STATE OF NEW MEXICO
COUNTY OF LEA
FIFTH JUDICIAL DISTRICT
REPUBLICAN PARTY OF NEW MEXICO, DAVID GALLEGOS, TIMOTHY JENNINGS, DINAH VARGAS, MANUEL GONZALES, JR.
BOBBY AND DEE ANN KIMBRO, and PEARL GARCIA,

Plaintiffs,
v.

Cause No. D-506-Cv-2022-00041
MAGGIE TOULOUSE OLIVER, in her official capacity as
New Mexico Secretary of State, MICHELLE LUJAN
GRISHAM, in her official capacity as Governor of New
Mexico, HOWIE MORALES, in his official capacity as
New Mexico Lieutenant Governor and President of the New Mexico Senate, MIMI STEWART, in her official capacity as President Pro Tempore of the New Mexico Senate, and JAVIER MARTINEZ, in his official capacity as Speaker of the New Mexico House of Representatives,

Defendants.

Declaration and Expert Report

Of

Kimball W. Brace

President
Election Data Services, Inc.
6171 Emerywood Court
Manassas, VA 20112

August 25, 2023

REPORT AND DECLARATION OF KIMBALL W. BRACE August 25, 2023

I. Introduction

My name is Kimball William Brace. I am the president of Election Data Services, Inc. ("Election Data Services" or "EDS, Inc."), a Manassas, Virginiabased consulting firm whose specialty is reapportionment, redistricting matters, election administration issues, and the census.

I have been retained by the law firm of Peifer, Hanson, Mullins \& Baker, P.A. in the case of Republican Party of New Mexico, et al. v. Oliver, et al., Case No. D-506-CV-2022-00041 to evaluate the redistricting process and plans generated in New Mexico for Congressional Districts. In addition, I have been asked to opine on Supreme Court Justice Kagan's dissenting opinion in Rucho v. Common Cause, 139 S. Ct. 2482 (2019) as it relates to New Mexico’s 2021 redistricting process for Congressional Districts.

All the materials considered in forming the opinions contained herein are identified in this report. I am being compensated at an hourly rate of $\$ 275$ per hour for my work, and at an hourly rate of $\$ 185$ for work performed by other Election Data Services staffers.

II. Background and Qualifications

I attended American University in Washington, D.C., from 1969 through 1974 (having taken a year off for the 1972 campaign), where I earned a B.A. degree in Political Science. I started Election Data Services in 1977 and have been with the company since that time. Prior to 1977, I was a journalist and was employed by such companies as NBC News, Congressional Quarterly, and Plus Publications.

As president of Election Data Services, I supervise and direct all major projects in which the company is involved. Election Data Services has been viewed by clients, the press, academics, and the general public as a research facility and consulting firm dealing with many aspects of the electoral process. State and local governments across the nation have hired Election Data Services and its staff over the past five decades to provide software, database development
services, and consulting services for the creation of districting plans and the analysis of many aspects of the redistricting process.

Since 1979, I, individually and with Election Data Services, have been actively involved in many aspects of the redistricting process, having gone through five full census and redistricting cycles. I have been a consultant to many state and local governmental organizations around the nation, providing strategic advice and consulting on redistricting matters, coordinating the development of extensive databases used in the redistricting process, creating and assisting others with the creation of districting plans, and analyzing many aspects of districts and district configurations, including conducting racial bloc voting and compactness analysis. Over the past 44 years, Election Data Services’ clients for redistricting services have come from more than half the states in the nation.

During the course of our work over the past nearly five decades, we have undertaken and performed many different analyses of redistricting plans from around the nation. Most notable are our efforts to calculate compactness measures for both congressional and state legislative districts in all 50 states. Our company supplied compactness data and the analysis of congressional districts in Texas and throughout the nation that was reported in Dr. Pildes’ and Dr. Niemi's December 1993 Michigan Law Review article (92 Mich. L. Rev., 483), which was cited with approval by Justice O'Conner in Bush v. Vera 64 U.S.L.W. 4452, 4455, 4458 (U.S. June 13 , 1996) (plurality opinion).

For the 2020 cycle, we were hired through a competitive bid process by the Michigan Independent Citizens Redistricting Commission, established by voter initiative to remove politicians from the redistricting process. We were contracted to provide plan drafting services through a bi-partison group of former state redistricting experts we created for the project. We created a massive database of all Census data, plus political data for the decade, all configured down to the Census block level and all higher geographic levels, so that it could be inforcorporated into the AutoBound redistricting mapping system that was used to perform the actual district creation at the direction of Commissioners in open and fully transparent public meetings that were televised. We trained Commission members on all aspects of the data and the software, and were present at each of their meetings to run the software projected onto large TV and projector screens, including YouTube live television coverages.

We had a similar all inclusive arrangement with the Rhode Island Legislature (as we have continuously since 1980). I personally testified at each of
their weekly commission meetings, as well as before the legislature itself when they passed the final plan. We positioned a staffer in the state for the full year, who worked with each legislator on their district plan and then the merger of all ideas into a statewide plan for the commission. We also worked with more than half the state's cities and towns to create their own local redistricting plans, and then worked with their town clerks to adjust their precincts and ultimately their polling sites. We also worked with the local election clerks to adjust their street files that were embedding in the statewide voter registration system so that every voter was properly place in their respective precinct.

For the past three years we also worked in the State of Illinois with their state legislature, Cook County, Chicago, and city of North Chicago, Illinois, Bridgeport, Connecticut, Providence, Warwick and Cranston, RI, State of Virginia and city of Virginia Beach, VA. In some instances we provided complete database development and plan drafting services, while in other cercumstances we create the database and turned over the map drafting tasks to their own staffers. Even in those instances we continued to provide support for their efforts.

In addition, over the past four decades I have been called upon to provide reports, expert witness testimony, and assistance to attorneys in more than 80 different court cases.

I frequently give speeches to groups and organizations and participate in numerous conferences and panels on various aspects of apportionment, redistricting, and the census. Since the early 1980s, I have been a regular participant and speaker at annual and bi-annual meetings of the Task Force on Redistricting of the National Conference of State Legislatures ("NCSL"). I have also been on their faculty, as NCSL has conducted five regional "Get Ready for Redistricting" seminars each decade since 1980. I was also appointed by the U.S. Secretary of Commerce to the 2010 Census Advisory Committee, a 20-person advisory board to the Director of the Census Bureau. Earlier this year I was asked to be NCSL's representative on a series of half-day small-group expert meetings, being arranged by the Committee on National Statistics (CNSTAT), to delve deeply into and provide informal discussion/feedback with Census Bureau staff as they continue to develop the differential privacy-based Disclosure Avoidance System for the 2020 census. I am repeatedly called upon by members of the press with questions on redistricting, reapportionment, the census, election administration issues, and politics in general.

When I first started in redistricting for the 1980 cycle in other parts of the nation, redistricting experts conducted redistricting activities the old fashion way, using paper maps, lots of acetate, and plenty of color pencils. To see where different racial, ethnic origin and political groups were located in a jurisdiction, we colored thematic maps by hand. Unfortunately, that meant careful planning for what colors would show what percentage range. It was too time consuming to try one set of ranges, then change, and make another map. However, with the advent of personal computers (PCs) in the early 1980s, I and my company, Election Data Services, Inc. began using some of the earliest mapping software packages, usually to produce color maps for exhibits in court cases. This ultimately led us to more extensive geographic information system (GIS) software packages and our own development of redistricting software that was used in numerous state and local redistricting projects in the 1990 round.

We continued developing GIS software applications to help state governments compile precinct configurations for submission to the Census Bureau under P.L. 94-171 (whereby census data was compiled by precinct for use in redistricting). We developed analysis software for use during the 2000, 2010 and 2020 redistricting process and have utilized both major redistricting software packages over the past decades.

For the past five decades I and Election Data Services have studied and issued yearly reports on the apportionment process using new population estimates released by the Census Bureau and private demographic firms. All our reports can be found at our website: www.electiondataservices.com, under the "Research" tab. We have become a staple for the press and others to cite when looking at the shift that is occurring in population between different states.

A copy of my curriculum vitae is attached as Exhibit A, which includes a complete list of cases in which, during the previous five decades, I have testified as an expert at trial or by deposition.

III. SUMMARY OF CONCLUSIONS

My analysis of the redistricting plans developed during New Mexico's redistricting process have led me to cite the following important details which are expanded further in this report.
a. SB 1 kept over 70% of the state's population in the same congressional district as they were during the last decade.
b. The state continued the practice of providing opportunities for minority candidates of choice to be elected in all three districts. All three districts have majority minority concentrations in SB 1, just like the plan used last decade. Therefore, there was no retrogression under the Voting Rights Act.
c. Given the population shifts of the last decade that were unveiled with the 2020 Census results, it's understandable for the districts to move south and southeasterly during the redistricting process.
d. District 2 continues to be the most Republican district in the state. The shift in the boundaries created by SB 1, made the district more competitive but not overwhelmingly Democratic, as evident by the 2022 election results. Republicans can still carry this district with the right candidate, as evidenced by past election results reconstituted to the new boundaries.
e. Having drawn district boundaries in a number of states and local jurisdictions, as well as studying redistricting practices and results around the nation, I do not find SB 1 to be an egregious gerrymander as defined by Justice Kagan in Rucho vs Common Cause.

IV. REDISTRICTING PLANS ANALYZED

Any analysis of redistricting plans begins with understanding the parameters of Census data in the state. The 2020 Census data provided a wealth of information on the racial and ethnic origin of the population of New Mexico and where they are concentrated. We normally produce a map of the area in question based upon whether the racial groups are a majority or a plurality of the people in the appropriate geography. Exhibit B is a map of the Census data at the precinct level and where the racial groups are a majority or a plurality in the respective precinct. County boundaries are also shown for orientation. Only the nonHispanic White, Hispanic, and non-Hispanic Native American populations are concentrated enough to be a majority or plurality of a precinct. There are no African American concentrations where they are more than 14% of a precinct.

For the purposes of this report, I have analyzed five different congressional plans that played a part in the New Mexico's redistricting process.

1) "Previous2011" Plan - The plan utilized by the State during the 2010s decade, adopted by the Courts in 2011. Typically, redistrictors use this
plan as the benchmark, upon which all future plans are compared. As soon as the Census data is released, this is the first report most states produce to see "how far off" their existing districts might be in terms of "one person, one vote" calculations.
2) "PassedSB1" Plan - The plan adopted in 2021 by the state legislature as SB1
3) "Plan A" Concept Plan - The initial concept plan adopted by the Citizen Redistricting Committee, a Committee created by the State Legislature in "The Redistricting Act" NMSA 1978, § 1-3A-3 (2021). The Plaintiffs in this suit said in their complaint that Concept A was expressly adopted to "maintain status quo." It largely maintained the existing congressional districts as drawn by the state courts in 2012 and only divided four cities and four counties, while at the same time eliminating the division of McKinley County from the 2012 map. See Verified Complaint at $\mathbb{9} 60$, citing New Mexico Citizen Redistricting Committee Report on District Plans \& Evaluations to the New Mexico Legislature at 30-32, dated Nov. 2, 2021.
4) "Plan E" Concept Plan - Plaintiffs in this case said in their complaint that Concept E, known as the "Justice Chávez Map" was drawn by Justice Chávez in response to public comment on an earlier version published by the Citizen Redistricting Committee for public consideration. Citizen Redistricting Committee Report at 38-40. Concept E emphasized compactness in creating a single urban district (CD 1) centered on the city of Albuquerque and other incorporated urban and suburban communities immediately adjacent to Albuquerque, including Rio Rancho. Concept E expressly retained the core of CD 3 in northern New Mexico and CD 2 in southern New Mexico and only divided five cities and six counties. Verified Complaint at $9 \mathbb{T}$ 61-63
5) "Plan H" Concept Plan - Plaintiffs in this case said in their complaint that Concept H was not initially developed by the Citizen Redistricting Committee-it was based on a map submitted by a coalition of politically liberal community organizations on October 1, 2021. A core argument by the proponents of what would become Concept H was to "create a solid Hispanic voting age majority district" in CD 2. Verified Complaint at $9 \uparrow$ 66-67.

We have created a set of consistently formatted statewide maps, with an Albuquerque insert, of each of the plans that were analyzed. They are situated at the beginning of each of the analysis packages (as x.1) in Exhibits D through H noted below.

For each of the five plans analyzed, we have created a 20-page report (shown as x.2) in Exhibits D through \mathbf{H} noted below) that shows population and political data for each of the districts in each plan. These reports follow a consistent format between the plans, including the fact that the plan's name is in the title for each page, and the second line of the title shows the methods used to calculate the racial and ethnic original information from the Census. This second line matches up with the more detailed description of race and ethnicity shown in Exhibit C of this report, with the straight number in the title indicating just the race calculations and the number followed by an "A" is the "non-Hispanic" racial data being shown.

The first page is always a report on what is the ideal district size for the populations for each decade. While we are showing a $.002 \%$ acceptable population range, most state's congressional districts are drawn with no, or very little, population deviation. We use this kind of report for state legislative and local redistrictings were wider ranges have passed court review.

The second page of each report is reporting more detailed information on the plans' population deviation, for each of the districts and the overall plans' deviation by noting the largest and smallest district in the plan (the absolute numbers are then summed to get the plans' total deviation, expressed in both raw and percentage terms) The third page is an overview of the plan, with both the population deviation being shown and racial data for both total population and voting age population.

Pages 4 through 9 in each report presents the total populations, by different racial and ethnic origin calculations for the individual districts and overall state. Pages 10 through 15 in each report show the voting age populations for each of the racial and ethnic origin groups for each of the individual districts and overall state. Guides to the descriptions of the data in each column of the reports are shown on page 1 of the reports.

The political data for the districts in the plan begin on page 16 of the report and continue to the last page (page 20). The offices of President, Governor, Secretary of State and Treasurer are on page 16, while the offices of US Senator, Attorney General, Auditor and Land Commissioner are on page 17. Any third party candidates and votes are not show in the report, so that any calculations (including percentages) are only based on Republican and Democratic votes. Page 16 also contains the results of the "State Composite Score", which was used by the

Legislature in their redistricting work and includes all the contests in our political report except for the contests marked as "(not in index)". We have also computed a "Judicial Composite Score" which only contains the judicial results for Supreme Court and the Court of Appeals contests this past decade. Each of the two composite judicial contests are shown separately at the bottom of the table on Page 16. The individual judicial contests, with candidate names, for both Supreme Court and the Court of Appeals contest are shown on page 18 and 19 of the reports.

Finally, page 20 of each report contains voter registration data by party (with percentages) as well as turnout numbers and percentages for the individual election years starting in 2012 and continuing through the 2022 elections.

Previous Decade Plan (adopted in 2011) (Exhibit D)

Upon receipt of the 2020 Census results, the data showed the State of New Mexico would indeed need to conduct redistricting on their congressional district plan. Exhibit D shows that the districts used last decade were not in compliance with the one-person, one-vote criteria with the newer 2020 census results. Page 3 of Exhibit D. 2 showed the old plan had a 2.7% total deviation with the 2020 results, with District 1 (Albuquerque area) underpopulated by over 11,000 people (-1.6%) and in need of expansion. The extra population was mainly in District 2 (by over 8,000 people), which would need to shed some territory and people. District 3 was overpopulated by approximately 3,000 people. Given these parameters, it's understandable that the final legislative plan would reflect districts needing to move to the south and south-east.

Exhibit D. 2 also shows that all three congressional districts were over 60\% non-white (column labeled "Minority" on page 2), with district 2 being a majority Hispanic seat (nearly 55\%) and the other two districts being plurality Hispanic. This is also an important benchmark of note so that the state not get caught in a retrogressive circumstance after redistricting.

The political data for the 2011 congressional plan used last decade (pages 16 through 20 in Exhibit D.2) shows Districts 1 and 3 as fairly consistently supporting Democratic candidates last decade. District 2 tends to support Republican candidates last decade, although a Democratic candidate did carry the district in several instances.

New Mexico is one state (like half the country) that registers voters by party (registration data is on page 20 of the $\mathbf{x} .2$ exhibits), including allowing "other" as a
party designation. Over the past decade, the "other" category has grown from approximately one-fifth of the total registrations to one-fourth by the end of the decade. Republicans have been fairly consistently $30-31 \%$ of the state's registrants for last decade. Therefore, the trend for the decade in party registration has been downward for Democrats, going from 47\% to 44\% in 2022.

While some people may point towards party registration numbers to indicate party strength in a state, more knowledgeable practitioners in the process look towards actual election results as a better indicator of the political leanings of an area. This is why we mainly create our redistricting databases to include actual election returns.

Passed Plan (SB1) (Exhibit E)

At the end of the redistricting process in 2021, the State Legislature adopted SB 1, their plan for the state's three congressional districts, and the subject of this court case. Exhibit E. 1 is a map of the plan, which shows how Districts 1 and 3 were shifted southward and south-easterly to pick up the excess population in District 2.

Exhibit E.2, page 2 shows the plan has a total deviation of only 14 people (or 0.0020%). District 1 is slightly under populated (by 9 people under the ideal size district), while District 2 is 5 persons over the ideal and District 3 is 3 people overpopulated.

SB 1 shifted population in Bernalillo (Albuquerque) County, particularly the western half by putting that heavily Hispanic portion of the County into District 2. As a result, District 2 went to 70.57% total population minority (from 64.92% in the 2011 former plan) (see page 3 of Exhibit E.2). As a result, District 1's concentration of minority population went down (from 61.83% in the 2011 plan to 54.47% in total population for SB 1). Importantly the voting age population concentration of total minority stayed above 50% at 50.61%.

Politically, SB 1 made District 2 more competitive, although most of the election returns continues to show the district remaining as the most Republican in the state. There are even several instances where Republican candidates carried District 2 (see the 2022 Governor's contest where Republican candidate Ronchetti received 50.16% of the vote and the 2022 Treasurers race where Republican candidate H. Montoya received 50.12% of the vote in the district). This was also
true in several of the Supreme Court and Court of Appeals contests in the past decade that were re-constituted according to the new boundaries in SB 1.

The political competitiveness of District 2 is also highlighted by the outcome of the 2022 congressional race, where the Democratic candidate won by only 1,350 votes, or a margin of 0.7%. In fact, the returns for this contest on the Secretary of State's website show the Democratic candidate winning because of a three times margin in the absentee votes after loosing the election day balloting. ${ }^{1}$

Commission Concept Plans (A, E \& H)

In the same manner as we did for the 2011 and SB 1 plans above, we have created maps and the 20-page set of tables for the three concept plans created by the Redistricting Commission that were mentioned in the Plaintiff's original complaint. The Commission Concept A plan is shown as Exhibit \mathbf{F} series of documents, while the Commission Concept E plan is shown as Exhibit G series of documents. Finally, the Commission Concept H plan is shown as Exhibit H series of documents.

V. COMPARISON REPORTS

One of our longstanding programs we use in redistricting is what we call "AvsB" which allows us to compare, for example, two different plans to see how much is assigned to identical districts, or the amount of population and geography that is configured differently. The AvsB reports are utilized in this declaration. We have also created an extract of our normal AvsB report, in this instance comparing each plan against counties and census cities in the state. This exhibit shows all the counties that are split in the five plans we analyzed for Congress and the amount of population in each piece of a split county.

The County component AvsB report is the easiest one to explore and discuss first. Exhibit I is the Previous 2011 Plan compared to Counties report. Page 2 of the report focuses on Congressional District 1, which is composed of 641.488 people of Bernalillo County making up 92.4% of the district. This piece is 94.8% of the Bernalillo Counties' population (calculation on right set of columns). While District 1 covers all (100%) of Torrance County, the county is only 2.2% of

[^0]district.1. Smaller pieces of three other counties (Sandoval, Valencia and Santa Fe) complete the composition of District 1.

District 2 was composed of 15 whole counties (Dona Ana, Lea, Otero. Chaves, Eddy, Grant, Cibola, Luna, Lincoln, Socorro, Sierra, Guadalupe, Hidalgo, Catron and De Baca) and parts of four other counties (Valencia, Roosevelt, McKinley, and a very small piece of Bernalillo). Dona Ana county (Las Cruces) formed the largest piece of the district, but it contained only 30.7% of the district's population.

Finally, District 3 was composed of 11 whole counties (San Juan, Curry, Rio Arriba, Taos, San Miguel, Los Alamos, Colfax, Quay, Mora, Union, and Harding) along with parts of five other counties (Santa Fe (comprising 96.5\% of the county's population, Sandoval (85.6\%), McKinley (90.8\%), Bernalillo (only 4.7\% of the county) and Roosevelt (63.4% of the county's population)). Of the 16 counties (in whole or in part) the three largest each amount to only approximately one-fifth of the district.

Exhibit J presents the AvsB report for the plan passed by the Legislature (SB 1) compared to Counties. The Legislative-passed plan shifted the focus of each of the three districts to some extent. District 1 went from five counties dominated by Bernalillo last decade to now 10 counties of which four smaller counties are totally within the district (Lincoln, Torrance, Guadalupe, and De Baca). Bernalillo still comprises 68.9% of the district's population. Sandoval County went from just over 21,000 people in the old district 1 to now over 128,000 of the new district.

Dona Ana (Las Cruces) is still the largest portion of District 2, comprising 31.1% of the district's population, but Bernalillo County now accounts for 26.9\% of the district's population. Eight counties (including Dona Ana) are whole within the district, while parts of seven other counties comprise the district.

District 3 shifts southeasterly along the New Mexico/Texas border to the town of Hobbs. But the population base is still up in Santa Fe and San Juan Counties (comprising 20.6% and 17.2%, respectively of the district). Despite that northern set of counties, one significant shift has occurred in Sandoval County. Previously in the 2011 plan Sandoval contributed over 127,000 people to the district, but in the 2021 Passed plan that dropped to just 20,000 people in district 3. That shift was mainly due to the shift of the city of Rio Rancho into district 1.

In a similar vein, we were also able to run an AvsB report looking at cities in the state for the new 2021 Passed Plan. To save the report size, we limited the cities evaluated to those with more than 2,500 people in the respective cities. This report is identified as Exhibit \mathbf{K}.

Just as the AvsB reports can show parts of Counties or Cities, we also utilize it to compare two different plans against each other. Exhibit L compares the Previous 2011 plan to the new Passed SB 1 plan. The highlight of the report shows that each of the three districts retained at least 70% of their old district's population. For District 1, 528,092 people (or 74.8\%) remained in District 1 in the new legislative-passed plan. For District 2, 518,069 people (or 73.4\%) stayed in District 2. Finally, for District 3, the retention amounted to 80.1\% of the people.

VI. COMPACTNESS STUDIES

Since this nation's founding, the word "gerrymandering" has been a term of art widely used to describe the redistricting process and district boundaries that one does not like. Academics in the 1960s began developing measurements to calculate different geometric aspects of district boundaries under the common term of "compactness". One of the earlier "bibles" of compactness measurements explaining some of the issues with the calculations is in the Neimi, Grofman, Hofeller \& Carlucci publication from 1990. ${ }^{2}$ Many of the redistricting software packages used for the past several decades have a standard report on compactness that can be run at any time during the planning drafting and evaluation process. I have reproduced the text of compactness explanations from the AutoBound EDGE redistricting software package, which we utilize in our work, as Exhibit M to this report.

We have utilized the software to calculate compactness scores for the New Mexico Congressional Boundaries for each of the five plans we have evaluated for this expert report. These reports are exhibit documents attached to this report as Exhibit D3 (2011 Congressional Plan), E3 (Passed plan in SB 1), F3 (Commission Concept A), G3 (Commission Concept E), and H3 (Commission Concept H Plan).

[^1]Academics calculate compactness and express the results on a scale of 0 to 1 , with " 1 " being the most compact and scores closer to zero being the least compact. I tend to think of these scores in percentage terms because they are generally showing things like an area as a percentage of the district perimeter or the area within a circumscribing circle, dependent upon the measurement used. In setting up our own calculations to congressional districts for the entire nation, we believe we have found an error in the AutoBound compactness report created by CityGate (the developers of AutoBound) in their "Length-Width" compactness value (since it's shown going above 1 generally in their reports). We have alerted the developers.

Each of the measurements shows different tests and should not be compared between the measurements, but instead should be used to evaluate different districts within each measurement. It's very seldom to have a perfect score of " 1 " for any of the tests, so instead discussion should focus on a district being "more compact" or "less compact" than some other district or the state's average. The AutoBound reports show which district is the "most compact" and which is the "least compact" within that measurement.

Given the manner in which the Legislature drew the boundaries for the SB 1 plan, particularly how district 3 moves down the New Mexico/Texas border, the AutoBound reports consistently labels district 3 as being the "least" compact district in the plan. Conversely, district 2 (the subject of this case) has been shown to be the "most" compact district in the plan. This was also the case in the 2011 plan used last decade.

Given Election Data Services’ nationwide scope, I was also interested to investigate how New Mexico's districts compared to all 435 districts in the nation. We produce our election results poster after every general election and for 2022 we created a new nationwide file of congressional districts boundaries given the redistricting since the turn of the decade. We initially used this file to generate the five compactness scores similar to those reported above from AutoBound. In reviewing these data calculations, we noticed that the use of shorelines in the poster map caused lower compactness scores for districts on the ocean on both coasts. The best example of this problem is in Rhode Island, where Narragansett Bay bisects the First CD and leads to an enormous boundary length for such a small state. Maryland's CDs also have this problem with Chesapeake Bay. See Exhibit N Nationwide Congressional Boundaries Compactness results using boundaries with coast lines and merged state/nationwide average scores, sorted by Polsby-Popper and Schwartzberg scores. New Mexico's three districts and the
statewide averages for the various compactness scores have been highlighted in yellow, with the nationwide averages line highlighted in orange.

While this coastal problem does not affect the compactness scores for New Mexico, given the state's interior nature in the nation, I was concerned those boundaries might make other state's scores artificially lower compared to New Mexico. As a result, we also retrieved the nationwide congressional boundaries generated in TIGER by the US Census Bureau (these have also been updated with the new 2021 district configurations). The Bureau shows boundaries going out to the 3-mile limits of the nationwide borders, which then generates smoother boundaries that bring up the compactness calculations. Exhibit O shows the compactness scores for every congressional district in the nation, with the last page being the statewide averages of the district scores for all 50 states and the nation. Exhibit O is sorted in state and district order.

The nationwide dataset shows that New Mexico’s 2021 plan, SB 1, does better than the nationwide averages on all compactness scores, except for the Reock test (New Mexico's average for Reock is .37 , while the nationwide average is .38 , so it is about the same). This includes all three congressional districts’ individual compactness scores. (see Exhibit O, page 12 for the statewide averages comparison, and page 7 for New Mexico's three individual district's compactness scores.)

Executed this 25th day of August, 2023, at Manassas, VA

Kimball Brace

List of Exhibits Attached to Declaration of Kimball Brace

A. Kimball Brace Vita
B. Majority-minority racial/ethnic origin map of the state at the precinct level
C. Explanation of Redistricting Databases and Census Data Analysis and Compilation
D. Analysis of 2011 Congressional Plan

1. Map of 2011 Congressional Plan
2. 20-page population and political data report
3. Compactness report on plan
E. Analysis of Legislative-passed Congressional Plan (SB1)
4. Map of Legislative Passed Plan
5. 20-page population and political data report
6. Compactness report on plan
F. Analysis of Redistricting Commission's Concept A Plan
7. Map of Commission's Concept A Plan
8. 20-page population and political data report
9. Compactness report on plan
G. Analysis of Redistricting Commission's Concept E Plan
10. Map of Commission's Concept E Plan
11. 20-page population and political data report
12. Compactness report on plan
H. Analysis of Redistricting Commission's Concept H Plan
13. Map of Commission's Concept H Plan
14. 20-page population and political data report
15. Compactness report on plan
I. AvsB Report for 2011 Plan compared to Counties.
J. AvsB Report for SB 1 Plan compared to Counties.
K. AvsB Report for the 2021 Passed SB 1 Plan compared to Cities.
L. AvsB Report for comparison of the 2011 Previous plan to the 2021 Passed SB 1 Plan passed by the Legislature.
M. Measuring Compactness explanation from AutoBound EDGE
N. Nationwide Congressional Boundaries Compactness results using boundaries with coast lines and merged state/nationwide average scores, sorted by Polsby-Popper and Schwartzberg scores.
O. Nationwide Congressional Boundary Compactness results using boundaries from Census Bureau TIGER files and reflecting smoother 3-mile boundaries along the two coasts. Individual district and state pages are sorted in state/district order.

EXHIBIT A

VITA

KIMBALL WILLIAM BRACE

Election Data Services, Inc. 6171 Emerywood Court
Manassas, VA 20112-3078
703 580-7267 or $202789-2004$ phone
703 580-6258 fax
kbrace@electiondataservices.com or kbrace@aol.com

Kimball Brace is the president of Election Data Services Inc., a consulting firm that specializes in redistricting, election administration, and the analysis and presentation of census and political data. Mr. Brace graduated from the American University in Washington, D.C., (B.A., Political Science) in 1974 and founded Election Data Services in 1977.

Redistricting Consulting

Activities include software development; construction of geographic, demographic, or election databases; development and analysis of alternative redistricting plans; general consulting, and onsite technical assistance with redistricting operations.

Congressional and Legislative Redistricting

Arizona Independent Redistricting Commission: Election database, 2001
Arizona Legislature, Legislative Council: Election database, 2001
Colorado General Assembly, Legislative Council: Geographic, demographic, and election databases, 1990-91

Connecticut General Assembly

- Joint Committee on Legislative Management: Election database, 2001; and software, databases, general consulting, and onsite technical assistance, 1990-91
- Senate and House Democratic Caucuses: Demographic database and consulting, 2001

Florida Legislature, House of Rep.: Geographic, demographic, and election databases, 1989-92
Illinois General Assembly

- Speaker of House and Senate Minority Leader: Software, databases, general consulting, and onsite technical assistance, 2000-02,
- Speaker of House and President of Senate: Software, databases, general consulting, and onsite technical assistance, 2018-current, 2009-2012, 1990-92, and 1981-82

Iowa General Assembly, Legislative Service Bureau and Legislative Council: Software, databases, general consulting, and onsite technical assistance, 2000-01 and 1990-91

Kansas Legislature: Databases and plan development (state senate and house districts), 1989

Kimball W. Brace, Vita, Page 2 of 9

(Redistricting Consulting, cont.)

Massachusetts General Court

- Senate Democratic caucus: Election database and general consulting, 2001-02
- Joint Reapportionment Committees: Databases and plan development (cong,, state senate, and state house districts), 1991-93, 2010-2012
Michigan Legislature: Geographic, demographic, and election databases, 1990-92; databases and plan development (cong., state senate, and state house districts), 1981-82

Missouri Redistricting Commission: General consulting, 1991-92
Commonwealth of Pennsylvania: General consulting, 1992
Rhode Island General Assembly and Reapportionment Commissions

- Software, databases, plan development, and onsite assistance (cong., state senate, and state house districts), 2016- current, 2010-2012, 2001-02 and 1991-92
- Databases and plan development (state senate districts), 1982-83

State of South Carolina: Plan development and analysis (senate), U.S. Dept. of Justice, 1983-84

Local Government Redistricting

Orange County, Calif.: Plan development (county board), 1991-92
City of Bridgeport, Conn.: Databases and plan development (city council), 2011-2012 and 200203

Cook County, Ill.: Software, databases, and general consulting (county board), 2010-2012, 2001-02, 1992-1993, and 1989

Lake County, Ill.: Databases and plan development (county board), 2011 and 1981
City of Chicago, Ill.: Software, databases, general consulting, and onsite technical assistance (city wards), 2010-2012, 2001-02 and 1991-92

City of North Chicago, Ill.: Databases and plan development (city council), 1991 and 1983
City of Annapolis, Md.: Databases and plan development (city council), 1984
City of Boston, Mass.: Databases and plan development (city council), 2011-2012, 2001-2002, and 1993

City of New Rochelle, N.Y.: Databases and plan development (city council), 1991-92
City of New York, N.Y.: Databases and plan development (city council), 1990-91
Cities of Pawtucket, Providence, East Providence, and Warwick, and town of North Providence, R.I.: Databases and plan development (city wards and voting districts), 2011-2012, 2002

City of Woonsocket and towns of Charlestown, Johnston, Lincoln, Scituate and Westerly, R.I.: Databases and plan development (voting districts), 2011-2012, 2002; also Westerly 1993
City of Houston, Tex.: Databases and plan development (city council), 1979 — recommended by U.S. Department of Justice

City of Norfolk, Va.: Databases and plan development (city council), 1983-84 - for Lawyers' Committee for Civil Rights

Kimball W. Brace, Vita, Page 3 of 9
(Redistricting Consulting, cont.)
Virginia Beach, Va.: Databases and plan development (city council), 2011-2012, 2001-02, 1995, and 1993

Other Activities

International Foundation for Electoral Systems (IFES) and U.S. Department of State: redistricting seminar, Almaty, Kazakhstan, 1995

Library of Congress, Congressional Research Service: Consulting on reapportionment, redistricting, voting behavior and election administration

National Conference of State Legislatures (NCSL): Numerous presentations on variety of redistricting and election administration topics, 1980 - current

Election Administration Consulting

Activities include seminars on election administration topics and studies on voting behavior, voting equipment, and voter registration systems.

Prince William County, VA:
2013 - Appointed by Board of County Supervisors to 15 member Task Force on Long Lines following 2012 election. Asked and appointed by County's Electoral Board to be Acting General Registrar for 5-month period between full-time Registrars. 2008 - current - poll worker and now chief judge for various precincts in county
U.S. Election Assistance Commission (EAC): Served as subcontractor to prime contractors who compiled survey results from 2008 and 2010 Election Administration and Voting Survey.
U.S. Election Assistance Commission (EAC): Compile, analyze, and report the results of a survey distributed to state election directors during FY-2007. Survey results were presented in the following reports of the EAC: The Impact of the National Voter Registration Act of 1993 on the Administration of Elections for Federal Office, 2005-2006, A Report to the 110th Congress, June 30, 2007; Uniformed and Overseas Citizens Absentee Voting Act (UOCAVA), Survey Report Findings, September, 2007; and The 2006 Election Administration and Voting Survey, A Summary of Key Findings, December, 2007.
U.S. Election Assistance Commission (EAC): Compile, analyze, and report the results of three surveys distributed to state election directors during FY-2005: Election Day, Military and Overseas Absentee Ballot (UOCAVA), and Voter Registration (NVRA) Surveys. Survey results were presented in the following reports: Final Report of the 2004 Election Day Survey, by Kimball W. Brace and Dr. Michael P. McDonald, September 27, 2005; and Impact of the National Voter Registration Act of 1993 on the Administration of Elections for Federal Office, 2003-2004, A Report to the 109th Congress, June 30, 2005.

Rhode Island Secretary of State: Verification of precinct and district assignment codes in municipal registered voter files and production of street files for a statewide voter registration database, on-going maintenance of street file, 2004-2006, 2008-2014, 2016-2017.

Rhode Island Secretary of State, State Board of Elections \& all cities \& towns: production of precinct maps statewide, 2012, 2002, 1992

(Election Administration Consulting, cont.)

District of Columbia, Board of Elections and Ethics (DCBOEE): Verification of election ward, Advisory Neighborhood Commission (ANC), and Single-Member District (SMD) boundaries and production of a new street locator, 2003. Similar project, 1993.

Harris County, Tex.: Analysis of census demographics to identify precincts with language minority populations requiring bilingual assistance, 2002-03

Cook County, Ill., Election Department and Chicago Board of Election Commissioners:

- Analysis of census demographics to identify precincts with language minority populations requiring bilingual assistance, 2019, 2010-2013, 2002-03
- Study on voting equipment usage and evaluation of punch card voting system, 1997

Chicago Board of Election Commissioners: Worked with Executive Director \& staff in
Mapping Dept. to redraw citywide precincts, eliminate over 600 to save costs, 2011-12
Library of Congress, Congressional Research Service: Nationwide, biannual studies on voter registration and turnout rates, 1978-2002
U.S. General Accounting Office (GAO), U.S. Dept. of Justice, and numerous voting equipment vendors and media: Data on voting equipment usage throughout the United States, 1980present

Needs assessments and systems requirement analyses for the development of statewide voter registration systems:

- Illinois State Board of Elections: 1997
- North Carolina State Board of Elections, 1995
- Secretary of Commonwealth of Pennsylvania, 1996

Federal Election Commission, Office of Election Administration:

- Study on integrating local voter registration databases into statewide systems, 1995
- Nationwide workshops on election administration topics, 1979-80
- Study on use of statistics by local election offices, 1978-79

Cuyahoga County, Ohio, Board of Elections: Feasibility study on voting equipment, 1979
Winograd Commission, Democratic National Committee: Analysis of voting patterns, voter registration and turnout rates, and campaign expenditures from 1976 primary elections

Mapping and GIS

Activities include mapping and GIS software development (geographic information systems) for election administration and updating TIGER/Line files for the decennial census.

2000 Census Transportation Planning Package (CTPP), 1998-99: GIS software for the U.S. Department of Transportation to distribute to 400 metropolitan planning organizations (MPOs) and state transportation departments for mapping traffic analysis zones (TAZs) for the 2000 census; provided technical software support to MPOs

Census 2000, 2010 and 2020 Redistricting Data Program, Block Boundary Suggestion Project (Phase 1) and Voting District Project (Phase 2), 1995-99: GIS software and provided software, databases, and technical software support to the following program participants:

- Alaska Department of Labor
- Connecticut Joint Committee on Legislative Management

Kimball W. Brace, Vita, Page 5 of 9
(Mapping \& GIS Support, cont.)

