;91:22;	138:21
absolute (9)	7:23;134:24	agrees (1)	93:7;102:22;115:11,	arises (2)
34:19;46:5,6;47:25;	Addressing (1)	125:25	23,24;116:4,15;	25:22;129:13
50:14;52:7;139:18,22,	128:1	ah	2:20,20,	around (12)
25	adhere (1)	86:12;121:	124:21;128:2,6,10,23	17:11;33:19;36:16
Absolutely (4)	6:22	aimed (1)	25;132:19;133:3;	41:18;52:17,18;69:10;
68:6;142:21;143:9	adhered	122:15	137:15;142:7	75:6;85:25;99:23
144:23	7:9	akin (1)	analyze (2)	106:9;143:2
absurd (1)	Adjourning (1)	30:9	:24;44:1	arrive (1)
63:4	146:10	al (1)	analyzed (2)	74:17
accept (1)	adjust (1)	105	13:20;15:23	art (1)
21:4	28:8	algorithm (3)	analyzing (2)	109:15
accepted (1)	admits (1)	104:6,15,18	62:23;123:2	article (7)
130:21	33:8	algorithms (1)	Andy (1)	105:13,18;106:4;
accompanied (2)	adopted (2)	108:21	130:25	107:8,19;108:15;
70:2;71:15	20:15;21:15	allocation (1)	Annabelle (1)	123:10
accompanying (4)	advanced	135:10	5:8	article's (1)
36:20;51:15;69:19;		allow	anticipat 97:25	aside (3)
70:11 according	$9: 16,19 ; 10: 25 ; 13: 8$	allowed (3)	apparent (4)	aside (3)
88:23	24:4,8,20;25:2,11;	11:9;24:5;31:14	24:4;39:24;57:25;	assessing (1)
account (11)	29:4;31:3;32:24;39:25;	almost (8)	71:9	42:5
22:6;27:25;46:9	40:13;46:10,10;50:6,	26:4;30:10;53:12;	appear (4)	associated (2)
59:16;70:10;95:12;	25;57:3,7,14;71:10;	74:11;100:17;109:2;	70:7;71:11;86:2	68:24;83:4
99:2,7;119:11,14,18	75:18;122:10;126:20;	115:9;138:5	$119: 20$	assumes (1)
$\begin{gathered} \text { accounted (2) } \\ 65: 6 ; 66: 1 \end{gathered}$	advantageous (1)	$\begin{aligned} & \text { along (4) } \\ & 22: 21 ; 50: 11 ; 130: 8 \end{aligned}$	appeared $94: 4$	$129: 15$ assumption (3)
accuracy (18)	99:9	141:14	appearing (1)	114:12;126:25
43:19,20,22;44:7,10	advantageously (1)	$\begin{array}{\|c} \text { alternated (1) } \\ 32: 22 \end{array}$	$\begin{gathered} 102: 15 \\ \text { appears (12) } \end{gathered}$	130:11   assumptions (1)
$\begin{aligned} & 11,13,19 ; 53: 14,22 \\ & 54: 2,3 ; 78: 14,14,22,22 \end{aligned}$	advantages (3)	$\begin{aligned} & 32: 22 \\ & \text { alternative (2) } \end{aligned}$	appears (12)   31:18;53:18;70:18;	$\begin{aligned} & \text { assumptions (1) } \\ & 113: 21 \end{aligned}$
79:3,3	24:16,17;101:22	28:12;140:8	79:15;80:22;82:25;	astonishing (1)
accurately (2)	advocating (1)	Although (2)	89:11;91:8;116:12;	137:20
34:15;119:6	$\begin{gathered} 21: 11 \\ \text { affect }(2) \end{gathered}$	$\begin{aligned} & 106: 22 ; 124: 8 \\ & \text { always (3) } \end{aligned}$	$\begin{aligned} & \text { 118:21;120:5,9 } \\ & \text { pples (2) } \end{aligned}$	$\underset{56: 24,25 ; 58: 5,6 ; 71: 5}{\text { asymmetry (5) }}$
$\begin{aligned} & \text { across }(\mathbf{5}) \\ & 6: 18 ; 38: 17 ; 47: 13 ; \end{aligned}$	$\begin{aligned} & \operatorname{affect~(2)} \\ & 104: 25 ; 120: 11 \end{aligned}$	$\begin{aligned} & \text { always (3) } \\ & \text { 101:15;102:18;109:2 } \end{aligned}$	$\begin{array}{\|c} \text { apples (2) } \\ 124: 15,15 \end{array}$	$\begin{aligned} & \text { 56:24,25;58:5,6;71:5 } \\ & \text { attach (1) } \end{aligned}$
129:10;139:13	affected (1)	ambiguous (2)	application (1)	39:13
Act (2)	123:18	28:3;117:8	110:16	attached (1)
$99: 4,7$	afterwards (1)	American (1)	applied (3)	79:19
active (1)	29:1	131:21	20:11;126:20;129:14	attaching (2)
26:19	Again (22)	among (1)	apply (6)	22:11;119:12

William Whitford, et al., vs.
Deposition of SIMON JACKMAN Gerald Nichol, et al.

attachment (1)	18;60:19;62:15,17;	behind (1)	bottom-line (1)	110:12
80:6	72:15,16;74:10,15;	6:13	39:3	call (11)
attachments (1)	76:2,13,16;78:17;	believing (1)	bounces (1)	15:5;33:2,25;34:1;
79:20	136:21,22	6:3	35:23	37:22;45:17;51:21;
$\begin{array}{r} \text { attempt (2) } \\ 94: 15 ; 105 \end{array}$	B	bell (1) $59: 25$	bouncing (1)	$67: 19 ; 81: 7 ; 85: 2 ; 136: 1$   called (5)
				called (5) $4: 2: 38: 4: 44: 10$
128:10	back (45)	74:24;75:	21:23,25	47:10;140:10
attention (6)	23:8,13;28:8;39:18,	below (8)	bounded (2)	calling (3)
8:9;36:12;50:2;	22;42:4;43:7;47:17;	33:22;35:4;38:23;	51:3;74:20	35:15;40:10;117:15
108:22;127:20;141:15	48:11,13,16;51:23;	39:16;132:16;135:14;	break (15)	calls (2)
attorney (1)	54:13;57:24;71:17,22;	144:11,18	25:24;48:4,7,14;	44:22;45:3
4:9	73:9,12;77:6,8;83:25;	best (6)	56:13;60:11;77:1,8,14;	came (5)
attorneys (2)	85:18;92:2;94:10,14;	12:21;52:15;53:9	98:10;111:11,12,16;	5:3;33:21;81:1,3;
145:9,16	95:10;96:1,21,22;97:6,	54:4;131:7;144:7	144:22;145:1	119:14
attribute (1)	22;98:10,12;111:15,	better (8)	breakdown (1)	can (91)
81:25	16;115:16;116:12;	25:5,13;59:9,10;	85:15	4:16,23;9:14;15:5,
audience (1)	122:3;124:11;131:1;	75:8;90:17,19;131:18	breaking (1)	14;16:9;19:4,4;20:7,7,
91:3	143:3;144:25;145:1,5,	beyond (2)	88:13	7;21:18,25;22:7;23:12;
Australia (2)	8	9:13;118:8	Brian (1)	29:25;31:1,20;37:15,
107:23;108:1	backward (1)	bias (5)	4:9	21;41:21,24;43:19;
author (1)	7:19	58:1;107:15;109:2;	bring (1)	48:5;49:8,8,8,18;53:9,
106:15	bad (1)	110:21;111:3	82:19	16;56:3,14;59:18,18,
authoritatively (1)	121:21	biasness (1)	bristle (1)	19;60:25;62:18;63:4;
101:11	balance (3)	107:14	26:24	65:21;66:14;69:6;
authors (1)	94:24;95:13;144:16	big (3)	broad (1)	72:14;74:22;75:20,21;
106:12	balanced (11)	67:7;102:4;125:7	140:8	76:20,25;79:6;81:17,
automated (4)	43:19,20,22;44:6,10;	biggest (1)	broader (1)	19;84:17,23;90:20,21,
104:20;105:10;	53:14,22;54:2;78:14,	27:9	6:24	23;91:4,11;97:4,5,13;
108:21;109:14	21;79:3	big-iron (1)	broken (3)	98:9;100:8;101:2,19;
average (81)	balancing (1)	104:1	85:10;139:15;143:15	107:1,10;108:24,24,25;
24:6;35:1,20;40:23;	100:19	binary (2)	brought (3)	111:23;115:15;116:2,
43:23,24;58:13,24;	based (20)	33:7;39:7	85:6,19,20	6,10;117:5;120:25;
59:1,14,18,21,22;60:4;	13:20;22:2,3;27:22;	bipartisan (1)	bucket (1)	121:20,22;122:8;
61:12,19;62:16,24;	32:11;33:15,15;34:7;	85:1	97:10	123:20;127:11;130:7;
63:4,5,8,11;64:10,19;	37:2;53:25;62:24;63:5,	bit (7)	buckets (1)	131:6;135:15;136:7,9;
65:2,22;66:12;67:10,	8;88:3;114:11;123:9;	19:11,24;26:5;28:3;	96:25	142:22,22;144:3,12;
21,25;68:9,9,22,24;	133:17;134:3,9;135:9	53:24;83:23;127:5	build (1)	145:2
70:12,19,24;71:2,13,	baseline (14)	black (2)	10:21	candidate (1)
19,21;72:1,13,18,20;	28:9,13;90:15,17,20,	68:2;137:1	building (1)	129:23
73:21;74:16;75:5,10,	23,24;91:5,8,9,12,13;	black-and-white (1)	5:5	candidates (1)
11,13;76:8;89:2,8,9,10,	102:9,25	93:13	bunch (1)	102:15
14,18;90:22;91:12;	basically (3)	blank (2)	129:25	canonical (1)
93:11,16,17,18;94:5,	88:13;123:16;137:6	80:21;102:18	business (2)	123:13
22;95:4,12,16,24;	basis (3)	blood (1)	35:12;106:25	cap (1)
111:18,25;112:6,12,24;	9:17;49:6;103:12	30:24	butts (1)	132:14
113:13,25;114:23;	bear (3)	blue (7)	82:18	capable (2)
115:5;126:19;143:23	63:19;82:20;140:19	69:11;72:10,15;		18:7,20
Averaged (1)	become (4)	74:14;76:6,16;93:12	C	capitalization (1)
39:12	106:3;107:17	bodies (2)		22:11
averages (7)	131:15;134:15	113:9;114:1	calculate (1)	Caprice (1)
89:9;90:13,21,21;	began (3)	body (10)	95:4	23:25
95:21,24;96:24	139:23;141:3,3	5:23;7:9,13;84:7;	calculated (4)	caption (1)
aware (3)	begin (7)	85:2;93:20;109:21;	72:7;95:16;103:8;	48:19
8:22;106:3;107:17	10:9,10;57:3;138:15;	117:22;122:24;124:18	123:6	captured (1)
away (8)	140:15;141:8,25	borrow (1)	calculating (2)	119:6
5:6;73:13;129:15;	beginning (2)	104:8	103:11;135:20	captures (1)
131:1;133:10;140:23;	10:24;80:22	both (8)	calculation (5)	47:4
141:20;143:6	behalf (1)	71:25;74:20;81:13;	59:13;60:9;91:6;	capturing (1)
awful (1)	117:22	84:7;122:21;142:12;	95:2;96:20	34:15
140:12	behavior (8)	144:10,10	calculations (1)	care (2)
axis (17)	$13: 1 ; 33: 6,12 ; 44: 4$	bottom (3)	60:8	100:19;109:16
46:16;47:21;50:12,	58:11;59:7,10;71:9	31:19;118:16;141:15	California (1)	Carlo (6)


37:19;38:5,25;39:9,	33:20;47:9;94:20;	64:1,1;67:9,25;68:1,	compelling (2)	79:25;80:6;84:8;
11,12	95:23;134:21	12;73:7,8;114:3;	115:19;120:18	102:1,19;103:7,13,21;
carry (1)	characterize (4)	119:14;127:2	complete (2)	110:9,12;123:6,15,18,
127:18	30:5;40:16;99:22;	closely (2)	43:10;102:18	19;124:1,7,14,22;
cart (1)	101:1	7:9;61:7	completely (1)	125:11,14,15;126:2,4,
26:4	characterizes (1)	closer (7)	8:8	9,12,20
case (32)	38:6	10:23;24:2;64:2	complicating (1)	connection (1)
4:10;6:11;17:18;	chart (3)	72:1,20,24;73:6	102:7	7:6
23:13,24;24:7;25:9;	29:15;84:6;119:20	closest (1)	component (2)	connotes (1)
31:11,14;32:5,18;33:4,	chase (1)	130:24	59:14;120:19	81:22
24;42:12;44:6;45:14,	8:22	clump (1)	components (2)	consequence (3)
18;49:13;63:5,6,6;	check (6)	88:23	89:21;132:20	26:11;122:11,16
64:1;68:12;69:20;71:1,	49:1,19,20;92:23;	coauthor (1)	compound (1)	consequences (3)
12;98:16;106:8;137:4,	132:22;145:12	108:12	121:15	108:23;122:9,23
7;139:9,23	Chen (12)	code (10)	comprises (1)	conservative (4)
cases (20)	97:13;98:12,14,20;	56:4,20;60:12;77:12;	95:22	52:1;54:17;55:6,9
24:3;31:17;37:4;	99:6;101:4;103:25;	82:9,12,17,17,24;130:7	computation (1)	consider (2)
42:12;45:1,4,10,21,25;	104:6,15,19,25;106:23	coincide (1)	51:14	28:12;81:15
52:22,24,25;55:7;	cherry (1)	143:6	compute (6)	considerable (5)
57:23;62:24;63:9;66:6;	82:18	collapsing (1)	28:22;59:18,20,22;	22:10;23:3;57:11;
110:18;120:18;140:17	children (2)	85:11	90:12;91:1	101:9;138:19
categories (8)	64:6,8	colleague (1)	computed (2)	considerably (1)
85:11,12,15;88:3,14,	chips (1)	98:18	8:6;103:12	57:11
24;89:6;90:15	28:24	colleagues (1)	computer (9)	considered (4)
category (12)	choice (1)	106:13	49:14,19,21;55:21;	11:25;31:7;130:3;
88:8,19;90:4,7;91:7;	100:9	color (1)	76:20;97:5;104:11;	140:7
92:6,17;112:5,25;	cholesterol (7)	69:12	105:11;109:18	considering (3)
113:14,25;115:23	30:14,24;32:13;33:1;	column (5)	computer-generated (1)	50:25;69:20,22
cause (1)	47:2,3,5	81:21;82:1,8;139:20,	104:21	consistent (5)
26:10	chose (1)	22	computes (1)	24:21,23;25:1;50:6;
cautious (1)	124:12	columns (4)	28:15	112:11
54:17	chunks (1)	34:9;43:7;44:6;84:3	computing (3)	consistently (2)
caveat (2)	139:16	combination (1)	63:8;89:1;104:12	113:9,15
124:5,17	CI (1)	80:21	conceivably (1)	constant (2)
cc'd (2)	69:3	combining (1)	17:23	20:2,3
79:17;127:15	circumscribed (1)	44:7	conceive (1)	constituent (1)
census (2)	124:20	coming (3)	7:16	117:14
77:20;126:4	circumstance (1)	50:10;106:10;130:14	concerned (1)	constitute (2)
certain (5)	119:23	comment (1)	13:4	104:1;115:3
30:15;49:18;89:15;	circumstances (2)	65:17	conclusion (3)	constitutes (1)
97:5;137:25	18:3;124:20	comments (1)	24:18;118:1;142:5	117:9
certainly (11)	clarification (1)	106:23	condition (3)	constraints (2)
8:9;9:15;19:12;	36:7	commission (1)	31:2;86:9;118:5	27:1,3
23:14;24:23;106:9;	clarify (1)	81:2	conditional (5)	constructing (1)
125:18;129:7;131:15,	33:14	commissions (1)	12:22;70:1,8;78:16;	129:8
20;139:4	clarity (1)	85:5	89:2	consult (2)
certainty (1)	112:7	communities (1)	conditions (2)	49:12;77:12
36:20	classes (1)	7:10	11:24;17:12	contain (1)
chance (1)	143:18	compact (4)	conducted (2)	79:24
13:25	classic (1)	110:3,5,20;111:6	21:24;22:13	contained (5)
change (16)	62:11	compactness (6)	confidence (21)	27:17;61:6;78:1;
34:7;36:10;84:20;	classification (2)	7:14,17;107:13;	20:8;35:15;36:9,17,	79:25;80:17
86:17;92:6,8;95:9;	33:9;89:7	108:16,19;109:5	19;37:10,25;51:22;	contains (3)
96:18;97:10;115:14;	classifying (1)	comparable (1)	64:25;69:3,6,15;70:5,	80:23;93:6;127:17
130:12;134:19,20;	88:12	124:23	10,14;71:22;74:18,19,	contemplated (1)
135:6;137:22;138:13	clean (1)	compare (1)	21:119:11;143:1	94:3
changed (4)	4:23	57:8	conflating (1)	contested (2)
33:23;92:9;115:12;	clear (9)	compared (2)	26:10	126:15,17
119:8	7:4;15:15;33:18;	110:19;125:20	confuse (1)	context (2)
changes (4)	72:10;75:7;104:24,24;	compares (1)	44:11	92:1;130:20
109:6,7;115:22;	129:18;142:7	134:17	Congress (2)	contingent (1)
138:9	close (14)	comparisons (1)	101:17;131:11	102:10
changing (5)	16:11;52:17;63:25;	111:5	congressional (26)	continuing (2)

William Whitford, et al., vs.
Deposition of SIMON JACKMAN Gerald Nichol, et al.

64:17;75:17	corresponds (2)	6:2,6	93:16	designated (2)
contradicted (2)	136:14;143:2	criticizes (1)	decimal (1)	80:2;136:24
31:10,15	counsel (1)	9:3	15:16	designed (3)
contrary (1)	145:22	critique (3)	decimals (1)	24:23;86:21;88:6
40:21	count (3)	98:25;107:8;130:17	15:6	despite (1)
contributes (2)	37:11;38:17;41:9	curious (1)	decision (2)	130:17
62:16;100:18	counted (1)	107:25	6:13;39:7	detail (2)
contribution (2)	92:11	currently (	deemed (1)	4:14;60:17
98:23;109:22	counterfactual (10)	130:21	118:9	determine (4)
control (37)	19:25;20:5;94:1,2,2;	curve (2)	defendants (2)	7:1;22:21;128:7,11
8:21;79:7;80:16;	95:22;96:11;115:6;	74:24;75	4:10;10:4	determines (1)
81:6,7;84:14,20,24;	129:8;133:17	cut (3)	define (3)	21:14
85:20;86:10,22;89:7;	counties (2)	4:21,22;8:2	6:25;90:14;129:6	determining (7)
92:8,8;94:3,8,9,12,24;	128:4,6	cycle (4)	definitely (1)	12:7;34:11,14;37:7;
95:14;96:2,14,14;	counting (1)	9:1;112:3;126:24,24	84:10	102:12,24;125:8
112:9,12;114:21;	38:15		definition (3)	deterministic (1)
116:17,21,24;117:3,24;	country (1)	D	42:13;47:4;117:10	135:11
118:10,13;119:24;	107:20		degrees (1)	development (1)
120:13,21,25	counts (1)	damage	27:5	117:15
controlled (7)	39:8	10:24	delayed (1)	device (1)
27:10;81:4;89:3,4;	county (1)	data (63)	144:6	133:16
94:18;115:17;117:25	102:20	10:17;11:20;15:22;	delegations	diagnosis (1)
controlling (6)	couple (5)	22:14,16;26:2;29:11;	124:18	30:10
80:2;81:10;87:3;	14:6;48:14;64:17	50:7;63:2,16,24;65:5,5,	Democrat (1)	diagnostic (1)
88:7,8;94:13	66:16;101:13	7,15,16,20;68:1,6,10;	112:14	42:6
convenient (1)	course (6)	69:8,9,16,25;70:4;	Democratic (23)	diagonal (5)
98:9	13:25;24:6;50:5	72:18;74:11;79:22,25;	23:22;24:16;26:1	44:20,21;45:2;68:2,2
convention (1)	128:12;131:8;139:8	80:6,21;82:13,14,15,	46:10;50:25;57:3,17,	differ (1)
136:25	court (8)	20,21;83:11;84:5,12;	19,22;81:6;85:13;	131:9
conventional (1)	4:17;9:18;10:8;	85:9;86:5;87:23;89:12;	86:22;87:5;96:14;	difference (9)
33:5	11:11;17:18;81:2;	92:3;93:3;95:21,23;	100:5;101:23;112:9;	$91: 13,18,19,23$
conventionally (2)	92:13,17	102:17,21;103:12;	113:5;132:3,4,10;	125:1,7;129:20;138:1;
37:23;66:23	court-drawn (2)	123:17;126:3,17;	134:15;135:22	142:19
conversation (1)	8:23;128:13	128:3;131:6;137:8	Democratic-drawn (1)	differences (7)
49:6	courts (4)	138:5,18;139:15;	95:17	23:15;90:16,16,23,
convert (1)	10:5;20:11,15;85:5	142:22;143:5,17,21	Democrats (23)	24;91:11;123:3
99:14	cover (1)	dates (1)	20:24;21:7;24:8;	different (38)
converting (1)	41:1	145:12	25:6,17;84:25;86:14;	11:24;40:3,24;41:22;
124:2	covers (1)	day (2)	88:6;89:21;94:13;99:9;	43:3;50:10;57:12;
Cool (1)	84:10	22:9;35:1	100:10,24;111:19;	58:18;66:4;83:9;95:13;
48:9	create (2)	days (2)	112:15,20;113:17;	96:25;101:14,21,22;
copy (9)	99:12;100:7	104:20;127:	114:15;132:8;133:9,	104:9,17,18;109:25;
5:14,18;14:22;69:12;	created (1)	DC (1)	10;134:23;135:23	115:24;120:1;121:5,8,
80:5;93:13;116:6;	99:3	124:1	Democrats' (1)	8;129:17,18;130:12;
127:13;145:8	creating (2)	dead (1)	99:13	134:4;137:10,13,18,19,
corner (3)	99:25;100:2	68:9	demonstrate (1)	23;138:12;139:5,7;
31:18;68:3,3	creation (1)	deals (1)	132:22	141:8;143:16
corners (1)	5:3	79:7	denominator (1)	differently (1)
143:8	credible (1)	debate (8)	45:21	123:8
correctly (6)	125:18	26:20;99:20,22;	depart (1)	dimension (2)
51:12;67:1;68:25;	criteria (7)	100:12,14,15,22;104:4	142:2	65:6,7
96:5;97:9;131:25	7:6;11:12;27:3;	decade (18)	depending (5)	dip (1)
correlation (6)	107:13;108:21;109:19;	8:25;11:8,9;14:13;	17:12;18:3;39:9;	141:23
139:11;140:24;	121:6	33:13;38:11;66:22;	82:13;135:17	direct (3)
142:16,18,25;143:5	critical (4)	68:13;88:1,19;92:10;	deposed (1)	36:12;127:20;141:15
correlations (2)	121:2;125:12,13	93:11;97:2;112:1,3,8;	145:15	direction (3)
$140: 2,22$	126:1	113:1;114:9	deposition (4)	13:8;132:5,6
correspond (2)	criticism (4)	decades (10)	4:11,12;5:2;125:4	disadvantaged (1)
60:20;143:22	99:1;101:2;123:16;	23:9;86:6;88:15	describes (1)	121:12
corresponding (11)	133:22	92:7;94:25;95:14;	72:9	disagree (1)
47:8;51:17;63:23;	criticisms (2)	111:21,24;113:22;	Describing (4)	117:11
78:4,12;80:24;102:1;	5:25;133:23	115:25	$34: 9 ; 51: 24 ; 72: 5$	discover (1)
112:1,2;136:18;139:9	criticize (2)	decade's (1)	$74: 24$	104:7


discovered (1) 104:19	$\begin{aligned} & 5: 16 ; 80: 11 ; 83: 1,10 \\ & 84: 13 ; 107: 9 \end{aligned}$		$7: 22 ; 12: 6 ; 13: 5$	84:2;88:23;89:8;102:6;
discoveries (1)	docum		$\text { ; } 29: 10 ; 30: 20 ; 32: 4 ;$	$\begin{aligned} & 100 \\ & 123 \end{aligned}$
57:5	145:10,16	earlie	34:7,20;35:21;40:10;	126:12;129:9;133:1
discovery (10)	domain (1)	$21: 21 ; 25: 4 ; 51: 7 ;$	42:14;58:15,24;61:9,	136:16,17;139:16;
45:15,16,17,18;	118	$57: 24 ; 65: 13 ; 77: 10$	10,18;79:24;94:22;	140:4,8;142:2,8;
52:19;57:9,13;78:15,	dominated (1)	:24;95:14;119:11	113:8;115:20;119:13,	143:14,15;144:10
23;79:4	94:	early (2)	15;121:5,7;134:19;	election's (4)
discuss (1)	done (10)	104:20;131:	138:10,14,140:3,14,20;	20:17;21:19;22:14;
125:1	25:12;27:7;37:17,18	easier (1)	141	59:13
discussed (2)	55:4,5;80:8;96:23;	55:20	efficiency-gap's (1)	electoral (3)
116:9;119:10	108:4;126:12	easiest (2)	124:21	11:24;18:3;109:3
discussing (4)	dots (1)	$56: 16,21$	efficient (1)	element (3)
32:7;43:9;61:8	141:16	easy (2)	$83: 14$	$117: 8 ; 118: 2 ; 121: 2$
133:15	dotted (3)	$7: 16 ; 130$	efficiently (1)	elements (1)
discussion (4)	93:24,25;114:1	economist (2)	$83: 12$	$44: 21$
23:15;49:3;73:10	doubt (1)	$108: 1,8$	EG (17)	else (1)
123:3	104:15	edge (1)	31:22;46:5;55:13,16;	44:16
disease (1)	Doug (1)	74:11	59:13;62:15;68:22,22,	elsewhere (1)
$47: 5$ dispositive (1)	5:8	effect (5)	23,24;69:23;70:23,24;	137:1
dispositive (1) $24: 24$	down (14)	9:5;50:1;94:17	72:7,23;73:1;80:6	$\begin{array}{r\|} \text { email (7) } \\ 79: 15.1 \end{array}$
distinct (1)	$47: 20 ; 86: 19,21 ; 107: 7$	$\begin{aligned} & 115: 4 ; 121: 11 \\ & \text { effects }(2) \end{aligned}$	13:7;44:5;59:24;	$13,16,21$
12:12	127:5;129:12;130:1;	$11: 1 ; 102: 10$	$91: 10 ; 129: 12 ; 135: 3$	emerge (1)
distributed (1)	131:12;136:15;141:23;	efficiency (188)	elaborate (2)	138:1
26:17 distribution (14)	143:15	6:3,7,8,14,16,17,21;	123:20;126:2	emission (1)
distribution (14)	downstream	7:7,8,19,21;8:2,7,12,	election (142)	52:4
$\begin{aligned} & 24: 1 ; 26: 14 ; 27: 14,25 \\ & 28: 25 ; 37: 21,22,24 ; \end{aligned}$	Dr	19,24;9:4,8,15,20;	6:17;10:13;11:4,13,   18,18;12:6,14,22;13:9,	empirical (3)
38:6;59:3;113:6,16,21;	Dr 9:3	$13,21 ; 14: 13,25 ; 16: 1,8$	14,17,22;14:23;16:1;	enacted (11)
114:21	drafted (1)	$17: 4,6,21,25 ; 18: 1,14,$	17:8,24;18:13;19:18;	8:13,20;9:9,10
distributions (2)	114:13	$17,20 ; 19: 13,16,20$	20:1,20;21:3,3,5,6,8,9,	48:23;77:20;116:16,
38:13,13	dramatic (1)	22:17,18,22;23:4,6,16,	13,17,20,22,24;22:12;	24;117:3;121:14;
district (10)	75:16	17,20;24:12;27:9;28:9,	23:1,5;24:5;26:2;	122:24
7:11;20:2;22:13,	draw (8)	14,15;29:2,7;30:11;	$28: 16,16,23 ; 30: 12,22$	enacting (2)
$\begin{aligned} & 48: 21 ; 100: 7,11 ; \\ & 101: 18 ; 102: 1 ; 126: 9 \end{aligned}$	$7: 24 ; 24: 1 ; 38: 16,18 ;$ $59: 2,5 ; 63: 22 ; 109: 18$	31:9,15;32:11,21,22;	$31: 8,11,12,22 ; 32: 10$ $20: 35: 5.22: 36: 4.21$	$9: 22 ; 122: 17$
101:18;102:1;126:9; $130: 23$	$\begin{aligned} & \text { 59:2,5;63:22;109:18 } \\ & \text { Irawers (2) } \end{aligned}$	35:10,22;36:2,3,9,21,	$\begin{aligned} & \text { 20;35:5,22;36:4,21; } \\ & 37: 20 ; 38: 20,23 ; 39: 15 ; \end{aligned}$	$\begin{aligned} & \text { end (11) } \\ & 10: 23 ; 22: 9, \end{aligned}$
districting (12)	27:4,4	19,21;39:15;41:6,13;	40:2,5,14,25;41:3,11;	35:11;46:24
6:22;26:7;28:11;	drawing (2)	47:21,25;50:5,24;51:5,	42:17;47:22;50:3;58:1,	100:23;127:23;134:23;
84:21;108:16;110:1;	25:18,24	$6,16,20 ; 58: 21 ; 61: 12$	22;59:9,12;60:3,9;	140:11
114:22;116:17;117:22;	drawn (10)	$19 ; 64: 19 ; 65: 22,23$	61:9,11,18;62:15;	ended (1)
119:24;122:10,12 districts (15)	17:18;24:21;25:10,	66:12,13;67:4,19;68:8;	65:24;66:3,7,12;67:5,	67:10
districts (15)	16;38:12;92:13,17,20;	69:14;70:9,13,20;	18,24;68:22,23;69:14,	$\underset{19.10}{\text { engage (1) }}$
$\begin{aligned} & 25: 25,25 ; 27: 5 ; 99: 3 \\ & 13,25 ; 100: 5,21,23,24 \end{aligned}$	95:19;100:25	$71: 10,13 ; 72: 13,14$	$23 ; 70: 9,23 ; 72: 2,7,13$	19:10
$\begin{aligned} & 13,25 ; 100: 5,21,23,24 \\ & 101: 14 ; 109: 25 ; 111: 6, \end{aligned}$	draws	73:19,22;74:7,16;	$19,21 ; 76: 4,5 ; 80: 20,22,$	engaged (2)   11:15;19:
6;126:6	drew (1)	88:2,13;89:2,15;93:11,	89:11;92:22,22;93:16;	engaging (1)
divergence (2)	17:13	$17 ; 94: 6,21 ; 95: 4,1$	101:4,7,8;102:11,23;	100:1
101:10;138:19	drivers (1)	96:17;103:7;111:18;	103:13;110:24;125:2,	enjoys (1)
divergences (1)	27:9	$112: 1,6,23,24 ; 113: 12$	$15 ; 129: 10,16,16,17,20,$	130:18
101:9	duly (1)	$13,24 ; 114: 23 ; 117: 5,7,$	$21,21 ; 132: 25 ; 133: 6,8$	enough (2)
divide (1)	4:2	20;119:7;122:9,16;	18;134:2,3,7;136:14,	35:6,24
$89: 17$ divided (3)	durability	123:4,11,14,17;124:1,	19,20,23;137:8,14,18,	entertain (1)
$\begin{array}{r} \text { divided (3) } \\ 81: 8,12 ; 8 \end{array}$	23:16;	3;128:11,24;132:24;	$\begin{aligned} & 22 ; 138: 15 ; 139: 6,8,23 \\ & 141: 3 \end{aligned}$	20:6
81:8,12,85 dividing (1)	23:21;24:13,13,16;	133:11;134:1,9,17; 135:5,20,25;136:18,23;	elections (48)	104:2
43:3	71:12;133:19	137:2,10,13,19,24;	6:18;10:5,11,20;	entirely (2)
doctor (3)	durably (4)	138:7,20,20;139:11,12,	11:8;12:5,25;13:12,16,	88:6,7
30:9,14;4 doctor's (1)	54:18,20,21;55:12	17,19,21,24;140:7,12,	20;14:4;27:23;28:6;	entries (2)
doctor's $30: 15$	$\begin{gathered} \text { during (2) } \\ 5: 23 ; 77: 1 \end{gathered}$	17,25;141:1,4,18,19;	$\begin{aligned} & 36: 22 ; 40: 18,20 ; 48: 21 \\ & 55: 12 ; 61: 13 ; 62: 4 \end{aligned}$	43:4;93
document (6)		efficiency-gap (36)		

William Whitford, et al., vs.
Deposition of SIMON JACKMAN Gerald Nichol, et al.

equated (1)	129:24;132:4,11;	expertise (2)	factors (2)	114:4;116:1;136:5,8;
117:23	135:2;143:1,3,17	9:14;120:23	22:6;115:12	138:24;139:20;140:22;
equating (1)	EXAMINATION (1)	explain (28)	fair (3)	141:10,16;142:18,20,
6:6	4:6	29:19;30:3;41:22;	9:7;104:13;105:3	23,23,24;143:3,8,10,
equipped (1)	examine (2)	43:19;44:13;46:17;	fairly (4)	12,15,20;144:13
138:8	14:1;26:6	49:24;51:10;58:16;	67:25;124:19;140:8	figures (6)
equivalent (3)	examined (1)	61:5;62:18;69:6;73:20;	141:5	46:2;49:23;56:3;
58:3;97:12;142:19	13:15	80:17;81:20;87:22,25;	fall (8)	60:13,21;78:7
erring (1)	examining (1)	90:10;91:4;93:23;	28:24;31:17;45:1;	figuring (1)
54:17	48:13	115:15,19;132:18;	46:22;112:5;115:24	130:22
error (1)	example (10)	136:7,10;139:2;	140:23;143:6	filling (1)
125:19	36:14;37:5;66:17	143:25;144:3	falling (1)	109:21
errors (3)	82:22;83:17;89:13;	explained (4)	135:17	finalizing (1)
125:17,23;144:8	92:10;119:25;132:7;	43:17;64:19;65:2,18	falls (3)	48:14
escaped (1)	134:22	explains (1)	86:19;87:10;88:	find (1)
33:22	examples (2)	58:9	false (39)	109:7
especially (3)	66:9;110:15	explanation (2)	29:17,18;31:16,20;	finds (1)
115:2;138:3,4	exceed (1)	58:10,11	32:8;33:21,24,24;41:1,	116:15
essentially (10)	12:5	exploration (2)	8;42:25;43:10,11;45:7,	fine (7)
43:3;45:2;58:3;	exceeds (1)	104:16;109:23	9,11,15,16,23,24;52:2,	15:8;44:12;49:14,18;
$61: 15 ; 86: 24 ; 88: 12$	30:22	explore (1)	4,8,10,12,19;55:1;57:5,	56:7;77:4;98:11
132:21;134:18;141:19;	Excel (3)	105:11	8,13;78:14,15,15,22,	finger (1)
143:4	79:20;80:15,16	exposed (1)	23,23;79:4,4,5	74:25
establish (4)	except (1)	99:24	familiar (5)	FIP (2)
15:9;28:9;120:19,24	111:4	extent (7)	34:23;56:20;80:14;	82:8,12
establishing (3)	exceptionally (2)	6:4;40:8;61:9,25;	98:14,14	FIPS (3)
102:9;118:2,8	64:7,8	68:6;87:2;94:11	far (2)	82:9,17,24
estimate (15)	excluded (2)	extra (1)	5:5;19:16	first (108)
14:25;36:8;37:23	62:7;77:21	128:22	fast (1)	4:2;5:25;6:1;10:5,
51:15;75:4;90:15,20,	Excuse (1)	extraordinarily (2)	131:19	$16 ; 11: 18 ; 12: 14,22,25$
$22,23 ; 91: 11,17,17$	$125: 21$	$88: 22 ; 90: 12$	favor (1)	$13: 9,16,21 ; 14: 4,13$
119:13,15;127:6	exercise (14)	extrapolate (1)	134:23	16:1;17:21;19:8;21:19;
estimated (1)	11:11,15;19:14	126:18	favorable (4)	22:14,22;23:1,5,25;
126:22	25:22;26:1,25;74:7;	extreme (3)	25:16;105:1,2;115:2	24:4,11;30:3,11,19,22;
estimates (9)	94:1,2;95:22;96:8,9;	59:11;64:3;66:9	feat (1)	31:11,12;32:10,20;
22:2;37:3,9;51:13,	139:4;141:11	extremely (4)	101:16	$36: 4,7,21,25 ; 38: 3$
14;127:1;140:3,20;	Exhibit (25)	35:9;51:4;63:23;	Federal (1)	39:15;40:5,25;41:3,14;
141:7	4:4;5:13;14:21;	130:8	82:10	42:7,17;47:22;50:3,23;
et (1)	79:12,14;80:9,10,18;	eye (1)	feet (1)	55:10;58:1,22,25;59:4,
105:16	105:5,7,13;107:5,10,	87:16	22:7	9,12,13,19;60:3,8;61:9,
even (21)	10;109:11;127:7,8,10;	eyeballing (1)	felt (2)	11,17,18;62:15;63:2,
10:10;32:21;35:22;	128:18,19,21;132:19;	54:1	11:1,2	10;64:5;65:24;66:3,7,
54:18;60:22;65:9,20,	145:7,7,20	eyes (1)	few (6)	12;67:5,18,24;68:6,8,
21;70:9;74:12,22;	exhibiting (1)	144:14	4:12;24:9,10;66:6;	21,23;69:14,22;70:8,
$\begin{aligned} & 83: 18 ; 113: 7 ; 115: 3 \\ & 119: 13 ; 124: 1 ; 130: 5 \end{aligned}$	$\begin{array}{r} \text { 139:24 } \\ \text { exhibits } \end{array}$	F	$\begin{aligned} & 124: 7 ; 145: 1 \\ & \text { fewer (1) } \end{aligned}$	$\begin{aligned} & 22 ; 71: 10 ; 72: 1,6,13,19 \\ & 21 ; 74: 7 ; 75: 10 ; 76: 2,14 \end{aligned}$
140:4,18;141:20;142:2	79:9		135:17	77:16;79:14;92:22;
event (1)	exist (1)	face (1)	field (4)	98:25;102:6;105:7;
70:1	9:20	7:22	98:23;99:12;102:1	106:3,5,5;107:17;
everybody (3)	existence (3)	fact (27)	109:23	108:7;116:6;127:10;
44:12;91:9;125:25	34:2;110:22;114:13	18:9,10;24:6;29:5;	Fifield (3)	136:4,9;140:1
everywhere (1)	expect (6)	31:13;33:19;36:17,19;	105:9,15;106:3	fit (6)
102:15	63:17;70:19;72:19;	44:24,25;45:13;47:4;	Figure (62)	65:20,20;69:8;88:24;
evidence (2)	113:23;114:22;137:12	55:9;62:25;63:22;65:8;	15:19;36:15;39:5;	144:1,7
9:15;120:16	expectations (3)	95:12;102:3;103:5,15;	46:4,13;48:13,19;	fitted (1)
evident (1)	17:14,19;96:17	104:6;113:12;117:2;	49:25;50:1,2,8,19,21,	69:10
71:10	expected (6)	119:18;129:16;131:9;	22;53:11;55:17;57:4,7,	five (13)
exact (4)	28:10;70:12;71:2;	140:9	9,9;61:15;62:3,9;	13:12;31:9;40:18,18;
21:7;25:7;56:4;86:1	76:8;135:6,23	factor (6)	64:16;65:4;66:14;	59:21;63:9,11,12;
Exactly (18)	experience (1)	34:11,14;101:20;	68:22;69:12;72:11;	65:16;66:25;76:24;
8:11;14:18;30:18;	22:23	102:8;113:7;115:19	74:9;75:20;78:1,9,18,	98:1;116:23
67:17;71:7;78:3,10,20;	expert (3)	factored (1)	24;85:17,18;88:17;	flag (3)
96:8;103:6;111:24;	98:16;106:8;118:7	27:24	90:3;93:4;103:18;	55:2,8;93:1

flat (1)
93:17
flip (8)
33:15;34:11,14;
38:16;39:15,19;58:23; 134:13
flipping (1)
133:3
Florida's (2)
118:15,20
FN (1) 42:25
focal (1) 39:21
Focus (2) 6:1;19:15
follow (1) 77:9
following (1) 77:20
follows (1) 4:3
forecast (2) 22:1,3
form (11) 17:14;18:5,23;19:3, 22;20:19;25:7;37:14; 106:1;113:18;121:20
formal (1) 105:22
forward (1) 12:9
found (1) 103:16
four (14) 5:12;13:12;31:9; 43:4;59:22;62:22;63:8, 11,11;65:15;66:24; 111:7;119:25;124:12
fourth (1) 12:19
FP (1) 43:10
frankly (2) 19:25;130:11
freedom (1) 27:5
Fryer (10) 107:8,11,17;108:12, 13,14;109:22,24; 111:5;124:11
full (4) 13:25;14:9,10;82:16
function (3) 69:19;90:25;141:7
funny (1) 131:12
further (5) 63:24;71:17;73:13; 74:22;124:25
future (3) 12:9;13:20;20:11

gap (157)
6:3,7,8,14,16,17,21;
7:7,8,19,21;8:7,24;9:4,
9,15,21;11:14;12:8,13,
18;13:2,14,21;14:13,
25;16:1;17:4,6,21,25;
18:1,18;19:13,16,21;
22:17,22;23:4,21;
24:12;28:10,14,15;
29:3,7;30:11;31:10,15;
32:11,21,22;35:10,22;
36:2,3,9,21,25;37:1,19;
38:3,8,19,21;39:16;
41:13;47:22,25;50:5,
24;51:5,6,16,20;58:21;
61:12,19;65:23,23;
66:12,13;67:4,19;68:8;
69:14;70:9,13,20;
71:10,13;72:13,14;
73:19,22;74:7,16;
75:10,11,13;76:4,9,15;
88:2;89:2,15;93:11,17;
94:6,22;95:4,17;112:1,
6,24,24;113:12,13,24;
114:23;117:5;119:7;
122:9,16;123:4,11,14;
124:1,3;128:24;
132:24;133:11;134:1,
9,17;135:5,20;136:1,
18,23;137:19,24;138:7,
20,21;139:17,19,21,24;
140:7,12,17;141:4,19;
142:1,5;143:18
gaps (29)
8:2,12,19;16:8;
18:20;22:18;23:6,16,
17;27:9;38:8,11;41:6; 64:19;88:13;96:17;
103:7;111:18;117:7,
20;128:11;137:3,10,
13;139:12,12;140:25;
141:1,18
gap's (1)
18:14
Gary (1)
130:24
gather (1)
88:23
gave (4)
54:5;58:7;127:2;
145:16
Gelman (1) 130:25
general (1)
66:10
generally (1)
81:5
generate (3) 25:11;108:24;137:18
generated (5)

10:14,17;31:14; 109:25;140:9
generates (1) 104:16
generating (5)
24:20;38:1;40:2;
119:15;133:16
geographic (1) 102:25
geographically (2)
113:7,16
geography (10)
25:15,20,20,22;26:8,
12,24;115:14;128:2,8
gerrymander (4)
117:9,13,16;118:3
gerrymandering (7)
6:10;25:6;117:6,22;
120:14,17;124:4
gesture (1)
104:23
gets (1)
109:13
given (26)
17:8;37:20;38:7,20, 21;39:11,15;40:19; 51:18;62:1,14;65:23; 72:13;75:9;80:3,3; 88:4;114:23;117:2; 129:10;131:19;133:7; 135:10;138:7,15; 144:15
goal (1)
137:15
Goedert (4)
6:2,6;7:4;9:3
Goedert's (1)
5:25
goes (6)
57:24;68:2;86:4,7;
100:12;109:7
Good (15)
4:8;5:1;15:3;31:1;
46:19;65:8,9,19,20,21,
22;97:16;111:11;
136:3,3
Gotcha (2)
14:11,11
go-to (1)
131:21
government (8)
81:5,6,8,12;85:6,21;
92:25;93:1
governor (2)
81:9;85:22
graduate (2)
98:20;99:23
graph (14)
15:22;16:10;48:16; 50:13;52:16;53:6,8,19; 54:1,9;57:4;66:7,10; 86:1
graphical (3)

93:6;114:6;136:25
graphically (1)
143:11
graphics (2)
139:2,3
graphs (3)
50:16;51:24;77:25
grasp (1)
19:25
gray (1)
51:9
great (7) 4:14;11:25;18:16; 20:8;79:8;108:5; 134:25
GREENWOOD (1) 146:7
group (5) 80:1;91:9,12,13,24
grouped (1) 92:5
guaranteed (1) 125:22
guess (13)
37:5;45:6;53:1,25; 66:14;72:23;78:18; 98:1;101:10;117:11; 122:15;124:5;144:9
guesses (1)
131:7
guesswork (1) 55:24
guidance (1) 104:22

$\mathbf{H}$

hails (1) 107:20
half (8) 14:14;31:19;70:13; 75:6;106:5,5;108:7; 138:17
hand (1) 32:1
handy (2) 23:12;116:6
happen (2) 22:4,5
happened (5) 13:17;16:21;18:17; 131:11,13
happens (4) 25:16;51:11;134:12; 137:16
happy (3) 15:5;56:1;60:10
hard (1) 54:9
hark (2) 73:9;124:11
harm (1)
11:1
head (1) 78:24
header (1)
82:1
healthy (1)
47:1
hear (1) 115:13
heart (2) 47:5;124:6
held (7)
10:5;12:14;20:3; 35:19;47:22;80:25; 140:8
help (5) 37:5;43:1;56:1; 82:19;126:17
helped (1) 100:18
helpful (7) 29:14;76:19;82:12; 91:2,21;115:8;116:5
hence (2) 91:23;124:14
here's (1) 132:23
Higgins (1) 105:9
high (19) 9:20;18:22;22:23; 35:14,19;47:3,5;51:5; 53:12;54:23;55:4; 57:16;139:24;140:3,6, 15;141:5;142:1;143:19
higher (8)
7:18,20;53:11,24; 137:11,16,17;138:17
historical (9)
13:15;23:7,8;29:10; 68:21;75:9;81:13; 122:20,22
hit (4) 62:21;68:9;72:15; 74:14
hitherto (1) 58:19
hitting (1) 11:6
Holden (8) 107:9,12,20;108:14; 109:22,24;111:5; 124:11
Holden's (1) 107:18
holding (2) 20:2;59:19
home (1) 145:5
hopefully (1) 10:1
horizontal (11) 47:21;50:11;62:15; 65:7;72:15;74:10;

75:25;76:2,16;78:17;	116:19	inform (1)	intervals (4)	Jowei (2)
136:21	important (4)	131:7	36:17,20;64:25;	98:20;106:23
horizontal/vertical (1)	27:12;117:14;	information (7)	119:12	judged (3)
60:19	120:19;124:5	7:23;49:19;78:2;	into (33)	121:5,6;135:24
horse (1)	impose (1)	80:17;82:10;84:14;	5:19;9:21;12:9;	judicial (6)
26:5	27:3	85:12	20:11;22:5;25:24;	9:13;10:9;12:15;
hour (1)	imprecise (1)	informed (1)	27:24;46:9;60:16;	21:10,14;54:16
48:4	107:15	131:7	70:10;71:22;75:1,1;	jurisdiction-wide (2)
hours (1)	imprecision (1)	initial (14)	85:11,12;86:20;99:14;	129:12;130:16
5:12	69:18	8:10;19:20;31:16;	100:10,24,24,25;	jury's (1)
huge (1)	imputation (2)	33:11;34:17;35:9;36:1;	107:23;112:5;115:24;	104:8
102:7	125:3,5	73:19;119:7;122:21,	119:11,14,18;120:22;	
hundred (1)	inadvertently (1)	. 22;133:2,24;134:1	122:17;123:17;139:15;	K
23:4	100:1	input (4)	143:16,18	
hurts (1)	include (3)	69:21,22;74:6;	introduced (1)	KEENAN (25)
99:13	6:16;48:23;60:8	102:23	107:24	4:7,9;15:17;30:2;
hypothesis (4)	included (5)	inputs (2)	introduction (1)	48:3,8,11;56:16;76:25;
23:23;24:18;115:1;	62:5;77:19,23;129:1;	39:6;51:19	5:22	77:6;79:11;97:20,24;
136:1	145:17	inquiry (1)	intuition (1)	98:5,8;105:4;107:3;
hypothetical (5)	increasingly (1)	122:13	143:9	111:10,15;122:3;
69:20;133:17;	137:13	inside (3)	intuitively (1)	127:7;128:17;144:21,
138:20;139:13;140:11	incredibly (1)	26:20;100:14;104:	40:22	25;146:3
hypothetically (1)	27:12	instance (11)	invention (1)	keep (5)
51:2	incumbency (7)	8:23;30:25;36:11;	. 33:3	12:12;23:12;48:5;
	22:6;101:21;102:10;	39:4;46:18;55:11;	invert (1)	69:17;138:6
I	125:11;126:1,19;127:1	61:15;71:5;72:17;	86:24	keeping (1)
	incumbent (2)	81:11;124:12	investigate (2)	7:9
idea (5)	101:23,24	instances (1)	61:20;144:14	kept (2)
10:19;56:5;61:20;	indeed (28)	24:10	investigating (1)	49:1,7
132:17;137:9	11:25;12:25;13:3;	Instead (4)	36:5	key (2)
identification (6)	19:7;23:5;32:2,5,15,	62:11;94:7;96:21;	investigation (3)	$73: 4 ; 108: 17$
$4: 5 ; 79: 13 ; 105: 6$	$20 ; 35: 16 ; 36: 3,22 ; 38: 8$	$130: 14$	$19: 13 ; 29: 9,9$	kid (1)
107:6;127:9;128:20	42:6;59:24;62:14;66:6;	instituted (2)	invite (1)	34:24
identified (3)	68:7;70:17,21;72:8;	84:7;113:8	30:21	kids (1)
118:12;120:3,8	92:14,18,23;103:1;	institution (3)	inviting (3)	64:9
identify (10)	121:1;126:16;144:12	87:8;91:5;92:11	55:10;57:20,21	kind (12)
5:16;53:2;79:14	independent (1)	institutions (1)	invoice (1)	$22: 2 ; 40: 21 ; 54: 8$
80:8;85:14;105:8;	81:1	90:6	145:8	63:17,18,19;65:14;
107:10;127:11;128:21;	indicated (2)	intent (20)	invoices (5)	92:2;94:16;126:23;
145:7 ignore	81:25;119:16	$6: 5,8,12 ; 7: 3 ; 8: 3,8$	145:11,13,17,21,24	131:17,20
ignore (2)	indicates (3)	13,15;9:5,10,11,12,21;	irrelevant (1)	King (1)
$81: 17 ; 125: 14$	51:17;68:23;81:20	$24: 25 ; 117: 23 ; 118: 8$		$130: 24$
ignoring (2)	indicating (4)	120:20,25;121:14;	irrespective (1)	knowledge (1)
7:17;51:14	$13: 8 ; 65: 11 ; 70: 18 ;$ $80 \cdot 1$	$122: 14$ interest	$122: 23$	$109: 21$
$\begin{aligned} & \text { imagine (3) } \\ & 21: 25 ; 61: 24 ; 121: 1 \end{aligned}$	indicative (3)	$\begin{array}{\|l\|} \text { interest (3) } \\ 7: 10 ; 106: 9,14 \end{array}$	isolate (1) $94: 16$	known (2) 37:20;42:9
imagining (1)	50:24;60:4;101:7	interested (3)	issue (4)	knows (1)
95:25	indicator (3)	9:18;26:21;61:24	9:1;101:18;102:4,7	18:14
Imai (2)	31:2;80:23;81:11	interesting (2)	Item (1)	Kosuke (1)
105:9;106:16	indicators (1)	19:10;94:15	44:19	$106: 16$
$\underset{\mathrm{q} \cdot 1}{\mathrm{immediately}}(\mathbf{1})$	$81: 3$ indistinguishable (1)	interior (2) $43 \cdot 8 \cdot 63 \cdot 24$	$\begin{array}{\|l\|l} \text { iteration (1) } \\ 38 \cdot 21 \end{array}$	
	indistinguishable (1)	43:8;63:24	38:21	L
131:18	individual (2)	$144: 6$	J	label (2)
implausible (1)	89:11;131:8	interrupt (1)		48:15;90:19
63:18	individually (1)	$47: 7$		labeled (5)
implement (1)	130:23	intersected (1)	$4: 1,8 ; 111: 17$	57:8;66:6,10;82:1
131:5	industry (1)	108:2	Jackman's (1)	16
implemented (3)	102:14	interval (15)	14:20	labeling (1)
93:20;116:20;120:12	inference (3)	36:9;37:10,25;51:22;	job (2)	86:9
implementing (2)	7:20,22,24	69:3,6,16;70:5,10,14;	65:21,22	labels (2)
114:24;115:2	inferred (1)	71:22;74:18,19,21;	journal (1)	60:19;66:16
implication (1)	6:13	143:1	105:19	lakes (1)

William Whitford, et al., vs.
Deposition of SIMON JACKMAN Gerald Nichol, et al.