- Illinois State Board of Elections
- Indiana Legislative Services Agency
- Iowa Legislative Service Bureau
- New Mexico Legislative Council Service
- Rhode Island General Assembly
- Virginia Division of Legislative Services

Developed PRECIS ${ }^{\circledR}$ Precinct Information System—GIS software to delineate voting precinct boundaries-and delivered software, databases, and technical software support to the following state and local election organizations (with date of installation):

- Cook County, Ill., Department of Elections (1993)
- Marion County, Fla., Supervisor of Elections (1995)
- Berks County Clerk, Penn. (1995)
- Hamilton County, Ohio, Board of Elections (1997)
- Brevard County, Fla., Supervisor of Elections (1999)
- Osceola County, Fla., Supervisor of Elections (1999)
- Multnomah County, Ore, Elections Division (1999)
- Chatham County, Ga., Board of Elections (2000)
- City of Chicago, Ill., Board of Election Commissioners (2000)
- Mahoning County, Ohio, Board of Elections (2000)
- Iowa Secretary of State, Election and Voter Registrations Divisions (2001)
- Woodbury County, Iowa, Elections Department (2001)
- Franklin County, Ohio, Board of Elections (2001)
- Cobb County, Ga., Board of Elections and Voter Registration (2002)

Illinois State Board of Elections, Chicago Board of Election Commissioners, and Cook County Election Department: Detailed maps of congressional, legislative, judicial districts, 1992
Associated Press: Development of election night mapping system, 1994

Litigation Support

Activities include data analysis, preparation of court documents and expert witness testimony. Areas of expertise include the census, demographic databases, district compactness and contiguity, racial bloc voting, communities of interest, and voting systems. Redistricting litigation activities also include database construction and the preparation of substitute plans.

State of Alabama vs. US Department of Commerce, et al (2019-2020) apportionment \& citizenship data

NAACP vs. Denise Merrill, CT Secretary of State, et al (2019-2020) state legislative redistricting and prisoner populations

Latasha Holloway, et al. v. City of Virginia Beach, VA (2019) city council redistricting
Joseph V. Aguirre vs. City of Placentia, CA (2018-2019), city council redistricting
Davidson, et al \& ACLU of Rhode Island vs. City of Cranston, RI (2014-16), city council \& school committee redistricting with prisoner populations.

Kimball W. Brace, Vita, Page 6 of 9

(Litigation Support, cont.)

Navaho Nation v. San Juan County, UT (2014-17) county commissioner \& school board districts.

Michael Puyana vs. State of Rhode Island (2012) state legislature redistricting
United States of America v. Osceola County, Florida, (2006), county commissioner districts.
Deeds vs McDonnell (2005), Va. Attorney General Recount
Indiana Democratic Party, et al., v. Todd Rokita, et al. (2005), voter identification.
Linda Shade v. Maryland State Board of Elections (2004), electronic voting systems
Gongaley v. City of Aurora, Ill. (2003), city council districts
State of Indiana v. Sadler (2003), ballot design (city of Indianapolis-Marion County, Ind.)
Peterson v. Borst (2002-03), city-council districts (city of Indianapolis-Marion County, Ind.)
New Rochelle Voter Defense Fund v. City of New Rochelle, City Council of New Rochelle, and Westchester County Board Of Elections (2003), city council districts (New York)
Charles Daniels and Eric Torres v. City of Milwaukee Common Council (2003), council districts (Wisconsin)
The Louisiana House of Representatives v. Ashcroft (2002-03), state house districts
Camacho v. Galvin and Black Political Caucus v. Galvin (2002-03), state house districts (Massachusetts)

Latino Voting Rights Committee of Rhode Island, et al., v. Edward S. Inman, III, et al. (2002-03), state senate districts
Metts, v. Harmon, Almond, and Harwood, et al. (2002-03), state senate districts (Rhode Island)
Joseph F. Parella, et al. v. William Irons, et al. (2002-03), state senate districts (Rhode Island)
Jackson v. County of Kankakee (2001-02), county commissioner districts (Illinois)
Corbett, et al., v. Sullivan, et al. (2002), commissioner districts (St Louis County, Missouri)
Harold Frank, et al., v. Forest County, et al. (2001-02), county commissioner districts (Wisc.)
Albert Gore, Jr., et al., v. Katherine Harris as Secretary of State, State of Florida, et al., and The Miami Dade County Canvassing Board, et al., and The Nassau County Canvassing Board, et al., and The Palm Beach County Canvassing Board, et al., and George W. Bush, et al (2000), voting equipment design - Leon County, Fla., Circuit Court hearing, December 2, 2000, on disputed ballots in Broward, Volusia, Miami-Dade, and Palm Beach counties from the November 7, 2000, presidential election.
Barnett v. Daley/PACI v. Daley/Bonilla v. Chicago City Council (1992-98), city wards
Donald Moon, et al. v. M. Bruce Meadows, etc and Curtis W. Harris, et al. (1996-98), congressional districts (Virginia)

Melvin R. Simpson, et al. v. City of Hampton, et al. (1996-97), city council districts (Va.)
Vera vs. Bush (1996), Texas redistricting

Kimball W. Brace, Vita, Page $\mathbf{7}$ of $\mathbf{9}$

Litigation Support, cont.)

In the Matter of the Redistricting of Shawnee County Kansas and Kingman, et al. v. Board of County Commissioners of Shawnee County, Kansas (1996), commissioner districts
Vecinos de Barrio Uno v. City of Holyoke (1992-96), city council districts (Massachusetts)
Torres v. Cuomo (1992-95), congressional districts (New York)
DeGrandy v. Wetherell (1992-94), congressional, senate, and house districts (Florida)
Johnson v. Miller (1994), congressional districts (Georgia)
Jackson, et al v Nassau County Board of Supervisors (1993), form of government (N.Y.)
Gonzalez v. Monterey County, California (1992), county board districts
LaPaille v. Illinois Legislative Redistricting Commission (1992), senate and house districts
Black Political Task Force v. Connolly (1992), senate and house districts (Massachusetts)
Nash v. Blunt (1992), house districts (Missouri)
Fund for Accurate and Informed Representation v. Weprin (1992), assembly districts (N.Y.)
Mellow v. Mitchell (1992), congressional districts (Pennsylvania)
Phillip Langsdon v. Milsaps (1992), house districts (Tennessee)
Smith v. Board of Supervisors of Brunswick County (1992), supervisor districts (Virginia)
People of the State of Illinois ex. rel. Burris v. Ryan (1991-92), senate and house districts
Good v. Austin (1991-92), congressional districts (Michigan)
Neff v. Austin (1991-92), senate and house districts (Michigan)
Hastert v. Illinois State Board of Elections (1991), congressional districts
Republican Party of Virginia et al. v. Wilder (1991), senate and house districts
Jamerson et al. v. Anderson (1991), senate districts (Virginia)
Ralph Brown v. Iowa Legislative Services Bureau (1991), redistricting database access
Williams, et al. v. State Board of Election (1989), judicial districts (Cook County, Ill.)
Fifth Ward Precinct 1A Coalition and Progressive Association v. Jefferson Parish School Board (1988-89), school board districts (Louisiana)
Michael V. Roberts v. Jerry Wamser (1987-89), St. Louis, Mo., voting equipment
Brown v. Board of Commissioners of the City of Chattanooga, Tenn. (1988), county commissioner districts

Business Records Corporation v. Ransom F. Shoup \& Co., Inc. (1988), voting equip. patent
East Jefferson Coalition for Leadership v. The Parish of Jefferson (1987-88), parish council districts (Louisiana)
Buckanaga v. Sisseton School District (1987-88), school board districts (South Dakota)
Griffin v. City of Providence (1986-87), city council districts (Rhode Island)

Kimball W. Brace, Vita, Page $\mathbf{8}$ of $\mathbf{9}$

(Litigation Support, cont.)

United States of America v. City of Los Angeles (1986), city council districts
Latino Political Action Committee v. City of Boston (1984-85), city council districts
Ketchum v. Byrne (1982-85), city council districts (Chicago, Ill.)
State of South Carolina v. United States (1983-84), senate districts - U.S. Dept. of Justice
Collins v. City of Norfolk (1983-84), city council districts (Virginia) — for Lawyers'
Committee for Civil Rights
Rybicki v. State Board of Elections (1981-83), senate and house districts (Illinois)
Licht v. State of Rhode Island (1982-83), senate districts (Rhode Island)
Agerstrand v. Austin (1982), congressional districts (Michigan)
Farnum v. State of Rhode Island (1982), senate districts (Rhode Island)
In Re Illinois Congressional District Reapportionment Cases (1981), congressional districts

Publications

"EAC Survey Sheds Light on Election Administration", Roll Call, October 27, 2005 (with Michael McDonald)

Developing a Statewide Voter Registration Database: Procedures, Alternatives, and General Models, by Kimball W. Brace and M. Glenn Newkirk, edited by William Kimberling, (Washington, D.C.: Federal Election Commission, Office of Election Administration, Autumn 1997).

The Election Data Book: A Statistical Portrait of Voting in America, 1992, Kimball W. Brace, ed., (Bernan Press, 1993)
"Geographic Compactness and Redistricting: Have We Gone Too Far?", presented to Midwestern Political Science Association, April 1993 (with D. Chapin and R. Niemi)
"Whose Data is it Anyway: Conflicts between Freedom of Information and Trade Secret Protection in Redistricting", Stetson University Law Review, Spring 1992 (with D. Chapin and W. Arden)
"Numbers, Colors, and Shapes in Redistricting," State Government News, December 1991 (with D. Chapin)
"Redistricting Roulette," Campaigns and Elections, March 1991 (with D. Chapin)
"Redistricting Guidelines: A Summary", presented to the Reapportionment Task Force, National Conference on State Legislatures, November 9, 1990 (with D. Chapin and J. Waliszewski)
"The 65 Percent Rule in Legislative Districting for Racial Minorities: The Mathematics of Minority Voting Equality," Law and Policy, January 1988 (with B. Grofman, L. Handley, and R. Niemi)
"Does Redistricting Aimed to Help Blacks Necessarily Help Republicans?" Journal of Politics, February 1987 (with B. Grofman and L. Handley)

Kimball W. Brace, Vita, Page $\mathbf{9}$ of $\mathbf{9}$
"New Census Tools," American Demographics, July/August 1980

Professional Activities

Member, Task Force on Long Lines in 2012 Election, Prince William County, VA
Member, 2010 Census Advisory Committee, a 20-member panel advising the Director of the Census on the planning and administration of the 2010 census.

Delegate, Second Trilateral Conference on Electoral Systems (Canada, Mexico, and United States), Ontario, Canada, 1995; and Third Trilateral Conference on Electoral Systems, Washington, D.C., 1996

Member, American Association of Political Consultants
Member, American Association for Public Opinion Research
Member, American Political Science Association
Member, Association of American Geographers, Census Advisory Committee
Member Board of Directors, Association of Public Data Users
Member, National Center for Policy Alternatives, Voter Participation Advisory Committee
Member, Urban and Regional Information Systems Association

Historical Activities

Member, Manassas Battlefield Trust Board Member, 2018 -- current
Member, Historical Commission, Prince William County, VA., 2015 - current. Elected Chairman in 2017, re-elected 2018

Member of Executive Committee \& head of GIS Committee, Bull Run Civil War Round Table, Centerville, VA. 2015 - current
Member, Washington Capitals Fan Club, Executive Board 2017 -- current

Predominantly NH White < 40\%
Predominantly NH White 40-49.9\%
Majority NH White 50-74.9\%
Majority NH White 75-100\%

Predominantly Hispanic < 40\%
\triangle Predominantly Hispanic $40-49.9 \%$
Majority Hispanic $50-74.9 \%$
Majority Hispanic $75-100 \%$

Predominantly NH Native Am. $<40 \%$
Predominantly NH Native Am. 40-49.9\%
Majority NH Native Am. 50-74.9\%
Majority NH Native Am. 75-100\%

EXHIBIT C

Redistricting Databases

Over the past 44 years Election Data Services, Inc. has compiled extensive databases for use in the redistricting process and redistricting and voting rights court cases in many different states and localities. These databases form the heart of the redistricting process, but also are an essential building block for racial bloc

Figure 1
voting analysis. Generally, these databases merge four different elements through the use of geography. Over the past four decades Mr. Brace has spoken before many groups and courts about what he terms the "redistricting data cube". The sketch to the left depicts that cube.

Redistricting issues always deal with territory. In previous decades, the Census Bureau depicted data collection areas on paper maps. In 1990, the Bureau was able to create an electronic map of the entire country, called the Topologically Integrated Geographic Encoding and Referencing system, or TIGER. Census geography in the form of TIGER files becomes the first element of the data cube, shown in the upper left side of the cube (i.e., type of data: spatial; source of data: Census).

The TIGER files are actually massive databases in themselves and encompass all the lines that one sees on a map. These lines or "segments" are depicted with a latitude and a longitude coordinate point at the beginning and end of each line segment. These line segments have no population data associated with them, but they do have an extensive set of other attribute information. For example, each line segment has information about whether it is a stream, road, railroad, or power line, etc. If the segment is a road or stream, there is also
information about its name. If the segment is a road, there is also information in many instances about address ranges.

All line segments have geographic codes that identify the census tract and block on the left and right sides of the line. If one were to travel along a series of line segments and make a right turn at the end of each segment onto an intersecting line segment, one would eventually return to the starting point. Upon arrival at the starting point, one would be "closing" a polygon. This resulting polygon would form the basic census block. Census blocks are linked to block-level population and demographic data, but these numeric data are not in the TIGER files.

This numeric data, the second element in the data cube (lower left of the cube), is reported by the Census Bureau after each decennial census and consists of population and demographic counts associated with each census tract and block in each state. This data is first released for redistricting purposes in a computer file called the Census Redistricting (PL 94-171) Summary File. For each census tract and block there are both total population and voting age population (18 years old and over) counts, along with sub-counts of the different racial and Hispanic origin categories tabulated by the Census Bureau. For the first time in the 2000 Census, persons could choose multiple racial or ethnic origins, which caused the PL 94171 population files to expand from 12 columns of data in 1990 to 291 columns of data in 2000 and 2010. Despite this seemly massive amount of data, it is generally not until the year ending in a " 2 " when more detailed demographic data, such as income or education information, is released by the Census Bureau.

The availability of the Census Bureau's PL94-171 population data files is still undetermined as of 2/9/2021. It is our understanding in discussions with Bureau staff that the release of the PL files will again be delayed in an announcement expected by this Friday. We understand that the PL files may not be released until August or September of 2021, which will pose major problems for being able to meet the state's redistricting deadlines.

These two Census computer files (TIGER and PL) form the heart of any redistricting effort and are absolutely necessary for drawing and analyzing districts.

If one wishes to perform an electoral analysis of voting behavior for a given area, election returns are required. This is the third element in the data cube (lower right of cube). In the past these returns had to be collected from each county in a state, although more states are centralizing that collection effort. However, when redistricting deals with local contests, returns from multiple years must be collected from local election offices and, if not in electronic form, must be
keypunched to perform the analysis. State of New Mexico is extremely fortunate in that the state's election office makes precinct level returns available on their website for all years and all contests.

Election returns alone are not enough to do racial voting or political analysis that is required in a redistricting and/or court case setting. One must know where the election returns come from-that is, from what part of a county or city. This is where the fourth element of the data cube (upper right of cube) - precinct maps - comes into play. Precinct maps for each election year must be collected and analyzed to determine the extent of change since the previous year.

It is standard practice across the United States for county governments to make massive precinct changes subsequent to statewide redistricting that occur in the years ending in " 1 " and " 2 ". In addition, many larger jurisdictions change precinct boundaries on a regular basis as population shifts occur or there is a need to relocate a polling place. As a result, to analyze election contests that occur over time, one must determine the makeup of each precinct in each election in which the contests were held.

Election Data Services, Inc. has been collecting precinct maps from around the nation since the early 1980s. To study racial bloc voting or perform other types of electoral analysis, the racial makeup of each precinct needs to be determined and matched up with election returns. Unfortunately, the Census Bureau reports demographic data for only those precincts that were in existence in the year ending with " 8 " before the decennial census is conducted. To merge racial demographic data from the Census Bureau with the configuration of the precincts used in each election over the decade, one must overlay the precinct map boundaries that existed in each election on top of the census geographic boundaries.

It is our understanding that the State of New Mexico, through the offices of the firm Research and Polling, had compiled and digitized the boundaries of all precincts in the state for the entire decade. Their President, Brian Sanderoff and staffer Michael Sharp provided raw election returns data and boundary files which we then incorporated into the EDS database and reports.

Election Data Services, Inc. has developed computer programs to assist with this process, whereby an operator assigns census tracts and blocks to individual precincts using GIS technology. Once this block-to-precinct equivalency has been developed, additional computer programs can tally up the census demographic and racial data from the blocks to the precinct summary level. E.D.S. Inc. has loaded
these files into various computer databases compiled over the years for such analysis.

Election Data Services, Inc. has spent thousands of hours of staff time compiling extensive databases of state and local election returns and combining the geography of precincts with census geography. A database that matches precinct election returns with the demographic composition of the precincts as reported by the Census is required to conduct an analysis of voting patterns by race/ethnicity. These types of databases are the central component necessary to determine the extent to which racial groups vote differently or the same. Combining all of this information creates a massive database that is internal to Election Data Services, Inc. Additional programs have been created to extract individual election contests from the massive internal database and format them into smaller ASCII datasets that can be read by statistical software programs, such as SPSS, S-Plus, or "R" used to perform racial bloc voting analyses.

Census Data Analysis and Compilation

As noted earlier, census data is one of the major elements of the "datacube." With regard to demographic information and race, the 2010 Census asked, and the 2020 Census is asking, each individual two major questions. First, they asked
whether the person was Hispanic or not (the Census Bureau has not considered Hispanic as being a race). The actual Hispanic question in the questionnaire for 2020 appeared as noted in Figure 2 , to the right. Second, they asked the person's

Is this person of Hispanic, Latino, or Spanish origin?
No, not of Hispanic, Latino, or Spanish origin
\square Yes, Mexican, Mexican Am., Chicano
\square Yes, Puerto Rican
\square Yes, Cuban
\square Yes, another Hispanic, Latino, or Spanish origin - Print, for example, Salvadoran, Dominican, Colombian, Guatemalan, Spaniard, Ecuadorian, etc. 7

Figure 2
race. This is show in
Figure 3, below. This two-part question format has been used since Hispanic origin was first asked of every individual in 1980.

Since 1980 the Census Bureau has taken the results of the race question and created counts of five

What is this person's race?
 Mark X one or more boxes AND print origins.

\square White - Print, for example, German, Irish, English, Italian, Lebanese, Egyptian, etc. \bar{z}
\square Black or African Am. - Print, for example, African American,
Jamaican, Haitian, Nigerian, Ethiopian, SomaN, etc. z
\square

Figure 3
major racial groups along with a catch-all of "some other race". The five major racial groups were "white", "black or African-American", "American American Indian or Alaska Native", "Asian" (which combined the answers of Asian American Indian, Chinese, Filipino, Korean, Japanese, Vietnamese, and Other Asian), and "Native Hawaiian or Other Pacific Islander" (which combined the answers of Pacific Islander, Native Hawaiian, Guamanian or Chamorro, Samoan, and Other Pacific Islander). Traditionally, these five major racial groups, along with "some other race" would add to 100% or the total population reported by the census. The 2020 Census allowed more space for individuals to include ancestry answers as write-ins as a way of clarifying their race, but the data on ancestry will not be released until later in the decade, long after redistricting.

The Census Bureau also asked individuals whether they were of Hispanic origin. Because the Census Bureau and the federal government for each of the last four censuses have concluded that "Hispanic Origin" is not a racial category (anyone of any race can also be Hispanic), the Census Bureau provides crosstabulations in its PL 94-171 data tables. Utilizing these cross-tabulations, Election

Data Services, Inc. has traditionally developed its datasets by showing Hispanic Origin as if it were a race, and then removing Hispanics from the individual racial data. As such, we report Non-Hispanic White, instead of White; Non-Hispanic Black, instead of Blacks; Non-Hispanic Asian; instead of Asians; and so-forth. When the racial data and Hispanic Origin are reported in this manner, the groups add to 100 percent of the population.

Post census studies have shown that Hispanics have tended to divide their racial designation mainly between "Some other race" and "white" in roughly equal proportions. As a result, when we take out Hispanics from their relative racial groups in order to treat Hispanic as if it was a race, then the largest decreases occur in both the "White" and the "Some Other Race" categories.

The 2000 and 2010 censuses were a marked departure from earlier censuses on the reporting of racial data. In previous decades, individuals answering the Census were supposed to mark only one racial category. However, beginning with the 2000 Census, individuals could mark any number of racial categories (as many as all six), mainly due to the growth of multi-racial families in American society. This produced unique data issues concerning racial breakdowns and how they were reported. As one of the very few organizations involved in redistricting around the nation, Election Data Services, Inc. was closely involved with census personnel in researching and understanding the ramifications of the new data structures.

There are three basic ways to calculate the racial breakdowns for the 2000 and 2010 census. The first is to exclude any individuals who have marked more than one racial category from the basic racial definitions and put these individuals into a separate "multiple-race" category. This tends to create a bottom level of racial categorization for individual race groups, but one that is more compatible with the numbers that were reported in previous censuses. Election Data Services, Inc. designated these categories as "Race-Alone" and they occupy tab or table 1 in many of our reports.

The second method of calculation is to include in the individual race groups any individual who marked that race group alone, plus any individual who marked that race group in combination with any other racial group(s). This produces the maximum number of individuals in each racial group, but it also means that the totals of all racial groups added together will result in more than 100 percent of the population being reported. Election Data Services designated these categories as "Combo" or "Max" and they occupy tab or table 2 in many of our reports

The third method of calculation was recommended by the Federal Office of Management and Budget (OMB). In a Federal Register notice published in March 2000 (at the tail end of the Clinton administration), OMB laid out how federal agencies should use racial data from the 2000 Census (no fundamental change was made in this directive for the 2010 Census). In essence, the OMB recommended that any individuals who marked themselves as both "White" and some other minority race, should be counted as part of that other minority race. This increased the numbers reported for the racial groups above the "race-alone" categories, but actually excluded individuals who marked themselves as being in two different minority groups. We have found in our research that this method of calculation tends to fall in between the other two methods. Election Data Services, Inc. designates these categories as "OMB" and they occupy tab or table 3 in many of our data reports.

Election Data Services's standard dataset incorporates all three methods of calculating racial data from the 2000 and 2010 censuses. This will continue for the 2020 Census, as the Census Bureau announced two years ago that the same basic data will be used when they published the PL file for 2020. Producing and reporting population counts based on all three calculation methods allows us to compare the different methods and how district configurations are affected over three decades.

New Mexico - District Map of Previous 2011 Congressional Districts

	Total Population				Racial Demographics as Percent of Total Population						Voting Age Population		Racial Demographics as Percent of Voting Population					
DISTRICT	All Persons	Target	Dev.	Difference	NH White	NH Black	NH Native	NH Asian	Hispanic	Minority	Adult	VAP \%	NH White	NH Black	NH Native	NH Asian	Hispanic	Minority
1	694,577	705,841	-1.60\%	-11,264	38.17\%	2.50\%	4.17\%	2.69\%	48.71\%	61.83\%	550,760	79.3\%	42.07\%	2.53\%	4.03\%	2.80\%	45.14\%	57.93\%
2	714,022	705,841	1.16\%	8,181	35.08\%	1.63\%	4.48\%	0.96\%	54.96\%	64.92\%	542,134	75.9\%	39.29\%	1.74\%	4.34\%	1.04\%	50.81\%	60.71\%
3	708,923	705,841	0.44\%	3,082	36.31\%	1.32\%	18.01\%	1.37\%	39.51\%	63.69\%	546,095	77.0\%	40.17\%	1.36\%	16.78\%	1.45\%	37.13\%	59.83\%
Assigned	2,117,522																	
Total Pop	2,117,522																	
Unassigned	0																	

NM_Previous2011_Matrix_poli_formatted.xIsx Deviations

	A	B	C	D	E	F	G
1	DISTRICT	TAPERSONS	Target	Raw Dev.	\% Dev.	POPTOT	
2	01	694,577	705,841	$(11,264)$	-1.6\%	694,577	
3	02	714,022	705,841	8,181	1.2\%	714,022	
4	03	708,923	705,841	3,082	0.4\%	708,923	
5							
6	STATE TOT	2,117,522					
7							
8	Total Dev			19,445	2.7549\%		
9	Highest			8,181	1.1591\%		
10	Lowest			$(11,264)$	-1.5958\%		
11							
12							

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		POPTOT	PercentTot	POPWH_A	PPopWh_A	POPBL_A	PPopBL_A	POPNA_A	PPopNA A	POPAS_A	PPopAS_A	POPPI_A	PPopPI ${ }^{\text {a }}$	POPOT_A	PPopOT_A	POPXX	P2plusRace	PopNonW	PPopNonW
2	001		694,577	100.00\%	366,559	52.77\%	20,652	2.97\%	36,638	5.27\%	19,678	2.83\%	784	0.11\%	105,812	15.23\%	144,454	20.80\%	328,018	47.23\%
3	002		714,022	100.00\%	369,359	51.73\%	14,159	1.98\%	39,354	5.51\%	7,458	1.04\%	658	0.09\%	128,879	18.05\%	154,155	21.59\%	344,663	48.27\%
	003		708,923	100.00\%	343,019	48.39\%	11,093	1.56\%	136,249	19.22\%	10,333	1.46\%	651	0.09\%	83,941	11.84\%	123,637	17.44\%	365,904	51.61\%
5																				
6	STATE TOTAL		2,117,522	100.00\%	1,078,937	50.95\%	45,904	2.17\%	212,241	10.02\%	37,469	1.77\%	2,093	0.10\%	318,632	15.05\%	422,246	19.94\%	1,038,585	49.05\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		
11	70\% - 79.9%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9%					0		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		0		0		0		0		
15	50\% - 54.9\%					2		0		0		0		0		0		0		
16	45\% - 49.9\%					1		0		0		0		0		0		0		
17	40\% - 45.9\%					0		0		0		0		0		0		0		
18	35\% - 39.9\%					0		0		0		0		0		0		0		
19	30\% - 34.9\%					0		0		0		0		0		0		0		
20	20\% - 29.9%					0		0		0		0		0		0		2		
21	10\% - 19.9\%					0		0		1		0		0		3		1		
22	<10\%					0		3		2		3		3		0		0		
23																				

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V
1	DISTRICT		POPTOT	PercentTot	POPNHWH A	PPopNHWh A	POPNHBL A	PPopNHBIA	POPNHNA A	PPopNHNA A	POPNHAS A	PPopNHAS A	POPNHPIA	PPopNHPIA	POPNHOT_A	PPopNHOT_A	POPHISP	PPophisp	POPNHXX	PPopNHXX	PopNonW	PPopNonW
$\underline{2}$	001		694,577	100.00\%	265,106	38.17\%	17,353	2.50\%	28,963	4.17\%	18,677	2.69\%	540	0.08\%	3,667	0.53\%	338,305	48.71\%	21,966	3.16\%	429,471	61.83\%
3	002		714,022	100.00\%	250,465	35.08\%	11,615	1.63\%	31,989	4.48\%	6,877	0.96\%	456	0.06\%	3,348	0.47\%	392,391	54.96\%	16,881	2.36\%	463,557	64.92\%
4	003		708,923	100.00\%	257,381	36.31\%	9,362	1.32\%	127,658	18.01\%	9,707	1.37\%	455	0.06\%	3,325	0.47\%	280,115	39.51\%	20,920	2.95\%	451,542	63.69\%
5																						
	STATE TOTAL		2,117,522	100.00\%	772,952	36.50\%	38,330	1.81\%	188,610	8.91\%	35,261	1.67\%	1,451	0.07\%	10,340	0.49\%	1,010,811	47.74\%	59,767	2.82\%	1,344,570	63.50\%
88																						
9	90\%					0		0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		0		0		0		
12	65\% -69.9\%					0		0		0		0		0		0		0		0		
13	60\%-64.9\%					0		0		0		0		0		0		0		0		
$\frac{14}{15}$	55\%-59.9\%					0		0		,		0		0		0		0		0		
15	50\% -54.9\%					0		0		0		0		0		O		1		0		
16	45\% - 49.9\%					0		0		0		0		0		0		1		0		
17	40\% - 45.9\%					0		0		0		0		0		0		0		0		
18	35\%-39.9\%					3		0		0		0		0		0		1		0		
19	30\% - 34.9\%					0		0		,		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		0		0		
21	10\% - 19.9\%					0		0		1		0		0		0		0		,		
$\frac{22}{23}$						0		3						3		3		0		3		

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R
1	DISTRICT		POPTOT	PercentTot	POPWH_C	PPopWH_C	POPBL_C	PPopBL_C	POPNA_C	PPopNA_C	POPAS_C	PPopAS_C	POPPI_C	PPopPI_C	POPOT_C	PPopOT_C	PopNonW	PPopNonW
2	001		694,577	121.89\%	505,124	72.72\%	30,087	4.33\%	54,568	7.86\%	28,162	4.05\%	2,237	0.32\%	226,414	32.60\%	189,453	27.28\%
3	002		714,022	122.31\%	519,262	72.72\%	20,588	2.88\%	54,278	7.60\%	11,862	1.66\%	1,773	0.25\%	265,528	37.19\%	194,760	27.28\%
4	003		708,923	118.27\%	461,587	65.11\%	17,734	2.50\%	154,769	21.83\%	15,973	2.25\%	2,002	0.28\%	186,346	26.29\%	247,336	34.89\%
5																		
6	STATE TOTAL		2,117,522	120.82\%	1,485,973	70.18\%	68,409	3.23\%	263,615	12.45\%	55,997	2.64\%	6,012	0.28\%	678,288	32.03\%	631,549	29.82\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					2		0		0		0		0		0		0
12	65\% - 69.9\%					1		0		0		0		0		0		0
13	60\% - 64.9\%					0		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		0
16	45\% - 49.9\%					0		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		0
18	35\% - 39.9\%					0		0		0		0		,		1		0
19	30\% - 34.9%					0		0		0		0		0		1		1
20	20\% - 29.9\%					0		0		1		0		0		1		2
21	10\% - 19.9\%					0		0		0		0		0		0		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		POPTOT	PercentTot	POPNHWH_C	PPopNHWH_C	POPNHBL_C	PPopNHBL_C	POPNHNA_C	PPopNHNA C	POPNHAS_C	PPopNHASC	POPNHPIC	PPopNHPIC	POPNHOT_C	PPopNHOT_C	POPHISP	PPopHisp	PopNonW	PPopNonW
2	001		694,577	103.38\%	285,038	41.04\%	22,800	3.28\%	37,352	5.38\%	24,586	3.54\%	1,488	0.21\%	8,481	1.22\%	338,305	48.71\%	409,539	58.96\%
3	002		714,022	102.52\%	266,281	37.29\%	15,141	2.12\%	39,723	5.56\%	9,800	1.37\%	1,165	0.16\%	7,480	1.05\%	392,391	54.96\%	447,741	62.71\%
4	003		708,923	103.15\%	276,535	39.01\%	13,624	1.92\%	137,610	19.41\%	13,863	1.96\%	1,406	0.20\%	8,086	1.14\%	280,115	39.51\%	432,388	60.99\%
5																				
6	STATE TOTAL		2,117,522	103.01\%	827,854	39.10\%	51,565	2.44\%	214,685	10.14\%	48,249	2.28\%	4,059	0.19\%	24,047	1.14\%	1,010,811	47.74\%	1,289,668	60.90\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					,		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		0		0		0		0		
15	50\% - 54.9\%					0		0		0		0		0		0		1		
16	45\% - 49.9\%					0		0		0		0		0		0		1		
17	40\% - 45.9\%					1		0		0		0		0		0		0		
18	35\% - 39.9\%					2		0		0		0		0		0		1		0
19	30\% - 34.9\%					,		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		0		
21	10\% - 19.9\%					0		0		1		0		0		0		0		
22	<10\%					0		3		2		3		3		,		0		0
23																				

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		POPTOT	PercentTot	POPWH_A	PPopWH_A	POPBL_W	PPopBL_W	POPNA_W	PPopNA_W	POPAS_W	PPopAS_W	POPPI_W	PPopPI_W	POPOT_W	PPopOT_W	PopNonW	PPopNonW
2	001		694,577	80.93\%	366,559	52.77\%	23,548	3.39\%	40,040	5.76\%	21,101	3.04\%	1,326	0.19\%	109,560	15.77\%	328,018	47.23\%
3	002		714,022	79.63\%	369,359	51.73\%	15,958	2.23\%	41,632	5.83\%	8,392	1.18\%	1,153	0.16\%	132,080	18.50\%	344,663	48.27\%
4	003		708,923	84.02\%	343,019	48.39\%	13,098	1.85\%	139,766	19.72\%	11,328	1.60\%	1,162	0.16\%	87,250	12.31\%	365,904	51.61\%
5																		
6	STATE TOTAL		2,117,522	81.53\%	1,078,937	50.95\%	52,604	2.48\%	221,438	10.46\%	40,821	1.93\%	3,641	0.17\%	328,890	15.53\%	1,038,585	49.05\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\%-89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0
12	65\%-69.9\%					0		0		0		0		0		0		0
13	60\%-64.9\%					0		0		0		0		0		0		0
14	55\%-59.9\%					0		0		0		0		0		0		0
15	50\% - 54.9\%					2		0		0		0		0		0		1
16	45\% - 49.9\%					1		0		0		0		0		0		2
17	40\% - 45.9\%					0		0		0		0		0		0		0
18	35\%-39.9\%					0		0		0		0		0		0		0
19	30\% - 34.9\%					0		0		0		0		0		0		0
20	20\% - 29.9\%					0		0		0		0		0		0		0
21	10\%-19.9\%					0		0		1		0		0		3		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	I C	D	E	F	G	H	1	- J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		POPTOT	Percentrot	POPNHWH_A	PPopNHWh A	POPNHBL_W	PPopNHBL W	POPNHNA W	PPopNHNA W	POPNHAS_W	PPopNHAS W	POPNHPILW	PPopNHPI W	POPNHOT_W	PPopNHOT_W	POPHISP	PPopHisp P	PopNonW	PPopNonW
2	001		694,577	97.43\%	265,106	38.17\%	18,782	2.70\%	30,192	4.35\%	19,450	2.80\%	877	0.13\%	4,047	0.58\%	338,305	48.71\%	429,471	61.83\%
3	002		714,022	97.94\%	250,465	35.08\%	12,252	1.72\%	- 32,497	4.55\%	7,326	1.03\%	751	0.11\%	3,663	0.51\%	392,391	54.96\%	463,557	64.92\%
4	003		708,923	97.56\%	257,381	36.31\%	10,543	1.49\%	128,851	18.18\%	10,323	1.46\%	804	0.11\%	3,623	0.51\%	280,115	39.51\%	451,542	63.69\%
5																				
6	STATE TOTAL		2,117,522	97.65\%	772,952	36.50\%	41,577	1.96\%	191,540	9.05\%	37,099	1.75\%	2,432	0.11\%	11,333	0.54\%	1,010,811	47.74\%	1,344,570	63.50\%
7																				
8																				
10	- 80%-89.9\%					0		0		0		0		0		0		0		
11	1 170\% - 79.9%					0		0		0		0		0		0		0		
12	165\%-69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					0		0		0		0		0		0		0		
14	${ }^{4} 55 \%$ - 59.9%					0		0		0		0		0		0		0		
15	50\% - 54.9\%					0		0		0		0		0		0		1		
16	655\%-49.9\%					0		0		0		0		0		,		1		
17	$7{ }^{4} 80 \%$ - 45.9\%					0		0		0		0		0		0		0		
18	855\% - 39.9\%					3		0		0		0		0		0		1		
19	30\% - 34.9\%					0		0		0		,		0		-		0		
20	20\% - 29.9\%					0		0		0		0		,		0		0		
21	10% - 19.9\%					0		0		1		0		0		0		0		
22 23	-10\%					0		- 3		,		3		3		3		0		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		VAPTOT	PercentTot	VAPWH_A	PVAPWH_A	VAPBL_A	PVAPBL_A	VAPNA_A	PVAPNA A	VAPAS_A	PVAPAS_A	VAPPI_A	PVAPPI_A	VAPOT_A	PVAPOT_A	VAPXX	PVAPXX	PopNonW	PPopNonW
2	001		550,760	100.00\%	304,357	55.26\%	15,620	2.84\%	27,460	4.99\%	16,038	2.91\%	615	0.11\%	80,492	14.61\%	106,178	19.28\%	246,403	44.74\%
3	002		542,134	100.00\%	292,544	53.96\%	10,615	1.96\%	28,693	5.29\%	6,031	1.11\%	498	0.09\%	93,362	17.22\%	110,391	20.36\%	249,590	46.04\%
4	003		546,095	100.00\%	279,276	51.14\%	8,209	1.50\%	96,910	17.75\%	8,309	1.52\%	497	0.09\%	63,637	11.65\%	89,257	16.34\%	266,819	48.86\%
5																				
6	State total		1,638,989	100.00\%	876,177	53.46\%	34,444	2.10\%	153,063	9.34\%	30,378	1.85\%	1,610	0.10\%	237,491	14.49\%	305,826	18.66\%	762,812	46.54\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					0		0		0		0		0		,		0		
14	55\% - 59.9\%					1		0		0		0		0		0		0		
15	50\% - 54.9\%					2		0		0		0		0		0		0		
16	45\% - 49.9\%					0		0		0		0		0		0		0		2
17	40\% - 45.9\%					0		0		0		0		0		0		0		
18	35\% - 39.9\%					0		0		0		0		0		0		0		
19	30\% - 34.9\%					0		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		,		1		
21	10\% - 19.9\%					0		0		1		0		0		3		2		
22	<10\%					0		3		,		,		3		0		0		0
23																				

	A	B	C	D	E	F	G	H	1	- \quad -	K	L	M	N	0	P	Q	R	S	T	U	V
1	DISTRICT		VAPTOT	PercentTot	VAPNHWH_A	PVAPNHWH_A	VAPNHBL_A	PVAPNHBL_A	VAPNHNA A	PVAPNHNA A	VAPNHAS_A	PVAPNHAS A	VAPNHPIA	PVAPNHPIA	VAPNHOT_A	PVAPNHOT_A	VAPHISP	PVAPHisp	VAPNHXX	PVAPNHXX	PopNonW	PPopNonW
2	001		550,760	100.00\%	231,725	42.07\%	- 13,911	2.53\%	22,191	4.03\%	15,416	2.80\%	451	0.08\%	2,903	0.53\%	248,590	45.14\%	15,573	2.83\%	319,035	57.93\%
3	002		542,134	100.00\%	212,990	39.29\%	9,440	1.74\%	23,541	4.34\%	5,660	1.04\%	379	0.07\%	2,451	0.45\%	275,435	50.81\%	12,238	2.26\%	329,144	60.71\%
4	003		546,095	100.00\%	219,347	40.17\%	7,427	1.36\%	91,628	16.78\%	7,913	1.45\%	369	0.07\%	2,571	0.47\%	202,739	37.13\%	14,101	2.58\%	326,748	59.83\%
	state total		1,638,989	100.00\%	664,062	40.52\%	30,778	1.88\%	137,360	8.38\%	28,989	1.77\%	1,199	0.07\%	7,925	0.48\%	726,764	44.34\%	41,912	2.56\%	974,927	59.48\%
7																						
8																						
9	> 90\%					0		0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		-		0		,		
12	65\% - 69.9\%					0		0		0		0		0		,		0		0		
13	60\%-64.9\%					0		0		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		,		0		0		0		0		
15	50\% -54.9\%					0		0		0		0		0		0		1		0		
16	45\% - 49.9\%					0		0		0		0		0		0		1		0		
17	40\% - 45.9\%					2		0		0		,		0		0		0		0		
18	35\% - 39.9\%					1		0		,		0		0		0		1		0		
19	30\% - 34.9\%					0		0		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		,		0		0		0		,		,		
21	10\% - 19.9\%					0		0		1		0		0		0		0		0		
22	-10\%					0		3		2		3		3		3		0		3		
$\frac{23}{24}$																						
$\frac{24}{25}$																						
25																						
寿																						
29																						
30																						
31																						

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		VAPTOT	PercentTot	VAPWH_C	PVAPWH_C	VAPBL_C	PVAPBL_C	VAPNA_C	PVAPNA_C	VAPAS_C	PVAPAS_C	VAPPI_C	PVAPPI_C	VAPOT_C	PVAPOT_C	PopNonW	PPopNonW
2	001		550,760	120.12\%	406,686	73.84\%	20,864	3.79\%	39,927	7.25\%	21,053	3.82\%	1,571	0.29\%	171,493	31.14\%	144,074	26.16\%
3	002		542,134	120.96\%	400,147	73.81\%	13,895	2.56\%	39,389	7.27\%	8,710	1.61\%	1,269	0.23\%	192,332	35.48\%	141,987	26.19\%
4	003		546,095	117.00\%	365,331	66.90\%	11,663	2.14\%	109,161	19.99\%	11,459	2.10\%	1,364	0.25\%	139,977	25.63\%	180,764	33.10\%
5																		
6	STATE TOTAL		1,638,989	119.36\%	1,172,164	71.52\%	46,422	2.83\%	188,477	11.50\%	41,222	2.52\%	4,204	0.26\%	503,802	30.74\%	466,825	28.48\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					2		0		0		0		0		0		0
12	65\% - 69.9\%					1		0		0		0		0		0		0
13	60\% - 64.9\%					0		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		0
16	45\% - 49.9\%					0		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		0
18	35\% - 39.9\%					0		0		0		0		0		1		0
19	30\% - 34.9\%					0		0		0		0		0		1		1
20	20\% - 29.9\%					0		0		0		0		0		1		2
21	10\% - 19.9\%					0		0		1		0		0		0		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	1	J	,	L	M	N	0	P	Q	R	S	T
1	DISTRICT		VAPTOT	PercentTot	VAPNHWH_C	PVAPNHWH C	VAPNHBL_C	PVAPNHBL C	VAPNHNA C	PVAPNHNA C	VAPNHAS_C	PVAPNHAS C	VAPNHPIC	PVAPNHPIC	VAPNHOT_C	PVAPNHOT_C	VAPHISP	PVAPHisp	PopNonW	PPopNonW
2	001		550,760	103.00\%	245,949	44.66\%	17,267	3.14\%	28,388	5.15\%	19,196	3.49\%	1,146	0.21\%	6,748	1.23\%	248,590	45.14\%	304,811	55.34\%
3	002		542,134	102.39\%	224,468	41.40\%	11,538	2.13\%	29,527	5.45\%	7,526	1.39\%	912	0.17\%	5,690	1.05\%	275,435	50.81\%	317,666	58.60\%
4	003		546,095	102.73\%	232,352	42.55\%	9,810	1.80\%	98,429	18.02\%	10,350	1.90\%	1,009	0.18\%	6,315	1.16\%	202,739	37.13\%	313,743	57.45\%
5																				
${ }_{6}$	STATE TOTAL		1,638,989	102.71\%	702,769	42.88\%	38,615	2.36\%	156,344	9.54\%	37,072	2.26\%	3,067	0.19\%	18,753	1.14\%	726,764	44.34\%	936,220	57.12\%
8																				
9	> 90\%					0		0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9%					0		0		0		0		0		0		0		0
13	60\% - 64.9\%							0		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		0		
15	50\% - 54.9\%					0		0		0		0		0		0		1		
16	45\% - 49.9\%					0		0		0		0		,		0		1		
17	40\% - 45.9\%					3		0		0		0		,		0		0		0
18	35\% - 39.9\%					0		0		0		0		0		0		1		
19	30\% - 34.9\%					0		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		,		0		0		0		0
21	10\% - 19.9\%					0		,		1		0		0		0		0		0
$\frac{22}{23}$	<10\%					0		3		2		3		3		3		0		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		VAPTOT	PercentTot	VAPWH_A	PVAPWH_A	VAPBL_W	PVAPBL W	VAPNA_W	PVAPNA W	VAPAS_W	PVAPAS_W	VAPPI W	PVAPPI_W	VAPOT_W	PVAPOT_W	PopNonW	PPopNonW
2	001		550,760	82.14\%	304,357	55.26\%	17,327	3.15\%	29,686	5.39\%	16,970	3.08\%	1,018	0.18\%	83,061	15.08\%	246,403	44.74\%
3	002		542,134	80.69\%	292,544	53.96\%	11,607	2.14\%	30,294	5.59\%	6,702	1.24\%	869	0.16\%	95,439	17.60\%	249,590	46.04\%
4	003		546,095	84.85\%	279,276	51.14\%	9,276	1.70\%	99,126	18.15\%	8,951	1.64\%	870	0.16\%	65,859	12.06\%	266,819	48.86\%
5																		
6	STATE TOTAL		1,638,989	82.57\%	876,177	53.46\%	38,210	2.33\%	159,106	9.71\%	32,623	1.99\%	2,757	0.17\%	244,359	14.91\%	762,812	46.54\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\%-89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0
12	65\% - 69.9%					0		0		0		0		0		0		0
13	60\% - 64.9%					0		0		0		0		0		0		0
14	55\% - 59.9\%					1		0		0		0		0		0		
15	50\% - 54.9\%					2		0		0		0		0		0		
16	45\% - 49.9\%					0		0		0		0		0		0		2
17	40\% - 45.9\%					0		0		0		0		0		0		
18	35\% - 39.9\%					0		0		0		0		0		0		
19	30\% - 34.9\%					0		0		0		0		0		0		0
20	20\% - 29.9\%					0		0		0		0		0		0		
21	10\% - 19.9\%					0		0		1		0		0		3		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		VAPTOT P	PercentTot	VAPNHWH_A	PVAPNHWH A	VAPNHBL_W	PVAPNHBL_W	VAPNHNA_W	PVAPNHNA W	VAPNHAS_W	PVAPNHAS W	VAPNHPI_W	PVAPNHPI W	VAPNHOT_W	PVAPNHOT_W	VAPHISP	PVAPHisp	PopNonW	PPopNonW
2	001		550,760	97.67\%	231,725	42.07\%	14,815	2.69\%	22,947	4.17\%	15,942	2.89\%	719	0.13\%	3,201	0.58\%	248,590	45.14\%	319,035	57.93\%
3	002		542,134	98.03\%	212,990	39.29\%	9,870	1.82\%	23,886	4.41\%	5,992	1.11\%	620	0.11\%	2,677	0.49\%	275,435	50.81\%	329,144	60.71\%
4	-003		546,095	97.83\%	219,347	40.17\%	8,098	1.48\%	92,292	16.90\%	8,339	1.53\%	636	0.12\%	2,798	0.51\%	202,739	37.13\%	326,748	59.83\%
6																				
6	STATE TOTAL		1,638,989	97.84\%	664,062	40.52\%	32,783	2.00\%	139,125	8.49\%	30,273	1.85\%	1,975	0.12\%	8,676	0.53\%	726,764	44.34\%	974,927	59.48%
7																				
8						0								0		0				
10	80\% - 89.9\%					0		0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0		0
12	65\% - 69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					0		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		0		0		0				
15	50\% - 54.9\%					0		0		0		0		0		0		1		
16	45\% - 49.9\%					0		0		0		0		0		,		1		
17	40\% - 45.9\%					2		0		0		0		0		0		0		
18	35\% - 39.9\%					1		0		0		0		0		0		,		
19	30\% - 34.9\%					0		0		0		0		,		,		0		
20	20\% - 29.9\%					0		0		0		0		0		0		0		0
21	10\%-19.9\%					0		,		1		,		,		0		0		
$\frac{22}{23}$	<10\%					0		3		2		3		3		3		0		

US Senate															
2020				2018 (not in index)				2014				2012			
Lujan	Lujan \%	Ronchetti	Ronchetti \%	Heinrich	Heinrich \%	Rich	Rich \%	Udall	Udall \%	Weh	Weh \%	Heinrich	Heinrich \%	Wilson	Wilson \%
182,692	57.57\%	134,658	42.43\%	144,127	68.65\%	65,810	31.35\%	102,695	56.69\%	78,460	43.31\%	149,722	55.24\%	121,293	44.76\%
112,033	43.12\%	147,798	56.88\%	91,393	53.14\%	80,587	46.86\%	69,745	46.98\%	78,717	53.02\%	100,887	46.45\%	116,311	53.55\%
179,737	56.92\%	136,024	43.08\%	141,483	68.07\%	66,380	31.93\%	113,977	61.31\%	71,929	38.69\%	145,113	56.07\%	113,712	43.93\%
474,462	53.13\%	418,480	46.87\%	377,003	63.92\%	212,777	36.08\%	286,417	55.56\%	229,106	44.44\%	395,722	52.97\%	351,316	47.03\%
Attorney General															
2022 (not in index)				2018 (not in index)				2014							
Torrez	Torrez \%	Gay	Gay \%	Balderas	Balderas \%	Hendricks	Hendricks \%	Balderas	Balderas \%	Riedel	Riedel \%				
151,573	60.46\%	99,135	39.54\%	166,402	70.25\%	70,470	29.75\%	109,168	61.30\%	68,914	38.70\%				
85,906	43.45\%	111,788	56.55\%	102,332	54.07\%	86,938	45.93\%	70,645	48.37\%	75,407	51.63\%				
151,063	59.44\%	103,076	40.56\%	158,816	68.24\%	73,918	31.76\%	115,197	63.23\%	66,988	36.77\%				
388,542	55.31\%	313,999	44.69\%	427,550	64.89\%	231,326	35.11\%	295,010	58.27\%	211,309	41.73\%				
Secretary of State				Auditor											
2014				2022 (not in index)				2018				2014			
Oliver	Oliver \%	Duran	Duran \%	Maestas	Maestas \%	Sanchez	Sanchez \%	Colon	Colon \%	Johnson	Johnson \%	Keller	Keller \%	Aragon	Aragon \%
96,087	53.65\%	82,997	46.35\%	152,860	66.60\%	76,659	33.40\%	151,780	61.54\%	94,849	38.46\%	102,111	58.26\%	73,145	41.74\%
55,326	37.84\%	90,902	62.16\%	91,169	50.85\%	88,114	49.15\%	95,397	48.09\%	102,965	51.91\%	64,477	44.87\%	79,225	55.13\%
94,108	51.61\%	88,239	48.39\%	155,745	65.81\%	80,923	34.19\%	148,531	61.27\%	93,900	38.73\%	103,804	57.84\%	75,668	42.16\%
245,521	48.36\%	262,138	51.64\%	399,774	61.94\%	245,696	38.06\%	395,708	57.56\%	291,714	42.44\%	270,392	54.25\%	228,038	45.75\%
Land Commissoner															
2022 (not in index)				2018				2014							
Richard	Richard \%	Byrd	Byrd \%	Richard	Richard \%	Lyons	Lyons \%	Powell	Powell \%	Dunn	Dunn \%				
147,454	59.72\%	99,466	40.28\%	134,916	57.87\%	98,210	42.13\%	91,113	51.96\%	84,223	48.04\%				
82,765	42.98\%	109,789	57.02\%	83,851	44.80\%	103,313	55.20\%	58,596	40.56\%	85,873	59.44\%				
149,347	59.52\%	101,560	40.48\%	133,568	58.22\%	95,856	41.78\%	99,638	55.49\%	79,920	44.51\%				
379,566	54.98\%	310,815	45.02\%	352,335	54.23\%	297,379	45.77\%	249,347	49.93\%	250,016	50.07\%				

Court of Appeals (2022)											
Contest 1				Contest 2							
Baca	Baca \%	Johnson	Johnson \%	Wray	Wray \%	Lee	Lee \%				
134,392	57.82\%	98,026	42.18\%	135,254	58.64\%	95,402	41.36\%				
76,971	41.40\%	108,961	58.60\%	77,609	42.45\%	105,196	57.55\%				
138,158	58.13\%	99,504	41.87\%	137,306	58.74\%	96,430	41.26\%				
349,521	53.28\%	306,491	46.72\%	350,169	54.11\%	297,028	45.89\%				
					Court of App	peals (2020)					
	Con	test 1			Conte	st 2			Cont	test 3	
Ives	Ives \%	Johnson	Johnson \%	Henderson	Henderson \%	Lee	Lee \%	Yohalem	Yohalem \%	Montoya	Montoya \%
180,999	58.01\%	131,026	41.99\%	172,970	59.62\%	117,128	40.38\%	178,110	57.31\%	132,665	42.69\%
109,473	42.10\%	150,537	57.90\%	107,443	44.46\%	134,239	55.54\%	107,652	41.52\%	151,629	58.48\%
173,540	55.64\%	138,364	44.36\%	170,134	58.76\%	119,403	41.24\%	170,853	54.99\%	139,855	45.01\%
464,012	52.49\%	419,927	47.51\%	450,547	54.86\%	370,770	45.14\%	456,615	51.84\%	424,149	48.16\%
					Court of App	peals (2018)					
	Con	test 2			Conte	st 3			Cont	test 4	
Medina	Medina \%	Bohnhoff	Bohnhoff \%	Zamora	Zamora	Kiehne	Kiehne \%	Duffy	Duffy \%	Gallegos	Gallegos \%
146,482	60.47\%	95,763	39.53\%	147,843	61.12\%	94,036	38.88\%	140,087	58.22\%	100,515	41.78\%
95,879	48.90\%	100,186	51.10\%	94,612	48.22\%	101,579	51.78\%	89,479	45.71\%	106,287	54.29\%
149,068	62.42\%	89,732	37.58\%	148,516	62.28\%	89,939	37.72\%	137,956	57.97\%	100,012	42.03\%
391,429	57.81\%	285,681	42.19\%	390,971	57.79\%	285,554	42.21\%	367,522	54.50\%	306,814	45.50\%

DISTRICT	General Election Turnout (2022)							
	Registered Dems	\% Dem	Registered GOP	\% GOP	Registered Other	\% Other	Turnout	Turnout \%
1	215,193	46.5\%	130,069	28.1\%	117,774	25.4\%	255,415	55.16\%
2	155,602	36.8\%	159,890	37.8\%	106,982	25.3\%	200,730	47.51\%
3	231,636	48.6\%	133,952	28.1\%	110,923	23.3\%	258,609	54.27\%
Statewide	602,431	44.2\%	423,911	31.1\%	335,679	24.6\%	714,754	52.48\%
General Election Turnout (2020)								
DISTRICT	Registered Dems	\% Dem	Registered GOP	\% GOP	Registered Other	\% Other	Turnout	Turnout \%
1	216,834	46.9\%	132,125	28.6\%	113,715	24.6\%	329,486	71.21\%
2	159,426	38.2\%	157,924	37.9\%	99,672	23.9\%	271,752	65.16\%
3	234,256	49.8\%	132,512	28.2\%	103,778	22.1\%	326,996	69.49\%
Statewide	610,516	45.2\%	422,561	31.3\%	317,165	23.5\%	928,234	68.75\%
General Election Turnout (2018)								
DISTRICT	Registered Dems	\% Dem	Registered GOP	\% GOP	Registered Other	\% Other	Turnout	Turnout \%
1	201,127	46.2\%	123,884	28.5\%	110,078	25.3\%	251,543	57.81\%
2	154,587	40.0\%	138,844	35.9\%	92,986	24.1\%	202,494	52.40\%
3	222,608	50.6\%	120,201	27.3\%	97,212	22.1\%	247,617	56.27\%
Statewide	578,322	45.8\%	382,929	30.4\%	300,276	23.8\%	701,654	55.62\%
General Election Turnout (2016)								
DISTRICT	Registered Dems	\% Dem	Registered GOP	\% GOP	Registered Other	\% Other	Turnout	Turnout \%
1	216,369	46.4\%	138,961	29.8\%	111,091	23.8\%	287,261	61.59\%
2	158,425	41.2\%	138,785	36.1\%	87,570	22.8\%	235,844	61.29\%
3	225,015	51.4\%	122,165	27.9\%	91,001	20.8\%	280,968	64.12\%
Statewide	599,809	46.5\%	399,911	31.0\%	289,662	22.5\%	804,073	62.36\%
General Election Turnout (2014)								
DISTRICT	Registered Dems	\% Dem	Registered GOP	\% GOP	Registered Other	\% Other	Turnout	Turnout \%
1	207,352	45.5\%	140,140	30.8\%	107,814	23.7\%	180,799	39.71\%
2	166,134	42.4\%	138,989	35.4\%	87,106	22.2\%	150,459	38.36\%
3	227,055	51.6\%	122,196	27.8\%	90,858	20.6\%	188,195	42.76\%
Statewide	600,541	46.6\%	401,325	31.2\%	285,778	22.2\%	519,453	40.34\%
General Election Turnout (2012)								
DISTRICT	Registered Dems	\% Dem	Registered GOP	\% GOP	Registered Other	\% Other	Turnout	Turnout \%
1	205,968	46.2\%	139,933	31.4\%	100,004	22.4\%	283,223	63.52\%
2	165,527	43.5\%	135,642	35.6\%	79,360	20.9\%	231,132	60.74\%
3	224,745	52.4\%	120,415	28.1\%	83,732	19.5\%	272,201	63.47\%
Statewide	596,240	47.5\%	395,990	31.5\%	263,096	21.0\%	786,556	62.66\%

Autobound EDGE - Compactness Report

Plan Name: Congress:NM_Congress_2011
For more information on compactness calculations Click Here

Compactness measure: Polsby-Popper						
District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value	
1	4,607	467	17,334	241	0.27	
2	71,903	1,497	178,265	951	0.40	
3	45,082	1,220	118,465	753	0.38	

Most Compact: 0.4 For District: 2
Least Compact: 0.27 For District: 1

Compactness measure: Schwartzberg					
District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	4,607	467	17,334	241	0.52
2	71,903	1,497	178,265	951	0.64
3	45,082	1,220	118,465	753	0.62

Most Compact: 0.64 For District: 2
Least Compact: 0.52 For District: 1
Compactness measure: Reock Score

District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	4,607	467	17,334	241	0.37
2	71,903	1,497	178,265	951	0.55
3	45,082	1,220	118,465	753	0.37

Most Compact: 0.55 For District: 2
Least Compact: 0.37 For District: 1
Compactness measure: Length-Width

District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	4,607	467	17,334	241	1.59
2	71,903	1,497	178,265	951	1.50
3	45,082	1,220	118,465	753	2.07

Most Compact: 2.07 For District: 3
Least Compact: 1.5 For District: 2

Compactness measure: Convex Hull					
District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	4,607	467	17,334	241	0.71
2	71,903	1,497	178,265	951	0.85
3	45,082	1,220	118,465	753	0.79

Most Compact: 0.85 For District: 2 Least Compact: 0.71 For District: 1

New Mexico - District Map of Congressional Legislature Passed Plan (SB1)

NM_PassedSB1_Matrix_poli_formatted.xlsx Deviations

	A	B	C	D	E	F	G
1	DISTRICT	TAPERSONS	Target	Raw Dev.	\% Dev.	POPTOT	
2	01	705,832	705,841	(9)	0.0\%	705,832	
3	02	705,846	705,841	5	0.0\%	705,846	
4	03	705,844	705,841	3	0.0\%	705,844	
5							
6	STATE TOT	2,117,522					
7							
8	Total Dev			14	0.0020\%		
9	Highest			5	0.0008\%		
10	Lowest			(9)	-0.0012\%		
11							
12							

	Total Population				Racial Demographics as Percent of Total Population						Voting Age Population Adult VAP \%		Racial Demographics as Percent of Voting Population					
DISTRICT	All Persons	Target	Dev.	Difference	NH White	NH Black	NH Native	NH Asian	Hispanic	Minority			NH White	NH Black	NH Native	NH Asian	Hispanic	Minority
1	705,832	705,841	0.00\%	-9	45.53\%	2.42\%	4.15\%	2.76\%	40.89\%	54.47\%	564,033	79.9\%	49.39\%	2.43\%	3.92\%	2.85\%	37.62\%	50.61\%
2	705,846	705,841	0.00\%V\|	5	29.43\%	1.78\%	5.00\%	1.07\%	59.93\%	70.57\%	534,358	75.7\%	33.25\%	1.88\%	4.89\%	1.17\%	56.14\%	66.75\%
3	705,844	705,841	0.00\%V	3	34.55\%	1.24\%	17.57\%	1.16\%	42.38\%	65.45\%	540,598	76.6\%	38.44\%	1.30\%	16.49\%	1.23\%	39.70\%	61.56\%
Assigned	2,117,522																	
Total Pop	2,117,522																	
Unassigned	0																	

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		POPTOT	PercentTot	POPWH_A	PPopWh ${ }^{\text {A }}$	POPBL_A	PPopBL_A	POPNA A	PPopNA A	POPAS_A	PPopAS_A	POPPI_A	PPopPI A	POPOT_A	PPopOT_A	POPXX	P2plusRace	PopNonW	PPopNonW
2	001		705,832	100.00\%	412,068	58.38\%	20,038	2.84\%	36,502	5.17\%	20,541	2.91\%	937	0.13\%	81,003	11.48\%	134,743	19.09\%	293,764	41.62\%
3	002		705,846	100.00\%	334,776	47.43\%	15,530	2.20\%	43,597	6.18\%	8,297	1.18\%	722	0.10\%	137,786	19.52\%	165,138	23.40\%	371,070	52.57\%
4	003		705,844	100.00\%	332,093	47.05\%	10,336	1.46\%	132,142	18.72\%	8,631	1.22\%	434	0.06\%	99,843	14.15\%	122,365	17.34\%	373,751	52.95\%
5																				
6	STATE TOTAL		2,117,522	100.00\%	1,078,937	50.95\%	45,904	2.17\%	212,241	10.02\%	37,469	1.77\%	2,093	0.10\%	318,632	15.05\%	422,246	19.94\%	1,038,585	49.05\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0		0
12	65\% - 69.9\%					0		0		0		0		0		0		0		0
13	60\% - 64.9\%					0		0		0		0		0		0		0		0
14	55\% - 59.9\%					1		0		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		0		2
16	45\% - 49.9\%					2		0		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		0		1
18	35\% - 39.9\%					0		0		0		0		0		0		0		0
19	30\% - 34.9\%					0		0		0		0		0		0		0		0
20	20\% - 29.9\%					0		0		0		0		0		0		1		0
21	10\%-19.9\%					0		0		1		0		0		3		2		0
22	<10\%					0		3		2		3		3		0		0		0
23																				

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V
1	DISTRICT		POPTOT	PercentTot	POPNHWH A	PPopNHWh A	POPNHBL A	PPopNHBIA	POPNHNA A	PPopNHNA A	POPNHAS A	PPopNHAS A	POPNHPIA	PPopNHPI A	POPNHOT_A	PPopNHOT_A	POPHISP	PPophisp	POPNHXX	PPopNHXX	PopNonW	PPopNonW
2	001		705,832	100.00\%	321,344	45.53\%	17,047	2.42\%	29,297	4.15\%	19,506	2.76\%	632	0.09\%	3,911	0.55\%	288,643	40.89\%	25,452	3.61\%	384,488	54.47\%
3	002		705,846	100.00\%	207,762	29.43\%	12,563	1.78\%	35,320	5.00\%	7,568	1.07\%	491	0.07\%	3,151	0.45\%	423,032	59.93\%	15,959	2.26\%	498,084	70.57\%
4	003		705,844	100.00\%	243,846	34.55\%	8,720	1.24\%	123,993	17.57\%	8,187	1.16\%	328	0.05\%	3,278	0.46\%	299,136	42.38\%	18,356	2.60\%	461,998	65.45\%
6	State total		2,117,522	100.00\%	772,952	36.50\%	38,330	1.81\%	188,610	8.91\%	35,261	1.67\%	1,451	0.07\%	10,340	0.49\%	1,010,811	47.74\%	59,767	2.82\%	1,344,570	63.50\%
7																						
8																						
9	> 90\%					0		0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		,		0		0		
12	65\%-69.9\%					0		0		,		0		0		0		0		0		
13	60\%-64.9\%					0		0		0		0		0		0		0		0		
$\frac{14}{15}$	55\%-59.9\%					0		0				0		0		0		1		0		
$\frac{15}{15}$	50\% -54.9\%					0		0		0		0		0		0		0		0		
16	45\% - 49.9\%					1		0		0		0		0		0		0		0		
$\frac{17}{18}$	40\% - 45.9\%					0		0		0		0		0		0		2		0		
18	35% - 39.9\%					0		0		0		0		0		0		0		0		
19	30\%-34.9\%					1		0				0						0				
$\frac{20}{21}$	$20 \%-29.9 \%$ $10 \%-19.9 \%$					1		0		1		0		0		0		0		0		
22	<10\%					-		,		2		3		3		3		0		3		
23																						

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		POPTOT	PercentTot	POPWH_C	PPopWH_C	POPBL_C	PPopBL_C	POPNA_C	PPopNA_C	POPAS_C	PPopAS_C	POPPI_C	PPopPI_C	POPOT_C	PPopOT_C	PopNonW	PPopNonW
2	001		705,832	120.20\%	541,190	76.67\%	29,771	4.22\%	56,141	7.95\%	29,953	4.24\%	2,555	0.36\%	188,818	26.75\%	164,642	23.33\%
3	002		705,846	124.23\%	494,905	70.12\%	22,640	3.21\%	58,605	8.30\%	13,380	1.90\%	1,961	0.28\%	285,350	40.43\%	210,941	29.88\%
4	003		705,844	118.02\%	449,878	63.74\%	15,998	2.27\%	148,869	21.09\%	12,664	1.79\%	1,496	0.21\%	204,120	28.92\%	255,966	36.26\%
5																		
6	STATE TOTAL		2,117,522	120.82\%	1,485,973	70.18\%	68,409	3.23\%	263,615	12.45\%	55,997	2.64\%	6,012	0.28\%	678,288	32.03\%	631,549	29.82\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					2		0		0		0		0		0		0
12	65\% - 69.9\%					0		0		0		0		0		0		0
13	60\% - 64.9\%					1		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		
15	50\% - 54.9\%					0		0		0		0		0		0		0
16	45\% - 49.9\%					0		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		1		0
18	35\% - 39.9\%					0		0		0		0		,		0		1
19	30\% - 34.9\%					0		0		0		0		0		0		0
20	20\% - 29.9\%					0		0		1		0		0		2		2
21	10\% - 19.9\%					0		0		0		0		0		0		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		POPTOT	PercentTot	POPNHWH_C	PPopNHWH_C	POPNHBL_C	PPopNHBL_C	POPNHNA_C	PPopNHNA_C	POPNHAS_C	PPopNHAS_C	POPNHPIC	PPopNHPIC	POPNHOT_C	PPopNHOT_C	POPHISP	PPopHisp	PopNonW	PPopNonW
2	001		705,832	103.85\%	344,728	48.84\%	22,948	3.25\%	39,323	5.57\%	26,165	3.71\%	1,714	0.24\%	9,504	1.35\%	288,643	40.89\%	361,104	51.16\%
3	002		705,846	102.42\%	222,355	31.50\%	16,364	2.32\%	42,124	5.97\%	10,853	1.54\%	1,300	0.18\%	6,867	0.97\%	423,032	59.93\%	483,491	68.50\%
4	003		705,844	102.76\%	260,771	36.94\%	12,253	1.74\%	133,238	18.88\%	11,231	1.59\%	1,045	0.15\%	7,676	1.09\%	299,136	42.38\%	445,073	63.06\%
5																				
6	STATE TOTAL		2,117,522	103.01\%	827,854	39.10\%	51,565	2.44\%	214,685	10.14\%	48,249	2.28\%	4,059	0.19\%	24,047	1.14\%	1,010,811	47.74\%	1,289,668	60.90\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		
13	60\% -64.9\%					0		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		0		0		0		1		
15	50\% - 54.9\%					0		0		0		0		0		0		0		
16	45\% - 49.9\%					1		0		0		0		0		0		0		
17	40\% - 45.9\%					0		0		0		0		0		0		2		
18	35\% - 39.9\%					1		0		0		0		0		0		0		0
19	30\% - 34.9\%					1		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		0		
21	10\% - 19.9\%							0		1		0		0		0		0		
22	<10\%					0		3		2		3		3		,		0		0
23																				

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		POPTOT	PercentTot	POPWH_A	PPopWH_A	POPBL_W	PPopBL_W	POPNA_W	PPopNA_W	POPAS_W	PPopAS_W	POPPI_W	PPopPI_W	POPOT_W	PPopOT_W	PopNonW	PPopNonW
2	001		705,832	82.54\%	412,068	58.38\%	22,829	3.23\%	39,746	5.63\%	22,027	3.12\%	1,478	0.21\%	84,418	11.96\%	293,764	41.62\%
3	002		705,846	78.05\%	334,776	47.43\%	17,672	2.50\%	46,336	6.56\%	9,396	1.33\%	1,260	0.18\%	141,466	20.04\%	371,070	52.57\%
4	003		705,844	83.99\%	332,093	47.05\%	12,103	1.71\%	135,356	19.18\%	9,398	1.33\%	903	0.13\%	103,006	14.59\%	373,751	52.95\%
5																		
6	STATE TOTAL		2,117,522	81.53\%	1,078,937	50.95\%	52,604	2.48\%	221,438	10.46\%	40,821	1.93\%	3,641	0.17\%	328,890	15.53\%	1,038,585	49.05\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0
12	65\%-69.9\%					0		0		0		0		0		0		0
13	60\% - 64.9%					0		0		0		0		0		0		0
14	55\% - 59.9\%					1		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		2
16	45\% - 49.9\%					2		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		1
18	$35 \%-39.9 \%$					0		0		0		0		0		0		0
19	30\% - 34.9\%					0		0		0		0		0		0		0
20	20\% - 29.9%					0		0		0		0		0		1		0
21	10\% - 19.9\%					0		0		1		0		0		2		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		VAPTOT	PercentTot	VAPWH_A	PVAPWH_A	VAPBL_A	PVAPBL_A	VAPNA_A	PVAPNA A	VAPAS_A	PVAPAS_A	VAPPI_A	PVAPPI_A	VAPOT_A	PVAPOT_A	VAPXX	PVAPXX	PopNonW	PPopNonW
2	001		564,033	100.00\%	342,797	60.78\%	15,245	2.70\%	27,052	4.80\%	16,696	2.96\%	725	0.13\%	63,047	11.18\%	98,471	17.46\%	221,236	39.22\%
3	002		534,358	100.00\%	264,493	49.50\%	11,436	2.14\%	31,841	5.96\%	6,731	1.26\%	535	0.10\%	100,520	18.81\%	118,802	22.23\%	269,865	50.50\%
4	003		540,598	100.00\%	268,887	49.74\%	7,763	1.44\%	94,170	17.42\%	6,951	1.29\%	350	0.06\%	73,924	13.67\%	88,553	16.38\%	271,711	50.26\%
5																				
6	STATE TOTAL		1,638,989	100.00\%	876,177	53.46\%	34,444	2.10\%	153,063	9.34\%	30,378	1.85\%	1,610	0.10\%	237,491	14.49\%	305,826	18.66\%	762,812	46.54\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					1		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		0		0		0		0		
15	50\% - 54.9\%					0		0		0		0		0		0		0		
16	45\% - 49.9\%					2		0		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		0		
18	35\% - 39.9\%					0		0		0		0		0		0		0		
19	30\% - 34.9\%					0		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		,		1		
21	10\% - 19.9\%					0		0		1		0		0		3		,		
22	<10\%					0		3				3		3		0		0		0
23																				

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		VAPTOT	PercentTot	VAPWH_C	PVAPWH_C	VAPBL_C	PVAPBL_C	VAPNA_C	PVAPNA_C	VAPAS_C	PVAPAS_C	VAPPI_C	PVAPPI_C	VAPOT_C	PVAPOT_C	PopNonW	PPopNonW
2	001		564,033	118.31\%	437,571	77.58\%	20,639	3.66\%	40,712	7.22\%	22,125	3.92\%	1,748	0.31\%	144,497	25.62\%	126,462	22.42\%
3	002		534,358	122.92\%	380,019	71.12\%	15,151	2.84\%	42,357	7.93\%	9,810	1.84\%	1,383	0.26\%	208,102	38.94\%	154,339	28.88\%
4	003		540,598	116.94\%	354,574	65.59\%	10,632	1.97\%	105,408	19.50\%	9,287	1.72\%	1,073	0.20\%	151,203	27.97\%	186,024	34.41\%
5																		
6	STATE TOTAL		1,638,989	119.36\%	1,172,164	71.52\%	46,422	2.83\%	188,477	11.50\%	41,222	2.52\%	4,204	0.26\%	503,802	30.74\%	466,825	28.48\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					2		0		0		0		0		0		0
12	65\% - 69.9\%					1		0		0		0		0		0		0
13	60\% - 64.9\%					0		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		0
16	45\% - 49.9\%					0		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		0
18	35\% - 39.9\%					0		0		0		0		0		1		0
19	30\% - 34.9\%					0		0		0		0		0		0		1
20	20\% - 29.9\%					0		0		0		0		0		2		2
21	10\% - 19.9\%					0		0		1		0		0		0		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E E	- F	G	H	-	J ${ }^{\text {J }}$,	L	M	N	O	P P	Q	R	\| S	T
1	DISTRICT		VAPTOT	PercentTot	VAPNHWH_C	PVAPNHWH C	VAPNHBL_C	PVAPNHBL C	VAPNHNA C	PVAPNHNA C	VAPNHAS_C	PVAPNHAS C	VAPNHPIC	PVAPNHPI_C	VAPNHOT_C	PVAPNHOT_C	VAPHISP	PVAPHisp	PopNonW	PPopNonW
2	001		564,033	103.35\%	295,026	52.31\%	17,291	3.07\%	29,492	5.23\%	20,189	3.58\%	1,271	0.23\%	7,516	1.33\%	212,166	37.62\%	269,007	47.69\%
3	002		534,358	102.28\%	188,201	35.22\%	12,351	2.31\%	31,267	5.85\%	8,409	1.57\%	1,002	0.19\%	5,294	0.99\%	299,999	56.14\%	346,157	64.78\%
4	003		540,598	102.46\%	219,542	40.61\%	8,973	1.66\%	95,585	17.68\%	8,474	1.57\%	794	0.15\%	5,943	1.10\%	214,599	39.70\%	321,056	59.39\%
5																				
6	STATE TOTAL		1,638,989	102.71\%	702,769	42.88\%	38,615	2.36\%	156,344	9.54\%	37,072	2.26\%	3,067	0.19\%	18,753	1.14\%	726,764	44.34\%	936,220	57.12\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		,		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					0		0		0		0		0		0		,		
14	55\% - 59.9\%					0		0		0		0		0		0		1		
15	50\% - 54.9\%					1		0		0		0		0		0		0		
16	45\%-49.9\%					0		0		0		0		0		0		0		
17	40\% - 45.9\%					1		0		0		-		0		0		0		0
18	35\% - 39.9\%					1		0		0		0		0		0		2		
19	30\% - 34.9\%					0		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		0		
21	10\% - 19.9\%					0		0		1		0		0		0		0		
	<10\%					0		3		2		3		3		3		0		
23																				