25:21	124:24	58:17;66:19;82:23;	lower (1)	match (1)
language (4)	length (2)	83:9,18;116:23;118:18	7:18	124:22
39:17;63:14;64:24;	11:25;133:4	literally (13)	lunch (5)	math (3)
65:10	less (13)	15:21;28:24;38:15,	5:12;97:21;98:9;	34:24;35:1;91:15
large (25)	59:6;62:13;72:25;	17;55:5;65:3;72:14;	111:11,16	mathematical (1)
6:7,14,16,17;8:2,12,	73:1,1,3,22;75:15;	81:22;85:9;88:21,22;	lying (1)	62:25
19,24;9:8,14;32:16;	86:21;99:8;105:1;	89:1;95:9	113:4	matter (5)
44:18;64:20;69:5,7;	125:18;139:17	literature (11)		$29: 2 ; 37: 16 ; 63: 3$
$\begin{aligned} & 70: 6 ; 100: 8 ; 119: 7 \\ & \text { 124:13,14;138:4,13,16; } \end{aligned}$	$\begin{aligned} & \text { letting (5) } \\ & 52: 3 ; 54: 18,23,2 \end{aligned}$	$\begin{aligned} & \text { 16:22;17:7;42:5,8, } \\ & 10 ; 99: 11 ; 101: 1 ; \end{aligned}$	M	$\begin{aligned} & \text { 100:22;120:23 } \\ & \text { matters (1) } \end{aligned}$
140:5;141:8	57:2	109:12;125:25;126:6,	machine (1)	103:3
larger (5)	level (17)	10	56:9	maximally (5)
73:12;124:10,18;	47:1;83:14;101:17	litigation (1)	machinery (1)	109:4;110:3,5,20;
143:7,7	103:7,21;115:16;	11:17	91:1	111:6
last (10)	123:19;124:22;126:4,	little (9)	Madison (1)	maximize (2)
5:11;48:25;49:3,6;	8;131:10,16,20;	19:11;26:5;28:3;	5:4	108:19;109:5
54:15;86:5;103:4;	134:20;136:24;141:5;	83:23;107:15;127:5;	magic (2)	may (15)
108:7;125:4;145:15	142:1	138:5;140:19;141:21	28:17;135:13	8:22;21:12;28:25;
later (5)	levels (9)	liveliness (1)	magnitude (6)	40:4;52:17;59:24;97:2,
27:19;43:12;55:22;	101:22;131:12;	100:18	17:20;32:10;33:16;	6;105:24;116:5;118:6;
56:9;64:18	137:11,17;138:12;	lively (3)	88:2;101:10;143:17	120:21;122:4;124:8;
latter (1)	139:13,18,21;141:8	100:14,15;104:4	majority (2)	143:23
93:2	lie (5)	$\operatorname{logic}(1)$	14:4;100:5	Maybe (30)
lawful (1)	63:24;68:10,12;	74:5	majority/minority (3)	25:13;26:12;29:14,
99:1	144:17,18	logical (1)	99:2,13,25	19;31:20;37:5;41:21;
lay (2)	lies (2)	10:3	makes (2)	45:6;46:17;53:1;58:15;
13:6;91:2	24:2;66:7	long (6)	126:7;131:4	62:18;67:5,7;74:12;
layman's (1)	life (11)	5:11;66:7;98:2;	making (4)	75:19,24;76:20;79:9;
144:4	13:2;31:4,8;32:3;	126:9;130:18;133:19	7:21;30:9;57:5;	81:19;91:4;98:8;
lead (3)	33:20;57:3;71:14;	long-run (1)	113:21	104:12;133:25;136:9;
7:16,18;104:18	130:18;141:3,3,25	24:8	manifest (1)	139:2;143:11,24;
leads (1)	lifetime (1)	look (21)	10:25	144:3,21
88:15	11:23	14:16;17:8;22:8;	manifestation (1)	McGee (2)
lean (1)	light (2)	23:2;29:14;56:14;	71:7	103:17;123:10
54:8	6:4;124:2	66:14;67:15;75:24;	manipulating (1)	mean (43)
learn (1)	limited (2)	78:2;93:4;96:20;	130:14	16:23;21:4,5;30:3;
24:6	10:5;110:17	108:17;114:4;115:20;	many (10)	34:10;37:22;38:23,23;
learning (1)	limiting (1)	116:6;124:13;136:4,9;	27:4,4;38:15;41:17;	41:19;46:5,17;49:5;
73:15	137:4	140:12;146:9	44:17,20;103:2;124:8;	54:20;56:13,17;62:18;
least (5)	limits (1)	looked (8)	130:15;131:22	63:14,21,23;64:2,2,15;
8:1;61:23;64:14	74:21	13:16;27:23;28:5;	$\boldsymbol{m a p}$ (4)	65:1,3,11,15;66:8,19;
123:12;131:9	line (41)	32:18,23,24;60:1;	9:9;25:15;43:7;	72:3;73:5,11,12;89:5;
led (2)	25:23;27:3,4;30:20;	110:8	142:22	90:7;104:2;107:15;
16:23;24:19	44:21;50:16;51:8,9,11;	looking (12)	mapmakers (1)	109:6,10;114:2;
left (11)	68:2,11,13;69:11,11;	12:4;14:12;33:5;	6:22	129:19,20;139:17,21
47:7;51:4,6;74:12;	70:8;72:8,9,10,15;	43:25;44:2;50:22;	mapmaker's (1)	meaning (3)
75:12;78:12;86:6;	74:14;76:6,17;93:9,10,	77:17;107:12;111:18;	6:13	7:16;39:22;52:21
97:18;130:1;136:13;	24,25;114:11;122:12;	128:23;129:22;137:13	mapmaking (2)	means (11)
140:21	136:1;137:1,2,9;	looks (3)	7:9,13	55:12;62:5;69:3;
legacy (1)	143:22,22,25;144:2,5,	87:14;95:11;136:8	maps (1)	81:23;83:12;91:23,23;
133:19	7,11,17,18	lopsided (1)	103:25	120:20;132:4,5;140:24
legal (1)	lined (2)	100:21	mark (3)	meant (2)
27:2	23:3;137:3	$\boldsymbol{l o t}(10)$	79:9;105:4;107:3	68:20;81:12
legislative (10)	lines (14)	22:10;54:24;104:22;	marked (11)	measure (8)
48:20;84:8,11;101:8,	20:2;22:13;25:18;	115:15;126:3,7;131:5,	4:4;5:13,13;14:20;	7:8,13;9:4;34:21;
$\begin{aligned} & 17 ; 102: 6,19 ; 103: 19 \\ & 123: 7 ; 126: 6 \end{aligned}$	$27: 1 ; 36: 16 ; 37: 2 ; 50: 9 ;$ $51: 21: 109 \cdot 18: 142: 20$	6;133:3;140:12 loud (1)	79:13;105:5;107:5,9;	$44: 7 ; 47: 8 ; 51: 18$
123:7;126:6 legislators (1)	51:21;109:18;142:20; 143:10,10,20;144:10	loud (1) $22: 7$	127:8;128:19;145:6 (1) Markham (	$140: 14$ measured (1)
85:23	links (1)	low (11)	31:6	122:22
legislature (6)	109:15	7:20;18:21;22:24;	mass (1)	measures (11)
10:13;81:4,10;85:20;	list (1)	33:1;52:3;57:15;63:23;	71:23	7:14;28:13;36:18;
124:9;131:12	127:17	139:16;140:16;141:4;	massive (1)	41:24;51:20;53:7;
legislatures (1)	listed (7)	143:19	141:21	107:14;109:2;122:9;

William Whitford, et al., vs.
Deposition of SIMON JACKMAN Gerald Nichol, et al.

124:3;138:11	minimizes (1)	115:15	12,14,15,18,18,19,20,	97:16
Measuring (3)	144:8	Moving (6)	25;113:9,13,14;116:7;	null (2)
108:15;122:16;135:5	minorities (1)	9:25;49:23;51:2;	132:5	137:7;139:9
mechanism (1)	100:3	94:18;103:24;123:1	negatives (7)	number (42)
101:12	minority (3)	much (12)	29:18,18;34:6,16;	7:22;11:16;12:5;
median (2)	100:4,4,20	27:11;53:11;60:16;	44:2,9;45:5	17:5;20:4;24:3;28:22;
35:20;40:24	minority/majority (1)	71:17;74:25;108:13;	neighborhood (1)	30:12,15;36:6;39:14;
medical (3)	100:23	115:3,4,131:11;	141:22	41:16;44:10,18;45:23;
30:10;42:8,10	minus (4)	137:22;140:16;144:12	Net (1)	53:18;62:24;66:22;
medium (4)	15:5;112:8;132:1;	muddy (1)	5:12	78:3;82:8;83:4;85:24,
139:18,18,20;143:19	141:22	102:2	neutral (2)	25;86:2;89:18;95:10,
meet (1)	mismatch (1)	multiple (4)	113:7;114:18	11,25;97:10;100:8;
107:25	81:8	83:8,9;109:25;136:8	New (6)	102:3;103:16;113:5,5;
meeting (3)	misspoke (1)	multiply (1)	107:22;110:12	114:9;116:12;123:17;
5:4,7,11	87:17	15:6	119:1,19,25;134:11	124:14;129:24;136:17;
memory (1)	misunderstood (1)	myself (6)	next (8)	138:14;142:18
49:11	17:1	13:4;53:6;79:16	23:11;68:14;70:8,17;	numbers (14)
mentioned (3)	mix (1)	94:16;127:14;145:8	73:16;83:1;107:7;	61:17;74:20;78:13,
66:16;108:4;129:4	96:13	mythological (2)	128:17	20;102:5;111:17,23,
merely (1)	model (3)	130:17;131:17	Nicholas (1)	25;112:21;115:20;
65:8	69:18;125:5;131:8		79:16	124:8;127:2;129:25;
merging (1)	modeling (5)	N	Nick (1)	134:19
82:14	22:3,10;125:15;		127:14	number's (1)
message (4)	126:14;131:5	name (3)	nifty (1)	135:13
35:7;40:3,5,21	models (1)	82:2,16;99:24	94:16	numerator (1)
messages (1)	126:12	narrowly (1)	nine (1)	45:22
40:4	moment (5)	7:2	112:21	
method (7)	10:8;11:4;41:19	natural (1)	nominally (1)	0
38:5;97:9;125:16,22;	104:5;109:13	26:24	80:2	
129:8;131:22;133:15	Monte (6)	nature (1)	none (2)	oath (1)
methodology (3)	37:19;38:5,25;39:9	144:15	88:9;120:15	4:3
130:21;140:10;142:4	11,12	near (1)	nonetheless (3)	object (7)
methods (1)	months (1)	119:14	41:12;60:4;75:4	18:4,23;19:22;20:19;
38:25	4:12	necessarily (3)	nonincumbent (1)	37:13,14;113:18
Michigan (4)	more (45)	6:15;7:12,15	102:24	objected (1)
118:24;119:19;	$7: 2 ; 10: 21 ; 11: 10,15 ;$	necessary (1)	nonpartisan (1)	19:3
120:3,5	$23: 21 ; 24: 16 ; 25: 3,12$	117:9	$85: 1$	objection (4)
middle (8)	12,16;26:1,1,17;27:13;	need (11)	nonstatistical (1)	19:4;29:24;121:15;
22:24;62:10;70:4;	36:1;55:8;57:6,21;	23:13;33:3;49:1,12	90:9	122:7
137:5;139:10,19,20;	59:3,11;62:4;66:9;	17,20;60:16;98:6;	nor (2)	objections (1)
143:2	70:2;71:15,23;75:15,	104:10;117:13;123:23	17:20;19:14	121:20
middle-road (1)	16;81:5;83:14;91:15;	needing (1)	normal (2)	observations (2)
138:3	94:13;99:8;100:20;	99:12	32:13;113:24	59:21,22
midst (1)	101:20;103:8;105:1;	negative (122)	normative (1)	observe (15)
105:25	124:15;130:10,11;	13:7;14:14;15:1,1,9,	100:17	11:8;12:12,13;13:11,
might (39)	131:15;135:16,16,16;	10,25;16:11,12,13,14,	Nos (1)	14;27:10;28:25;32:15;
9:18;10:10;11:4;	144:4;145:2	15,16,19,20;17:3,16,	79:12	57:7;58:21;129:10;
12:21;17:14,14;21:5;	moreover (6)	24,25;18:2,2,10,11,18,	note (6)	132:23,24;142:23;
22:8;25:8,9,9;26:3,13;	50:9;74:21;109:3;	21,22;19:20;28:17,23;	$17: 17 ; 25: 25 ; 71: 16$	144:12
30:14;31:6;34:23;	119:9;126:1;139:15	31:13;32:8,9,17,18,25,	106:22;131:9;134:11	observed (15)
52:18;60:1;65:9,20;	morning (2)	25;33:8,14,15,17,17,	noted (1)	13:9,13,21;14:13;
75:16;76:19;83:15;	4:8;71:8	18,21,24,25;35:19;	65:13	16:8;18:9;30:11;49:4;
86:2;91:19;92:1;94:19;	most (6)	37:8,11;39:8,20,20;	notes (1)	74:11;76:14;96:15;
101:23,24;104:7;	23:24;34:19;62:5	41:1,2,3,4,7,7,7,7,8,18;	106:22	133:18;136:20;139:6,
111:10;115:1,8,12;	89:3;108:22;110:5	42:25;43:14,16,22;	notice (1)	12
120:24;133:1,5;	mountains (1)	44:1,3,24,25;45:10,14,	83:23	observing (3)
138:21;141:23	25:21	20,25;50:4,5,11,12;	noticed (2)	7:20;12:19;140:11
mimicking (1)	move (14)	52:25;54:25;57:14,23;	64:6;69:2	obvious (2)
129:12	23:11;29:12;47:6,7;	67:4,6,21,22,24;68:23,	noting (1)	23:24;82:3
mind (9)	60:25;76:16,23;78:18;	25;69:5,23;70:9,13,19;	65:17	obviously (3)
14:18;15:12;23:25;	86:17;101:2;107:7;	71:18,20,25;73:1,2,3,	nowhere (1)	11:19;51:3;122:13
37:6;58:20;69:17;74:3;	135:15,15;141:14	19;74:10,17,20;75:5,5,	119:14	occur (6)
115:10;138:7	movement (1)	24;76:5;78:19;112:6,	Now's (1)	8:3,12;20:18;21:19;

William Whitford, et al., vs.
Deposition of SIMON JACKMAN Gerald Nichol, et al.

117:5;130:23	138:22;142:3	57:20,21,23;59:19;	paper (6)	26:14,17
occurred (2)	ones (10)	62:8,8;66:4;67:4	105:9;107:11;108:6;	passed (1)
8:20;19:18	24:13;84:3;96:3;	69:16,18;70:6,16;73:8;	109:9;110:6,15	10:12
occurring (1)	104:19;118:12;119:16;	81:3;83:23;85:10;	papers (1)	past (2)
103:6	126:17;137:3,14;	88:13;104:8,12;	109:10	115:21;134:13
occurs (1)	140:13	109:13;119:10;120:24;	paragraph (16)	paths (1)
34:8	ongoing (1)	126:18;127:18;130:22;	6:1;9:25;23:11;62:2,	108:2
off (19)	109:22	132:21;138:16;144:17	2,10;68:16,20;73:16;	pattern (2)
4:21,22;15:22;16:10;	only (11)	outcome (4)	74:1,6;90:2;103:5,24;	62:12;66:1
49:11;52:15;53:5,5,8,	6:3;27:23;37:20;	26:9;33:7;129:20	105:15;127:24	patterns (1)
19;55:5;56:9;74:9;	49:4;62:3;110:8;	136:19	paragraphs (1)	64:13
86:1;102:4,5,5;118:9;	114:12,24;115:3	outcomes (2)	123:9	peer-review (1)
133:17	141:1,20	125:15;137:18	parameters (1)	105:23
offhand (2)	Ooh (1)	outline (1)	130:15	Pennsylvania (1)
49:20;103:23	106:5	84:23	paraphrase (1)	110:13
offset (1)	open (3)	outlining (1)	9:7	people (9)
57:10	130:10;131:10	105:10	paras (1)	21:18;35:13;47:4;
often (4)	138:18	output (1)	128:2	64:6,9;100:19;102:20,
63:22;115:13;	opening (1)	139:5	Pardon (2)	20;131:22
138:13;144:5	100:13	over (39)	50:20;87:18	per (3)
Ohio (3)	operating (2)	4:13;11:7,8,8,23;	parentheses (1)	16:22,24;53:7
119:3,19;120:8	10:18;101:22	13:2,2;14:10;31:4,8;	62:14	percent (82)
old (1)	operative (2)	32:3;33:12,20;35:23;	parenthetical (1)	16:1,11,12,13,14,20;
127:4	10:8;101:20	39:12;51:3;61:13;	90:3	17:4,25;18:2,3,11,18,
omission (8)	opinion (9)	71:14;72:16;74:14;	parents (2)	21,22;19:20;34:25;
45:24;52:4,10,12;	9:8;23:20;25:14;	75:1;76:12;84:21;92:6;	64:7,11	35:2;36:17;41:2,3;
55:1;78:16,23;79:5	26:16;99:6;113:6;	94:20;113:22,22;	part (4)	47:16,18;51:22;52:3,5,
omitted (3)	119:5;120:11;121:	114:21;115:22;116:17,	60:2;120:22;124:18;	8,11,21;53:10;54:1,2,
90:4,7,18	opinions (2)	21;119:24;120:21;	129:2	11;64:22;65:25;66:1;
omitting (2)	58:5;123:9	125:4;128:12;129:25;	particular (17)	67:14,20,22;69:2;
125:24,24	opposed (1)	130:17;135:4,17	12:2,5;16:18;17:5	70:14,15,20;71:3;
omnibus (1)	44:11	overall (3)	13;26:16,21,23;28:1;	73:23;74:17;75:6,8;
112:5	opposite (4)	44:3;90:22;95:24	30:5;38:22;39:9;81:21;	86:3,8,11,15,19,21;
once (1)	31:23;50:22;119:16	Overcommitment (1)	102:25;120:18;131:2;	87:9,15,19;103:8;
141:21	140:18	129:2	138:6	112:8,9,12,17,18,18,19,
one (115)	orally (1)		particularly (6)	20,21;114:13,16,19,24;
6:17;8:8,22;9:17;	56:5	P	11:12;17:19;19:1	$115: 4 ; 126: 21,21$
11:4,17,19;12:20;	order (7)		25:3;40:4;125:11	127:3;132:8,9;133:10,
13:14;17:15;18:13;	7:23;10:1;16:9;	pace (1)	parties (3)	11;134:22,25;141:20,
19:8;20:6;21:3;22:14,	29:20;78:8;83:24;	137:16	79:17;81:9;127:15	24
16,16;23:24;27:8;29:4;	112:13	packing (3)	partisan (56)	percentage (2)
31:3,6;34:19,23;35:5,	organization (1)	100:1,10,2	6:5,8,10,10,12;8:3,8	20:24;45:1
22;36:1;39:25;40:13,	84:4	page (20)	13,15,21;9:5,5,10,11,	percentages (5)
14;41:11,14,25,25;	organized (3)	5:21;15:19;29:15	16,16,19;10:25;13:8;	15:12,15;47:15;96:9;
42:15;43:2;46:19;	80:19;83:11,13	31:19;36:15;51:23;	24:25;31:3;40:13;80:1;	112:8
57:12;58:10;59:3,19,	original (9)	54:13;56:22;62:3;	94:3,7,9,12,24;95:13;	perfect (3)
61:24,24;62:13;63:2,6,	12:1;13:4;14:16,20;	68:14,16,20;69:13;	102:9,24;109:2;	63:7;68:7;69:13
16,22;65:15;66:11,24;	31:7;81:14;140:20,25;	82:23;83:25;90:2;	116:20,24;117:3,6,9,	perfectly (3)
67:15;72:18;74:25;	141:12	105:14;116:12,13;	13,16,21,23,23;118:3,	69:8;72:10;75:7
79:3,24;80:15;81:20,	originally (2)	124:25	8,13;119:24;120:13,14,	performance (6)
23;87:2;88:3,24;89:5;	130:25;134:14	pages (1)	17,20,21,25,25;121:14;	42:6;44:8,9;47:9;
90:14;91:20,25;92:23;	others (2)	116:24	122:10;124:3	51:1;123:13
94:11,17;95:19;97:2;	85:3;121:3	paid (3)	partisans (5)	performed (3)
99:21;100:13,16,20;	otherwise (1)	8:8;108:22;145:24	27:14;28:1;113:7,16,	7:14;19:17;87:23
101:13;104:12,25;	80:1	panel (12)	22	performing (1)
106:11,11,12;107:1,3;	ought (1)	47:8,10,11;50:18;	parts (2)	10:22
109:13,18;110:1,3,4,4;	63:16	57:8;137:1;139:10;	110:15;141:12	perhaps (22)
111:4;115:7,10,13,19,	ourselves (1)	140:6,21;141:15;	party (12)	7:5;10:12;18:21;
22;116:5;120:20,24;	30:8	143:3;144:15	26:18;79:7;80:16	25:7,12;27:8;30:17;
122:13;124:5;126:16;	out (39)	panels (3)	81:9;84:14,20,24;	37:9;52:17;53:24;56:2;
128:15;129:21;130:15,	22:7;33:2;38:5;	47:14;55:19;139:10	94:11;116:17;117:25;	65:21;74:12;75:15;
16;131:20;132:7,24;	40:18;42:7;43:1;45:3;	pants (1)	118:9;121:12	83:11,15;89:3;91:2;
133:14,23;136:9,13,17;	46:1;49:8,19;55:24;	138:2	party's (2)	95:1;104:11;115:7;


124:23	20,21;118:15,20;120:3,	pointed (1)	137:19	126:8;131:10,15
period (4)	5,8,9;121:13,13;	70:16	postal (2)	press (1)
14:10;25:4,4;94:20	122:10,12,18,24;133:2;	points (8)	82:16;83:6	97:19
periods (1)	140:	15:16;63:2;65:16	posterior (1)	presupposes (1)
119:21	plans (83)	93:15;95:21;138:22	38:13	83:16
pertinent (1)	8:12,20;10:6;13:16	144:17,18	postponed (1)	pretty (9)
13:1	24;14:1;23:21,22;	POLAND (24)	77:9	35:14;55:4;65:19,21;
perturb (2)	24:19,20;25:3,10;	15:14;18:4,23;19:2,	potential (2)	82:2;100:2,2,13;142:3
133:7;136:14	28:12,13;38:17;48:21,	22;20:19;29:24;37:13;	22:18;27:25	prevailing (1)
perturbing (1)	23;50:23;54:18;57:2,	48:6;56:12,18;77:4;	potentially (1)	17:12
139:6	13,19,22;62:4;67:2;	97:16,23;98:4,11;	130:15	previous (4)
PhD (2)	77:19;84:2,2,8,8,11;	111:12;112:16;113:18;	practical (1)	50:13;59:12;68:20;
98:21;108:10	85:5,16,19,24;86:8;	121:15;122:7;144:23;	37:16	122:6
phenomena (1)	87:1;89:14;92:5;94:14;	146:5,8	preceding	reviously (3)
58:10	95:5,10,11,17,19;	political (20)	9:1;65:10	14:21;58:7;135:2
phenomenon (3)	97:10;99:1;104:7,16;	16:19;25:15,19,21	precise (3)	primarily (1)
72:4;87:5,6	105:12;107:16;108:16,	26:8,12,20,21,24;	17:10;77:25;125:10	128:3
phrase (2)	23;109:14,20;111:19;	104:5;108:10,16;	Precisely (3)	Princeton (2)
64:4,12	112:2,4,24;113:8,14;	115:14;121:12;126:13;	60:22;102:14;103:1	104:9;106:16
phrasing (1)	114:13,16,19,25;115:1,	128:2,7;129:7;130:19;	precision (2)	principles (3)
143:24	4;116:8,16,20;117:2,	133:19	18:16;20:8	6:23;7:1;28:11
picks (1)	17,119:5,10,19;	politically (1)	predict (4)	printout (1)
63:21	120:12;123:6,7;124:1;	130:11	17:11;69:18;71:13;	80:14
picture (1)	128:13;143:12,23;	politics (2)	73:20	prior (1)
10:21	144:9	87:2;131:21	predictable (1)	23:9
piece (5)	plan's (3)	poor (2)	63:1	prize (1)
10:17;11:19;120:15;	6:3,20;21:25	26:13;34:13	predicted	102:16
123:13;128:22	play (1)	populated (1)	114:9	probability (9)
piqued (1)	28:18	43:4	predictin	35:3;39:13,14,17;
106:10	played (3)	populatio	65:22;	70:12,18;71:1;73:21;
place (10)	29:7,7;59:25	124:13	prediction (10)	$75: 3$
95:5;96:2,16;111:7,	plays (1)	position (5)	17:9;69:19;71:17,1	probably (7)
19;112:2;114:15,18;	103:2	7:3,4;8:14;26:22	21;72:17;74:15,19;	6:9;11:5;17:10;
117:18;141:1	please (2)	30:9	114:11;115:9	97:16,21;121:21;127:5
plaintiffs (1)	4:15;124:1	positive (73)	predictions (2)	probative (1)
10:4	plenty (1)	13:7;17:15;24:1	70:2;72:12	13:10
plaintiffs' (2)	106:25	28:16,23;29:21;30:23;	prediction's (1)	problem (5)
145:9,22	plot (1)	31:13,16,20;32:1;33:8;	69:25	9:9;21:23;132:23,25;
plan (142)	137:5	35:16,16,18,18;37:8,	predictive (2)	133:6
6:18;8:23;9:1,22;	plotted (2)	11;39:8,19,20;40:11;	38:12;61:12	procedure (1)
10:11,12,16,18,20,21,	62:16;136:20	41:15,18;42:2,9,12,13,	predictor (4)	33:6
23,25;11:5,7,9,11,20,	plug (1)	20,23;43:10,11,21,25;	27:12;59:10;65:8,9	process (16)
22,22;12:7,14,23;13:3,	$51: 12$	44:1,23,23,24;45:8,9,	predicts (1)	10:9,10;27:11;80:3
17;15:23,24,25;16:5,9;	plugged (1)	11,12,12,19,22;46:1,	88:2	81:3;84:21;87:4;88:7,
17:13,17,18,22,23;	126:22	20,22,23,24;50:15,24;	predominantly (2)	8;92:9;105:23;116:17;
18:1,7;19:19,20;21:17,	plus (7)	51:5;54:22;62:12;	87:4,6	117:24;118:10;119:24;
18,20,23:22:12,15,23;	91:12,19;132:1,3,3	67:13,18;70:15,23;	preliminary (1)	120:21
23:5;24:5;29:4;30:12,	$4 ; 136: 10$ plus-one (1)	71:2,20,25;72:23,25;	$4: 13$ premises (1)	processes (1)
21,22;31:5,8,14,21;	plus-one (1)	73:1,22;75:2;78:15,22;	premises (1)	114:22
32:3,6,14;33:12,20,21;	132:9	79:4;112:10,11;114:23	113:20	Processing (1)
34:12;37:1,7,8;39:8,	pm (1)	positives (15)	prepare (1)	82:10
24;40:2,16;41:1;42:14;	146:10	29:17,18;34:6,16;	5:1	pro-Democratic (6)
47:22;50:4,6;54:20,21;	point (37)	42:11,19;44:1,8;45:5,	preponderance (3)	23:16;24:4,11;57:1;
55:12;58:2,12,12,25;	10:12,23;15:22;	23;46:20,23;52:2,8;	86:25,25;87:1	58:1;71:9
59:14;61:11,14,19;	22:15,16;26:3,25;31:7;	54:25	present (1)	produce (12)
64:18;65:1,22;66:4,12,	32:5;36:8;37:3,9,23;	possibilities (3)	19:19	11:23;16:6;17:24;
23;67:20,23;68:22,24;	39:21;49:18;51:13,14,	22:19;33:10;88:9	presented (3)	$18: 10,17 ; 19: 7 ; 27: 5 ;$
70:12,24;71:2,11,14,	15;52:16;53:12,17;	possibility (1)	88:16;117:20;136:13	$31: 22 ; 67: 20 ; 109: 20$
21;72:1,12,19;74:16;	55:15;57:24;65:15;	130:10	presenting (1)	125:17,23
75:10,11,12;80:24,25;	68:1,7;70:6;71:23;	possible (5)	20:10	produced (6)
83:8,16,19;88:5;89:9;	72:18;75:4;86:24;	10:10;72:6;104:7,16;	presidential (12)	18:1;20:1;50:4;
92:8,11,15,16,19,20;	89:12;97:6;126:2,23;	105:11	101:4,7;102:11,17,	67:18;86:9;145:15
93:21;104:2;110:1,4,8,	127:6;137:25	Possibly (1)	22;103:2,11,20;125:2;	produces (2)

William Whitford, et al., vs.
Deposition of SIMON JACKMAN Gerald Nichol, et al.

32:15;125:16	53:13	68:25;79:2;112:7;	85:21;87:3;89:3,5;	86:25;90:16;138:13
producing (3)	put (15)	113:2;122:3,6;146:7	92:9;94:4,8,14,19;	relatively (6)
18:7,20;24:22	13:12;26:4;30:8;	reader (1)	95:14;96:2,13;103:3;	24:3,9,10;69:24;
product (2)	44:4;74:18;84:17;91:2;	90:9	104:21;105:12;107:16;	85:24;136:17
81:1;117:21	107:1;111:19;114:15,	reading (11)	108:5;109:14,17;	relevant (5)
profession (1)	18;117:17;128:15;	15:21,21;16:10	112:3;115:18;116:21;	6:4;12:4,7;76:15;
100:14	145:6,10	48:19;53:5,19;61:10;	117:24;119:20;131:2,	102:23
Professor (7)	putting (4)	67:1;71:11;86:1;118:9	22	reliable (2)
4:8;6:2,6;98:18;	8:7;26:4;75:16;	readjust (1)	reducing (1)	10:21;140:19
106:16,18;107:21	91:20	95:11	95:24	relies (1)
prognostic (11)		ready (2)	redundant (1)	128:3
33:6;36:5,18,25;	Q	56:15;76:22	83:13	rely (1)
38:3;47:9;51:1,18;		real (6)	refer (9)	35:14
59:8,9;133:1	quality (1)	22:12;110:17,17	15:3;23:8,13;47:21;	remark (1)
program (2)	107:14	129:16;137:20,21	53:7;64:14;65:3;84:7,	70:17
22:8;98:21	quantitative (1)	realistic (1)	$18$	remember (9)
project (4)	39:1	130:11	reference (1)	4:8;46:19;49:2;
72:14,16;74:13;	quantities (7)	reality (1)	74:9	$74: 23 ; 99: 23 ; 109: 6$
76:12	36:18;38:2;39:2;	131:16	referenced (2)	$134: 16 ; 140: 23 ; 145: 17$
prompted (1)	43:2,4;55:18;61:21	realize (1)	80:15;105:14	reminder (1)
90:18	quantity (2)	115:8	references (2)	4:20
prompting (1)	113:4;129:11	really (10)	87:22;107:8	rendering (1)
92:1	quickly (1)	40:17;63:3;90:25	referred (2)	83:15
promulgate (1)	$130: 8$	91:8,14,21;102:20;	27:16;51:12	repeat (5)
$35: 12$	quite (17)	108:2;138:16,18	referring (7)	4:17;38:14;113:11;
promulgated (1)	20:7;42:5;55:9	re-ask (1)	$14: 21 ; 15: 19 ; 48: 17$	$121: 17 ; 123: 23$
12:24	57:15;64:8,10,20;	121:22	50:21;51:23;106:17;	repeats (1)
propagate (1)	$74: 13 ; 106: 11 ; 113: 20$	reason (9)	140:21	$141: 10$
$39: 1$	120:18;129:3;138:16;	12:2;16:19;17:5;	refers (5)	rephrase (2)
propagated (1)	140:3,4,14;141:21	39:19;102:14;104:15;	48:16;63:15;66:22;	4:16;122:4
36:23	quote (2)	119:9;128:25;130:19	76:2;129:8	replicating (1)
properties (2)	26:8;89:4	reasonably (2)	reflect (1)	137:7
26:6;124:21	quote/unquote (1)	52:2;63:1	39:5	report (42)
proportion (9)	$110: 17$	reasoning (1)	reflected (5) $59 \cdot 7 \cdot 84 \cdot 15 \cdot 107 \cdot 18$.	$5: 3,18,19 ; 8: 10 ; 9: 3$
$\begin{aligned} & 42: 11,18 ; 45: 3,9 ; \\ & 46: 20 ; 52: 23 ; 85: 19 \end{aligned}$	$\mathbf{R}$	123:10 reasons (2)	$\begin{aligned} & 59: 7 ; 84: 15 ; 107: 18 ; \\ & 132: 19 ; 136: 10 \end{aligned}$	$\begin{aligned} & 12: 1 ; 13: 4 ; 14: 16,20 \\ & 15: 20 ; 19: 11 ; 23: 12,12 \end{aligned}$
87:12;141:17		58:5,6	regardless (5)	27:17;31:7;34:18;35:9;
proportions (1)	races (1)	rebuttal (9)	9:21;25:17;93:20;	$36: 1,15 ; 53: 18 ; 81: 14$
15:4	126:20	5:3,18;19:11;27:17;	121:13;122:17	$14 ; 84: 15 ; 86: 2,15$
proposed (5)	rack (1)	36:15;81:14;127:18;	regions (1)	87:22;93:12;105:14;
21:16;30:13;32:12;	41:12	129:1;141:13	$36: 16$	116:4,6;122:21,22;
54:16;59:6	radically (1)	recalculated (1)	regression (29)	123:1,21,22;127:18;
proposing (1)	142:3	134:9	62:13;63:14,21;64:5,	129:1;130:3;133:2,24;
30:19	ran (2)	recall (3)	14,20;65:2,10;69:11,	139:11;141:12
pro-Republican (4)	107:23;128:23	49:11;69:17;94:10	18,21,25;72:3,8,9;73:5,	reporter (1)
23:17;24:15;57:1;	range (9)	recent (2)	10,12;87:23;88:1,10,	4:17
75:13	11:23;16:15;18:8;	62:5;127:1	11;90:11,13;91:22;	reporting (1)
prospect (1)	$19: 8 ; 22: 19,22 ; 69: 7$	Recess (4)	93:7;144:2,6,16	39:5
106:10	$139: 14 ; 140: 8$	48:10;77:5;111:14;	regression-to-the-mean (1)	represent (5)
provide (1)	rate (20)	144:24	72:4	46:4;93:9;97:11;
55:22	42:2,9;43:21,22,25;	recollect (1)	regression-to-the-mean' (1)	139:3;145:20
provided (1)	44:2;45:9,15,16,24;	122:1	62:12	representation (3)
133:2	46:16;47:10;52:2,4,4,7,	recollection (1)	reiterate (1)	93:6;100:20;114:6
provides (1)	11,12,19;55:1	110:6	54:15	representative (2)
72:11	rather (7)	record (10)	related (1)	100:9;104:1
published (1)	$9: 16 ; 20: 5 ; 33: 9$	5:17;48:12;56:8;	61:7	represented (3)
105:19	38:13;59:2;90:17;96:3	74:23;77:7;80:5,19;	relationship (22)	117:18;142:18;
purely (4)	raw (1)	111:15;122:8;144:25	$33: 10 ; 61: 17,21,23,$	143:11
29:8;135:10,11;	123:16	recover (1)	25;62:23;63:1,7,10,17,	represents (3)
138:2	re (1)	91:11	19,20;65:12,14;66:11;	39:23;93:24;143:12
purposes (2)	18:6	redistricting (35)	68:8,21;69:13;75:9;	Republican (32)
29:21;38:1	read (10)	7:1,6;20:15;26:22;	107:12;140:19,24	$23: 21 ; 24: 15,19,20$
pushing (1)	52:15;53:8;56:9;	27:2,10;80:3,24,25;	relative (3)	$25: 2,11 ; 26: 2 ; 32: 24$

William Whitford, et al., vs.
Deposition of SIMON JACKMAN Gerald Nichol, et al.

46:10;57:6,14;75:17;	110:20;125:2,3;	rinse (1)	80:7	Section (15)
81:7;85:13,22,23;	133:18;136:14;139:6;	38:14	saves (1)	5:24;29:12;30:4,7;
86:10;87:6,11,12;	143:4	rivers (1)	130:8	58:12,17;61:1,3,6,8;
92:20;93:1;95:5;96:14;	retained (2)	25:21	saw (11)	77:17;79:7;84:15;
101:24;103:8;112:11,	98:15;106:7	road (1)	17:3,5;40:20,25;	97:13;123:1
14,18;113:5;132:5;	reveal (1)	25:1	42:17;59:1;71:20;	secure (1)
134:16	8:11	robust (1)	106:1;128:11;138:23;	100:9
Republican-drawn (1)	revealed (1)	140:15	141:19	seeing (5)
89:14	116:1	robustness (2)	saying (2)	24:10;39:25;42:14;
Republicans (15)	review (2)	132:22;141:6	42:4;134:15	53:17;58:4
20:25;21:7;25:5,17;	21:10,14	Rodden (9)	scenario (4)	seem (5)
50:7;84:24;88:7;89:22;	reviewing (1)	97:14;98:12,18;99:7;	70:11;115:6;134:11;	10:7;11:3;25:1;
92:21;94:14;105:1;	127:10	101:4;104:6,15,19;	142:6	115:14,18
111:20;112:20;114:12,	Richard (1)	106:18	scheme (1)	Seems (5)
24	107:20	Rodden's (3)	38:21	10:14,18,22;69:5;
required (1)	richer (1)	98:15;103:25;104:25	scholar (1)	103:6
100:7	85:10	Roland (2)	125:13	seized (1)
rerun (1)	right (163)	108:12,13	scholars (2)	34:18
50:1	5:5;9:23,23;10:11;	role (3)	102:16;104:9	self-decreasing (1)
research (7)	12:1;14:10;15:11;	28:18;29:8;103:1	scholarship (1)	73:6
8:2,5,11;21:25;22:8;	25:24;29:3;30:18;31:4,	rough (2)	123:13	send (3)
104:17;107:18	17,17;32:1,13;33:2;	53:25;144:20	school (1)	40:21;108:5;145:2
reserve (1)	34:5;35:6,11;37:21;	roughly (2)	99:23	sending (1)
146:9	38:19;39:23,23,25;	52:21;124:23	science (9)	79:18
resist (2)	40:9,20,23;41:5,20;	round (3)	16:19;26:20;65:19;	sense (6)
25:7,19	42:6,13,16;43:1,2,20,	20:14;62:7;96:12	104:5;108:10;126:13;	$12: 16 ; 25: 20 ; 28: 21$
resolution (1)	23;44:15,17,22,22;	roundabout (1)	129:7;130:19;133:20	$55: 6 ; 57: 9 ; 104: 10$
100:16	45:12,16,20,25;46:7,	86:19	sciences (1)	senses (2)
respect (12)	16,19;47:5,7,23;49:17;	row (4)	39:1	12:11;41:17
24:25;38:7;44:8,9;	50:1;51:4,6,17;52:17,	47:20;80:20;140:1;	scientists (2)	sensitivity (12)
46:8;50:13;60:21; 94:12.98.22.109.13	$\begin{aligned} & \text { 22;53:23;54:8;57:13; } \\ & \text { 59:15.17:60:21.25: } \end{aligned}$	$141: 10$	$26: 21 ; 104: 11$	$42: 2,10 ; 46: 18,19,25$   $47 \cdot 12 \cdot 53 \cdot 2 \cdot 10 \cdot 78 \cdot 9,13$,
$123: 7 ; 137: 23$	61:4;62:6,8;63:4;	rows (3) 43:6;44:5;83:13	score (8) $35: 1,4,21 ; 50: 4,5 ;$	$\begin{aligned} & 47: 12 ; 53: 2,10 ; 78: 9,13, \\ & 21 ; 128: 23 \end{aligned}$
respecting (2)	65:12;67:8,14,17,19;	run (10)	61:19;63:23,25	sent (2)
107:13;109:19	68:11;69:3,9,9,23;	13:25;24:5;31:14;	scores (2)	35:7;145:21
respectively (1)	70:14,25,25;71:4,15,	32:14;75:12;78:20;	34:24;50:15	sentence (3)
60:23	18,18;73:4,8,15,18;	88:1,10,19;120:24	scrutinizing (1)	54:15;62:11;103:4
respond (1)	74:1,10,12,20;75:3,7;	Ruth (1)	25:23	sentences (1)
4:20	76:13,19;78:11,12;	5:8	scrutiny (8)	64:18
response (3)	79:10;83:12,21;84:13;		9:13;10:9,11;12:16;	separate (2)
7:4;16:2;133:22	85:22;86:3,6,13;87:10,	S	30:21;54:16;55:10;	122:12;145:11
responses (1) 5024	18;88:25;89:6,19;90:2,		57:22	sequence (11)
5:24	8;91:11,13;95:10,20;	salvos (1)	se (3)	13:5,11;32:4;38:11;
responsiveness (4)	103:24;105:3,17,17,25;	100:13	16:22,24;53:7	42:14;58:2;60:2;63:10;
109:3,5;110:21;	106:9;110:15;111:12;	same (58)	Sean (1)	78:20;102:4;109:10
111:4	114:20;115:10;116:1,	7:10;13:6,7;15:9;	116:4	sequentially (1)
rest (5)	18,18,22,22;117:1,25;	19:1;20:4;26:5;30:24;	search (1)	60:22
11:7,9;33:13;45:7;	119:9;123:19;126:18;	32:5;34:2;37:9;40:11;	102:18	series (3)
85:13	127:22,25;130:2;	41:13,15;48:25;53:21;	seat (22)	60:13;139:1;141:16
restricting (1)	132:2,11,17;134:14;	54:6;55:13;56:2;58:7,	22:5,5;109:6;125:9;	serious (1)
50:2	135:3,4,11,12,136:12,	10,20,25;62:9;75:20;	126:15;129:9,14,25;	125:13
restriction (1)	15,19,21;137:2,4;	83:8,19;84:2,3,3;	130:12,13,15;132:7,9,	served (1)
62:9	138:4;139:5,22;140:6;	89:10;92:24;94:23;	13,14;134:12,17,24;	91:5
result (3)	141:2,15;142:21;	96:6,11,13;102:15;	135:2,6,14;138:2	set (21)
16:20;19:18;31:4	145:14	107:20;112:8,13;	seats (16)	6:25;12:25;29:11;
resulting (2)	right-most (1)	115:9,16;121:7,13;	99:15;123:18;124:2,	40:22;46:21;54:23;
70:12;71:2	50:16	122:7,17;129:11,14;	8,9,14;126:4;129:10,	57:19;70:4;72:12;
results (27)	Rights (2)	132:13;134:7;137:3,8;	17;131:8;134:14,21,	82:14,15;84:5;92:3;
8:11;11:23;14:9;	99:4,7	139:4;140:9;141:11,	24;135:10,16,24	$93: 3 ; 123: 14 ; 124: 20$
16:6;18:8;24:22;26:2;	rigorous (2)	18;142:5;143:4	second (10)	129:9;132:21;133:18;
27:23;28:5;56:24;94:1;	34:19;138:3	sample (2)	4:11;9:25;12:16,19;	140:20;146:6
99:8;101:5,7,8;102:11,	ringing (1)	38:5;104:1	63:3;80:15;82:23;	sets (1)
23;103:13;104:18,25;	59:25	save (1)	101:2;131:9;141:10	82:20


setting (4)	39:15,19;46:8,11;	social (1)	spot (3)	state's (1)
47:1;55:10;123:15;	55:13;58:15,23,25;	65:19	11:6;76:15;101:1	82:15
126:2	117:8;119:8,16;133:3;	solid (2)	spread (3)	statewide (3)
seven (3)	140:18;141:11,18;	93:9,10	65:4,5,6	22:4;99:14;134:20
41:22;47:13;55:18	146:7	solution (1)	spreadsheet (3)	statistical (3)
several (2)	signal (1)	104:2	80:15,16,20	22:2;91:1,15
23:3;46:2	31:10	solve (1)	spreadsheets (2)	statistics (6)
shaded (2)	signature (1)	101:19	79:21,23	51:21;62:20;63:13;
36:16;51:21	146:9	someone (2)	squared (1)	64:6,13;131:5
shading (1)	signs (1)	62:19;107:25	144:8	stats (3)
51:16	33:23	sometimes (10)	squint (1)	91:16;98:2;102:3
shape (1)	similar (3)	27:2;32:23,24;38:19;	54:8	status (2)
50:10	103:18;136:8;139:1	43:5,6;82:11;101:15;	stacked (1)	29:3,7
share (8)	SIMON (1)	102:4;126:5	38:16	stay (1)
21:7;109:6,7;129:22;	4:1	somewhat (2)	stage (2)	140:2
134:20,25;135:6,9	simple (8)	107:24;139:1	19:12;123:12	stayed (2)
shares (6)	33:9;88:11,22;89:4;	sorry (11)	stand (3)	32:4;94:4
129:9,10;134:13,17,	90:12;100:2,2;129:15	12:3;17:1;34:13;	11:10;54:18;82:8	stem (1)
18;135:16	simplification (2)	47:6;55:16;68:17,18;	standard (14)	36:19
sharp (1)	130:4,6	74:2;79:2;87:17;	12:8;20:10;21:10,15,	Stephanopolous (5)
17:9	simply (3)	113:11	16;35:13;42:5;54:16;	79:16,18;103:17;
shed (1)	42:11;118:9;126:7	sort (23)	59:7;82:10;91:24;	123:10;127:14
124:2	simulate (1)	10:22;20:5;22:3;	102:14;121:7,8	stepping (1)
sheds (1)	142:2	24:19;26:10,10;28:9;	standards (1)	39:18
6:4	simulated (6)	44:4;63:16;64:12;	65:19	still (7)
shift (3)	103:25;138:11;	95:11;102:20;104:12;	stands (1)	60:3;70:20;100:22;
130:1;132:13;134:12	139:14;140:3,25;	108:23;109:20;117:21;	42:23	124:17;130:4,5;131:21
shifting (1)	141:17	124:19;131:16,17,20;	Stanford (1)	stop (3)
129:11	simulating (1)	133:11;137:15;144:13	98:19	15:6;31:20;133:25
short (6)	98:25	sorts (1)	start (7)	straight (1)
64:9,11;76:25;77:8;	simulation (3)	102:16	5:24;78:9;97:13;	42:7
144:22;145:1	37:19;39:10,11	source (1)	112:3,4;137:12;140:22	strain (1)
shorter (1)	simulations (1)	84:13	started (4)	144:13
64:10	39:12	South (1)	67:4;73:7;86:15;	straying (1)
shorthand (1)	single (2)	107:22	108:3	120:22
64:14	44:9;95:25	space (2)	starting (7)	strenuous (4)
shot (2)	singled (1)	104:2;105:11	6:1;9:25;41:25;74:9;	34:20;35:9;36:1;
106:12,17	119:9	span (2)	103:25;105:15;138:19	59:6
show (5)	situations (1)	22:19;51:21	starts (7)	strictly (2)
74:23;75:17;99:19;	7:17	spans (1)	62:3;120:24;124:22;	117:11;124:19
108:18;113:15	sketchy (1)	48:20	138:1,18;140:19;	Strike (1)
showing (1)	126:5	speaking (1)	141:20	12:3
93:10	skewed (4)	117:11	state (42)	strong (9)
shown (2)	54:18,20,21;55:12	speaks (2)	$8: 23 ; 9: 20 ; 21: 8$	$17: 19 ; 19: 15 ; 40: 7,17,$
50:7;68:22	skipping (1)	109:10,11	26:15,18;27:15;28:1;	22;66:11;100:5;
shows (6)	5:21	special (3)	41:12;48:20;66:21;	108:25;109:1
8:2;23:21;29:4;	slightly (6)	29:3,6;39:22	80:3,20;81:4,6,10;82:2,	strongly (1)
51:11;139:22;141:6	6:24;53:19;54:5;	specific (5)	6;83:3,14;84:7,11;	25:12
shuck (1)	74:12;87:11;111:3	7:6,29:25;88:19	85:21;101:8,17,23;	struck (3)
140:4	slope (1)	92:5;104:23	102:6,19;103:19;	35:25;40:17,21
side (18)	62:13	specificity (4)	109:12,14,25;115:23;	stuck (1)
8:8;17:15;24:14;	slopes (1)	47:13;53:11;78:13,	119:5;121:4;124:9,10,	64:12
32:5;35:23;37:10;40:1,	142:19	21	18,24;126:5;130:3;	stuff (2)
11,13;41:14;42:15,16;	slowly (2)	spectrum (1)	131:12;138:21	4:13;40:20
54:17;57:17,19;59:4;	109:21;143:6	22:22	statement (3)	sub (1)
71:24;87:2	small (8)	speculation (1)	108:25;109:1;117:12	127:23
sides (1)	24:3;32:10,11,21;	27:13	statements (2)	subject (3)
144:10	62:24;85:24;113:4;	speculative (3)	111:1,4	27:1;105:22;141:4
sign (32)	136:17	11:11,15;20:5	states (13)	subjecting (1)
13:6,7;17:20;31:16,	smaller (2)	spills (1)	25:24;82:11;102:5;	59:11
23;32:23;33:15,20;	109:1;111:3	75:1	110:22;111:3,7;121:6,	submit (3)
34:2,8,11,14;35:6;	so-called (1)	spoke (1)	9;124:7,10,12,13;	34:20;35:10;36:2
36:10;37:9;38:16;	82:12	49:7	131:13	submitted (1)