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		VAPTOT	PercentTot	VAPWH_A	PVAPWH_A	VAPBL_W	PVAPBL_W	VAPNA_W	PVAPNA_W	VAPAS_W	PVAPAS_W	VAPPI_W	PVAPPI_W	VAPOT_W	PVAPOT_W	PopNonW	PPopNonW
2	001		564,033	83.88\%	342,797	60.78\%	16,918	3.00\%	29,186	5.17\%	17,652	3.13\%	1,124	0.20\%	65,421	11.60\%	221,236	39.22\%
3	002		534,358	79.02\%	264,493	49.50\%	12,647	2.37\%	33,718	6.31\%	7,501	1.40\%	942	0.18\%	102,923	19.26\%	269,865	50.50\%
4	003		540,598	84.70\%	268,887	49.74\%	8,645	1.60\%	96,202	17.80\%	7,470	1.38\%	691	0.13\%	76,015	14.06\%	271,711	50.26\%
5																		
6	STATE TOTAL		1,638,989	82.57\%	876,177	53.46\%	38,210	2.33\%	159,106	9.71\%	32,623	1.99\%	2,757	0.17\%	244,359	14.91\%	762,812	46.54\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0
12	65\% - 69.9\%					0		0		0		0		0		0		0
13	60\% - 64.9%					1		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		2
16	45\% - 49.9\%					2		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		0
18	35\% - 39.9\%					0		0		0		0		0		0		1
19	30\% - 34.9\%					0		0		0		0		0		0		0
20	20\% - 29.9%					0		0		0		0		0		0		0
21	10\%-19.9\%					0		0		1		0		0		3		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	- 1	J	K	L	M	N	0	\| P	Q	R	S	T
1	DISTRICT		VAPTOT	PercentTot	VAPNHWH_A	PVAPNHWH A	VAPNHBL_W	PVAPNHBL W	VAPNHNA_W	PVAPNHNA W	VAPNHAS W	PVAPNHAS W	VAPNHPI_W	PVAPNHPI W	VAPNHOT_W	PVAPNHOT W	VAPHISP	PVAPHisp	PopNonW	PPopNonW
2	001		564,033	97.34\%	278,556	49.39\%	14,614	2.59\%	22,879	4.06\%	16,612	2.95\%	800	0.14\%	3,384	0.60\%	212,166	37.62\%	285,477	50.61\%
3	002		534,358	98.21\%	177,682	33.25\%	10,615	1.99\%	26,549	4.97\%	6,690	1.25\%	665	0.12\%	2,611	0.49\%	299,999	56.14\%	356,676	66.75\%
4	003		540,598	98.01\%	207,824	38.44\%	7,554	1.40\%	89,697	16.59\%	6,971	1.29\%	510	0.09\%	2,681	0.50\%	214,599	39.70\%	332,774	61.56\%
5																				
6	STATE TOTAL		1,638,989	97.84\%	664,062	40.52\%	32,783	2.00\%	139,125	8.49\%	30,273	1.85\%	1,975	0.12\%	8,676	0.53\%	726,764	44.34\%	974,927	59.48%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		1
13	60\% - 64.9\%					0		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		0		0		0		1		
15	50\% - 54.9\%					0		0		0		0		0		0		0		
16	45\% - 49.9\%					1		0		0		0		0		0				0
17	40\% - 45.9\%					0		0		0		0		0		0		0		
18	35\% - 39.9\%					1		0		0		0		0		0		2		
19	30\% - 34.9\%					1		,		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		0		
21	10\% - 19.9\%					0		0		1		0		0		0		0		
$\frac{22}{23}$	<10\%					0		,		2		3		3		,		0		0

NM_PassedSB1_Matrix_poli_formatted.xlsx Statewide Races

US Senate															
2020				2018 (not in index)				2014				2012			
Lujan	Lujan \%	Ronchetti	Ronchetti \%	Heinrich	Heinrich \%	Rich	Rich \%	Udall	Udall \%	Weh	Weh \%	Heinrich	Heinrich \%	Wilson	Wilson \%
185,366	53.28\%	162,513	46.72\%	147,795	64.33\%	81,945	35.67\%	106,561	53.02\%	94,425	46.98\%	148,821	51.21\%	141,809	48.79\%
131,557	51.68\%	122,987	48.32\%	102,400	61.80\%	63,300	38.20\%	74,008	53.81\%	63,537	46.19\%	111,373	54.07\%	94,622	45.93\%
157,539	54.23\%	132,980	45.77\%	126,808	65.25\%	67,532	34.75\%	105,848	59.80\%	71,144	40.20\%	135,528	54.12\%	114,885	45.88\%
474,462	53.13\%	418,480	46.87\%	377,003	63.92\%	212,777	36.08\%	286,417	55.56\%	229,106	44.44\%	395,722	52.97\%	351,316	47.03\%
Attorney General															
2022 (not in index)				2018 (not in index)				2014							
Torrez	Torrez \%	Gay	Gay \%	Balderas	Balderas \%	Hendricks	Hendricks \%	Balderas	Balderas \%	Riedel	Riedel \%				
158,167	56.47\%	121,911	43.53\%	172,309	66.29\%	87,621	33.71\%	113,715	57.53\%	83,953	42.47\%				
99,655	51.77\%	92,858	48.23\%	114,167	62.37\%	68,877	37.63\%	74,937	55.38\%	60,366	44.62\%				
130,720	56.85\%	99,230	43.15\%	141,074	65.34\%	74,828	34.66\%	106,358	61.36\%	66,990	38.64\%				
388,542	55.31\%	313,999	44.69\%	427,550	64.89\%	231,326	35.11\%	295,010	58.27\%	211,309	41.73\%				
Secretary of State				Auditor											
2014				2022 (not in index)				2018				2014			
Oliver	Oliver \%	Duran	Duran \%	Maestas	Maestas \%	Sanchez	Sanchez \%	Colon Colon \%		Johnson Johnson \%		Keller Keller \%		Aragon Aragon \%	
97,664	49.17\%	100,967	50.83\%	161,190	62.89\%	95,121	37.11\%	155,481	57.32\%	115,762	42.68\%	106,342	54.67\%	88,175	45.33\%
61,689	45.53\%	73,809	54.47\%	103,286	58.72\%	72,620	41.28\%	107,801	56.34\%	83,536	43.66\%	68,040	51.11\%	65,083	48.89\%
86,168	49.66\%	87,362	50.34\%	135,298	63.44\%	77,955	36.56\%	132,426	58.90\%	92,416	41.10\%	96,010	56.22\%	74,780	43.78\%
245,521	48.36\%	262,138	51.64\%	399,774	61.94\%	245,696	38.06\%	395,708	57.56\%	291,714	42.44\%	270,392	54.25\%	228,038	45.75\%
Land Commissoner															
2022 (not in index)				2018				2014							
Richard	Richard \%	Byrd	Byrd \%	Richard	Richard \%	Lyons	Lyons \%	Powell	Powell \%	Dunn	Dunn \%				
153,829	55.80\%	121,833	44.20\%	137,390	53.56\%	119,128	46.44\%	93,466	47.98\%	101,326	52.02\%				
96,861	51.17\%	92,429	48.83\%	95,913	53.30\%	84,031	46.70\%	63,478	47.57\%	69,950	52.43\%				
128,876	57.17\%	96,553	42.83\%	119,032	55.82\%	94,220	44.18\%	92,403	53.99\%	78,740	46.01\%				
379,566	54.98\%	310,815	45.02\%	352,335	54.23\%	297,379	45.77\%	249,347	49.93\%	250,016	50.07\%				

NM_PassedSB1_Matrix_poli_formatted.xlsx

 Judicial

NM_PassedSB1_Matrix_poli_formatted.xIsx Judicial

Court of Appeals (2022)											
Contest 1				Contest 2							
Baca	Baca \%	Johnson	Johnson \%	Wray	Wray \%	Lee	Lee \%				
140,478	53.92\%	120,036	46.08\%	141,536	54.81\%	116,701	45.19\%				
89,338	49.70\%	90,416	50.30\%	89,828	50.68\%	87,409	49.32\%				
119,705	55.48\%	96,039	44.52\%	118,805	56.11\%	92,918	43.89\%				
349,521	53.28\%	306,491	46.72\%	350,169	54.11\%	297,028	45.89\%				
					Court of Appe	Is (2020)					
	Con	test 1			Contest				Cont	st 3	
Ives	Ives \%	Johnson	Johnson \%	Henderson	Henderson \%	Lee	Lee \%	Yohalem	Yohalem \%	Montoya	Montoya \%
184,823	53.77\%	158,919	46.23\%	176,665	55.26\%	143018	44.74\%	182,468	53.30\%	159,901	46.70\%
128,244	50.57\%	125,338	49.43\%	124,906	53.16\%	110069	46.84\%	125,857	49.75\%	127,124	50.25\%
150,945	52.66\%	135,670	47.34\%	148,976	55.87\%	117683	44.13\%	148,290	51.96\%	137,124	48.04\%
464,012	52.49\%	419,927	47.51\%	450,547	54.86\%	370,770	45.14\%	456,615	51.84\%	424,149	48.16\%
					Court of Appe	eals (2018)					
	Con	test 2			Contest				Cont	est 4	
Medina	Medina \%	Bohnhoff	Bohnhoff \%	Zamora	Zamora	Kiehne	Kiehne \%	Duffy	Duffy \%	Gallegos	Gallegos \%
149,774	56.17\%	116,862	43.83\%	151,067	56.73\%	115,243	43.27\%	144,276	54.41\%	120,875	45.59\%
107,863	57.12\%	80,957	42.88\%	106,807	56.54\%	82,108	43.46\%	100,222	53.23\%	88,047	46.77\%
133,792	60.36\%	87,862	39.64\%	133,097	60.14\%	88,203	39.86\%	123,024	55.69\%	97,892	44.31\%
391,429	57.81\%	285,681	42.19\%	390,971	57.79\%	285,554	42.21\%	367,522	54.50\%	306,814	45.50\%

DISTRICT	General Election Turnout (2022)							
	Registered Dems	\% Dem	Registered GOP	\% GOP	Registered Other	\% Other	Turnout	Turnout \%
1	213,837	42.9\%	160,193	32.1\%	124,422	25.0\%	284,832	57.14\%
2	177,613	42.9\%	128,006	30.9\%	108,412	26.2\%	196,107	47.37\%
3	210,981	46.9\%	135,712	30.2\%	102,845	22.9\%	233,815	52.01\%
Statewide	602,431	44.2\%	423,911	31.1\%	335,679	24.6\%	714,754	52.48\%
General Election Turnout (2020)								
DISTRICT	Registered Dems	\% Dem	Registered GOP	\% GOP	Registered Other	\% Other	Turnout	Turnout \%
1	215,022	43.3\%	162,700	32.7\%	119,215	24.0\%	360,840	72.61\%
2	180,155	44.4\%	124,949	30.8\%	101,071	24.9\%	266,081	65.51\%
3	215,339	48.2\%	134,912	30.2\%	96,879	21.7\%	301,313	67.39\%
Statewide	610,516	45.2\%	422,561	31.3\%	317,165	23.5\%	928,234	68.75\%
General Election Turnout (2018)								
DISTRICT	Registered Dems	\% Dem	Registered GOP	\% GOP	Registered Other	\% Other	Turnout	Turnout \%
1	199,139	42.8\%	151,906	32.6\%	114,748	24.6\%	276,365	59.33\%
2	170,878	45.6\%	109,381	29.2\%	94,239	25.2\%	195,407	52.18\%
3	208,305	49.5\%	121,642	28.9\%	91,289	21.7\%	229,882	54.57\%
Statewide	578,322	45.8\%	382,929	30.4\%	300,276	23.8\%	701,654	55.62\%
General Election Turnout (2016)								
DISTRICT	Registered Dems	\% Dem	Registered GOP	\% GOP	Registered Other	\% Other	Turnout	Turnout \%
1	213,296	43.1\%	167,200	33.8\%	114,880	23.2\%	311,989	62.98\%
2	174,210	46.6\%	110,207	29.5\%	89,046	23.8\%	227,360	60.88\%
3	212,303	50.5\%	122,504	29.1\%	85,736	20.4\%	264,724	62.95\%
Statewide	599,809	46.5\%	399,911	31.0\%	289,662	22.5\%	804,073	62.36\%
General Election Turnout (2014)								
DISTRICT	Registered Dems	\% Dem	Registered GOP	\% GOP	Registered Other	\% Other	Turnout	Turnout \%
1	206,001	42.5\%	167,817	34.6\%	110,555	22.8\%	201,268	41.55\%
2	176,723	47.2\%	109,997	29.4\%	88,001	23.5\%	138,862	37.06\%
3	217,817	50.8\%	123,511	28.8\%	87,222	20.4\%	179,323	41.84\%
Statewide	600,541	46.6\%	401,325	31.2\%	285,778	22.2\%	519,453	40.34\%
General Election Turnout (2012)								
DISTRICT	Registered Dems	\% Dem	Registered GOP	\% GOP	Registered Other	\% Other	Turnout	Turnout \%
1	205,260	43.2\%	167,205	35.2\%	102,849	21.6\%	303,826	63.92\%
2	174,680	48.2\%	107,608	29.7\%	80,340	22.2\%	219,263	60.46\%
3	216,300	51.8\%	121,177	29.0\%	79,907	19.1\%	263,467	63.12\%
Statewide	596,240	47.5\%	395,990	31.5\%	263,096	21.0\%	786,556	62.66\%

Autobound EDGE - Compactness Report

Plan Name: Congress:NM_Congress_PassedSB1
For more information on compactness calculations Click Here

Compactness measure: Polsby-Popper						
District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value	
1	17,590	858	58,575	470	0.30	
2	51,554	1,468	171,402	805	0.30	
3	52,449	1,571	196,342	812	0.27	

Most Compact: 0.3 For District: 2
Least Compact: 0.27 For District: 3

Compactness measure: Schwartzberg					
District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	17,590	858	58,575	470	0.55
2	51,554	1,468	171,402	805	0.55
3	52,449	1,571	196,342	812	0.52

Most Compact: 0.55 For District: 2
Least Compact: 0.52 For District: 3

Compactness measure: Reock Score

District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	17,590	858	58,575	470	0.48
2	51,554	1,468	171,402	805	0.39
3	52,449	1,571	196,342	812	0.33

Most Compact: 0.48 For District: 1
Least Compact: 0.33 For District: 3
Compactness measure: Length-Width

District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	17,590	858	58,575	470	1.32
2	51,554	1,468	171,402	805	1.49
3	52,449	1,571	196,342	812	1.40

Most Compact: 1.49 For District: 2
Least Compact: 1.32 For District: 1
Compactness measure: Convex Hull

District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	17,590	858	58,575	470	0.77
2	51,554	1,468	171,402	805	0.75
3	52,449	1,571	196,342	812	0.67

Most Compact: 0.77 For District: 1
Least Compact: 0.67 For District: 3

New Mexico - District Map of Congressional Commission "A" Concept

NM_PlanA_Matrix_poli_formatted.xlsx
DevSum

NM_PlanA_Matrix_poli_formatted.xlsx
Deviations

	A	B	C	D	E	F	G
1	DISTRICT	TAPERSONS	Target	Raw Dev.	\% Dev.	POPTOT	
2	01	705,845	705,841	4	0.0\%	705,832	
3	02	705,840	705,841	(1)	0.0\%	705,846	
4	03	705,837	705,841	(4)	0.0\%	705,844	
5							
6	STATE TOT	2,117,522					
7							
8	Total Dev			8	0.0011\%		
9	Highest			4	0.0006\%		
10	Lowest			(4)	-0.0005\%		
11							
12							

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		POPTOT	PercentTot	POPWH A	PPopWh_A	POPBL_A	PPopBL_A	POPNA_A	PPopNA A	POPAS_A	PPopAS A	POPPI_A	PPopPI A	POPOT_A	PPopot_A	POPXX	P2plusRace	PopNonW	PPopNonW
2	001		705,845	100.00\%	374,395	53.04\%	21,470	3.04\%	35,434	5.02\%	20,417	2.89\%	833	0.12\%	105,631	14.97\%	147,665	20.92\%	331,450	46.96\%
3	002		705,840	100.00\%	365,796	51.82\%	14,021	1.99\%	33,534	4.75\%	7,340	1.04\%	652	0.09\%	130,002	18.42\%	154,495	21.89\%	340,044	48.18\%
4	003		705,837	100.00\%	338,746	47.99\%	10,413	1.48\%	143,273	20.30\%	9,712	1.38\%	608	0.09\%	82,999	11.76\%	120,086	17.01\%	367,091	52.01\%
5																				
6	STATE TOTAL		2,117,522	100.00\%	1,078,937	50.95\%	45,904	2.17\%	212,241	10.02\%	37,469	1.77\%	2,093	0.10\%	318,632	15.05\%	422,246	19.94\%	1,038,585	49.05\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\%-89.9\%					0		0		0		0		0		0		0		
11	70\% - 79.9%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					0		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		0		0		0		0		
15	50\% - 54.9\%					2		0		0		0		0		0		0		
16	45\% - 49.9\%					1		0		0		0		0		0		0		
17	40\% - 45.9\%					0		0		0		0		0		,		0		
18	35\% - 39.9\%					0		0		0		0		0		0		0		
19	30\% - 34.9%					0		0		0		0		0		0		0		
20	20\% - 29.9%					0		0		1		0		0		0		2		
21	10\% - 19.9\%					0		0		0		0		0		,		1		
22	<10\%					0		3		2		,		3		0		0		
23																				

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	V
$\underline{1}$	DISTRICT		POPTOT	PercentTot	POPNHWH A	PPopNHWh A	POPNHBL_A	PPopNHBIA	POPNHNA A	PPopNHNA A	POPNHAS A	PPopNHAS A	POPNHPIA	PPopNHPI A	POPNHOT_A	PPopNHOT_A	POPHISP	PPophisp	POPNHXX	PPopNHXX	PopNonW	PPopNonW
$\frac{2}{2}$	001		705,845	100.00\%	271,140	38.41\%	17,983	2.55\%	27,698	3.92\%	19,377	2.75\%	580	0.08\%	3,696	0.52\%	342,484	48.52\%	22,887	3.24\%	434,705	61.59\%
3	002		705,840	100.00\%	247,317	35.04\%	11,497	1.63\%	26,129	3.70\%	6,754	0.96\%	446	0.06\%	3,350	0.47\%	393,658	55.77\%	16,689	2.36\%	458,523	64.96\%
4	-003		705,837	100.00\%	254,495	36.06\%	8,850	1.25\%	134,783	19.10\%	9,130	1.29\%	425	0.06\%	3,294	0.47\%	274,669	38.91\%	20,191	2.86\%	451,342	63.94\%
5	ATE TOTAL		2117522	100.00\%																		
7	sate total		2,117,522										1,451	0.07\%	10,340	0.49\%	1,010,811	47.74\%	59,67	2.82\%	1,344,570	
8																						
9	> 90\%					0		0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		0		
13	60\%-64.9\%					0		0		0		0		0		0		0		0		
$\frac{14}{15}$	55\%-59.9\%					0		0		0		0		0		0		1		0		
15	50\% - 54.9\%					0		0				0		0				0		0		
16	45\% - 49.9\%					0		0		0		0		0		0		1		0		
17	40\% - 45.9\%					0		0		0		0		0		0		0		0		
18	35\%-39.9\%					3		0		0		0		0		0		1		0		
19	30\% - 34.9\%					0		0		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		0		0		
$\frac{21}{22}$	10\% - 19.9\%					0		$\stackrel{1}{0}$		1		0		$\stackrel{1}{0}$		$\stackrel{0}{3}$		0		0		
$\frac{22}{23}$	<10\%					0		3		2				3				0		3		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		POPTOT	PercentTot	POPWH_C	PPopWH_C	POPBL_C	PPopBL_C	POPNA_C	PPopNA_C	POPAS_C	PPopAS_C	POPPI_C	PPopPI_C	POPOT_C	PPopOT_C	PopNonW	PPopNonW
2	001		705,845	122.03\%	516,011	73.11\%	31,349	4.44\%	53,876	7.63\%	29,347	4.16\%	2,347	0.33\%	228,418	32.36\%	189,834	26.89\%
3	002		705,840	122.60\%	516,096	73.12\%	20,371	2.89\%	48,348	6.85\%	11,691	1.66\%	1,750	0.25\%	267,123	37.84\%	189,744	26.88\%
4	003		705,837	117.81\%	453,866	64.30\%	16,689	2.36\%	161,391	22.87\%	14,959	2.12\%	1,915	0.27\%	182,747	25.89\%	251,971	35.70\%
5																		
6	STATE TOTAL		2,117,522	120.82\%	1,485,973	70.18\%	68,409	3.23\%	263,615	12.45\%	55,997	2.64\%	6,012	0.28\%	678,288	32.03\%	631,549	29.82\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					2		0		0		0		0		0		0
12	65\% - 69.9\%					0		0		0		0		0		0		0
13	60\% - 64.9\%					1		0		0		0		0		0		0
14	55\%-59.9\%					0		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		0
16	45\% - 49.9\%					0		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		0
18	35\% - 39.9\%					0		0		0		0		-		1		
19	30\% - 34.9\%					0		0		0		0		0		1		0
20	20\% - 29.9\%					0		0		1		0		0		1		2
21	10\%-19.9\%					0		0		0		0		0		0		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		POPTOT	PercentTot	POPNHWH_C	PPopNHWH_C	POPNHBL_C	PPopNHBL_C	POPNHNA_C	PPopNHNA_C	POPNHAS_C	PPopNHAS_C	POPNHPIC	PPopNHPIC	POPNHOT_C	PPopNHOT_C	POPHISP	PPopHisp	PopNonW	PPopNonW
2	001		705,845	103.47\%	291,941	41.36\%	23,711	3.36\%	36,387	5.16\%	25,589	3.63\%	1,581	0.22\%	8,626	1.22\%	342,484	48.52\%	413,904	58.64\%
3	002		705,840	102.51\%	262,964	37.26\%	14,962	2.12\%	33,771	4.78\%	9,632	1.36\%	1,152	0.16\%	7,432	1.05\%	393,658	55.77\%	442,876	62.74\%
4	003		705,837	103.05\%	272,949	38.67\%	12,892	1.83\%	144,527	20.48\%	13,028	1.85\%	1,326	0.19\%	7,989	1.13\%	274,669	38.91\%	432,888	61.33\%
5																				
6	STATE TOTAL		2,117,522	103.01\%	827,854	39.10\%	51,565	2.44\%	214,685	10.14\%	48,249	2.28\%	4,059	0.19\%	24,047	1.14\%	1,010,811	47.74\%	1,289,668	60.90\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		0
10	80\%-89.9\%					0		0		0		0		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\%-69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					0		0		0		0		0		0		0		2
14	55\%-59.9\%					0		0		0		0		0		0		1		
15	50\% - 54.9\%					0		0		0		0		0		0		0		
16	45\%-49.9\%					0		0		0		0		0		0		1		
17	40\% - 45.9\%					1		0		0		0		0		0		0		
18	35\% - 39.9\%					2		0		0		0		0		0		1		0
19	30\% - 34.9\%					0		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		1		0		0		0		0		0
21	10\% - 19.9\%					0		0		0		0		,		0		0		
22	<10\%					0		3		2		3		3		3		0		0
23																				

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		POPTOT	PercentTot	POPWH_A	PPopWH_A	POPBL_W	PPopBL_W	POPNA_W	PPopNA_W	POPAS_W	PPopAS_W	POPPI_W	PPopPI_W	POPOT_W	PPopOT_W	PopNonW	PPopNonW
2	001		705,845	80.83\%	374,395	53.04\%	24,480	3.47\%	38,893	5.51\%	21,876	3.10\%	1,377	0.20\%	109,487	15.51\%	331,450	46.96\%
3	002		705,840	79.33\%	365,796	51.82\%	15,798	2.24\%	35,759	5.07\%	8,263	1.17\%	1,138	0.16\%	133,175	18.87\%	340,044	48.18\%
4	003		705,837	84.42\%	338,746	47.99\%	12,326	1.75\%	146,786	20.80\%	10,682	1.51\%	1,126	0.16\%	86,228	12.22\%	367,091	52.01\%
5																		
6	STATE TOTAL		2,117,522	81.53\%	1,078,937	50.95\%	52,604	2.48\%	221,438	10.46\%	40,821	1.93\%	3,641	0.17\%	328,890	15.53\%	1,038,585	49.05\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0
12	65\% - 69.9\%					0		0		0		0		0		0		0
13	60\% - 64.9\%					0		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		0
15	50\% - 54.9\%					2		0		0		0		0		0		1
16	45\%-49.9\%					1		0		0		0		0		0		2
17	40\% - 45.9\%					0		0		0		0		0		0		0
18	35\% - 39.9\%					0		0		0		0		0		0		0
19	30\% - 34.9\%					0		0		0		0		0		0		0
20	20\% - 29.9\%					0		0		1		0		0		0		0
21	10\% - 19.9\%					0		0		0		0		0		3		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		VAPTOT	PercentTot	VAPWH_A	PVAPWH_A	VAPBL_A	PVAPBL_A	VAPNA_A	PVAPNA A	VAPAS_A	PVAPAS_A	VAPPI_A	PVAPPI_A	VAPOT_A	PVAPOT_A	VAPXX	PVAPXX	PopNonW	PPopNonW
2	001		557,489	100.00\%	309,133	55.45\%	16,112	2.89\%	26,521	4.76\%	16,601	2.98\%	651	0.12\%	80,380	14.42\%	108,091	19.39\%	248,356	44.55\%
3	002		535,351	100.00\%	289,666	54.11\%	10,503	1.96\%	24,305	4.54\%	5,928	1.11\%	493	0.09\%	94,016	17.56\%	110,440	20.63\%	245,685	45.89\%
4	003		546,149	100.00\%	277,378	50.79\%	7,829	1.43\%	102,237	18.72\%	7,849	1.44\%	466	0.09\%	63,095	11.55\%	87,295	15.98\%	268,771	49.21\%
5																				
6	STATE TOTAL		1,638,989	100.00\%	876,177	53.46\%	34,444	2.10\%	153,063	9.34\%	30,378	1.85\%	1,610	0.10\%	237,491	14.49\%	305,826	18.66\%	762,812	46.54\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					0		0		0		0		0		0		0		
14	55\% - 59.9\%					1		0		0		0		0		0		0		
15	50\% - 54.9\%					2		0		0		0		0		0		0		
16	45\% - 49.9\%					0		0		0		0		0		0		0		
17	40\% - 45.9\%					0		0		0		0		0		0		0		
18	35\% - 39.9\%					0		0		0		0		0		0		0		
19	30% - 34.9\%					0		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		1		0
21	10\% - 19.9\%					0		0		1		0		-		3		2		
22	<10\%					0		3				3		3		0		0		0
23																				

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		VAPTOT	PercentTot	VAPWH_C	PVAPWH_C	VAPBL_C	PVAPBL_C	VAPNA_C	PVAPNA_C	VAPAS_C	PVAPAS_C	VAPPI_C	PVAPPI_C	VAPOT_C	PVAPOT_C	PopNonW	PPopNonW
2	001		557,489	120.25\%	413,295	74.14\%	21,542	3.86\%	39,302	7.05\%	21,826	3.92\%	1,623	0.29\%	172,765	30.99\%	144,194	25.86\%
3	002		535,351	121.22\%	397,335	74.22\%	13,745	2.57\%	34,946	6.53\%	8,587	1.60\%	1,258	0.23\%	193,107	36.07\%	138,016	25.78\%
4	003		546,149	116.63\%	361,534	66.20\%	11,135	2.04\%	114,229	20.92\%	10,809	1.98\%	1,323	0.24\%	137,930	25.26\%	184,615	33.80\%
5																		
6	STATE TOTAL		1,638,989	119.36\%	1,172,164	71.52\%	46,422	2.83\%	188,477	11.50\%	41,222	2.52\%	4,204	0.26\%	503,802	30.74\%	466,825	28.48\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					2		0		0		0		0		0		0
12	65\% - 69.9\%					1		0		0		0		0		0		0
13	60\% - 64.9\%					0		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		0
16	45\% - 49.9\%					0		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		0
18	35\% - 39.9\%					0		0		0		0		0		1		0
19	30\% - 34.9\%					0		0		0		0		0		1		1
20	20\% - 29.9\%					0		0		1		0		0		1		2
21	10\% - 19.9\%					0		0		0		0		0		0		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	,	- F	G	H	- ${ }^{\text {a }}$	1 J -	,	L L	M	N	0	- P -	Q	R	S	T T
1	DISTRICT		VAPTOT	PercentTot	VAPNHWH_C	PVAPNHWH_C	VAPNHBL_C	PVAPNHBL C	VAPNHNA C	PVAPNHNA C	VAPNHAS_C	PVAPNHAS C	VAPNHPIC	PVAPNHPIC	VAPNHOT_C	PVAPNHOT_C	VAPHISP	PVAPHisp P	PopNonW	PPopNonW
2	001		557,489	103.06\%	250,451	44.92\%	17,826	3.20\%	27,585	4.95\%	19,909	3.57\%	1,199	0.22\%	6,814	1.22\%	250,761	44.98\%	307,038	55.08\%
3	002		535,351	102.40\%	221,849	41.44\%	11,398	2.13\%	25,062	4.68\%	7,403	1.38\%	902	0.17\%	5,662	1.06\%	275,908	51.54\%	313,502	58.56\%
4	003		546,149	102.66\%	230,469	42.20\%	9,391	1.72\%	103,697	18.99\%	9,760	1.79\%	966	0.18\%	6,277	1.15\%	200,095	36.64\%	315,680	57.80\%
5																				
6	STATE TOTAL		1,638,989	102.71\%	702,769	42.88\%	38,615	2.36\%	156,344	9.54\%	37,072	2.26\%	3,067	0.19\%	18,753	1.14\%	726,764	44.34\%	936,220	57.12\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9%					0		0		0		0		0		0		0		0
13	60\% - 64.9\%							0		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		0		
15	50\% - 54.9\%					0		0		0		0		0		0		1		
16	45\% - 49.9\%					0		0		0		0		,		0		0		
17	40\% - 45.9\%					3		0		0		0		,		0		1		0
18	35\% - 39.9\%					0		0		0		0		0		0		1		
19	30\% - 34.9\%					0		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		,		0		0		0		0
21	10\% - 19.9\%					0		,		1		0		0		0		0		0
$\frac{22}{23}$	<10\%					0		3		2		3		3		3		0		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		VAPTOT	PercentTot	VAPWH_A	PVAPWH_A	VAPBL_W	PVAPBL_W	VAPNA_W	PVAPNA_W	VAPAS_W	PVAPAS_W	VAPPI_W	PVAPPI_W	VAPOT_W	PVAPOT_W	PopNonW	PPopNonW
2	001		557,489	82.05\%	309,133	55.45\%	17,872	3.21\%	28,779	5.16\%	17,551	3.15\%	1,051	0.19\%	83,007	14.89\%	248,356	44.55\%
3	002		535,351	80.43\%	289,666	54.11\%	11,487	2.15\%	25,891	4.84\%	6,601	1.23\%	862	0.16\%	96,078	17.95\%	245,685	45.89\%
4	003		546,149	85.19\%	277,378	50.79\%	8,851	1.62\%	104,436	19.12\%	8,471	1.55\%	844	0.15\%	65,274	11.95\%	268,771	49.21\%
5																		
6	State total		1,638,989	82.57\%	876,177	53.46\%	38,210	2.33\%	159,106	9.71\%	32,623	1.99\%	2,757	0.17\%	244,359	14.91\%	762,812	46.54\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0
12	65\% - 69.9\%					0		0		0		0		0		0		0
13	60\% - 64.9%					0		0		0		0		0		0		0
14	55\% - 59.9\%					1		0		0		0		0		0		0
15	50\% - 54.9\%					2		0		0		0		0		0		0
16	45\% - 49.9\%					0		0		0		0		0		0		2
17	40\% - 45.9\%					0		0		0		0		0		0		1
18	35\% - 39.9\%					0		0		0		0		0		0		0
19	30\% - 34.9\%					0		0		0		0		0		0		0
20	20\% - 29.9%					0		0		0		0		0		0		0
21	10\%-19.9\%					0		0		1		0		0		3		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	- 1	J	K	L	M	N	0	\| P	Q	R	S	T
1	DISTRICT		VAPTOT	PercentTot	VAPNHWH_A	PVAPNHWH A	VAPNHBL_W	PVAPNHBL W	VAPNHNA_W	PVAPNHNA W	VAPNHAS W	PVAPNHAS W	VAPNHPI_W	PVAPNHPI W	VAPNHOT_W	PVAPNHOT W	VAPHISP	PVAPHisp	PopNonW	PPopNonW
2	001		557,489	97.61\%	235,731	42.28\%	15,270	2.74\%	21,975	3.94\%	16,502	2.96\%	746	0.13\%	3,201	0.57\%	250,761	44.98\%	321,758	57.72\%
3	002		535,351	98.03\%	210,477	39.32\%	9,759	1.82\%	19,469	3.64\%	5,889	1.10\%	611	0.11\%	2,677	0.50\%	275,908	51.54\%	324,874	60.68\%
4	003		546,149	97.90\%	217,854	39.89\%	7,754	1.42\%	97,681	17.89\%	7,882	1.44\%	618	0.11\%	2,798	0.51\%	200,095	36.64\%	328,295	60.11\%
5																				
6	STATE TOTAL		1,638,989	97.84\%	664,062	40.52\%	32,783	2.00\%	139,125	8.49\%	30,273	1.85\%	1,975	0.12\%	8,676	0.53\%	726,764	44.34\%	974,927	59.48%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		0
13	60\% -64.9\%					0		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		0		0		0		,		
15	50\% -54.9\%					0		0		0		0		0		0		1		
16	45\% - 49.9\%					0		0		0		0		0		0		0		
17	40\% - 45.9\%					1		0		0		0		0		0		1		
18	35% - 39.9\%					2		0		0		0		0		0		1		
19	30\% - 34.9\%					0		,		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		0		
21	10\% - 19.9\%					0		0		1		0		0		0		0		
$\frac{22}{23}$	<10\%					0		,		2		3		3		,		0		0

NM_PlanA_Matrix_poli_formatted.xIsx

Statewide Races

Court of Appeals (2022)											
Contest 1				Contest 2							
Baca	Baca \%	Johnson	Johnson \%	Wray	Wray \%	Lee	Lee \%				
136,487	57.49\%	100,904	42.51\%	137,424	58.33\%	98,168	41.67\%				
75,070	41.14\%	107,424	58.86\%	75,914	42.28\%	103,647	57.72\%				
137,964	58.43\%	98,163	41.57\%	136,831	58.97\%	95,213	41.03\%				
349,521	53.28\%	306,491	46.72\%	350,169	54.11\%	297,028	45.89\%				
					Court of Appe	Is (2020)					
	Con	test 1			Contest				Cont	est 3	
Ives	Ives \%	Johnson	Johnson \%	Henderson	Henderson \%	Lee	Lee \%	Yohalem	Yohalem \%	Montoya	Montoya \%
184,219	57.72\%	134,954	42.28\%	175,954	59.33\%	120,601	40.67\%	181,301	57.03\%	136,622	42.97\%
107,004	41.93\%	148,176	58.07\%	104,854	44.20\%	132,397	55.80\%	105,265	41.37\%	149,193	58.63\%
172,789	55.81\%	136,797	44.19\%	169,739	59.04\%	117,772	40.96\%	170,049	55.14\%	138,334	44.86\%
464,012	52.49\%	419,927	47.51\%	450,547	54.86\%	370,770	45.14\%	456,615	51.84\%	424,149	48.16\%
					Court of Appe	Is (2018)					
	Con	test 2			Contest				Cont	est 4	
Medina	Medina \%	Bohnhoff	Bohnhoff \%	Zamora	Zamora	Kiehne	Kiehne \%	Duffy	Duffy \%	Gallegos	Gallegos \%
148,209	60.19\%	98,042	39.81\%	149,670	60.87\%	96,222	39.13\%	141,816	57.98\%	102,775	42.02\%
93,802	48.70\%	98,800	51.30\%	92,543	48.02\%	100,173	51.98\%	87,784	45.65\%	104,515	54.35\%
149,418	62.71\%	88,839	37.29\%	148,758	62.53\%	89,159	37.47\%	137,922	58.09\%	99,524	41.91\%
391,429	57.81\%	285,681	42.19\%	390,971	57.79\%	285,554	42.21\%	367,522	54.50\%	306,814	45.50\%

Autobound EDGE - Compactness Report

Plan Name: Congress:NM_Congress_A
For more information on compactness calculations Click Here

| Compactness measure: | Polsby-Popper | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| District | District Area
 (SQM) | Perimeter
 (Miles) | Area of Circle with
 Same Perimeter | Perimeter of Circle
 with Same Area | Compactness
 Value |
| 1 | 4,376 | 402 | 12,865 | 234 | 0.34 |
| 2 | 65,310 | 1,325 | 139,745 | 906 | 0.47 |
| 3 | 51,907 | 1,314 | 137,379 | 808 | 0.38 |

Most Compact: 0.47 For District: 2
Least Compact: 0.34 For District: 1

Compactness measure: Schwartzberg					
District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	4,376	402	12,865	234	0.58
2	65,310	1,325	139,745	906	0.68
3	51,907	1,314	137,379	808	0.61

Most Compact: 0.68 For District: 2
Least Compact: 0.58 For District: 1
Compactness measure: Reock Score

District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
$\mathbf{1}$	4,376	402	12,865	234	0.42
2	65,310	1,325	139,745	906	0.52
3	51,907	1,314	137,379	808	0.42

Most Compact: 0.52 For District: 2
Least Compact: 0.42 For District: 1
Compactness measure: Length-Width

District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	4,376	402	12,865	234	1.39
2	65,310	1,325	139,745	906	1.50
3	51,907	1,314	137,379	808	2.01

Most Compact: 2.01 For District: 3
Least Compact: 1.39 For District: 1
Compactness measure: Convex Hull

District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	4,376	402	12,865	234	0.75
2	65,310	1,325	139,745	906	0.85
3	51,907	1,314	137,379	808	0.83

Most Compact: 0.85 For District: 2 Least Compact: 0.75 For District: 1

New Mexico - District Map of Congressional Commission "E" Concept

	A	B	C	D	E	F	G
1	DISTRICT	TAPERSONS	Target	Raw Dev.	\% Dev.	POPTOT	
2	01	705,845	705,841	4	0.0\%	705,832	
3	02	705,840	705,841	(1)	0.0\%	705,846	
4	03	705,837	705,841	(4)	0.0\%	705,844	
5							
6	STATE TOT	2,117,522					
7							
8	Total Dev			8	0.0011\%		
9	Highest			4	0.0006\%		
10	Lowest			(4)	-0.0005\%		
11							
12							

Total Population					Racial Demographics as Percent of Total Population						Voting Age Population Adult VAP \%		Racial Demographics as Percent of Voting Population					
DISTRICT	All Persons	Target	Dev.	Difference	NH White	NH Black	NH Native	NH Asian	Hispanic	Minority			NH White	NH Black	NH Native	NH Asian	Hispanic	Minority
1	705,845	705,841	0.00\%	4	38.41\%	2.55\%	3.92\%	2.75\%	48.52\%	61.59\%	557,489	79.0\%	42.28\%	2.57\%	3.81\%	2.86\%	44.98\%	57.72\%
2	705,840	705,841	0.00\% ${ }^{\text {\| }}$	-1	35.04\%	1.63\%	3.70\%	0.96\%	55.77\%	64.96\%	535,351	75.8\%	39.32\%	1.74\%	3.57\%	1.04\%	51.54\%	60.68\%
3	705,837	705,841	0.00\%	-4	36.06\%	1.25\%	19.10\%	1.29\%	38.91\%	63.94\%	546,149	77.4\%	39.89\%	1.30\%	17.76\%	1.37\%	36.64\%	60.11\%
Assigned	2,117,522																	
Total Pop	2,117,522																	
Unassigned	0																	

	A	B	C	D	E	F	G	H	1	\checkmark	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		POPTOT	PercentTot	POPWH_A	PPopWh_A	POPBL_A	PPopBL_A	POPNA_A	PPopNA A	POPAS_A	PPopAS_A	POPPI_A	PPopPI_A	POPOT_A	PPopOT_A	POPXX	P2plusRace	PopNonW	PPopNonW
2	001		705,845	100.00\%	374,395	53.04\%	21,470	3.04\%	35,434	5.02\%	20,417	2.89\%	833	0.12\%	105,631	14.97\%	147,665	20.92\%	331,450	46.96\%
3	002		705,840	100.00\%	365,796	51.82\%	14,021	1.99\%	33,534	4.75\%	7,340	1.04\%	652	0.09\%	130,002	18.42\%	154,495	21.89\%	340,044	48.18\%
	003		705,837	100.00\%	338,746	47.99\%	10,413	1.48\%	143,273	20.30\%	9,712	1.38\%	608	0.09\%	82,999	11.76\%	120,086	17.01\%	367,091	52.01\%
5																				
6	STATE TOTAL		2,117,522	100.00\%	1,078,937	50.95\%	45,904	2.17\%	212,241	10.02\%	37,469	1.77\%	2,093	0.10\%	318,632	15.05\%	422,246	19.94\%	1,038,585	49.05\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					0		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		0		0		0		0		
15	50\% - 54.9\%					2		0		0		0		0		0		0		
16	45\% - 49.9\%					1		0		0		0		0		0		0		
17	40\% - 45.9\%					0		0		0		0		0		0		0		
18	35\% - 39.9\%					0		0		0		0		0		0		0		
19	30\% - 34.9\%					0		0		0		0		0		0		0		
20	20\% - 29.9%					0		0		1		0		0		0		2		
21	10\% - 19.9\%					0		0		0		0		0		3		1		
22	<10\%					0		3		2		3		3		0		0		
23																				

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	\checkmark
1	DISTRICT		POPTOT	PercentTot	POPNHWH A	PPopNHWh A	POPNHBL A	PPopNHBIA	POPNHNA A	PPopNHNA A	POPNHAS A	PPopNHAS A	POPNHPIA	PPopNHPIA	POPNHOT_A	PPopNHOT_A	POPHISP	PPophisp	POPNHXX	PPopNHXX	PopNonW	PPopNonW
$\underline{2}$	001		705,845	100.00\%	271,140	38.41\%	17,983	2.55\%	27,698	3.92\%	19,377	2.75\%	580	0.08\%	3,696	0.52\%	342,484	48.52\%	22,887	3.24\%	434,705	61.59\%
3	002		705,840	100.00\%	247,317	35.04\%	11,497	1.63\%	26,129	3.70\%	6,754	0.96\%	446	0.06\%	3,350	0.47\%	393,658	55.77\%	16,689	2.36\%	458,523	64.96\%
4	003		705,837	100.00\%	254,495	36.06\%	8,850	1.25\%	134,783	19.10\%	9,130	1.29\%	425	0.06\%	3,294	0.47\%	274,669	38.91\%	20,191	2.86\%	451,342	63.94\%
5																						
	STATE TOTAL		2,117,522	100.00\%	772,952	36.50\%	38,330	1.81\%	188,610	8.91\%	35,261	1.67\%	1,451	0.07\%	10,340	0.49\%	1,010,811	47.74\%	59,767	2.82\%	1,344,570	63.50\%
88																						
9	90\%					0		0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		0		0		0		
12	65\% -69.9\%					0		0		0		0		0		0		0		0		
13	60\%-64.9\%					0		0		0		0		0		0		0		0		
$\frac{14}{15}$	55\%-59.9\%					0		0		,		0		0		0		1		0		
15	50\% -54.9\%					0		0		0		0		0		O		0		0		
16	45\% - 49.9\%					0		0		0		0		0		0		1		0		
17	40\% - 45.9\%					0		0		0		0		0		0		0		0		
18	35\%-39.9\%					3		0		0		0		0		0		1		0		
19	30\% - 34.9\%					0		0		,		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		0		0		
21	10\% - 19.9\%					0		0		1		0		0		0		0		,		
$\frac{22}{23}$						0		3						3		3		0		3		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		POPTOT	PercentTot	POPWH_C	PPopWH_C	POPBL_C	PPopBL_C	POPNA_C	PPopNA_C	POPAS_C	PPopAS_C	POPPI_C	PPopPI_C	POPOT_C	PPopOT_C	PopNonW	PPopNonW
2	001		705,845	122.03\%	516,011	73.11\%	31,349	4.44\%	53,876	7.63\%	29,347	4.16\%	2,347	0.33\%	228,418	32.36\%	189,834	26.89\%
3	002		705,840	122.60\%	516,096	73.12\%	20,371	2.89\%	48,348	6.85\%	11,691	1.66\%	1,750	0.25\%	267,123	37.84\%	189,744	26.88\%
4	003		705,837	117.81\%	453,866	64.30\%	16,689	2.36\%	161,391	22.87\%	14,959	2.12\%	1,915	0.27\%	182,747	25.89\%	251,971	35.70\%
5																		
6	STATE TOTAL		2,117,522	120.82\%	1,485,973	70.18\%	68,409	3.23\%	263,615	12.45\%	55,997	2.64\%	6,012	0.28\%	678,288	32.03\%	631,549	29.82\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					2		0		0		0		0		0		0
12	65\% - 69.9\%					0		0		0		0		0		0		0
13	60\% - 64.9\%					1		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		0
16	45\% - 49.9\%					0		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		0
18	35\% - 39.9\%					0		0		0		0		,		1		1
19	30\% - 34.9\%					0		0		0		0		0		1		0
20	20\% - 29.9\%					0		0		1		,		0		1		2
21	10\% - 19.9\%					0		0		0		0		0		0		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		POPTOT	PercentTot	POPNHWH_C	PPopNHWH_C	POPNHBL_C	PPopNHBL_C	POPNHNA_C	PPopNHNA C	POPNHAS_C	PPopNHASC	POPNHPIC	PPopNHPIC	POPNHOT_C	PPopNHOT_C	POPHISP	PPopHisp	PopNonW	PPopNonW
2	001		705,845	103.47\%	291,941	41.36\%	23,711	3.36\%	36,387	5.16\%	25,589	3.63\%	1,581	0.22\%	8,626	1.22\%	342,484	48.52\%	413,904	58.64\%
3	002		705,840	102.51\%	262,964	37.26\%	14,962	2.12\%	33,771	4.78\%	9,632	1.36\%	1,152	0.16\%	7,432	1.05\%	393,658	55.77\%	442,876	62.74\%
4	003		705,837	103.05\%	272,949	38.67\%	12,892	1.83\%	144,527	20.48\%	13,028	1.85\%	1,326	0.19\%	7,989	1.13\%	274,669	38.91\%	432,888	61.33\%
5																				
6	STATE TOTAL		2,117,522	103.01\%	827,854	39.10\%	51,565	2.44\%	214,685	10.14\%	48,249	2.28\%	4,059	0.19\%	24,047	1.14\%	1,010,811	47.74\%	1,289,668	60.90\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					,		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		0		0		0		1		
15	50\% - 54.9\%					0		0		0		0		0		0		0		
16	45\% - 49.9\%					0		0		0		0		0		0		1		
17	40\% - 45.9\%					1		0		0		0		0		0		0		
18	35\% - 39.9\%					2		0		0		0		0		0		1		0
19	30\% - 34.9\%					,		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		1		0		0		0		0		
21	10\% - 19.9\%					0		0		0		0		0		0		0		
22	<10\%					0		3		2		3		3		,		0		0
23																				

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		POPTOT	PercentTot	POPWH_A	PPopWH_A	POPBL_W	PPopBL_W	POPNA_W	PPopNA_W	POPAS_W	PPopAS_W	POPPI_W	PPopPI_W	POPOT_W	PPopOT_W	PopNonW	PPopNonW
2	001		705,845	80.83\%	374,395	53.04\%	24,480	3.47\%	38,893	5.51\%	21,876	3.10\%	1,377	0.20\%	109,487	15.51\%	331,450	46.96\%
3	002		705,840	79.33\%	365,796	51.82\%	15,798	2.24\%	35,759	5.07\%	8,263	1.17\%	1,138	0.16\%	133,175	18.87\%	340,044	48.18\%
4	003		705,837	84.42\%	338,746	47.99\%	12,326	1.75\%	146,786	20.80\%	10,682	1.51\%	1,126	0.16\%	86,228	12.22\%	367,091	52.01\%
5																		
6	STATE TOTAL		2,117,522	81.53\%	1,078,937	50.95\%	52,604	2.48\%	221,438	10.46\%	40,821	1.93\%	3,641	0.17\%	328,890	15.53\%	1,038,585	49.05\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0
12	65\% - 69.9\%					0		0		0		0		0		0		0
13	60\%-64.9\%					0		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		0
15	50\% - 54.9\%					2		0		0		0		0		0		1
16	45\%-49.9\%					1		0		0		0		0		0		2
17	40\% - 45.9\%					0		0		0		0		0		0		0
18	35\%-39.9\%					0		0		0		0		0		0		0
19	30\% - 34.9\%					0		0		0		0		0		0		0
20	20\% - 29.9\%					0		0		1		0		0		0		0
21	10\% - 19.9\%					0		0		0		0		0		3		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	1 C	D	E	F	G	H	1	- J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		POPTOT	Percentot	POPNHWH_A	PPopNHWh A	POPNHBL_W	PPopNHBL W	POPNHNA W	PPopNHNA W	POPNHAS_W	PPopNHAS W	POPNHPILW	PPopNHPI W	POPNHOT_W	PPopNHOT_W	POPHISP	PPopHisp P	PopNonW	PPopNonW
2	001		705,845	97.36\%	271,140	38.41\%	19,464	2.76\%	28,951	4.10\%	20,172	2.86\%	916	0.13\%	4,079	0.58\%	342,484	48.52\%	434,705	61.59\%
3	002		705,840	97.94\%	247,317	35.04\%	12,124	1.72\%	26,612	3.77\%	7,198	1.02\%	742	0.11\%	3,659	0.52\%	393,658	55.77\%	458,523	64.96\%
4	003		705,837	97.65\%	254,495	36.06\%	9,989	1.42\%	135,977	19.26\%	9,729	1.38\%	774	0.11\%	3,595	0.51\%	274,669	38.91\%	451,342	63.94\%
5																				
6	STATE TOTAL		2,117,522	97.65\%	772,952	36.50\%	41,577	1.96\%	191,540	9.05\%	37,099	1.75\%	2,432	0.11\%	11,333	0.54\%	1,010,811	47.74\%	1,344,570	63.50\%
7																				
8																				
10	- 80%-89.9\%					0		0		0		0		0		0		0		
11	1 170\% - 79.9%					0		0		0		0		0		0		0		
12	165\%-69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					0		0		0		0		0		0		0		
14	${ }^{4} 55 \%$ - 59.9%					0		0		0		0		0		0		1		
15	50\% - 54.9\%					0		0		0		0		0		0		0		
16	655\%-49.9\%					0		0		0		0		0		,		1		
17	$7{ }^{4} 80 \%$ - 45.9\%					0		0		0		0		0		0		0		
18	855\% - 39.9\%					3		0		0		0		0		0		1		
19	30\% - 34.9\%					0		0		0		,		0		-		0		
20	20\% - 29.9\%					0		0		0		0		,		0		0		
21	10% - 19.9\%					0		0		1		0		0		0		0		
22 23	-10\%					0		- 3		,		3		3		3		0		

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		VAPTOT	PercentTot	VAPWH_A	PVAPWH_A	VAPBL_A	PVAPBL_A	VAPNA_A	PVAPNA A	VAPAS_A	PVAPAS_A	VAPPI_A	PVAPPI_A	VAPOT_A	PVAPOT_A	VAPXX	PVAPXX	PopNonW	PPopNonW
2	001		557,489	100.00\%	309,133	55.45\%	16,112	2.89\%	26,521	4.76\%	16,601	2.98\%	651	0.12\%	80,380	14.42\%	108,091	19.39\%	248,356	44.55\%
3	002		535,351	100.00\%	289,666	54.11\%	10,503	1.96\%	24,305	4.54\%	5,928	1.11\%	493	0.09\%	94,016	17.56\%	110,440	20.63\%	245,685	45.89\%
4	003		546,149	100.00\%	277,378	50.79\%	7,829	1.43\%	102,237	18.72\%	7,849	1.44\%	466	0.09\%	63,095	11.55\%	87,295	15.98\%	268,771	49.21\%
5																				
6	STATE TOTAL		1,638,989	100.00\%	876,177	53.46\%	34,444	2.10\%	153,063	9.34\%	30,378	1.85\%	1,610	0.10\%	237,491	14.49\%	305,826	18.66\%	762,812	46.54\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\%-89.9\%					0		0		0		0		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0				0		
13	60\%-64.9\%					0		0		0		0		0		0		0		0
14	55\%-59.9\%					1		0		0		0		0		0		0		
15	50\%-54.9\%					2		0		0		0		0		0		0		
16	45\% - 49.9\%					0		0		0		0		0		0		0		
17	40\% - 45.9\%					0		0				0		0		0		0		
18	35\% - 39.9\%					0		0		0		0		0		0		0		
19	30\% - 34.9\%					0		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		1		
21	10\%-19.9\%					0		0		1		0		0				2		0
22	<10\%					0		3		2		3		3		0		0		0
23																				

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		VAPTOT	PercentTot	VAPWH_C	PVAPWH_C	VAPBL_C	PVAPBL_C	VAPNA_C	PVAPNA_C	VAPAS_C	PVAPAS_C	VAPPI_C	PVAPPI_C	VAPOT_C	PVAPOT_C	PopNonW	PPopNonW
2	001		557,489	120.25\%	413,295	74.14\%	21,542	3.86\%	39,302	7.05\%	21,826	3.92\%	1,623	0.29\%	172,765	30.99\%	144,194	25.86\%
3	002		535,351	121.22\%	397,335	74.22\%	13,745	2.57\%	34,946	6.53\%	8,587	1.60\%	1,258	0.23\%	193,107	36.07\%	138,016	25.78\%
4	003		546,149	116.63\%	361,534	66.20\%	11,135	2.04\%	114,229	20.92\%	10,809	1.98\%	1,323	0.24\%	137,930	25.26\%	184,615	33.80\%
5																		
6	STATE TOTAL		1,638,989	119.36\%	1,172,164	71.52\%	46,422	2.83\%	188,477	11.50\%	41,222	2.52\%	4,204	0.26\%	503,802	30.74\%	466,825	28.48\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					2		0		0		0		0		0		0
12	65\% - 69.9\%					1		0		0		0		0		0		0
13	60\% - 64.9\%					0		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		0
16	45\% - 49.9\%					0		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		0
18	35\% - 39.9\%					0		0		0		0		0		1		0
19	30\% - 34.9\%					0		0		0		0		0		1		1
20	20\% - 29.9\%					0		0		1		0		0		1		2
21	10\%-19.9\%					0		0		0		0		0		0		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		VAPTOT	PercentTot	VAPNHWH_C	PVAPNHWH C	VAPNHBL_C	PVAPNHBL C	VAPNHNA_C	PVAPNHNA C	VAPNHAS_C	PVAPNHAS C	VAPNHPIC	PVAPNHPIC	VAPNHOT_C	PVAPNHOT C	VAPHISP	PVAPHisp	PopNonW	PPopNonW
2	001		557,489	103.06\%	250,451	44.92\%	17,826	3.20\%	27,585	4.95\%	19,909	3.57\%	1,199	0.22\%	6,814	1.22\%	250,761	44.98\%	307,038	55.08\%
3	002		535,351	102.40\%	221,849	41.44\%	11,398	2.13\%	25,062	4.68\%	7,403	1.38\%	902	0.17\%	5,662	1.06\%	275,908	51.54\%	313,502	58.56\%
4	003		546,149	102.66\%	230,469	42.20\%	9,391	1.72\%	103,697	18.99\%	9,760	1.79\%	966	0.18\%	6,277	1.15\%	200,095	36.64\%	315,680	57.80\%
5																				
6	State total		1,638,989	102.71\%	702,769	42.88\%	38,615	2.36\%	156,344	9.54\%	37,072	2.26\%	3,067	0.19\%	18,753	1.14\%	726,764	44.34\%	936,220	57.12\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					0		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		0		0		0		0		
15	50\% -54.9\%					0		0		0		0		0		0		1.		
16	45\% - 49.9\%					0		0		0		0		0		0		0		
17	40\% - 45.9\%					3		0		0		0		0		0		1		
18	35\% - 39.9\%					0		0		0		0		0		0		1		
19	30\% - 34.9\%					0		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		0		
21	10\% - 19.9\%					0		0		1		0		0		0		,		0
	-10\%					0		3		2		3		3		3		0		0
23																				

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		VAPTOT	PercentTot	VAPWH_A	PVAPWH_A	VAPBL_W	PVAPBL_W	VAPNA_W	PVAPNA_W	VAPAS_W	PVAPAS_W	VAPPI_W	PVAPPI_W	VAPOT_W	PVAPOT_W	PopNonW	PPopNonW
2	001		557,489	82.05\%	309,133	55.45\%	17,872	3.21\%	28,779	5.16\%	17,551	3.15\%	1,051	0.19\%	83,007	14.89\%	248,356	44.55\%
3	002		535,351	80.43\%	289,666	54.11\%	11,487	2.15\%	25,891	4.84\%	6,601	1.23\%	862	0.16\%	96,078	17.95\%	245,685	45.89\%
4	003		546,149	85.19\%	277,378	50.79\%	8,851	1.62\%	104,436	19.12\%	8,471	1.55\%	844	0.15\%	65,274	11.95\%	268,771	49.21\%
5																		
6	State total		1,638,989	82.57\%	876,177	53.46\%	38,210	2.33\%	159,106	9.71\%	32,623	1.99\%	2,757	0.17\%	244,359	14.91\%	762,812	46.54\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0
12	65\% - 69.9\%					0		0		0		0		0		0		0
13	60\% - 64.9%					0		0		0		0		0		0		0
14	55\% - 59.9\%					1		0		0		0		0		0		0
15	50\% - 54.9\%					2		0		0		0		0		0		0
16	45\% - 49.9\%					0		0		0		0		0		0		2
17	40\% - 45.9\%					0		0		0		0		0		0		1
18	35\% - 39.9\%					0		0		0		0		0		0		0
19	30\% - 34.9\%					0		0		0		0		0		0		0
20	20\% - 29.9%					0		0		0		0		0		0		0
21	10\%-19.9\%					0		0		1		0		0		3		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	- 1	J	K	L	M	N	0	\| P	Q	R	S	T
1	DISTRICT		VAPTOT	PercentTot	VAPNHWH_A	PVAPNHWH A	VAPNHBL_W	PVAPNHBL W	VAPNHNA_W	PVAPNHNA W	VAPNHAS W	PVAPNHAS W	VAPNHPI_W	PVAPNHPI W	VAPNHOT_W	PVAPNHOT W	VAPHISP	PVAPHisp	PopNonW	PPopNonW
2	001		557,489	97.61\%	235,731	42.28\%	15,270	2.74\%	21,975	3.94\%	16,502	2.96\%	746	0.13\%	3,201	0.57\%	250,761	44.98\%	321,758	57.72\%
3	002		535,351	98.03\%	210,477	39.32\%	9,759	1.82\%	19,469	3.64\%	5,889	1.10\%	611	0.11\%	2,677	0.50\%	275,908	51.54\%	324,874	60.68\%
4	003		546,149	97.90\%	217,854	39.89\%	7,754	1.42\%	97,681	17.89\%	7,882	1.44\%	618	0.11\%	2,798	0.51\%	200,095	36.64\%	328,295	60.11\%
5																				
6	STATE TOTAL		1,638,989	97.84\%	664,062	40.52\%	32,783	2.00\%	139,125	8.49\%	30,273	1.85\%	1,975	0.12\%	8,676	0.53\%	726,764	44.34\%	974,927	59.48%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		0
13	60\% -64.9\%					0		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		0		0		0		,		
15	50\% -54.9\%					0		0		0		0		0		0		1		
16	45\% - 49.9\%					0		0		0		0		0		0		0		
17	40\% - 45.9\%					1		0		0		0		0		0		1		
18	35% - 39.9\%					2		0		0		0		0		0		1		
19	30\% - 34.9\%					0		,		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		0		
21	10\% - 19.9\%					0		0		1		0		0		0		0		
$\frac{22}{23}$	<10\%					0		,		2		3		3		,		0		0

DISTRICT	State Composite Score				Judicial Composite Score							
	$\begin{array}{\|r\|} \hline \text { Dem } \\ \hline 5,062,253 \\ \hline 2182515 \\ \hline \end{array}$	Dem \%	Rep	Rep \%	Dem	Dem \%	Rep	Rep \%				
1		57.02\%	3,815,359	42.98\%	2,833,346	56.71\%	2,162,981	43.29\%				
2		45.43\%	3,822,718	54.57\%	1,781,916	45.50\%	2,134,393	54.50\%				
3	5,261,603	58.02\%	3,807,463	41.98\%	2,917,105	58.13\%	2,101,568	41.87\%				
Statewide	13,506,401	54.13\%	11,445,540	45.87\%	7,532,367	54.07\%	6,398,942	45.93\%				
DISTRICT 1 2 3	President											
	2020				2016				2012			
	Biden Biden \%		Trump	Trump \%	Clinton	Clinton \%	Trump	Trump \%	Obama Obama \%		Romney	Romney \%
	200,018	61.25\%	126,554	38.75\%	145,103	58.68\%	102,185	41.32\%	$\begin{array}{\|c\|} \hline \text { Obama } \\ 149,700 \\ \hline \end{array}$	57.25\%	111,793	42.75\%
	114,548	44.57\%	142,484	55.43\%	92,565	45.30\%	111,780	54.70\%	101,497	47.15\%	113,749	52.85\%
	187,033	58.47\%	132,845	41.53\%	147,568	58.27\%	105,702	41.73\%	164,159	59.81\%	110,287	40.19\%
Statewide	501,599	55.52\%	401,883	44.48\%	385,236	54.65\%	319,667	45.35\%	415,356	55.29\%	335,829	44.71\%
						Govern	nor					
		2022 (not	tin index)			2018				2014		
DISTRICT	Grisham	Grisham \%	Ronchetti	Ronchetti \%	Grisham	Grisham \%	Pearce	Pearce \%	King	King \%	Martinez	Martinez \%
1	146,118	57.49\%	108,063	42.51\%	152,704	60.92\%	97,976	39.08\%	76,112	43.71\%	98,011	56.29\%
2	78,272	41.93\%	108,383	58.07\%	92,206	47.62\%	101,424	52.38\%	50,526	35.62\%	91,332	64.38\%
3	145,756	57.39\%	108,219	42.61\%	153,468	60.87\%	98,651	39.13\%	92,737	47.11\%	104,123	52.89\%
Statewide	370,146	53.27\%	324,665	46.73\%	398,378	57.20\%	298,051	42.80\%	219,375	42.78\%	293,466	57.22\%
						Secretary o	of State					
		2022 (not	t in index)			2018 (not in	n index)			2016		
DISTRICT	Oliver	Oliver \%	Trujillo	Trujillo \%	Oliver	Oliver \%	Clarkson	Clarkson \%	Oliver	Oliver \%	Espinoza	Espinoza \%
1	155,362	62.11\%	94,784	37.89\%	154,880	65.19\%	82,720	34.81\%	167,723	61.04\%	107,045	38.96\%
2	80,757	43.63\%	104,355	56.37\%	91,867	50.60\%	89,688	49.40\%	102,491	46.88\%	116,118	53.12\%
3	148,358	59.35\%	101,593	40.65\%	152,364	64.22\%	84,901	35.78\%	163,013	59.37\%	111,570	40.63\%
Statewide	384,477	56.11\%	300,732	43.89\%	399,111	60.80\%	257,309	39.20\%	433,227	56.41\%	334,733	43.59\%
						Treasu	rer					
		2022 (not	t in index)			2018				2014		
DISTRICT	Lmontoya	LMontoya \%	Hmontoya	HMontoya \%	Eichenberg	Eichenberg \%	Castillo	Castillo \%	Eichenberg	Eichenberg \%	Lopez	Lopez \%
1	144,855	57.46\%	107,221	42.54\%	153,322	62.62\%	91,531	37.38\%	93,345	54.89\%	76,719	45.11\%
2	79,797	42.18\%	109,401	57.82\%	91,178	47.95\%	98,971	52.05\%	60,835	44.36\%	76,301	55.64\%
3	145,394	57.02\%	109,579	42.98\%	150,237	60.95\%	96,256	39.05\%	107,032	56.12\%	83,695	43.88\%
Statewide	370,046	53.15\%	326,201	46.85\%	394,737	57.92\%	286,758	42.08\%	261,212	52.46\%	236,715	47.54\%
	Suprem	ne Court (All E	lections exc	cept 2014)		urt of Appeals	(All Electio	ons)				
DISTRICT	SupDems	SupDems \%	SupReps	SupReps \%	CoADems	CoADems \%	CoAReps	CoAReps \%				
1	1,084,653	56.27\%	842,901	43.73\%	1,748,693	56.98\%	1,320,080	43.02\%				
2	685,631	45.57\%	819,012	54.43\%	1,096,285	45.46\%	1,315,381	54.54\%				
3	1,127,438	58.52\%	799,011	41.48\%	1,789,667	57.88\%	1,302,557	42.12\%				
Statewide	2,897,722	54.08\%	2,460,924	45.92\%	4,634,645	54.06\%	3,938,018	45.94\%				

NM_PlanEmod_Matrix_poli_formatted.xlsx Judicial

Court of Appeals (2022)											
Contest 1				Contest 2							
Baca	Baca \%	Johnson	Johnson \%	Wray	Wray \%	Lee	Lee \%				
135,536	57.26\%	101,181	42.74\%	136,568	58.12\%	98,394	41.88\%				
74,946	41.84\%	104,165	58.16\%	75,847	43.02\%	100,451	56.98\%				
139,039	57.89\%	101,145	42.11\%	137,754	58.39\%	98,183	41.61\%				
349,521	53.28\%	306,491	46.72\%	350,169	54.11\%	297,028	45.89\%				
					Court of Appe	Is (2020)					
	Con	test 1			Contest				Cont	est 3	
Ives	Ives \%	Johnson	Johnson \%	Henderson	Henderson \%	Lee	Lee \%	Yohalem	Yohalem \%	Montoya	Montoya \%
182,859	57.32\%	136,169	42.68\%	174,688	59.00\%	121,377	41.00\%	180,522	56.80\%	137,297	43.20\%
107,876	42.81\%	144,118	57.19\%	105,590	45.08\%	128,650	54.92\%	105,949	42.17\%	145,284	57.83\%
173,277	55.37\%	139,640	44.63\%	170,269	58.51\%	120,743	41.49\%	170,144	54.58\%	141,568	45.42\%
464,012	52.49\%	419,927	47.51\%	450,547	54.86\%	370,770	45.14\%	456,615	51.84\%	424,149	48.16\%
					Court of Appe	Is (2018)					
	Con	test 2			Contest				Cont	est 4	
Medina	Medina \%	Bohnhoff	Bohnhoff \%	Zamora	Zamora	Kiehne	Kiehne \%	Duffy	Duffy \%	Gallegos	Gallegos \%
145,581	59.84\%	97,698	40.16\%	146,905	60.47\%	96,020	39.53\%	139,624	57.76\%	102,095	42.24\%
93,726	49.54\%	95,469	50.46\%	92,479	48.85\%	96,821	51.15\%	87,595	46.39\%	101,236	53.61\%
152,122	62.18\%	92,514	37.82\%	151,587	62.05\%	92,713	37.95\%	140,303	57.55\%	103,483	42.45\%
391,429	57.81\%	285,681	42.19\%	390,971	57.79\%	285,554	42.21\%	367,522	54.50\%	306,814	45.50\%

Autobound EDGE - Compactness Report

Plan Name: Congress:NM_Congress_Emod
For more information on compactness calculations Click Here

| Compactness measure: | Polsby-Popper | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| District | District Area
 (SQM) | Perimeter
 (Miles) | Area of Circle with
 Same Perimeter | Perimeter of Circle
 with Same Area | Compactness
 Value |
| 1 | 605 | 165 | 2,173 | 87 | 0.28 |
| 2 | 56,424 | 1,631 | 211,597 | 842 | 0.27 |
| 3 | 64,564 | 1,581 | 198,857 | 901 | 0.32 |

Most Compact: 0.32 For District: 3
Least Compact: 0.27 For District: 2

Compactness measure: Schwartzberg					
District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	605	165	2,173	87	0.53
2	56,424	1,631	211,597	842	0.52
3	64,564	1,581	198,857	901	0.57

Most Compact: 0.57 For District: 3
Least Compact: 0.52 For District: 2

Compactness measure: Reock Score

District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	605	165	2,173	87	0.44
2	56,424	1,631	211,597	842	0.45
3	64,564	1,581	198,857	901	0.52

Most Compact: 0.52 For District: 3
Least Compact: 0.44 For District: 1
Compactness measure: Length-Width

District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	605	165	2,173	87	1.53
2	56,424	1,631	211,597	842	1.61
3	64,564	1,581	198,857	901	1.51

Most Compact: 1.61 For District: 2
Least Compact: 1.51 For District: 3

Compactness measure: Convex Hull							
District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value		
1	605	165	2,173	87	0.79		
2	56,424	1,631	211,597	842	0.75		
3	64,564	1,581	198,857	901	0.84		

Most Compact: 0.84 For District: 3 Least Compact: 0.75 For District: 2

New Mexico - District Map of Congressional Commission "H" Concept

NM_PlanH_Matrix_poli_formatted.xlsx
DevSum

NM PlanH Matrix poli formatted.xIsx
Deviations

	A	B	C	D	E	F	G
1	DISTRICT	TAPERSONS	Target	Raw Dev.	\% Dev.	POPTOT	
2	01	705,808	705,841	(33)	0.0\%	705,808	
3	02	705,904	705,841	63	0.0\%	705,904	
4	03	705,810	705,841	(31)	0.0\%	705,810	
5							
6	STATE TOT	2,117,522					
7							
8	Total Dev			96	0.0136\%		
9	Highest			63	0.0090\%		
10	Lowest			(33)	-0.0046\%		
11							
12							

Total Population					Racial Demographics as Percent of Total Population						Voting Age Population Adult VAP \%		Racial Demographics as Percent of Voting Population					
DISTRICT	All Persons	Target	Dev.	Difference	NH White	NH Black	NH Native	NH Asian	Hispanic	Minority			NH White	NH Black	NH Native	NH Asian	Hispanic	Minority
1	705,808	705,841	0.00\% V	-33	35.89\%	1.32\%	17.89\%	1.29\%	40.24\%	64.11\%	541,667	76.7\%	39.74\%	1.37\%	16.74\%	1.37\%	37.74\%	60.26\%
2	705,904	705,841	0.01\% ${ }^{\text {\| }}$	63	29.74\%	1.77\%	4.98\%	1.00\%	59.75\%	70.26\%	534,170	75.7\%	33.64\%	1.88\%	4.87\%	1.10\%	55.86\%	66.36\%
3	705,810	705,841	0.00\%	-31	43.88\%	2.34\%	3.85\%	2.70\%	43.22\%	56.12\%	563,152	79.8\%	47.78\%	2.37\%	3.67\%	2.78\%	39.77\%	52.22\%
Assigned	2,117,522																	
Total Pop	2,117,522																	
Unassigned	0																	

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		POPTOT	PercentTot	POPWH_A	PPopWh_A	POPBL_A	PPopBL_A	POPNA A	PPopNA A	POPAS_A	PPopAS_A	POPPI_A	PPopPI A	POPOT_A	PPopot_A	POPXX	P2plusRace	PopNonW	PPopNonW
2	001		705,808	100.00\%	337,897	47.87\%	10,968	1.55\%	134,703	19.08\%	9,691	1.37\%	580	0.08\%	89,912	12.74\%	122,057	17.29\%	367,911	52.13\%
3	002		705,904	100.00\%	335,804	47.57\%	15,427	2.19\%	43,296	6.13\%	7,754	1.10\%	691	0.10\%	138,751	19.66\%	164,181	23.26\%	370,100	52.43\%
4	003		705,810	100.00\%	405,236	57.41\%	19,509	2.76\%	34,242	4.85\%	20,024	2.84\%	822	0.12\%	89,969	12.75\%	136,008	19.27\%	300,574	42.59\%
5																				
6	STATE TOTAL		2,117,522	100.00\%	1,078,937	50.95\%	45,904	2.17\%	212,241	10.02\%	37,469	1.77\%	2,093	0.10\%	318,632	15.05\%	422,246	19.94\%	1,038,585	49.05\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0		0
12	65\% - 69.9\%					0		0		0		0		0		0		0		0
13	60\% - 64.9\%					0		0		0		0		0		0		0		0
14	55\% - 59.9\%					1		0		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		0		2
16	45\% - 49.9\%					2		0		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		0		1
18	35\% - 39.9\%					0		0		0		0		0		0		0		0
19	30\% - 34.9\%					0		0		0		0		0		0		0		0
20	20\% - 29.9\%					0		0		0		0		0		0		1		0
21	10\%-19.9\%					0		0		1		0		0		3		2		0
22	<10\%					0		3		2		3		3		0		0		0
23																				