145:25	sweet (1)	105:10	thereof (1)	took (3)
submitting (2)	11:6	tasks (1)	122:11	106:13,13,14
36:4;57:18	swing (40)	127:17	thinking (2)	tool (1)
subsequent (7)	128:24;129:4,7,13,	team (1)	97:20;98:8	130:5
13:5;27:8;32:3;	14,17,19;130:17,22;	5:5	third (6)	top (10)
36:22;41:6;59:10;70:1	131:1,25;132:9,18;	technical (3)	12:19;71:7;88:8;	31:17;48:15;49:11;
subset (2)	133:9,10,16;134:10,22;	37:18;101:16,18	103:24,25;105:15	68:16;112:2;118:22;
50:7;143:11	135:22;136:9,24;	technique (2)	though (11)	136:13;139:10;140:6,
subsets (1)	137:5,11,17,25;138:12;	129:15;130:18	9:15,19;16:5;22:15;	21
143:16	139:7,9,13,14;140:5,	tells (1)	32:1;73:4;83:18;113:8;	topic (1)
subsetting (1)	10,16;141:5,9,22;	46:12	115:3;124:17;126:16	15:3
143:17	142:4,24,25;143:8	tend (3)	thought (11)	total (1)
substitute (1)	swings (6)	26:1,24;70:2	5:19;22:4;34:18;	$125: 8$
47:11	131:14,25;134:4;	tended (3)	$35: 8,8 ; 40: 7,15 ; 49: 7$	totality (1)
substituting (2)	136:12;138:4,17	64:7,9,10	107:25;110:2;125:12	61:13
125:1;126:8	sworn (1)	tends (2)	thoughts (2)	totals (2)
succeeding (1)	4:3	24:7;102:2	97:17;122:1	99:14;126:14
65:15	swung (1)	ten-year (1)	three (36)	touch (1)
sufficient (2)	138:21	14:10	10:20;13:12;31:8;	70:15
117:10;118:4	Sydney (1)	term (4)	57:16;62:4,22;66:24;	toward (2)
suggest (4)	107:23	26:12;85:1;91:25;	82:18;85:11,12,15;	71:17;140:23
17:12;24:9;27:11;	synonym (1)	129:4	86:5,5;88:3,14,15,24;	towards (2)
30:16	54:21	terminates (1)	89:6;90:13,14,21,21;	63:24;143:8
suggestions (1)	system (2)	50:18	95:20,21,24;96:24;	TP (1)
106:24	26:7;109:4	terms (12)	111:24,24;112:21,22;	42:23
suggests (1)	systematic (4)	11:17;29:5;30:4;	113:22;138:22;139:10,	track (1)
27:8	$9: 16,19 ; 24: 7 ; 25: 2$	36:10;40:17;84:24;	15;143:18,18	142:21
summarize (2)	systematically (1)	97:18;102:9;110:20;	three-fold (1)	trading (1)
$37: 21,24$	$25: 13$	135:5,19;144:4	89:6	$55: 5$
summarizing (1)	T	territory (2)	threes	traditional (4)
139:5	T	70:16;75:2	138:17	6:22,25;27:2;28:10
61:16	table (11)	29:22;30:10;31:4;	$12: 6,11,17,23 ; 30: 13$	108:1
summing (1)	$31: 18 ; 43: 2,5,8$	33:11;34:24;35:1,9;	20,23,25;31:12,21;	transcript (3)
44:20	44:18;45:2;116:7,10,	40:7;42:11,16;44:1,2,	32:2,12,20;33:7,22;	4:23;15:7;146:9
supplemental (1)	15;117:18;119:17	4;45:10;46:20;47:2;	34:12,15;39:14,16;	translated (1)
128:22	tackle (1)	59:6,11;119:6;141:11	41:2,11;42:18;46:5,21;	123:17
support (1)	122:14	tested (13)	51:1,2;52:1,7,23,24;	treated (4)
$120: 16$	tail (2)	30:23;31:13;32:18;	54:22,23;55:3,16;	15:25;92:15,16,20
suppose (3)	69:16;141:20	33:25;42:19;44:23;	58:20;135:17	trees (1)
72:23;94:3;133:8	tails (1)	45:4,12,19,22,25;	throughout (4)	80:7
supposed (1)	73:9	46:23,24	26:15,18;34:2;	Trende (3)
143:25	takeaway (4)	testified (2)	141:12	123:1,2;128:2
sure (48)	108:17;140:5;	4:3;51:7	throw (1)	T-r-e-n-d-e (1)
4:15;7:8;14:17;	141:14,25	testify (1)	55:8	123:2
$15: 18 ; 16: 10 ; 17: 3 ; 20: 7$	takeaways (1)	9:14	thrown (2)	Trende's (3)
21:13;23:14;26:12;	115:11	testimony (3)	41:18;55:2	116:4;125:16,22
$30: 2 ; 36: 13 ; 42: 1 ; 46: 15$	talk (8)	27:22;48:17;58:7	thus (2)	tricking (1)
$49: 2 ; 60: 6,8,18 ; 64: 17$	7:5;25:19;27:21;	testing (3)	19:16;33:22	$91: 22$
66:15;68:15;73:25;	32:9;44:3;56:24;76:20;	34:23;54:25;58:20	times (6)	tried (1)
74:4,13;75:9,21,23;	88:18	tests (6)	38:15;57:16;83:9,18;	130:25
87:24;91:20;92:2,4;	talked (3)	30:6;34:20;35:2;	120:1;136:8	trigger (5)
93:5;96:5;97:1,8;	12:15;60:20;133:4	36:2;46:22;48:16	tiny (2)	9:13;12:15;21:9;
98:11;101:3,3;108:17;	talking (12)	Texas (1)	53:24;102:3	32:19;34:12
113:12,20,23;114:5;	15:15,16;47:12,12;	110:13	titled (1)	triggered (1)
116:3;117:17;121:18,	$57: 25 ; 61: 16 ; 71: 6 ; 88: 4$	Thanks (1)	108:15	31:21
25;144:23	101:14;108:3;133:14;	14:19	TN (1)	triggering (2)
surprised (1)	135:12	theoretical (3)	43:14	11:17;12:23
65:12	talks (3)	29:2,6;39:18	today (1)	trip (6)
surprisingly (1)	29:17;73:16;90:3	theory (1)	137:1	33:7;41:11;42:17;
44:17	tall (2)	110:16	together (5)	52:22,24;57:14
surrounding (1)	64:7,8	therefore (3)	7:10;44:5,6;143:21;	tripped (5)
51:9	Tarr (1)	69:25;71:12;100:10	145:10	21:16;30:25;31:12;


32:2;46:11	117:20	111:20		versus (10)
trivial (2)	unambiguous-as-to-sign (2)	universe (2)	V	11:10;20:24;40:14;
137:6;139:8	116:8;117:4	10:4;45:4		50:13;86:20;94:19;
true (25)	unambiguously (1)	University (1)	vagaries (1)	$100: 20 ; 103: 20 ; 115: 21$
29:17,18,21;32:1,17,	116:7	107:22	40:19	130:16
17,25;33:17,17,18;	unbiased (1)	unnecessary (1)	vague (2)	vertical (9)
35:17,18,18;42:2,9,23;	39:24	118:4	20:21;29:24	46:16;51:16;62:16;
43:14,16,21,21,25;	uncertainty (17)	unquote (1)	validity (1)	$65: 4,5 ; 72: 16 ; 74: 15$
44:1,23,24;72:6	11:6;22:11;36:23	89:5	128:1	76:12;136:22   viable (1)
$132: 15$	18,19;70:3;71:15;75:6;	10:22	value (47)   7:20,20;	$78: 7$
$\boldsymbol{t r y}$ (11)	119:12;138:9,10,14	unreasonable (1)	$13 ; 13: 10,13 ; 16: 23$	vice (1)
4:16,21,22;19:25;	uncontested (2)	133:13	$17: 10 ; 19: 8 ; 22: 16 ; 24: 1$	134:16
22:1;25:19;26:3;28:8;	125:9;126:15	unrelated (1)	11;30:19;31:9;32:11;	view (4)
71:12;108:19;137:21	uncontestedness (1)	22:13	36:5,21,25;38:3,22;	33:23;99:10;104:10;
trying (6)	138:8	unsettled (1)	46:6;47:2,25;50:23;	131:2
35:12;97:19;100:25;	under (64)	09:12	52:7;58:21,24,25;	vote (18)
109:4;128:7;144:16	7:6;8:20;10:6,20	unusual (5)	$61: 11,18 ; 64: 3 ; 67: 18$	20:24;21:7;99:14;
turn (6)	11:9,12,23;12:6,14,22;	69:20,24,24;70:1,	70:19;71:13;74:7;	$102: 17 ; 103: 2 ; 109: 7$
$\begin{aligned} & 5: 21 ; 36: 19 ; 57: 20,23 \\ & 79: 6 ; 138: 24 \end{aligned}$	$\begin{aligned} & 13: 16,17 ; 17: 21 ; 19: 17 \\ & 21: 10,17,20,24 ; 22: 13 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { unusually (1) } \\ 66: 4 \end{array}$	89:15;94:6;102:20;	$\begin{aligned} & 125: 8 ; 126: 8,14 ; 129: 9 \\ & 22 ; 132: 3,8 ; 134: 17,20 \end{aligned}$
turned (2)	23;23:5;28:10;30:12	up (60)	$2: 6 ; 132: 24 ; 139: 1$	$135: 9,15,22$
46:1;66:4	22;34:9;37:1;38:16;	6:9;13:12;19:2;23:3;	values (35)	voters (5)
Turning (1)	41:3;47:22;50:3;58:2,	25:13,24;35:19;37:20;	6:7;7:19;8:7;12:18	26:15,17;100:4,5;
54:13	22,24;61:11,13,14,14;	39:2;41:13;42:4;44:21;	13:6,11;17:16;19:8;	121:11
turns (2)	71:11;80:24;81:6;83:8,	46:24;50:12,14;51:4;	23:4;29:1,10;31:15;	votes (2)
33:2;57:21	19;84:2;85:6,19;86:9,	53:12;55:4;56:14;	32:4,15,21,22;40:10;	101:16;135:11
two (41)	22;88:5;92:16,23;99:3;	57:15,15;63:7,21;	$41: 13 ; 42: 15 ; 50: 11,12$	Voting (2)
7:7;10:20;12:11;	109:4;113:14;115:6;	67:10;72:14;74:14;	$14 ; 51: 5,6 ; 55: 16 ; 63: 11$	99:4,7
13:12;31:8;42:7;43:23;	133:2;134:11;137:10,	75:8;76:6,16;77:9;	$12 ; 77: 25 ; 79: 24 ; 94: 23$	VT (1)
44:5,5,5;49:4;51:10;	14;138:12;139:12;	85:6,19,20;86:4,7,8;	137:19;139:14;140:5,	66:20
53:7;58:2;59:18;61:17,	140:9;142:3,5,6	88:23;89:17;100:23;	$11 ; 143: 7$	VT4 (3)
21;62:1;63:17;66:24;	undercut (1)	101:25;109:8,15;	variability (1)	66:17,19,20
$71: 16 ; 79: 9,20,20 ; 83: 5,$	131:17	$123: 19 ; 124: 10,22,22$	69:10	W
	underlyin	126:3,129:12,130:1,7,	variable (3)	W
121:1;129:21;138:17;	33:12;51:19	135:3,16;137:3;	$51: 17 ; 125: 13,24$	WA3 (1)
139:19;144:7;145:10,	underneath (2)	138:18;140:11,16;	$126: 7 ; 144: 7$	67:15
11,13	10:14;90:2	141:21	variation (3)	wait (1)
two-by-two (4)	unhelpful (1)	update (1)	$64: 18 ; 65: 1,18$	10:19
31:18;33:9;43:5	90:8	106:2	variety (2)	Wales (1)
44:18	unified (17)	usage (1)	$16: 6 ; 136: 12$	107:22
two-letter (2)	8:21;81:6,7;85:12,	91:24	various (8)	walk (2)
66:21;83:5	13;86:10,22;87:2,12;	use (6)	$28: 6 ; 31: 5 ; 48: 16$	$74: 3 ; 95: 1$
two-or-three-minute (1)	92:25;93:1;116:16,20,	38:4;48:6;79:1;	$107: 13 ; 111: 20 ; 132: 20$	wants (1)
48:7	24;117:3;118:12;	90:11;126:7;136:25	$136: 7 ; 141: 12$	91:1
two-party (2)	120:13	used (7)	vary (2)	wards (2)
129:22;135:13	uniform (31)	96:9;101:4;102:22;	$39: 9 ; 126: 24$	$128: 4,7$
two-sided (1)	128:24;129:4,7,13;	125:5;127:4;136:25;	verbal (1)	wash (1)
80:11	131:1,15,25;132:18;	141:11	$16: 2$	$38: 14$
type (7)	133:16;134:4,10;	useful (4)	verbally (1)	Washington (1)
20:17,20;21:19;30:6;	135:22;136:24;137:5,	102:11;106:23	4:20	67:16
58:16;93:20;122:23	11,17,25;138:12;139:7,	130:5,5	verify (6)	waters (1)
$\underset{63: 25}{\text { typical (1) }}$	9,13,14;140:5,10,16;	usefulness (	49:8,12;60:10;83:20;	102:2
typically (7)	143:7	users (1)	erm	21:3,4,6;40
59:23;63:8;68:24;	uniforms (1)	64:5	$66: 20 ; 67: 1$	way (49)
70:23;101:13;132:14,	131:14	uses (1)	versa (1)	9:17;15:8;21:3,18;
15	unique (2)	126:16	134:16	22:21;24:21;26:3,9;
$\mathbf{U}$	$\begin{gathered} 83: 3,5 \\ \text { United (1) } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { using (10) } \\ 36: 8 ; 39: 19 ; 41: ? \end{array}$	versed (1)	$\begin{aligned} & 29: 4 ; 30: 24 ; 31: 3 ; 33: 5 \\ & 37: 16,18: 39: 25: 40: 9 \end{aligned}$
U	$131: 13$	$47: 15 ; 93: 25 ; 103: 9,1$	$62: 19$ version (1)	$41: 15 ; 44: 7 ; 50: 12$
unambiguous (1)	units (1)	$105: 10 ; 125: 2 ; 141: 11$	93:12	57:21;59:24;66:7,23

William Whitford, et al., vs.
Deposition of SIMON JACKMAN Gerald Nichol, et al.

$\begin{aligned} & \text { 67:17;71:21;75:16; } \\ & 78: 11 ; 83: 11 ; 89: 4 ; \end{aligned}$	$\begin{aligned} & \text { 4:2;15:18;18:25; } \\ & \text { 19:6;48:9;56:19;77:2; } \end{aligned}$	$\begin{aligned} & \text { 140:23,23;142:25 } \\ & \text { zero-elections (1) } \end{aligned}$	$\begin{array}{\|r\|} \hline \mathbf{1 . 0 0 ( 1 )} \\ 46: 17 \end{array}$	2
90:13;91:2,20;94:4;	98:7	21:22	1.3 (1)	
96:21;97:25;99:21;	won (1)	zeroes (1)	112:19	2 (25)
100:12,16;104:25;	135:24	$15: 7$	1.7 (1)	29:12;30:4,7;41:7;
115:20;117:15;126:5,	word (8)	zeros (1)	112:14	49:23,25;50:1;56:3;
9;133:5,13;134:12;	6:9;12:11,17;41:17;	$84: 3$	$10 \text { (8) }$	57:7,9;60:21,23;77:17;
137:4;138:22;145:3	64:5;90:17;129:13,19	zips (1)	16:11;56:22;78:17	$78: 1,7,18 ; 127: 20$
ways (5)	words (3)	130:8	79:1;86:3;114:13,24;	$138: 24 ; 140: 22 ; 141: 10$
$\begin{aligned} & 31: 5 ; 44: 17,18 ; 59: 18 \\ & 118: 6 \end{aligned}$	25:7;26:23;70:7 work (7)	0	$115: 4$ $100(5)$	16;142:18,23,24;
eighs (1)	work (7) 15:25;19:15;41:1	0	100 (5)	143:15
113:17	78:11;98:15;108:4;	0 (2)	16;141:20	$\begin{gathered} \mathbf{2 . 1}(\mathbf{1}) \\ 112: 20 \end{gathered}$
well-formed (1)	130:24	15:1;16:19	105 (1)	2.2 (1)
23:23	working (2)	0.075 (2)	128:3	134:22
weren't (1)	38:20,22	15:2,10	10s (1)	2.9 (1)
129:3	works (6)	0.1 (1)	66:25	112:8
Whatever's (1)	15:12;56:20;66:23;	75:15	11 (2)	2:09 (1)
56:16	123:7;124:1;131:20	00 (1)	14:21;79:2	$146: 10$
what's (16)	world (5)	68:13	111 (1)	20 (8)
5:13;25:8;32:8;35:3,	$34: 22 ; 104: 21$	004 (1)	69:5	19:18;78:13;86:11,
9;63:9;75:3;100:13;	131:23;133:20;135:13	69:5	12 (9)	$19,20,21 ; 93: 1 ; 136: 10$
101:10;108:14;116:8;	wrong (5)	00s (1)	16:12,16;17:25;18:2,	$2000(2)$
123:23;136:10,20;	31:6;33:25;34:1;	66:24	11,22;78:23;116:19;	$110: 11,24$
144:14;145:6	35:7;143:24	02 (1)	117:2	2000s (17)
$\begin{gathered} \text { whereby (1) } \\ 89: 4 \end{gathered}$	Y	$78: 22$ $029(1)$	133 (2) $73: 20 ; 74: 10$	14:2;25:3;86:6,11,
whole (3)		112:7	15 (3)	94:7,9;95:6;96:3,22;
26:25;45:4;130:16	year (5)	03 (2)	62:3;86:20;106:5	112:13;118:20,24;
who's (3)	80:4,20,22;81:15;	139:17,21	16 (1)	119:3
25:17;62:19;94:18	108:7	037 (2)	68:16	2000's (11)
whose (1)	years (1)	70:24;71:22	17 (4)	8:25;14:12;15:23;
50:23	130:18	04 (1)	69:13;78:21;116:16,	16:9;18:1,7;67:2,23;
width (1)	Yep (9)	67:6	19	$92: 15 ; 95: 2 ; 128: 12$
37:24	43:13;46:14;52:9,25;	$05(2)$	$19 \text { (3) }$	$2002 \text { (12) }$
willing (2)	56:1;60:15;68:17;	67:14;79:	67:2;90:2;131:3	14:5,13,24;15:1;
${ }_{\text {ain (3) }}{ }^{55: 7,8}$	95:21;129:5	053 (2) $68 \cdot 25 \cdot 71.20$	1970 (2) $80 \cdot 22 \cdot 81 \cdot 15$	$16: 21 ; 17: 3,5 ; 18: 13$
win (3)	yes-no (1)	68:25;71:20	80:22;81:1	$19: 18 ; 32: 6 ; 120: 3,8$
135:14,14,23	4:21 yes-or-no (1)	07 (24)	1970s (3)	$2004 \text { (1) }$
$\begin{gathered} \text { window (1) } \\ 135: 3 \end{gathered}$	yes-or-no (1) 39.7	$\begin{aligned} & 52: 1,7,13,21 ; 53: 3,10 \\ & 16 ; 54: 23 ; 55: 3,5,10 \end{aligned}$	14:1;118:15;119:1   1972 (3)	$16: 10$
$\begin{gathered} 135: 3 \\ \text { winning (1) } \end{gathered}$	$\begin{gathered} 39: 7 \\ \text { yesterd } \end{gathered}$	$\begin{aligned} & \text { 16;54:23;55:3,5,10; } \\ & \text { 57:2,14;68:23;69:23; } \end{aligned}$	$\begin{array}{\|l\|} \hline 1972(3) \\ 14: 5 ; 48: 21 ; 80: 23 \end{array}$	2006 (1)
134:24	5:4	70:9,23;71:19,20,25;	1982 (1)	$2008 \text { (1) }$
wins (3)	yield (1)	75:24;76:5;139:21,25	14:5	16:12
134:15,16,21	8:24	08 (1)	1990 (2)	2010 (11)
Wisconsin (26)	yields (1)	78:15	95:10;115:12	16:13;19:18;20:1;
8:25;14:12;15:1;	33:7	095 (1)	1990s (21)	32:6;77:20;86:7,20;
17:3,25;18:7;19:19;	York (4)	74:17	67:16;85:18,25;86:6,	94:20;96:12;115:9,13
$\begin{aligned} & \text { 21:8;32:6;67:23;68:12; } \\ & 73: 16 ; 74: 8 ; 75: 11 ; \end{aligned}$	110:12;119:1,19,25	1	$\begin{aligned} & \text { 15;87:1,5,8;94:5,20; } \\ & \text { 96:10,15,21;97:11; } \end{aligned}$	2010s (16)
82:22,25;83:17,21;	$\mathbf{Z}$		112:4,9;113:10,15;	$87: 7,13,14,20 ; 89: 25$
92:11,16,19;93:2;		1 (32)	115:10;131:3,14	92:19;94:7;96:4,6,8,
128:4,6,8,11	zero (48)	5:24;36:15;39:5;	1990's (4)	$19 ; 112: 19$
Wisconsin's (2)	10:11;13:6;24:2;	41:7;46:4,13;48:13,19;	85:16;92:10;96:2;	2010's (2)
15:23;16:9	28:14,18,18;29:2,2,6,7;	50:2,8;53:11;55:16,17;	128:12	96:9;114:9
wished (2)	32:5;35:23;39:23,23;	60:21,22;73:22;78:1,4,	1992 (1)	$2012 \text { (11) }$
49:16;55:22	40:1,11;41:14;42:15,	7,9,19;116:15;117:18;	14:5	$14: 6,7 ; 18: 13 ; 73: 17$
within (2)	16;46:21;47:2;50:12,	136:5;142:20,23;	1992-to-2002 (1)	$74: 8 ; 83: 17,21 ; 92: 22$
88:19;135:3	14,17,18;51:4;59:4;	143:3,8,10,12,20;	120:5	$136: 16 ; 142: 8,9$
without (6)	64:1;71:18,24;72:1,20	$144: 13$	1994-to-2000 (1)	2014 (5)
$52: 3 ; 116: 20 ; 117: 3,7,$	$73: 6,7,8,13 ; 81: 20,22$	$1.0 \text { (6) }$	120:9	$48: 21 ; 83: 18 ; 92: 24$
$12 ; 124: 2$	$\begin{aligned} & 113: 24 ; 114: 1,2,3 ; \\ & 135: 25: 137: 6: 139 \cdot 9 \end{aligned}$	$\begin{aligned} & 46: 25 ; 47: 15 ; 142: 25 ; \\ & 143 \cdot 156 \end{aligned}$		$136: 16 ; 142: 9$
witness (8)	135:25;137:6;139:9;			$2015 \text { (2) }$


105:16;106:6	35:4;52:5,11;134:13;	7.5 (6)	
2020 (1)	135:1,4,13,14,22	15:5,9;16:1,20;17:4;	
20:14	50.3 (1)	18:18	
2022 (3)	132:8	70 (2)	
20:18,25;21:8	$50 / 50$ (1)	34:25;35:2	
21 (1)	21:2	70s (2)	
105:14	51 (1)	66:23;67:3	
22 (1)	78:16	72 (1)	
116:24	51.3 (1)	15:19	
23 (1)	132:9	73 (2)	
116:25	52 (2)	64:22;65:25	
25 (3)	78:14;135:23	75 (3)	
52:3,8;124:25	53 (1)	47:18,18;67:24	
$\begin{gathered} 26(1) \\ 78: 15 \end{gathered}$	79:3 $\mathbf{5 4}(\mathbf{1})$	8	
27 (1)	135:24		
66:1	55 (6)	8 (5)	
3	$\begin{aligned} & 54: 1,2,11 ; 82: 23 ; \\ & 83: 1 ; 116: 13 \end{aligned}$	$\begin{aligned} & 36: 15 ; 85: 17,18 \\ & 116: 1 ; 127: 4 \end{aligned}$	
	56 (3)	8.1 (1)	
3 (18)	4:4;5:13;78:14	112:21	
5:21;41:7;49:24;	57 (4)	80s (3)	
50:19,21,22;56:3;57:4,	79:11,12,14,15	14:1;66:24;67:3	
9;58:12,17;60:21,23;	58 (5)	89.8 (1)	
61:1,8;78:1,7,24	78:22;79:12;80:9,10,	71:3	
$\begin{aligned} & 30 \text { (3) } \\ & 86: 15 ; 114: 16 ; 132: 16 \end{aligned}$	18 $\mathbf{5 9}(\mathbf{5})$	9	
32 (2)	105:4,5,7,13;109:11		
52:21;53:10		9 (4)	
35 (2)	6	75:5;88:17;93:4;	
15:19;79:5		114:4	
38 (1)	6 (10)	9.5 (1)	
78:23	29:15;31:19;60:13,	74:17	
4	$\begin{aligned} & 24 ; 67: 20,22 ; 97: 13 \\ & 103: 8 ; 126: 21 ; 127: 3 \end{aligned}$	$\begin{aligned} & 90(\mathbf{1}) \\ & 141: 23 \end{aligned}$	
	6.7 (1)	90s (7)	
4 (17)	112:12	14:1;25:3;66:24;	
16:14,15;17:24;18:2,	60 (10)	67:3;89:14,24;94:10	
10,21;19:20;41:7;	87:9,10,10,15;107:4,	91 (1)	
44:19;60:13,17,24;	5,10,10;109:11;114:19	78:13	
61:3,6;67:1;112:15,18	61 (2)	95 (6)	
4.4 (1)	127:8,10	36:17;51:22;69:2;	
112:9	62 (5)	70:15,20;79:2	
4.8 (1)	128:2,18,19,21;	96 (1)	
112:19	132:19	70:13	
40 (2)	63 (3)	96.5 (1)	
86:8;87:19	145:7,7,20	70:21	
43 (1)	64 (1)	97 (1)	
79:4	79:3	141:23	
45-degree (4)	65 (1)	$98 \text { (2) }$	
68:11,13;137:2,9	78:22	78:21;141:23	
48 (1)	$6 \mathrm{~S}(1)$	99.9 (2)	
134:25	53:12	75:8,17	
5	7		
5 (17)	7 (19)		
16:13;41:4;52:17,18;	$14: 14 ; 41: 2,3 ; 51: 23 ;$		
$53: 20 ; 60: 13,24 ; 67: 6$	$53: 12,13 ; 54: 13 ; 61: 15$		
$14,14 ; 79: 7 ; 84: 15$	62:3,9;64:16;65:4		
$116: 16 ; 126: 21 ; 127: 3$	66:14;68:22;69:12;		
$50 \text { (9) }$	116:2		

# Rebuttal Report 

Simon Jackman

December 21, 2015

## Introduction

In this rebuttal report, I respond to criticisms made by Sean P. Trende and Professor Nicholas Goedert in their respective expert reports. I also conduct new empirical analyses further confirming the validity of the efficiency gap as a measure of partisan gerrymandering and the reasonableness of the proposed 0.07 threshold. More specifically, my principal contributions are the following:

- First, I respond to Goedert's various critiques of the efficiency gap and of the proposed efficiency gap threshold. Among other things, he misunderstands the relevance of efficiency gap data, cherry-picks information from my initial report while ignoring its broader context, and wrongly claims that plaintiffs' test would mandate "hyper-responsiveness" or prevent states from pursuing goals such as competitiveness or proportional representation.
- Second, I calculate several widely accepted prognostic measures-all based on the rates of true positives, false positives, true negatives, and false negatives-with respect to the odds of a district plan's efficiency gap changing signs over the plan's lifetime given a certain efficiency gap value in the plan's first election. Based on these measures, I conclude that the proposed 0.07 threshold is highly conservative. In fact, this threshold sacrifices some accuracy (which would be maximized at a lower threshold) in order to reduce the proportion of false positives.
- Third, I calculate the same prognostic measures with respect to the odds of a district plan's average efficiency gap, over its lifetime, having a different sign than that observed in the first election under a plan, given a certain efficiency gap value in this first election. Under this method, the proposed 0.07 threshold appears even more conservative, driving down the share of false positives to below $5 \%$.
- Fourth, I compare the values of the efficiency gap in the first election under a plan and on average over the plan's lifetime. This relationship is impressively tight ( $r^{2}=0.73$ ), indicating that a plan's initial bias is a very good predictor of its overall lifetime bias. For Act 43, this analysis allows us to predict that it will average a pro-Republican efficiency gap of almost $10 \%$ over the 2010 cycle as a whole.
- Fifth, I examine to what extent changes in party control over redistricting are responsible for the pro-Republican trend in the efficiency gap since the 1990s. In the current cycle, about four times more state house plans were designed by Republicans in full control of state government than in the 1990s. Had the distribution of party control over redistricting remained unchanged, essentially all of the pro-Republican movement in the efficiency gap over the last two decades
would not have occurred. It is thus changes in party control, and not changes in the country's political geography, that primarily account for Republicans' growing redistricting advantage over the last generation.
- Sixth, I address recent work by Chen and Rodden (2013), cited by both Trende and Goedert for the proposition that Republicans enjoy a natural geographic advantage over Democrats. Chen and Rodden's simulated maps are not lawful because they ignore the Voting Rights Act and state redistricting criteria; they are based on presidential election results rather than more relevant state legislative election results; they do not constitute a representative sample of the entire plan solution space; and they are contradicted by other recent work (Fryer \& Holden 2011) finding that randomly drawn plans reduce bias and increase electoral responsiveness.
- Lastly, I comment on Trende's analysis of particular state legislative and congressional plans. This analysis is marked by conceptual and methodological errors severe enough to render it useless. For example, Trende ignores two of the three prongs of plaintiffs' proposed test; he calculates congressional efficiency gaps without converting them from percentage points to House seats and for House delegations too small to generate reliable estimates; and he simply substitutes presidential election results for congressional election results whenever the latter are missing due to uncontested races. None of this work meets accepted standards of social science rigor.


## 1 Responses to Goedert's criticisms

In his report, Goedert offers several critiques of the efficiency gap and of the 0.07 threshold I recommended in my initial report, based primarily on the alleged instability of the efficiency gap. None of these critiques have merit. In this section, I respond to Goedert's points relying only on the analysis of my initial report and on the existing literature. My new empirical analyses appear in subsequent sections.

First, Goedert appears to believe that a plan's efficiency gap is only relevant to the extent that it sheds light on the partisan intent (or lack thereof) underlying the plan. He writes that "such intent cannot be inferred" from a large efficiency gap, that "a durable bias . . . is not even a sign of deliberate partisan intent," and that the "efficiency gap [is] a standard to measure partisan intent" (pp.11, 13, 19). But this is not at all the legal function of the efficiency gap in plaintiffs' proposed test. Rather, partisan intent is its own independent inquiry, and the efficiency gap then comes into play at the second stage of
the test, to determine if a plan's electoral consequences are sufficiently severe that it should be deemed presumptively unconstitutional. To put it simply, the efficiency gap is plaintiffs' measure of partisan effect, not of partisan intent. Goedert's misunderstanding of this basic point infects all of his discussion.

Second, Goedert observes that of all plans, anytime in the decade, with a proDemocratic efficiency gap of greater than 0.07 , a substantial proportion of them switch signs over their lifetimes (p. 11). In making this observation, Goedert cherry-picks a single bit of data from my initial report, and an irrelevant piece of data at that. This fact is irrelevant because it applies to plans no matter when their elections were held, while the appropriate universe for plaintiffs, defendants, and courts is limited to the first elections held under plans. It is the first elections that typically will be used in litigation, given Justice Kennedy's admonition in Vieth that plans should not be struck down based on a "hypothetical state of affairs," but rather "if and when the feared inequity arose" (Vieth v. Jubelirer (2004), p. 420). And the fact is misleading because it applies only to proDemocratic efficiency gaps above 0.07 , and not to the larger set of pro-Republican efficiency gaps above this threshold.

If we consider only plans that exhibit a pro-Democratic efficiency gap above 0.07 in their first elections, the probability that they will switch signs over their lifetimes drops by about five percentage points (Jackman Report, p. 61). And if we then turn to plans that exhibit a pro-Republican efficiency gap above 0.07 in their first elections-a more sizeable set, for which more accurate estimates are possible-this probability drops all the way to about $15 \%$ (Jackman Report, p. 61). In other words, of plans that open with large pro-Republican efficiency gaps, close to $85 \%$ of them continue to favor Republicans in every election for the remainder of the cycle. This is the most pertinent data point in my report, not the one cherry-picked by Goedert, and it reveals the persistence of many gerrymanders.

Third, Goedert discusses congressional district plans throughout his report, even though this case is exclusively about state legislative redistricting (pp. 7-8, 10, 12, 20). In doing so, he makes some of the same errors as does Trende: namely, not converting the efficiency gap from percentage points to House seats, and improperly handling uncontested races (in his case, by not adjusting for the uncontestedness at all, and simply treating the races as if all of the vote went to one party and none to the other). I discuss these errors in more detail later in this report.

Fourth, Goedert claims that it is "arbitrary" to focus on the first election after redistricting, and that doing so "biases toward a finding of EG durability" by ignoring wave elections (p. 14). As noted above, the first election after redistricting is the critical
one for purposes of litigation, since under Vieth, it is after this election that a lawsuit will typically commence and have to be decided by the courts. Later elections are largely irrelevant for litigation purposes, since it is unreasonable to expect suits to be brought six or eight or even ten years into a cycle. Moreover, my analysis in no way ignored wave elections; to the contrary, I determined the odds that a plan's efficiency gap would switch signs by examining all elections held under the plan, waves and non-waves alike. If anything, the fact that most wave elections over the last forty years have not taken place in the first election after redistricting biases against a finding of durability, since these elections may well cause the efficiency gap to flip signs.

Fifth, Goedert is wrong that an efficiency gap of zero represents "'hyperresponsive' representation" (p. 2). In fact, as he has recognized in his own prior work, an efficiency gap of zero corresponds almost exactly to the responsiveness actually displayed by American elections over the course of the twentieth century, under which "a $1 \%$ increase in vote share will produce about a $2 \%$ increase in seat share" (Goedert 2014, p. 3 ). Indeed, this correspondence is one of the efficiency gap's most attractive properties, and it explains why Goedert himself calculated a quantity nearly identical to the efficiency gap in his work (Goedert 2014; Goedert 2015).

And sixth, Goedert is wrong as well that plaintiffs' proposed test might discourage states from pursuing worthwhile goals such as competitiveness or proportional representation (pp. 6-10). If a state's aim in redrawing districts was to make them more competitive or to produce more proportional representation, then the partisan intent required by the first prong of plaintiffs' test would not be present. Even if partisan intent were somehow found, the state would likely be able to show that its plan's large efficiency gap was necessitated by its pursuit of competitiveness or proportional representation. And in any event, competitiveness and proportional representation are extremely rare objectives in American redistricting. Only one state, Arizona, has a competitiveness requirement, and not a single state has a proportional representation criterion. (And needless to say, line-drawers do not tend to seek out either of these goals on their own.)

## 2 Reliability of a district plan's first efficiency gap

Having rebutted Goedert's criticisms using preexisting data, I now provide further analysis of the reliability of the first efficiency gap ( $E G$ ) observed in the life of a district plan. This played a key role in the determination of the threshold $E G$ value in my initial report. In that report, I focused on the probability of a "sign-flip": that is, given the magnitude of the efficiency gap observed in the first election under a district plan, what
can we infer about the likelihood that all subsequent efficiency gaps observed under that plan will have the same sign as that from the first election.

Under this approach, just one election that produces an efficiency gap with a different sign from the efficiency gap in the first election will generate a "failure," in the sense we would say that the plan has generated an efficiency gap that conflicts with that from the first election. In short, the "constant sign" analysis in my original report considers the most extreme set of efficiency gap estimates produced under a plan and insists that they have the same sign. In this sense, the "constant sign" analysis I performed is a quite stringent and conservative test of what we can or ought to infer from the efficiency gap observed in the first election under the district plan. Another approach would be to inquire as to the average efficiency gap over the life of the district plan. A summary statistic such as the average is-by definition-less sensitive to extreme values. At the same time-and again, by definition-the average measures central tendency or typicality, and is the most widely used summary statistic in existence. I thus consider how well the first $E G$ observed under a district plan predicts the average $E G$ observed over the life of the plan.

But I first provide some additional analysis of the prognostic properties of the first efficiency gap observed under a district plan. In each instance the test is whether the first $E G$ observed under a plan exceeds a given threshold value. The outcome of interest is whether the plan's remaining efficiency gaps have the same sign as the $E G$ from the first election. For purposes of this exercise, plans are classified as "positive" (all $E G$ scores under the plan have the same sign) or "negative" ( $E G$ scores differ in sign). With these definitions in place, we can then classify plans according to the accuracy of the prediction implicit in the first $E G$ observed under the plan:

	Actual	
Test	Positive	Negative
Positive	True Positive	False Positive
Negative	False Negative	True Negative

The prognostic measures I rely on are conventional measures of predictive or classification accuracy used throughout the quantitative sciences:

1. sensitivity, or the true positive rate: proportion of positives that test positive, $\mathrm{TP} /(\mathrm{TP}+\mathrm{FN})$
2. specificity, or the true negative rate: proportion of negatives that test negative, $\mathrm{TN} /(\mathrm{TN}+\mathrm{FP})$
3. balanced accuracy, the average of the sensitivity and the specificity
4. accuracy, the proportion of cases that are true positives or true negatives, (TP + $\mathrm{TN}) /(\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN})$.
5. the false positive rate; proportion of negative cases that test positive, 1 minus the specificity or FP/(TN + FP).
6. the false discovery rate; proportion of cases testing positive that are actually negative, $\mathrm{FP} /(\mathrm{TP}+\mathrm{FP})$.
7. the false omission rate; proportion of cases that test negative that are actually positive, $\mathrm{FN} /(\mathrm{FN}+\mathrm{TN})$.

Figure 1 shows how these prognostic performance indicators vary as a function of the absolute $E G$ threshold (on the horizontal axis in the figure). That is, as we move to the right in each panel of the graph, the test is becoming increasingly stringent: larger absolute values of the efficiency gap in the first election under a district plan are required to trip the increasingly higher threshold. When the threshold is set to zero, all plans trip the threshold (all first-election $E G s$ are greater than zero in magnitude, by definition) and so all cases test positive; in this case the sensitivity is 1 , while conversely the specificity is 0 and the false positive rate is 1 (all negatives test positive).

The test has better properties as the threshold grows, with the accuracy measures maximized around absolute values of .03 to .04 . Yet accuracy is not all in this context. The rate of false positives is quite high at thresholds where the accuracy is high, as is the false discovery rate. At a threshold of .03 , for example, over half of plans that would go on to exhibit sign flips in their EGs would test positive and be flagged for inspection; of the plans selected for scrutiny, more than a third would turn out to have $E G$ sign flips over the life of the plan. The .07 threshold is thus a conservative standard, the point at which the rate of false positives is becoming reasonably low ( $25 \%$ ), without letting the false omission rate go above $50 \%$.

It is worth noting the weight being put on false discoveries or false alarms versus the weight on false omissions in this context, which in turn reflects the conservatism and caution of the thinking underlying the .07 threshold. We propose accepting twice the rate of false omissions (plans that should have been scrutinized but were not) than the rate of false discoveries (plans that would be flagged for scrutiny given the $E G$ observed in the first election, but would then go on to display sign flips). To reiterate: the proposed standard for judicial scrutiny is cautious and conservative, erring on the side of letting even durably skewed plans stand.


Figure 1: Prognostic performance measures, first efficiency gap under a district plan more extreme than threshold (horizontal axis) as a predictor of whether the subsequent efficiency gaps recorded under the district plan all have the same sign as the first efficiency gap. Vertical lines indicate $95 \%$ confidence intervals. Analysis spans all state legislative elections and district plans as per my initial report, 1972-2014.

Figure 2 repeats this analysis, but only considering the performance of negative values of the first-election efficiency gap threshold, consistent with Republican advantage (and more relevant to the Wisconsin plan at issue). Here the threshold becomes less stringent as we move across the horizontal axis from left to right, from larger negative thresholds to closer to zero at the right hand edge of each panel. With a large negative threshold (left hand edge of each panel), almost all plans test negative and so the sensitivity is close to zero, the specificity is 1 , and the false positive rate is zero. The accuracy measures increase as the threshold becomes less stringent, attaining maxima in the range -.05 to -.02 . Again-and consistent with the cautious approach we take-we emphasize that accuracy is not the sole criterion we use to evaluate a decision rule. At low values of the threshold, where accuracy is maximized, the false positive and false discovery rates are relatively high. On the other hand, at the proposed threshold value of .07 , the false positive rate is under $10 \%$ (fewer than $10 \%$ of plans with efficiency gaps changing signs would be scrutinized), and the false omission rate is about $35 \%$ (close to
$35 \%$ of plans would not be flagged despite having EGs of the same sign over their lifetimes). The proposed threshold again errs on the side of restraint, tolerating a higher rate of false omissions than false discoveries.


Figure 2: Prognostic performance measures, first efficiency gap under a district plan more extreme than threshold (horizontal axis) as a predictor of whether the subsequent efficiency gaps recorded under the district plan all have the same sign as the first efficiency gap. Vertical lines indicate $95 \%$ confidence intervals. Analysis examines negative, firstelection threshold values of the efficiency gap, consistent with Republican advantage.

Figure 3 presents the corresponding analysis of positive values of the first-election EG threshold, consistent with Democratic advantage. Here the proposed threshold becomes more stringent as we move to the right of each panel, in the sense that fewer plans trip the threshold. At high values of the threshold (the right hand edge of each panel), no plans trip the threshold and all are classified as "negatives," leading to a specificity of 1 , and false positive and false discovery rates of zero. Once again, accuracy is maximized at a less stringent threshold than the proposed .07 standard, around .03 . The false positive rate is much lower at the proposed threshold of .07 than at the accuracy-maximizing threshold of .03 . Note that the false discovery rates are moderately large but unstable and estimated with considerable imprecision; this is because there are
so few plans exhibiting high (pro-Democratic) levels of $E G$ in their first election. Moreover, of the few plans that do trip a given pro-Democratic threshold in their first election, it is reasonably likely that they will record efficiency gaps that will change sign over the life of the plan; this sign-flip or "false discovery" probability is about $35 \%$ at the proposed threshold of .07.

Comparing the analyses in Figures 2 and 3, we see an asymmetry in the results. The .07 threshold is more permissive with respect to plans that begin life exhibiting Democratic advantage than it is for plans that initially exhibit Republican advantage. At a +/- .07 threshold, the false discovery rate for plans initially exhibiting Republican advantage is under $10 \%$, but around $35 \%$ for plans initially exhibiting Democratic advantage. As Figure 3 shows, it is difficult to find a threshold for apparently proDemocratic plans that drives the false discovery rate to reliably low levels, if only because the historical record has relatively few instances of these types. We also note that the .07 threshold generates false omission rates of about $30 \%$ for both sets of plans.

Because the preceding discussion is somewhat technical, it is worth restating its principal conclusion: It is that an efficiency gap threshold of 0.07 is quite conservative, in that it sacrifices some accuracy (which would be maximized at a threshold of around 0.03 ) in order to drive down the false positive and false discovery rates. At a threshold of 0.07 , in fact, the false positive and false discovery rates are about half of the false omission rate, indicating that there are about twice as many plans that are not being flagged even though their $E G$ signs would remain one-sided throughout the cycle, than there are plans that are being flagged even though their $E G$ signs would flip. This is further powerful confirmation of the reasonableness of the 0.07 efficiency gap threshold.


Figure 3: Prognostic performance measures, first efficiency gap under a district plan more extreme than threshold (horizontal axis) as a predictor of whether the subsequent efficiency gaps recorded under the district plan all have the same sign as the first efficiency gap. Vertical lines indicate $95 \%$ confidence intervals. Analysis examines positive, firstelection threshold values of the efficiency gap, consistent with Democratic advantage.

## 3 First-election efficiency gap reliability with respect to the plan-average efficiency gap sign

Next we consider a slightly different kind of test; given that the first election under a district plan produces a value of the efficiency gap above or below a given threshold, how likely is it that the average value of the efficiency gap produced over the life of the plan lies on the same side of zero as that of the first election? Recall that the sign of the efficiency gap speaks to the corresponding direction of partisan advantage ( $E G<0$ is consistent with Republican advantage; conversely for $E G>0$ ). We expect that this will be a less strenuous test than asking if any $E G$ has an opposite sign to the first $E G$ observed under a district plan.


Figure 4: Prognostic performance measures, first efficiency gap under a district plan more extreme than threshold (horizontal axis) as a predictor of whether the average efficiency gap recorded under the district plan has the same sign as the first efficiency gap. Vertical lines indicate $95 \%$ confidence intervals. Analysis spans all state legislative elections and district plans as per my initial report, 1972-2014.


Figure 5: Prognostic performance measures, first efficiency gap under a district plan more extreme than threshold (horizontal axis) as a predictor of whether the average efficiency gap recorded under the district plan has the same sign as the first efficiency gap. Vertical lines indicate $95 \%$ confidence intervals. Analysis examines negative, first-election threshold values of the efficiency gap, consistent with Republican advantage.


Figure 6: Prognostic performance measures, first efficiency gap under a district plan more extreme than threshold (horizontal axis) as a predictor of whether the average efficiency gap recorded under the district plan has the same sign as the first efficiency gap. Vertical lines indicate $95 \%$ confidence intervals. Analysis examines positive, first-election threshold values of the efficiency gap, consistent with Democratic advantage.

Figures 4,5 and 6 show the prognostic performance of the first-election $E G$ with respect to the sign of the corresponding plan's average $E G$, looking at the absolute value of the first-election $E G$ (Figure 4), negative first-election efficiency gaps (Figure 5) and positive first-election efficiency gaps (Figure 6). The first thing to observe is the generally superior prognostic performance when it comes to forecasting the sign of the plan-average efficiency gap, relative to the prognostic performance with respect to all of the plan's efficiency gaps having the same sign. As anticipated, the former is better predicted by the plan's first-election efficiency gap than the latter. Second, the accuracy-versus-caution tradeoff noted earlier is also apparent. The proposed threshold of $+/ \sim 0.07$ trades away accuracy for very low false positive and false discovery rates, below $5 \%$, at the cost of higher false omission rates, a pattern we observed earlier. Finally, note that at the proposed threshold of $+/-0.07$, almost one-half of all plans with a negative (proRepublican) average $E G$ would not be candidates for scrutiny (right-hand panel of Figure 5); about one-third of plans with a positive (pro-Democratic) average $E G$ also would not trigger the threshold for scrutiny.

## 4 Relationship between the first-election efficiency gap and the plan-average efficiency gap

I next present analysis on a related issue, the relationship between the magnitudes of the first efficiency gap observed under a plan and the average efficiency gap we observe over the life of the plan. Does a larger or smaller first-election efficiency gap portend anything for the average value of the efficiency gap generated over the life of a district plan?

Clearly the first value of the efficiency gap and the plan-average efficiency gap are related; the former contributes to the calculation of the latter, and after the first election under a district plan we observe at most four more elections under the plan (given elections every two years in most states and redistricting once a decade). Accordingly we expect a positive correlation between the two quantities. The interesting empirical question-and one with considerable substantive implications for the issue at hand-is how strong the relationship is between the first-election efficiency gap and the corresponding plan-average efficiency gap. This speaks to the reliability of the firstelection $E G$ measure as a predictor of $E G$ over the life of the plan.

Figure 7 shows the relationship between the first-election $E G$ and the average $E G$ observed over the entire plan. Note that we restrict this analysis to plans with at least three elections, so that the first election does not unduly contribute to the calculation of the average; this restriction has the consequence of omitting elections from the most recent round of redistricting after the 2010 Census, which have contributed at most two elections. The black diagonal line on the graph is a 45 -degree line: if the relationship between first-election $E G$ and plan-average $E G$ were perfect, the data would all lie on this line. Instead we see a classic "regression-to-the-mean" pattern, with a positive regression slope of less than one (as indeed we should, given that the first-election $E G$ on the horizontal axis contributes to the average plotted on the vertical axis). But the relationship here is especially strong. The variation in plan-average efficiency gaps explained by this regression is quite large, about $73 \%$; after taking into account the uncertainty in the $E G$ scores (stemming from the imputation procedures used for uncontested districts; see my initial report) a $95 \%$ confidence interval on the variance explained measure ranges from $67 \%$ to $74 \%$ (the uncertainty has the consequence of tending to make the regression fit slightly less well). That is, even given the uncertainty that accompanies $E G$ measures due to uncontestedness, the relationship between firstelection $E G$ and plan-average $E G$ is quite strong.

In particular, at the threshold values of $+/-0.07$ there is very little doubt as to the planaverage value of the efficiency gap. The historical relationship between first-election $E G$ and plan-average EG shown in Figure 7 indicates that a first-election $E G$ of -.07 is typically associated with a plan-average $E G$ of about -0.053 ( $95 \%$ CI -0.111 to 0.004 ); the probability that the resulting, expected plan-average $E G$ is negative is $96.5 \%$. Conditional on a first-election $E G$ of .07 we typically see a plan-average $E G$ of about 0.037 ( $95 \% \mathrm{CI}-0.021$ to 0.093 ); the probability that the resulting, expected plan-average $E G$ is positive is $89.8 \%$. This constitutes additional, powerful evidence that (a) firstelection $E G$ estimates are predictive with respect to the $E G$ estimates that will be observed over the life of the plan; and (b) the threshold values of $+/-0.07$ are conservative, generating high-confidence predictions as to the behavior of the district plan in successive elections.

In the particular case of Wisconsin in 2012-the first election under the plan in question-I estimated the efficiency gap to be -0.133 ( $95 \%$ CI -0.146 to -0.121 ). The analysis of historical data discussed above-and graphed in Figure 7-indicates that the plan-average $E G$ for this plan will be -0.095 ( $95 \%$ CI -0.152 to -0.032$)^{1}$, a quite large value by historical standards, placing the current Wisconsin district plan among the five to ten most disadvantageous district plans for Democrats in the data available for analysis. The probability that the Wisconsin plan-if left undisturbed-will turn out to have a positive, pro-Democratic, average efficiency gap is for all practical purposes zero (less than $0.1 \%$ ).

[^0]

Figure 7: Scatterplot of first-election efficiency gap scores (horizontal axis) and planaverage efficiency gap scores (vertical axis). The diagonal black line is a 45 -degree line; the data would lie on this line if first-election efficiency gaps coincided with plan-average efficiency gaps. The solid blue line is a linear regression with slope .64 ( $95 \%$ CI 0.57 to 0.72 ); the shaded region around the blue line is a $95 \%$ confidence interval for the regression line. Vertical and horizontal lines extending from each data point cover 95\% confidence intervals in either direction, summarizing the uncertainty in both first-election $E G$ and plan-average $E G$, stemming from imputations for uncontested districts. Outliers are labeled (state, plan). Analysis restricted to plans with at least three elections (19722010), omitting plans adopted after the 2010 Census. The first-election $E G$ for the current Wisconsin plan is -0.133 ( $95 \%$ CI -0.146 to -0.121 ).

## 5 Party control as an explanation for change in the efficiency gap

Both Trende and Goedert point out that, on average, state house plans have exhibited pro-Republican efficiency gaps in recent years (Trende, paragraphs 129-30; Goedert p. 19). They then argue that this pro-Republican mean is attributable to a natural pro-Republican political geography in many states. However, as I found in my initial report, the overall efficiency gap average, over the entire 1972-2014 period, is very close to zero (Jackman Report, p. 35, 45, 57). There is thus no sign of a natural pro-Republican advantage in the dataset as a whole, nor any evidence (despite Trende and Goedert's unsupported assertions to the contrary) that states' political geography is changing in ways that favor Republicans.

In fact, the one historical change that is undeniable is the trend toward unified Republican control over redistricting. As Figure 8 displays, only about $10 \%$ of all state house plans were designed by Republicans in full control of the state government in the 1990 s, compared to about $30 \%$ by Democrats in full control and about $60 \%$ by another institution (divided government, a commission, or a court). But in the 2000s, Republicans were fully responsible for slightly more plans than were Democrats (about 20\% versus about $15 \%$ ). And in the 2010 s, the partisan gap jumped again, to about $40 \%$ of plans designed entirely by Republicans, versus less than 20\% designed entirely by Democrats.


Figure 8: Share of all state house plans, by cycle, designed by Democrats in unified control of state government, by Republicans in unified control of state government, or by another institution (divided state government, commission, or court).

To determine the impact of this change in party control on the change in the efficiency gap over the last generation, I carry out three regressions, one for the 1990 redistricting cycle, one for the 2000 cycle, and one for the 2010 cycle. In each case, state house plans' efficiency gaps are the dependent variable, and unified Democratic control over redistricting and unified Republican control over redistricting are the independent variables. (The omitted category is any other institution responsible for redistricting, such as divided government, a court, or a commission.) Figure 9 then displays the actual average efficiency gap for each cycle, as well as the predicted average efficiency gap if the distribution of party control over redistricting had remained unchanged since the 1990s.

As is evident from the chart, state house plans' average efficiency gap in the 2000 cycle would have been substantially less pro-Republican (by about 0.5 percentage points) had Republicans not gained control of more state governments in this cycle relative to the 1990s. And in the current cycle, all of the efficiency gap's movement in a Republican direction would have been erased had the distribution of party control over redistricting not changed since the 1990s. That is, if the same distribution of party control had existed in this cycle as in the 1990s, state house plans' average efficiency gap would have been
very close to zero, not over $3 \%$ in a Republican direction. Accordingly, it is the change in party control that appears to account for essentially all of the pro-Republican trend in the efficiency gap over the past two decades-and not, as claimed by Trende and Goedert, a dramatic alteration of the country's political geography.


Figure 9: Actual and predicted values of state house plans' average efficiency gaps by cycle. Predicted values calculated assuming that the 1990s distribution of party control over redistricting remained constant in subsequent cycles.

## 6 Response to the Chen and Rodden map simulations

Both Trende and Goedert cite a recent article by Chen and Rodden (2013) that purports to find, based on simulations of hypothetical district maps, that random redistricting would benefit Republicans because of their more efficient spatial allocation (Trende, paragraphs 89, 126; Goedert, pp. 13, 18, 21). While I respect Chen and Rodden's contribution, there are several issues with their work that make it inapplicable here.

First, Chen and Rodden do not even attempt to simulate lawful plans. Rather, they simulate plans "using only the traditional districting criteria of equal apportionment and
geographic contiguity and compactness" (Chen and Rodden, 248). They do not take into account Section 2 of the Voting Rights Act, which often requires majority-minority districts to be constructed. They also do not take into account Section 5 of the VRA, which until 2013 meant that existing majority-minority districts could not be eliminated in certain states. And they do not take into account state-level criteria such as respect for political subdivisions and respect for communities of interest, which are in effect in a majority of states (NCSL 2010, pp. 125-27).