	A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P	Q	R	S	T	U	V
1	DISTRICT		POPTOT	PercentTot	POPNHWH A	PPopNHWh A	POPNHBL A	PPopNHBIA	POPNHNA A	PPopNHNA A	POPNHAS A	PPopNHAS A	POPNHPIA	PPopNHPI A	POPNHOTA	PPopNHOT A	POPHISP	PPophisp	POPNHXX	PPopNHXX	PopNonW	PPopNonW
2	-01		705,808	100.00\%	253,295	35.89\%	9,324	1.32\%	126,300	17.89\%	9,127	1.29\%	405	0.06\%	3,255	0.46\%	283,986	40.24\%	20,116	2.85\%	452,513	64.11\%
3	002		705,904	100.00\%	209,943	29.74\%	12,487	1.77\%	35,169	4.98\%	7,086	1.00\%	471	0.07\%	3,197	0.45\%	421,779	59.75\%	15,772	2.23\%	495,961	70.26\%
4	-003		705,810	100.00\%	309,714	43.88\%	16,519	2.34\%	27,141	3.85\%	19,048	2.70\%	575	0.08\%	3,888	0.55\%	305,046	43.22\%	23,879	3.38\%	396,096	56.12\%
$\frac{5}{6}$	STATE TOTAL		2.117.522	100.00\%	772.952	36.50\%	38,330	1.81\%	188.610	8.91\%	35,261	1.67\%	1.451	0.07\%	10,340	0.49\%	1.010,811	47.74\%	59767	2.82\%	1,344.570	63.50\%
8																						
9	> 90\%					0		0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0				0		0		0		0		
11	70\% - 79.9\%					0		0		0				0		0		0				
12	65\%-69.9\%					0		0		0		0				0		0		0		
13	60\%-64.9\%					0		0		0				0		0		,		0		
$\frac{14}{15}$	55\%-59.9\%					0		0		0		0		0		0		1		0		
15	50\% - 54.9\%					0		0						0		0		0				
16	45\%-49.9\%					0		0		0		0		0		0		0		0		
17	40\% - 45.9\%					1		0		0		0		0		0		2		0		
18	35% - 39.9\%					1		0		0		0		0		0		0		0		
19	30\% - 34.9\%							0		0		0		0		0		0		0		
20	20\% - 29.9\%					1		0		0		0		0		0		0		0		
$\frac{21}{22}$	10\% - 19.9\%					0		0		1		0		0		0		0		0		
22 23	-10\%					0		3		2		3		3		,		0		3		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		POPTOT	PercentTot	POPWH_C	PPopWH_C	POPBL_C	PPopBL_C	POPNA_C	PPopNA_C	POPAS_C	PPopAS_C	POPPI_C	PPopPI_C	POPOT_C	PPopOT_C	PopNonW	PPopNonW
2	001		705,808	118.06\%	455,055	64.47\%	17,261	2.45\%	152,577	21.62\%	14,702	2.08\%	1,856	0.26\%	191,824	27.18\%	250,753	35.53\%
3	002		705,904	124.05\%	495,153	70.14\%	22,242	3.15\%	58,169	8.24\%	12,507	1.77\%	1,898	0.27\%	285,670	40.47\%	210,751	29.86\%
4	003		705,810	120.34\%	535,765	75.91\%	28,906	4.10\%	52,869	7.49\%	28,788	4.08\%	2,258	0.32\%	200,794	28.45\%	170,045	24.09\%
5																		
6	STATE TOTAL		2,117,522	120.82\%	1,485,973	70.18\%	68,409	3.23\%	263,615	12.45\%	55,997	2.64\%	6,012	0.28\%	678,288	32.03\%	631,549	29.82\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					2		0		0		0		0		0		0
12	65\% - 69.9\%					0		0		0		0		0		0		0
13	60\% - 64.9\%					1		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		0
16	45\% - 49.9\%					0		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		1		0
18	35\% - 39.9\%					0		0		0		0		,		0		1
19	30\% - 34.9\%					0		0		0		0		0		0		0
20	20\% - 29.9\%					0		0		1		,		0		2		2
21	10\% - 19.9\%					0		0		0		0		0		0		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	1 DISTRICT		POPTOT	PercentTot	POPNHWH_C	PPopNHWH_C	POPNHBL_C	PPopNHBL_C	POPNHNA_C	PPopNHNA C	POPNHAS_C	PPopNHAS_C	POPNHPIC	PPopNHPIC	POPNHOT_C	PPopNHOT_C	POPHISP	PPopHisp	PopNonW	PPopNonW
2	2001		705,808	103.04\%	271,736	38.50\%	13,343	1.89\%	136,083	19.28\%	12,868	1.82\%	1,297	0.18\%	7,919	1.12\%	283,986	40.24\%	434,072	61.50\%
3	3002		705,904	102.38\%	224,422	31.79\%	16,136	2.29\%	42,079	5.96\%	10,124	1.43\%	1,256	0.18\%	6,936	0.98\%	421,779	59.75\%	481,482	68.21\%
4	4003		705,810	103.61\%	331,696	47.00\%	22,086	3.13\%	36,523	5.17\%	25,257	3.58\%	1,506	0.21\%	9,192	1.30\%	305,046	43.22\%	374,114	53.00\%
5	5																			
6	6 STATE TOTAL		2,117,522	103.01\%	827,854	39.10\%	51,565	2.44\%	214,685	10.14\%	48,249	2.28\%	4,059	0.19\%	24,047	1.14\%	1,010,811	47.74\%	1,289,668	60.90\%
	9 > 90\%					0		0		0		0		0		0		0		
	10\% -89.9\%					0		0		0		0		0		0		0		0
	170% - 79.9%					0		0		0		0		0		0		0		
	$265 \%-69.9 \%$					0		0		0		0		0		0		0		
13	36\% - 64.9%					0		0		0		0		0		0		0		
14	$1{ }^{5} 50$ - 59.9%					0		0		0		0		0		0		1		
15	5 50\% - 54.9\%					0		0		0		0		0		0		0		
16	6 $45 \%-49.9 \%$					1		0		0		0		0		0		0		0
17	7 40\% - 45.9\%					0		0		0		0		0		0		2		
18	8 35\% - 39.9\%					1		0		0		0		0		0		0		
19	9 30\% - 34.9\%					1		0		0		0		0		0		0		
20	20 20\% - 29.9\%					0		0		0		0		0		0		0		
21	10%-19.9\%					0		0		1		0		0		0		,		
$\frac{22}{23}$	22 $<10 \%$					0		3		2		3		3		3		0		
	3																			

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		POPTOT	PercentTot	POPWH_A	PPopWH_A	POPBL_W	PPopBL_W	POPNA_W	PPopNA_W	POPAS_W	PPopAS_W	POPPI_W	PPopPI_W	POPOT_W	PPopOT_W	PopNonW	PPopNonW
2	001		705,808	84.12\%	337,897	47.87\%	12,874	1.82\%	138,117	19.57\%	10,625	1.51\%	1,090	0.15\%	93,151	13.20\%	367,911	52.13\%
3	002		705,904	78.14\%	335,804	47.57\%	17,474	2.48\%	45,939	6.51\%	8,818	1.25\%	1,218	0.17\%	142,317	20.16\%	370,100	52.43\%
4	003		705,810	82.32\%	405,236	57.41\%	22,256	3.15\%	37,382	5.30\%	21,378	3.03\%	1,333	0.19\%	93,422	13.24\%	300,574	42.59\%
5																		
6	STATE TOTAL		2,117,522	81.53\%	1,078,937	50.95\%	52,604	2.48\%	221,438	10.46\%	40,821	1.93\%	3,641	0.17\%	328,890	15.53\%	1,038,585	49.05\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0
12	65\%-69.9\%					0		0		0		0		0		0		0
13	60\% - 64.9%					0		0		0		0		0		0		0
14	55\% - 59.9\%					1		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		2
16	45\% - 49.9\%					2		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		1
18	35\% - 39.9\%					0		0		0		0		0		0		0
19	30\% - 34.9%					0		0		0		0		0		0		0
20	20\% - 29.9\%					0		0		0		0		0		1		0
21	10\% - 19.9\%					0		0		1		0		0		2		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	$1{ }^{\text {c }}$	D	E	F	G	H	1	- $\quad 1$	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		POPTOT	PercentTot	POPNHWH_A	PPopNHWh A	POPNHBL_W	PPopNHBL W	POPNHNA W	PPopNHNA W	POPNHAS_W	PPopNHAS W	POPNHPI W	PPopNHPI W	POPNHOT_W	PPopNHOT_W	POPHISP	PPopHisp P	PopNonW	PPopNonW
2	001		705,808	97.64\%	253,295	35.89\%	10,430	1.48\%	127,443	18.06\%	9,693	1.37\%	752	0.11\%	3,549	0.50\%	283,986	40.24\%	452,513	64.11\%
3	002		705,904	98.14\%	209,943	29.74\%	13,297	1.88\%	35,821	5.07\%	7,619	1.08\%	788	0.11\%	3,539	0.50\%	421,779	59.75\%	495,961	70.26\%
4	003		705,810	97.17\%	309,714	43.88\%	17,850	2.53\%	28,276	4.01\%	19,787	2.80\%	892	0.13\%	4,245	0.60\%	305,046	43.22\%	396,096	56.12%
5																				
6	STATE TOTAL		2,117,522	97.65\%	772,952	36.50\%	41,577	1.96\%	191,540	9.05\%	37,099	1.75\%	2,432	0.11\%	11,333	0.54\%	1,010,811	47.74\%	1,344,570	63.50\%
7																				
8																				
10	- 80%-89.9\%					0		0		0		0		0		0		0		
11	1 170\% - 79.9%					0		0		0		0		0		0		0		
12	165\%-69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					0		0		0		0		0		0		0		
14	${ }^{4} 55 \%$ - 59.9%					0		0		0		0		0		0		1		
15	50\% - 54.9\%					0		0		0		0		0		0		0		
16	655\%-49.9\%					0		0		0		0		0		0		0		
17	$7{ }^{4} 80 \%$ - 45.9\%					1		0		0		0		0		0		2		
18	855\% - 39.9\%					1		0		0		0		0		0		0		
19	930\% - 34.9\%							0		0		,		0		0		0		
20	20\% - 29.9\%					1		0		0		0		,		0		0		
21	10% - 19.9\%					0		0		1		0		0		0		0		
22 23	-10\%					0		- 3		,		3		3		3		0		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		VAPTOT	PercentTot	VAPWH_A	PVAPWH_A	VAPBL_A	PVAPBL_A	VAPNA_A	PVAPNA A	VAPAS_A	PVAPAS_A	VAPPI_A	PVAPPI_A	VAPOT_A	PVAPOT_A	VAPXX	PVAPXX	PopNonW	PPopNonW
2	001		541,667	100.00\%	274,178	50.62\%	8,147	1.50\%	95,854	17.70\%	7,807	1.44\%	444	0.08\%	67,163	12.40\%	88,074	16.26\%	267,489	49.38\%
3	002		534,170	100.00\%	265,433	49.69\%	11,386	2.13\%	31,656	5.93\%	6,324	1.18\%	500	0.09\%	100,824	18.87\%	118,047	22.10\%	268,737	50.31\%
4	003		563,152	100.00\%	336,566	59.76\%	14,911	2.65\%	25,553	4.54\%	16,247	2.89\%	666	0.12\%	69,504	12.34\%	99,705	17.70\%	226,586	40.24\%
5																				
6	STATE TOTAL		1,638,989	100.00\%	876,177	53.46\%	34,444	2.10\%	153,063	9.34\%	30,378	1.85\%	1,610	0.10\%	237,491	14.49\%	305,826	18.66\%	762,812	46.54\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					0		0		0		0		0		0		0		
14	55\% - 59.9\%					1		0		0		0		0		0		0		
15	50\% - 54.9\%					1		0		0		0		0		0		0		
16	45\% - 49.9\%					1		0		0		0		0		0		0		
17	40\% - 45.9\%					0		0		0		0		0		0		0		
18	35\% - 39.9\%					0		0		0		0		0		0		0		0
19	30\% - 34.9\%					0		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		,		1		
21	10\% - 19.9\%					0		0		1		0		0		3		,		
22	<10\%					0		3		,		3		3		0		0		0
23																				

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		VAPTOT	PercentTot	VAPWH_C	PVAPWH_C	VAPBL_C	PVAPBL_C	VAPNA_C	PVAPNA_C	VAPAS_C	PVAPAS_C	VAPPI_C	PVAPPI_C	VAPOT_C	PVAPOT_C	PopNonW	PPopNonW
2	001		541,667	116.87\%	359,163	66.31\%	11,375	2.10\%	107,699	19.88\%	10,638	1.96\%	1,289	0.24\%	142,903	26.38\%	182,504	33.69\%
3	002		534,170	122.76\%	380,295	71.19\%	14,956	2.80\%	42,152	7.89\%	9,237	1.73\%	1,333	0.25\%	207,762	38.89\%	153,875	28.81\%
4	003		563,152	118.53\%	432,706	76.84\%	20,091	3.57\%	38,626	6.86\%	21,347	3.79\%	1,582	0.28\%	153,137	27.19\%	130,446	23.16\%
5																		
6	STATE TOTAL		1,638,989	119.36\%	1,172,164	71.52\%	46,422	2.83\%	188,477	11.50\%	41,222	2.52\%	4,204	0.26\%	503,802	30.74\%	466,825	28.48\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					2		0		0		0		0		0		0
12	65\% - 69.9\%					1		0		0		0		0		0		0
13	60\% - 64.9\%					0		0		0		0		0		0		0
14	55\% - 59.9\%					0		0		0		0		0		0		0
15	50\% - 54.9\%					0		0		0		0		0		0		0
16	45\% - 49.9\%					0		0		0		0		0		0		0
17	40\% - 45.9\%					0		0		0		0		0		0		0
18	35\% - 39.9\%					0		0		0		0		0		1		0
19	30\% - 34.9\%					0		0		0		0		0		0		1
20	20\% - 29.9\%					0		0		0		0		0		2		2
21	10\% - 19.9\%					0		0		1		0		0		0		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	1	J	,	L	M	N	0	P	Q	R	S	T
1	DISTRICT		VAPTOT	PercentTot	VAPNHWH_C	PVAPNHWH_C	VAPNHBL_C	PVAPNHBL C	VAPNHNA C	PVAPNHNA C	VAPNHAS_C	PVAPNHAS C	VAPNHPIC	PVAPNHPIC	VAPNHOT_C	PVAPNHOT_C	VAPHISP	PVAPHisp P	PopNonW	PPopNonW
2	001		541,667	102.65\%	227,836	42.06\%	9,638	1.78\%	97,409	17.98\%	9,652	1.78\%	951	0.18\%	6,152	1.14\%	204,405	37.74\%	313,831	57.94\%
3	002		534,170	102.26\%	190,196	35.61\%	12,239	2.29\%	31,269	5.85\%	7,880	1.48\%	958	0.18\%	5,330	1.00\%	298,389	55.86\%	343,974	64.39\%
4	003		563,152	103.18\%	284,737	50.56\%	16,738	2.97\%	27,666	4.91\%	19,540	3.47\%	1,158	0.21\%	7,271	1.29\%	223,970	39.77\%	278,415	49.44\%
5																				
6	STATE TOTAL		1,638,989	102.71\%	702,769	42.88\%	38,615	2.36\%	156,344	9.54\%	37,072	2.26\%	3,067	0.19\%	18,753	1.14\%	726,764	44.34\%	936,220	57.12\%
7																				
8 8																				
9	> 90\%					0		0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9%					0		0		0		0		0		0		0		0
13	60\% - 64.9\%					0		0		0		0		0		0		0		1
14	55\% - 59.9\%					0		0		0		0		0		0		1		
15	50\% - 54.9\%					1		0		0		0		0		0		0		
16	45\% - 49.9\%					0		0		0		0		,		-		0		
17	40\% - 45.9\%					1		0		0		0		,		0		0		0
18	35\% - 39.9\%					1		0		0		0		0		0		2		
19	30\% - 34.9\%					0		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		0		0
21	10\% - 19.9\%					0		,		1		0		0		0		0		0
22	<10\%					0		3		2		3		3		3		0		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R
1	DISTRICT		VAPTOT	PercentTot	VAPWH_A	PVAPWH_A	VAPBL_W	PVAPBL_W	VAPNA_W	PVAPNA_W	VAPAS_W	PVAPAS_W	VAPPI_W	PVAPPI_W	VAPOT_W	PVAPOT_W	PopNonW	PPopNonW
2	001		541,667	84.90\%	274,178	50.62\%	9,144	1.69\%	98,006	18.09\%	8,413	1.55\%	822	0.15\%	69,328	12.80\%	267,489	49.38\%
3	002		534,170	79.12\%	265,433	49.69\%	12,543	2.35\%	33,497	6.27\%	7,077	1.32\%	893	0.17\%	103,171	19.31\%	268,737	50.31\%
4	003		563,152	83.59\%	336,566	59.76\%	16,523	2.93\%	27,603	4.90\%	17,133	3.04\%	1,042	0.19\%	71,860	12.76\%	226,586	40.24\%
5																		
6	STATE TOTAL		1,638,989	82.57\%	876,177	53.46\%	38,210	2.33\%	159,106	9.71\%	32,623	1.99\%	2,757	0.17\%	244,359	14.91\%	762,812	46.54\%
7																		
8																		
9	> 90\%					0		0		0		0		0		0		0
10	80\% - 89.9\%					0		0		0		0		0		0		0
11	70\% - 79.9\%					0		0		0		0		0		0		0
12	65\% - 69.9\%					0		0		0		0		0		0		0
13	60\%-64.9\%					0		0		0		0		0		0		0
14	55\% - 59.9\%					1		0		0		0		0		0		0
15	50\% - 54.9\%					1		0		0		0		0		0		1
16	45\% - 49.9\%					1		0		0		0		0		0		1
17	40\% - 45.9\%					0		0		0		0		0		0		1
18	35\% - 39.9\%					0		0		0		0		0		0		0
19	30\% - 34.9\%					0		0		0		0		0		0		0
20	20\% - 29.9%					0		0		0		0		0		0		0
21	10\%-19.9\%					0		0		1		0		0		3		0
22	<10\%					0		3		2		3		3		0		0
23																		

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T
1	DISTRICT		VAPTOT	PercentTot	VAPNHWH_A	PVAPNHWH A	VAPNHBL_W	PVAPNHBL W	VAPNHNA_W	PVAPNHNA W	VAPNHAS_W	PVAPNHAS_W	VAPNHPI_W	PVAPNHPI W	VAPNHOT_W	PVAPNHOT W	VAPHISP	PVAPHisp	PopNonW	PPopNonW
2	001		541,667	97.89\%	215,278	39.74\%	8,040	1.48\%	91,336	16.86\%	7,839	1.45\%	602	0.11\%	2,720	0.50\%	204,405	37.74\%	326,389	60.26\%
3	002		534,170	98.21\%	179,709	33.64\%	10,553	1.98\%	26,434	4.95\%	6,281	1.18\%	628	0.12\%	2,629	0.49\%	298,389	55.86\%	354,461	66.36\%
4	003		563,152	97.45\%	269,075	47.78\%	14,190	2.52\%	21,355	3.79\%	16,153	2.87\%	745	0.13\%	3,327	0.59\%	223,970	39.77\%	294,077	52.22\%
5																				
6	StATE TOTAL		1,638,989	97.84\%	664,062	40.52\%	32,783	2.00\%	139,125	8.49\%	30,273	1.85\%	1,975	0.12\%	8,676	0.53\%	726,764	44.34\%	974,927	59.48\%
7																				
8																				
9	> 90\%					0		0		0		0		0		0		0		
10	80\% - 89.9\%					0		0		0		0		0		0		0		
11	70\% - 79.9\%					0		0		0		0		0		0		0		
12	65\% - 69.9\%					0		0		0		0		0		0		0		
13	60\% - 64.9\%					0		0		0		0		0		0		0		
14	55\% - 59.9\%					0		0		0		0		0		0		1		
15	50\% - 54.9\%					0		0		0		0		0		0		0		
16	45\% - 49.9\%					1		0		0		0		0		0		0		
17	40\% - 45.9\%					0		0		0		0		0		0		0		
18	35\% - 39.9\%					1		0		0		0		0		0		2		
19	30\% - 34.9\%					1		0		0		0		0		0		0		
20	20\% - 29.9\%					0		0		0		0		0		0		0		
21	10\% - 19.9\%					-		0		1		0		0		0		0		
22	<10\%					0		3		2		3		3		3		0		
23																				

NM_PlanH_Matrix_poli_formatted.xIsx
Statewide Races

Court of Appeals (2022)											
Contest 1				Contest 2							
Baca	Baca \%	Johnson	Johnson \%	Wray	Wray \%	Lee	Lee \%				
129,149	56.72\%	98,531	43.28\%	128,293	57.33\%	95,498	42.67\%				
84,921	47.95\%	92,186	52.05\%	85,409	48.95\%	89,073	51.05\%				
135,451	53.92\%	115,774	46.08\%	136,467	54.82\%	112,457	45.18\%				
349,521	53.28\%	306,491	46.72\%	350,169	54.11\%	297,028	45.89\%				
					Court of Appe	s (2020)					
	Con	ntest 1			Contest				Cont	st 3	
Ives	Ives \%	Johnson	Johnson \%	Henderson	Henderson \%	Lee	Lee \%	Yohalem	Yohalem \%	Montoya	Montoya \%
162,430	54.08\%	137,928	45.92\%	159,624	57.21\%	119,391	42.79\%	159,856	53.45\%	139,221	46.55\%
122,663	48.90\%	128,167	51.10\%	119,737	51.49\%	112,789	48.51\%	120,371	48.11\%	129,823	51.89\%
178,919	53.77\%	153,832	46.23\%	171,186	55.26\%	138,590	44.74\%	176,388	53.21\%	155,105	46.79\%
464,012	52.49\%	419,927	47.51\%	450,547	54.86\%	370,770	45.14\%	456,615	51.84\%	424,149	48.16\%
					Court of Appe	Is (2018)					
	Con	ntest 2			Contest				Cont	est 4	
Medina	Medina \%	Bohnhoff	Bohnhoff \%	Zamora	Zamora	Kiehne	Kiehne \%	Duffy	Duffy \%	Gallegos	Gallegos \%
140,938	61.31\%	88,945	38.69\%	140,348	61.15\%	89,179	38.85\%	130,117	56.79\%	98,987	43.21\%
104,404	55.71\%	83,002	44.29\%	103,110	54.99\%	84,387	45.01\%	96,921	51.85\%	90,007	48.15\%
146,087	56.23\%	113,734	43.77\%	147,513	56.84\%	111,988	43.16\%	140,484	54.39\%	117,820	45.61\%
391,429	57.81\%	285,681	42.19\%	390,971	57.79\%	285,554	42.21\%	367,522	54.50\%	306,814	45.50\%

Autobound EDGE - Compactness Report

Plan Name: Congress:NM_Congress_H
For more information on compactness calculations Click Here

Compactness measure: Polsby-Popper						
District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value	
1	49,547	1,427	162,002	789	0.31	
2	48,696	1,470	172,022	782	0.28	
3	23,349	943	70,825	542	0.33	

Most Compact: 0.33 For District: 3
Least Compact: 0.28 For District: 2

Compactness measure: Schwartzberg					
District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	49,547	1,427	162,002	789	0.55
2	48,696	1,470	172,022	782	0.53
3	23,349	943	70,825	542	0.57

Most Compact: 0.57 For District: 3
Least Compact: 0.53 For District: 2

Compactness measure: Reock Score

District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	49,547	1,427	162,002	789	0.31
2	48,696	1,470	172,022	782	0.37
3	23,349	943	70,825	542	0.55

Most Compact: 0.55 For District: 3
Least Compact: 0.31 For District: 1
Compactness measure: Length-Width

District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Compactness Value
1	49,547	1,427	162,002	789	1.41
2	48,696	1,470	172,022	782	1.49
3	23,349	943	70,825	542	1.49

Most Compact: 1.49 For District: 3
Least Compact: 1.41 For District: 1

Compactness measure: Convex Hull										Compactness
District	District Area (SQM)	Perimeter (Miles)	Area of Circle with Same Perimeter	Perimeter of Circle with Same Area	Calue					
1	49,547	1,427	162,002	789	0.67					
2	48,696	1,470	172,022	782	0.72					
3	23,349	943	70,825	542	0.81					

Most Compact: 0.81 For District: 3 Least Compact: 0.67 For District: 1

New Mexico Redistricting A Vs B Report

A: Previous 2011 Congressional Districts (2012-2020) B:
Counties

Previous 2011 Congressional District: 01
Total Population: 694,577

County	How much of this District is in:	This District consists of this much of:		
Bernalillo County	641,488	92.4%	641,488	
Sandoval County	21,361	3.1%	21,361	
Torrance County	15,045	2.2%	15,045	
Valencia County	11,231	1.6%	11,231	100%
Santa Fe County	5,452	0.8%	5,452	3.5%

Previous 2011 Congressional District: 02
Total Population: 714,022

County	How much of this District is in:		This District consists of this much of:	
Doña Ana County	219,561	30.7\%	219,561	100\%
Lea County	74,455	10.4\%	74,455	100\%
Otero County	67,839	9.5\%	67,839	100\%
Chaves County	65,157	9.1\%	65,157	100\%
Valencia County	64,974	9.1\%	64,974	85.3\%
Eddy County	62,314	8.7\%	62,314	100\%
Grant County	28,185	3.9\%	28,185	100\%
Cibola County	27,172	3.8\%	27,172	100\%
Luna County	25,427	3.6\%	25,427	100\%
Lincoln County	20,269	2.8\%	20,269	100\%
Socorro County	16,595	2.3\%	16,595	100\%
Sierra County	11,576	1.6\%	11,576	100\%
Roosevelt County	7,015	1\%	7,015	36.6\%
McKinley County	6,693	0.9\%	6,693	9.2\%
Guadalupe County	4,452	0.6\%	4,452	100\%
Hidalgo County	4,178	0.6\%	4,178	100\%
Catron County	3,579	0.5\%	3,579	100\%
Bernalillo County	2,883	0.4\%	2,883	0.4\%
De Baca County	1,698	0.2\%	1,698	100\%

Previous 2011 Congressional District: 03	Total Population: 708,923			
County	How much of this District is in:	This District consists of this much of:		
Santa Fe County	149,371	21.1%	149,371	96.5%
Sandoval County	127,473	18%	127,473	85.6%
San Juan County	121,661	17.2%	121,661	100%
McKinley County	66,209	9.3%	66,209	90.8%
Curry County	48,430	6.8%	48,430	100%
Rio Arriba County	40,363	5.7%	40,363	100%
Taos County	34,489	4.9%	34,489	100%
Bernalillo County	32,073	4.5%	32,073	4.7%
San Miguel County	27,201	3.8%	27,201	100%
Los Alamos County	19,419	2.7%	19,419	100%
Colfax County	12,387	1.7%	12,387	100%
Roosevelt County	12,176	1.7%	12,176	63.4%
Quay County	8,746	1.2%	8,746	100%
Mora County	4,189	0.6%	4,189	100%
Union County	4,079	0.6%	4,079	100%
Harding County	657	0.1%	657	100%

New Mexico Redistricting A Vs B Report
 A: Passed SB1 Congressional Boundaries (2022-present)
 B: Counties

Passed Congressional District: 1 Total Population: 705,832

County	How much of this District is in:		This District consists of this much of:	
Bernalillo County	486,295	68.9\%	486,295	71.9\%
Sandoval County	128,705	18.2\%	128,705	86.5\%
Valencia County	33,843	4.8\%	33,843	44.4\%
Lincoln County	20,269	2.9\%	20,269	100\%
Torrance County	15,045	2.1\%	15,045	100\%
Santa Fe County	9,549	1.4\%	9,549	6.2\%
Guadalupe County	4,452	0.6\%	4,452	100\%
Chaves County	3,967	0.6\%	3,967	6.1\%
Otero County	2,009	0.3\%	2,009	3\%
De Baca County	1,698	0.2\%	1,698	100\%

Passed Congressional District: 2 Total Population: 705,846

County	How much of this District is in:		This District consists of this much of:	
Doña Ana County	219,561	31.1\%	219,561	100\%
Bernalillo County	190,149	26.9\%	190,149	28.1\%
Otero County	65,830	9.3\%	65,830	97\%
Eddy County	45,337	6.4\%	45,337	72.8\%
Valencia County	42,362	6\%	42,362	55.6\%
Grant County	28,185	4\%	28,185	100\%
Cibola County	27,172	3.8\%	27,172	100\%
Luna County	25,427	3.6\%	25,427	100\%
Lea County	19,038	2.7\%	19,038	25.6\%
Socorro County	16,595	2.4\%	16,595	100\%
Sierra County	11,576	1.6\%	11,576	100\%
McKinley County	6,693	0.9\%	6,693	9.2\%
Hidalgo County	4,178	0.6\%	4,178	100\%
Catron County	3,579	0.5\%	3,579	100\%
Chaves County	164	0\%	164	0.3\%

Passed Congressional District: 3 Total Population: 705,844

County	How much of this District is in:		This District consists of this much of:	
Santa Fe County	145,274	20.6\%	145,274	93.8\%
San Juan County	121,661	17.2\%	121,661	100\%
McKinley County	66,209	9.4\%	66,209	90.8\%
Chaves County	61,026	8.6\%	61,026	93.7\%
Lea County	55,417	7.9\%	55,417	74.4\%
Curry County	48,430	6.9\%	48,430	100\%
Rio Arriba County	40,363	5.7\%	40,363	100\%
Taos County	34,489	4.9\%	34,489	100\%
San Miguel County	27,201	3.9\%	27,201	100\%
Sandoval County	20,129	2.9\%	20,129	13.5\%
Los Alamos County	19,419	2.8\%	19,419	100\%
Roosevelt County	19,191	2.7\%	19,191	100\%
Eddy County	16,977	2.4\%	16,977	27.2\%
Colfax County	12,387	1.8\%	12,387	100\%
Quay County	8,746	1.2\%	8,746	100\%
Mora County	4,189	0.6\%	4,189	100\%
Union County	4,079	0.6\%	4,079	100\%
Harding County	657	0.1\%	657	100\%

New Mexico Redistricting A Vs B Report
A: Passed SB1 Congressional Districts (2022-present) B: Cities \& Census Places (over 2,500 population)

Passed SB1 Congressional District: 1

Census Place	How much of the District is in:		The District consists of this much of:	
Albuquerque	428,643	68.8\%	428,643	75.9\%
Rio Rancho	102,051	16.4\%	102,051	98.1\%
North Valley	11,149	1.8\%	11,149	100\%
Bernalillo	8,976	1.4\%	8,976	100\%
Corrales	8,493	1.4\%	8,493	100\%
Ruidoso	7,679	1.2\%	7,679	100\%
Edgewood	6,174	1\%	6,174	100\%
Los Ranchos de Albuquerque	5,874	0.9\%	5,874	100\%
Placitas	5,041	0.8\%	5,041	91.2\%
Meadow Lake	4,573	0.7\%	4,573	100\%
El Cerro Mission	4,566	0.7\%	4,566	100\%
Bosque Farms	4,020	0.6\%	4,020	100\%
Kirtland AFB	3,838	0.6\%	3,838	100\%
Peralta	3,342	0.5\%	3,342	100\%
Paradise Hills	3,338	0.5\%	3,338	77.1\%
Sandia Heights	3,273	0.5\%	3,273	100\%
El Cerro	2,946	0.5\%	2,946	100\%
Santa Rosa	2,850	0.5\%	2,850	100\%
Ruidoso Downs	2,620	0.4\%	2,620	100\%
Los Lunas	2,066	0.3\%	2,066	12\%

Passed SB1 Congressional District: 1

Census Place	How much of the District is in:	The District consists of this much of:	
Roswell	906	0.1%	906
Rio Communities	809	0.1%	809
South Valley	0	0%	0

Passed SB1 Congressional District: 2

Census Place	How much of the District is in:		The District consists of this much of:	
Albuquerque	135,916	26.6\%	135,916	24.1\%
Las Cruces	111,385	21.8\%	111,385	100\%
South Valley	38,338	7.5\%	38,338	100\%
Carlsbad	32,238	6.3\%	32,238	100\%
Alamogordo	30,898	6.1\%	30,898	100\%
Sunland Park	16,702	3.3\%	16,702	100\%
Chaparral	16,551	3.2\%	16,551	100\%
Los Lunas	15,176	3\%	15,176	88\%
Deming	14,758	2.9\%	14,758	100\%
Hobbs	11,430	2.2\%	11,430	28.2\%
Silver City	9,704	1.9\%	9,704	100\%
Grants	9,163	1.8\%	9,163	100\%
Socorro	8,707	1.7\%	8,707	100\%
Anthony	8,693	1.7\%	8,693	100\%
Belen	7,360	1.4\%	7,360	100\%
Truth or Consequences	6,052	1.2\%	6,052	100\%
Zuni Pueblo	6,025	1.2\%	6,025	97.6\%
Santa Teresa	5,044	1\%	5,044	100\%
Los Chaves	4,997	1\%	4,997	100\%
Rio Communities	4,117	0.8\%	4,117	83.6\%

Passed SB1 Congressional District: 2

Census Place	How much of the District is in:		The District consists of this much of:	
Holloman AFB	3,810	0.7\%	3,810	100\%
Eunice	3,056	0.6\%	3,056	100\%
University Park	3,007	0.6\%	3,007	100\%
Vado	2,930	0.6\%	2,930	100\%
Tularosa	2,553	0.5\%	2,553	100\%
Paradise Hills	991	0.2\%	991	22.9\%
Placitas	488	0.1\%	488	8.8\%
Artesia	194	0\%	194	1.5\%
Rio Rancho	0	0\%	0	0\%

Passed SB1 Congressional District: 3

Census Place	How much of the District is in:		The District consists of this much of:	
Santa Fe	87,505	19.9\%	87,505	100\%
Rosw ell	47,516	10.8\%	47,516	98.1\%
Farmington	46,624	10.6\%	46,624	100\%
Clovis	38,567	8.8\%	38,567	100\%
Hobbs	29,078	6.6\%	29,078	71.8\%
Gallup	21,899	5\%	21,899	100\%
Los Alamos	13,179	3\%	13,179	100\%
Las Vegas	13,166	3\%	13,166	100\%
Artesia	12,681	2.9\%	12,681	98.5\%
Portales	12,137	2.8\%	12,137	100\%
Lovington	11,668	2.7\%	11,668	100\%
Española	10,526	2.4\%	10,526	100\%
Shiprock	7,718	1.8\%	7,718	100\%
Bloomfield	7,421	1.7\%	7,421	100\%
North Hobbs	6,529	1.5\%	6,529	100\%
Taos	6,474	1.5\%	6,474	100\%
Aztec	6,201	1.4\%	6,201	100\%
Raton	6,041	1.4\%	6,041	100\%
Eldorado at Santa Fe	6,005	1.4\%	6,005	100\%
White Rock	5,852	1.3\%	5,852	100\%

Passed SB1 Congressional District: 3

Census Place	How much of the District is in:		The District consists of this much of:	
Tucumcari	5,278	1.2\%	5,278	100\%
Crouch Mesa	5,257	1.2\%	5,257	100\%
Lee Acres	4,170	0.9\%	4,170	100\%
La Cienega	3,885	0.9\%	3,885	100\%
Chimayo	3,077	0.7\%	3,077	100\%
Agua Fria	2,913	0.7\%	2,913	100\%
Crownpoint	2,900	0.7\%	2,900	100\%
Dulce	2,788	0.6\%	2,788	100\%
West Hammond	2,724	0.6\%	2,724	100\%
Ranchos de Taos	2,707	0.6\%	2,707	100\%
Clayton	2,643	0.6\%	2,643	100\%
San Felipe Pueblo	2,542	0.6\%	2,542	100\%
Rio Rancho	1,995	0.5\%	1,995	1.9\%
Zuni Pueblo	151	0\%	151	2.4\%
Bernalillo	1	0\%	1	0\%
Placitas	0	0\%	0	0\%

New Mexico Redistricting A Vs B Report
 A: Previous 2011 Congressional Districts (2012-2020) B: Passed SB 1 Districts (2022 - Present)

Previous 2011 Congressional District: 01	Total Population: 694,577		
Passed SB1 District	How much of the original District is in:	The original District consists of this much of:	
1	528,092	528,092	
2	166,485	23.6%	166,485
3	0	0%	0

Previous 2011 Congressional District: 02
Total Population: 714,022

Passed SB1 District	How much of the original District is in:	The original District consists of this much of:	
2	518,069	73.4%	518,069
3	140,435	19.9%	140,435
1	55,518	7.9%	55,518

Previous 2011	Congressional District: 03	Total Population: 708,923	
Passed SB1 District	How much of the original District is in:	The original District consists of this much of:	
3	565,409	80.1%	565,409
1	122,222	17.3%	122,222

Measuring Compactness

The Original Gerrymander

The term Gerrymandering refers to the act of manipulating the boundaries of voting districts to achieve some political advantage. The term was coined during tenure Massachusetts Governor Elbridge Gerry, who in 1812 redrew the voting districts for the Massachusetts State Senate to favor his own party. One district caught the attention of the Boston Gazette, who published a political cartoon likening the district's shape to that of a salamander and labeling the phenomenon "The Gerry-mander" after the Governor.

The Original "Gerry-mander""

Compactness and Geographic Gerrymandering

Compactness measures have been widely used to assess geographic gerrymandering. Although it is generally accepted that legislative districts should be "compact" the defintion of compactness has proved elusive. Numerous, sometimes conflicting, measures of compactness across a number of theoretical dimensions have been proposed in the academic literature. These measures are typically based on comparing geometric features of the district (e.g. perimeters, areas) to the features of a related base geometric object (e.g. minimum bounding circle, convex hull).

Here we provide six of the most frequently used measures of compactness used by academic researchers: (1) Polsby-Popper (Polsby and Popper, 1991); (2) Schwartzberg (1965); (3) Reock (1961); (4) Convex Hull; (5) XSymmetry; and (6) Length-Width Ratio (C.C. Harris, 1964). As no one threshold for determining if a district has been gerrymandered exists we provide three cutoffs from which to compare scores from different districts (1) the scores for the original gerrymander, (2) the state mean, and (3) the state median.

Polsby-Popper

The Polsby-Popper $(P P)$ measure (polsby \& Popper, 1991) is the ratio of the area of the district $\left(A_{D}\right)$ to the area of a circle whose circumference is equal to the perimeter of the district $\left(P_{D}\right)$. A district's Polsby-Popper score falls with the range of $[0,1]$ and a score closer to 1 indicates a more compact district.

$$
P P=4 \pi \times \frac{A_{D}}{P_{D}^{2}}
$$

Circumfrence Equal to District Perimeter

Schwartzberg

The Schwartzberg score (S) compactness score is the ratio of the perimeter of the district $\left(P_{D}\right)$ to the circumference of a circle whose area is equal to the area of the district. A district's Schwartzberg score as calculated below falls with the range of $[0,1]$ and a score closer to 1 indicates a more compact district.

$$
S=\frac{1}{P_{D} / C}=\frac{1}{P_{D} /\left(2 \pi \sqrt{A_{D} / \pi}\right)}
$$

Circle with Area Equivalent to the District

Reock Score

The Reock Score (R) is the ratio of the area of the district A_{D} to the area of a minimum bounding cirle ($A_{M B C}$) that encloses the district's geometry. A district's Reock score falls within the range of $[0,1]$ and a score closer to 1 indicates a more compact district.

$$
R=\frac{A_{D}}{A_{M B C}}
$$

Minimum Bounding Circle of Original Gerrymander

Convex Hull

The Convex Hull score is a ratio of the area of the district to the area of the minimum convex polygon that can encloses the district's geometry. A district's Convex Hull score falls within the range of [0,1] and a score closer to 1 indicates a more compact district.

$$
C H=\frac{A_{D}}{A_{M C P}}
$$

Convex Hull of Original Gerrymander

X-Symmetry

X-Symmetry is calculated by dividing the overlapping area A_{O}, between a district and its reflection across the horizontal axis by the area of the original district A_{D}. A district's X-Symmetry score falls with the range of $[0,1]$ and a score closer to 1 indicates a more compact district.

$$
X S=\frac{A_{O}}{A_{D}}
$$

Area of Overlapping X-Symmetry

Length-Width

The Length-Width Ratio $(L W)$ is calculated as the ratio of the length $\left(L_{M B R}\right)$ to the width $\left(W_{M B R}\right)$ of the minimum bounding rectangle surrounding the district. To orient the Length-Width score towards other compactness measures the maximum value of a district's width or length has been set to the denominator, making scores close to 1 more compact, and scores closer to zero less compact.

$$
L W=\frac{W_{M B R}}{L_{M B R}}
$$

Minimum Bounding Rectangle of Original Gerrymander

References

Harris, Curtis C. 1964. "A scientific method of districting". Behavioral Science 3(9), 219-225.
Polsby, Daniel D., and Robert D. Popper. 1991. "The Third Criterion: Compactness as a procedural safeguard against partisan gerrymandering." Yale Law \& Policy Review 9 (2): 301-353.