Second, Chen and Rodden only use presidential election results in their analysis, but these outcomes may diverge from state legislative election results due to voter roll-off as well as voter preferences that vary by election level. As Stephanopoulos and McGhee have noted, "If certain voters consistently support Republicans at the presidential level and Democrats at the legislative level, then presidential data may produce more proRepublican estimates than legislative data" (Stephanopoulos \& McGhee, 870). In fact, this is exactly what seems to be occurring; at the congressional level, efficiency gaps are about $6 \%$ more Republican when they are calculating using presidential data than when they are computed on the basis of congressional election results.

Third, Chen and Rodden's simulated maps do not constitute a representative sample of the entire plan solution space. Their simulation algorithm has "no theoretical justification," is "best described as ad-hoc," and is not "designed to yield a representative sample of redistricting plans" (Fifield et al. 2015, pp. 2-3; Altman \& McDonald 2010, p. 108). The explanation for this lack of representativeness is highly technical and involves the details of the particular simulation approach adopted by Chen and Rodden. But its implication is clear: that no conclusions can yet be drawn about the partisan consequences of randomly drawn maps.

Lastly, Chen and Rodden's results are directly contradicted by Fryer and Holden, who also simulated contiguous, compact, and equipopulous districts for multiple states. Unlike Chen and Rodden, Fryer and Holden found that, "[u]nder maximally compact districting, measures of Bias are slightly smaller in all states except [one]" (Fryer \& Holden 2011, p. 514). Fryer and Holden also found that "[i]n terms of responsiveness . . . there are large and statistically significant" increases in all states, sometimes on the order of a fivefold rise (p. 514). Their analysis thus leads to the opposite inference from Chen and Rodden's: that randomly drawn contiguous and compact districts favor neither party and substantially boost electoral responsiveness.

## 7 Trende's analysis of particular plans

Trende devotes a large portion of his report (paragraphs 106-31) to analyzing the efficiency gaps of particular state legislative and congressional plans. He first examines a set of seventeen state legislative plans that had efficiency gaps favoring the same party over their entire lifespans, arguing that not all of these plans were gerrymanders (paragraphs 106-14). He then cites a series of congressional plans, some of which he claims had large efficiency gaps despite not being gerrymanders, and others of which allegedly had small efficiency gaps despite being gerrymanders (paragraphs 115-24). All of this analysis is riddled with conceptual and methodological errors that, in my judgment, renders it unreliable and unhelpful to the court.

Beginning with the set of seventeen state legislative plans that had efficiency gaps of the same sign throughout their lifespans, Trende asserts that they "would be included in the definition of a gerrymander," and are a "list of gerrymandered states" (paragraphs 109-10). But neither plaintiffs nor I argue that these plans should have been held unconstitutional. That is, neither plaintiffs nor I argue that these plans were designed with partisan intent (the first element of plaintiffs' proposed test), that their initial efficiency gaps exceeded a reasonable threshold (the second element), or that their efficiency gaps could have been avoided (the third element). To the contrary, I simply included these plans in my report to illuminate historical cases in which the efficiency gap's direction did not change over the course of a decade. I never stated or implied that these plans should have been deemed unlawful.

However, if we focus on the plans among the seventeen that likely would have failed plaintiffs' proposed test (at least the first two elements), we see that both the test and the efficiency gap perform exceptionally well. Five of the seventeen plans featured unified control by a single party over redistricting (from which, like Goedert (2014) and Goedert (2015), we can infer partisan intent) as well as an initial efficiency gap above 7\% (the threshold I recommended in my initial report): Florida in the 1970s, Florida in the 2000 s, Michigan in the 2000 s, New York in the 1970s, and Ohio in the 2000s. Assuming that these plans' large efficiency gaps were avoidable (a granular inquiry that cannot be carried out here), it would have been quite reasonable for all of these maps to attract heightened judicial scrutiny. In particular:

- Florida's plan in the 1970s was designed exclusively by Democrats, opened with a $9.9 \%$ pro-Democratic efficiency gap, averaged a $7.0 \%$ pro-Democratic efficiency gap over its lifespan, and never once favored Republicans.
- Florida's plan in the 2000s was designed exclusively by Republicans, opened with a $8.9 \%$ pro-Republican efficiency gap, averaged a $11.2 \%$ pro-Republican efficiency gap over its lifespan, and never once favored Democrats.
- Michigan's plan in the 2000s was designed exclusively by Republicans, opened with a $12.0 \%$ pro-Republican efficiency gap, averaged a $10.3 \%$ pro-Republican efficiency gap over its lifespan, and never once favored Democrats.
- New York's plan in the 1970 s was designed exclusively by Republicans, opened with a $10.7 \%$ pro-Republican efficiency gap, averaged a $9.7 \%$ pro-Republican efficiency gap over its lifespan, and never once favored Democrats.
- Ohio's plan in the 2000 s was designed exclusively by Republicans, opened with a $8.6 \%$ pro-Republican efficiency gap, averaged a $9.0 \%$ pro-Republican efficiency gap over its lifespan, and never once favored Democrats.
Accordingly, we see that if my report's set of seventeen plans is analyzed properly, the opposite conclusion emerges from the one advocated by Trende. Only a subset of the seventeen plans likely would have failed plaintiffs' proposed test. But every member of this subset turns out to have been an exceptionally severe and durable gerrymander, featuring a very large and consistent efficiency gap over its lifespan. These are precisely the historical cases in which judicial intervention may have been advisable.

After commenting on these seventeen state legislative plans, Trende discusses a series of congressional plans, all from the 2000 and 2010 redistricting cycles. These congressional plans are entirely irrelevant to this case, which deals only with state legislative redistricting. Neither in their complaint nor in their subsequent filings do plaintiffs ever argue that their approach should be applied to congressional plans. And neither Mayer nor I provide any empirical analysis of congressional plans. In my initial report, in particular, I examined state legislative plans from 1972 to the present, but no congressional plans at all.

This state legislative focus has two explanations. First, and more importantly, each congressional delegation is not a legislative chamber in its own right, but rather a portion (often a very small portion) of the U.S. House of Representatives. Methods applicable to entire chambers cannot simply be transferred wholesale to delegations that make up only fractions of Congress. Second, most congressional delegations have many fewer seats than most state houses. The efficiency gap becomes lumpier when there are fewer seats, because each seat accounts for a larger proportion of the seat total, and the efficiency gap thus shifts more as each seat changes hands. This lumpiness is entirely avoided when state legislative plans, which typically have dozens or even hundreds of districts, are at issue.

For these reasons, Stephanopoulos and McGhee make two adjustments when analyzing congressional plans in their work on the efficiency gap. First, they convert the efficiency gap from percentage points to seats by multiplying the raw efficiency gap by each state's number of congressional districts. As they explain their method, "What matters in congressional plans is their impact on the total number of seats held by each party at the national level. Conversely, state houses are self-contained bodies of varying sizes, for which seat shares reveal the scale of parties' advantages and enable temporal and spatial comparability" (Stephanopoulos \& McGhee, 869). Second, they only calculate efficiency gaps for states with at least eight congressional districts. Efficiency gaps are lumpier for states with fewer than eight districts, and additionally, congressional "redistricting in smaller states has only a minor influence on the national balance of power" (Stephanopoulos \& McGhee, 868).

In his report, Trende fails to make either of these necessary adjustments when examining congressional plans. That is, he does not convert the efficiency gap from percentage points to seats, and he calculates the efficiency gap for small congressional delegations with fewer than eight seats. There is no authority in the literature for his methodological choices, and he is unable to cite any. And his flawed methods have serious substantive consequences that render his results entirely untrustworthy.

Take Trende's failure to convert the efficiency gap from percentage points to House seats. He claims that Alabama's congressional plan had an efficiency gap of $12.5 \%$ in 2002, that Arizona's congressional plan had an efficiency gap of $16 \%$ in 2012, that Colorado's congressional plan had an efficiency gap of $-9 \%$ in 2002 and $-10 \%$ in 2012, that Illinois's congressional plan had an efficiency gap of $-9 \%$ in 2002, and that Iowa's congressional plan had an efficiency gap of $-20 \%$ in 2002-all above my suggested $7 \%$ threshold for state legislative plans (paragraphs 115-16, 118-19, 121-22). But when converted to seats, all of these efficiency gaps become quite small, lower in all cases than the two-seat threshold proposed in the literature for congressional plans (Stephanopoulos \& McGhee, 887-88). Specifically, using Trende's own calculations-which, as I discuss below, are incorrect in any event-Alabama had an efficiency gap of -0.9 seats in 2002, Arizona had an efficiency gap of 1.4 seats in 2012, Colorado had an efficiency gap of -0.6 seats in 2002 and -0.7 seats in 2012, Illinois had an efficiency gap of -1.7 seats in 2002, and Iowa had an efficiency gap of -1.0 seats in 2002. None of these scores are high enough to rise to presumptive unlawfulness under the literature's suggested two-seat threshold, meaning that we come to exactly the opposite conclusion as Trende after making the necessary adjustment.

Next take Trende's consideration of Alabama's congressional plan in 2002 (which had seven districts), Iowa's congressional plan in 2002 (five districts), and Colorado's congressional plans in 2002 and 2012 (seven districts each) (paragraphs 115-16, 119, 122). All four of these plans have fewer than eight districts, and so, based on the literature, should not be included in any efficiency gap analysis because of the measure's lumpiness when applied to so few seats. Trende nowhere acknowledges this limitation, and indeed appears unaware of its existence.

Moreover, Trende's study of congressional plans is marred by two further flaws, one conceptual and the other methodological. The conceptual defect is that, as in his earlier discussion of state legislative plans, he assumes that a large efficiency gap is all that is necessary to render a plan unconstitutional. He writes that efficiency gaps of $-12.5 \%$, $9 \%,-9 \%,-20 \%$, and $16 \%$ "would invite court scrutiny as a Republican gerrymander" or "would invite court scrutiny as a Democratic gerrymander" (paragraphs 115, 116, 118, $119,121,122$ ). But again, this is not plaintiffs' proposed test. A large efficiency gap is only a single prong of the test, and does not result in a verdict of unconstitutionality unless it is paired with a finding of partisan intent and a finding that it could have been avoided. Trende entirely overlooks these other elements.

The methodological defect is that whenever there were uncontested congressional races, Trende simply substituted presidential election results for the missing congressional results. As he put it in his deposition, he "used presidential results" and "imputed those results to the congressional races" whenever the races were uncontested (Trende deposition, p. 83). This is an exceptionally crude method that is guaranteed to produce errors, both because there is voter roll-off from the presidential to the congressional level and because voters may have different presidential and congressional preferences. Of course, presidential results can be used as the inputs to a regression model that predicts the outcomes of uncontested congressional races. Indeed, this is the preferred approach in the literature, and the approach I employed in my initial report. But presidential results cannot simply be plugged in without any adjustment, and no competent social scientist would have done so.

Accordingly, in my judgment, Trende's examination of particular state legislative and congressional plans is unreliable and entitled to no weight by the court. The state legislative analysis ignores the actual elements of plaintiffs' proposed test, and would have led to the opposite conclusion if these elements had been taken into account. Likewise, the congressional analysis ignores the test's prongs, fails to convert the efficiency gap from percentage points to seats, improperly considers states with small House delegations,
improperly substitutes presidential election results whenever congressional results are missing-and deals with federal elections that simply are not part of this case.

Dated December 21, 2015
/s/ Simon Jackman
Simon Jackman, PhD
Department of Political Science
Stanford University

## References

Altman, Micah and McDonald, Michael 2010, "The Promise and Perils of Computers in Redistricting." 2010. Duke Journal of Constitutional Law \& Public Policy 5:69-111.

Chen, Jowei and Jonathan Rodden. 2013. "Unintentional Gerrymandering: Political Geography and Electoral Bias in Legislatures". Quarterly Journal of Political Science 8: 239-69.

Fifield, Benjamin, Higgins, Michael, Imai, Kosuke. Tarr, Alexander. 2015. "A New Automated Redistricting Simulator Using Markov Chain Monte Carlo." Working Paper, available at http://imai.princeton.edu/research/files/redist.pdf.

Goedert, Nicholas. 2014. "Gerrymandering or Geography?: How Democrats Won the Popular Vote but Lost the Congress in 2012." Research \& Politics 1(1): 2053168014528683.

Goedert, Nicholas. 2015. "The Case of the Disappearing Bias: A 2014 Update to the "Gerrymandering or Geography Debate." Forthcoming in Research and Politics, November 2015.

National Conference of State Legislators. September 29, 2009. Redistricting Law 2010.
Nicholas Stephanopoulos \& Eric McGhee. 2015. "Partisan Gerrymandering and the Efficiency Gap" 82 University of Chicago Law Review 831-900.

Expert Report of Professor Nicholas Goedert in Whitford v. Nichol. December 2, 2015. "Use of Efficiency Gap in Analyzing Partisan Gerrymandering, Report for State of Wisconsin, Whitford $v$. Nichol.

Expert Report of Professor Simon Jackman in Whitford $v$. Nichol. July 7, 2015. "Assessing the Current Wisconsin State Legislative Districting Plan."

Expert Report of Professor Ken Mayer in Whitford $\nu$. Nichol. July 3, 2015. "Analysis of the Efficiency Gaps of Wisconsin's Current Legislative District Plan and Plaintiffs' Demonstration Plan"

Declaration of Sean P. Trende in Whitford v. Nichol. December 2, 2015.
Deposition of Sean P. Trende in Whitford $v$ Nichol. December 14, 2015.

## Case

Vieth v. Jubilerer, 541 U.S. 267 (2004).

From: Nicholas Stephanopoulos nicholas.stephanopoulos@gmail.com Subject: Datasets

Date: Sat Dec 052015 05:33:58 GMT+0530 (IST)
To: Jackman jackman@stanford.edu
Cc: Peter Earle peter@earle-law.com, Paul Strauss Pstrauss@clccrul.org, Ruth Greenwood rgreenwood@clccrul.org

Simon,
Attached are the two datasets I previously referenced: one containing efficiency gap data at the congressional level, and another containing information on the institution responsible for redistricting at the state legislative level. Please let me know if you have any questions. Thanks very much.

Nick

Nicholas O. Stephanopoulos
Assistant Professor of Law
University of Chicago Law School
nsteph@uchicago.edu
(773) 702-4226
http://www.law.uchicago.edu/faculty/stephanopoulos

## Attachments:

Congressional EG Data.xlsx (73.72 kB)
Party Control Data.xlsx ( 55.87 kB )

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 1 of 30


Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 2 of 30

Pennsylvania	PA	421970							
Rhode Island	RI	441970							
South Carolina	SC	451970							
South Dakota	SD	461970							
Tennessee	TN	471970							
Texas	TX	481970							
Utah	UT	491970							
Vermont	VT	501970							
Virginia	VA	511970							
Washington	WA	531970							
West Virginia	WV	541970							
Wisconsin	WI	551970							
Wyoming	WY	561970							
Alaska	AK	21972							
Arizona	AZ	41972							
Arkansas	AR	51972							
California	CA	61972	0	0	1	0	1	0	0
Colorado	CO	81972	0	0	1	0	0	1	0
Connecticut	CT	91972	1	0	0	0	0	0	1
Delaware	DE	101972	0	0	1	0	0	1	0
Florida	FL	121972	0	0	1	0	1	0	0
Georgia	GA	131972	0	0	1	0	1	0	0
Hawaii	HI	151972							
Idaho	ID	161972							
Illinois	IL	171972							
Indiana	IN	181972	0	0	1	0	0	1	0
lowa	IA	191972	0	1	0	0	0	0	1
Kansas	KS	201972	0	0	0	1	0	0	1
Kentucky	KY	211972							
Louisiana	LA	221972							
Maine	ME	231972							
Massachusetts	MA	251972	0	0	1	0	1	0	0
Michigan	MI	261972	0	1	0	0	0	0	1
Minnesota	MN	271972							
Mississippi	MS	281972	0	0	1	0	1	0	0
Missouri	MO	291972	0	1	0	0	0	0	1
Montana	MT	301972							
Nebraska	NE	311972							

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 3 of 30

Nevada	NV	321972	0	0	0	1	0	0	1
New Hampshire	NH	331972							
New Jersey	NJ	341972							
New Mexico	NM	351972	0	0	1	0	1	0	0
New York	NY	361972	0	0	1	0	0	1	0
North Carolina	NC	371972							
North Dakota	ND	381972							
Ohio	OH	391972	0	0	0	1	0	0	1
Oklahoma	OK	401972	0	0	1	0	1	0	0
Oregon	OR	411972	0	0	0	1	0	0	1
Pennsylvania	PA	421972	1	0	0	0	0	0	1
Rhode Island	RI	441972	0	0	1	0	1	0	0
South Carolina	SC	451972	0	0	1	0	1	0	0
South Dakota	SD	461972							
Tennessee	TN	471972	0	1	0	0	0	0	1
Texas	TX	481972	0	0	1	0	1	0	0
Utah	UT	491972	0	0	0	1	0	0	1
Vermont	VT	501972							
Virginia	VA	521972							
Washington	WA	531972	0	1	0	0	0	0	1
West Virginia	WV	541972							
Wisconsin	WI	551972	0	0	0	1	0	0	1
Wyoming	WY	561972							
Alabama	AL	11974	0	1	0	0	0	0	1
Alaska	AK	21974							
Arizona	AZ	41974							
Arkansas	AR	51974							
California	CA	61974	0	1	0	0	0	0	1
Colorado	CO	81974	0	0	1	0	0	1	0
Connecticut	CT	91974	1	0	0	0	0	0	1
Delaware	DE	101974	0	0	1	0	0	1	0
Florida	FL	121974	0	0	1	0	1	0	0
Georgia	GA	131974	0	0	1	0	1	0	0
Hawaii	HI	151974							
Idaho	ID	161974							
Illinois	IL	171974							
Indiana	IN	181974	0	0	1	0	0	1	0
lowa	IA	191974	0	1	0	0	0	0	1

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 4 of 30

Kansas	KS	201974	0	0	0	1	0	0	1
Kentucky	KY	211974							
Maine	ME	231974	0	1	0	0	0	0	1
Maryland	MD	241974							
Massachusetts	MA	251974	0	0	1	0	1	0	0
Michigan	MI	261974	0	1	0	0	0	0	1
Minnesota	MN	271974	0	1	0	0	0	0	1
Missouri	MO	291974	0	1	0	0	0	0	1
Montana	MT	301974	1	0	0	0	0	0	1
Nebraska	NE	311974							
Nevada	NV	321974	0	0	0	1	0	0	1
New Hampshire	NH	331974							
New Jersey	NJ	341974							
New Mexico	NM	351974	0	0	1	0	1	0	0
New York	NY	361974	0	0	1	0	0	1	0
North Carolina	NC	371974							
North Dakota	ND	381974							
Ohio	OH	391974	0	0	0	1	0	0	1
Oklahoma	OK	401974	0	0	1	0	1	0	0
Oregon	OR	411974	0	0	0	1	0	0	1
Pennsyivania	PA	421974	1	0	0	0	0	0	1
Rhode Island	RI	441974	0	0	1	0	1	0	0
South Carolina	SC	451974	0	0	1	0	1	0	0
South Dakota	SD	461974							
Tennessee	TN	471974	0	0	1	1	0	0	1
Texas	TX	481974	0	0	1	0	1	0	0
Utah	UT	491974	0	0	0	1	0	0	1
Vermont	VT	501974							
Virginia	VA	511974							
Washington	WA	531974	0	1	0	0	0	0	1
West Virginia	WV	541974	0	0	1	0	1	0	0
Wisconsin	WI	551974	0	0	0	1	0	0	1
Wyoming	WY	561974							
Alaska	AK	21976							
Arizona	AZ	41976							
Arkansas	AR	51976							
California	CA	61976	0	1	0	0	0	0	1
Colorado	CO	81976	0	0	1	0	0	1	0

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 5 of 30

Connecticut	CT	91976	1	0	0	0	0	0	1
Delaware	DE	101976	0	0	1	0	0	1	0
Florida	FL	121976	0	0	1	0	1	0	0
Georgia	GA	131976	0	0	1	0	1	0	0
Hawaii	HI	151976							
Idaho	ID	161976	0	0	0	1	0	0	1
Illinois	IL	171976							
Indiana	IN	181976	0	0	1	0	0	1	0
lowa	IA	191976	0	1	0	0	0	0	1
Kansas	KS	201976	0	0	0	1	0	0	1
Kentucky	KY	211976							
Louisiana	LA	221976							
Maine	ME	231976	0	1	0	0	0	0	1
Massachusetts	MA	251976	0	0	1	0	1	0	0
Michigan	M1	261976	0	1	0	0	0	0	1
Minnesota	MN	271976	0	1	0	0	0	0	1
Mississippi	MS	281976	0	0	1	0	1	0	0
Missouri	MO	291976	0	1	0	0	0	0	1
Montana	MT	301976	1	0	0	0	0	0	1
Nebraska	NE	311976							
Nevada	NV	321976	0	0	0	1	0	0	1
New Hampshire	NH	331976							
New Jersey	NJ	341976							
New Mexico	NM	351976	0	0	1	0	1	0	0
New York	NY	361976	0	0	1	0	0	1	0
North Carolina	NC	371976							
North Dakota	ND	381976							
Ohio	OH	391976	0	0	0	1	0	0	1
Oklahoma	OK	401976	0	0	1	0	1	0	0
Oregon	OR	411976	0	0	0	1	0	0	1
Pennsylvania	PA	421976	1	0	0	0	0	0	1
Rhode Island	RI	441976	0	0	1	0	1	0	0
South Carolina	SC	451976	0	0	1	0	1	0	0
South Dakota	SD	461976							
Tennessee	TN	471976	0	0	1	1	0	0	1
Texas	TX	481976	0	0	1	0	1	0	0
Utah	UT	491976	0	0	0	1	0	0	1
Vermont	VT	501976							


Virginia	VA	511976							
Washington	WA	531976	0	1	0	0	0	0	1
West Virginia	WV	541976	0	0	1	0	1	0	0
Wisconsin	WI	551976	0	0	0	1	0	0	1
Wyoming	WY	561976							
Alabama	AL	11978	0	1	0	0	0	0	1
Alaska	AK	21978							
Arizona	AZ	41978							
Arkansas	AR	51978							
California	CA	61978	0	1	0	0	0	0	1
Colorado	CO	81978	0	0	1	0	0	1	0
Connecticut	CT	91978	1	0	0	0	0	0	1
Delaware	DE	101978	0	0	1	0	0	1	0
Florida	FL	121978	0	0	1	0	1	0	0
Georgia	GA	131978	0	0	1	0	1	0	0
Hawaii	HI	151978							
Idaho	ID	161978	0	0	0	1	0	0	1
Illinois	IL	171978							
Indiana	IN	181978	0	0	1	0	0	1	0
lowa	IA	191978	0	1	0	0	0	0	1
Kansas	KS	201978	0	0	0	1	0	0	1
Kentucky	KY	211978							
Maine	ME	231978	0	1	0	0	0	0	1
Maryland	MD	241978							
Massachusetts	MA	251978	0	0	1	0	1	0	0
Michigan	MI	261978	0	1	0	0	0	0	1
Minnesota	MN	271978	0	1	0	0	0	0	1
Missouri	MO	291978	0	1	0	0	0	0	1
Montana	MT	301978	1	0	0	0	0	0	1
Nebraska	NE	311978							
Nevada	NV	321978	0	0	0	1	0	0	1
New Hampshire	NH	331978							
New Jersey	NJ	341978							
New Mexico	NM	351978	0	0	1	0	1	0	0
New York	NY	361978	0	0	1	0	0	1	0
North Carolina	NC	371978							
North Dakota	ND	381978							
Ohio	OH	391978	0	0	0	1	0	0	1

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 7 of 30

Oklahoma	OK	401978	0	0	1	0	1	0	0
Oregon	OR	411978	0	0	0	1	0	0	1
Pennsylvania	PA	421978	1	0	0	0	0	0	1
Rhode Island	RI	441978	0	0	1	0	1	0	0
South Carolina	SC	451978	0	0	1	0	1	0	0
South Dakota	SD	461978							
Tennessee	TN	471978	0	0	1	1	0	0	1
Texas	TX	481978	0	0	1	0	1	0	0
Utah	UT	491978	0	0	0	1	0	0	1
Vermont	VT	501978							
Virginia	VA	511978							
Washington	WA	531978	0	1	0	0	0	0	1
West Virginia	WV	541978	0	0	1	0	1	0	0
Wisconsin	WI	551978	0	0	0	1	0	0	1
Wyoming	WY	561978							
Alaska	AK	21980							
Arizona	AZ	41980							
Arkansas	AR	51980							
California	CA	61980	0	1	0	0	0	0	1
Colorado	CO	81980	0	0	1	0	0	1	0
Connecticut	CT	91980	1	0	0	0	0	0	1
Delaware	DE	101980	0	0	1	0	0	1	0
Florida	FL	121980	0	0	1	0	1	0	0
Georgia	GA	131980	0	0	1	0	1	0	0
Hawaii	HI	151980							
Idaho	ID	161980	0	0	0	1	0	0	1
lllinois	IL	171980							
Indiana	IN	181980	0	0	1	0	0	1	0
lowa	IA	191980	0	1	0	0	0	0	1
Kansas	KS	201980	0	0	0	1	0	0	1
Kentucky	KY	211980							
Louisiana	LA	221980							
Maine	ME	231980	0	1	0	0	0	0	1
Massachusetts	MA	251980	0	0	1	0	1	0	0
Michigan	MI	261980	0	1	0	0	0	0	1
Minnesota	MN	271980	0	1	0	0	0	0	1
Mississippi	MS	281980	0	0	1	0	1	0	0
Missouri	MO	291980	0	1	0	0	0	0	1


Montana	MT	301980	1	0	0	0	0	0	1
Nebraska	NE	311980							
Nevada	NV	321980	0	0	0	1	0	0	1
New Hampshire	NH	331980							
New Jersey	NJ	341980							
New Mexico	NM	351980	0	0	1	0	1	0	0
New York	NY	361980	0	0	1	0	0	1	0
North Carolina	NC	371980							
North Dakota	ND	381980							
Ohio	OH	391980	0	0	0	1	0	0	1
Oklahoma	OK	401980	0	0	1	0	1	0	0
Oregon	OR	411980	0	0	0	1	0	0	1
Pennsylvania	PA	421980	1	0	0	0	0	0	1
Rhode Island	RI	441980	0	0	1	0	1	0	0
South Carolina	SC	451980	0	0	1	0	1	0	0
South Dakota	SD	461980							
Tennessee	TN	471980	0	0	1	1	0	0	1
Texas	TX	481980	0	0	1	0	1	0	0
Utah	UT	491980	0	0	0	1	0	0	1
Vermont	VT	501980							
Virginia	VA	511980							
Washington	WA	531980	0	1	0	0	0	0	1
West Virginia	WV	541980	0	0	1	0	1	0	0
Wisconsin	WI	551980	0	0	0	1	0	0	1
Wyoming	WY	561980							
Alabama	AL	11982	0	0	1	0	1	0	0
Alaska	AK	21982	0	0	0	1	0	0	1
Arizona	$A Z$	41982							
Arkansas	AR	51982	0	0	1	0	0	1	0
California	CA	61982	0	0	1	0	1	0	0
Colorado	CO	81982	1	0	0	0	0	0	1
Connecticut	CT	91982	0	0	1	0	1	0	0
Delaware	DE	101982	0	0	0	1	0	0	1
Florida	FL	121982	0	0	1	0	1	0	0
Georgia	GA	131982	0	0	1	0	1	0	0
Hawaii	HI	151982	1	0	0	0	0	0	1
Idaho	ID	161982	0	0	0	1	0	0	1
Illinois	IL	171982	0	0	1	0	1	0	0

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 9 of 30

Indiana	IN	181982	0	0	1	0	0	1	0
lowa	IA	191982	1	0	0	0	0	0	1
Kansas	KS	201982	0	0	0	1	0	0	1
Maine	ME	231982	0	0	0	1	0	0	1
Maryland	MD	241982							
Massachusetts	MA	251982	0	0	1	0	1	0	0
Michigan	MI	261982	0	1	0	0	0	0	1
Minnesota	MN	271982	0	1	0	0	0	0	1
Missouri	MO	291982	1	0	0	0	0	0	1
Montana	MT	301982	1	0	0	0	0	0	1
Nebraska	NE	311982							
Nevada	NV	321982	0	0	0	1	0	0	1
New Hampshire	NH	331982							
New Jersey	NJ	341982							
New Mexico	NM	351982	0	0	1	0	1	0	0
New York	NY	361982	0	0	0	1	0	0	1
North Carolina	NC	371982							
North Dakota	ND	381982							
Ohio	OH	391982	0	0	0	1	0	0	1
Oklahoma	OK	401982	0	0	1	0	1	0	0
Oregon	OR	411982	0	0	0	1	0	0	1
Pennsylvania	PA	421982	1	0	0	0	0	0	1
Rhode Island	RI	441982	0	0	1	0	1	0	0
South Carolina	SC	451982	0	0	1	0	1	0	0
South Dakota	SD	461982							
Tennessee	TN	471982	0	0	1	0	1	0	0
Texas	TX	481982	0	1	0	0	0	0	1
Utah	UT	491982	0	0	1	0	0	1	0
Vermont	VT	501982							
Virginia	VA	511982							
Washington	WA	531982	0	0	1	0	0	1	0
West Virginia	WV	541982	0	0	1	0	1	0	0
Wisconsin	WI	551982	0	1	0	0	0	0	1
Wyoming	WY	561982							
Alabama	AL	11984	0	0	1	0	1	0	0
Alaska	AK	21984	0	0	0	1	0	0	1
Arizona	AZ	41984							
Arkansas	AR	51984	0	0	1	0	0	1	0

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 10 of 30

California	CA	61984	0	0	1	0	1	0	0
Colorado	CO	81984	1	0	0	0	0	0	1
Connecticut	CT	91984	0	0	1	0	1	0	0
Delaware	DE	101984	0	0	0	1	0	0	1
Florida	FL	121984	0	0	1	0	1	0	0
Georgia	GA	131984	0	0	1	0	1	0	0
Hawaii	HI	151984	1	0	0	0	0	0	1
Idaho	ID	161984	0	1	0	0	0	0	1
Illinois	IL	171984	0	0	1	0	1	0	0
Indiana	IN	181984	0	0	1	0	0	1	0
lowa	IA	191984	1	0	0	0	0	0	1
Kansas	KS	201984	0	0	0	1	0	0	1
Kentucky	KY	211984	0	0	1	0	1	0	0
Louisiana	LA	221984							
Maine	ME	231984	0	0	0	1	0	0	1
Massachusetts	MA	251984	0	0	1	0	1	0	0
Michigan	Ml	261984	0	1	0	0	0	0	1
Minnesota	MN	271984	0	1	0	0	0	0	1
Mississippi	MS	281984	0	0	1	0	1	0	0
Missouri	MO	291984	1	0	0	0	0	0	1
Montana	MT	301984	1	0	0	0	0	0	1
Nebraska	NE	311984							
Nevada	NV	321984	0	0	0	1	0	0	1
New Hampshire	NH	331984							
New Jersey	NJ	341984							
New Mexico	NM	351984	0	0	1	0	1	0	0
New York	NY	361984	0	0	0	1	0	0	1
North Carolina	NC	371984							
North Dakota	ND	381984							
Ohio	OH	391984	0	0	0	1	0	0	1
Oklahoma	OK	401984	0	0	1	0	1	0	0
Oregon	OR	411984	0	0	0	1	0	0	1
Pennsylvania	PA	421984	1	0	0	0	0	0	1
Rhode Island	RI	441984	0	0	1	0	1	0	0
South Carolina	SC	451984	0	0	1	0	1	0	0
South Dakota	SD	461984							
Tennessee	TN	471984	0	0	1	0	1	0	0
Texas	TX	481984	0	0	1	0	1	0	0

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 11 of 30

Utah	UT	49	1984	0	0	1	0	0	1	0
Vermont	vT	50	1984							
Virginia	va	51	1984							
Washington	WA	53	1984	0	0	1	0	0	1	0
West Virginia	wv	54	1984	0	0	1	0	1	0	0
Wisconsin	w	55	1984	0	0	0	1	0	0	1
Wyoming	wr	56	1984							
Alabama	AL	1	1986	0	0	1	0	1	0	0
Alaska	AK	2	1986	0	0	0	1	0	0	1
Arizona	AZ	4	1986							
Arkansas	AR	5	1986	0	0	1	0	0	1	0
California	CA	6	1986	0	0	1	0	1	0	0
Colorado	CO	8	1986	1	0	0	0	0	0	1
Connecticut	CT	9	1986	0	0	1	0	1	0	0
Delaware	DE	10	1986	0	0	0	1	0	0	1
Florida	FL	12	1986	0	0	1	0	1	0	0
Georgia	GA	13	1986	0	0	1	0	1	0	0
Hawaii	H	15	1986	1	0	0	0	0	0	1
Idaho	ID	16	1986	0	1	0	0	0	0	1
Illinois	IL	17	1986	0	0	1	0	1	0	0
Indiana	IN	18	1986	0	0	1	0	0	1	0
lowa	IA	19	1986	1	0	0	0	0	0	1
Kansas	KS	20	1986	0	0	0	1	0	0	1
Kentucky	KY	21	1986	0	0	1	0	1	0	0
Maine	ME	23	1986	0	0	0	1	0	0	1
Maryland	MD	24	1986							
Massachusetts	MA	25	1986	0	0	1	0	1	0	0
Michigan	MI	26	1986	0	1	0	0	0	0	1
Minnesota	MN	27	1986	0	1	0	0	0	0	1
Missouri	Mo	29	1986	1	0	0	0	0	0	1
Montana	MT	30	1986	1	0	0	0	0	0	1
Nebraska	NE	31	1986							
Nevada	NV	32	1986	0	0	0	1	0	0	1
New Hampshire	NH	33	1986							
New Jersey	NJ	34	1986							
New Mexico	NM	35	1986	0	0	1	0	1	0	0
New York	NY	36	1986	0	0	0	1	0	0	1
North Carolina	NC	37	1986							


North Dakota	ND	381986								
Ohio	OH	391986	0	0		0	1	0	0	1
Oklahoma	OK	401986	0	0		1	0	1	0	0
Oregon	OR	411986	0	0		0	1	0	0	1
Pennsylvania	PA	421986	1	0		0	0	0	0	1
Rhode Island	RI	441986	0	0		1	0	1	0	0
South Carolina	SC	451986	0	0	-	1	0	1	0	0
South Dakota	SD	461986								
Tennessee	TN	471986	0	0		1	0	1	0	0
Texas	TX	481986	0	0		1	0	1	0	0
Utah	UT	491986	0	0		1	0	0	1	0
Vermont	VT	501986	0	0		1	0	0	1	0
Virginia	VA	511986								
Washington	WA	531986	0	0		1	0	0	1	0
West Virginia	WV	541986	0	0		1	0	1	0	0
Wisconsin	WI	551986	0	0		0	1	0	0	1
Wyoming	WY	561986								
Alaska	AK	21988	0	0		0	1	0	0	1
Arizona	AZ	41988								
Arkansas	AR	51988	0	0		1	0	0	1	0
California	CA	61988	0	0		1	0	1	0	0
Colorado	CO	81988	1	0		0	0	0	0	1
Connecticut	CT	91988	0	0		1	0	1	0	0
Delaware	DE	101988	0	0		0	1	0	0	1
Florida	FL	121988	0	0		1	0	1	0	0
Georgia	GA	131988	0	0		1	0	1	0	0
Hawaii	HI	151988	1	0		0	0	0	0	1
Idaho	ID	161988	0	1		0	0	0	0	1
Illinois	IL	171988	0	0		1	0	1	0	0
Indiana	IN	181988	0	0		1	0	0	1	0
lowa	IA	191988	1	0		0	0	0	0	1
Kansas	KS	201988	0	0		0	1	0	0	1
Kentucky	KY	211988	0	0		1	0	1	0	0
Louisiana	LA	221988								
Maine	ME	231988	0	0		0	1	0	0	1
Massachusetts	MA	251988	0	0		1	0	1	0	0
Michigan	MI	261988	0	1		0	0	0	0	1
Minnesota	MN	271988	0	1		0	0	0	0	1

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 13 of 30

Mississippi	MS	281988	0	0	1	0	1	0	0
Missouri	MO	291988	1	0	0	0	0	0	1
Montana	MT	301988	1	0	0	0	0	0	1
Nebraska	NE	311988							
Nevada	NV	321988	0	0	0	1	0	0	1
New Hampshire	NH	331988							
New Jersey	NJ	341988							
New Mexico	NM	351988	0	0	1	0	1	0	0
New York	NY	361988	0	0	0	1	0	0	1
North Carolina	NC	371988							
North Dakota	ND	381988							
Ohio	OH	391988	0	0	0	1	0	0	1
Oklahoma	OK	401988	0	0	1	0	1	0	0
Oregon	OR	411988	0	0	0	1	0	0	1
Pennsylvania	PA	421988	1	0	0	0	0	0	1
Rhode Island	RI	441988	0	0	1	0	1	0	0
South Carolina	SC	451988	0	0	1	0	1	0	0
South Dakota	SD	461988							
Tennessee	TN	471988	0	0	1	0	1	0	0
Texas	TX	481988	0	0	1	0	1	0	0
Utah	UT	491988	0	0	1	0	0	1	0
Vermont	VT	501988	0	0	1	0	0	1	0
Virginia	VA	511988							
Washington	WA	531988	0	0	1	0	0	1	0
West Virginia	WV	541988	0	0	1	0	1	0	0
Wisconsin	WI	551988	0	0	0	1	0	0	1
Wyoming	WY	561988							
Alabama	AL	11990	0	0	1	0	1	0	0
Alaska	AK	21990	0	0	0	1	0	0	1
Arizona	AZ	41990							
Arkansas	AR	51990	0	0	1	0	0	1	0
California	CA	61990	0	0	1	0	1	0	0
Colorado	CO	81990	1	0	0	0	0	0	1
Connecticut	CT	91990	0	0	1	0	1	0	0
Delaware	DE	101990	0	0	0	1	0	0	1
Florida	FL	121990	0	0	1	0	1	0	0
Georgia	GA	131990	0	0	1	0	1	0	0
Hawaii	HI	151990	1	0	0	0	0	0	1


Idaho	ID	161990	0	1	0	0	0	0	1
Illinois	IL	171990	0	0	1	0	1	0	0
Indiana	IN	181990	0	0	1	0	0	1	0
lowa	IA	191990	1	0	0	0	0	0	1
Kansas	KS	201990	0	0	0	1	0	0	1
Kentucky	KY	211990	0	0	1	0	1	0	0
Maine	ME	231990	0	0	0	1	0	0	1
Maryland	MD	241990							
Massachusetts	MA	251990	0	0	1	0	1	0	0
Michigan	MI	261990	0	1	0	0	0	0	1
Minnesota	MN	271990	0	1	0	0	0	0	1
Missouri	MO	291990	1	0	0	0	0	0	1
Montana	MT	301990	1	0	0	0	0	0	1
Nebraska	NE	311990							
Nevada	NV	321990	0	0	0	1	0	0	1
New Hampshire	NH	331990							
New Jersey	NJ	341990							
New Mexico	NM	351990	0	0	1	0	1	0	0
New York	NY	361990	0	0	0	1	0	0	1
North Carolina	NC	371990							
North Dakota	ND	381990							
Ohio	OH	391990	0	0	0	1	0	0	1
Oklahoma	OK	401990	0	0	1	0	1	0	0
Oregon	OR	411990	0	0	0	1	0	0	1
Pennsylvania	PA	421990	1	0	0	0	0	0	1
Rhode Island	RI	441990	0	0	1	0	1	0	0
South Carolina	SC	451990	0	0	1	0	1	0	0
South Dakota	SD	461990							
Tennessee	TN	471990	0	0	1	0	1	0	0
Texas	TX	481990	0	0	1	0	1	0	0
Utah	UT	491990	0	0	1	0	0	1	0
Vermont	VT	501990	0	0	1	0	0	1	0
Virginia	VA	511990							
Washington	WA	531990	0	0	1	0	0	1	0
West Virginia	WV	541990	0	0	1	0	1	0	0
Wisconsin	WI	551990	0	0	0	1	0	0	1
Wyoming	WY	561990							
Alaska	AK	21992	0	1	0	0	0	0	1

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 15 of 30

Arizona	AZ	41992	0	0	0	1	0	0	1
Arkansas	AR	51992	0	0	1	0	1	0	0
California	CA	61992	0	1	0	0	0	0	1
Colorado	CO	81992	1	0	0	0	0	0	1
Connecticut	CT	91992	1	0	0	0	0	0	1
Delaware	DE	101992	0	0	0	1	0	0	1
Florida	FL	121992	0	0	1	0	1	0	0
Georgia	GA	131992	0	0	1	0	1	0	0
Hawaii	HI	151992	1	0	0	0	0	0	1
Idaho	ID	161992	0	0	0	1	0	0	1
lllinois	IL	171992	0	0	1	0	0	1	0
Indiana	IN	181992	0	0	0	1	0	0	1
lowa	IA	191992	1	0	0	0	0	0	1
Kansas	KS	201992	0	0	0	1	0	0	1
Kentucky	KY	211992	0	0	1	0	1	0	0
Louisiana	LA	221992	0	0	1	0	1	0	0
Maine	ME	231992	0	1	0	0	0	0	1
Massachusetts	MA	251992	0	0	0	1	0	0	1
Michigan	MI	261992	0	1	0	0	0	0	1
Minnesota	MN	271992	0	1	0	0	0	0	1
Mississippi	MS	281992	0	0	1	0	1	0	0
Missouri	MO	291992	1	0	0	0	0	0	1
Montana	MT	301992	1	0	0	0	0	0	1
Nebraska	NE	311992							
Nevada	NV	321992	0	0	1	0	1	0	0
New Hampshire	NH	331992	0	0	1	0	0	1	0
New Jersey	NJ	341992	1	0	0	0	0	0	1
New Mexico	NM	351992	0	0	1	0	1	0	0
New York	NY	361992	0	0	0	1	0	0	1
North Carolina	NC	371992	0	0	1	0	1	0	0
North Dakota	ND	381992	0	0	0	1	0	0	1
Ohio	OH	391992	0	0	0	1	0	0	1
Oklahoma	OK	401992	0	0	1	0	1	0	0
Oregon	OR	411992	0	0	0	1	0	0	1
Pennsylvania	PA	421992	1	0	0	0	0	0	1
Rhode Island	RI	441992	0	0	1	0	1	0	0
South Carolina	SC	451992	0	1	0	0	0	0	1
South Dakota	SD	461992	0	0	1	0	0	1	0


Tennessee	TN	471992	0	0	1	0	1	0	0
Texas	TX	481992	0	0	1	0	1	0	0
Utah	UT	491992	0	0	1	0	0	1	0
Vermont	VT	501992	0	0	0	1	0	0	1
Virginia	VA	511992	0	0	1	0	1	0	0
Washington	WA	531992	1	0	0	0	0	0	1
West Virginia	WV	541992	0	0	1	0	1	0	0
Wisconsin	WI	551992	0	1	0	0	0	0	1
Wyoming	WY	561992	0	0	0	1	0	0	1
Alabama	AL	11994	0	1	0	0	0	0	1
Alaska	AK	21994	0	1	0	0	0	0	1
Arizona	AZ	41994	0	0	0	1	0	0	1
Arkansas	AR	51994	0	0	1	0	1	0	0
California	CA	61994	0	1	0	0	0	0	1
Colorado	CO	81994	1	0	0	0	0	0	1
Connecticut	CT	91994	1	0	0	0	0	0	1
Delaware	DE	101994	0	0	0	1	0	0	1
Florida	FL	121994	0	0	1	0	1	0	0
Georgia	GA	131994	0	0	1	0	1	0	0
Hawaii	HI	151994	1	0	0	0	0	0	1
Idaho	ID	161994	0	0	0	1	0	0	1
Illinois	IL	171994	0	0	1	0	0	1	0
Indiana	IN	181994	0	0	0	1	0	0	1
lowa	IA	191994	1	0	0	0	0	0	1
Kansas	KS	201994	0	0	0	1	0	0	1
Kentucky	KY	211994	0	0	1	0	1	0	0
Maine	ME	231994	0	1	0	0	0	0	1
Maryland	MD	241994	0	0	1	0	1	0	0
Massachusetts	MA	251994	0	0	0	1	0	0	1
Michigan	MI	261994	0	1	0	0	0	0	1
Minnesota	MN	271994	0	1	0	0	0	0	1
Missouri	MO	291994	1	0	0	0	0	0	1
Montana	MT	301994	1	0	0	0	0	0	1
Nebraska	NE	311994							
Nevada	NV	321994	0	0	1	0	1	0	0
New Hampshire	NH	331994	0	0	1	0	0	1	0
New Jersey	NJ	341994	1	0	0	0	0	0	1
New Mexico	NM	351994	0	0	1	0	1	0	0

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 17 of 30

New York	NY	361994	0	0	0	1	0	0	1
North Carolina	NC	371994	0	0	1	0	1	0	0
North Dakota	ND	381994	0	0	0	1	0	0	1
Ohio	OH	391994	0	0	0	1	0	0	1
Oklahoma	OK	401994	0	0	1	0	1	0	0
Oregon	OR	411994	0	0	0	1	0	0	1
Pennsylvania	PA	421994	1	0	0	0	0	0	1
Rhode Island	RI	441994	0	0	1	0	1	0	0
South Carolina	SC	451994	0	1	0	0	0	0	1
South Dakota	SD	461994	0	0	1	0	0	1	0
Tennessee	TN	471994	0	0	1	0	1	0	0
Texas	TX	481994	0	0	1	0	1	0	0
Utah	UT	491994	0	0	1	0	0	1	0
Vermont	VT	501994	0	0	0	1	0	0	1
Virginia	VA	511994	0	0	1	0	1	0	0
Washington	WA	531994	1	0	0	0	0	0	1
West Virginia	WV	541994	0	0	1	0	1	0	0
Wisconsin	WI	551994	0	1	0	0	0	0	1
Wyoming	WY	561994	0	0	0	1	0	0	1
Alaska	AK	21996	0	1	0	0	0	0	1
Arizona	AZ	41996	0	0	0	1	0	0	1
Arkansas	AR	51996	0	0	1	0	1	0	0
California	CA	61996	0	1	0	0	0	0	1
Colorado	CO	81996	1	0	0	0	0	0	1
Connecticut	CT	91996	1	0	0	0	0	0	1
Delaware	DE	101996	0	0	0	1	0	0	1
Florida	FL	121996	0	0	1	0	1	0	0
Georgia	GA	131996	0	0	1	0	1	0	0
Hawaii	HI	151996	1	0	0	0	0	0	1
Idaho	ID	161996	0	0	0	1	0	0	1
Illinois	IL	171996	0	0	1	0	0	1	0
Indiana	IN	181996	0	0	0	1	0	0	1
lowa	IA	191996	1	0	0	0	0	0	1
Kansas	KS	201996	0	0	0	1	0	0	1
Kentucky	KY	211996	0	0	1	0	1	0	0
Louisiana	LA	221996	0	0	1	0	1	0	0
Maine	ME	231996	0	1	0	0	0	0	1
Massachusetts	MA	251996	0	0	0	1	0	0	1


Michigan	MI	261996	0	1	0	0	0	0	1
Minnesota	MN	271996	0	1	0	0	0	0	1
Mississippi	MS	281996	0	0	1	0	1	0	0
Missouri	MO	291996	1	0	0	0	0	0	1
Montana	MT	301996	1	0	0	0	0	0	1
Nebraska	NE	311996							
Nevada	NV	321996	0	0	1	0	1	0	0
New Hampshire	NH	331996	0	0	1	0	0	1	0
New Jersey	NJ	341996	1	0	0	0	0	0	1
New Mexico	NM	351996	0	0	1	0	1	0	0
New York	NY	361996	0	0	0	1	0	0	1
North Carolina	NC	371996	0	0	1	0	1	0	0
North Dakota	ND	381996	0	0	0	1	0	0	1
Ohio	OH	391996	0	0	0	1	0	0	1
Oklahoma	OK	401996	0	0	1	0	1	0	0
Oregon	OR	411996	0	0	0	1	0	0	1
Pennsylvania	PA	421996	1	0	0	0	0	0	1
Rhode Island	RI	441996	0	0	1	0	1	0	0
South Carolina	SC	451996	0	1	0	0	0	0	1
South Dakota	SD	461996	0	0	1	0	0	1	0
Tennessee	TN	471996	0	0	1	0	1	0	0
Texas	TX	481996	0	0	1	0	1	0	0
Utah	UT	491996	0	0	1	0	0	1	0
Vermont	VT	501996	0	0	0	1	0	0	1
Virginia	VA	511996	0	0	1	0	1	0	0
Washington	WA	531996	1	0	0	0	0	0	1
West Virginia	WV	541996	0	0	1	0	1	0	0
Wisconsin	WI	551996	0	1	0	0	0	0	1
Wyoming	WY	561996	0	0	0	1	0	0	1
Alabama	AL	11998	0	1	0	0	0	0	1
Alaska	AK	21998	0	1	0	0	0	0	1
Arizona	AZ	41998	0	0	0	1	0	0	1
Arkansas	AR	51998	0	0	1	0	1	0	0
California	CA	61998	0	1	0	0	0	0	1
Colorado	CO	81998	1	0	0	0	0	0	1
Connecticut	CT	91998	1	0	0	0	0	0	1
Delaware	DE	101998	0	0	0	1	0	0	1
Florida	FL	121998	0	0	1	0	1	0	0

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 19 of 30

Georgia	GA	131998	0	0	1	0	1	0	0
Hawaii	HI	151998	1	0	0	0	0	0	1
Idaho	ID	161998	0	0	0	1	0	0	1
Illinois	IL	171998	0	0	1	0	0	1	0
Indiana	IN	181998	0	0	0	1	0	0	1
lowa	IA	191998	1	0	0	0	0	0	1
Kansas	KS	201998	0	0	0	1	0	0	1
Kentucky	KY	211998	0	0	1	0	1	0	0
Maine	ME	231998	0	1	0	0	0	0	1
Maryland	MD	241998	0	0	1	0	1	0	0
Massachusetts	MA	251998	0	0	0	1	0	0	1
Michigan	MI	261998	0	1	0	0	0	0	1
Minnesota	MN	271998	0	1	0	0	0	0	1
Missouri	MO	291998	1	0	0	0	0	0	1
Montana	MT	301998	1	0	0	0	0	0	1
Nebraska	NE	311998							
Nevada	NV	321998	0	0	1	0	1	0	0
New Hampshire	NH	331998	0	0	1	0	0	1	0
New Jersey	NJ	341998	1	0	0	0	0	0	1
New Mexico	NM	351998	0	0	1	0	1	0	0
New York	NY	361998	0	0	0	1	0	0	1
North Carolina	NC	371998	0	0	1	0	1	0	0
North Dakota	ND	381998	0	0	0	1	0	0	1
Ohio	OH	391998	0	0	0	1	0	0	1
Oklahoma	OK	401998	0	0	1	0	1	0	0
Oregon	OR	411998	0	0	0	1	0	0	1
Pennsylvania	PA	421998	1	0	0	0	0	0	1
Rhode Island	RI	441998	0	0	1	0	1	0	0
South Carolina	SC	451998	0	1	0	0	0	0	1
South Dakota	SD	461998	0	0	1	0	0	1	0
Tennessee	TN	471998	0	0	1	0	1	0	0
Texas	TX	481998	0	0	1	0	1	0	0
Utah	UT	491998	0	0	1	0	0	1	0
Vermont	VT	501998	0	0	0	1	0	0	1
Virginia	VA	511998	0	0	1	0	1	0	0
Washington	WA	531998	1	0	0	0	0	0	1
West Virginia	WV	541998	0	0	1	0	1	0	0
Wisconsin	WI	551998	0	1	0	0	0	0	1

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 20 of 30

Wyoming	WY	56	1998	0	0	0	1	0	0	1
Alaska	AK	2	2000	0	1	0	0	0	0	1
Arizona	AZ	4	2000	0	0	0	1	0	0	1
Arkansas	AR	5	2000	0	0	1	0	1	0	0
California	CA	6	2000	0	1	0	0	0	0	1
Colorado	CO	8	2000	1	0	0	0	0	0	1
Connecticut	CT	9	2000	1	0	0	0	0	0	1
Delaware	DE	10	2000	0	0	0	1	0	0	1
Florida	FL	12	2000	0	0	1	0	1	0	0
Georgia	GA	13	2000	0	0	1	0	1	0	0
Hawaii	HI	15	2000	1	0	0	0	0	0	1
Idaho	ID	16	2000	0	0	0	1	0	0	1
Illinois	IL	17	2000	0	0	1	0	0	1	0
Indiana	IN	18	2000	0	0	0	1	0	0	1
lowa	IA	19	2000	1	0	0	0	0	0	1
Kansas	KS	20	2000	0	0	0	1	0	0	1
Kentucky	KY	21	2000	0	0	1	0	1	0	0
Louisiana	LA	22	2000	0	0	1	0	1	0	0
Maine	ME	23	2000	0	1	0	0	0	0	1
Massachusetts	MA	25	2000	0	0	0	1	0	0	1
Michigan	Mi	26	2000	0	1	0	0	0	0	1
Minnesota	MN	27	2000	0	1	0	0	0	0	1
Mississippi	MS	28	2000	0	0	1	0	1	0	0
Missouri	MO	29	2000	1	0	0	0	0	0	1
Montana	MT	30	2000	1	0	0	0	0	0	1
Nebraska	NE	31	2000							
Nevada	NV	32	2000	0	0	1	0	1	0	0
New Hampshire	NH	33	2000	0	0	1	0	0	1	0
New Jersey	NJ	34	2000	1	0	0	0	0	0	1
New Mexico	NM	35	2000	0	0	1	0	1	0	0
New York	NY	36	2000	0	0	0	1	0	0	1
North Carolina	NC	37	2000	0	0	1	0	1	0	0
North Dakota	ND	38	2000	0	0	0	1	0	0	1
Ohio	OH	39	2000	0	0	0	1	0	0	1
Oklahoma	OK	40	2000	0	0	1	0	1	0	0
Oregon	OR	41	2000	0	0	0	1	0	0	1
Pennsylvania	PA	42	2000	1	0	0	0	0	0	1
Rhode Island	Rl	44	2000	0	0	1	0	1	0	0

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 21 of 30

South Carolina	SC	452000	0	1	0	0	0	0	1
South Dakota	SD	462000	0	0	1	0	0	1	0
Tennessee	TN	472000	0	0	1	0	1	0	0
Texas	TX	482000	0	0	1	0	1	0	0
Utah	UT	492000	0	0	1	0	0	1	0
Vermont	VT	502000	0	0	0	1	0	0	1
Virginia	VA	512000	0	0	1	0	1	0	0
Washington	WA	532000	1	0	0	0	0	0	1
West Virginia	WV	542000	0	0	1	0	1	0	0
Wisconsin	WI	552000	0	1	0	0	0	0	1
Wyoming	WY	562000	0	0	0	1	0	0	1
Illinois	IL	172006	0	0	1	0	1	0	0
Alaska	AK	22002	1	0	0	0	0	0	1
Arizona	AZ	42002	1	0	0	0	0	0	1
Arkansas	AR	52002	0	0	1	0	0	1	0
Illinois	IL	172008	0	0	1	0	1	0	0
Colorado	CO	82002	1	0	0	0	0	0	1
Connecticut	CT	92002	1	0	0	0	0	0	1
Delaware	DE	102002	0	0	0	1	0	0	1
Florida	FL	122002	0	0	1	0	0	1	0
lllinois	IL	172004	0	0	1	0	1	0	0
Hawaii	HI	152002	1	0	0	0	0	0	1
Idaho	ID	162002	1	0	0	0	0	0	1
California	CA	62008	0	0	1	0	1	0	0
Indiana	IN	182002	0	0	0	1	0	0	1
lowa	IA	192002	1	0	0	0	0	0	1
Kansas	KS	202002	0	0	1	0	0	1	0
Kentucky	KY	212002	0	0	0	1	0	0	1
Maine	ME	232002	0	0	0	1	0	0	1
Illinois	IL	172002	0	0	1	0	1	0	0
Alabama	AL	12010	0	0	1	0	1	0	0
Michigan	MI	262002	0	0	1	0	0	1	0
Minnesota	MN	272002	0	1	0	0	0	0	1
Missouri	MO	292002	1	0	0	0	0	0	1
Montana	MT	302002	1	0	0	0	0	0	1
Nebraska	NE	312002							
Nevada	NV	322002	0	0	0	1	0	0	1
New Hampshire	NH	332002	0	1	0	0	0	0	1

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 22 of 30

New Jersey	NJ	342002	1	0	0	0	0	0	1
New Mexico	NM	352002	0	1	0	0	0	0	1
New York	NY	362002	0	0	0	1	0	0	1
Delaware	DE	102012	0	0	1	0	1	0	0
North Dakota	ND	382002	0	0	1	0	0	1	0
Ohio	OH	392002	0	0	1	0	0	1	0
Oklahoma	OK	402002	0	0	0	1	0	0	1
Oregon	OR	412002	0	0	0	1	0	0	1
Pennsylvania	PA	422002	1	0	0	0	0	0	1
Massachusetts	MA	252012	0	0	1	0	1	0	0
South Carolina	SC	452002	0	1	0	0	0	0	1
South Dakota	SD	462002	0	0	1	0	0	1	0
Tennessee	TN	472002	0	0	0	1	0	0	1
Texas	TX	482002	0	1	0	0	0	0	1
Utah	UT	492002	0	0	1	0	0	1	0
Vermont	VT	502002	0	0	0	1	0	0	1
Virginia	VA	512002	0	0	1	0	0	1	0
Washington	WA	532002	1	0	0	0	0	0	1
West Virginia	WV	542014	0	0	1	0	1	0	0
Wisconsin	WI	552002	0	1	0	0	0	0	1
Wyoming	WY	562002	0	0	1	0	0	1	0
Alaska	AK	22004	1	0	0	0	0	0	1
Arizona	AZ	42004	1	0	0	0	0	0	1
Arkansas	AR	52004	0	0	1	0	0	1	0
California	CA	62006	0	0	1	0	1	0	0
Colorado	CO	82004	1	0	0	0	0	0	1
Connecticut	CT	92004	1	0	0	0	0	0	1
Delaware	DE	102004	0	0	0	1	0	0	1
Florida	FL	122004	0	0	1	0	0	1	0
Georgia	GA	132004	0	1	0	0	0	0	1
Hawaii	HI	152004	1	0	0	0	0	0	1
Idaho	ID	162004	1	0	0	0	0	0	1
West Virginia	WV	542008	0	0	1	0	1	0	0
Indiana	IN	182004	0	0	0	1	0	0	1
lowa	IA	192004	1	0	0	0	0	0	1
Kansas	KS	202004	0	0	1	0	0	1	0
Kentucky	KY	212004	0	0	0	1	0	0	1
Louisiana	LA	222004	0	0	0	1	0	0	1

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 23 of 30

Maine	ME	232004	0	0	0	1	0	0	1
lllinois	IL	172012	0	0	1	0	1	0	0
Michigan	MI	262004	0	0	1	0	0	1	0
Minnesota	MN	272004	0	1	0	0	0	0	1
West Virginia	WV	542004	0	0	1	0	1	0	0
Missouri	MO	292004	1	0	0	0	0	0	1
Montana	MT	302004	1	0	0	0	0	0	1
Nebraska	NE	312004							
Nevada	NV	322004	0	0	0	1	0	0	1
New Hampshire	NH	332004	0	1	0	0	0	0	1
New Jersey	NJ	342004	1	0	0	0	0	0	1
New Mexico	NM	352004	0	1	0	0	0	0	1
New York	NY	362004	0	0	0	1	0	0	1
North Carolina	NC	372008	0	0	1	0	1	0	0
North Dakota	ND	382004	0	0	1	0	0	1	0
Ohio	OH	392004	0	0	1	0	0	1	0
Oklahoma	OK	402004	0	0	0	1	0	0	1
Oregon	OR	412004	0	0	0	1	0	0	1
Pennsylvania	PA	422004	1	0	0	0	0	0	1
West Virginia	WV	542006	0	0	1	0	1	0	0
South Carolina	SC	452004	0	1	0	0	0	0	1
South Dakota	SD	462004	0	0	1	0	0	1	0
Tennessee	TN	472004	0	0	0	1	0	0	1
Texas	TX	482004	0	1	0	0	0	0	1
Utah	UT	492004	0	0	1	0	0	1	0
Vermont	VT	502004	0	0	0	1	0	0	1
Virginia	VA	512004	0	0	1	0	0	1	0
Washington	WA	532004	1	0	0	0	0	0	1
Arkansas	AR	52014	0	0	1	0	1	0	0
Wisconsin	WI	552004	0	1	0	0	0	0	1
Wyoming	WY	562004	0	0	1	0	0	1	0
North Carolina	NC	372002	0	0	1	0	1	0	0
Alaska	AK	22006	1	0	0	0	0	0	1
Arizona	AZ	42006	1	0	0	0	0	0	1
Arkansas	AR	52006	0	0	1	0	0	1	0
Alabama	AL	12006	0	0	1	0	1	0	0
Colorado	CO	82006	1	0	0	0	0	0	1
Connecticut	CT	92006	1	0	0	0	0	0	1

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 24 of 30

Delaware	DE	102006	0	0	0	1	0	0	1
Florida	FL	122006	0	0	1	0	0	1	0
Georgia	GA	132006	0	1	0	0	0	0	1
Hawaii	HI	152006	1	0	0	0	0	0	1
Idaho	ID	162006	1	0	0	0	0	0	1
California	CA	62004	0	0	1	0	1	0	0
Indiana	IN	182006	0	0	0	1	0	0	1
lowa	IA	192006	1	0	0	0	0	0	1
Kansas	KS	202006	0	0	1	0	0	1	0
Kentucky	KY	212006	0	0	0	1	0	0	1
Maine	ME	232006	0	0	0	1	0	0	1
California	CA	62002	0	0	1	0	1	0	0
North Carolina	NC	372006	0	0	1	0	1	0	0
Michigan	MI	262006	0	0	1	0	0	1	0
Minnesota	MN	272006	0	1	0	0	0	0	1
Missouri	MO	292006	1	0	0	0	0	0	1
Montana	MT	302006	1	0	0	0	0	0	1
Nebraska	NE	312006							
Nevada	NV	322006	0	0	0	1	0	0	1
New Hampshire	NH	332006	0	1	0	0	0	0	1
New Jersey	NJ	342006	1	0	0	0	0	0	1
New Mexico	NM	352006	0	1	0	0	0	0	1
New York	NY	362006	0	0	0	1	0	0	1
California	CA	62010	0	0	1	0	1	0	0
North Dakota	ND	382006	0	0	1	0	0	1	0
Ohio	OH	392006	0	0	1	0	0	1	0
Oklahoma	OK	402006	0	0	0	1	0	0	1
Oregon	OR	412006	0	0	0	1	0	0	1
Pennsylvania	PA	422006	1	0	0	0	0	0	1
North Carolina	NC	372004	0	0	1	0	1	0	0
South Carolina	SC	452006	0	1	0	0	0	0	1
South Dakota	SD	462006	0	0	1	0	0	1	0
Tennessee	TN	472006	0	0	0	1	0	0	1
Texas	TX	482006	0	1	0	0	0	0	1
Utah	UT	492006	0	0	1	0	0	1	0
Vermont	VT	502006	0	0	0	1	0	0	1
Virginia	VA	512006	0	0	1	0	0	1	0
Washington	WA	532006	1	0	0	0	0	0	1

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 25 of 30

Rhode Island	RI	442006	0	0	1	0	1	0	0
Wisconsin	WI	552006	0	1	0	0	0	0	1
Wyoming	WY	562006	0	0	1	0	0	1	0
Alaska	AK	22008	1	0	0	0	0	0	1
Arizona	AZ	42008	1	0	0	0	0	0	1
Arkansas	AR	52008	0	0	1	0	0	1	0
Massachusetts	MA	252006	0	0	1	0	1	0	0
Colorado	CO	82008	1	0	0	0	0	0	1
Connecticut	CT	92008	1	0	0	0	0	0	1
Delaware	DE	102008	0	0	0	1	0	0	1
Florida	FL	122008	0	0	1	0	0	1	0
Georgia	GA	132008	0	1	0	0	0	0	1
Hawaii	HI	152008	1	0	0	0	0	0	1
Idaho	ID	162008	1	0	0	0	0	0	1
Delaware	DE	102014	0	0	1	0	1	0	0
Indiana	IN	182008	0	0	0	1	0	0	1
lowa	IA	192008	1	0	0	0	0	0	1
Kansas	KS	202008	0	0	1	0	0	1	0
Kentucky	KY	212008	0	0	0	1	0	0	1
Louisiana	LA	222008	0	0	0	1	0	0	1
Maine	ME	232008	0	0	0	1	0	0	1
Illinois	IL	172010	0	0	1	0	1	0	0
Michigan	MI	262008	0	0	1	0	0	1	0
Minnesota	MN	272008	0	1	0	0	0	0	1
North Carolina	NC	372010	0	0	1	0	1	0	0
Missouri	MO	292008	1	0	0	0	0	0	1
Montana	MT	302008	1	0	0	0	0	0	1
Nebraska	NE	312008							
Nevada	NV	322008	0	0	0	1	0	0	1
New Hampshire	NH	332008	0	1	0	0	0	0	1
New Jersey	NJ	342008	1	0	0	0	0	0	1
New Mexico	NM	352008	0	1	0	0	0	0	1
New York	NY	362008	0	0	0	1	0	0	1
Massachusetts	MA	252004	0	0	1	0	1	0	0
North Dakota	ND	382008	0	0	1	0	0	1	0
Ohio	OH	392008	0	0	1	0	0	1	0
Oklahoma	OK	402008	0	0	0	1	0	0	1
Oregon	OR	412008	0	0	0	1	0	0	1


Pennsylvania	PA	422008	1	0	0	0	0	0	1
West Virginia	WV	542012	0	0	1	0	1	0	0
South Carolina	SC	452008	0	1	0	0	0	0	1
South Dakota	SD	462008	0	0	1	0	0	1	0
Tennessee	TN	472008	0	0	0	1	0	0	1
Texas	TX	482008	0	1	0	0	0	0	1
Utah	UT	492008	0	0	1	0	0	1	0
Vermont	VT	502008	0	0	0	1	0	0	1
Virginia	VA	512008	0	0	1	0	0	1	0
Washington	WA	532008	1	0	0	0	0	0	1
Oregon	OR	412012	0	0	1	0	1	0	0
Wisconsin	WI	552008	0	1	0	0	0	0	1
Wyoming	WY	562008	0	0	1	0	0	1	0
Arkansas	AR	52012	0	0	1	0	1	0	0
Alaska	AK	22010	1	0	0	0	0	0	1
Arizona	AZ	42010	1	0	0	0	0	0	1
Arkansas	AR	52010	0	0	1	0	0	1	0
Alabama	AL	12002	0	0	1	0	1	0	0
Colorado	CO	82010	1	0	0	0	0	0	1
Connecticut	CT	92010	1	0	0	0	0	0	1
Delaware	DE	102010	0	0	0	1	0	0	1
Florida	FL	122010	0	0	1	0	0	1	0
Georgia	GA	132010	0	1	0	0	0	0	1
Hawaii	HI	152010	1	0	0	0	0	0	1
Idaho	ID	162010	1	0	0	0	0	0	1
Illinois	L	172014	0	0	1	0	1	0	0
Indiana	IN	182010	0	0	0	1	0	0	1
lowa	IA	192010	1	0	0	0	0	0	1
Kansas	KS	202010	0	0	1	0	0	1	0
Kentucky	KY	212010	0	0	0	1	0	0	1
Maine	ME	232010	0	0	0	1	0	0	1
Oregon	OR	412014	0	0	1	0	1	0	0
West Virginia	WV	542010	0	0	1	0	1	0	0
Michigan	MI	262010	0	0	1	0	0	1	0
Minnesota	MN	272010	0	1	0	0	0	0	1
Missouri	MO	292010	1	0	0	0	0	0	1
Montana	MT	302010	1	0	0	0	0	0	1
Nebraska	NE	312010							

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 27 of 30

Nevada	NV	322010	0	0	0	1	0	0	1
New Hampshire	NH	332010	0	1	0	0	0	0	1
New Jersey	NJ	342010	1	0	0	0	0	0	1
New Mexico	NM	352010	0	1	0	0	0	0	1
New York	NY	362010	0	0	0	1	0	0	1
Massachusetts	MA	252008	0	0	1	0	1	0	0
North Dakota	ND	382010	0	0	1	0	0	1	0
Ohio	OH	392010	0	0	1	0	0	1	0
Oklahoma	OK	402010	0	0	0	1	0	0	1
Oregon	OR	412010	0	0	0	1	0	0	1
Pennsylvania	PA	422010	1	0	0	0	0	0	1
Massachusetts	MA	252010	0	0	1	0	1	0	0
South Carolina	SC	452010	0	1	0	0	0	0	1
South Dakota	SD	462010	0	0	1	0	0	1	0
Tennessee	TN	472010	0	0	0	1	0	0	1
Texas	TX	482010	0	1	0	0	0	0	1
Utah	UT	492010	0	0	1	0	0	1	0
Vermont	VT	502010	0	0	0	1	0	0	1
Virginia	VA	512010	0	0	1	0	0	1	0
Washington	WA	532010	1	0	0	0	0	0	1
Massachusetts	MA	252014	0	0	1	0	1	0	0
Wisconsin	WI	552010	0	1	0	0	0	0	1
Wyoming	WY	562010	0	0	1	0	0	1	0
Alaska	AK	22012	1	0	0	0	0	0	1
Arizona	AZ	42012	1	0	0	0	0	0	1
Rhode Island	RI	442004	0	0	1	0	1	0	0
California	CA	62012	1	0	0	0	0	0	1
Colorado	CO	82012	1	0	0	0	0	0	1
Connecticut	CT	92012	1	0	0	0	0	0	1
Rhode Island	RI	442002	0	0	1	0	1	0	0
Florida	FL	122012	0	0	1	0	0	1	0
Georgia	GA	132012	0	0	1	0	0	1	0
Hawaii	HI	152012	1	0	0	0	0	0	1
Idaho	ID	162012	1	0	0	0	0	0	1
Georgia	GA	132002	0	0	1	0	1	0	0
Indiana	IN	182012	0	0	1	0	0	1	0
Iowa	IA	192012	1	0	0	0	0	0	1
Kansas	KS	202012	0	0	1	0	0	1	0

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 28 of 30

Kentucky	KY	212012	0	0	0	1	0	0	1
Louisiana	LA	222012	0	0	1	0	0	1	0
Maine	ME	232012	0	0	0	1	0	0	1
Massachusetts	MA	252002	0	0	1	0	1	0	0
Michigan	M1	262012	0	0	1	0	0	1	0
Minnesota	MN	272012	0	1	0	0	0	0	1
Rhode Island	RI	442012	0	0	1	0	1	0	0
Missouri	MO	292012	1	0	0	0	0	0	1
Montana	MT	302012	1	0	0	0	0	0	1
Nebraska	NE	312012							
Nevada	NV	322012	0	1	0	0	0	0	1
New Hampshire	NH	332012	0	0	1	0	0	1	0
New Jersey	NJ	342012	1	0	0	0	0	0	1
New Mexico	NM	352012	0	1	0	0	0	0	1
New York	NY	362012	0	0	0	1	0	0	1
North Carolina	NC	372012	0	0	1	0	0	1	0
North Dakota	ND	382012	0	0	1	0	0	1	0
Ohio	OH	392012	0	0	1	0	0	1	0
Oklahoma	OK	402012	0	0	1	0	0	1	0
Vermont	VT	502012	0	0	1	0	1	0	0
Pennsylvania	PA	422012	1	0	0	0	0	0	1
West Virginia	WV	542002	0	0	1	0	1	0	0
South Carolina	SC	452012	0	0	1	0	0	1	0
South Dakota	SD	462012	0	0	1	0	0	1	0
Tennessee	TN	472012	0	0	1	0	0	1	0
Texas	TX	482012	0	0	1	0	0	1	0
Utah	UT	492012	0	0	1	0	0	1	0
Vermont	VT	502014	0	0	1	0	1	0	0
Virginia	VA	512012	0	0	0	1	0	0	1
Washington	WA	532012	1	0	0	0	0	0	1
Rhode Island	RI	442008	0	0	1	0	1	0	0
Wisconsin	WI	552012	0	0	1	0	0	1	0
Wyoming	WY	562012	0	0	1	0	0	1	0
Alabama	AL	12014	0	0	1	0	0	1	0
Alaska	AK	22014	1	0	0	0	0	0	1
Arizona	AZ	42014	1	0	0	0	0	0	1
Rhode Island	RI	442010	0	0	1	0	1	0	0
California	CA	62014	1	0	0	0	0	0	1

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 29 of 30

Colorado	CO	8	2014	1	0	0	0	0	0	1
Connecticut	CT	9	2014	1	0	0	0	0	0	1
Rhode Island	RI	44	2014	0	0	1	0	1	0	0
Florida	FL	12	2014	0	0	1	0	0	1	0
Georgia	GA	13	2014	0	0	1	0	0	1	0
Hawaii	Hi	15	2014	1	0	0	0	0	0	1
Idaho	ID	16	2014	1	0	0	0	0	0	1
Maryland	MD	24	2002	0	0	1	0	1	0	0
Indiana	IN	18	2014	0	0	1	0	0	1	0
lowa	IA	19	2014	1	0	0	0	0	0	1
Kansas	KS	20	2014	0	0	1	0	0	1	0
Kentucky	KY	21	2014	0	0	0	1	0	0	1
Maine	ME	23	2014	0	0	0	1	0	0	1
Maryland	MD	24	2006	0	0	1	0	1	0	0
Maryland	MD	24	2010	0	0	1	0	1	0	0
Michigan	MI	26	2014	0	0	1	0	0	1	0
Minnesota	MN	27	2014	0	1	0	0	0	0	1
Missouri	MO	29	2014	1	0	0	0	0	0	1
Montana	MT	30	2014	1	0	0	0	0	0	1
Nebraska	NE	31	2014							
Nevada	NV	32	2014	0	1	0	0	0	0	1
New Hampshire	NH	33	2014	0	0	1	0	0	1	0
New Jersey	NJ	34	2014	1	0	0	0	0	0	1
New Mexico	NM	35	2014	0	1	0	0	0	0	1
New York	NY	36	2014	0	0	0	1	0	0	1
North Carolina	NC	37	2014	0	0	1	0	0	1	0
North Dakota	ND	38	2014	0	0	1	0	0	1	0
Ohio	OH	39	2014	0	0	1	0	0	1	0
Oklahoma	OK	40	2014	0	0	1	0	0	1	0
Maryland	MD	24	2014	0	0	1	0	1	0	0
Pennsylvania	PA	42	2014	1	0	0	0	0	0	1
Mississippi	MS	28	2004	0	0	1	0	1	0	0
South Carolina	SC	45	2014	0	0	1	0	0	1	0
South Dakota	SD	46	2014	0	0	1	0	0	1	0
Tennessee	TN	47	2014	0	0	1	0	0	1	0
Texas	TX	48	2014	0	0	1	0	0	1	0
Utah	UT	49	2014	0	0	1	0	0	1	0
Mississippi	MS	28	2008	0	0	1	0	1	0	0

Case: 3:15-cv-00421-jdp Document \#: 98-3 Filed: 04/19/16 Page 30 of 30

Virginia	VA	51	2014	0	0	0	1	0	0
Washington	WA	53	2014	1	0	0	0	0	0
Mississippi	MS	28	2012	0	0	1	0	1	0
Wisconsin	WI	55	2014	0	0	1	0	0	1
Wyoming	WY	56	2014	0	0	1	0	0	0

# A New Automated Redistricting Simulator Using Markov Chain Monte Carlo* 

Benjamin Fifield ${ }^{\dagger}$ Michael Higgins ${ }^{\ddagger}$ Kosuke Imai ${ }^{\S}$ Alexander Tarr ${ }^{〔}$

First draft: July 20, 2014
This draft: April 14, 2015


#### Abstract

Legislative redistricting is a critical element of representative democracy. A number of substantive scholars have used simulation methods to sample redistricting plans under various constraints in order to assess their impacts on partisanship and other aspects of representation. However, surprisingly few simulation methods exist in the literature, and the standard algorithm has no theoretical justification. To fill this gap, we propose a new automated redistricting simulator using Markov chain Monte Carlo. We formulate redistricting as a graph-cut problem and adopt the Swendsen-Wang algorithm for sampling contiguous districts. We then extend this basic algorithm to incorporate various constraints including equal population and geographical compactness. Finally, we apply simulated and parallel tempering to improve the mixing of the resulting Markov chain. The proposed algorithms, therefore, are designed to approximate the population of redistricting plans under various constraints. Through a small-scale validation study, we show that the proposed algorithm outperforms the existing standard algorithm. We also apply the proposed methodology to the data from New Hampshire and Mississippi. The open-source software is available for implementing the proposed methodology.


Keywords: gerrymandering, graph cuts, Metropolis-Hastings algorithm, simulated tempering, parallel tempering, Swendsen-Wang algorithm

[^1]
## 1 Introduction

Legislative redistricting is a critical element of representative democracy. Previous studies have found that redistricting influences turnout and representation (e.g., Abramowitz, 1983; Gelman and King, 1994; Ansolabehere et al., 2000; McCarty et al., 2009; Barreto et al., 2004). From a public policy perspective, redistricting is potentially subject to partisan gerrymandering. After the controversial 2003 redistricting in Texas, for example, Republicans won 21 congressional seats in the 2004 election (Democrats won 11) whereas they had only 15 seats in 2002 (Democrats won 17). To address this concern, numerous remedies, including geographical compactness and partisan symmetry requirements, have been proposed (see Grofman and King, 2007; Fryer and Holden, 2011, and references therein).

The development of automated redistricting algorithms, which is the goal of this paper, began in the 1960s. Vickrey (1961) argued that such an "automatic and impersonal procedure" can eliminate gerrymandering (p. 110). After Baker v. Carr (1962) where the Supreme Court ruled that federal courts may review the constitutionality of state legislative apportionment, citizens, policy makers, and scholars became interested in redistricting. Weaver and Hess (1963) and Nagel (1965) were among the earliest attempts to develop automated redistricting algorithms (see also Hess et al., 1965). Since then, a large number of methods have been developed to find an optimal redistricting plan for a given set of criteria (e.g., Garfinkel and Nemhauser, 1970; Browdy, 1990; Bozkaya et al., 2003; Chou and Li, 2006; Fryer and Holden, 2011). These optimization methods serve as useful tools when drawing district boundaries (see Altman et al., 2005, for an overview).

However, the main interest of substantive scholars has been to characterize the distribution of possible redistricting plans under various criteria for detecting instances of
gerrymandering and understanding the causes and consequences of redistricting (e.g., Engstrom and Wildgen, 1977; O'Loughlin, 1982; Cirincione et al., 2000; McCarty et al., 2009; Chen and Rodden, 2013). In 42 of the 50 U.S. states, for example, state politicians control the redistricting process and approve redistricting plans through standard statutory means. Therefore, an important institutional and policy policy question is how to effectively constrain these politicians through means such as compactness requirements (e.g., Niemi et al., 1990), in order to prevent the manipulation of redistricting for partisan ends. Simulation methods allow substantive scholars to answer these questions by approximating distributions of possible electoral outcomes under various institutional constraints.

Yet, surprisingly few simulation algorithms exist in the methodological literature. In fact, most, if not all, of these existing studies use essentially the same Monte Carlo simulation algorithm where a geographical unit is randomly selected as a "seed" for each district and then neighboring units are added to contiguously grow this district until it reaches the pre-specified population threshold (e.g., Cirincione et al., 2000; Chen and Rodden, 2013). Unfortunately, no theoretical justification is given for these existing simulation algorithms, and some of them are best described as ad-hoc. A commonly used algorithm of this type is proposed by Cirincione et al. (2000) and implemented by Altman and McDonald (2011) in their open-source software. We hope to improve this state of the methodological literature.

To fulfill this methodological gap, in Section 2, we propose a new automated redistricting simulator using Markov chain Monte Carlo (MCMC). We formulate the task of drawing districting boundaries as the problem of graph-cuts, i.e., partitioning an adjacency graph into several connected subgraphs. We then adopt a version of the Swendsen-Wang algorithm to sample contiguous districts (Swendsen and Wang, 1987; Barbu and Zhu, 2005). We further extend this basic algorithm to incorporate
various constraints commonly imposed on redistricting plans, including equal population requirements and geographical compactness. Finally, we apply simulated and parallel tempering to improve the mixing of the resulting Markov chain (Marinari and Parisi, 1992; Geyer and Thompson, 1995). Therefore, unlike the existing algorithms, the proposed algorithms are designed to yield a representative sample of redistricting plans under various constraints. The open-source software, an $R$ package redist, is available for implementing the proposed methodology (Fifield et al., 2015).

In Section 3, we conduct a small-scale validation study where all possible redistricting plans under various constraints can be enumerated in a reasonable amount of time. We show that the proposed algorithms successfully approximate this true population distribution while the standard algorithm fails even in this small-scale redistricting problem. We also conduct an empirical study in realistic settings using redistricting and U.S. Census data from New Hampshire and Mississippi. In this case, the computation of the true population distribution is not feasible and so we evaluate the empirical performance of the proposed algorithms by examining several standard diagnostics of MCMC algorithms. Lastly, Section 4 gives concluding remarks.

## 2 The Proposed Methodology

In this section, we describe the proposed methodology. We begin by formulating redistricting as a graph-cut problem. We then propose a Markov chain Monte Carlo (MCMC) algorithm to uniformly sample redistricting plans with $n$ contiguous districts. Next, we show how to incorporate various constraints such as equal population and geographical compactness. Finally, we improve the mixing of the MCMC algorithm by applying simulated and parallel tempering. A brief comparison with the existing algorithms is also given.

### 2.1 Redistricting as a Graph-cut Problem

Consider a typical redistricting problem where a state consisting of $m$ geographical units (e.g., census blocks or voting precincts) must be divided into $n$ contiguous districts. We formulate this redistricting problem as that of graph-cut where an adjacency graph is partitioned into a set of connected subgraphs (Altman, 1997; Mehrotra et al., 1998). Formally, let $G=\{V, E\}$ represent an adjacency graph where $V=\{\{1\},\{2\}, \ldots,\{m\}\}$ is the set of nodes (i.e., geographical units of redistricting) to be partitioned and $E$ is the set of edges connecting neighboring nodes. This means that if two units, $\{i\}$ and $\{j\}$, are contiguous, there is an edge between their corresponding nodes on the graph, $(i, j) \in E$.

Given this setup, redistricting can be seen equivalent to the problem of partitioning an adjacency graph $G$. Formally, we partition the set of nodes $V$ into $n$ blocks, $\mathbf{v}=\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ where each block is a non-empty subset of $V$, and every node in $V$ belongs to one and only one block, i.e., $V_{k} \cap V_{\ell}=\emptyset$ and $\bigcup_{k=1}^{n} V_{k}=V$. Such a partition $\mathbf{v}$ generates an adjacency subgraph $G_{\mathbf{v}}=\left(V, E_{\mathbf{v}}\right)$ where $E_{\mathbf{v}}$ is a subset of $E$. Specifically, an edge $(i, j)$ belongs to $E_{\mathrm{v}}$ if and only if $(i, j) \in E$ and nodes $\{i\}$ and $\{j\}$ are contained in the same block of the partition, i.e., $\{i\},\{j\} \in V_{k}$. Because $E_{\mathrm{v}}$ is obtained by removing some edges from $E$ or "cutting" them, redistricting represents a graph cut problem. Finally, since each resulting district must be contiguous, a valid partition consists of only connected blocks where for any two nodes $\{i\}$ and $\{j\}$ in a connected block $V_{k} \in \mathbf{v}$, there exists a path of edges within $V_{k}$ that joins these two nodes. Formally, there exists a set of nodes $\{\{i\}=$ $\left.\left\{i_{0}\right\},\left\{i_{1}\right\},\left\{i_{2}\right\}, \ldots,\left\{i_{m^{\prime}-1}\right\},\left\{i_{m^{\prime}}\right\}=\{j\}\right\} \subset V_{k}$ such that, for all $\ell \in\left\{1, \ldots, m^{\prime}\right\}$, $\left(i_{\ell-1}, i_{\ell}\right) \in E_{\mathbf{v}}$.

Figure 1 presents two illustrative examples, one of which is used in our validation study in Section 3.1. These examples are taken from actual Florida precinct data in


Figure 1: Redistricting as a Graph-cut Problem. A state is represented by an adjacency graph where nodes are geographical units and edges between two nodes imply their contiguity. Under this setting, redistricting is equivalent to removing or cutting some edges (light grey) to form connected subgraphs, which correspond to districts. Different districts are represented by different colors. Two illustrative examples, one of which is used in our validation study in Section 3.1, are given here.
an attempt to create realistic, albeit small, examples. A state is represented by an adjacency graph where nodes are geographical units and edges between two nodes imply their contiguity. The figure demonstrates that redistricting a state into $n$ districts is equivalent to removing some edges of an adjacency graph (light grey) and forming $n$ connected subgraphs.

### 2.2 The Basic Algorithm for Sampling Contiguous Districts

We propose a new automated simulator to uniformly sample valid redistricting plans with $n$ contiguous districts. The contiguity of valid partitions dramatically increases the difficulty of developing such an algorithm. Intuitive methods for constructing partitions at random - e.g., randomly assigning precincts to districts - have a minuscule chance of yielding contiguous districts, and enumerating all partitions with contiguous districts is too large of a problem to be tractable in realistic redistricting settings. For more discussion, see Section 3.1.

Our MCMC algorithm is designed to obtain a dependent but representative sample from the uniform distribution of valid redistricting plans. In particular, we modify and extend Algorithm 1 of Barbu and Zhu (2005), which combines the Swendsen-Wang algorithm (Swendsen and Wang, 1987) with a Metropolis-Hastings step (Metropolis et al., 1953; Hastings, 1970). This algorithm begins with a valid partition $\mathbf{v}_{0}$ (e.g., an actual redistricting plan adopted by the state) and transitions from a valid partition $\mathbf{v}_{t-1}$ to another partition $\mathbf{v}_{t}$ at each iteration $t$. Here, we describe the basic algorithm for sampling contiguous districts. Later in the paper, we extend this basic algorithm in a couple of important ways so that common constraints imposed on redistricting can be incorporated and the algorithm can be applied to states with a larger number of districts.

Figure 2 illustrates our algorithm using the 50 precinct example with 3 districts given in the right panel of Figure 1. Our algorithm begins by randomly "turning on" edges in $E_{\mathbf{v}_{t-1}}$; each edge is turned on with probability $q$. In the left upper plot of Figure 2, the edges that are turned on are indicated with darker grey. Next, we identify components that are connected through these "turned-on" edges and are on the boundaries of districts in $\mathbf{v}_{t-1}$. Each such connected component is indicated by a dotted polygon in the right upper plot. Third, among these, a subset of non-adjacent connected components are randomly selected as shown in the left lower plot (two in this case). These connected components are reassigned to adjacent districts to create a candidate partition. Finally, the acceptance probability is computed based on two kinds of edges from each of selected connected components, which are highlighted in the left lower plot: (1) "turned-on" edges, and (2) "turned-off" edges that are connected to adjacent districts. We accept or reject the candidate partition based on this probability.

Our algorithm guarantees that its stationary distribution is equal to the uniform


Figure 2: The Basic Algorithm for Sampling Contiguous Districts. The plots illustrate the proposed algorithm (Algorithm 1) using the 50 precinct data given in the right panel of Figure 1. First, in the left upper plot, each edge other than those which are cut in Figure 1 is "turned on" (dark grey) independently with certain probability. Second, in the right upper plot, connected components on the boundaries are identified (dashed polygons). Third, in the left lower plot, a certain number of non-adjacent connected components on boundaries are randomly selected (dashed polygons) and the acceptance ratio is calculated by counting certain edges (colored edges). Finally, in the right lower plot, the proposed swap is accepted using the Metropolis-Hastings ratio.
distribution of all valid partitions, thereby yielding a uniformly sampled sequence of redistricting plans with contiguous districts. We now formally describe this algorithm.

Algorithm 1 (Sampling Contiguous Redistricting Plans) We initialize the algorithm by obtaining a valid partition $\mathbf{v}_{0}=\left\{V_{10}, V_{20}, \ldots, V_{n 0}\right\}$ and then repeat the following steps at each iteration $t$,

Step 1 ("Turn on" edges): From the partition $\mathbf{v}_{t-1}=\left\{V_{1, t-1}, V_{2, t-1}, \ldots, V_{n, t-1}\right\}$, obtain the adjacency graph $G_{\mathbf{v}_{t-1}}=\left(V, E_{\mathbf{v}_{t-1}}\right)$. Obtain the edge set $E_{\mathbf{v}_{t-1}}^{*} \subset$ $E_{\mathbf{v}_{t-1}}$ where each edge $e \in E_{\mathbf{v}_{t-1}}$ is independently added to $E_{\mathbf{v}_{t-1}}^{*}$ with probability $q$.

Step 2 (Gather connected components on boundaries): Find all components that are connected within $E_{t-1}^{*}$ and adjacent to another block in the partition $\mathbf{v}_{t-1}$. Let $C$ denote this set of connected components where for all $C_{\ell} \in C$, there exists $k \in\{1,2, \ldots, n\}$ such that $C_{\ell} \cap V_{k, t-1}=\emptyset$ and $(i, j) \in E$ for some $\{i\} \in C_{\ell}$ and $\{j\} \in V_{k, t-1}$.

Step 3 (Select non-adjacent connected components): Randomly select a set of $r$ non-adjacent connected components $C^{*}$ from $C$ such that $\mathbf{v}_{t-1} \backslash C^{*}$ is a valid partition where each block of nodes $V_{\ell, t-1} \backslash C^{*}$ is connected in $G_{\mathbf{v}_{t-1}}$. The sampling is done such that each eligible subset of $C$ is selected with equal probability.

Step 4 (Propose swaps): Initialize a candidate partition $\mathbf{v}_{t}^{*}=\left(V_{1 t}^{*}, V_{2 t}^{*}, \ldots, V_{n t}^{*}\right)$ by setting $V_{k t}^{*}=V_{k, t-1}$. For each component $C_{\ell}^{*} \in C^{*}$ with $\ell \in\{1, \ldots, r\}$, find the block $V_{k, t-1} \in \mathbf{v}_{t-1}$ that contains $C_{\ell}^{*}$, and let $A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)$ denote the set of blocks in $\mathbf{v}_{t-1}$ that are adjacent to $C_{\ell}^{*}$, not including the block that contains $C_{\ell}^{*}$. Propose to assign $C_{\ell}^{*}$ from block $V_{k, t-1}$ to an adjacent block $V_{j^{\prime}, t-1}$ with probability $1 /\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)\right|$. If $C_{\ell}^{*}$ is assigned to block $V_{k^{\prime}, t-1}$, set $V_{k^{\prime} t}^{*}=V_{k^{\prime}, t-1} \cup C_{\ell}^{*}$ and $V_{k t}^{*}=V_{k, t-1} \backslash C_{\ell}^{*}$. If $V_{k t}^{*}=\emptyset$, go back to Step 3. Observe that, after each proposed swap, $\mathbf{v}_{t}^{*}$ remains a connected set partition.

Step 5 (Accept or reject the proposal): Set

$$
\mathbf{v}_{t}=\left\{\begin{array}{lcc}
\mathbf{v}_{t}^{*}, & \text { with probability } & \alpha\left(\mathbf{v}_{t-1} \rightarrow \mathbf{v}_{t}^{*}\right)  \tag{1}\\
\mathbf{v}_{t-1}, & \text { with probability } & 1-\alpha\left(\mathbf{v}_{t-1} \rightarrow \mathbf{v}_{t}^{*}\right)
\end{array}\right.
$$

The acceptance probability is given by the Metropolis criterion

$$
\begin{equation*}
\alpha\left(\mathbf{v}_{t-1} \rightarrow \mathbf{v}_{t}^{*}\right)=\min \left(1,(1-q)^{\left|B\left(C^{*}, E_{\mathbf{v}_{t}^{*}}\right)\right|-\left|B\left(C^{*}, E_{v_{t-1}}\right)\right|}\right) \tag{2}
\end{equation*}
$$

where $B\left(C^{*}, E_{\mathbf{v}}\right)=\left\{(i, j) \in E_{\mathbf{v}}: \exists C_{\ell}^{*} \in C^{*}, C_{\ell}^{*} \subset V_{k} \in \mathbf{v}\right.$ s.t. $\{i\} \in C_{\ell}^{*},\{j\} \in$ $\left.V_{k} \backslash C_{\ell}^{*}\right\}$ denotes the set of edges in $E_{\mathbf{v}}$ that need to be cut to form connected components $C^{*}$.

In the Appendix, we prove the following theorem, which states that if the Markov chain produced by the proposed algorithm is ergodic, the stationary distribution of the chain is uniform on the population of all valid partitions $\Omega(G, n)$ (Tierney, 1994).

Theorem 1 If every valid partition can be obtained through a sequence of moves given by Algorithm 1, then the stationary distribution of the resulting Markov chain is uniform on all valid partitions.

The acceptance ratio given in equation (2) is based on the Metropolis-Hastings detailed balance condition (Metropolis et al., 1953; Hastings, 1970),

$$
\begin{equation*}
\alpha\left(\mathbf{v}_{t-1} \rightarrow \mathbf{v}_{t}^{*}\right)=\min \left(1, \frac{\pi\left(\mathbf{v}_{t}^{*} \rightarrow \mathbf{v}_{t-1}\right)}{\pi\left(\mathbf{v}_{t-1} \rightarrow \mathbf{v}_{t}^{*}\right)}\right) \tag{3}
\end{equation*}
$$

where $\pi\left(\mathbf{v} \rightarrow \mathbf{v}^{*}\right)$ denote the probability that, starting from partition $\mathbf{v}$, an iteration of Algorithm 1 described above obtains a candidate partition $\mathbf{v}^{*}$ through Steps 1-4. Computing numerators and denominators of this ratio separately is combinatorially expensive. However, following Barbu and Zhu (2005), we show in the Appendix that substantial cancellation occurs, yielding a simple expression given in equation (2). Indeed, we only need to find all edges within $E_{\mathbf{v}_{t-1}}$ and $E_{\mathbf{v}_{t}^{*}}$ that join a node in a connected component of $C_{\ell}^{*} \in C^{*}$ to a node not contained in the block. Since components in $C^{*}$ are not adjacent, this will ensure that the node not contained in $C_{\ell}^{*}$ will not be contained in a block in $C^{*}$.

Several additional remarks are in order. First, when implementing this algorithm, Step 2 requires the three operations: (1) identify all nodes that form a boundary of multiple partitions by comparing $G_{\mathbf{v}_{t-1}}$ with the original adjacency graph $G$, (2) identify all connected components that include at least one such node via the breadth-
first or depth-first search algorithm, and (3) identify the partition to which each connected component belongs.

Second, in Step 3, we typically choose a positive integer $r$ by randomly sampling it from a distribution with $\operatorname{Pr}(r=1)>0$ at each iteration. If $r=1$, then the ergodicity of the Markov chain is guaranteed but the algorithm moves slowly in the sample space. When $r>1$, the algorithm can mix faster by proposing multiple swaps. However, depending on the adjacency graph $G$, the algorithm may fail to reach some valid partitions. Thus, we allow $r$ to take a value greater than 1 while keeping the probability of $r=1$ positive (e.g., a truncated poisson distribution).

Third, in the original algorithm of Barbu and Zhu (2005), $r$ is set to 1 and instead the authors use a small value of $q$ to create larger connected components. This alternative strategy to improving mixing of the algorithm, though sensible in other settings, is not applicable to the current case. The reason is that larger connected components typically include more units from the interior of each block. This in turn dramatically lowers the acceptance probability.

Finally, while this basic algorithm yields a sample of redistricting plans with contiguous districts, it does not incorporate common constraints imposed on redistricting process, including equal population and geographical compactness. In addition, our experience shows that the algorithm does not scale for states with a medium or larger number of districts. Therefore, we now describe two important modifications to the basic algorithm.

### 2.3 Constraints and Reweighting

In a typical redistricting process, several additional constraints are imposed. Two most commonly applied constraints are equal population and geographical compactness. We first consider the equal population constraint. Suppose that we use $p_{i}$ to denote the population size for node $\{i\}$ where the population parity for the state is
given by $\bar{p} \equiv \sum_{i=1}^{m} p_{i} / n$. Then, the population equality constraint can be written as,

$$
\begin{equation*}
P_{\mathbf{v}}=\max _{1 \leq k \leq n}\left|\frac{\sum_{i \in V_{k}} p_{i}}{\bar{p}}-1\right| \leq \delta \tag{4}
\end{equation*}
$$

where $\delta$ determines the degree to which one wishes to impose the constraint. For example, $\delta=0.03$ implies that the population of all districts must be within $3 \%$ of the population parity.

Next, we consider the geographical compactness. No consensus exists about the exact meaning of compactness and several alternative definitions have been proposed in the literature (see Niemi et al., 1990). Here, we adopt the measure recently proposed by Fryer and Holden (2011). Let $w_{i}$ be the population density of node $\{i\}$ and $d_{i j}$ represent the distance between the centroids of nodes $\{i\}$ and $\{j\}$. The measure, which is called the relative proximity index, is based on the sum of squared distances among voters in each district relative to its minimum value. Then, the compactness constraint can be written as,

$$
\begin{equation*}
R_{\mathbf{v}}=\frac{\sum_{k=1}^{n} \sum_{i, j \in V_{k}, i<j} w_{i} w_{j} d_{i j}^{2}}{\min _{\mathbf{v}^{\prime} \in \Omega(G, n)} \sum_{k=1}^{n} \sum_{i, j \in V_{k}^{\prime}, i<j} w_{i} w_{j} d_{i j}^{2}} \leq \epsilon \tag{5}
\end{equation*}
$$

where $V_{k}^{\prime} \in \mathbf{v}^{\prime}, \epsilon$ determines the strength of this constraint, and $\Omega(G, n)$ is the set of all redistricting plans with $n$ contiguous districts. Fryer and Holden (2011) develops an approximate algorithm to efficiently compute the minimum of the sum of squared distances, i.e., the denominator of equation (5). The authors also show that this measure is invariant to geographical size, population density, and the number of districts of a state, thereby allowing researchers to compare the index across different states and time periods.

How can we uniformly sample redistricting plans under these additional constraints? One possibility is to discard any candidate partition that does not satisfy the desired constraints. In Algorithm 1, after Step 4, one could check whether the candidate partition $v_{t}^{*}$ satisfies the constraints and if not go back to Step 3. However,
such a strategy often dramatically slows down the algorithm and worsens mixing. Alternatively, researchers could run Algorithm 1 without any modification and then simply discard any sampled redistricting plans that do not meet the constraints. The problem of this approach is that many sampled plans may be discarded when strong constraints are imposed.

To overcome this difficulty, we propose to modify Algorithm 1 in the following manner. We first oversample the redistricting plans that are likely to meet the constraints. This means that fewer sampled plans are discarded due to the failure to satisfy the constraints. We then reweight the remaining valid redistricting plans such that they together approximate the uniform sampling from the population of all valid redistricting plans under the constraints. To do this, we consider the Gibbs distribution from statistical physics,

$$
\begin{equation*}
P(\mathbf{v})=\frac{1}{z(\beta)} \exp \left(-\beta \sum_{V_{k} \in \mathbf{v}} \psi\left(V_{k}\right)\right) \tag{6}
\end{equation*}
$$

where $\beta \geq 0$ is the inverse temperature and $z(\beta)$ is the normalizing constant. The function $\psi(\cdot)$ is chosen so that it reflects the constraint of interest. For example, we use $\psi\left(V_{k}\right)=\left|\sum_{i \in V_{k}} p_{i} / \bar{p}-1\right|$ and $\psi\left(V_{k}\right)=\sum_{i, j \in V_{k}} w_{i} w_{j} d_{i j}^{2}$ for the equal population and geographical compactness constraints, respectively.

Algorithm 1 can be modified easily to sample from the non-uniform stationary distribution given in equation (6). In particular, we only need to change the acceptance probability in equation (2) of Step 5 to,

$$
\begin{equation*}
\alpha\left(\mathbf{v}_{t-1} \rightarrow \mathbf{v}_{t}^{*}\right)=\min \left(1, \frac{g_{\beta}\left(\mathbf{v}_{t}^{*}\right)}{g_{\beta}\left(\mathbf{v}_{t-1}\right)} \cdot(1-q)^{\left|B\left(C^{*}, \mathbf{v}_{t}^{*}\right)\right|-\left|B\left(C^{*}, \mathbf{v}_{t-1}\right)\right|}\right) \tag{7}
\end{equation*}
$$

where $g_{\beta}(\mathbf{v}) \equiv \exp \left(-\beta \sum_{V_{k} \in \mathbf{v}} \psi\left(V_{k}\right)\right)$. Lastly, we reweight the sampled plans by $1 / g_{\beta}(v)$ to approximate the uniform sampling from the population of all possible valid redistricting plans. If we resample the sampled plans with replacement using this importance weight, then the procedure is equivalent to the sampling/importance
resampling (SIR) algorithm (Rubin, 1987).

### 2.4 Simulated and Parallel Tempering

One major drawback of the reweighting approach is that when each plan is weighted according to equation (6) the algorithm may have a harder time moving through the sample space. We use simulated and parallel tempering to improve the mixing of Algorithm 1 in such situations (Marinari and Parisi, 1992; Geyer and Thompson, 1995). We begin by describing how to apply simulated tempering in this context.

Recall that we want to draw from the distribution given in equation (6). We initialize a sequence of inverse temperatures $\left\{\beta^{(\ell)}\right\}_{\ell=0}^{r-1}$ where $\beta^{(0)}$ corresponds to the cold temperature, which is the target parameter value for inference, and $\beta^{(r-1)}=0$ represents the hot temperature with $\beta^{(0)}>\beta^{(1)}>\cdots>\beta^{(r-1)}=0$. After many iterations, we keep the MCMC draws obtained when $\beta=\beta^{(0)}$ and discard the rest. By sampling under warm temperatures, simulated tempering allows for greater exploration of the target distribution. We then reweight the draws by the importance weight $1 / g_{\beta^{(0)}}(\mathrm{v})$.

Specifically, we perform simulated tempering in two steps. First, we run an iteration of Algorithm 1 using the modified acceptance probability with $\beta=\beta^{(l)}$. We then make another Metropolis-Hastings decision on whether to change to a different value of $\beta$. The details of the algorithm are given below.

Algorithm 2 (Simulated Tempering) Given the initial valid partition $\mathrm{v}_{0}$ and the initial temperature value $\beta_{0}=\beta^{\left(\kappa_{0}\right)}$ with $\kappa_{0}=r-1$, the simulated tempering algorithm repeats the following steps at each iteration $t$,

Step 1 (Run the basic algorithm with the modified acceptance probability): Using the current partition $\mathbf{v}_{t-1}$ and the current temperature $\beta_{t-1}=$ $\beta^{\left(\kappa_{t-1}\right)}$, obtain a valid partition $\mathbf{v}_{t}$ by running one iteration of Algorithm 1 with the acceptance probability given in equation (7).

Step 2 (Choose a candidate temperature): We set $\kappa_{t}^{*}=\kappa_{t-1}-1$ with probability $u\left(\kappa_{t-1}, \kappa_{t-1}-1\right)$ and set $\kappa_{t}^{*}=\kappa_{t-1}+1$ with probability $u\left(\kappa_{t-1}, \kappa_{t-1}+\right.$

1) $=1-u\left(\kappa_{t-1}, \kappa_{t-1}-1\right)$ where $u\left(\kappa_{t-1}, \kappa_{t-1}-1\right)=u\left(\kappa_{t-1}, \kappa_{t-1}+1\right)=1 / 2$ when
$1 \leq \kappa_{t-1} \leq r-2$, and $u(r-1, r-2)=u(0,1)=1, u(r-1, r)=u(0,-1)=0$.
Step 3 (Accept or reject the candidate temperature): Set

$$
\kappa_{t}= \begin{cases}\kappa_{t}^{*}, & \text { with probability } \gamma\left(\kappa_{t-1} \rightarrow \kappa_{t}^{*}\right)  \tag{8}\\ \kappa_{t-1}, & \text { with probability } 1-\gamma\left(\kappa_{t-1} \rightarrow \kappa_{t}^{*}\right)\end{cases}
$$

where

$$
\begin{equation*}
\gamma\left(\kappa_{t-1} \rightarrow \kappa_{t}^{*}\right)=\min \left(1, \frac{g_{\beta^{\left(\kappa_{t}^{*}\right)}}\left(\mathbf{v}_{t}\right) u\left(\kappa_{t}^{*}, \kappa_{t-1}\right) w_{\kappa_{t}^{*}}}{g_{\beta^{\left(\kappa_{t-1}\right)}}\left(\mathbf{v}_{t}\right) u\left(\kappa_{t-1}, \kappa_{t}^{*}\right) w_{\kappa_{t-1}}}\right) \tag{9}
\end{equation*}
$$

where $w_{\ell}$ is an optional weight given to each $l \in\{0,1, \ldots, r-1\}$.