Reock, Ernest C. 1961. "A note: Measuring compactness as a requirement of legislative apportionment." Midwest Journal of Political Science 1(5), 70-74.

Schwartzberg, Joseph E. 1965. "Reapportionment, gerrymanders, and the notion of compactness". In: Minn. L. Rev. 50, 443.

State	District	Perimeter (miles)	Area (sq miles)	Polsby Popper	Schwartzberg	Reock	Length-Width	Convex Hull
Wyoming	01	1261.27	97809.44	0.77	0.88	0.55	0.57	1.00
Wyoming	SW	1,261.27	97,809.44	0.77	0.88	0.55	0.57	1.00
Indiana	07	70.71	282.84	0.71	0.84	0.51	0.54	0.97
Ohio	14	223.20	2481.84	0.63	0.79	0.52	0.76	0.91
Nevada	02	1189.76	65518.00	0.58	0.76	0.49	0.58	0.89
Florida	15	121.20	674.87	0.58	0.76	0.53	0.67	0.88
Michigan	07	251.62	2814.38	0.56	0.75	0.43	0.47	0.90
Colorado	05	182.13	1474.30	0.56	0.75	0.53	0.76	0.91
Indiana	05	222.97	2209.31	0.56	0.75	0.49	0.63	0.84
South Dakota	01	1317.98	77115.61	0.56	0.75	0.41	0.44	0.93
South Dakota	SW	1,317.98	77,115.61	0.56	0.75	0.41	0.44	0.93
Minnesota	04	87.61	333.99	0.55	0.74	0.45	0.53	0.89
Texas	19	845.62	30260.41	0.53	0.73	0.46	0.65	0.84
Indiana	03	324.93	4445.57	0.53	0.73	0.49	0.60	0.93
Indiana	02	323.36	4397.73	0.53	0.73	0.63	0.93	0.88
Missouri	07	373.82	5864.90	0.53	0.73	0.45	0.48	0.90
North Dakota	01	1314.27	70694.70	0.52	0.72	0.43	0.41	0.99
North Dakota	SW	1,314.27	70,694.70	0.52	0.72	0.43	0.41	0.99
California	11	31.81	40.55	0.50	0.71	0.48	0.63	0.82
Montana	02	1629.20	106260.33	0.50	0.71	0.45	0.44	0.95
Nevada	04	1025.53	42008.70	0.50	0.71	0.40	0.53	0.92
Washington	05	689.81	18983.52	0.50	0.71	0.58	0.82	0.89
Ohio	03	74.54	221.10	0.50	0.71	0.59	0.69	0.94
New York	26	108.54	460.74	0.49	0.70	0.55	0.75	0.87
Michigan	12	70.50	191.56	0.49	0.70	0.60	0.90	0.84
Florida	06	313.53	3773.30	0.48	0.70	0.73	0.88	0.92
Florida	05	133.98	683.67	0.48	0.69	0.51	0.61	0.87
Utah	01	547.58	11356.24	0.48	0.69	0.36	0.42	0.86
North Carolina	04	235.63	2088.27	0.47	0.69	0.41	0.62	0.85
Florida	16	180.75	1228.19	0.47	0.69	0.48	0.93	0.75
Florida	21	212.24	1688.43	0.47	0.69	0.48	0.75	0.80
Indiana	01	172.84	1114.97	0.47	0.69	0.38	0.64	0.76
Florida	09	222.59	1846.11	0.47	0.68	0.49	0.66	0.86
Indiana	SW	336.75	4,021.13	0.47	0.67	0.47	0.66	0.83
Florida	03	458.71	7537.03	0.45	0.67	0.55	0.83	0.90
Kansas	03	253.07	2293.77	0.45	0.67	0.40	0.60	0.79
Florida	24	59.04	124.07	0.45	0.67	0.47	0.72	0.89
Kansas	04	641.35	14637.46	0.45	0.67	0.34	0.35	0.88
Florida	01	319.52	3578.44	0.44	0.66	0.44	0.46	0.86
Michigan	04	265.80	2443.97	0.44	0.66	0.38	0.60	0.76
Ohio	10	169.91	996.60	0.43	0.66	0.43	0.50	0.87
California	23	722.42	17985.35	0.43	0.66	0.51	0.54	0.91
Arkansas	03	351.20	4244.95	0.43	0.66	0.46	0.92	0.83
Nevada	SW	676.53	27,642.59	0.44	0.66	0.43	0.59	0.85
Kentucky	03	97.22	323.09	0.43	0.66	0.36	0.55	0.78
Minnesota	05	63.36	137.19	0.43	0.66	0.60	0.77	0.86
Nevada	01	173.07	1018.89	0.43	0.65	0.56	0.87	0.89
Oregon	02	1464.27	72876.55	0.43	0.65	0.40	0.53	0.87
Pennsylvania	15	621.56	13083.10	0.43	0.65	0.46	0.47	0.86
Pennsylvania	02	44.67	67.46	0.43	0.65	0.33	0.40	0.84
North Carolina	06	227.63	1744.26	0.42	0.65	0.43	0.57	0.79
Florida	18	459.48	7085.31	0.42	0.65	0.45	0.65	0.82
Indiana	06	314.01	3298.23	0.42	0.65	0.41	0.50	0.78
lowa	02	624.17	12985.59	0.42	0.65	0.45	0.66	0.80
Pennsylvania	07	188.73	1184.47	0.42	0.65	0.46	0.69	0.78

State	District	Perimeter (miles)	Area (sq miles)	Polsby Popper	Schwartzberg	Reock	Length-Width	Convex Hull
Nebraska	02	194.06	1248.99	0.42	0.65	0.38	0.40	0.88
New York	22	290.20	2767.45	0.41	0.64	0.42	0.56	0.84
Michigan	11	101.15	336.10	0.41	0.64	0.42	0.56	0.82
Michigan	10	83.87	229.37	0.41	0.64	0.40	0.61	0.75
Indiana	04	433.56	6126.14	0.41	0.64	0.43	0.67	0.84
New York	16	63.92	132.79	0.41	0.64	0.60	0.80	0.88
Florida	08	246.21	1964.84	0.41	0.64	0.31	0.39	0.75
Florida	07	171.58	941.03	0.40	0.63	0.47	0.72	0.83
Pennsylvania	16	349.74	3898.15	0.40	0.63	0.50	0.57	0.86
New York	09	21.83	15.16	0.40	0.63	0.56	0.67	0.83
Connecticut	02	256.63	2094.61	0.40	0.63	0.56	0.79	0.84
Michigan	02	559.31	9915.62	0.40	0.63	0.57	0.85	0.78
Wisconsin	02	371.96	4368.26	0.40	0.63	0.58	0.77	0.88
Florida	25	81.27	208.49	0.40	0.63	0.45	0.60	0.83
Pennsylvania	01	151.06	718.12	0.40	0.63	0.32	0.46	0.82
Arizona	03	81.46	206.47	0.39	0.63	0.45	0.61	0.83
Pennsylvania	13	455.01	6403.49	0.39	0.62	0.46	0.52	0.83
New Jersey	01	110.99	380.35	0.39	0.62	0.46	0.74	0.80
Georgia	07	102.62	322.70	0.39	0.62	0.42	0.58	0.82
New York	17	172.74	904.75	0.38	0.62	0.44	0.64	0.83
Utah	02	1149.99	40040.15	0.38	0.62	0.50	0.98	0.81
Missouri	05	119.37	431.41	0.38	0.62	0.42	0.69	0.84
Mississippi	01	577.99	10094.62	0.38	0.62	0.47	0.85	0.82
New York	20	231.26	1610.65	0.38	0.62	0.47	0.64	0.79
Oregon	01	339.35	3453.64	0.38	0.61	0.48	0.85	0.79
Arizona	01	232.88	1614.18	0.37	0.61	0.41	0.54	0.84
North Carolina	12	124.41	460.27	0.37	0.61	0.61	0.83	0.84
Pennsylvania	11	228.11	1545.08	0.37	0.61	0.37	0.49	0.88
Florida	10	95.82	272.54	0.37	0.61	0.38	0.49	0.75
Georgia	14	333.27	3293.01	0.37	0.61	0.45	0.72	0.80
Delaware	01	262.73	2044.03	0.37	0.61	0.31	0.45	0.75
Delaware	SW	262.73	2,044.03	0.37	0.61	0.31	0.45	0.75
Oregon	06	253.82	1906.82	0.37	0.61	0.47	0.72	0.80
Minnesota	02	247.33	1809.86	0.37	0.61	0.35	0.43	0.85
Wisconsin	05	274.59	2219.22	0.37	0.61	0.56	0.74	0.86
Vermont	01	571.97	9601.95	0.37	0.61	0.42	0.64	0.82
Vermont	SW	571.97	9,601.95	0.37	0.61	0.42	0.64	0.82
Florida	17	237.18	1646.83	0.37	0.61	0.26	0.40	0.76
Florida	22	94.83	262.66	0.37	0.61	0.40	0.83	0.69
California	27	229.64	1528.47	0.36	0.60	0.45	0.56	0.89
Texas	27	628.26	11423.82	0.36	0.60	0.48	0.65	0.81
Florida	12	249.54	1784.94	0.36	0.60	0.49	0.86	0.75
Michigan	08	282.47	2270.96	0.36	0.60	0.46	0.61	0.76
Florida	SW	238.88	2,093.29	0.37	0.60	0.42	0.64	0.77
Florida	11	254.39	1836.15	0.36	0.60	0.52	0.85	0.82
Virginia	05	582.56	9609.92	0.36	0.60	0.46	0.74	0.89
Mississippi	04	510.30	7368.86	0.36	0.60	0.55	0.86	0.87
lowa	03	619.59	10748.55	0.35	0.59	0.36	0.51	0.77
North Carolina	07	434.16	5274.03	0.35	0.59	0.45	0.66	0.78
Kansas	01	1337.73	49841.14	0.35	0.59	0.32	0.44	0.82
New York	25	174.78	848.78	0.35	0.59	0.24	0.35	0.76
Oregon	03	227.17	1427.05	0.35	0.59	0.29	0.37	0.78
Utah	SW	827.64	21,224.44	0.35	0.59	0.45	0.73	0.78
Indiana	09	471.46	6098.47	0.35	0.59	0.47	0.75	0.77
South Carolina	03	461.70	5845.83	0.35	0.59	0.43	0.55	0.85

State	District	Perimeter (miles)	Area (sq miles)	Polsby Popper	Schwartzberg	Reock	Length-Width	Convex Hull
Oklahoma	05	362.51	3584.18	0.34	0.59	0.47	0.74	0.76
North Carolina	10	332.63	2999.46	0.34	0.58	0.41	0.66	0.79
Texas	03	235.31	1495.99	0.34	0.58	0.44	0.52	0.85
Michigan	SW	438.90	4,465.82	0.35	0.58	0.38	0.56	0.75
Kansas	SW	841.21	20,569.47	0.35	0.58	0.38	0.58	0.78
Montana	SW	1,619.86	73,517.98	0.35	0.58	0.40	0.52	0.83
lowa	SW	732.90	14,068.13	0.33	0.58	0.38	0.61	0.74
California	14	149.43	585.02	0.33	0.57	0.32	0.47	0.74
Florida	26	303.71	2405.54	0.33	0.57	0.27	0.40	0.77
Oklahoma	01	205.80	1103.44	0.33	0.57	0.39	0.65	0.74
North Carolina	08	379.58	3747.35	0.33	0.57	0.54	0.98	0.80
Washington	03	536.89	7482.34	0.33	0.57	0.36	0.49	0.79
Colorado	02	666.87	11539.73	0.33	0.57	0.59	0.66	0.90
Nebraska	SW	805.69	25,782.38	0.33	0.57	0.35	0.47	0.81
Michigan	09	425.62	4680.23	0.33	0.57	0.59	0.83	0.84
Pennsylvania	03	46.08	54.80	0.32	0.57	0.47	0.80	0.72
Florida	04	271.38	1895.23	0.32	0.57	0.42	0.61	0.78
North Carolina	02	140.47	507.43	0.32	0.57	0.34	0.51	0.79
California	06	99.47	254.26	0.32	0.57	0.27	0.37	0.84
Oregon	SW	611.04	16,178.11	0.33	0.57	0.41	0.65	0.76
Georgia	05	98.83	250.22	0.32	0.57	0.60	0.92	0.80
Idaho	02	1311.15	43663.14	0.32	0.57	0.50	0.70	0.81
Alabama	05	372.29	3501.96	0.32	0.56	0.25	0.32	0.80
Arizona	08	151.42	578.79	0.32	0.56	0.50	0.89	0.76
Michigan	06	198.96	999.22	0.32	0.56	0.33	0.48	0.73
Florida	27	73.01	134.46	0.32	0.56	0.43	0.71	0.67
Pennsylvania	SW	269.16	2,664.89	0.32	0.56	0.42	0.60	0.78
Minnesota	SW	558.84	10,525.28	0.32	0.56	0.40	0.57	0.77
Wisconsin	04	75.53	142.35	0.31	0.56	0.50	0.74	0.85
Arizona	05	127.57	405.75	0.31	0.56	0.51	0.78	0.73
Nebraska	03	1677.30	70044.81	0.31	0.56	0.29	0.34	0.85
Ohio	04	445.58	4921.23	0.31	0.56	0.30	0.40	0.73
California	22	417.92	4320.67	0.31	0.56	0.48	0.64	0.79
North Carolina	11	502.21	6228.24	0.31	0.56	0.31	0.38	0.88
Missouri	SW	537.03	8,713.32	0.32	0.56	0.42	0.62	0.79
Missouri	01	102.55	258.53	0.31	0.56	0.57	0.96	0.77
North Carolina	09	387.87	3679.48	0.31	0.55	0.52	0.84	0.79
Ohio	12	480.16	5633.28	0.31	0.55	0.61	0.87	0.78
Ohio	02	552.08	7441.88	0.31	0.55	0.38	0.51	0.77
Connecticut	04	139.20	471.78	0.31	0.55	0.29	0.48	0.68
New York	23	515.44	6462.20	0.31	0.55	0.22	0.34	0.73
Texas	11	892.12	19344.55	0.31	0.55	0.22	0.35	0.74
Maryland	08	107.42	280.29	0.31	0.55	0.59	0.86	0.78
Virginia	08	80.22	156.32	0.31	0.55	0.43	0.55	0.78
Texas	21	510.82	6332.88	0.31	0.55	0.36	0.48	0.83
Colorado	03	1439.92	50086.60	0.30	0.55	0.33	0.67	0.76
Pennsylvania	14	446.33	4808.87	0.30	0.55	0.42	0.60	0.76
Missouri	04	779.71	14664.47	0.30	0.55	0.51	0.82	0.79
Missouri	06	924.42	20483.43	0.30	0.55	0.25	0.33	0.82
Michigan	03	186.33	831.40	0.30	0.55	0.29	0.50	0.64
New Mexico	02	1467.61	51552.50	0.30	0.55	0.35	0.65	0.75
New York	11	53.29	67.95	0.30	0.55	0.26	0.41	0.72
New Mexico	01	857.95	17589.64	0.30	0.55	0.43	0.69	0.77
New York	18	293.27	2050.43	0.30	0.55	0.37	0.51	0.77

State	District	Perimeter (miles)	Area (sq miles)	Polsby Popper	Schwartzberg	Reock	Length-Width	Convex Hull
California	26	268.99	1724.50	0.30	0.55	0.43	0.60	0.86
Arizona	02	1568.17	58490.56	0.30	0.55	0.60	0.85	0.84
North Carolina	13	280.16	1849.90	0.30	0.54	0.46	0.55	0.83
New York	12	19.48	8.93	0.30	0.54	0.40	0.48	0.83
California	37	47.41	52.83	0.30	0.54	0.44	0.62	0.78
Virginia	04	388.41	3529.21	0.29	0.54	0.49	0.76	0.85
Minnesota	03	148.69	516.99	0.29	0.54	0.51	0.77	0.73
Missouri	02	279.13	1821.36	0.29	0.54	0.41	0.55	0.80
Pennsylvania	06	200.47	935.74	0.29	0.54	0.43	0.84	0.73
Florida	13	112.66	294.71	0.29	0.54	0.27	0.35	0.79
Tennessee	08	635.74	9379.35	0.29	0.54	0.56	0.77	0.87
Colorado	04	1180.56	32295.80	0.29	0.54	0.45	0.82	0.83
Ohio	SW	326.58	2,754.86	0.30	0.54	0.37	0.54	0.74
New Mexico	SW	1,298.78	40,530.57	0.29	0.54	0.37	0.68	0.73
North Carolina	SW	447.94	3,553.81	0.30	0.54	0.41	0.61	0.78
Minnesota	01	736.91	12454.82	0.29	0.54	0.17	0.23	0.77
lowa	01	696.34	10997.57	0.29	0.53	0.28	0.50	0.68
Virginia	10	274.39	1705.78	0.29	0.53	0.48	0.69	0.74
Florida	02	674.11	10272.07	0.28	0.53	0.34	0.46	0.74
Georgia	10	476.47	5125.88	0.28	0.53	0.51	0.74	0.81
South Carolina	07	494.22	5514.20	0.28	0.53	0.35	0.53	0.79
Oklahoma	SW	724.03	13,979.77	0.29	0.53	0.39	0.63	0.75
Utah	04	450.06	4541.06	0.28	0.53	0.47	0.81	0.71
Hawaii	01	82.53	152.52	0.28	0.53	0.26	0.56	0.61
Kentucky	05	728.56	11880.45	0.28	0.53	0.39	0.52	0.80
Ohio	08	284.18	1804.95	0.28	0.53	0.37	0.50	0.78
Pennsylvania	09	524.91	6153.48	0.28	0.53	0.47	0.74	0.74
Pennsylvania	08	356.88	2840.23	0.28	0.53	0.45	0.74	0.74
Massachusetts	01	321.01	2292.89	0.28	0.53	0.28	0.43	0.74
Texas	13	1260.63	35360.81	0.28	0.53	0.24	0.46	0.67
Georgia	12	666.11	9824.61	0.28	0.53	0.56	0.74	0.86
Illinois	02	421.54	3930.67	0.28	0.53	0.41	0.64	0.77
Illinois	14	301.07	1998.04	0.28	0.53	0.35	0.56	0.70
Florida	20	329.86	2397.24	0.28	0.53	0.50	0.84	0.77
Michigan	13	98.61	214.24	0.28	0.53	0.20	0.37	0.65
Virginia	03	127.14	355.22	0.28	0.53	0.34	0.54	0.67
lowa	04	991.50	21540.81	0.28	0.53	0.44	0.75	0.73
Georgia	03	440.52	4249.29	0.28	0.53	0.47	0.81	0.82
Pennsylvania	10	243.12	1294.24	0.28	0.53	0.43	0.72	0.71
Arizona	SW	606.02	12,664.69	0.28	0.52	0.39	0.64	0.74
Michigan	05	499.29	5354.71	0.27	0.52	0.14	0.20	0.75
Oklahoma	02	1021.62	22414.35	0.27	0.52	0.48	0.74	0.81
Utah	03	1162.93	28960.33	0.27	0.52	0.46	0.72	0.75
Ohio	13	171.79	630.98	0.27	0.52	0.49	0.61	0.82
Washington	06	586.45	7343.90	0.27	0.52	0.40	0.59	0.81
Tennessee	01	457.36	4465.20	0.27	0.52	0.29	0.42	0.81
Illinois	10	158.50	534.76	0.27	0.52	0.25	0.47	0.71
Georgia	02	689.68	10119.75	0.27	0.52	0.50	0.66	0.80
Missouri	08	932.23	18484.53	0.27	0.52	0.42	0.65	0.73
New Mexico	03	1570.77	52449.57	0.27	0.52	0.32	0.71	0.67
Wisconsin	SW	535.92	7,018.91	0.27	0.52	0.42	0.64	0.76
Arkansas	02	507.14	5458.28	0.27	0.52	0.42	0.68	0.77
Tennessee	07	533.29	6034.41	0.27	0.52	0.42	0.73	0.78
Mississippi	SW	802.73	11,922.62	0.28	0.52	0.43	0.69	0.78

State	District	Perimeter (miles)	Area (sq miles)	Polsby Popper	Schwartzberg	Reock	Length-Width	Convex Hull
Pennsylvania	05	106.29	239.58	0.27	0.52	0.36	0.65	0.72
Connecticut	SW	208.67	1,004.10	0.27	0.52	0.42	0.68	0.73
Virginia	11	109.84	254.33	0.27	0.52	0.54	0.85	0.77
Pennsylvania	17	207.81	909.07	0.26	0.51	0.42	0.58	0.76
Washington	08	689.25	9995.92	0.26	0.51	0.47	0.67	0.74
Arkansas	04	1050.10	23110.98	0.26	0.51	0.52	0.74	0.80
Illinois	12	826.69	14273.59	0.26	0.51	0.48	0.69	0.78
New York	19	619.98	7989.58	0.26	0.51	0.26	0.38	0.72
Wisconsin	01	275.35	1575.49	0.26	0.51	0.30	0.40	0.76
Wisconsin	06	507.94	5358.32	0.26	0.51	0.34	0.49	0.72
California	12	67.03	93.14	0.26	0.51	0.40	0.50	0.83
Georgia	SW	397.61	4,207.64	0.26	0.51	0.45	0.69	0.76
Texas	34	492.53	5010.49	0.26	0.51	0.41	0.58	0.73
Arkansas	SW	840.35	13,299.50	0.27	0.51	0.44	0.77	0.77
Texas	25	666.15	9135.52	0.26	0.51	0.40	0.66	0.71
Alabama	02	717.90	10524.22	0.26	0.51	0.48	0.73	0.76
Nebraska	01	545.72	6053.34	0.26	0.51	0.38	0.66	0.70
New York	21	916.26	17037.53	0.26	0.51	0.57	0.97	0.82
Kentucky	06	434.66	3831.54	0.26	0.51	0.44	0.63	0.80
Minnesota	08	1301.79	34310.16	0.25	0.50	0.30	0.57	0.69
Georgia	09	446.46	4005.43	0.25	0.50	0.33	0.55	0.70
Nevada	03	317.77	2024.75	0.25	0.50	0.24	0.36	0.71
California	52	84.55	143.19	0.25	0.50	0.37	0.72	0.75
Oklahoma	04	703.12	9890.05	0.25	0.50	0.39	0.62	0.76
Washington	10	199.35	791.03	0.25	0.50	0.28	0.34	0.80
California	35	94.52	177.42	0.25	0.50	0.30	0.52	0.71
Idaho	SW	1,477.40	41,783.98	0.25	0.50	0.39	0.55	0.77
West Virginia	01	856.28	14450.03	0.25	0.50	0.37	0.53	0.80
Connecticut	03	158.97	497.63	0.25	0.50	0.33	0.55	0.73
Alabama	03	655.70	8456.45	0.25	0.50	0.42	0.62	0.77
Tennessee	06	554.71	6044.48	0.25	0.50	0.31	0.44	0.77
Colorado	sW	584.50	13,011.81	0.27	0.50	0.40	0.65	0.76
New Jersey	05	186.18	677.85	0.25	0.50	0.24	0.37	0.68
California	07	190.18	707.00	0.25	0.50	0.27	0.51	0.64
Georgia	04	146.28	417.64	0.25	0.50	0.30	0.40	0.76
Colorado	07	607.75	7200.09	0.25	0.50	0.46	0.77	0.80
Mississippi	03	779.06	11822.98	0.25	0.50	0.36	0.55	0.69
Ohio	01	177.76	611.07	0.24	0.49	0.29	0.57	0.61
Nationwide		474.44	7147.79	0.26	0.49	0.37	0.59	0.72
Ohio	11	106.70	218.41	0.24	0.49	0.29	0.46	0.71
New York	07	34.22	22.27	0.24	0.49	0.38	0.64	0.69
Florida	19	225.23	960.95	0.24	0.49	0.23	0.47	0.61
California	09	270.33	1383.49	0.24	0.49	0.44	0.60	0.81
North Carolina	14	161.16	491.38	0.24	0.49	0.37	0.55	0.72
Washington	SW	485.97	6,812.30	0.25	0.49	0.38	0.57	0.74
New Jersey	03	242.63	1104.52	0.24	0.49	0.35	0.79	0.62
Oklahoma	03	1327.10	32906.84	0.24	0.48	0.22	0.38	0.67
Georgia	01	640.22	7640.09	0.23	0.48	0.47	0.66	0.78
Virginia	SW	409.89	3,704.82	0.24	0.48	0.36	0.58	0.73
South Carolina	04	259.25	1249.08	0.23	0.48	0.36	0.50	0.77
New York	SW	211.50	1,866.38	0.25	0.48	0.35	0.55	0.70
Oregon	04	798.78	11773.98	0.23	0.48	0.36	0.79	0.65
California	13	588.39	6349.22	0.23	0.48	0.39	0.54	0.78
Connecticut	05	264.24	1280.33	0.23	0.48	0.50	0.92	0.75

State	District	Perimeter (miles)	Area (sq miles)	Polsby Popper	Schwartzberg	Reock	Length-Width	Convex Hull
New York	06	37.62	25.93	0.23	0.48	0.28	0.41	0.75
Texas	16	131.51	316.31	0.23	0.48	0.26	0.35	0.73
Washington	09	104.93	201.26	0.23	0.48	0.43	0.61	0.75
Washington	04	997.70	18188.08	0.23	0.48	0.40	0.77	0.69
California	10	175.54	560.98	0.23	0.48	0.39	0.53	0.74
Kentucky	SW	634.93	6,734.29	0.24	0.48	0.34	0.53	0.69
Texas	02	190.82	659.67	0.23	0.48	0.39	0.71	0.69
Kentucky	02	641.33	7445.89	0.23	0.48	0.49	0.70	0.77
California	17	99.85	180.27	0.23	0.48	0.48	0.83	0.74
Florida	23	98.24	173.69	0.23	0.48	0.40	0.65	0.73
Minnesota	06	381.22	2615.21	0.23	0.48	0.41	0.71	0.64
South Carolina	05	540.53	5252.10	0.23	0.48	0.30	0.40	0.78
North Carolina	05	503.78	4561.67	0.23	0.48	0.25	0.34	0.74
North Carolina	01	669.03	8040.75	0.23	0.48	0.39	0.47	0.85
Arizona	06	874.49	13711.15	0.23	0.48	0.38	0.81	0.70
Texas	08	409.66	3000.67	0.23	0.47	0.29	0.48	0.63
Massachusetts	03	209.21	779.07	0.22	0.47	0.22	0.41	0.67
Ohio	07	272.98	1325.60	0.22	0.47	0.34	0.61	0.67
California	01	1243.44	27048.21	0.22	0.47	0.52	0.88	0.78
Ohio	06	532.41	4842.39	0.22	0.46	0.33	0.52	0.75
Texas	36	597.28	6091.00	0.21	0.46	0.34	0.51	0.75
Arizona	04	103.06	179.76	0.21	0.46	0.21	0.38	0.65
Indiana	08	696.95	8216.91	0.21	0.46	0.42	0.67	0.73
Ohio	05	573.60	5562.17	0.21	0.46	0.20	0.35	0.62
Massachusetts	02	332.47	1863.67	0.21	0.46	0.26	0.39	0.68
Wisconsin	07	1196.03	24054.26	0.21	0.46	0.39	0.66	0.71
Georgia	08	813.94	11080.43	0.21	0.46	0.37	0.60	0.73
Alabama	SW	659.33	7,386.04	0.21	0.46	0.39	0.67	0.71
Texas	28	830.03	11468.71	0.21	0.46	0.28	0.59	0.64
Oregon	05	582.85	5630.60	0.21	0.46	0.43	0.68	0.66
New Jersey	11	157.89	412.56	0.21	0.46	0.52	0.69	0.80
Texas	12	245.18	994.85	0.21	0.46	0.37	0.50	0.74
California	49	174.27	502.39	0.21	0.46	0.26	0.45	0.68
Virginia	07	409.98	2775.86	0.21	0.46	0.32	0.55	0.68
Georgia	11	266.24	1168.28	0.21	0.46	0.48	0.96	0.71
Colorado	08	250.54	1031.47	0.21	0.45	0.44	0.73	0.74
California	34	55.28	50.05	0.21	0.45	0.37	0.69	0.68
Maine	02	1350.65	29430.41	0.20	0.45	0.52	0.80	0.83
Virginia	06	625.41	6305.94	0.20	0.45	0.23	0.32	0.74
New Jersey	07	292.79	1377.64	0.20	0.45	0.46	0.85	0.68
California	48	475.83	3634.05	0.20	0.45	0.41	0.64	0.81
Maryland	04	117.27	219.35	0.20	0.45	0.35	0.55	0.67
California	39	134.00	285.77	0.20	0.45	0.39	0.63	0.68
Tennessee	SW	510.80	4,680.90	0.20	0.45	0.34	0.59	0.71
California	15	86.69	119.26	0.20	0.45	0.19	0.29	0.64
Texas	23	1928.69	58956.20	0.20	0.45	0.24	0.37	0.73
Georgia	06	226.60	810.60	0.20	0.45	0.47	0.68	0.73
Texas	31	602.83	5712.94	0.20	0.44	0.49	0.78	0.72
Montana	01	1610.52	40775.63	0.20	0.44	0.35	0.59	0.71
California	43	68.03	72.42	0.20	0.44	0.31	0.57	0.67
Texas	30	153.76	369.77	0.20	0.44	0.36	0.57	0.75
California	21	239.94	893.51	0.20	0.44	0.24	0.36	0.75
Tennessee	04	650.91	6567.61	0.20	0.44	0.23	0.37	0.70
South Carolina	SW	561.75	4,446.68	0.20	0.44	0.35	0.55	0.74
Alabama	07	847.50	11014.55	0.19	0.44	0.47	0.86	0.68

State	District	Perimeter (miles)	Area (sq miles)	Polsby Popper	Schwartzberg	Reock	Length-Width	Convex Hull
New York	04	78.93	95.46	0.19	0.44	0.38	0.53	0.72
Wisconsin	08	671.58	6889.27	0.19	0.44	0.36	0.63	0.69
New York	15	35.57	19.15	0.19	0.44	0.41	0.81	0.65
Ohio	09	421.76	2688.28	0.19	0.44	0.15	0.22	0.65
California	sW	326.09	3,041.76	0.20	0.44	0.34	0.56	0.69
Alabama	04	774.26	9056.13	0.19	0.44	0.32	0.65	0.61
Louisiana	03	704.34	7455.89	0.19	0.43	0.28	0.36	0.77
New York	10	31.96	15.33	0.19	0.43	0.37	0.62	0.70
Virginia	09	824.75	10162.63	0.19	0.43	0.17	0.26	0.76
California	33	113.29	190.23	0.19	0.43	0.23	0.39	0.68
Idaho	01	1643.66	39904.81	0.19	0.43	0.29	0.40	0.74
Texas	10	727.84	7799.59	0.19	0.43	0.34	0.63	0.66
West Virginia	SW	915.62	12,114.97	0.19	0.43	0.29	0.53	0.65
Rhode Island	02	235.17	807.15	0.18	0.43	0.36	0.56	0.68
New Jersey	04	213.86	663.80	0.18	0.43	0.47	0.67	0.81
Hawaii	SW	476.16	3,208.48	0.19	0.43	0.16	0.39	0.41
Arizona	09	1272.65	23375.15	0.18	0.43	0.33	0.57	0.62
New York	13	30.75	13.62	0.18	0.43	0.34	0.57	0.60
Pennsylvania	12	173.70	433.75	0.18	0.43	0.49	0.64	0.78
California	32	144.31	299.15	0.18	0.43	0.27	0.44	0.72
California	04	523.35	3912.60	0.18	0.42	0.35	0.55	0.68
New York	03	112.57	180.84	0.18	0.42	0.32	0.65	0.64
Arizona	07	1042.45	15420.43	0.18	0.42	0.16	0.31	0.69
Minnesota	07	1503.80	32024.04	0.18	0.42	0.38	0.56	0.70
California	29	95.94	129.33	0.18	0.42	0.38	0.72	0.59
Texas	SW	519.09	7,023.71	0.19	0.42	0.32	0.54	0.66
New Jersey	12	179.28	445.77	0.17	0.42	0.33	0.53	0.66
Wisconsin	03	914.38	11544.15	0.17	0.42	0.31	0.67	0.59
California	08	200.24	551.93	0.17	0.42	0.37	0.63	0.62
Pennsylvania	04	231.28	733.55	0.17	0.42	0.21	0.33	0.68
California	24	598.54	4912.47	0.17	0.42	0.33	0.67	0.61
New Jersey	SW	194.09	633.98	0.18	0.42	0.34	0.63	0.64
California	18	581.37	4607.85	0.17	0.41	0.27	0.41	0.77
Massachusetts	05	130.53	230.44	0.17	0.41	0.26	0.41	0.62
Connecticut	01	224.32	676.16	0.17	0.41	0.43	0.67	0.66
California	05	870.14	9967.61	0.17	0.41	0.28	0.42	0.75
Tennessee	02	452.31	2684.66	0.17	0.41	0.39	0.75	0.63
South Carolina	02	494.82	3201.26	0.16	0.41	0.44	0.68	0.72
New Hampshire	02	730.33	6969.61	0.16	0.41	0.30	0.50	0.74
Texas	09	129.87	220.01	0.16	0.41	0.43	0.74	0.68
California	47	117.24	178.90	0.16	0.40	0.26	0.51	0.60
New Hampshir	SW	576.55	4,639.91	0.16	0.40	0.32	0.57	0.67
California	46	76.09	74.98	0.16	0.40	0.49	0.77	0.69
California	25	977.33	12351.79	0.16	0.40	0.42	0.82	0.61
Texas	22	519.30	3485.60	0.16	0.40	0.39	0.64	0.66
New Hampshire	01	422.78	2310.22	0.16	0.40	0.34	0.63	0.60
New Jersey	09	95.56	117.75	0.16	0.40	0.28	0.54	0.56
California	44	87.36	97.61	0.16	0.40	0.37	0.64	0.64
Massachusetts	04	234.51	703.27	0.16	0.40	0.42	0.75	0.61
Illinois	06	134.36	229.78	0.16	0.40	0.38	0.57	0.65
California	02	1019.88	13210.87	0.16	0.40	0.22	0.47	0.60
Missouri	03	784.98	7697.92	0.16	0.40	0.30	0.49	0.64
Georgia	13	219.27	599.05	0.16	0.40	0.34	0.66	0.59
Texas	01	890.72	9868.83	0.16	0.40	0.34	0.62	0.70
Louisiana	04	1048.79	13666.27	0.16	0.40	0.34	0.71	0.61

State	District	Perimeter (miles)	Area (sq miles)	Polsby Popper	Schwartzberg	Reock	Length-Width	Convex Hull
Maine	SW	998.09	16,617.12	0.16	0.39	0.37	0.61	0.67
Washington	07	113.48	159.04	0.16	0.39	0.24	0.40	0.59
Alabama	06	515.46	3259.78	0.15	0.39	0.36	0.56	0.68
Texas	37	136.15	227.02	0.15	0.39	0.42	0.68	0.72
Texas	06	701.65	6019.70	0.15	0.39	0.26	0.45	0.62
Tennessee	03	577.25	4066.41	0.15	0.39	0.35	0.64	0.65
Kansas	02	1132.71	15505.51	0.15	0.39	0.44	0.92	0.63
Kentucky	04	641.71	4967.79	0.15	0.39	0.19	0.41	0.52
California	16	211.41	537.42	0.15	0.39	0.29	0.56	0.61
Virginia	02	464.78	2592.22	0.15	0.39	0.15	0.42	0.49
Texas	26	416.17	2057.34	0.15	0.39	0.35	0.88	0.63
Texas	05	569.25	3784.82	0.15	0.38	0.30	0.49	0.64
California	40	183.97	393.25	0.15	0.38	0.42	0.59	0.71
Illinois	11	282.76	928.12	0.15	0.38	0.25	0.60	0.53
Massachusett	SW	277.43	900.55	0.16	0.38	0.31	0.58	0.61
Ohio	15	412.11	1943.16	0.14	0.38	0.23	0.48	0.55
Washington	01	174.76	349.38	0.14	0.38	0.36	0.58	0.66
California	30	126.21	180.08	0.14	0.38	0.35	0.65	0.63
Illinois	SW	408.93	3,313.99	0.15	0.38	0.27	0.54	0.57
California	38	117.01	150.69	0.14	0.37	0.34	0.49	0.68
Alabama	01	732.17	5889.23	0.14	0.37	0.42	0.92	0.66
Texas	17	987.29	10661.54	0.14	0.37	0.25	0.39	0.65
Texas	14	520.18	2869.50	0.13	0.37	0.15	0.26	0.51
California	03	1442.30	22048.48	0.13	0.37	0.13	0.25	0.55
California	28	274.44	789.68	0.13	0.36	0.36	0.55	0.70
Florida	28	500.98	2626.72	0.13	0.36	0.17	0.57	0.38
Tennessee	05	445.70	2077.32	0.13	0.36	0.24	0.54	0.56
Massachusetts	06	230.62	554.56	0.13	0.36	0.36	0.63	0.69
Illinois	01	244.28	620.34	0.13	0.36	0.27	0.56	0.57
West Virginia	02	974.95	9779.92	0.13	0.36	0.21	0.54	0.50
Texas	20	132.33	179.98	0.13	0.36	0.45	0.79	0.63
Mississippi	02	1343.56	18404.03	0.13	0.36	0.34	0.51	0.73
Maryland	02	284.99	820.48	0.13	0.36	0.28	0.46	0.73
Illinois	15	1298.81	16987.95	0.13	0.36	0.36	0.57	0.65
Texas	38	176.93	310.42	0.12	0.35	0.39	0.73	0.59
Louisiana	05	1240.80	15196.67	0.12	0.35	0.36	0.77	0.60
New York	24	831.34	6778.00	0.12	0.35	0.23	0.47	0.51
Illinois	07	84.19	69.18	0.12	0.35	0.23	0.49	0.50
New York	08	50.97	25.31	0.12	0.35	0.25	0.71	0.45
Arkansas	01	1452.96	20383.80	0.12	0.35	0.36	0.75	0.68
Tennessee	09	289.92	808.64	0.12	0.35	0.29	0.68	0.62
New York	05	70.28	46.65	0.12	0.34	0.22	0.56	0.53
California	42	101.63	97.49	0.12	0.34	0.32	0.64	0.51
Illinois	04	101.40	96.95	0.12	0.34	0.33	0.56	0.56
California	36	102.46	98.68	0.12	0.34	0.20	0.39	0.50
Maryland	06	508.95	2432.31	0.12	0.34	0.15	0.28	0.47
Maine	01	645.52	3803.83	0.11	0.34	0.22	0.42	0.51
Texas	24	174.67	277.04	0.11	0.34	0.23	0.32	0.67
Massachusetts	08	182.48	302.16	0.11	0.34	0.44	0.80	0.63