Much like simulated tempering, parallel tempering is also useful for improving mixing in MCMC algorithms and for sampling from multimodal distributions (Geyer, 1991). Parallel tempering differs from simulated tempering in that instead of varying the temperature within a single Markov chain, we run $r$ copies of Algorithm 1 at $r$ different temperatures, and after a fixed number of iterations we exchange the corresponding temperatures between two randomly selected adjacent chains using the Metropolis criterion. This algorithm has an advantage over Algorithm 2 in that we do not need to choose the prior probability of $\beta$, which typically has a significant effect on the mixing performance. However this advantage comes at the expense of increased computation as we are now running $r$ chains instead of just one.

The nature of parallel tempering suggests that it should be implemented in a parallel architecture, which can be used to minimize computation time. Altekar et al. (2004) describe such an implementation using parallel computing and MPI, which we use as the basis for implementing our algorithm described below.

Algorithm 3 (Parallel Tempering) Given $r$ initial valid partitions $\mathbf{v}_{0}^{(0)}, \mathbf{v}_{0}^{(1)}, \ldots, \mathbf{v}_{0}^{(r-1)}$ and a sequence of $r$ decreasing temperatures $\beta^{(0)}>\beta^{(1)}>\cdots>\beta^{(r-1)}=0$ with $\beta^{(0)}$ the target temperature for inference, and swapping interval $T$, the parallel tempering algorithm repeats the following steps every iteration $t \in\{0, T, 2 T, 3 T, \ldots\}$,

Step 1 (Run the basic algorithm with the modified acceptance probability): For each chain $i \in\{0,1, \ldots, r-1\}$, using the current partition $\mathbf{v}_{t}^{(i)}$ and
the corresponding temperature $\beta^{(i)}$, obtain a valid partition $\mathbf{v}_{t+T}^{(i)}$ by running $T$ iterations of Algorithm 1 with the acceptance probability given in equation (7). This step is executed concurrently for each chain

Step 2 (Propose a temperature exchange between two chains): Randomly select two adjacent chains $j$ and $k$ and exchange information about the temperatures $\beta^{(j)}, \beta^{(k)}$ and the unnormalized likelihoods of the current partitions $g_{\beta^{(j)}}\left(\mathbf{v}_{t+T}^{(j)}\right), g_{\beta^{(k)}}\left(\mathbf{v}_{t+T}^{(k)}\right)$ using MPI
Step 3 (Accept or reject the temperature exchange): Exchange temperatures (i.e $\beta^{(j)} \leftrightarrows \beta^{(k)}$ ) with probability $\gamma\left(\beta^{(j)} \leftrightarrows \beta^{(k)}\right)$ where

$$
\begin{equation*}
\gamma\left(\beta^{(j)} \leftrightarrows \beta^{(k)}\right)=\min \left(1, \frac{g_{\beta^{(j)}}\left(\mathbf{v}_{t+T}^{(k)}\right) g_{\beta^{(k)}}\left(\mathbf{v}_{t+T}^{(j)}\right)}{g_{\beta^{(j)}}\left(\mathbf{v}_{t+T}^{(j)}\right) g_{\beta^{(k)}}\left(\mathbf{v}_{t+T}^{(k)}\right)}\right) \tag{10}
\end{equation*}
$$

All previously generated samples are assumed to have been generated at the current temperature of the chain

We note that the mixing performance of Algorithm 3 is affected by the choice of the temperature sequence $\beta^{(i)}$. While no sequence has been shown to be optimal in the literature, sequences with power-law spacing have been shown heuristically to produce reasonable results. For this reason, we used the sequence $\beta^{(i)}=\left(\beta^{(0)}\right)^{\frac{i}{r-1}}, i \in$ $\{0,1, \ldots, r-1\}$ for our implementation.

### 2.5 Comparison with the Existing Algorithms

A number of substantive researchers used Monte Carlo simulation algorithms to sample possible redistricting plans under various criteria in order to detect the instances of gerrymandering and understand the causes and consequences of redistricting (e.g., Engstrom and Wildgen, 1977; O'Loughlin, 1982; Cirincione et al., 2000; McCarty et al., 2009; Chen and Rodden, 2013). Most of these studies use a similar Monte Carlo simulation algorithm where a geographical unit is randomly selected as a "seed" for each district and then neighboring units are added to contiguously grow this district until it reaches the pre-specified population threshold. A representative of such algorithms, proposed by Cirincione et al. (2000) and implemented by Altman and McDonald (2011) in their open-source BARD package, is given here.

Algorithm 4 (The Standard Redistricting Simulator (Cirincione et al., 2000)) For each district, we repeat the following steps.

Step 1: From the set of unassigned units, randomly select the seed unit of the district.

Step 2: Identify all unassigned units adjacent to the district.
Step 3: Randomly select one of the adjacent units and add it to the district.
Step 4: Repeat Steps 2 and 3 until the district reaches the predetermined population threshold.

Additional criteria can be incorporated into this algorithm by modifying Step 3 to select certain units. For example, to improve the compactness of the resulting districts, one may choose an adjacent unassigned unit that falls entirely within the minimum bounding rectangle of the emerging district. Alternatively, an adjacent unassigned unit that is the closest to emerging district can be selected (see Chen and Rodden, 2013).

Nevertheless, the major problem of these simulation algorithms is their adhoc nature. For example, as the documentation of BARD package warns, the creation of earlier districts may make it impossible to yield contiguous districts. More importantly, the algorithms come with no theoretical result and are not even designed to uniformly sample redistricting plans even though researchers have a tendency to assume that they are. In contrast, the proposed algorithms described in Sections 2.2-2.4 are built upon the well-known theories and strategies developed in the literature on the Markov chain Monte Carlo methods. The disadvantage of our algorithms, however, is that they yield a dependent sample and hence their performance will hinge upon the degree of mixing. Thus, we now turn to the assessment of the empirical performance of the proposed algorithms.

## 3 Empirical Performance of the Proposed Algorithms

In this section, we assess the performance of the proposed algorithms in two ways. First, we conduct a small-scale validation study where, due to its size, all possible redistricting maps can be enumerated in a reasonable amount of time. We show that our algorithms can approximate the target distribution well when the standard algorithm commonly used in the literature fails. Second, we use the actual redistricting data to examine the convergence behavior of the proposed algorithms in more realistic settings using the redistricting data from New Hampshire (two districts) and Mississippi (four districts). For these data, the computation of the true population distribution is not feasible. Instead, we evaluate the empirical performance of the proposed algorithms by examining the standard diagnostics of MCMC algorithms.

To conduct these analyses, we integrate precinct-level data from two sources. We utilize precinct-level shape files and electoral returns data from the Harvard Election Data Archive to determine precinct adjacency and voting behavior. We supplement this data with basic demographic information from the U.S. Census Bureau P.L. 94171 summary files, which are compiled by the Census Bureau and disseminated to the 50 states in order to obtain population parity in decennial redistricting.

### 3.1 A Small-scale Validation Study

We conduct a validation study where we analyze the convergence of our algorithm to the target distribution on the 25 precinct set, which is shown as an adjacency graph in Figure 1. Due to the small size of these sets, all possible redistricting plans can be enumerated in a reasonable amount of time. We begin by considering the problem of partitioning each of these graphs into two districts. We apply the proposed algorithm
(Algorithm 1) with the starting map obtained randomly by running the standard algorithm (Algorithm 4) once. In addition, we apply the standard algorithm, as implemented in the BARD package (Altman and McDonald, 2011), to compare its performance with that of our proposed algorithm. We then consider partitions of the 25 precinct set into three districts. The results of the proposed algorithm are based on a single chain of 10,000 draws while those of the standard algorithm are based on the same number of independent draws.

Before we give results, it should be noted that, even for this small-scale study, the enumeration of all valid partitions is a non-trivial problem. For partitions of 25 precincts into three districts, of the roughly $3^{25} / 6 \approx 1.41 \times 10^{11}$ possible partitions, 82,623 have three contiguous districts, and 3,617 have district populations within $20 \%$ of parity.

A brief description of our enumeration algorithm is as follows. In the case of two districts, we choose an initial starting node and form a partition where one district is that initial node and the other district is the complement, provided the complement is connected. We then form connected components of two nodes comprised of that starting node and and nodes that are adjacent to that node. We identify all valid partitions where one district is a two-node component and the other district is the complement of the component. We continue forming connected components of incrementally increasing sizes and finding valid partitions until all possible partitions are found. In the case of three precincts, if the complement of a connected component is comprised of two additional connected components, we store that partition as valid. If the complement is a single connected component, we apply the two-district algorithm on the complement. After this enumeration, we identify which partitions have districts with populations within a certain percentage of parity.

Figure 3 presents the results of the validation study with three districts and 25



Figure 3: A Small-scale Validation Study with Three Districts. The underlying data is the 25 precinct set shown in the left plot of Figure 1. The plots in the frst row show that the proposed algorithm (Algorithm 1; solid black lines) approximates well the true population distribution (grey histograms) when no (left plot) or weak (middle plot) equal population constraint is imposed. However, the algorithm exhibits poor performance when a stronger equal population constraint (right plot) is imposed. Finally, the standard algorithm (Algorithm 4; red dashed lines) fails to approximate the target distribution in all cases. In contrast, in the plots of the second row, the proposed algorithm with simulated tempering (Algorithm 2; black dot-dashed line) approximates the true population distribution well even when a stronger constraint is placed. The same exact pattern is observed for the parallel tempering algorithm (Algorithm 3; blue solid line). The results for each algorithm is based on a single chain of 10,000 draws.
precincts. We apply the proposed algorithm (Algorithm 1) with the starting map obtained randomly from the standard algorithm (Algorithm 4) (upper panel). These algorithms are also implemented with the simulated tempering (Algorithm 2; black dot-dashed lines) and parallel tempering (Algorithm 3; blue solid lines) strategies (the lower panel).

To implement these algorithms, we specify a sequence of temperatures $\left\{\beta^{(\ell)}\right\}_{\ell=0}^{r}$. For the population deviation of $20 \%$, we chose a target temperature of $\beta^{(r)}=5.4$, and for the population deviation of $10 \%$, we chose a target temperature of $\beta^{(r)}=9$. In both cases, we use $\beta^{(0)}=0$. We choose these setups so that the rejection ratio is in the recommended 20-40\% range (Geyer and Thompson, 1995) and the target temperature value is chosen based on the number of plans that meet the population constraint. In both cases, we use a subset of draws taken under the target temperature. We then resample the remaining draws using the importance weights $1 / g_{\beta^{(\ell)}}(\mathbf{v})$, and finally subset down to the set of remaining draws that fall within the population target.

The left-upper plot of Figure 3 shows that when no constraint is imposed the proposed algorithm approximates the target distribution well while the sample from the standard algorithm is far from being representative of the population. In the plots of the middle and right columns, we impose the equal population constraint where only up to $20 \%$ and $10 \%$ deviation from the population parity is allowed, respectively. It is no surprise that the standard algorithm completely fails to approximate the true distribution as well in these caes (the middle and right plots in the upper panel). In contrast, the proposed algorithms with simulated and parallel tempering approximate the true population distribution well. Even when a stronger constraint, i.e., $10 \%$, is placed, the proposed algorithms with simulated tempering (Algorithm 2) and parallel tempering (Algorithm 3) maintain a good approximation.

Finally, Figure 4 compares the runtime between the proposed basic algorithm


Figure 4: Runtime Comparison between the Proposed and Standard Algorithms in the Small-scale Validation Study. The runtime is compared between the proposed basic algorithm (Algorithm 1; solid black lines) and the standard algorithm (Algorithm 4; red dashed lines) under various settings. Each algorithm is run until it yields 10,000 draws. The runtime is much greater for the standard algorithm than the proposed algorithm. It also increases much more quickly for the former as the number of precincts and the strength of equal population constraint increase.
(Algorithm 1; solid black lines) and the standard algorithm (Algorithm 4; red dashed lines) under various validation study settings. In addition to the 25 precinct set, we also include the 50 precinct set, which is shown in the right plot of Figure 1. Each algorithm is run until it yields 10,000 draws using a node on a Linux server with 2.66 GHz Nehalem processors and 3GB RAM (no parallel computing is used). We find that under all settings we consider here the runtime for the proposed algorithm is at least 50 times shorter than that for the standard algorithm. This difference increases as the number of precincts and the strength of equal population constraint ( $x$-axis) increase. In sum, in terms of computational speed, the proposed algorithm scales much better than the standard algorithm.

### 3.2 An Empirical Study

The scale of the validation study presented above is small so that we can enumerate all possible redistricting plans in a reasonable amount of time. This allowed us to examine how well each algorithm is able to approximate the true population distri-


Figure 5: Precinct-level Maps of New Hampshire (327 precincts, two congressional districts) and Mississippi (1,969 precincts, four congressional districts). Colors correspond to precinct congressional district assignments in 2010. In New Hampshire, Democrats and Republicans each hold a single congressional seat. In Mississippi, Republicans hold three congressional seats while Democrats hold a single seat.
bution. However, the scale of the study is too small to be realistic. Below, we apply the proposed algorithms to the 2008 election data and conduct standard convergence diagnostics of MCMC algorithms. While we cannot compare the distribution of sampled maps with the true population distribution, this empirical study enables us to investigate the performance of the proposed methods in realistic settings.

New Hampshire. We first consider New Hampshire. The state has two congressional districts and consists of 327 precincts, and so this is one of the simplest realistic redistricting problems. The left panel of Figure 5 shows the implemented statewide redistricting plan as of 2010. Under this plan, Democrats and Republicans won a single congressional seat each. In 2008, Obama won $54 \%$ of votes in this state while his 2012 voteshare was $52 \%$. Redistricting in New Hampshire is determined by its state legislature and plans are passed as standard statutes, which makes them subject to gubernatorial veto. We apply the proposed basic algorithm (Algorithm 1), simulated
tempering algorithm (Algorithm 2), and parallel tempering algorithm (Algorithm 3). The target population consists of all redistricting plans with contiguous districts and a maximum of $1 \%$ deviation from the population parity.

A total of 10 chains are run until 500,000 draws are obtained for each of the three algorithms. Inference is based on a total of 22,970 draws, which is the lowest number of draws across the three algorithms that both satisfy the population constraint and were drawn under the target temperature value, $\beta^{(r)}=27$. For starting values, we use independent draws from the standard algorithm (Algorithm 4 as implemented in the BARD package). For both the simulated and parallel tempering algorithms, after some preliminary analysis, we have decided to allow $\beta^{(\ell)}$ to take values between 0 and 27, using power-law spacing, with the target temperature value of 27 . As in the small-scale verification study, we only use draws taken under the target temperature, and then reweight according to the importance weights $1 / g_{\beta^{(\ell)}(\mathbf{v})}$ before selecting all remaining draws that fall within the target parity deviation of $1 \%$.

Figure 6 presents the results. The figure shows the autocorrelation plots (left column), the trace plots (middle column), and the Gelman-Rubin potential scale reduction factors (Gelman and Rubin, 1992; right column) for the basic algorithm (top panel), the simulated tempering algorithm (middle panel) and the parallel tempering algorithm (bottom panel). We use the logit transformed Republican dissimilarity index for all diagnostics. Both the simulated and parallel tempering algorithms significantly outperform the basic algorithm. The formor has a lower autocorrclation and mixes better. In addition, the potential scale reduction factor goes down quickly, suggesting that all the chains with different starting maps become indistinguishable from each other after approximately 1,500 draws.

Mississippi. Next, we analyze the 2008 election data from Mississippi. This state has a total of four congressional districts and 1,969 precincts, thereby providing a


Figure 6: Convergence Diagnostics of the Proposed Algorithm for the 2008 New Hampshire Redistricting Data. The proposed basic algorithm (Algorithm 1; top panel), the simulated tempering algorithm (Algorithm 2; middle panel), and the parallel tempering algorithm (Algorithm 3; bottom panel) are applied to the New Hampshire data with 327 precincts and 2 congressional districts. The target population consists of all redistricting plans with contiguous districts and a maximum of $1 \%$ deviation from the population parity. A total of 10 chains are run with different starting maps for each algorithm until 500,000 draws are obtained, and inference is based on a total of 22,970 draws (the number of draws in the simulated tempering algorithm that are both drawn under the target temperature and satisfy the target population constraint). For the logit transformed Republican dissimilarity index, the autocorrelation plots (left column), the trace plots (middle column), and the GelmanRubin potential scale reduction factors (right column) are presented. The simulated and parallel tempering algorithms outperform the basic algorithm across all three diagnostics.
more challenging example when compared to New Hampshire. The right-hand panel of Figure 5 shows the implemented redistricting plan in Mississippi as of 2010. In 2008, $43 \%$ of the electorate voted for Obama while his voteshare in the 2012 election for this state was $44 \%$. Redistricting in Mississippi is determined by its state legislature subject to gubernatorial veto.

One important feature of Mississippi is its sizable African-American population ( $37 \%$ of the population). This group is concentrated in the capital city, Jackson, and in surrounding areas in the west of the state, which poses a special challenge to the algorithms. Democrats typically win this seat, shaded in blue in Figure 5, while Republicans typically win the other three seats in Mississippi. Mississippi is also one of the nine states fully covered by Section V of the Voting Rights Act, which obligates political officials to submit its proposed redistricting plan to the U.S. Department of Justice. However, following the Supreme Court's decision in Shelby County v. Holder (2013) to strike down the pre-clearance formula determining Section V coverage, Mississippi is no longer subject to Section V requirements by default.

Here, we utilize parallel tempering (Algorithm 3) to examine its algorithmic performance for Mississippi. After some preliminary analysis, we chose to anneal $\beta^{(\ell)}$ between 0 and -225 in unequally spaced increments, with the target temperature of $\beta^{(\ell)}=-225$. We run a total of 10 chains for 200,000 simulations each, keeping every 5 th draw. Inference is then based off of a total of 138,840 draws, which is the number of remaining simulations drawn under the target $\beta^{(\ell)}$ that fall within $5 \%$ of population parity.

Figure 7 presents the results of this analysis. The same set of diagnostics are conducted for the Republican dissimilarity index (top row) and the African-American dissimilarity index (bottom row). The figure shows that although the Mississippi data pose a much more challenging application than the New Hampshire data, the


Figure 7: Convergence Diagnostics of the Proposed Algorithm for the 2008 Mississippi Redistricting Data. The information identical to that of Figure 6 is displayed here for two statistics, Republican dissimilarity index and African-American dissimilarity index (both logit transformed). See the caption of Figure 6 for details. The data is obtained from 138,840 draws of the parallel tempering algorithm (Algorithm 3).
parallel tempering algorithm still performs reasonably well. In particular, the potential scale reduction factor (in the plots given in the right column) is relatively low and remains stable for the Republican dissimilarity index, suggesting that the impact of the starting values has mostly disappeared. Because African American voters are geographically concentrated, the algorithm has a harder time mixing for the AfricanAmerican dissimilarity index. Nevertheless, the scale reduction factor still stabilizes at a reasonably low value, suggesting that the impact of the starting values is limited in this application.

## 4 Concluding Remarks

Over the last half century, a number of automated redistricting algorithms have been proposed in the methodological literature. Most of these algorithms have been designed to find an optimal redistricting plan given a certain set of criteria. However, many substantive researchers have been interested in characterizing the distribution of redistricting plans under various constraints. Unfortunately, few such simulation algorithms exist and even the ones that are commonly used by applied researchers have no theoretical justification.

In this paper, we propose a new automated redistricting simulator using Markov chain Monte Carlo. Unlike the existing standard algorithm, the proposed algorithms have a theoretical justification and approximate the target distribution well in a small-scale validation study. Even in more realistic settings where the computational challenge is greater, our initial analyses shows a promising performance of the proposed algorithms. Nevertheless, it is still unclear whether these algorithms scale to those states with an even greater number of districts than those considered here. In the future, we plan to investigate whether simulated and parallel tempering strategies can overcome the computational challenge posed by those large states.

Another promising line of research is to examine the factors that predict the redistricting outcome. For example, substantive researchers are interested in how the institutional features of redistricting process (e.g., bipartisan commission vs. state legislature) determines the redistricting process. Such an analysis requires inferences about the parameters that are underlying our generative model. In contrast, in this paper we restricted our attention to the question of how to simulate redistricting plans given these model parameters. Therefore, a different approach is required to address this and other methodological challenges.

## Appendix: Proof of Theorem 1

Let $\Gamma\left(C^{*}, G_{\mathbf{v}}\right)$ denote all sets of connected components $C$ obtainable through "turning on" edges in $E_{\mathbf{v}}$ such that $C^{*} \subset C$. Let $p\left(C \mid G_{\mathbf{v}}\right)$ denote the probability that $C$ is obtained through Steps 1 and 2 of Algorithm 1. Let $p\left(C^{*} \mid C\right)$ denote the probability that, given $C$, its particular subset $C^{*}$ is selected at Step 3. Note that this probability does not depend on the partition $\mathbf{v}$. Then, it follows that

$$
\begin{align*}
& \pi\left(\mathbf{v}_{t-1} \rightarrow \mathbf{v}_{t}^{*}\right)=\sum_{C^{\prime} \in \Gamma\left(C^{*}, G_{v_{t-1}}\right)} p\left(C^{*} \mid C^{\prime}\right) p\left(C^{\prime} \mid G_{\mathbf{v}_{t-1}}\right) \prod_{\ell=1}^{r} \frac{1}{\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)\right|}  \tag{11}\\
& \pi\left(\mathbf{v}_{t}^{*} \rightarrow \mathbf{v}_{t-1}\right)=\sum_{C^{\prime} \in \Gamma\left(C^{*}, G_{\mathbf{v}_{t}^{*}}\right)} p\left(C^{*} \mid C^{\prime}\right) p\left(C^{\prime} \mid G_{\mathbf{v}_{t}^{*}}\right) \prod_{\ell=1}^{r} \frac{1}{\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t}^{*}\right)\right|} \tag{12}
\end{align*}
$$

We now simplify equations (11) and (12) to identify common terms, which then cancel each other in equation (3). First, we show

$$
\begin{equation*}
\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)\right|=\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t}^{*}\right)\right| \tag{13}
\end{equation*}
$$

for any connected component $C_{\ell}^{*} \in C^{*}$ where $l \in\{1, \ldots, r\}$.
Suppose that, without loss of generality, $C_{\ell}^{*}$ is adjacent to blocks $V_{1, t-1}, V_{2, t-1}, \ldots, V_{\left|A\left(C_{\ell}^{*}, \mathrm{v}_{t-1}\right)\right|, t-1} \in$ $\mathbf{v}_{t-1}$, and $C_{\ell}^{*}$ is contained in block $V_{\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)\right|+1, t-1} \in \mathbf{v}_{t-1}$. The check that $V_{k t}^{*} \neq \emptyset$ in Step 4 of the algorithm ensures that $C_{\ell}^{*} \neq V_{\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)\right|+1, t-1}$. Since $\mathbf{v}_{t-1}$ is a connected set partition, there must exist $\left\{\hat{i}_{\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t}^{*}\right)\right|+1}\right\} \in C_{\ell}^{*}$ and $\left\{j_{\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t}^{*}\right)\right|+1}\right\} \in$ $V_{\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)\right|+1, t-1} \backslash C_{\ell}^{*}$ that are adjacent in $G_{\mathbf{v}_{t-1}}$. Moreover, there exist pairs of adjacent nodes $\left(\left\{i_{1}\right\},\left\{j_{1}\right\}\right), \ldots,\left(\left\{i_{\left|A\left(C_{\ell}^{*}, v_{t-1}\right)\right|}\right\},\left\{j_{\left|A\left(C_{\ell}^{*}, v_{t-1}\right)\right|}\right\}\right)$ with $\left\{i_{k}\right\} \in C_{\ell}^{*},\left\{j_{k}\right\} \in V_{k, t-1}$ where $1 \leq k \leq\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)\right|$. Since $C^{*}$ is comprised of non-adjacent connected components, it follows that nodes $\left\{j_{1}\right\}, \ldots,\left\{j_{\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)\right|}\right\},\left\{j_{\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)\right|+1}\right\}$ do not change block assignment when transitioning from $\mathbf{v}_{t-1}$ to $\mathbf{v}_{t}^{*}$, and thus, are contained in distinct blocks in $\mathbf{v}_{t}^{*}$. Thus, the connected component $C_{\ell}^{*}$ is adjacent to all blocks corresponding to a node in $\left\{\left\{j_{1}\right\}, \ldots,\left\{j_{\left|A\left(C_{R}^{*}, \mathbf{v}_{t}^{*}\right)\right|}\right\},\left\{j_{\left|A\left(C_{e}^{*}, v_{t}^{*}\right)\right|+1}\right\}\right\}$ except for the block containing $C_{\ell}^{*}:\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)\right|$ blocks in total. Hence, $\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t}^{*}\right)\right| \geq\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)\right|$. Moreover, for any block $V_{k, t-1} \notin A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)$ such that $C_{\ell}^{*} \not \subset V_{k, t-1}$, the corresponding block $V_{k, t}^{*}$ obtained by swapping connected components in $C^{*}$ will not be contained in $A\left(C_{\ell}^{*}, \mathbf{v}_{t}^{*}\right)$; by definition, for any $\{i\} \in C_{\ell}^{*},\{j\} \in V_{k, t-1},(i, j) \notin E$, and since connected components in $C^{*}$ are not adjacent, it follows that no edge connects a vertex in $V_{k, t}^{*}$ to a vertex in $C_{\ell}^{*}$. This proves equation (13).

Next, through a proof by contradiction, we show that

$$
\begin{equation*}
\Gamma\left(C^{*}, G_{\mathbf{v}_{t-1}}\right)=\Gamma\left(C^{*}, G_{\mathbf{v}_{t}^{*}}\right) \tag{14}
\end{equation*}
$$

By showing this, we also conclude that $\mathbf{v}_{t-1}$ can be a candidate partition when starting from $\mathbf{v}_{t}^{*}$, i.e., $\pi\left(\mathbf{v}_{t-1} \rightarrow \mathbf{v}_{t}^{*}\right)>0$ implies $\pi\left(\mathbf{v}_{t}^{*} \rightarrow \mathbf{v}_{t-1}\right)>0$. Suppose that there exists a set of connected components $C^{\prime} \in \Gamma\left(C^{*}, G_{\mathbf{v}_{t-1}}\right)$ such that $C^{\prime} \notin \Gamma\left(C^{*}, G_{\mathbf{v}_{t}^{*}}\right)$. This means that there exists $C_{\ell}^{\prime} \in C^{\prime}$ that can be formed by turning on edges in $E_{\mathbf{v}_{t-1}^{*}}$ but not in $E_{\mathbf{v}_{t}^{*}}$. Thus, there exists $\{i\},\{j\} \in C_{\ell}^{\prime}$ such that $(i, j) \in E_{\mathbf{v}_{t-1}}$ and
$(i, j) \notin E_{\mathbf{v}_{t}^{*}}$. However, according to Step 4 of the algorithm, the only edges deleted in the transition between $\mathbf{v}_{t-1}$ and $\mathbf{v}_{t}^{*}$, are those connecting a vertex in $\{i\}$ in $C^{*}$ to a vertex $\{j\} \notin C^{*}$. Since $C^{*} \subset C^{\prime} \in \Gamma\left(C^{*}, G_{\mathrm{v}_{t-1}}\right),\{i\}$ and $\{j\}$ cannot be contained in the same component of $C^{\prime}$, a contradiction. An analogous argument shows that there is no connected component $C^{\prime} \in \Gamma\left(C, \mathbf{v}_{t}^{*}\right)$ such that $C^{\prime} \notin \Gamma\left(C, \mathbf{v}_{t-1}\right)$. This proves equation (14).

Third, we decompose $p\left(C \mid G_{\mathbf{v}}\right)$. For a partition $\mathbf{v}$, let $\Lambda\left(C, E_{\mathbf{v}}\right)$ denote all subsets of edges of $E_{\mathbf{v}}$ such that, when only those edges in a subset are turned on, the set of connected components $C$ is formed (Step 2). Note that $C$ can be formed if and only if the partition $\mathbf{v}$ satisfies $E_{C} \subset E_{\mathbf{v}}$, and $\Lambda\left(C, E_{\mathbf{v}}\right)$ is identical for all such partitions. Specifically, $\Lambda\left(C, E_{\mathbf{v}_{t-1}}\right)=\Lambda\left(C, E_{\mathbf{v}_{t}^{*}}\right)$. To see this, observe that every set of edges $E_{\mathbf{v}}^{*} \in \Lambda\left(C, E_{\mathbf{v}}\right)$ must connect nodes within each connected component in $C$, and must not include any edges joining a connected component to a node not included in the connected component. For any connected component $C_{\ell} \in C$, there must be a block $V_{k} \in \mathbf{v}$ such that $C_{\ell} \subset V_{k}$. Since $E_{\mathbf{v}}$ contains all edges joining two nodes in $V_{k}$, it follows that any set of edges connecting nodes in $C$ is contained in $E_{\mathbf{v}}$.

Given a set of "turned-on" edges $E_{\mathbf{v}}^{*} \in \Lambda\left(C, E_{\mathbf{v}}\right)$, define $\bar{E}_{\mathbf{v}}^{*} \equiv E_{\mathbf{v}} \backslash E_{\mathbf{v}}^{*}$ as the set of "turned-off" edges. Observe that, for $E_{\mathbf{v}_{t-1}}^{*} \in \Lambda\left(C, E_{\mathbf{v}_{t-1}}\right), E_{\mathbf{v}_{t}^{*}}^{*} \in \Lambda\left(C, E_{\mathbf{v}_{t}}\right)$ with $E_{\mathbf{v}_{t-1}}^{*}=E_{\mathbf{v}_{t}}^{*} \bar{E}_{\mathbf{v}_{t-1}}^{*}$ may be different from $\bar{E}_{\mathbf{v}_{t}^{*}}^{*}$. That is, if the candidate partition $\mathbf{v}^{*}$ is obtained from $\mathbf{v}_{t-1}$ by assigning connected component $C^{\prime} \in C$ from block $V_{\ell}$ to block $V_{\ell^{\prime}}, \bar{E}_{\mathrm{v}_{t}^{*}}^{*}$ may contain an edge that connects a node in $C^{\prime}$ to an adjacent node in $V_{\ell^{\prime}}$, whereas this edge cannot occur in $\bar{E}_{\mathrm{v}_{t-1}}^{*}$. Define

$$
\begin{align*}
B\left(C^{*}, \bar{E}_{\mathbf{v}}^{*}\right) & \equiv\left\{(i, j) \in \bar{E}_{\mathbf{v}}^{*}:\{i\} \in C^{*},\{j\} \notin C^{*}\right\} \\
& =\left\{(i, j) \in \bar{E}_{\mathbf{v}}^{*}: \exists C_{\ell}^{*} \in C^{*}, C_{\ell}^{*} \subset V_{k} \in \mathbf{v} \text { s.t. }\{i\} \in C_{\ell}^{*},\{j\} \in V_{k} \backslash C_{\ell}^{*}\right\} \tag{15}
\end{align*}
$$

as the set of edges in $\bar{E}_{\mathrm{v}}^{*}$ that connect a block of nodes in $C^{*}$ to a vertex not in $C^{*}$, i.e., those edges that need to be "cut" to form blocks of vertices $C^{*}$. Since $C^{*} \subset C$, for partition $\mathbf{v}, B\left(C^{*}, E_{\mathbf{v}}\right)$ is the same for every set of turned-on edges in $\Lambda\left(C, E_{\mathbf{v}}\right)$, and is the same across all sets of connected components in $\Gamma\left(C^{*}, G_{\mathbf{v}}\right)$. Then, we can write $p\left(C \mid G_{\mathbf{v}}\right)$ as:
$p\left(C \mid G_{\mathbf{v}_{t-1}}\right)=\prod_{e \in B\left(C^{*}, E_{v_{t-1}}\right)}\left(1-q_{e}\right) \sum_{E_{\mathbf{v}_{t-1}}^{*} \in \Lambda\left(C, E_{\mathbf{v}_{t-1}}\right)} \prod_{e \in E_{v_{t-1}}^{*}} q_{e} \prod_{e \in \bar{E}_{\mathbf{v}_{t-1}}^{*} \backslash B\left(C^{*}, E_{\mathbf{v}_{t-1}}\right)}\left(1-q_{e}\right)$
where we allow the edge cut probability to differ across edges.
Finally, we show that, for any $E_{\mathbf{v}_{t-1}}^{*} \in \Lambda\left(C, E_{\mathbf{v}_{t-1}}\right), E_{\mathbf{v}_{t}^{*}}^{*} \in \Lambda\left(C, E_{\mathbf{v}_{t}}\right)$ with $E_{\mathbf{v}_{t-1}}^{*}=$ $E_{\mathrm{v}_{t}}^{*}$,

$$
\begin{equation*}
E_{\mathbf{v}_{t-1}}^{*} \backslash B\left(C^{*}, E_{\mathbf{v}_{t-1}}\right)=E_{\mathbf{v}_{t}^{*}}^{*} \backslash B\left(C^{*}, E_{\mathbf{v}_{t}^{*}}\right) \tag{17}
\end{equation*}
$$

Consider any edge $e \in E_{\mathbf{v}_{t-1}} \backslash B\left(C^{*}, E_{\mathbf{v}_{t-1}}\right)$. This edge can either join two nodes within a single connected component or joins two nodes in two distinct connected components. In the former case, both nodes are contained in a single block of $\mathbf{v}_{t-1}$,
and since connected components are reassigned to form the candidate partition $\mathbf{v}_{t}^{*}$, it follows that both nodes are contained in a single block $V^{*} \in \mathbf{v}_{t}^{*}$. Hence, $e \in E_{\mathbf{v}_{i}^{*}}$, and since does not join a node in connected component in $C^{*}$ to a node in a connected component that is not in $C^{*}$, it follows that $e \in E_{\mathbf{v}_{t}^{*}} \backslash B\left(C^{*}, E_{\mathbf{v}_{t}^{*}}\right)$. In the latter case, observe that, since $e \in E_{\mathbf{v}_{t-1}}$, both connected components must be contained within the same block of $\mathbf{v}_{t-1}$. Since they do not belong to $C^{*}$, neither component is reassigned to a block, and hence, are contained within the same block $V_{k t}^{*} \in \mathrm{v}_{t}^{*}$. Thus, $e \in E_{\mathbf{v}_{t}^{*}}$, and since does not join a node in connected component in $C^{*}$ to a node in a connected component that is not in $C^{*}$, it follows that $e \in E_{\mathbf{v}_{t}^{*}} \backslash B\left(C^{*}, E_{\mathbf{v}_{t}^{*}}\right)$. In both cases, $e \in E_{\mathbf{v}_{t}^{*}} \backslash B\left(C^{*}, E_{\mathbf{v}_{t}^{*}}\right)$. Thus, $E_{\mathbf{v}_{t-1}} \backslash B\left(C^{*}, E_{\mathbf{v}_{t-1}}\right) \subset E_{\mathbf{v}_{t}^{*}} \backslash B\left(C^{*}, E_{\mathbf{v}_{t}^{*}}\right)$. By the same argument, $E_{\mathbf{v}_{t}^{*}} \backslash B\left(C^{*}, E_{\mathbf{v}_{t}^{*}}\right) \subset E_{\mathbf{v}_{t-1}} \backslash B\left(C^{*}, E_{\mathbf{v}_{t-1}}\right)$, and we have shown equation (17). By this observation, we can now write,

$$
\begin{equation*}
p\left(C \mid G_{\mathbf{v}_{i}^{*}}\right)=\prod_{e \in B\left(C^{*}, E_{\mathbf{v}_{t}^{*}}\right)}\left(1-q_{e}\right) \sum_{E_{\mathbf{v}_{t-1}}^{*} \in \Lambda\left(C, E_{\mathbf{v}_{t-1}}\right)} \prod_{e \in E_{\mathbf{v}_{t-1}^{*}}^{*}} q_{e} \prod_{e \in E_{v_{t-1}}^{*} \backslash \mathcal{B}\left(C^{*}, E_{\mathbf{v}_{t-1}}\right)}\left(1-q_{e}\right) . \tag{18}
\end{equation*}
$$

Using equation (16) and the fact that the set of edges $B\left(C^{*}, \mathbf{v}_{t-1}\right)$ is identical across all sets of connected components $C_{\ell} \in C^{*}$, we can write as:

$$
\begin{align*}
\pi\left(\mathbf{v}_{t-1} \rightarrow \mathbf{v}_{t}^{*}\right)= & \prod_{e \in B\left(C^{*}, E_{\mathbf{v}_{t-1}}\right)}\left(1-q_{e}\right) \sum_{C \in \Gamma\left(C^{*}, \mathbf{v}_{t-1}\right)}\left(\sum_{E_{v_{t-1}}^{*} \in \Lambda\left(C, E_{\mathbf{v}_{t-1}}\right)} \prod_{e \in E_{\mathbf{v}_{t-1}}^{*}} q_{e} \prod_{e \in \bar{E}_{\mathbf{v}_{t-1}}^{*} \backslash B\left(C^{*}, E_{\mathbf{v}_{t-1}}\right)}\left(1-q_{e}\right)\right) \\
& \times p\left(C^{*} \mid C\right) \prod_{\ell=1}^{r} \frac{1}{\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)\right|} \tag{19}
\end{align*}
$$

Similarly, we find that:

$$
\begin{align*}
\pi\left(\mathbf{v}_{t}^{*} \rightarrow \mathbf{v}_{t-1}\right)= & \prod_{e \in B\left(C^{*}, E_{\mathbf{v}_{t}^{*}}\right)}\left(1-q_{e}\right) \sum_{C \in \Gamma\left(C^{*}, \mathbf{v}_{t-1}\right)}\left(\sum_{E_{\mathbf{v}_{t-1}}^{*} \in \Lambda\left(C, E_{\mathbf{v}_{t-1}}\right)} \prod_{e \in E_{\mathbf{v}_{t-1}}^{*}} q_{e} \prod_{e \in{\overline{\mathbf{v}_{t-1}}}^{*} \backslash B\left(C^{*}, E_{\mathbf{v}_{t-1}}\right)}\left(1-q_{e}\right)\right) \\
& \times p\left(C^{*} \mid C\right) \prod_{\ell=1}^{r} \frac{1}{\left|A\left(C_{\ell}^{*}, \mathbf{v}_{t-1}\right)\right|} . \tag{20}
\end{align*}
$$

Thus, many terms cancel out and we obtain the following expression for the acceptance probability:

$$
\begin{equation*}
\alpha\left(\mathbf{v} \rightarrow \mathbf{v}^{*}\right)=\min \left(1, \frac{\prod_{e \in B\left(C^{*}, \mathbf{v}_{t}^{*}\right)}\left(1-q_{e}\right)}{\prod_{e \in B\left(C^{*}, \mathbf{v}_{t-1}\right)}\left(1-q_{e}\right)}\right) \tag{21}
\end{equation*}
$$

In the special case that edges are turned on with equal probability, i.e., $q=q_{e}$ for all $e$, this ratio can be computed by counting the number of edges connecting nodes in blocks of $C^{*}$ to nodes outside of those blocks:

$$
\begin{equation*}
\alpha\left(\mathbf{v} \rightarrow \mathbf{v}^{*}\right)=\min \left(1,(1-q)^{\left|B\left(C^{*}, \mathbf{v}_{t}^{*}\right)\right|-\left|B\left(C^{*}, \mathbf{v}_{t-1}\right)\right|}\right) . \tag{22}
\end{equation*}
$$

## References

Abramowitz, A. I. (1983). Partisan redistricting and the 1982 congressional elections. Journal of Politics 45, 3, 767-770.

Altekar, G., Dwarkadas, S., Huelsenbeck, J. P., and Ronquist, F. (2004). Parallel metropolis coupled markov chain monte carlo for bayesian phylogenetic inference. Bioinformatics 20, 3, 407-415.

Altman, M. (1997). The computational complexity of automated redistricting: Is automation the answer. Rutgers Computer \& Technology Law Journal 23, 81-142.

Altman, M., MacDonald, K., and McDonald, M. (2005). From crayons to computers: The evolution of computer use in redistricting. Social Science Computer Review 23, 3, 334-346.

Altman, M. and McDonald, M. P. (2011). BARD: Better automated redistricting. Journal of Statistical Software 42, 4, 1-28.

Ansolabehere, S., Snyder, J. M., and Stewart, C. (2000). Old voters, new voters, and the personal vote: Using redistricting to measure the incumbency advantage. American Journal of Political Science 44, 1, 17-34.

Barbu, A. and Zhu, S.-C. (2005). Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities. Pattern Analysis and Machine Intelligence, IEEE Transactions on 27, 8, 1239-1253.

Barreto, M. A., Segura, G. M., and Woods, N. D. (2004). Mobilizing effect of majorityminority districts. American Political Science Review 98, 1, 65-75.

Bozkaya, B., Erkut, E., and Laporte, G. (2003). A tabu search heuristic and adaptive memory procedure for political districting. European Journal of Operational Research 144, 12-26.

Browdy, M. H. (1990). Simulated annealing: An improved computer model for political redistricting. Yale Law 8 Policy Review 8, 1, 163-179.

Chen, J. and Rodden, J. (2013). Unintentional gerrymandering: Political geography and electoral bias in legislatures. Quarterly Journal of Political Science 8, 239-269.

Chou, C.-I. and Li, S. P. (2006). Taming the gerrymander - statistical physics approach to political districting problem. Physica A: Statistical Mechanics and its Applications 369, 2, 799-808.

Cirincione, C., Darling, T. A., and O'Rourke, T. G. (2000). Assessing South Carolina's 1990s congressional districting. Political Geography 19, 189-211.

Engstrom, R. L. and Wildgen, J. K. (1977). Pruning thorns from the thicket: An empirical test of the existence of racial gerrymandering. Legislative Studies Quarterly 2, 4, 465-479.

Fifield, B., Tarr, A., and Imai, K. (2015). redist: Markov chain monte carlo methods for redistricting simulation. available as an $R$ package at the GitHub. https: //github.com/redistricting/redist.

Fryer, R. and Holden, R. (2011). Measuring the compactness of political districting plans. Journal of Law and Economics 54, 3, 493-535.

Garfinkel, R. S. and Nemhauser, G. L. (1970). Political districting by implicit enumeration techniques. Management Science 16, 8, B495-B508.

Gelman, A. and King, G. (1994). A unified method of evaluating electoral systems and redis- tricting plans. American Journal of Political Science 38, 513-554.

Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulations using multiple sequences (with discussion). Statistical Science 7, 4, 457-472.

Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood.
Geyer, C. J. and Thompson, E. A. (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. Journal of the American Statistical Association 90, 909-920.

Grofman, B. and King, G. (2007). The future of partisan symmetry as a judicial test for partisan gerrymandering after lulac v. perry. Election Law Journal 6, 1, 2-35.

Hastings, W. K. (1970). Monte Carlo sampling methods usings Markov chains and their applications. Biometrika 57, 97-109.

Hess, S. W., Weaver, J. B., Siegfeldt, H. J., Whelan, J. N., and Zitlau, P. A. (1965). Nonpartisan political redistrictingn by computer. Operations Research 13, 6, 9981006.

Marinari, E. and Parisi, G. (1992). Simulated tempering: A new Monte Carlo scheme. Europhysics Letters 19, 451-458.

McCarty, N., Poole, K. T., and Rosenthal, H. (2009). Does gerrymandering cause polarization? Amerian Journal of Political Science 53, 3, 666-680.

Mehrotra, A., Johnson, E., and Nemhauser, G. L. (1998). An optimization based heuristic for political districting. Management Science 44, 8, 1100-1114.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics 21, 1087-1092.

Nagel, S. S. (1965). Simplified bipartisan computer redistricting. Stanford Law Journal 17, 5, 863-899.

Niemi, R. G., Grofman, B., Carlucci, C., and Hofeller, T. (1990). Measuring compactness and the role of a compactness standard in a test for partisan and racial gerrymandering. Journal of Politics 52, 1155-1181.

O'Loughlin, J. (1982). The identification and evaluation of racial gerrymandering. Annals of the Association of American Geographers 72, 2, 165-184.

Rubin, D. B. (1987). Comment: A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputation when fractions of missing information are modest:the SIR algorithm. Journal of the American Statistical Association 82, 398, 543-546.

Swendsen, R. H. and Wang, J. S. (1987). Nonuniversal critical dynamics in Monte Carlo simulations. Physical Review Letters 58, 86-88.

Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). The Annals of Statistics 22, 1701-1762.

Vickrey, W. (1961). On the prevention of gerrymandering. Political Science Quarterly 76, 1, 105-110.

Weaver, J. B. and Hess, S. W. (1963). A procedure for nonpartisan districting: Development of computer techniques. Yale Law Journal 73, 2, 288-308.

# Measuring the Compactness of Political Districting Plans 

Roland G. Fryer, Jr. and Richard Holden*

July 16, 2009


#### Abstract

We develop a measure of compactness based on the distance between voters within the same district relative to the minimum distance achievable - which we coin the relative proximity index. Any compactness measure which satisfies three desirable properties (anonymity of voters, efficient clustering, and invariance to scale, population density, and number of districts) ranks districting plans identically to our index. We then calculate the relative proximity index for the 106th Congress, requiring us to solve for each state's maximal compactness; an NP-hard problem. The correlation between our index and the commonly-used measures of dispersion and perimeter is -.37 and -.29 , respectively. We conclude by estimating seat-vote curves under maximally compact districts for several large states. The fraction of additional seats a party obtains when their average vote increases is significantly greater under maximally compact districting plans, relative to the existing plans.


Keywords: Compactness, gerrymandering, power diagrams, redistricting.
JEL Codes: H70, K19

[^2]
## 1 Introduction

The architecture of political boundaries is at the heart of the political process in the United States. ${ }^{1}$ When preferences over political candidates are sufficiently heterogeneous, altering the landscape of political districts can have large effects on the composition of elected officials. Prior to the 2003 Texas redistricting, the congressional delegation was comprised of 17 Democrats and 15 Republicans; after the 2004 elections there were 11 Democrats and 21 Republicans. ${ }^{2}$ Politically and racially motivated districting plans are believed to be a significant reason for the lack of adequate racial representation in state and federal legislatures, and there is a debate as to whether the creation of majority-minority districts to ensure some level of minority representation have led to fewer minority-friendly policies (see Shotts, 2002 for an excellent overview and critique).

There are several factors which weigh on the constitutionality of districting plans: (i) equal population (the Supreme Court first established this principle for congressional districts in Wesberry v. Sanders, 376 US 1 (1964)), (ii) contiguity (which is a requirement in 49 state constitutions), and (iii) compactness. The latter consideration - distinct from the mathematical notion of a finite subcover of a topological space - refers to how "oddly shaped" a political district is. The Supreme Court has acknowledged the importance of compactness in assessing districting plans for nearly half a century. ${ }^{3}$ Yet, despite its importance as a factor in adjudicating gerrymandering claims, the court has made it clear that no manageable standards have emerged (see the judgment of Scalia, J., in Vieth v. Jubelirer). There is no consensus on how to adequately measure compactness. ${ }^{4}$

In this paper, we propose a simple index of compactness based on the distance between voters within the same political district in a state relative to the minimum such distance achievable by any districting plan in that state - which we coin the relative proximity index. ${ }^{5}$ The index satisfies three desirable properties: (i) voters are treated equally (anonymity), (ii) increasing the distances between voters within a political district leads to a larger value of the index (clustering), and

[^3](iii) the index be invariant to the scale, population density, and the number of districts in a state (independence). In a technical Appendix, we show that any compactness index that satisfies these properties ranks districting plans identically to the relative proximity index.

The relative proximity index has several advantages over existing measure of compactness. First, it is the only compactness index which permits meaningful comparisons across states. Second, the index does not assume (implicitly or otherwise) that voters are uniformly distributed across political districts. Many previously proposed measures adopt a geometric approach (perimeter length of political districts, e.g.) and fail to consider the distribution of voters within a state. Third, our measure is constructed at the state level. Some measures apply to political districts. ${ }^{6}$ Yet, the districting problem is fundamentally about partitioning; the shape of one element of the partition affects the shapes of the other elements. Analyzing individual pieces of a larger partition in isolation can be misleading. Fourth, though our index is simple, it is based on desirable properties that compactness measures should satisfy. Existing measures have been proposed in a relatively ad hoc fashion. At a minimum, our approach is a more principled way of narrowing the field of competing measures.

We apply the index to the districting plans of the 106th congress using tract-level data from the US census. In doing so, we are required to calculate each state's maximal compactness. This number is the denominator of our index. But calculating this number by brute force, enumerating the set of all feasible partitions and maximizing compactness over this set, is impossible. ${ }^{7}$ Similar partitioning problems arise in applied mathematics (computer vision), computer science and operations research (the k-way equipartition problem), and computational biology (gene clustering), which have given rise to several important algorithms and candidate functionals. Unfortunately, none of these techniques are directly applicable to our districting problem as they are either designed for very small samples $(\approx 100)$ or do not require partitions to be of even approximately equal size.

We develop an algorithm for approximating this partitioning problem which is suitable for very large samples and guarantees nearly equal populations in each partition. The algorithm is based on power diagrams - a generalization of classic Voronoi diagrams - which have been used extensively in algebraic and tropical geometry (Passare and Rullgard, 2004; Richter-Gebert, Sturmfels and Theobald, 2003), condensed matter physics, and toric geometry/string theory (Diaconescu, Florea, and Grassi, 2002). Power diagrams are a powerful tool to partition Euclidean space into cells by minimizing the distance between points in a cell and the centroid of that cell. We prove that maximally compact districts are power diagrams and that the line separating two adjacent districts are perpendicular to the line connecting their centroids, and all such lines separating three adjacent districts meet at a single point. It follows that the resulting districts are convex polygons.

The empirical results we obtain on the compactness of districting plans are interesting and in some cases quite surprising. The five states with the most compact districting plans are Idaho,

[^4]
## References

Abramowitz, A. I. (1983). Partisan redistricting and the 1982 congressional elections. Journal of Politics 45, 3, 767-770.

Altekar, G., Dwarkadas, S., Huelsenbeck, J. P., and Ronquist, F. (2004). Parallel metropolis coupled markov chain monte carlo for bayesian phylogenetic inference. Bioinformatics 20, 3, 407-415.

Altman, M. (1997). The computational complexity of automated redistricting: Is automation the answer. Rutgers Computer 86 Technology Law Journal 23, 81-142.

Altman, M., MacDonald, K., and McDonald, M. (2005). From crayons to computers: The evolution of computer use in redistricting. Social Science Computer Review 23, 3, 334-346.

Altman, M. and McDonald, M. P. (2011). BARD: Better automated redistricting. Journal of Statistical Software 42, 4, 1-28.

Ansolabehere, S., Snyder, J. M., and Stewart, C. (2000). Old voters, new voters, and the personal vote: Using redistricting to measure the incumbency advantage. American Journal of Political Science 44, 1, 17-34.

Barbu, A. and Zhu, S.-C. (2005). Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities. Pattern Analysis and Machine Intelligence, IEEE Transactions on 27, 8, 1239-1253.

Barreto, M. A., Segura, G. M., and Woods, N. D. (2004). Mobilizing effect of majorityminority districts. American Political Science Review 98, 1, 65-75.

Bozkaya, B., Erkut, E., and Laporte, G. (2003). A tabu search heuristic and adaptive memory procedure for political districting. European Journal of Operational Research 144, 12-26.

Browdy, M. H. (1990). Simulated annealing: An improved computer model for political redistricting. Yale Law 8 Policy Review 8, 1, 163-179.

Chen, J. and Rodden, J. (2013). Unintentional gerrymandering: Political geography and electoral bias in legislatures. Quarterly Journal of Political Science 8, 239-269.

## 2 Background and Previous Literature

### 2.1 A Brief Legal History of Compactness

Compactness has played a fundamental role in the jurisprudence of gerrymandering, both racial and political. Since Gomillion v. Lightfoot 364 U.S. 339 (1960), where the court struck down Alabama's plan to redraw the boundaries of the city of Tuskegee, the court has recognized compactness as a relevant factor in considering racial gerrymandering claims. In Gomillion the court referred to the proposed district as "an uncouth 28 -sided figure." Although Gomillion is considered by many to be a jurisprudential high-water mark, the role of compactness in considering racial gerrymandering claims has been affirmed in other decisions. ${ }^{8}$ As Justice O'Connor put it: "we believe that reapportionment is one area in which appearances do matter."

Compactness has also played an important role in partisan gerrymandering claims. It has been recognized by the court as a "traditional" districting principle. In Davis v. Bandemer, Justices Powell and Stevens described compactness as a major criterion (at 173), and Justices White, Brennan, Blackmun and Marshall described it as an important criterion (at 2815). In Vieth, the plurality acknowledged compactness as a traditional districting principle. Justice Kennedy, in his concurring opinion, states that compactness is an important principle in assessing partisan gerrymandering claims: "We have explained that "traditional districting principles," which include "compactness, contiguity, and respect for political subdivisions," are "important not because they are constitutionally required...but because they are objective factors that may serve to defeat a claim that a district has been gerrymandered on racial lines." ...In my view, the same standards should apply to claims of political gerrymandering, for the essence of a gerrymander is the same regardless of whether the group is identified as political or racial."

Despite different views about what a judicially manageable standard is or might be, the court has been unanimous that it must include some notion of compactness.

### 2.2 Existing Measures of Compactness

There is a large literature in political science on the measurement of compactness. Niemi et al (1990) provide a comprehensive account of the various measures which have been proposed (see also Young (1988)). ${ }^{9}$ Niemi et al (1990) classify existing measures into four categories: (i) dispersion measures, (ii) perimeter measures, (iii) population measures, and (iv) other miscellaneous measures. ${ }^{10}$ The important take-away is that all of these measures either fail to account for the population distribution or are not invariant to geographical size. As such, meaningful comparisons across states or time cannot be made.

[^5]One class of dispersion measures are based on length versus width of a rectangle which circumscribes the district (Harris, 1964; Eig and Setizinger, 1981; Young, 1988). A second uses circumscribing figures other than rectangles and considers the area of these figures. ${ }^{11}$ At least two "moment-of-inertia" measures have been suggested. Schwartzberg (1966) and Kaiser (1966) consider the variance of the distances from each point in the district to the districts areal center. Boyce and Clark (1964) consider the mean distance from the areal center to a point on the perimeter reached by equally spaced radial lines.

A second set of measures are those based on perimeters. The sum of perimeter lengths was suggested by Adams (1977), Eig and Setizinger (1981) and Wells (1982), but this measure is potentially intractable for reasons highlighted in the classic work of Mandelbrot (1967) on the length of the coastline of Great Britain. In fact, a fractal dimension based measure was proposed by Knight (2004). Various authors have proposed measures which compare the perimeter to the area of the district. Cox (1927) considers the ratio of the district area to that of a circle with the same perimeter. ${ }^{12}$

There are three population-based measures. Hofeller and Groffman (1990) propose two: the ratio of the district population to the convex hull of the district, and the ratio of the district population to the smallest circumscribing circle. Weaver and Hess (1963) suggest the population moment of inertia, normalized to lie in the unit interval.

Niemi et al's (1990) final miscellaneous category includes three measures: (1) the absolute deviation of district area from average area in the state (Theobald 1970); a measure based on the number of reflexive and non-reflexive interior angles (Taylor 1973); and the sum of all pairwise distances between the centers of subunits of the district, weighted by subunit population (Papayanopolous 1973). Finally, Mehrotra, Johnson and Nemhauser (1998) use a branch-and-price algorithm to compute a districting plan for South Carolina. Their objective function is how far people are from a graph-theoretic measure of the center of the district.

## 3 The Relative Proximity Index

### 3.1 Basic Building Blocks

Let $\mathbf{S}$ denote a collection of states with typical element $S \in \mathbf{S}$. A finite set $S$, whose elements we call individuals or voters, is a metric space with associated distance function $d_{i j} \geq 0$, which measures the distance between any two elements $i, j \in S$. Let $V_{S}=\left\{v_{1}^{S}, \ldots, v_{n}^{S}\right\}$ denote a finite partition of $S$ into elements $v_{i} \in V_{S}$ which we shall refer to as "voting districts", or "districts". We will routinely refer to the partition $V_{S}$ as a "districting plan" for state $S$ and allow $n$ to represent a

[^6]generic integer. We restrict voting districts to be equal in size, up to integer rounding. ${ }^{13}{ }^{14}$ Let $\mathcal{V}_{S}$ denote the set of all partitions of $S$ which satisfy this restriction. We say a districting plan $V_{S}$ is feasible if and only if $V_{S} \in \mathcal{V}_{S}$.

Definition 1 A compactness index for a state $S$ is a map $c: V_{S} \mapsto \mathbb{R}_{+}$.

### 3.2 The Relative Proximity Index

Consider voter $i$ in element $v \in V_{S}$ and define:

$$
\begin{equation*}
\pi\left(V_{S}\right)=\sum_{v \in V} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2} \tag{1}
\end{equation*}
$$

Similarly, let $V_{S}^{*}=\underset{V_{S} \in \mathcal{V}_{S}}{\arg \min }\left\{\pi\left(V_{S}\right)\right\}$. The Relative Proximity Index (RPI), for a partition of state $S, V_{S}$, is given by

$$
R P I=\frac{\pi\left(V_{S}\right)}{\pi\left(V_{S}^{*}\right)}
$$

The RPI is well defined so long as $\pi\left(V_{S}^{*}\right) \neq 0$ which holds so long as all voters are not located at the same point. In the non-degenerate case, the RPI ranges from 1 to infinity; higher numbers indicate less compactness. The index has an intuitive interpretation: a value of 3 implies that the current districting plan is roughly 3 times less compact than a state's maximal compactness. Further, Theorem 1 in Appendix A shows that any index that satisfies three axioms - anonymity of voters, efficient clustering, and invariance to scale, population density, and number of districts ranks districting plans identically to the RPI.

### 3.3 A Constructive Example

## [insert figure 1]

Consider the state depicted in Figure 1. The nodes represent voters. There are two voting districts separated by the bold dashed line. Voters are spread evenly across the state; each adjacent voter is 1 kilometer apart. Voter 1 is 1 kilometer away from voters 2 and $4, \sqrt{2}$ kilometers away from voter $5, \sqrt{5}$ kilometers away from voter 6 , and so on.

There are two steps involved in calculating the Relative Proximity index. First, we calculate the numerator. For voter 1 the sum of squared distances is 5 , since she is 1 kilometer away from voter 2 and 2 kilometers away from voter 3 -and they are the only other voters in her district. For

[^7]voter 2 the total is $1^{2}+1^{2}=2$ and for voter 3 it is $1^{2}+2^{2}=5$. Voters 4,5 and 6 are symmetric to voters 1,2 and 3 respectively. Thus the numerator of our index is $2(5+2+5)=24$.

The second step in calculating RPI is to account for state specific topography. This will represent the denominator of our index. There are nine other feasible partitions in addition to $\{\{1,2,3\},\{4,5,6\}\} .{ }^{15}$ We perform the same calculation as above for each of those partitions and then take the min of these ten values. The minimizing partition is $\{\{1,4,5\},\{2,3,6\}\}$-although $\{\{1,2,4\},\{3,5,6\}\}$ achieves the same value. That value turns out to be $2\left(1^{2}+2+1^{2}+2+1^{2}+1^{2}\right)=$ 16. The index is thus $24 / 16=3 / 2$.

The example provides a snap-shot of the Relative Proximity Index and previews some of its properties. For instance, because the index is calculated relative to a state specific baseline, neither the size of states nor their population density can solely alter the index. If we increased the distance between any two nodes in figure 1 to 2 kilometers, the index would not change. Similarly, if we imputed 10 more individuals to each node - thinking of them in terms of neighborhoods rather than households - the index would be unaltered.

## 4 Implementing the Relative Proximity Index

In this section, we apply the relative proximity index to the districting plans of the 106th congress.

### 4.1 The Minimum Partitioning Problem

Calculating the denominator of the relative proximity index is a complicated combinatorial problem. When partitioning $n$ voters into $d$ districts the number of feasible partitions is $\left(\frac{(n-1)!}{(n / d-1)!(n-n / d)!}\right)^{d-1}$. So, for California alone, using data at the tract level, involves $n=6,800$ and $d=53$. The cardinality of the set of feasible partitions is $78.4 \times 10^{59,351}$. Technically speaking, the problem is $N P$-hard.

Similar problems arise in fields such as applied mathematics (computer vision), computer science and operations research ( $k$-way equipartitioning problem), and computational biology (gene clustering). The celebrated Mumford-Shah functional is a candidate functional designed to segment images (Mumford and Shah, 1989). The structure of the functional contains two penalty functions: one to ensure that the continuous approximation is close to the discrete problem, and another to penalize perimeter length. While the Mumford-Shah functional is a powerful tool for myriad problems, it cannot guarantee even nearly equal population size across districts.

If our objective function was simply distance, rather than distance squared, the problem is precisely the k -way equipartition problem which has received considerable attention in computer science and related to a literature in computational biology employing minimum spanning trees to partition similar genes into clusters. ${ }^{16}$ Good algorithms for the k -way equipartition problem when

[^8]sample sizes are small ( $\approx 100$ ) can be found in Ji and Mitchell (2005) and Mitchell (2003). This restriction makes these algorithms impractical for our purposes.

Below, we develop an algorithm to approximate the minimum partitioning problem for large samples, based on power diagrams (a concept we make precise below), that guarantees nearly equal populations in each partition and runs in $O\left(n \log \left(n^{\prime}\right)\right)$ time, where $n^{\prime}$ is the number of voters and $n$ is the number of districts in a state.

### 4.2 Optimally Compact Districting Plans and Power Diagrams

In this section, we show that optimally compact districting plans are power diagrams, a generalization of Voronoi diagrams due to Aurenhammer (1987). Consider a set of generator points $m_{1}, \ldots, m_{n}$ in a finite dimensional Euclidean space. The power of a point/voter $x \in S$ with respect to a generator point $m_{i}$ is given by the function $\operatorname{pow}_{\lambda}\left(x, m_{i}\right)=\left\|x-m_{i}\right\|^{2}-\lambda_{i}$, where $\|\cdot\|$ is the Euclidean norm. The total number of voters assigned to generator point $m_{i}$ is called its capacity, denoted $K_{m_{i}}$. A power diagram is an assignment of voters to generator points such that point $x$ is assigned to generator point $m_{i}$ if and only if $\operatorname{pow}_{\lambda}\left(x, m_{i}\right)<\operatorname{pow}_{\lambda}\left(x, m_{j}\right)$ for all $j \neq i$. Let the points assigned to generator point $m_{i}$ be denoted $D_{i}$, which is referred to as a cell. Note that no two $D_{i}$ s can intersect, and furthermore, every $x \in S$ is in some $D_{i}$, and hence $\left\{D_{1}, \ldots, D_{n}\right\}$ is a partition of $S$. Note also that the dividing line between cells $D_{i}$ and $D_{j}$ in a power diagram satisfies $\left\|x-m_{i}\right\|^{2}-\left\|x-m_{j}\right\|^{2}=\lambda_{i}-\lambda_{j}$.

When $\lambda_{i}=\lambda$ for all $i$ then the power diagram is a Voronoi diagram. Power diagrams are thus a generalization of Voronoi diagrams.

Definition 2 An optimally compact districting plan for state $S$ is a feasible districting plan, $V_{S}$, with an associated total distance $\sum_{v \in V_{S}} \sum_{i, j \in v}\left(d_{i j}\right)^{2}$ such that there does not exist another feasible districting plan, $V_{S}^{\prime}$ with an associated total distance $\sum_{v \in V_{S}^{\prime}} \sum_{i, j \in v}\left(d_{i j}\right)^{2}$ such that $\sum_{v \in V_{S}^{\prime}} \sum_{i, j \in v}\left(d_{i j}\right)^{2}<$ $\sum_{v \in V_{S}} \sum_{i, j \in v}\left(d_{i j}\right)^{2}$.

We can now state our second key result.
Theorem 2 Optimally compact districting plans are power diagrams.
Proof. See Appendix B.
This theorem follows from three lemmas which partially characterize an optimal districting plan and establish that these characteristics imply a power diagram. The first lemma shows that our objective function is equivalent to a variant of the k -means objective function. This is important because it allows one to focus attention on district centroids.
to the classic graph partitioning problem, which is also known to be NP-hard.

The second lemma shows that any pair of districts are separated by a line perpendicular to a line connecting their centroids. This separating line is the locus of points at which the power of the two centroids are equal. It represents all points in which one is indifferent between placing voters in one district and the other. Finally, we establish that all such lines separating any three adjacent districts meet at a single point; they are concurrent.

To see that these properties imply a power diagram, recall that a power diagram is a set of lines dividing a euclidean space into a finite number of cells. The line separating two adjacent cells are such that the power of the points along this locus is equal to their respective centroids. And the power of a point is measured as a function of the difference between a point and the centroid of its district - which we have already established is equivalent to our objective function. It is important to note that if the line separating two adjacent districts was not perpendicular to the line connecting their centroids then one could not be indifferent between points being in one district and the other everywhere along the line. This holds for all such pairs of districts, which implies concurrent lines. Taken together, these imply that optimally compact districtings are power diagrams ${ }^{17}$. Notice, since all subsets of a convex set formed by drawing straight lines are convex, it follows that the resulting districts must be convex polygons.

Theorem 2 provides an important insight for building an algorithm, allowing us to use all we know about a partial characterization of optimally compact districts. There are three important caveats. First, we have not yet proven that there is a unique power diagram for every set of starting values. Second, we are only able to map optimal districting plans into power diagrams when distance is quadratic, because this guarantees that optimal districting involves straight lines. Mathematically, this is an obvious limitation. Practically, however, it boils down to assuming that courts punish outliers in a district more. Given this assumption, we are hard pressed to find a principled reason for courts to prefer higher order exponents.

Third, power diagrams do not guarantee a global optimum to the minimum partitioning problem because their structure depends on exogenously given starting values.

## [insert figure 2]

Panel A of figure 2 depicts the optimally compact districting plan for a hypothetical state. There are nine voters, arranged so the state is a lattice. The stars represent centroids of the resulting districts. Note that the line separating districts 1 and 2 is perpendicular to a line connecting their centroids (the same is true for districts 1 and 3 , and also 2 and 3 ). This is an illustration of the Perpendicular Line Lemma alluded to above. The Concurrent Line Lemma is also illustrated by the intersection of the lines separating districts 1,2 and 3 at a single point. The partition depicted

[^9]is indeed the globally optimal partition. Once one knows that, the centroids of the districts are easy to compute.

In our problem, however, we do not know the optimal districts in advance, and so we must choose generator points which will not in general be the centroids of the optimal districting plan. An important part of the approximation problem is selecting and improving upon the generator points. To illustrate this point, consider panel B of Figure 2 which chooses alternative generator points than those used to partition the panel A. The generator point used for district 1 differs from that used above resulting in four voters being placed in district 1 and only 2 in districting 2 , thereby violating the equal size constraint.

### 4.3 An Algorithm Based on Power Diagrams

The algorithm we propose is a modification of the second algorithm presented in Aurenhammer et. al (1998). Since we know by Theorem 2 that local optima of the RPI are power diagrams, we search within the set of power diagrams for one that is a feasible districting. However, as power diagrams are generated around sites, which we call $z_{1}, \ldots, z_{n}$, it is necessary to update the locations of the sites as well as the design of the districts.

We provide a complete formal treatment in the appendix, and here give a heuristic description of the algorithm. The algorithm takes the centroids of existing districts as starting generator points and computes a power diagram. Power diagrams do not require partitions (cells) to be even roughly equal so, after constructing the diagram, the algorithm adjusts the district boundaries until the number of voters within each district is equal up to integer rounding. We then recalculate the centroids of the new districts and check to see if any pair of individuals can switch districts and reduce the objective function (total squared distances). The algorithm continues to check until there are no more pairs that can be switched and reduce the objective function by a predetermined $\varepsilon>0$. The algorithm then repeats itself - recalculating centroids, drawing power diagrams, adjusting boundaries, etc - until it reaches a value within preset bounds for a stopping rule.

### 4.4 The Compactness of Political Districting Plans of the 106th Congress

The ideal data to estimate the relative proximity index would contain the geographical coordinates of every household in the US, their political district, some measure of distance between any two households within a state, and a precise definition of communities of interest. This information is not available.

In lieu of this, we use tract-level data from the 2000 US Census from the Geolytics database which contains the latitude and longitude of the geographic centroid of each tract, the political district each centroid is in, and its total population. ${ }^{18}$ Census tracts are small, relatively permanent

[^10]statistical subdivisions of a county. The spatial size of census tracts varies widely depending on the density of settlement, but they do not cross county boundaries. Census tracts usually have between 2,500 and 8,000 persons and, when first delineated, are designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The latter consideration is our main interest in using this level of aggregation (relative to blocks or block-groups), as census tracts are more likely to contain some notion of communities of interest.

An important consideration in the application of RPI is how to handle tracts of different densities. The equal representation constraint - districting plans must have the same number of individuals in each district up to integer rounding - is predicated on individuals, not tracts. Our algorithm, described below, addresses this issue by allowing one to divide tracts into arbitrarily small units. There is an important trade-off between computational burden and the variance in population across districts, a burden that lessens with technological progress.

For ease of implementation, we have chosen not to split any tracts. As a robustness check, we split tracts of small states into 4 smaller parts and assigned them to the same longitude and altered their latitude by 0.001 degrees. In all cases, accuracy (and computing time) were substantially increased with little effect on the RPI.

To calculate the RPI for each state, we begin with the numerator of the index: $\sum_{v \in V} \sum_{i, j \in v}\left(d_{i j}\right)^{2}$, where $i$ and $j$ are population centroids of tracts and $v$ are voting districts. We weight the total distances by the population density of each tract. An identical calculation is performed for the denominator, but $V$ is constructed by our power diagram algorithm.

The empirical results we obtain on the compactness of districting plans are displayed in Table 1. The first column list each state, the second provides the relative proximity index, the third and fourth give the maximum deviation from equal partitions in the actual data and that resulting from our algorithm - an indication of the degree to which the equal size constraint holds. The final columns report the results from a bootstrapping technique which we describe below. It is important to realize that for every state, the elements of our partitions are more balanced than what appears in the actual districting plans. Further, the largest deviation from equal partitions in the actual data (Florida 0.46 ) is substantially larger than our largest deviation (California 0.22).

Table 1 illustrates that the five states with the most compact districting plans are Idaho, Washington, Arkansas, Mississippi, and New Hampshire. The five most compact states are Idaho, Nebraska, Arkansas, Mississippi, and Minnesota. The five least compact states are Tennessee, Texas, New York, Massachusetts, and New Jersey. The districting plan that solves the minimum partitioning problem is more than forty percent more compact than the typical districting plan. The rank correlation between the rRelative Proximity Index and the most popular indices of compactness, dispersion and perimeter, is -.37 and -.29 , respectively.

Axiom III (invariance to scale, population density, and number of districts - see Appendix A) ensures that the RPI can be compared across states, but it does not guarantee that the distribution of RPI values across states are the same. It is entirely plausible that Texas finds it "easier" (a lower percentile of the distribution of RPI values from feasible partitions) to obtain a given value of RPI
than say, Florida. Thus, gleaning an understanding of how "sensitive" RPI values are for a given state is difficult.

To try and address this issue, we calculated 200 RPI values for each state by randomly generating starting values for the algorithm. Columns 5 and 6 in Table 1 report the means and associated standard deviations from this process. The final column reports what percentile in the distribution our original RPI value lies, if the distribution of RPI values is assumed to be normal. In all but one case, our original estimates are higher than the mean of the simulated distribution and in most cases, under the normality assumption, we are at the far extreme of the right tail of the distribution. There are four notable exceptions: Oklahoma, Oregon, Rhode Island, and Wisconsin. In these states, our estimate of RPI is at the median or below in the simulated distribution. This is likely due to the fact that the current partitions of these states generate starting values that are highly non-optimal. To obtain maximal compactness in these states, a significant restructuring is likely needed.

To understand what state demographics are correlated with compactness, we estimate a statelevel OLS regression where the dependent variable is the RPI and the independent variables are percent black, percent Asian, percent Hispanic, population density, difference in presidential vote shares between Democrats and Republicans, and whether or not the state is required to submit their districting plans to the Department of Justice under the preclearance provision of Section 5 of the Voting Rights Act. States which are more compact tend to be states with a larger share of blacks and a larger difference between the percent who vote Republican and Democrat. The latter is intuitive: states with more to gain from altering the design of political districts tend to do it more. Whether or not a state is forced to submit their districting plans is also highly correlated with compactness. Consistent with Axiom II (efficient clustering - see Appendix A), RPI is uncorrelated with population density.

Beyond the technical considerations, perhaps the best evidence in favor of our approach can be illustrated visually. Figures 3-11 present side-by-side comparisons of congressional district maps for actual districting plans and those obtained from our algorithm. ${ }^{19}$ Figures 3 and 4 illustrate this comparison for the least and most compact states, Tennessee and Idaho, respectively. Tennessee, under the current districting plan, resembles the salamander-shaped districts drawn by Eldridge Gerry that gave rise to name "gerrymandering." Under the algorithm, however, Tennessee is transformed into a neat set of convex polygons. Idaho is at the other extreme. Because it need only cut the state into two equal parts, the existing cut and our preferred cut are very similar to one another. Further, our partition provides a more equitable distribution of voters across the districts, which explains why the calculate RPI is slightly less than one.

These figures illustrate three key points. First, the geometric properties discussed above (the perpendicular and concurrent line lemmas and the convexity of political districts) are immediately apparent. Second, those states which rank relatively high (resp. low) in terms of the RPI appear to quite different (resp. similar) to the partition resulting from our algorithm. Third, Figures 5 and 8

[^11](Hawaii and Nevada), suggest that communities of interest are an important consideration. In the actual plans, Honolulu and Las Vegas are their own districts while the rest of the state is contained in the other. The issues faced by residents of the outer islands might well be more similar than those of residents in Honolulu. This serves to highlight why compactness is only one factor which weighs on the redistricting question. RPI in its current implementation ignores this consideration. An RPI with a more general notion of distance or carefully selected starting values for the power diagram can address this issue.

## 5 Election Counterfactuals

Thus far, we have derived an index of compactness, shown how one implements the index, and provided some basic facts about the most and least compact districting plans and what correlates with these plans. We conclude our analysis with some suggestive evidence on the impact of maximally compact districting plans on election outcomes in four large states.

In winner-take-all election contests, such as elections for representatives for the U.S. Congress and for electoral votes for the U.S. Presidency, the winner of a contest is determined by which candidate receives the plurality of the votes. In most of these cases, only the top two parties need to be considered, yielding an easy condition for an election win in a district.

Assuming there are $n$ districts, labeled $i \in[1, \ldots, n]$, let $\phi_{i}$ denote the proportion of the twoparty vote received by the candidate from the first party (in examples to follow, the Democratic Party). The candidate's victory can then be expressed as $s_{i}=w_{i} \mathbb{I}\left(\phi_{i}>\frac{1}{2}\right)$, where $w_{i}$ denotes how many seats are determined by the vote; 1 for single-member districts, or 3 or more for the Electoral College, for example. Two important summary statistics are the average district vote, $\Phi=\frac{1}{n} \sum_{i=1}^{n} \phi_{i}$, and the seat share, $S=\frac{\sum_{i=1}^{n} s_{i}}{\sum_{i=1}^{n} w_{i}}$.

Many other statistics can be generated using the vote and seat outcomes directly, but we are particularly interested in partisan bias and responsiveness. Namely: Bias $=2 E(S \mid \Phi=0.5)-1$ estimates the deviation from the median share of seats if each side receives an identical average district vote; Responsiveness $\left.=\frac{d S}{d \Phi} \right\rvert\, \Phi$ estimates how a small shift in the average district vote would translate into a shift in the share of seats. This estimate is taken either at the observed average district vote or the median vote.

### 5.1 Data and Statistical Framework

We use voter tabulation district (VTD) level election return data from US elections of the 105th and 106th Congresses for four large states; California, New York, Pennsylvania, and Texas. These states were chosen because of their large number of congressional districts (roughly 30 or greater) and the availability of vote shares by VTD. There are approximately 300 VTDs in a typical congressional district, though there is substantial variation. In our data, for instance, California has 7,000 VTDs for 50 districts; Texas has 8,000 for 30 . Pennsylvania has 9,000 for 20 , and New York contains 13,000 for 30 districts.

The intuition behind our approach is straightforward. Consider Figure 9, which depicts the existing districting plan of New York and the plan derived from our algorithm. To fix ideas, concentrate on the western portions of the state. There are roughly 433 VTDs in each congressional district in New York. Suppose an election takes place. Currently, a congressional representative is chosen by aggregating the votes from the VTDs within each district. In Figure 9, this amounts to adding votes from roughly 433 voting centers in districts 27 through 31 . Now, suppose we want to estimate how these representatives will change if the districting plan were drawn to maximize compactness. To do this, we simply take note of which VTDs are in the new partitions and aggregate within each new district. In short, we disaggregate down to the VTD level, take note of the new districting lines, and then aggregate up taking these boundaries into account. As before, the winner of the new districts (in Figure 9 this now amounts to district 4, 6, 8, and 17) is determined by aggregating the votes from VTDs.

There are a few complications. First, we need to assign candidates to the new districts in a reasonable manner. Second, we need to take into account the results of previous elections and whether or not the candidate is an incumbent - as both of these factors weigh heavily on the prediction of future elections. Third, we need to think about how to get standard errors on our estimates.

To formalize the intuition above, we employ techniques from elementary Bayesian statistics developed in Gelman and King (1994). We provide a terse synopsis of their approach below. ${ }^{20}$ The crux of the Gelman-King method is a linear model with two distinct error components of the form:

$$
\begin{equation*}
\phi_{i}=X \beta+\gamma_{i}+\varepsilon_{i} . \tag{2}
\end{equation*}
$$

The vector $X$ consists of an intercept term, results from the previous election, and an incumbent dummy.

To derive precise predictions in this framework, more structure has to be placed on the error terms. Let $\gamma_{i} \sim N\left(0, \sigma_{\gamma}^{2}\right)$ represent the systematic error component; an expression of the unobserved variables that took place before the election campaign began and would be identical if the election were to be re-run again. This might include the result in the previous election, the race of the candidates, or a relevant change in election law. The unpredictability of the behavior of voters is also a source of systematic error.

The second source of error is a random component which can be explained by random events during the election, such as the weather on election day or the reaction of the public to an unintentional gaffe. Let $\varepsilon_{i} \sim N\left(0, \sigma_{\varepsilon}^{2}\right)$.

There are two key assumptions in the Gelman-King Method. First, errors are expressed in terms of two parameters: $\sigma^{2}$, the sum of the individual variances $\sigma_{\gamma}^{2}$ and $\sigma_{\varepsilon}^{2}$, and $\lambda$, the proportion of the total variance attributed to the systematic component; $\lambda=\sigma_{\gamma}^{2} /\left(\sigma_{\gamma}^{2}+\sigma_{\varepsilon}^{2}\right)$. Second, the counterfactual assumes that the regrouping of voters into new districts will not have a systematic effect on voting behavior.

[^12]
## Estimating $\lambda$ and $\sigma^{2}$

In practice, a districting map is constant over a series of elections. Thus, $\lambda$ and $\sigma^{2}$ are found by taking the mean of individual estimators from each year. In each year, $\sigma^{2}$ is the variance of the random error term in Equation (2) and $\lambda$, the fraction of the error attributed to systematic error, is estimated by including the results of the previous election as an explanatory variable in the current one. By calculating this for each election that did not follow a redistricting (i.e. where the electoral map is identical), and taking the mean, we have an estimator for $\lambda .{ }^{21}$

## Generating Hypothetical Future Elections

To predict the properties of a subsequent election using the same districting plan, a series of hypothetical elections are simulated using the estimates for $\beta$ and $\sigma^{2}$. A new set of explanatory variables $X$ is used to demonstrate the conditions at the election. Since no information can be derived about the nature of the systematic error component beforehand, one error term is used, $\omega=\gamma+\varepsilon$, with variance $\sigma^{2}$. Thus, a single hypothetical election is then generated by drawing from

$$
\begin{equation*}
\phi_{\text {hyp }}=\mathbf{X}_{\text {hyp }} \beta+\delta_{\text {hyp }}+\omega \tag{3}
\end{equation*}
$$

where $\beta$ is the posterior distribution, with mean $\widehat{\beta}=\left(X^{\prime} X\right)^{-1} X^{\prime} \phi$ and (with a normality assumption) variance $\Sigma_{\beta}=\sigma^{2}\left(X^{\prime} X\right)^{-1}$. The $\delta$ term is used to produce hypothetical elections whose average district vote is desired to be different from the original. Integrating out the conditional parameters $\beta$ and $\gamma$ one obtains the marginal distribution:

$$
\left.\phi_{h y p} \mid \phi \sim N\left(\lambda \mathbf{v}+\left(\mathbf{X}_{\text {hyp }}-\lambda \mathbf{X}\right) \widehat{\beta}+\delta,\left(\mathbf{X}_{\text {hyp }}-\lambda \mathbf{X}\right) \Sigma_{\beta}\left(\mathbf{X}_{\text {hyp }}-\lambda \mathbf{X}\right)^{\prime 2}\right) \sigma^{2} I\right) .
$$

To evaluate the election system, let $\mathbf{X}_{\text {hyp }}=\mathbf{X}$; to evaluate under counterfactual conditions, set $\mathbf{X}_{\text {hyp }}$ to the desired explanatory variables.

## Comparing Districting Plans

With the above statistical model in hand, we can predict elections under different partitions of a state into voting districts. The procedure is as follows. First, we estimate the model in equation (2). Second, having generated a new map through our algorithm, we determine the values for the explanatory variables for each district, either by aggregating and averaging the previous values in each precinct or by making sensible predictions for their value (e.g. incumbency). In terms of vote shares, we simply aggregate the VTDs in the new partitions. For incumbency, we assign each incumbent to the latitude and longitude of the centroid of their district. Under the new districting plan, if there is one such incumbent per district, $s /$ he becomes the incumbent. In the rare cases where there was more than one incumbent assigned to a district under a new districting plan, we break the tie by choosing the incumbent closest to the resulting centroid and replacing another district with the other incumbent to keep the numbers constant. Finally, with our new map we

[^13]simulate the model 1000 times; deriving the relevant parameters is straightforward.

### 5.2 Analyzing Seat-Vote Curves

Using the methodology described above, Figures 13-16 provide seat-vote curves for California, New York, Pennsylvania, and Texas under each state's actual districting plan and the plan that maximizes its compactness. The vertical axis depicts the proportion of seats won by democrats. The horizontal axis depicts the share of votes that the democrats earned in the election. Each figure reports two interesting quantities: Vote is the average district vote the Democrats received in the election; and Seats report the fraction of seats the Democrats received in the election (not the hypothetical seat share). The dark line represents our estimate of the seat vote curve, the two parallel lines around it are $95 \%$ confidence intervals. Visually, one can see that there is a marked difference between the seat-vote curves estimate, from the actual data and those estimated from the partition developed by our algorithm, in California and New York. The slope of the curve is significantly steeper in both these states. Texas and Pennsylvania are also slightly steeper, but the difference is much less dramatic.

To get a better sense of the magnitudes involved, Table 2 presents our estimates of Bias and Responsiveness for the actual partition of our four states and those gleaned from the algorithm. We also report the t-statistic on the difference between them. Under maximally compact districting, measures of bias are slightly smaller in all states except Pennsylvania, though none of the differences are statistically significant. In terms of responsiveness, however, there are large and statistically significant differences between the existing partitions and those that are maximally compact. New York, in particular, has a five fold increase; from .482 to 2.51. In other words, under the current partition, a $1 \%$ increase in vote share for Democrats results in a $482 \%$ increase in seats under the current system. When maximally compact, however, a $1 \%$ increase results in a $2.51 \%$ increase. The next largest change is California - increasing from 1.086 to 1.731 . Pennsylvania and Texas show smaller increases, which are statistically significant at the $10 \%$ level.

## 6 Concluding Remarks

There will be continued debate about the design of districting plans. We have developed a simple but principled measure of compactness. Our measure can be used to compare districting plans across state and time, a feature not found in existing measures, and our algorithm provides a way of approximating the most compact plan. Further, the impact a maximally compact districting plan can have on the responsive of votes is encouraging. These are first steps toward a more scientific understanding of districting plans and their effects. Extensions and generalizations abound.

Perhaps the most obvious extension is to consider higher dimensional spaces, generalized distance functions, and communities of interest. Aurenhammer and Klein (2000) provide a comprehensive survey of Voronoi Diagrams and how to incorporate generalized notions of distance, including $p$-norms, convex and "airlift" distances, and non-planar spaces. These extensions are not
only mathematically interesting and elegant, they have real-world content. Consider the following thought experiment. Suppose there is a city on a hill. ${ }^{22}$ On the West side is mild, long incline toward the rest of the city, which is in a plane. On the East side is a steep cliff, either impassable or with just a narrow, winding road that very few people use. While the next residential center to the East is much closer to the hilltop on a horizontal plane, it is much further on all sorts of distances that we think might matter: transportation time, intensity of social interactions, sets of shared local public goods and common interests, etc. Thus, for all practical purposes, one probably wants to include the hilltop in a Western district rather than an Eastern one. More general notions of distance can handle this. A similar situation arises when there is a "natural" boundary (river or highway, e.g.) that effectively segregates / reduces communication between two population centers that are geographically very close. Conversely, there could be something (e.g., a tunnel or subway) that makes two non-connected regions effectively close to each other or, there may be other notions of communities and shared interest that lend themselves to a natural clustering. It is imperative to note that the derivation of our index only assumed a general metric space - many of these ideas fit squarely within our framework. The empirical application of the index, however, required us to only consider Euclidean distances. The challenge ahead is to incorporate more general notions of distance into an empirically tractable algorithm.

## References

[1] Adams, Bruce. (1977). "A Model State Reapportionment Process: The Continuing Quest for 'Fair and Effective Representation'." Harvard Journal on Legislation 14. 825-904.
[2] Attneave, Fred and Malcolm D. Arnout. (1956). "The Quantitative Study of Shape and Pattern Perception." Psychological Bulliten 53. 472-451.
[3] Arrow, Kenneth. (1970). Social Choice and Individual Values. Cowles Foundation Monograph Series. New Haven, CT. Yale University Press.
[4] Aurenhammer, Franz. (1987). "Power Diagrams: Properties, Algorithms and Applications," SIAM Journal on Computing 16. 78-96.
[5] Aurenhammer, Franz., Hoffmann, F., and Aronov, B. (1998). "Minkowski-Type Theorems and Least-Squares Clustering," Algorithmica 20. 61-76.
[6] Aurenhammer, Franz and Rolf Klein. (2000) "Voronoi diagrams." In J. Sack and G. Urrutia, editors, Handbook of Computational Geometry, Chapter V, pages 201-290. Elsevier Science Publishing.
[7] Barabas, Jason and Jennifer Jerit. (2004). "Redistricting Principles and Racial Representation," State Politics and Policy Quarterly 4. 415-435.

[^14][8] Bartal, Yair, Moses Charikar and Danny Raz. (2001). "Approximating min-sum k-clustering in Metric Spaces,"
[9] Boyce, Ronald R. and W.A.V. Clark. (1964). "The Concept of Shape in Geography," Geographical Review 54. 561-572.
[10] Cox, E.P. (1927). "A Method of Assigning Numerical and Percentage Values to the Degree of Roundness of Sand Grains." Journal of Paleontology 1. 179-183.
[11] Diaconescu, D.E., B. Florea, and A. Grassi. (2002). "Geometric transitions, del Pezzo surfaces and open string instantons," Advanced Theorertical and Mathematical Physics. 6 . 643-702.
[12] Eig, Larry M. and Michael V. Seitzinger. (1981). "State Constitutional and Statutory Provisions Concerning Congressional and State Legislative Redistricting." Congressional Research Service Report No. 81-143A.
[13] Geisler, R. Gene. 1985. "Measuring Gerrymandering of Legislative Districts." Unpublished Manuscript.
[14] Gelman, Andrew and Gary King. (1990). "Estimating the Electoral Consequences of Legislative Redistricting," Journal of the American. Statistical Association 85. 274-282.
[15] Gelman, Andrew and Gary King. (1994). "A Unified Method of Evaluating Electoral Systems and Redistricting Plans," American Journal of Political Science 38(2). 514-554.
[16] Gibbs, J.P. (1961). "A Method for Comparing the Spatial Shape of Urban Units." in Urban Research Methods (J.P.Gibbs, ed.) New York, NY: Van Nostrand.
[17] Harris, Curtis C., Jr. (1964). "A Scientific Method of Districting." Behavioral Science 9. 219-225.
[18] Hofeller, Thomas and Bernard Groffman. (1990). "Comparing the Compactness of California Congressional Districts under Three Different Plans: 1980, 1982, and 1984." in Toward Fair and Effective Representation (Bernard Groffman, ed.) New York, NY: Agathon.
[19] Horton, R.E. (1932). "Drainage Basin Characteristics." Transactions of the American Geophysical Union 13. 350-361.
[20] Issacharoff, Samuel, Pamela S. Karlan and Richard H. Pildes (2002). The Law of Democracy: Legal Structure of the Political Process (2nd ed.) New York, NY: Foundation Press.
[21] Kaiser, Henry F. (1966). "An Objective Method for Establishing Legislative Districts." Midwest Journal of Political Science 10. 200-213.
[22] Knight, Jeffrey L. (2004). "GIS BASED COMPACTNESS MEASUREMENT USING FRACTAL ANALYSIS." http://www.spatial.maine.edu/ucgis/testproc/knight/knight.html.
[23] MacQueen, J.B. (1967). "Some Methods For Classification and Analysis of Multivariate Observations," Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, CA. University of California Press. 281-297.
[24] Mandelbrot, Benoit B. (1967). "How long is the cost of Great Britain? Statistical selfsimilarity and fractal dimension." Science 156. 636-638.
[25] Mitchell, John E. (2001). "Branch-and-cut for the k-way equipartition problem," Technical report, Mathematical Sciences, Rensselaer Polytechnic Institute.
[26] Mitchell, John E. (2003). "Realignment in the National Football League: Did They Do It Right?" Naval Research Logistics 50. 683-701.
[27] Mumford, David and Jayant Shah. (1989). Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems. Harvard University Press. Cambridge, MA.
[28] Niemi, Richard G., Bernard Groffman, Carl Calucci and Thomas Hofeller. (1990). "Measuring Compactness and the Role of Compactness Standard in a Test for Partisan and Racial Gerrymandering". The Journal of Politics 52. 1155-1181.
[29] Papayanopolous, L. (1973). "Quantitative Principles Underlying Legislative Apportionment." Annals of the New York Academy of Sciences 19. 181-191.
[30] Passare, Mikael and Hans Rullgard. (2004). "Amoebas, Monge-Ampere measures, and triangulations of the Newton polytope," Duke Mathematics Journal 121. 481-507.
[31] Pounds, Norman J.G. (1972). Political Geography (2nd ed.) New York, NY: McGraw-Hill, Inc.
[32] Pildes, Richard H. and Richard G. Niemi. (1993). "Expressive Harms, 'Bizarre Districts,' and Voting Rights: Evaluating Election-District Appearances After Shaw v. Reno". 92 Michigan Law Review. 483-531.
[33] Richter-Gebert, Jurgen, Bernd Sturmfels, and Thorsten Theobald. (2003) "First steps in tropical geometry", arXiV.math. 1-29.
[34] Rudin, Walter. (1964). Principles of Mathematical Analysis. New York, NY: McGraw Hill, Inc.
[35] Sahni, S. and T. Gonzales. (1976). "P-Complete Approximation Problems." Journal of the ACM 23. 555-566.
[36] Schwartzberg, Joseph E. (1966). "Reapportionment, Gerrymanders, and the Notion of Compactness." Minnesota Law Review 50. 443-452.
[37] Shotts, Kenneth W. (2002) "Gerrymandering, Legislative Composition, and National Policy Outcomes." American Journal of Political Science 46:398-414
[38] Taylor, Peter J. (1973). "A New Shape Measure for Evaluating Electoral District Patterns." American Political Science Review 67. 947-950.
[39] Weaver, James B. and Sidney W. Hess. (1963). "A Procedure for Nonpartisan Districting: Development of Computer Techniques." Yale Law Journal 72. 288-308.
[40] Wells, David I. (1982). "How to Inhibit Gerrymandering: The Purpose of Districting Criteria." National Civic Review 71. 183-187.
[41] Young, H.P. (1988). "Measuring the Compactness of Legislative Districts." Legislative Studies Quarterly 13. 105-115.

## 7 Technical Appendix

### 7.1 Appendix A: An Axiomatic Derivation of the Relative Proximity Index

We now describe three properties which any compactness index should satisfy and discuss each in turn. We provide formal mathematical statements of these in the appendix.

Axiom I (Anonymity) Axiom I, an anonymity condition in the same spirit as that typically used in social choice theory (Arrow, 1970), requires that all individuals be treated equally. That is, any compactness index should not depend on the particular identities (race, political affiliation, wealth, etc.) of voters. Consider a state $S$ with associated partition $V$ and compactness index $c(V, S)$. For any bijection $h: S \rightarrow S$ and compactness index $c_{h}(V, S)$, $c_{h}(V, S)=c(V, S)$.

## Axiom II (Clustering)

Compactness is fundamentally a mathematical partitioning problem; deciding who to group with whom in a political district. Clustering is the quintessential objective (Bartal, Charikar, and Raz, 2001). ${ }^{23}$ Our second axiom requires that if two states with the same number of voters, voting districts, and the same value for the minimum partitioning problem have different weighted intra-district distances, then the state with the larger value is less compact.

Let $\gamma_{k}=\sum_{i, j \in v} \alpha_{i j}\left(d_{i j}\right)^{\delta}$, for $k=\{1, \ldots, n\}$ and let $g\left(\gamma_{1}, \ldots, \gamma_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a monotonic, increasing function. Consider two states, $S_{1}$ and $S_{2}$ and partitions $V$ and $V^{\prime}$ respectively such that $S_{1}$ and $S_{2}$ have: the same number of voters, the same number of districts and

$$
\min _{V \in \mathcal{V}_{S_{1}}} g_{S_{1}}\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\min _{V \in \mathcal{V}_{S_{2}}} g_{S_{2}}\left(\gamma_{1}, \ldots, \gamma_{n}\right) .
$$

Then

$$
g_{S_{1}}\left(\gamma_{1}, \ldots, \gamma_{n}\right)>g_{S_{2}}\left(\gamma_{1}, \ldots, \gamma_{n}\right) \Longrightarrow c\left(V, S_{1}\right)>c\left(V^{\prime}, S_{2}\right)
$$

Density independence means that if we replicate a state by multiplying the number of people in each household by $\lambda$, the index of compactness is unaltered. For instance, when comparing two voting districts (Cambridge, MA, and New York, NY, e.g.) who differ in their population density, the index provides the same cardinal measure of compactness.

Scale independence provides a similar virtue, permitting comparisons across states that differ in the distances between individuals (Massachusetts and Texas, say), allowing one to increase the distances between all individuals in a state by a constant with no resulting change in the index. Independence with respect to the number of districts is also vital in making cross-state comparisons.

## Axiom III (Independence)

[^15]Our final axiom requires that any measure of compactness of a state be insensitive to its physical size, population density, and number of districts. This is vital for making cross-state comparisons of districting plans. Before stating the property formally, we need some further notation. We say that a state $\widehat{S}$ is an $n$-Replica of $S$ if and only if $\forall i \in S, \exists j_{1}, \ldots, j_{n} \in \widehat{S}$ such that $d_{i j}=0, \forall i$ and $d_{j_{i} j_{k}}=$ $0, \forall i, k$. It is also useful to have a shorthand for the realized value of the minimum partitioning problem. Consider two partitions of state $S, V$ and $V^{\prime}$ with $\rho$ and $\rho^{\prime}$ elements respectively. Let $V_{S}^{\min _{\rho}}$ and $V_{S}^{\min _{\rho^{\prime}}}$ be the respective minimizing partitions.

Consider $S, \widehat{S} \in S$ with cardinality $|S|$ and $|\widehat{S}|$ respectively.

1. (Scale) If $d_{i j}=\lambda d_{i j}$, for all $i, j \in S, \widehat{S}$. Then $c(V, S)=c(V, \widehat{S})$, for all $V$.
2. (Density) If $|\widehat{S}|=\lambda|S|$ and $\widehat{S}$ is a $\lambda$-replica of $S$ then $c(V, S)=c(V, \widehat{S})$, for all $V$.
3. (Number of Districts)

$$
\text { If } \frac{\sum_{v \in V_{S}^{p}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{V_{S}^{\min _{p}}}=\frac{\theta \sum_{v \in V_{S}^{\rho^{\prime}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{V_{S}^{\min _{\rho^{\prime}}}} \Longrightarrow c(V, S)=\theta c\left(V^{\prime}, S\right) .
$$

### 7.1.1 Uniqueness Result

Let $O_{c}=\left(\mathbb{R}_{+}, \succeq\right)$ denote the ordered set generated by the relative proximity index $c$, and let $O_{\widehat{c}}$ denote the ordered set over elements $V_{S} \in \mathcal{V}_{S}$ generated by any other compactness index. We say that two indices, $c$ and $\widehat{c}$, are ordinally isomorphic if $O_{c}=O_{\hat{c}}$. We are now equipped to state our main result. The proof of this, as with all others, can be found in Appendix A.

Theorem 1 (1) The Relative Proximity Index satisfies Anonymity, Clustering, and Independence;
(2) Suppose $\delta=2$ and $g_{S_{i}}(\cdot)$ is symmetric for all $i$, then any compactness index which satis-
fies Anonymity, Clustering and Independence is ordinally isomorphic to the Relative Proximity Index.

## Proof of Theorem 1, Part 1:

That the RPI satisfies the three axioms follows from five simple lemmas which we now state and prove.

## Lemma 1 The Relative Proximity Index satisfies Anonymity.

Proof. Consider a partition $V$ of state $S$ and an associated compactness index $c(V, S)$. Now consider a bijection $h: S \rightarrow S$.

$$
\sum_{v \in V_{S}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}
$$

is unchanged since $h$ is a bijection and hence there are the same number of points in each element of $V$ and they are at the same points. For identical reasons the denominator of the RPI does not change, and hence $c(V, S)=c_{h}(V, S)$ for any bijection $h$.

Lemma 2 The Relative Proximity Index satisfies Clustering.
Proof. Let there be two partitions, $V_{S}^{1}$ and $V_{S^{\prime}}^{2}$ such that

$$
\begin{equation*}
\sum_{v \in V_{S}^{1}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}>\sum_{v \in V_{S_{S}^{2}}^{2}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2} \tag{4}
\end{equation*}
$$

Clustering requires:

$$
c\left(V_{S}^{1}, S\right)>c\left(V_{S}^{2}, S\right)
$$

Suppose, by way of contradiction, that (4) holds, and

$$
\begin{equation*}
c\left(V_{1}, S\right)<c\left(V_{2}, S\right) \tag{5}
\end{equation*}
$$

That is

$$
\begin{equation*}
\frac{\sum_{v \in V_{S}^{1}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{\min _{V \in \mathcal{V}_{S}} \sum_{v \in V} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}<\frac{\sum_{v \in V_{S}^{2}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{\min _{V \in \mathcal{V}_{S}} \sum_{v \in V} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}} \tag{6}
\end{equation*}
$$

The denominators are identical and hence the supposition requires:

$$
\begin{equation*}
\sum_{v \in V_{S}^{1}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}<\sum_{v \in V_{S^{\prime}}^{2}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}, \tag{7}
\end{equation*}
$$

a contradiction.
Lemma 3 The Relative Proximity Index satisfies Density Independence.
Proof. Consider $S$ and $\widehat{S}$, with $|S|$ and $|\widehat{S}|$ respectively with $\widehat{S}$ a $\lambda$-replica of $S$. We need to show that $R P I(V, S)=R P I(V, \widehat{S})$ for all $V \in \mathcal{V}_{S}, V \in \mathcal{V}_{\hat{S}}$. That is

$$
\frac{\sum_{v \in V_{S}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{\min _{V \in \mathcal{V}_{S}} \sum_{v \in V} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}=\frac{\sum_{v \in V_{S}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{\min _{V \in \mathcal{V}_{s}} \sum_{v \in V} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}},
$$

for all $V \in \mathcal{V}_{S}, V \in \mathcal{V}_{\hat{S}}$. By the definition of a $\lambda$-replica, the right-hand side of the above equation is simply

$$
\frac{\lambda \sum_{v \in V_{S}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{\lambda \min _{V \in \mathcal{V}_{S}} \sum_{v \in V} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}},
$$

which is clearly equal to the left-hand side for any partition.
Lemma 4 The Relative Proximity Index satisfies Scale independence.

Proof. Scale Independence requires that for two states, $S$ and $\widehat{S}$ with $d_{j k}=\lambda d_{j k}$, for all $j, k \in S, \widehat{S}$. Then $c(V, S)=c(V, \widehat{S})$, for all $V \in \mathcal{V}_{S}, V \in \mathcal{V}_{\hat{S}}$. That is

$$
\frac{\sum_{v \in V_{S}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{\min _{V \in \mathcal{V}_{S}} \sum_{v \in V} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}=\frac{\sum_{v \in V_{S}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{\min _{V \in \mathcal{V}_{S}} \sum_{v \in V} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}},
$$

for all $V \in \mathcal{V}_{S}, V \in \mathcal{V}_{\hat{S}}$. Scale independence means that the right-hand side of the above equation is simply

$$
\frac{\sum_{v \in V_{S}} \sum_{i \in v} \sum_{j \in v}\left(\lambda d_{i j}\right)^{2}}{\min _{V \in \mathcal{V}_{S}} \sum_{v \in V} \sum_{i \in v} \sum_{j \in v}\left(\lambda d_{i j}\right)^{2}}=\frac{\lambda^{2} \sum_{v \in V_{S}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{\lambda^{2} \min _{V \in V_{S}} \sum_{v \in V} \sum_{i \in v} \sum_{j \in v} d_{i j}^{2}}
$$

which is clearly equal to the left-hand side for any partition.
Lemma 5 The Relative Proximity Index satisfies Number of Districts independence.
Proof. Follows immediately from the definition of independence with respect to number of districts.

We can now prove the second part of Theorem 7.1.1. It is proved by transforming a given state so that it can be compared to another state. Anonymity and Independence ensure that this can be done in a way which does not alter the compactness index, and Clustering then allows a comparison of two districting plans to be made based on their total intra-cluster pairwise distances.

## Proof of Theorem 1, Part 2.

Proof. From part I we have $R P I\left(V, S_{m}\right)>R P I\left(\hat{V}, S_{n}\right) \Rightarrow c\left(V, S_{m}\right)>c\left(\hat{V}, S_{n}\right)$, for any $m, n$. Suppose part 2 is not true. This implies that

$$
\begin{equation*}
c\left(V, S_{m}\right)>c\left(\hat{V}, S_{n}\right) \text { and } R P I\left(V, S_{m}\right)<R P I\left(\hat{V}, S_{n}\right), \tag{8}
\end{equation*}
$$

or

$$
c\left(V, S_{m}\right)<c\left(\hat{V}, S_{n}\right) \text { and } R P I\left(V, S_{m}\right)>R P I\left(\hat{V}, S_{n}\right)
$$

for some $m, n$.
If $S_{m}=S_{n}$ then the argument is straightforward. Begin with the first pair of inequalities. Note that Equality implies that $\mu_{i j}=\mu$ for all $i, j$ and that symmetry of $g$ implies combined with Equality implies that $g$ is additively separable in its arguments. Then by Equality and Clustering we have

$$
\sum_{v \in V_{S_{m}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}>\sum_{v \in \hat{V}_{S_{n}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2} \Longrightarrow c\left(V, S_{m}\right)>c\left(\hat{V}, S_{n}\right),
$$

since $R P I\left(V, S_{m}\right)<R P I\left(\hat{V}, S_{n}\right)$ and

$$
S_{m}=S_{n} \Rightarrow \min _{V \in V_{S_{m}}} \sum_{v \in V_{S_{m}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}=\min _{V \in \mathcal{V}_{S_{n}}} \sum_{v \in \hat{V}_{S_{n}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2},
$$

we have

$$
\sum_{v \in V_{S_{m}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}<\sum_{v \in \hat{V}_{S_{n}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2} .
$$

By Clustering this implies that $c\left(V, S_{m}\right)<c\left(\hat{V}, S_{n}\right)$-a contradiction. Identical reasoning rules out the case where

$$
c\left(V, S_{m}\right)<c\left(\hat{V}, S_{n}\right) \text { and } R P I\left(V, S_{m}\right)>R P I\left(\hat{V}, S_{n}\right) .
$$

Now consider the case in which $S_{m} \neq S_{n}$, and suppose that $S_{m}$ contains $\gamma_{m}$ districts and $S_{n}$ contains $\gamma_{n}$ districts. Consider the following transformation of state $n$. First, make a $\lambda$-replica of $S_{n}$ and a $\mu$-replica of $S_{m}$ so that the number of voters is the same as in state the transformed $S_{m}$. Note that $c\left(V, S_{m}\right)$ and $R P I\left(V, S_{m}\right)$ are unchanged due to Independence. In a slight abuse of notation we will continue to use $V$ and $S_{m}$ in reference to the $\mu$-replicated state. Second, expand or contract the state in the sense that the distance between any two points, $d_{i j}$ say, in state $S_{n}$ is $\alpha d_{i j}$ in state $S_{n^{\prime}}$. Note that any partition of state $n$ is a well defined partition of state $S_{n^{\prime}}$ as it contains the same voters, scaled by $\alpha$. Choose $\alpha$ such that

$$
\alpha=\frac{|n| \min _{V \in \mathcal{V}_{S_{n}}^{\gamma_{m}}} \sum_{v \in \hat{V}_{S_{n}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{\mu|m| \min _{V \in \mathcal{V}_{S_{m}}} \sum_{v \in V_{S_{m}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}},
$$

where $|n|$ and $|m|$ are the number of voters in states $S_{n}$ and $S_{m}$ respectively, and the $\gamma_{m}$ superscript denotes a partition into $\gamma_{m}$ elements. Note that

$$
\begin{equation*}
\min _{V \in V_{S_{m}}} \sum_{v \in V_{S_{m}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}=\min _{V \in \mathcal{V}_{n^{\prime}}^{m}} \sum_{v \in V_{S_{n^{\prime}}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2} . \tag{9}
\end{equation*}
$$

Third, select a feasible partition of $S_{n^{\prime}}$ with $\gamma_{m}$ elements, and denote this partition $\hat{V}^{\prime}$. Suppose

$$
\sum_{v \in \hat{S}_{S_{n^{\prime}}^{\prime}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}=\theta \sum_{v \in \hat{V}_{S_{n}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2},
$$

and that

$$
\min _{V \in \mathcal{S}_{S_{n}}^{\gamma_{m}}} \sum_{v \in \hat{V}_{S_{n}}} \sum_{i \in v} \sum_{j \in v} f\left(d_{i j}\right)=\beta \min _{V \in \mathcal{V}_{S_{n}}^{\gamma_{n}}} \sum_{v \in \hat{V}_{S_{n}}} \sum_{i \in v} \sum_{j \in v} f\left(d_{i j}\right) .
$$

Hence

$$
\frac{\sum_{v \in \hat{V}_{S_{n^{\prime}}^{\prime}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{\min _{V \in \mathcal{V}_{S_{n}}}^{\gamma_{m}} \sum_{v \in \hat{V}_{S_{n}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}=\frac{\theta}{\beta} \frac{\sum_{v \in \hat{V}_{S_{n}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}{\min _{V \in \mathcal{V}_{S_{n}}^{\gamma_{n}}} \sum_{v \in \hat{V}_{S_{n}}} \sum_{i \in v} \sum_{j \in v}\left(d_{i j}\right)^{2}}
$$

By Independence

$$
c\left(\hat{V}^{\prime}, S_{n^{\prime}}\right)=\frac{\theta}{\beta} c\left(\hat{V}, S_{n}\right)
$$

and

$$
R P I\left(\hat{V}^{\prime}, S_{n^{\prime}}\right)=\frac{\theta}{\beta} R P I\left(\hat{V}, S_{n}\right)
$$

From (8)

$$
\begin{equation*}
c\left(V, S_{m}\right)>\frac{\beta}{\theta} c\left(\hat{V}^{\prime}, S_{n^{\prime}}\right) \text { and } R P I\left(V, S_{m}\right)<\frac{\beta}{\theta} R P I\left(\hat{V}^{\prime}, S_{n^{\prime}}\right) \tag{10}
\end{equation*}
$$

But since $S_{m}$ and $S_{n^{\prime}}$ have the same number of voters, the same number of districts, and (9) holds, it follows that (10) implies that $c$ violates Clustering.

Identical reasoning rules out the case where

$$
c\left(V, S_{m}\right)<c\left(\hat{V}, S_{n}\right) \text { and } R P I\left(V, S_{m}\right)>R P I\left(\hat{V}, S_{n}\right)
$$

and hence the proof is complete.

### 7.2 Appendix B: Proofs and Description of Algorithm

### 7.2.1 Proof of Theorem 2

Let districts of state $S$ be denoted $D_{1}, \ldots, D_{d}$. A districting plan is feasible if $\left|D_{i}\right|=n$ for all $i \in\{1, \ldots, d\}$. The set of feasible districtings is $\mathcal{V}$. Let the centroid of district $D_{i}$ be $m_{i}$, so $m_{i}=\frac{1}{n} \sum_{x \in D_{i}}(x)$. Define the functions:

$$
\psi\left(D_{i}\right)=\sum_{x \in D_{i}}\left\|x-m_{i}\right\|^{2}, \quad \Psi\left(D_{1}, \ldots, D_{d}\right)=\sum_{i=1}^{d} \psi\left(D_{i}\right)
$$

We say that districting is optimally compact if it minimizes $\Psi\left(D_{1}, \ldots, D_{d}\right)$ over all $\left(D_{1}, \ldots, D_{d}\right) \in$ $\mathcal{V}$. For $z_{1}, \ldots, z_{d} \in \mathbb{R}^{2}$, let:

$$
\psi_{z_{i}}\left(D_{i}\right)=\sum_{x \in D_{i}}\left\|x-z_{i}\right\|^{2}, \quad \Psi_{z_{1}, \ldots, z_{d}}\left(D_{i}\right)=\sum_{i=1}^{d} \psi_{z_{i}}\left(D_{i}\right)
$$

A Power Diagram with sites $z_{1}, \ldots, z_{d}$ is a partition of $\mathbb{R}^{2}$ into districts $D_{1}, \ldots, D_{d}$ such that for fixed constants $\lambda_{1}, \ldots, \lambda_{d} \in \mathbb{R}$,

$$
D_{i}=\left\{q \in \mathbb{R}^{2}: i=\arg \min _{j}\left[\left\|q-z_{j}\right\|^{2}-\lambda_{j}\right]\right\}
$$

It is clear that a power diagram is described by its edges and the fact that if $x$ is on the same side as $D_{i}$ of any complete set of linear separators between $D_{i}$ and other districts then $x \in D_{i}$, and otherwise not. The edges of $D_{i}$ are described by the set of $q \in \mathbb{R}^{2}$ such that $\left\|q-z_{i}\right\|^{2}-\lambda_{i}=\left\|q-z_{i}\right\|^{2}-\lambda_{j}$, or $\left\|q-z_{i}\right\|^{2}-\left\|q-z_{i}\right\|^{2}=\lambda_{i}-\lambda_{j}$.

Lemma $6 \Psi\left(D_{1}, \ldots, D_{d}\right)$ is proportional to the RPI for $\left(D_{1}, \ldots, D_{d}\right) \in \mathcal{V}$, so minimizing one is equivalent to minimizing the other. Specifically,

$$
\sum_{i=1}^{d} \sum_{x \in D_{i}} \sum_{y \in D_{i}}\|x-y\|^{2}=2 n \sum_{i=1}^{d} \sum_{x \in D_{i}}\left\|x-m_{i}\right\|^{2}
$$

## Proof of Lemma 6.

$$
\begin{aligned}
\sum_{i=1}^{d} \sum_{x \in D_{i}} \sum_{y \in D_{i}}\|x-y\|^{2} & =\sum_{i=1}^{d} \sum_{x \in D_{i}} \sum_{y \in D_{i}}\left(\|x\|^{2}+\|y\|^{2}-2 x \cdot y\right) \\
& =\sum_{i=1}^{d} \sum_{x \in D_{i}}\left(n\|x\|^{2}-2 n m_{i} \cdot x+\sum_{y \in D_{i}}\|y\|^{2}\right) \\
& =\sum_{i=1}^{d}\left(\sum_{x \in D_{i}}\left(n\|x\|^{2}-2 n m_{i} \cdot x\right)+n \sum_{y \in D_{i}}\|y\|^{2}\right) \\
& =\sum_{i=1}^{d}\left(\sum_{x \in D_{i}}\left(2 n\|x\|^{2}-2 n m_{i} \cdot x\right)\right) \\
& =\sum_{i=1}^{d}\left(2 n \sum_{x \in D_{i}}\left(\|x\|^{2}-m_{i} \cdot x\right)\right) \\
& =\sum_{i=1}^{d} 2 n\left(\sum_{x \in D_{i}}\left(\|x\|^{2}\right)-n\left\|m_{i}\right\|^{2}\right) \\
& =\sum_{i=1}^{d}\left(2 n\left(\sum_{x \in D_{i}}\left(\|x\|^{2}-2 m_{i} \cdot x+\left\|m_{i}\right\|^{2}\right)\right)\right) \\
& =\sum_{i=1}^{d}\left(2 n\left(\sum_{x \in D_{i}}\left\|x-m_{i}\right\|^{2}\right)\right) \\
& =2 n \sum_{i=1}^{d} \sum_{x \in D_{i}}\left\|x-m_{i}\right\|^{2}
\end{aligned}
$$

Lemma 7 For all $\left(D_{1}, \ldots, D_{d}\right) \in \mathcal{V}$,

$$
\left(m_{1}, \ldots, m_{d}\right)=\arg \min _{\left(z_{1}, \ldots, z_{d}\right)} \Psi_{z_{1}, \ldots, z_{d}}\left(D_{1}, \ldots, D_{d}\right)
$$

Proof of Lemma 7. It suffices to show that substituting $m_{i}$ for $z_{i}$ minimizes the expression on the right. Its first order condition with respect to the $z_{i}$ is:

$$
\forall D_{i}, \quad 2 \sum_{x \in D_{i}}\left(x-z_{i}\right)=0 \quad \Rightarrow \quad z_{i}=\frac{1}{n} \sum_{x \in D_{i}} x=m_{i}
$$

Lemma 8 In an optimally compact districting, every pair of adjacent districts is separated by a line perpendicular to a line connecting their centroids.

Proof of Lemma 8. Let $\left(D_{1}, \ldots, D_{d}\right)$ be optimally compact. Without loss of generality we can prove the lemma for districts $D_{1}$ and $D_{2}$. By isometry we can assume that $m_{1}=(0,0)$ and $m_{2}=(\xi, 0)$. Pick $v_{1}=\left(x_{1}, y_{1}\right) \in D_{1}$ and $v_{2}=\left(x_{2}, y_{2}\right) \in D_{2}$. Let $D_{1}^{\prime}=D_{1} \cup\left\{v_{2}\right\}-\left\{v_{1}\right\}$ and $D_{2}^{\prime}=D_{2} \cup\left\{v_{1}\right\}-\left\{v_{2}\right\}$. By the optimality of $\left(D_{1}, \ldots, D_{d}\right)$ and the optimality lemma,

$$
\begin{gathered}
\psi\left(D_{1}\right)+\psi\left(D_{2}\right) \leq \psi\left(D_{1}^{\prime}\right)+\psi\left(D_{2}^{\prime}\right) \leq \psi_{m_{1}}\left(D_{1}^{\prime}\right)+\psi_{m_{2}}\left(D_{2}^{\prime}\right) \\
\Rightarrow \quad\left\|v_{1}-m_{1}\right\|^{2}+\left\|v_{2}-m_{2}\right\|^{2} \leq\left\|v_{1}-m_{2}\right\|^{2}+\left\|v_{2}-m_{1}\right\|^{2} \\
\Rightarrow \quad-2 v_{1} \cdot m_{1}-2 v_{2} \cdot m_{2} \leq-2 v_{1} \cdot m_{2}-2 v_{2} \cdot m_{1} \\
\Rightarrow \quad\left(v_{2}-v_{1}\right) \cdot\left(m_{1}-m_{2}\right) \leq 0 \\
\Rightarrow \quad\left(x_{2}-x_{1}\right) \cdot(-\xi)+\left(y_{2}-y_{1}\right) \cdot(0) \leq 0 \\
\Rightarrow \quad x_{1} \leq x_{2}
\end{gathered}
$$

Since $v_{1}$ and $v_{2}$ are arbitrary, we can pick them such that $v_{1}$ is the point in $D_{1}$ with greatest $x_{1}$ and $v_{2}$ is the point in $D_{2}$ with least $x_{2}$, showing that there is a line of the form $x=c$ for $c \in \mathbb{R}$ separating the two districts. Isometrics preserve perpendicularity, so applying one moving $m_{1}$ and $m_{2}$ away from $(0,0)$ and $(\xi, 0)$ leaves the separator between $D_{1}$ and $D_{2}$ perpendicular to the segment connecting $m_{1}$ and $m_{2}$.

Lemma 9 Let $\left(D_{1}, \ldots, D_{d}\right)$ be optimal. For every three districts, there exist three concurrent lines each of which separates two of the three districts, with one line separating each pair of districts.

Proof of Lemma 9. Without loss of generality we prove this for the three districts $D_{1}, D_{2}$, and $D_{3}$. By the Straight Line Lemma, there exist linear separators between $D_{1}$ and $D_{2}, D_{2}$ and $D_{3}$, and $D_{3}$ and $D_{1}$ perpendicular to the lines connecting their centroids. We can characterize these lines by the equations $\left\|r-m_{1}\right\|^{2}-\left\|r-m_{2}\right\|^{2}=\mu_{1,2},\left\|s-m_{2}\right\|^{2}-\left\|s-m_{3}\right\|^{2}=\mu_{2,3}$, and $\left\|t-m_{3}\right\|^{2}-\left\|t-m_{1}\right\|^{2}=\mu_{3,1}$, for free variables $r, s, t \in \mathbb{R}^{2}$. If the lines are concurrent, that means
there exist $q \in \mathbb{R}^{2}$ satisfying all three equations. Adding them together gives $\mu_{1,2}+\mu_{2,3}+\mu_{3,1}=0$. Therefore, if the lines are concurrent then for all $r, s$, and $t$ on the lines,

$$
\left\|r-m_{1}\right\|^{2}-\left\|r-m_{2}\right\|^{2}+\left\|s-m_{2}\right\|^{2}-\left\|s-m_{3}\right\|^{2}+\left\|t-m_{3}\right\|^{2}-\left\|t-m_{1}\right\|^{2}=0
$$

Assume there is no choice for $\mu_{1,2}, \mu_{2,3}$, and $\mu_{3,1}$ such that the lines are concurrent. Then, for all $r, s$, and $t$ on the three edges,

$$
\left\|r-m_{1}\right\|^{2}-\left\|r-m_{2}\right\|^{2}+\left\|s-m_{2}\right\|^{2}-\left\|s-m_{3}\right\|^{2}+\left\|t-m_{3}\right\|^{2}-\left\|t-m_{1}\right\|^{2} \neq 0
$$

If any one of $\mu_{1,2}, \mu_{2,3}$, or $\mu_{3,1}$ induces an optimal separator at both the values $\nu_{1}$ and $\nu_{2}$ in $\mathbb{R}^{2}$, then it must also at the value $\lambda \nu_{1}+(1-\lambda) \nu_{2}$ for $\lambda \in[0,1]$. So the expression above is either strictly greater or strictly less than 0 for all permissible values of $r, s$, and $t$. We assume without loss of generality that it is greater. Then, there exist $v_{1} \in D_{1}, v_{2} \in D_{2}$, and $v_{3} \in D_{3}$ such that when substituted for $r, s$, and $t$, respectively, the above expression reaches a positive infimum. The expression cannot be at an infimum unless the extreme values of $r, s$, and $t$ are specifically chosen to be in $D_{1}, D_{2}$, and $D_{3}$, respectively, otherwise $\left\|r-m_{1}\right\|^{2}-\left\|r-m_{2}\right\|^{2}$, for example, could be decreased by moving $r$ in the direction $m_{1}-m_{2}$ while still separating $D_{1}$ and $D_{2}$. Therefore,

$$
\begin{aligned}
& \left\|v_{1}-m_{1}\right\|^{2}-\left\|v_{1}-m_{2}\right\|^{2}+\left\|v_{2}-m_{2}\right\|^{2}-\left\|v_{2}-m_{3}\right\|^{2}+\left\|v_{3}-m_{3}\right\|^{2}-\left\|v_{3}-m_{1}\right\|^{2}>0 \\
& \Leftrightarrow\left\|v_{1}-m_{1}\right\|^{2}+\left\|v_{2}-m_{2}\right\|^{2}+\left\|v_{3}-m_{3}\right\|^{2}>\left\|v_{1}-m_{2}\right\|^{2}+\left\|v_{2}-m_{3}\right\|^{2}+\left\|v_{3}-m_{1}\right\|^{2}
\end{aligned}
$$

Let $D_{1}^{\prime}=D_{1} \cup\left\{v_{3}\right\}-\left\{v_{1}\right\}, D_{2}^{\prime}=D_{2} \cup\left\{v_{1}\right\}-\left\{v_{2}\right\}$, and $D_{3}^{\prime}=D_{3} \cup\left\{v_{2}\right\}-\left\{v_{3}\right\}$. Then,

$$
\psi\left(D_{1}\right)+\psi\left(D_{2}\right)+\psi\left(D_{3}\right)>\psi_{m_{1}}\left(D_{1}^{\prime}\right)+\psi_{m_{2}}\left(D_{2}^{\prime}\right)+\psi_{m_{3}}\left(D_{3}^{\prime}\right)>\psi\left(D_{1}^{\prime}\right)+\psi\left(D_{2}^{\prime}\right)+\psi\left(D_{3}^{\prime}\right)
$$

This contradicts the optimality of $D_{1}, \ldots, D_{d}$, and the lemma follows.

Proof of Theorem 4.2. We prove that any optimal districting is a power diagram with cites equal to their centroids, $m_{1}, \ldots, m_{d}$. For any pair of districts $D_{i}$ and $D_{j}$, we can pick $\mu_{i, j}$ such that $\left\|q-m_{i}\right\|^{2}-\left\|q-m_{j}\right\|^{2}=\mu_{i, j}$ is a linear separator between the districts, and if we add a third district $D_{j}$, we can similarly pick $\mu_{j, k}$ and $\mu_{k, i}$ such that the districting lines are concurrent, or $\mu_{i, j}+\mu_{j, k}+\mu_{k, i}=0$. Note that $\mu_{a, b}=-\mu_{b, a}$. We prove that there exist constants $\lambda_{1}, \ldots, \lambda_{d}$ such that $\lambda_{i}-\lambda_{j}=\mu_{i, j}$ by induction. This is obviously true when $n=2$. Assume it is true for districts $D_{1}, \ldots, D_{k}$. For $i, j<k+1$,

$$
\begin{aligned}
\mu_{i, k+1} & =\mu_{i, j}+\mu_{j, k+1}=\lambda_{i}-\lambda_{j}+\mu_{j, k+1} \\
& \Rightarrow \lambda_{i}-\mu_{i, k+1}=\lambda_{j}-\mu_{j, k+1}
\end{aligned}
$$

Thus, $\lambda_{i}-\mu_{i, k+1}$ is constant over choice of $i$, call the constant $\lambda_{k+1}$. That makes $\mu_{i, k+1}=\lambda_{i}-\lambda_{k+1}$ for any $i$, and the induction is complete. Clearly any $x \in D_{i}$ is on the $m_{i}$ side of a boundary line between $D_{i}$ and another district, so it follows that optimal districtings are power diagrams.

### 7.2.2 Algorithm Details

The algorithm we propose is a modification of the second algorithm presented in Aurenhammer et. al (1998). Since we know by Theorem 2 that local optima of the RPI are power diagrams, we search within the set of power diagrams for one that is a feasible districting. However, as power diagrams are generated around sites, which we call $z_{1}, \ldots, z_{n}$, it is necessary to update the locations of the sites as well as the design of the districts.

First we explain the (Aurenhammer et al, 1998) algorithm for finding a power diagram which minimizes $\Psi_{z_{1}, \ldots, z_{d}}\left(D_{1}, \ldots, D_{d}\right)$ with $\left|D_{i}\right| \approx n$ for all $i$. Since a power diagram is defined by its sites and their weights, $\lambda_{1}, \ldots, \lambda_{d}$, assuming fixed sites each district $D_{i}$ is a function of $\lambda_{1}, \ldots, \lambda_{d}$, or $D_{i}=D_{i}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$. We suppress this dependence for simplicity. Let

$$
\xi\left(\lambda_{1}, \ldots, \lambda_{d}\right)=\sum_{i=1}^{d}\left(n-\left|D_{i}\right|\right) \cdot \lambda_{i}+\Psi_{z_{1}, \ldots, z_{d}}\left(D_{1}, \ldots, D_{d}\right) .
$$

Aurenhammer et al, (1998) simplifies the problem by continuing as if each $D_{i}$ does not change locally with respect to each $\lambda_{i}$ everywhere, as this is truc almost everywhere (at all but finitely many points). Therefore, $\left|D_{i}\right|$ and $\Psi_{z_{1}, \ldots, z_{d}}\left(D_{1}, \ldots, D_{d}\right)$ are locally constant with respect to $\lambda_{i}$, so,

$$
\frac{\partial \xi}{\partial \lambda_{i}}=n-\left|D_{i}\right| .
$$

Let $\Lambda=\left(\lambda_{1}, \ldots, \lambda_{d}\right)$. Using some choice of $\Lambda_{0}$, we can update it by gradient descent,

$$
\Lambda_{t+1}=\Lambda_{t}+\epsilon_{t} \cdot \nabla \xi\left(\Lambda_{t}\right)
$$

In our implementation we set $\Lambda_{0}$ to be the zero vector. It remains to pick the step sizes $\left\{\epsilon_{t}\right\}_{t \geq 0}$. To do this, one first determines an overestimate of the minimum value of $\xi$, call it $\bar{\xi}$. This can be done by setting $\bar{\xi}=\Psi_{z_{1}, \ldots, z_{d}}\left(D_{1}, \ldots, D_{d}\right)$ for any feasible districting $\left(D_{1}, \ldots, D_{d}\right)$. We use the notation $D_{i}\left(\Lambda_{t}\right)$ to mean one of the districts induced by the power diagram weights contained in the vector $\Lambda_{t}$, and let:

$$
\epsilon_{t}=\frac{\bar{\xi}-\xi\left(\Lambda_{t}\right)}{\sum_{i=1}^{d}\left|D_{i}\left(\Lambda_{t}\right)\right|^{2}}
$$

This step size is iterated until the minimum is either reached or missed, which happens when

$$
\begin{array}{r}
\sum_{i=1}^{d}\left|D_{i}\left(\Lambda_{t}\right)\right| \cdot\left|D_{i}\left(\Lambda_{t+1}\right)\right|>0 . \text { Then, } \bar{\xi} \text { is updated by solving the equation: } \\
\frac{\bar{\xi}-\xi\left(\Lambda_{t}\right)}{\sum_{i=1}^{d}\left|D_{i}\left(\Lambda_{t}\right)\right|^{2}}=\frac{\bar{\xi}-\xi\left(\Lambda_{t+1}\right)}{\sum_{i=1}^{d}\left|D_{i}\left(\Lambda_{t+1}\right)\right|^{2}}
\end{array}
$$

$\epsilon_{t+1}$ is chosen accordingly. This algorithm is repeated until the $\left|D_{i}\right|$ 's are within some predetermined error bound around $n$.

Once optimal districts $D_{1}, \ldots, D_{d}$ for sites $z_{1}, \ldots, z_{d}$ are chosen, by Lemma 7 (see Appendix A) the function $\Psi_{z_{1}, \ldots, z_{d}}\left(D_{1}, \ldots, D_{d}\right)$ is improved by moving the $z_{i}$ 's to the centroids of the $D_{i}$ 's and keeping the $\lambda_{1}, \ldots, \lambda_{d}$ constant. Yet, all of the $D_{i}$ 's are not necessarily of size $n$, so they need to be adjusted by the above procedure. This process is repeated until moving the $z_{1}, \ldots, z_{d}$ still leaves the sizes of the $D_{i}$ 's within the prescribed error bound.

Note: The algorithm described in Aurenhammer et al. (1998) tends to fail when one of the districts is randomly set to size 0 . Our solution to this issue was to move $z_{i}$ to a random new location if $\left|D_{i}\right|$ became zero during any point in the process. Random new locations were chosen using a uniform distribution function ranging from the minimum to the maximum of the longitude and the latitude of the state in question.

### 7.3 Appendix C: A Guide to Programs

All programs to compute feasible districtings minimizing the RPI are written for
MATLAB. There are two main programs, Main.m and Compute_Index.m, and support programs District.m, getRandGP.m, Psi.m, Weighted_Assign.m, Weighted_FirstTryAssign.m, and Weighted_PowerDiagram.m. We briefly describe each below.

Main.m and Compute_Index.m are both shell programs which call District.m, the actual algorithm, and store its output in text files. Typing Compute_Index(filename, Iterations) reads demographic data about a state from a text file, say 'indiana.out', and creates a new districting Iterations times. The file should have the latitudes and longitudes of the census tracts of the states in columns two and three (respectively), the FIPS code of the state repeated in every entry of column four, the current districts of all census tracts in column five, and the populations of all census tracts in column six. Compute_Index.m generates two output files. The first, in this case 'indiana.out.output' contains the latitudes and longitudes of the census tracts in the first two columns, and their new district numbers in the subsequent columns. Each column after the second represents a different iteration of the algorithm. The second output file, in this case 'indiana.out.stats', contains statistics from each iteration of the algorithm on a different row. The first column has the RPI's, the second has the accuracy of the districting, and the third has the accuracy of the current districting. Accuracy is measured:

$$
\max _{i \in\{1, \ldots, d\}}\left|\frac{\left|D_{i}\right|-n}{n}\right|
$$

Compute_Index.m has the following hard-coded parameters which are passed to District.m:
outside_tol_ratio, tol_ratio, outside_bail, and bail. tol_ratio and bail are the stopping criteria for the sub-routine Weighted_Assign.m which creates the best districting around randomly-initiated sites. If the accuracy falls below tol__ratio or the number of iterations of the gradient-descent procedure rises above bail, the algorithm terminates. Likewise, outside _tol_ratio and outside__bail are the stopping criteria for the larger districting algorithm. If the accuracy of the districting falls below outside _tol__ratio or the number of times the sites are moved rises above outside_bail, the algorithm terminates. The set values for outside_tol_ratio, tol_ratio, outside_bail, and bail are .9 times the real accuracy, whichever is the lesser between .9 times the real accuracy or $.05,35$ times the number of districts in the state, and 35 times the number of districts in the state.

Main(filename) reads a list of states and iterations for each state to be run by Compute Index. The file is of the form:
states, bootstraps
alabama 4
arizona 7
arkansas 3
california 1
Names of states and numbers of iterations are separates by tabs. If 'arizona' is written in this file, Compute_Index will open a file called 'arizona.out'. Main.m creates an additional file called index.txt which lists the FIPS code for every state next to the best RPI the algorithm has found for it such that the accuracy for the districting corresponding to that RPI is better than the state's current accuracy.

This procedure yields an RPI $>1$ and an accuracy better than the current accuracy nearly all of the time for all states other than Connecticut, Idaho, Minnesota, and Nebraska, which already are well-districted and usually require quite a few bootstraps to improve on the current districting.


Figure 1: A Simple Example


Figure 2: Good and Bad Generator Points


Figure 3: Tennessee 106th Congress Districting Plans, Actual v. Algorithm


Figure 4: Idaho 106th Congress Districting Plans, Actual v. Algorithm


Figure 5: Hawaii 106th Congress Districting Plans, Actual v. Algorithm


Figure 6: Illinois 106th Congress Districting Plans, Actual v. Algorithm


Figure 7: Massachusetts 106th Congress Districting Plans, Actual v. Algorithm


Figure 8: Nevada 106th Congress Districting Plans, Actual v. Algorithm


Figure 9: New York 106th Congress Districting Plans, Actual v. Algorithm


Figure 10: Pennslyvania 106th Congress Districting Plans, Actual v. Algorithm



Figure 11: Texas 106th Congress Districting Plans, Actual v. Algorithm


Figure 12: Florida 106th Congress Districting Plans, Actual v. Algorithm


Figure 13: Seat-Vote Curves for California, Actual v. Maximally Compact


Figure 14: Seat-Vote Curves for New York, Actual v. Maximally Compact


Figure 15: Seat-Vote Curves for Texas, Actual v. Maximally Compact


Figure 16: Seat-Vote Curves for Pennsylvania, Actual v. Maximally Compact

Table 1: The Relative Proximity Index, 2000

		Max Deviation	Max Deviation		Standard Deviation	
State Name	RPI	(Actual)	(Algorithm)	Mean RPI	RPI	Percentile
Alabama	1.21	0.27	0.05	0.99	0.03	1.00
Arizona	1.34	0.20	0.15	1.27	0.04	0.97
Arkansas	1.08	0.14	0.05	0.78	0.01	1.00
California	1.49	0.17	0.04	0.96	0.03	1.00
Colorado	1.59	0.15	0.05	1.28	0.02	1.00
Connecticut	1.36	0.02	0.01	1.09	0.35	0.78
Florida	1.39	0.46	0.07	0.83	0.08	1.00
Georgia	1.24	0.14	0.09	0.90	0.01	1.00
Hawaii	1.59	0.09	0.04	1.48	0.02	1.00
Idaho	0.97	0.10	0.02	0.80	0.02	1.00
Illinois	1.43	0.29	0.11	0.98	0.07	1.00
Indiana	1.49	0.20	0.06	1.05	0.02	1.00
Iowa	1.38	0.06	0.05	1.29	0.01	1.00
Kansas	1.11	0.08	0.05	0.95	0.01	1.00
Kentucky	1.51	0.14	0.05	1.22	0.01	1.00
Louisiana	1.15	0.13	0.05	0.79	0.43	0.80
Maine	1.39	0.04	0.03	1.15	0.01	1.00
Maryland	1.52	0.22	0.04	1.25	0.02	1.00
Masschussetts	1.87	0.10	0.05	1.54	0.01	1.00
Michigan	1.24	0.13	0.04	0.99	0.02	1.00
Minnesota	1.05	0.16	0.05	0.90	0.02	1.00
Mississippi	1.02	0.18	0.05	0.87	0.01	1.00
Missouri	1.38	0.23	0.05	1.01	0.16	0.99
Nebraska	1.01	0.05	0.04	0.89	0.23	0.70
Nevada	1.38	0.08	0.05	1.19	0.01	1.00
New Hampshire	1.10	0.01	0.00	1.09	0.00	0.95
New Jersey	2.27	0.21	0.05	1.69	0.02	1.00
New Mexico	1.23	0.06	0.04	1.14	0.01	1.00
New York	1.83	0.21	0.10	1.45	0.45	0.80
North Carolina	1.33	0.28	0.04	1.15	0.09	0.97
Ohio	1.62	0.13	0.05	1.42	0.01	1.00
Oklahoma	1.24	0.09	0.05	1.42	0.36	0.31
Oregon	1.26	0.09	0.04	1.21	0.28	0.56
Pennsylvania	1.81	0.25	0.22	1.27	0.05	1.00
Rhode Island	1.18	0.03	0.02	1.18	0.01	0.55
South Carolina	1.22	0.21	0.04	1.27	0.02	0.00
Tennessee	2.91	0.25	0.04	2.59	0.04	1.00
Texas	1.90	0.30	0.22	1.24	0.07	1.00
Utah	1.46	0.06	0.04	1.40	0.01	1.00
Virginia	1.38	0.22	0.07	1.14	0.04	1.00
Washington	1.17	0.15	0.06	0.77	0.03	1.00
West Virginia	1.68	0.06	0.05	1.61	0.01	1.00
Wisconsin	1.40	0.11	0.08	1.22	0.58	0.62

Notes: RPI values were calculated using tract-level data from the 2000 Census. Max Deviation 1 minus the total population of the largest congressional district divided by the total population of the smallest congressional district. Mean RPI was calculated as the mean of 200 repititions of the RPI -- each having different starting values.

Case: 3:15-cv-00421-jdp Document \#: 98-5 Filed: 04/19/16 Page 51 of 52
Table 2: Partisan Bias and Responsiveness, Actual versus Maximally Compact Districtings

	Bias	Bias	t-statistic on	Responsiveness	Responsiveness t-statistic on	
State	(Actual)	(Algorithm)	Difference	(Actual)	(Algorithm)	Difference
California	.028	.007	.469	1.086	1.731	$-4.327^{* *}$
	$(.010)$	$(.045)$		$(.069)$	$(.132)$	
New York	.103	.018	1.051	0.482	2.51	$-6.540^{* *}$
	$(.014)$	$(.080)$		$(.036)$	$(.308)$	
Pennsylvania	-0.0027	.031	-.363	1.138	1.562	$-1.800^{*}$
	$(.021)$	$(.076)$		$(.128)$	$(.198)$	
Texas	.062	.039	.334	0.8872	1.305	$-1.717^{*}$
	$(.024)$	$(.064)$		$(.103)$	$(.221)$	

Notes: Estimates are based on voter tabulation district level election return data for the 105th and 106th congress.

From: Nicholas Stephanopoulos nicholas.stephanopoulos@gmail.com
Subject: Items for rebuttal report
Date: Sat Dec 052015 05:24:27 GMT+0530 (IST)
To: Jackman jackman@stanford.edu
N

Cc: Peter Earle peter@earle-law.com, Paul Strauss Pstrauss@clccrul.org, Ruth Greenwood rgreenwood@clccrul.org

Simon,
Based on our conversation, here's a list of tasks we'd like for you to carry out in your rebuttal report. We may add further items to this list, and you should also let us know as soon as possible if you have additional ideas. Again, the report is due on $12 / 21$, so we'd like to receive a draft by $12 / 18$. I'll also send you in a separate message (1) a dataset of congressional efficiency gaps; and (2) a dataset of the institution responsible for redistricting in each state. Thanks very much.

Nick

1. Further investigate the stability of the efficiency gap. You may wish to do this by (a) determining the average lifetime size of a plan's EG given the first (or the first two) observed EG values for the plan; and (b) carrying out sensitivity testing for the first observed EG value for a plan, using uniform vote swings in either direction, and thus determining the plan's expected average EG size and expected odds of switching EG signs over its lifetime (per Stephanopoulos \& McGhee). You should address the implications of this analysis for setting the actionable EG threshold.
2. Further investigate the relationship between political geography and the efficiency gap: You may wish to do this by (a) analyzing the observed distribution of EGs over the modern redistricting era; (b) determining the extent to which the pro-Republican trend in the EG in recent years is attributable to Republican control over redistricting in more states; (c) addressing the validity of the Chen/Rodden analysis of political geography, which relies on simulated district plans; and (d) addressing the validity of the Trende analysis of political geography (paras. 62-105), which relies primarily on data on Wisconsin counties and wards.
3. Address the relationship between the efficiency gap calculated using district vote totals and the measure calculated using the assumption of equal turnout: You may wish to do this by focusing on states with no uncontested races, which allow both metrics to be calculated easily.
4. Address the specific redistricting cases raised in Trende's report (paras. 106-131): You may wish to do this by (a) examining the cases that were cited from your own report; and (b) examining the mostly congressional cases that Trende discusses.
5. Address any other points you believe are worthwhile: Finally, you should comment on any other aspects of the Goedert and Trende reports that, in your view, warrant a response.

Nicholas O. Stephanopoulos
Assistant Professor of Law
University of Chicago Law School
nsteph@uchicago.edu
(773) 702-4226
http://www.law.uchicago.edu/faculty/stephanopoulos

## Sensitivity of the Efficiency Gap to Uniform Swing

How sensitive is the efficiency gap to reasonable swings in vote shares? In his report, Goedert asserts that it is extremely sensitive (pp. 11-15), but his claim is based on a small number of examples (pp. 12-13) as well as his own work at the congressional level involving only two eections (Goedert 2015). Sections 1-4 of my rebuttal report show that the first efficiency gap observed under a plan is a reliable indicator of the efficiency gap's magnitude and direction over the remainder of the plan's lifespan. These sections, however, are based on historical efficiency gap data rather than the "sensitivity testing for future results" deemed "crucial" by Goedert (p. 13). Accordingly, we conduct sensitivity testing here of exactly the kind earlier carried out by Stephanopoulos \& McGee (pp. 889-90, 898-99) and recommended by Goedert. This testing confirms the findings in Sections 1-4 of my rebuttal report, and further corroborates my conclusons therein about the efficiency gap's durability and reliability.

Methodologically, we investigate the behavior of the efficiency gap when we perturb it by mimicking "uniform swing" across a jurisdiction. That is, a given election produces a set of vote shares across districts. A new hypothetical election is considered in which all vote shares move up or down by a predetermined quantity (ie., the "swing"); since all districts move by the same amount, this technique is known as uniform swing. In real-world elections swings are never perecisely uniform, and so this method is widely considered to be a simplification; on the other hand, modeling or predicting swing district by district is quite difficult, especially for state legislative elections where we often lack useful district-level predictors of swing (or, more tellingly, predictors of the way the swing in a given state legislative district might depart from the statewide swing).

We restrict the following exercise to elections since the 2010 round of redistricting. For each election we simulate a series of uniform swings, evenly spaced between $-5 \%$ to $+5 \%$, a quite
large set of swings by the standards of state legislative elections. For instance, swings in Wisconsin state legislative elections from 1972 to 2014 are estimated to range between -7.6 percentage points from 2008 to 2010 (Democratic share of two-party vote, averaged by district) and +5.0 percentage points from 2004 to 2006. Similarly, Stephanopoulos \& McGhee found that a swing of $+/-5.5$ percentage points covered the vast majority of state legislative elections from 1972 to 2012 (p. 874).

At each level of uniform swing, we record the new vote shares and seat shares (some seats change hands if the swing pushes Democratic two-party vote share to the other side of $50 \%$ ) and recompute the efficiency gap. We then examine how much the simulated efficiency gaps-generated under different levels of uniform swing-depart from the efficiency gap observed under the actual election. In particular, if relatively small swings produce large changes in $E G$, we might rightly be concerned about the stability and reliability of the efficiency gap as a characterization of a district plan. Keep in mind that this exercise keeps the district plan as it is and simply shifts vote shares up and down over a range of hypothetical levels of statewide swing, held constant over districts.

Figure 1 shows the relationships between efficiency gaps estimated using actual election results in state legislative elections held since the 2010 round of redistricting, and efficiency gaps estimated using a range of uniform swings. When uniform swing is zero, the simulation exercise leaves the actual election results unperturbed, and we simply recover the original efficiency gap estimates; all the data in the panel labelled "Swing +0.0 " lies on the 45 -degree line. As we increase the magnitude of hypothetical levels of uniform swing, the relationship between the observed efficiency gaps and the simulated efficiency gaps weakens, but only by a moderate amount. Even at high levels of uniform swing (approaching $+/$ - five percentage points), the relationship between observed efficiency gaps and simulated efficiency gaps remains of significant strength; the blue line in each panel of Figure 1 is a regression line and in every case has a large
and unambiguously positive slope, indicating a positive correlation between actual and simulated efficiency gaps.


Figure 1: Actual efficiency gaps from state legislative elections 2012 to 2014 (horizontal axis), and corresponding simulated efficiency gaps generated by varying levels of uniform swing. Vertical lines indicate $95 \%$ confidence intervals. Dark diagonal lines are at forty-five degrees, the fit to the data that would result if actual and simulated efficiency gaps were equal (as is the case when the simulated level of uniform swing is set to zero, as in the middle panel of the second row). The blue line indicates a regression fit. For small to even moderately large values of uniform swing, there is a high degree of correspondence between the actual and simulated efficiency gaps.


Figure 2: Correlation between actual efficiency gaps and simulated efficiency gaps (top row) and proportion of simulated efficiency gaps with same sign as actual efficiency gaps (bottom row), by hypothetical levels of uniform swing (horizontal axis). Vertical lines are $95 \%$ confidence intervals. The three columns correspond to actual efficiency gaps that are low in magnitude (less than .03 in absolute value; left column), medium (. 03 to .07 in absolute value, middle column) and high (above .07 in absolute value, right column). When uniform swing is zero, the simulated efficiency gaps correspond to the actual efficiency gaps, and so the correlation between the two sets of efficiency gaps is exactly 1.0 and $100 \%$ of the simulated efficiency gaps have the same sign as the actual efficiency gaps.

The top row of Figure 2 displays correlations between actual efficiency gaps and simulated efficiency gaps, under different hypothetical levels of uniform swing (horizontal axis), with separate panels for low, medium, and high values of actual efficiency gaps. Note that when uniform swing is zero, the simulated efficiency gaps correspond to the actual efficiency gaps, and so the correlation between the two sets of efficiency gaps is exactly 1.0. As levels of uniform swing increase, the correlation between actual and simulated efficiency gaps diminishes. Small efficiency gaps (less than .03 in absolute value) are less resistant to perturbations from uniform swing; at high levels of uniform swing for small actual efficiency gaps, the correlation between actual efficiency gaps and simulated efficiency gaps approaches zero. However, larger values of the efficiency gap are much more robust to perturbations from uniform swing. In fact, for large actual efficiency gaps (greater than . 07 in magnitude), the correlation between actual and simulated efficiency gaps stays impressively large over the entire range of uniform swing levels considered here (top right panel of Figure 2).

The bottom row of Figure 2 displays the proportion of simulated efficiency gaps that have the same sign as actual efficiency gaps, under a range of hypothetical levels of uniform swing (horizontal axis), again with separate panels for low, medium, and high values of actual efficiency gaps. Again we see that small efficiency gaps-less than .03 in magnitude and hence relatively close to zero - are reasonably likely to flip signs under moderate to large values of hypothetical uniform swing: about half of these small efficiency gap estimates flip signs when subjected to reasonably large statewide swings one way or the other. But large efficiency gaps-those greater than .07 in magnitude-show great resistance to flipping signs even in the face of moderate or even large hypothetical statewide swings (lower right panel of Figure 2). None of the large efficiency gaps flip signs when swings are below 2.5 percentage points and barely any flip signs even we consider larger statewide swings. Just $11 \%$ of actual efficiency gaps greater than .07 in magnitude flip signs when exposed to a very large, hypothetical statewide swing of minus five percentage points and only $9 \%$ flip signs when we consider a statewide swing of positive five percentage points.

In short, efficiency gap estimates display a high level of resistance to perturbations from even large levels of uniform swing. This further bolsters our confidence that the efficiency gap is measuring a durable property of a district plan. Moreover, the analysis reported here demonstrates that efficiency gaps are especially reliable when they are large, as is the case for the efficiency gaps generated under the Wisconsin plan. The efficiency gap changes if vote totals change, even if the district plan remains constant; this is "hardwired" into the definition and accompanying arithmetic of the efficiency gap. But to reiterate a conclusion from my original report: the amount of election-to-election variation in the efficiency gap is small relative to the variation in the efficiency gap across plans.

## SIMON JACKMAN

## INVOICE

6503873019
jackman@stanford.edu

1051 Moreno Ave
Palo Alto, CA
94303

Attention: Ruth Greenwood
Chicago Lawyers' Committee for Civil Rights Under Law
100 N. Lasalle Street, Suite 600,
Chicago, IL 60602
Date: 12/7/15

Project Title: Wisconsin's 2011 state legislative districting plan
Project Description: assessing the efficiency gap as an indicator of partisan gerrymandering, historical analysis, comparisons of the Wisconsin plan with historical and contemporaneous precedents, actionable threshold.

| Description | Hours | Fiate | Cost |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Arizona analysis, writeup, October 2015 | 2.50 | $\$$ | 250 | $\$$ | 625 |
| Deposition preparation, phone calls | 2.00 | $\$$ | 250 | $\$$ | 500 |
| Deposition preparation, Madison | 4.70 | $\$$ | 250 | $\$$ | 1,175 |
| Deposition preparation, solo | 2.00 | $\$$ | 250 | $\$$ | 500 |
| Deposition | 4.00 | $\$$ | 250 | $\$$ | 1,000 |
| Deposition transcript review, comments | 3.00 | $\$$ | 250 | $\$$ | 750 |
| Rebuttal report preparation | 1.00 | $\$$ | 250 | $\$$ | 250 |
| Hour totals |  |  |  | $\$$ | 4,800 |
| Airfare, SFO-MSN-SFO |  |  | $\$$ | 447 |  |
| TOTAL |  |  |  | $\$$ | $\mathbf{5 , 2 4 7}$ |

Sincerely yours,


Simon Jackman

## SIMON JACKMAN



Sincerely yours,


Simon Jackman


[^0]:    1 It is also worth stressing that the confidence interval is computed so as to take into account uncertainty from all known sources: in the underlying efficiency gap scores themselves, the fact that the 2012 EG scores for Wisconsin are large by historical standards, and in the regression relationship between first-election $E G$ and plan-average $E G$.

[^1]:    *We thank Jowei Chen, Jacob Montgomery, and seminar participants at Dartmouth, Duke, and Microsoft Research (New York City Lab) for useful comments and suggestions. We thank James Lo, Jonathan Olmsted, and Radhika Saksena for their advice on computation. The open-source R package redist for implementing the proposed methodology is available as Fifield et al. (2015)
    ${ }^{\dagger}$ Ph.D. Candidate, Department of Politics, Princeton University, Princeton NJ 08544. Email: bfifield@princeton.edu, URL: http://www.benfifield.com
    ${ }^{\ddagger}$ Postdoctoral Fellow, Department of Politics, Princeton University, Princeton NJ 08544. Email: mjh5@princeton.edu, URL: http://www.princeton.edu/~mjh5
     6601, Email: kimai@princeton.edu, URL: http://imai.princeton.edu
    ${ }^{4}$ Ph.D. Candidate, Department of Electrical Engineering, Princeton University, Princeton NJ 08544. Email: atarr@princeton.edu

[^2]:    *We are grateful to Alberto Alesina, Roland Benabou, Rosalind Dixon, Edward Glaeser, Emir Kamenica, Lawrence Katz, Gary King, Glenn Loury, Barry Mazur, Franziska Michor, Peter Michor, David Mumford, Barry Nalebuff, Ariel Pakes, Andrei Shleifer, Andrew Strominger, Jeremy Stein, and seminar participants at Brown (Applied Math), Harvard (Labor Economics) the NBER Summer Institute (Law and Economics), and the University of Vienna (Math) for helpful discussions and suggestions. Shiyang Cao, Alexander Dubbs, Laura Kang, Eric Nielsen, and Andrew Thomas provided excellent research assistance. Financial support was provided by the Alphonse Fletcher Sr. Fellowship. Fryer thanks the Erwin Schrödinger International Institute for Mathematical Physics in Vienna, Austria for their hospitality. Correspondence can be addressed to Fryer at Department of Economics, Harvard University, 1875 Cambridge Street, Cambridge, MA, 02138 or Holden at The University of Chicago Booth School of Business, 5807 South Woodlawn Avenue, Chicago, IL, 60637. E-mail: (Fryer) rfryer@fas.harvard.edu or (Holden) Richard.Holden@ChicagoBooth.edu.

[^3]:    ${ }^{1}$ Article I, §4 of the United States Constitution provides that "The Times, Places and Manner of holding Elections for Senators and Representatives shall be prescribed in each State by the Legislature thereof; but the Congress may at any time by Law make or alter such Regulations, except as to the Places of choosing Senators."
    ${ }^{2}$ In the US, political boundaries are typically redrawn every 10 years, after the decennial census. The 2003 "mid-decade" redistricting in Texas is a notable exception. The US Supreme Court recently held that this was not unconstitutional in Jackson, et al. v. Perry, et al. (docket number 05-276).
    ${ }^{3}$ The Apportionment Acts of 1842, 1901 and 1911 contained a compactness requirement. In Davis v. Bandemer, 476 US 173 (1986)) Justices Powell and Stephens pointed to compactness as a major determinant of partisan gerrymandering, and Justices White, Brennan, Blackmun and Marshall cited it as a useful criterion. Nineteen state constitutions still contain a compactness requirement (Barabas and Jerit, 2004).
    ${ }^{4}$ An important argument against the use of compactness as a districting principle is that it may disadvantage certain population subgroups. As Justice Scalia put it in Vieth v. Jubelirer: "Consider, for example, a legislature that draws district lines with no objectives in mind except compactness and respect for the lines of political subdivisions. Under that system, political groups that tend to cluster (as is the case with Democratic voters in cities) would be systematically affected by what might be called a "natural" packing effect. See Bandemer, 478 U. S., at 159 (O'Connor, J., concurring in judgment)." First, the courts use compactness as one of several criterion. Second, it is an open question whether or not more compact districting plans have a positive or negative effect on racial or political representation.
    ${ }^{5}$ For the emprical analysis and characterization of the optimally compact district plan we use Euclidean distance. But since many of our results are proven in an arbitrary metric space, one can extend much of the analysis here by using driving distance or what many legal scholars refer to as "communities of interest."

[^4]:    ${ }^{6}$ See Young (1988), however, and section 2.2 below.
    ${ }^{7}$ A back of the envelope calculation reveals that, for California alone, the cardinality of this set is larger than the number of atoms in the observable universe.

[^5]:    ${ }^{8}$ In Shaw v. Reno 113 S. Ct. 2816. 92-357 (1993), the court upheld a challenge to North Carolina's redistricting plan on the basis that the ill-compactness of the districts was indicative of racial gerrymandering. See also Thornburg v. Gingles 478 U.S. 30 (1986) or Growe v. Emison 278 U.S. 109 (1993).
    ${ }^{9}$ Some of these measures were originally proposed for purposes other than to do with legislative districts - but were later applied by other authors to that issue. We cite the original authors.
    ${ }^{10}$ We draw heavily on their summary and classification.

[^6]:    ${ }^{11}$ Reock (1961) proposes a circle, Geisler (1965) a hexagon, Horton (1932) and Gibbs (1961) a circle with diameter equal to the districts longest axis, still others use the smallest convex figure (see Young (1988)).
    ${ }^{12}$ For variants of Cox (1927) see Attneave and Arnoult (1956), Horton (1932), Schwartzberg (1966), or Pounds (1972).

[^7]:    ${ }^{13}$ This was first held as a requirement by the Court in Baker, and is becoming a very strict constraint. For instance, a 2002 Pennsylvania redistricting plan was struck down because one district had 19 more people (not even voters) than another. The 2004 Texas redistricting had each district with the same number of people up to integer rounding. Yet, the population may grow at drastically different rates across political districts between redistrictings. For instance, in the 2000 census, a typical state had a $23 \%$ difference in the population of its smallest and largest district.
    ${ }^{14}$ In symbols: $\left|v_{i}^{S}\right| \in\left\{\left\lfloor|S| /\left|V_{S}\right|\right\rfloor,\left\lceil|S| /\left|V_{S}\right|\right\rceil\right\}$ for all $v_{i}^{S} \in V_{S}$, where $\lceil x\rceil=\inf \{n \in \mathbb{Z} \mid x \leq n\}$ and $\lfloor x\rfloor=$ $\sup \{n \in \mathbb{Z} \mid n \leq x\}$.

[^8]:    ${ }^{15}$ They are: $\{\{1,2,4\},\{3,5,6\}\},\{\{1,2,5\},\{3,4,6\}\},\{\{1,2,6\},\{3,4,5\}\},\{\{1,3,4\},\{2,5,6\}\}$,
    $\{\{1,3,5\},\{2,4,6\}\},\{\{1,3,6\},\{2,4,5\}\},\{\{1,4,5\},\{2,3,6\}\},\{\{1,4,6\},\{2,3,5\}\},\{\{1,5,6\},\{2,3,4\}\}$.
    ${ }^{16}$ Without the constraint that each district have an equal number of voters the problem is the min-sum $k$-clustering problem which was shown by Sahni and Gonzales (1976) to be NP-complete. An approximation for it in a general metric space which runs in $n^{O(1 / e)}$ time has been found by Bartal, Charikar and Raz (2001). It is also closely related

[^9]:    ${ }^{17}$ Aurenhammer et al. (1998) prove a closely related theorem, taking squared distance from the centroid as the objective function. Their proof proceeds by showing that if an algorithm can be designed to find a power diagram then it is an optimal partition. By contrast, we provide a constructive proof based on the parallel and concurrent line lemmas. We could, of course, state our lemma on the equivalence of the objective functions and then appeal to their result, but our current proof provides more information about optimal districtings.

[^10]:    ${ }^{18}$ For roughly 5,000 census tracts, information on congressional district was not provided. In these cases, we mapped the coordinates of the centroid of the tract and manually keypunched the congressional district to which it belonged.

[^11]:    ${ }^{19}$ A complete set of maps are available at http://www.economics.harvard.edu/faculty/fryer/fryer.html

[^12]:    ${ }^{20}$ For more details, see Gelman and King (1994).

[^13]:    ${ }^{21}$ Ideally, one would have historical votes for many years to tease out the systematic error component. We have only two years of such data.

[^14]:    ${ }^{22}$ We are grateful to Roland Benabou for this illustrative example.

[^15]:    ${ }^{23}$ Other common objectives are distance from the geographic centroid of each partition or distance from a representative (typically the center of a cluster and not necessarily the center of the partition).