State	District	Perimeter (miles)	Area (sq miles)	Polsby Popper	Schwartzberg	Reock	Length-Width	Convex Hull
California	51	145.32	191.05	0.11	0.34	0.51	0.78	0.66
Florida	14	187.52	314.69	0.11	0.34	0.32	0.67	0.51
New Jersey	02	483.80	2087.62	0.11	0.34	0.31	0.63	0.61
Texas	15	840.79	6294.52	0.11	0.33	0.13	0.22	0.54
Rhode Island	SW	241.94	544.73	0.12	0.33	0.28	0.52	0.57
New Jersey	10	96.08	79.25	0.11	0.33	0.31	0.74	0.56
Virginia	01	621.37	3305.64	0.11	0.33	0.37	0.68	0.65
Illinois	08	184.47	291.32	0.11	0.33	0.24	0.46	0.59
Louisiana	SW	904.15	7,953.54	0.11	0.33	0.32	0.67	0.59
Illinois	13	524.37	2300.23	0.11	0.32	0.11	0.34	0.38
California	31	159.26	210.96	0.10	0.32	0.37	0.60	0.67
Hawaii	02	869.79	6264.44	0.10	0.32	0.05	0.22	0.22
Illinois	09	145.25	172.03	0.10	0.32	0.10	0.26	0.43
South Carolina	01	609.08	2956.57	0.10	0.32	0.24	0.42	0.65
Washington	02	767.08	4628.52	0.10	0.31	0.28	0.47	0.68
Illinois	16	1074.13	9022.55	0.10	0.31	0.33	0.84	0.58
Colorado	06	200.25	310.96	0.10	0.31	0.22	0.40	0.66
California	20	1120.54	9722.52	0.10	0.31	0.35	0.69	0.60
Kentucky	01	1266.13	11957.01	0.09	0.31	0.15	0.34	0.49
Maryland	SW	565.00	1,235.11	0.11	0.30	0.31	0.51	0.66
Texas	29	169.25	209.31	0.09	0.30	0.30	0.58	0.57
Texas	07	134.82	132.81	0.09	0.30	0.22	0.50	0.48
New Jersey	06	169.16	206.84	0.09	0.30	0.18	0.44	0.42
Colorado	01	148.00	155.55	0.09	0.30	0.16	0.38	0.49
Massachusetts	07	97.14	62.19	0.08	0.29	0.25	0.64	0.47
California	50	205.51	274.51	0.08	0.29	0.17	0.47	0.43
Illinois	17	843.89	4567.46	0.08	0.28	0.24	0.94	0.35
Illinois	03	157.52	156.82	0.08	0.28	0.15	0.42	0.42
California	45	128.27	103.97	0.08	0.28	0.36	0.83	0.52
Texas	35	290.90	527.47	0.08	0.28	0.08	0.17	0.44
South Carolina	06	1072.68	7107.74	0.08	0.28	0.36	0.73	0.59
Texas	32	157.17	151.20	0.08	0.28	0.22	0.60	0.48
Louisiana	01	976.54	5789.47	0.08	0.28	0.37	0.88	0.54
Texas	04	947.60	5432.04	0.08	0.28	0.22	0.45	0.53
California	19	688.11	2849.61	0.08	0.28	0.12	0.31	0.38
Illinois	05	168.61	158.12	0.07	0.26	0.12	0.28	0.48
New York	02	228.91	287.45	0.07	0.26	0.14	0.23	0.62
Texas	18	207.35	232.11	0.07	0.26	0.41	0.86	0.54
New Jersey	08	100.82	53.81	0.07	0.26	0.21	0.52	0.49
New York	14	65.55	22.38	0.07	0.26	0.22	0.50	0.48
Louisiana	06	891.94	4143.41	0.07	0.26	0.44	0.91	0.63
Maryland	07	162.72	128.46	0.06	0.25	0.26	0.44	0.67
California	41	530.17	1345.68	0.06	0.25	0.20	0.34	0.63
Louisiana	02	562.49	1469.54	0.06	0.24	0.16	0.41	0.38
Rhode Island	01	248.71	282.31	0.06	0.24	0.20	0.48	0.46
Michigan	01	2682.14	27773.89	0.05	0.22	0.19	0.36	0.50
New York	01	409.27	636.64	0.05	0.22	0.08	0.18	0.48
Maryland	03	372.48	502.92	0.05	0.21	0.23	0.29	0.71
Alaska	01	5364.04	87561.93	0.04	0.20	0.13	0.47	0.34
Alaska	SW	5,364.04	87,561.93	0.04	0.20	0.13	0.47	0.34
Texas	33	274.00	225.62	0.04	0.19	0.20	0.49	0.39
Massachusetts	09	758.88	1316.72	0.03	0.17	0.26	0.72	0.38
North Carolina	03	1892.38	8080.85	0.03	0.17	0.25	0.53	0.47
Maryland	05	843.95	1525.66	0.03	0.16	0.36	0.74	0.68
Maryland	01	2122.25	3971.38	0.01	0.11	0.27	0.50	0.57

Nationwide_Compactness_fromTiger.xlsx Districts

State	District	Perimeter	Area	PolsbyPop	Schwartzbe	Reock	LengthWidt	ConvexHull
Alabama	01	649.16	6606.81	0.20	0.44	0.41	0.94	0.71
Alabama	02	717.29	10524.22	0.26	0.51	0.48	0.73	0.76
Alabama	03	656.48	8456.45	0.25	0.50	0.42	0.62	0.77
Alabama	04	775.01	9056.13	0.19	0.44	0.32	0.65	0.61
Alabama	05	371.31	3501.96	0.32	0.57	0.25	0.32	0.80
Alabama	06	515.52	3259.77	0.15	0.39	0.36	0.56	0.68
Alabama	07	847.95	11014.56	0.19	0.44	0.47	0.86	0.68
Alaska	01	11438.13	665761.57	0.06	0.25	0.01	0.06	0.76
Arizona	01	232.71	1614.19	0.38	0.61	0.41	0.54	0.84
Arizona	02	1568.35	58490.55	0.30	0.55	0.60	0.85	0.84
Arizona	03	81.39	206.47	0.39	0.63	0.45	0.61	0.83
Arizona	04	102.90	179.75	0.21	0.46	0.21	0.38	0.65
Arizona	05	127.45	405.76	0.31	0.56	0.51	0.78	0.73
Arizona	06	876.16	13711.30	0.22	0.47	0.38	0.81	0.70
Arizona	07	1041.11	15422.64	0.18	0.42	0.16	0.31	0.69
Arizona	08	151.42	578.79	0.32	0.56	0.50	0.89	0.76
Arizona	09	1273.42	23375.15	0.18	0.43	0.33	0.57	0.62
Arkansas	01	1451.02	20400.78	0.12	0.35	0.36	0.75	0.68
Arkansas	02	506.86	5441.29	0.27	0.52	0.42	0.68	0.77
Arkansas	03	351.46	4244.93	0.43	0.66	0.46	0.92	0.83
Arkansas	04	1050.41	23111.02	0.26	0.51	0.52	0.74	0.80
California	01	1243.85	27048.21	0.22	0.47	0.52	0.88	0.78
California	02	1027.70	14629.53	0.17	0.42	0.24	0.49	0.61
California	03	1441.91	22048.49	0.13	0.37	0.13	0.25	0.55
California	04	528.49	3926.94	0.18	0.42	0.35	0.55	0.68
California	05	870.39	9967.61	0.17	0.41	0.28	0.42	0.75
California	06	99.21	254.26	0.33	0.57	0.27	0.37	0.84
California	07	190.15	707.00	0.25	0.50	0.27	0.51	0.64
California	08	187.07	615.22	0.22	0.47	0.40	0.61	0.68
California	09	270.39	1383.49	0.24	0.49	0.44	0.60	0.81
California	10	175.33	560.98	0.23	0.48	0.39	0.53	0.74
California	11	103.66	226.55	0.27	0.52	0.10	0.27	0.36
California	12	61.26	141.33	0.47	0.69	0.49	0.53	0.94
California	13	588.47	6349.22	0.23	0.48	0.39	0.54	0.78
California	14	153.77	609.38	0.32	0.57	0.34	0.45	0.73
California	15	88.25	228.58	0.37	0.61	0.26	0.38	0.82
California	16	223.17	713.54	0.18	0.42	0.33	0.59	0.66
California	17	97.69	187.71	0.25	0.50	0.49	0.83	0.76
California	18	580.81	4607.85	0.17	0.41	0.27	0.41	0.77
California	19	671.78	3584.23	0.10	0.32	0.15	0.33	0.45
California	20	1119.70	9722.53	0.10	0.31	0.35	0.69	0.60
California	21	239.74	893.51	0.20	0.44	0.24	0.36	0.75

Nationwide_Compactness_fromTiger.xlsx Districts

State	District	Perimeter	Area	PolsbyPop	Schwartzbe	Reock	LengthWidt	ConvexHull
California	22	418.20	4320.67	0.31	0.56	0.48	0.64	0.79
California	23	720.52	17985.20	0.44	0.66	0.51	0.54	0.91
California	24	724.03	6357.79	0.15	0.39	0.25	0.51	0.55
California	25	976.75	12352.03	0.16	0.40	0.42	0.82	0.61
California	26	282.93	1835.08	0.29	0.54	0.46	0.64	0.86
California	27	229.55	1528.47	0.37	0.60	0.45	0.56	0.89
California	28	274.35	789.68	0.13	0.36	0.36	0.55	0.70
California	29	95.89	129.33	0.18	0.42	0.38	0.72	0.59
California	30	126.21	180.08	0.14	0.38	0.35	0.65	0.63
California	31	159.22	210.96	0.10	0.32	0.37	0.60	0.67
California	32	148.99	388.62	0.22	0.47	0.33	0.48	0.79
California	33	112.93	190.22	0.19	0.43	0.23	0.39	0.68
California	34	55.25	50.05	0.21	0.45	0.37	0.69	0.68
California	35	94.43	177.42	0.25	0.50	0.30	0.52	0.71
California	36	111.50	194.62	0.20	0.44	0.31	0.47	0.68
California	37	47.41	52.83	0.30	0.54	0.44	0.62	0.78
California	38	116.88	150.70	0.14	0.37	0.34	0.49	0.68
California	39	133.76	285.91	0.20	0.45	0.39	0.63	0.68
California	40	184.04	393.21	0.15	0.38	0.42	0.59	0.71
California	41	529.76	1345.59	0.06	0.25	0.20	0.34	0.63
California	42	244.77	664.80	0.14	0.37	0.13	0.40	0.33
California	43	68.03	72.42	0.20	0.44	0.31	0.57	0.67
California	44	95.35	116.70	0.16	0.40	0.31	0.55	0.64
California	45	128.18	103.97	0.08	0.28	0.36	0.83	0.52
California	46	76.05	74.98	0.16	0.40	0.49	0.77	0.69
California	47	127.65	283.87	0.22	0.47	0.36	0.60	0.70
California	48	475.66	3634.40	0.20	0.45	0.41	0.64	0.81
California	49	178.37	671.26	0.27	0.52	0.35	0.52	0.75
California	50	212.99	411.97	0.11	0.34	0.25	0.50	0.52
California	51	145.28	191.05	0.11	0.34	0.51	0.78	0.66
California	52	84.57	143.29	0.25	0.50	0.37	0.72	0.75
Colorado	01	147.87	155.55	0.09	0.30	0.16	0.38	0.49
Colorado	02	666.26	11539.72	0.33	0.57	0.59	0.66	0.90
Colorado	03	1439.83	50086.59	0.30	0.55	0.33	0.67	0.76
Colorado	04	1181.81	32295.84	0.29	0.54	0.45	0.82	0.83
Colorado	05	182.06	1474.30	0.56	0.75	0.53	0.76	0.91
Colorado	06	199.84	310.93	0.10	0.31	0.22	0.40	0.66
Colorado	07	608.40	7200.09	0.24	0.49	0.46	0.77	0.80
Colorado	08	250.53	1031.47	0.21	0.45	0.44	0.73	0.74
Connecticut	01	224.27	676.18	0.17	0.41	0.43	0.67	0.66
Connecticut	02	253.56	2136.43	0.42	0.65	0.57	0.79	0.85
Connecticut	03	163.65	501.08	0.24	0.49	0.33	0.55	0.73

Nationwide_Compactness_fromTiger.xlsx Districts

State	District	Perimeter	Area	PolsbyPop	Schwartzbe	Reock	LengthWidt	ConvexHull
Connecticut	04	141.36	526.65	0.33	0.58	0.33	0.52	0.70
Connecticut	05	264.57	1280.31	0.23	0.48	0.50	0.92	0.75
Delaware	01	261.77	2488.77	0.46	0.68	0.37	0.50	0.84
Florida	01	340.55	4416.06	0.48	0.69	0.51	0.56	0.87
Florida	02	578.14	12838.50	0.48	0.70	0.42	0.51	0.82
Florida	03	455.55	8270.72	0.50	0.71	0.60	0.92	0.90
Florida	04	280.00	1980.53	0.32	0.56	0.41	0.66	0.76
Florida	05	140.92	829.03	0.53	0.72	0.58	0.71	0.89
Florida	06	320.15	3928.27	0.48	0.69	0.72	0.85	0.92
Florida	07	180.96	1053.41	0.40	0.64	0.45	0.69	0.83
Florida	08	252.62	2299.14	0.45	0.67	0.35	0.43	0.78
Florida	09	222.53	1846.11	0.47	0.69	0.49	0.66	0.86
Florida	10	95.86	272.54	0.37	0.61	0.38	0.49	0.75
Florida	11	254.35	1836.15	0.36	0.60	0.52	0.85	0.82
Florida	12	289.51	2538.30	0.38	0.62	0.43	0.80	0.75
Florida	13	125.21	730.15	0.59	0.77	0.55	0.66	0.93
Florida	14	117.79	523.83	0.48	0.69	0.53	0.67	0.83
Florida	15	121.27	674.87	0.58	0.76	0.53	0.67	0.88
Florida	16	204.99	1500.18	0.45	0.67	0.43	0.82	0.73
Florida	17	262.17	2148.70	0.39	0.63	0.27	0.41	0.77
Florida	18	458.90	7085.18	0.42	0.65	0.45	0.65	0.82
Florida	19	248.43	1896.77	0.39	0.62	0.34	0.53	0.78
Florida	20	329.53	2397.14	0.28	0.53	0.50	0.84	0.77
Florida	21	218.80	1888.21	0.50	0.70	0.50	0.83	0.82
Florida	22	101.50	345.34	0.42	0.65	0.45	0.86	0.74
Florida	23	105.09	254.27	0.29	0.54	0.51	0.83	0.79
Florida	24	68.88	182.83	0.49	0.70	0.50	0.84	0.90
Florida	25	88.40	236.65	0.38	0.62	0.40	0.51	0.81
Florida	26	307.53	2440.11	0.32	0.57	0.27	0.43	0.77
Florida	27	69.68	280.69	0.73	0.85	0.71	0.88	0.95
Florida	28	593.64	6709.61	0.24	0.49	0.20	0.43	0.55
Georgia	01	599.58	8155.68	0.29	0.53	0.50	0.69	0.79
Georgia	02	689.84	10119.75	0.27	0.52	0.50	0.66	0.80
Georgia	03	440.93	4249.30	0.28	0.52	0.47	0.81	0.82
Georgia	04	146.21	417.65	0.25	0.50	0.30	0.40	0.76
Georgia	05	98.92	250.35	0.32	0.57	0.61	0.92	0.80
Georgia	06	226.55	810.60	0.20	0.45	0.47	0.68	0.73
Georgia	07	102.39	322.69	0.39	0.62	0.42	0.58	0.82
Georgia	08	814.01	11080.43	0.21	0.46	0.37	0.60	0.73
Georgia	09	445.48	4005.71	0.25	0.50	0.33	0.55	0.70
Georgia	10	476.22	5125.88	0.28	0.53	0.51	0.74	0.81
Georgia	11	266.17	1168.28	0.21	0.46	0.48	0.96	0.71

Nationwide_Compactness_fromTiger.xlsx Districts

State	District	Perimeter	Area	PolsbyPop	Schwartzbe	Reock	LengthWidt	ConvexHull
Georgia	12	666.04	9824.61	0.28	0.53	0.56	0.74	0.86
Georgia	13	219.13	598.92	0.16	0.40	0.34	0.66	0.59
Georgia	14	333.25	3293.00	0.37	0.61	0.45	0.72	0.80
Hawaii	01	100.58	348.23	0.43	0.66	0.40	0.58	0.75
Hawaii	02	1437.86	10621.58	0.06	0.25	0.00	0.07	0.07
Idaho	01	1642.43	39905.08	0.19	0.43	0.29	0.40	0.74
Idaho	02	1310.82	43663.14	0.32	0.57	0.50	0.70	0.81
Illinois	01	245.68	621.15	0.13	0.36	0.27	0.56	0.57
Illinois	02	424.16	3931.82	0.28	0.52	0.41	0.64	0.77
Illinois	03	157.55	156.82	0.08	0.28	0.15	0.42	0.42
Illinois	04	101.36	96.95	0.12	0.34	0.33	0.56	0.56
Illinois	05	168.62	158.15	0.07	0.26	0.12	0.28	0.48
Illinois	06	134.42	229.78	0.16	0.40	0.38	0.57	0.65
Illinois	07	82.60	69.27	0.13	0.36	0.23	0.49	0.50
Illinois	08	184.57	291.33	0.11	0.33	0.24	0.46	0.59
Illinois	09	145.94	172.20	0.10	0.32	0.10	0.26	0.43
Illinois	10	164.33	536.07	0.25	0.50	0.25	0.47	0.71
Illinois	11	282.74	928.11	0.15	0.38	0.25	0.60	0.53
Illinois	12	826.66	14273.60	0.26	0.51	0.48	0.69	0.78
Illinois	13	524.55	2300.22	0.11	0.32	0.11	0.34	0.38
Illinois	14	301.10	1998.04	0.28	0.53	0.35	0.56	0.70
Illinois	15	1298.40	16987.95	0.13	0.36	0.36	0.57	0.65
Illinois	16	1073.12	9022.63	0.10	0.31	0.33	0.84	0.58
Illinois	17	843.05	4567.37	0.08	0.28	0.24	0.94	0.35
Indiana	01	169.18	1345.91	0.59	0.77	0.46	0.72	0.88
Indiana	02	323.45	4397.73	0.53	0.73	0.63	0.93	0.88
Indiana	03	325.96	4445.57	0.53	0.73	0.49	0.60	0.93
Indiana	04	434.64	6126.14	0.41	0.64	0.43	0.67	0.84
Indiana	05	222.78	2209.31	0.56	0.75	0.49	0.63	0.84
Indiana	06	313.92	3298.23	0.42	0.65	0.41	0.50	0.78
Indiana	07	70.60	282.84	0.71	0.85	0.51	0.54	0.97
Indiana	08	698.14	8216.91	0.21	0.46	0.42	0.67	0.73
Indiana	09	471.71	6098.47	0.35	0.59	0.47	0.75	0.77
lowa	01	695.98	10997.79	0.29	0.53	0.28	0.50	0.68
lowa	02	623.68	12985.59	0.42	0.65	0.45	0.66	0.80
lowa	03	618.41	10748.33	0.35	0.59	0.36	0.51	0.77
lowa	04	991.20	21540.81	0.28	0.53	0.44	0.75	0.73
Kansas	01	1336.20	49841.15	0.35	0.59	0.32	0.44	0.82
Kansas	02	1133.00	15505.50	0.15	0.39	0.44	0.92	0.63
Kansas	03	253.66	2293.77	0.45	0.67	0.40	0.60	0.79
Kansas	04	639.94	14637.45	0.45	0.67	0.34	0.35	0.88
Kentucky	01	1264.25	11957.01	0.09	0.31	0.15	0.34	0.49

Nationwide_Compactness_fromTiger.xlsx Districts

State	District	Perimeter	Area	PolsbyPop	Schwartzbe	Reock	LengthWidt	ConvexHull
Kentucky	02	641.23	7445.89	0.23	0.48	0.49	0.70	0.77
Kentucky	03	97.22	323.09	0.43	0.66	0.36	0.55	0.78
Kentucky	04	641.33	4967.80	0.15	0.39	0.19	0.41	0.52
Kentucky	05	727.73	11880.45	0.28	0.53	0.39	0.52	0.80
Kentucky	06	434.55	3831.53	0.26	0.51	0.44	0.63	0.80
Louisiana	01	841.25	8991.18	0.16	0.40	0.46	0.81	0.71
Louisiana	02	563.54	1470.65	0.06	0.24	0.16	0.41	0.38
Louisiana	03	609.63	8602.61	0.29	0.54	0.33	0.40	0.79
Louisiana	04	1048.37	13666.27	0.16	0.40	0.34	0.71	0.61
Louisiana	05	1240.03	15196.67	0.12	0.35	0.36	0.77	0.60
Louisiana	06	864.68	4447.83	0.07	0.27	0.45	0.90	0.64
Maine	01	629.10	5117.52	0.16	0.40	0.28	0.48	0.57
Maine	02	1164.29	30262.19	0.28	0.53	0.53	0.81	0.84
Maryland	01	442.26	5509.75	0.35	0.60	0.36	0.60	0.70
Maryland	02	237.51	852.41	0.19	0.44	0.25	0.42	0.72
Maryland	03	170.41	612.09	0.27	0.52	0.26	0.32	0.75
Maryland	04	111.11	224.34	0.23	0.48	0.35	0.55	0.66
Maryland	05	296.95	2313.41	0.33	0.57	0.40	0.77	0.78
Maryland	06	507.95	2432.31	0.12	0.34	0.15	0.28	0.47
Maryland	07	89.30	181.24	0.29	0.53	0.24	0.36	0.69
Maryland	08	107.42	280.29	0.31	0.55	0.59	0.86	0.78
Massachusetts	01	320.64	2292.89	0.28	0.53	0.28	0.43	0.74
Massachusetts	02	332.30	1863.67	0.21	0.46	0.26	0.39	0.68
Massachusetts	03	208.99	779.07	0.22	0.47	0.22	0.41	0.67
Massachusetts	04	226.49	709.79	0.17	0.42	0.42	0.75	0.62
Massachusetts	05	128.74	239.67	0.18	0.43	0.25	0.40	0.63
Massachusetts	06	166.63	866.63	0.39	0.63	0.45	0.62	0.82
Massachusetts	07	95.04	66.95	0.09	0.31	0.27	0.69	0.48
Massachusetts	08	212.08	460.87	0.13	0.36	0.33	0.57	0.61
Massachusetts	09	394.57	3274.54	0.26	0.51	0.56	0.83	0.77
Michigan	01	1351.19	57170.03	0.39	0.63	0.30	0.35	0.87
Michigan	02	636.87	13067.55	0.41	0.64	0.49	0.70	0.78
Michigan	03	279.76	1885.60	0.30	0.55	0.24	0.30	0.75
Michigan	04	346.45	3904.30	0.41	0.64	0.33	0.44	0.78
Michigan	05	551.82	6478.33	0.27	0.52	0.14	0.18	0.77
Michigan	06	179.90	1017.56	0.40	0.63	0.32	0.47	0.73
Michigan	07	251.27	2814.38	0.56	0.75	0.43	0.47	0.90
Michigan	08	267.43	2453.86	0.43	0.66	0.49	0.67	0.78
Michigan	09	404.90	6899.29	0.53	0.73	0.57	0.79	0.88
Michigan	10	79.72	241.63	0.48	0.69	0.39	0.59	0.76
Michigan	11	101.19	336.10	0.41	0.64	0.42	0.56	0.82
Michigan	12	70.54	191.56	0.48	0.70	0.60	0.90	0.84

Nationwide_Compactness_fromTiger.xlsx Districts

State	District	Perimeter	Area	PolsbyPop	Schwartzbe	Reock	LengthWidt	ConvexHull
Michigan	13	105.44	252.91	0.29	0.54	0.17	0.31	0.66
Minnesota	01	735.46	12454.82	0.29	0.54	0.17	0.23	0.77
Minnesota	02	246.93	1809.83	0.37	0.61	0.35	0.43	0.85
Minnesota	03	148.63	517.03	0.29	0.54	0.51	0.77	0.73
Minnesota	04	87.61	333.99	0.55	0.74	0.45	0.53	0.89
Minnesota	05	63.37	137.19	0.43	0.66	0.60	0.77	0.86
Minnesota	06	381.01	2615.19	0.23	0.48	0.41	0.71	0.64
Minnesota	07	1504.37	32024.97	0.18	0.42	0.38	0.56	0.70
Minnesota	08	1330.35	37049.93	0.26	0.51	0.33	0.58	0.70
Mississippi	01	578.02	10094.62	0.38	0.62	0.47	0.85	0.82
Mississippi	02	1343.92	18404.03	0.13	0.36	0.34	0.51	0.73
Mississippi	03	779.36	11822.98	0.25	0.49	0.36	0.55	0.69
Mississippi	04	469.22	8114.05	0.46	0.68	0.61	0.83	0.93
Missouri	01	102.67	258.53	0.31	0.56	0.57	0.96	0.77
Missouri	02	278.55	1821.22	0.30	0.54	0.41	0.55	0.80
Missouri	03	783.93	7697.93	0.16	0.40	0.30	0.49	0.64
Missouri	04	779.47	14664.47	0.30	0.55	0.51	0.82	0.79
Missouri	05	119.62	431.41	0.38	0.62	0.42	0.69	0.84
Missouri	06	922.44	20483.43	0.30	0.55	0.25	0.33	0.82
Missouri	07	373.00	5864.90	0.53	0.73	0.45	0.48	0.90
Missouri	08	931.36	18484.66	0.27	0.52	0.42	0.65	0.73
Montana	01	1611.66	40777.69	0.20	0.44	0.35	0.59	0.71
Montana	02	1631.69	106265.04	0.50	0.71	0.45	0.44	0.95
Nebraska	01	545.41	6053.34	0.26	0.51	0.38	0.66	0.70
Nebraska	02	193.58	1248.99	0.42	0.65	0.38	0.40	0.88
Nebraska	03	1673.06	70044.65	0.31	0.56	0.29	0.34	0.85
Nevada	01	173.17	1018.89	0.43	0.65	0.56	0.87	0.89
Nevada	02	1189.42	65518.00	0.58	0.76	0.49	0.58	0.89
Nevada	03	317.99	2024.75	0.25	0.50	0.24	0.36	0.71
Nevada	04	1025.13	42008.70	0.50	0.71	0.40	0.53	0.92
New Hampshire	01	432.47	2328.03	0.16	0.40	0.33	0.67	0.58
New Hampshire	02	734.98	6971.04	0.16	0.40	0.30	0.50	0.74
New Jersey	01	110.94	380.35	0.39	0.62	0.46	0.74	0.80
New Jersey	02	385.00	2966.71	0.25	0.50	0.33	0.65	0.67
New Jersey	03	243.00	1104.52	0.24	0.49	0.35	0.79	0.62
New Jersey	04	180.15	702.44	0.27	0.52	0.50	0.75	0.82
New Jersey	05	185.97	677.88	0.25	0.50	0.24	0.37	0.68
New Jersey	06	178.81	386.07	0.15	0.39	0.26	0.53	0.56
New Jersey	07	292.98	1378.09	0.20	0.45	0.46	0.85	0.68
New Jersey	08	88.62	66.80	0.11	0.33	0.26	0.55	0.57
New Jersey	09	95.64	117.74	0.16	0.40	0.28	0.54	0.56
New Jersey	10	93.72	80.02	0.11	0.34	0.31	0.74	0.57

Nationwide_Compactness_fromTiger.xlsx Districts

State	District	Perimeter	Area	PolsbyPop	Schwartzbe	Reock	LengthWidt	ConvexHull
New Jersey	11	157.97	412.52	0.21	0.46	0.52	0.69	0.80
New Jersey	12	179.26	445.80	0.17	0.42	0.33	0.53	0.66
New Mexico	01	857.21	17589.64	0.30	0.55	0.43	0.69	0.77
New Mexico	02	1466.77	51553.60	0.30	0.55	0.35	0.65	0.75
New Mexico	03	1569.77	52449.57	0.27	0.52	0.32	0.71	0.67
New York	01	246.70	1832.39	0.38	0.62	0.22	0.24	0.86
New York	02	128.80	572.66	0.43	0.66	0.26	0.29	0.89
New York	03	91.26	249.28	0.38	0.61	0.41	0.72	0.77
New York	04	62.40	188.96	0.61	0.78	0.60	0.80	0.91
New York	05	70.20	112.54	0.29	0.54	0.28	0.50	0.64
New York	06	37.52	25.95	0.23	0.48	0.28	0.41	0.75
New York	07	34.40	22.37	0.24	0.49	0.39	0.64	0.69
New York	08	45.58	44.76	0.27	0.52	0.33	0.63	0.61
New York	09	21.82	15.16	0.40	0.63	0.56	0.67	0.83
New York	10	28.97	23.43	0.35	0.59	0.57	0.78	0.79
New York	11	50.02	114.45	0.58	0.76	0.45	0.54	0.89
New York	12	20.62	13.58	0.40	0.63	0.52	0.72	0.85
New York	13	26.26	14.57	0.27	0.52	0.36	0.57	0.64
New York	14	42.89	47.10	0.32	0.57	0.34	0.47	0.80
New York	15	32.84	19.95	0.23	0.48	0.42	0.81	0.68
New York	16	63.11	157.08	0.50	0.70	0.55	0.69	0.90
New York	17	172.81	904.43	0.38	0.62	0.44	0.64	0.83
New York	18	293.30	2050.75	0.30	0.55	0.37	0.51	0.77
New York	19	618.98	7989.58	0.26	0.51	0.26	0.38	0.72
New York	20	231.40	1610.62	0.38	0.62	0.47	0.64	0.79
New York	21	916.97	17135.37	0.26	0.51	0.58	0.97	0.82
New York	22	290.13	2767.34	0.41	0.64	0.42	0.56	0.84
New York	23	516.68	7040.94	0.33	0.58	0.24	0.34	0.76
New York	24	800.37	9146.31	0.18	0.42	0.25	0.44	0.60
New York	25	213.74	1980.32	0.55	0.74	0.46	0.63	0.90
New York	26	114.07	478.56	0.46	0.68	0.55	0.74	0.83
North Carolina	01	518.85	8464.10	0.40	0.63	0.38	0.44	0.88
North Carolina	02	140.37	507.43	0.32	0.57	0.34	0.51	0.79
North Carolina	03	849.47	11413.05	0.20	0.45	0.34	0.53	0.63
North Carolina	04	235.34	2088.27	0.47	0.69	0.41	0.62	0.85
North Carolina	05	503.09	4561.67	0.23	0.48	0.25	0.34	0.74
North Carolina	06	227.26	1744.24	0.43	0.65	0.43	0.57	0.79
North Carolina	07	444.71	5583.51	0.36	0.60	0.46	0.65	0.78
North Carolina	08	378.09	3747.35	0.33	0.57	0.54	0.98	0.80
North Carolina	09	387.60	3679.49	0.31	0.56	0.52	0.84	0.79
North Carolina	10	332.03	2999.46	0.34	0.59	0.41	0.66	0.79
North Carolina	11	499.90	6228.24	0.31	0.56	0.31	0.38	0.88

Nationwide_Compactness_fromTiger.xlsx Districts

State	District	Perimeter	Area	PolsbyPop	Schwartzbe	Reock	LengthWidt	ConvexHull
North Carolina	12	124.31	460.27	0.37	0.61	0.61	0.83	0.84
North Carolina	13	280.00	1849.90	0.30	0.55	0.46	0.55	0.83
North Carolina	14	159.07	491.38	0.24	0.49	0.37	0.55	0.72
North Dakota	01	1317.31	70698.55	0.51	0.72	0.43	0.41	0.99
Ohio	01	177.76	611.02	0.24	0.49	0.29	0.57	0.61
Ohio	02	552.04	7441.89	0.31	0.55	0.38	0.51	0.77
Ohio	03	74.53	221.10	0.50	0.71	0.59	0.69	0.94
Ohio	04	445.09	4921.24	0.31	0.56	0.30	0.40	0.73
Ohio	05	618.75	5991.16	0.20	0.44	0.20	0.35	0.57
Ohio	06	532.35	4842.32	0.22	0.46	0.33	0.52	0.75
Ohio	07	273.72	1329.14	0.22	0.47	0.34	0.61	0.67
Ohio	08	285.08	1805.00	0.28	0.53	0.37	0.50	0.78
Ohio	09	408.03	3567.72	0.27	0.52	0.20	0.29	0.67
Ohio	10	169.86	996.66	0.43	0.66	0.43	0.50	0.87
Ohio	11	179.16	999.63	0.39	0.63	0.55	0.81	0.85
Ohio	12	479.31	5633.33	0.31	0.56	0.61	0.87	0.78
Ohio	13	172.20	630.98	0.27	0.52	0.49	0.61	0.82
Ohio	14	274.91	3891.38	0.65	0.81	0.55	0.73	0.95
Ohio	15	412.40	1943.10	0.14	0.38	0.23	0.48	0.55
Oklahoma	01	205.60	1103.44	0.33	0.57	0.39	0.65	0.74
Oklahoma	02	1023.44	22414.35	0.27	0.52	0.48	0.74	0.81
Oklahoma	03	1323.48	32906.84	0.24	0.49	0.22	0.38	0.67
Oklahoma	04	703.34	9890.05	0.25	0.50	0.39	0.62	0.76
Oklahoma	05	362.97	3584.18	0.34	0.59	0.47	0.74	0.76
Oregon	01	349.94	3876.41	0.40	0.63	0.47	0.82	0.80
Oregon	02	1462.75	72876.55	0.43	0.65	0.40	0.53	0.87
Oregon	03	227.18	1427.06	0.35	0.59	0.29	0.37	0.78
Oregon	04	803.20	12660.78	0.25	0.50	0.38	0.80	0.66
Oregon	05	582.77	5630.60	0.21	0.46	0.43	0.68	0.66
Oregon	06	253.81	1906.82	0.37	0.61	0.47	0.72	0.80
Pennsylvania	01	151.03	718.12	0.40	0.63	0.32	0.46	0.82
Pennsylvania	02	44.73	67.46	0.42	0.65	0.33	0.40	0.84
Pennsylvania	03	46.11	54.80	0.32	0.57	0.47	0.80	0.72
Pennsylvania	04	231.03	733.55	0.17	0.42	0.21	0.33	0.68
Pennsylvania	05	106.06	239.58	0.27	0.52	0.36	0.65	0.72
Pennsylvania	06	200.29	935.74	0.29	0.54	0.43	0.84	0.73
Pennsylvania	07	188.67	1184.47	0.42	0.65	0.46	0.69	0.78
Pennsylvania	08	356.21	2840.35	0.28	0.53	0.45	0.74	0.74
Pennsylvania	09	524.41	6153.45	0.28	0.53	0.47	0.74	0.74
Pennsylvania	10	243.03	1294.23	0.28	0.53	0.43	0.72	0.71
Pennsylvania	11	227.70	1545.08	0.38	0.61	0.37	0.49	0.88
Pennsylvania	12	173.53	433.75	0.18	0.43	0.49	0.64	0.78

Nationwide_Compactness_fromTiger.xlsx Districts

State	District	Perimeter	Area	PolsbyPop	Schwartzbe	Reock	LengthWidt	ConvexHull
Pennsylvania	13	453.80	6403.55	0.39	0.63	0.46	0.52	0.83
Pennsylvania	14	446.11	4808.87	0.30	0.55	0.42	0.60	0.76
Pennsylvania	15	618.69	13082.96	0.43	0.66	0.46	0.47	0.86
Pennsylvania	16	385.79	4648.94	0.39	0.63	0.46	0.49	0.87
Pennsylvania	17	207.69	909.07	0.27	0.52	0.42	0.58	0.76
Rhode Island	01	157.96	510.63	0.26	0.51	0.29	0.61	0.58
Rhode Island	02	207.86	1034.34	0.30	0.55	0.41	0.57	0.76
South Carolina	01	549.19	3558.96	0.15	0.39	0.29	0.46	0.71
South Carolina	02	494.74	3201.25	0.16	0.41	0.44	0.68	0.72
South Carolina	03	461.74	5845.83	0.35	0.59	0.43	0.55	0.85
South Carolina	04	259.00	1249.07	0.23	0.48	0.36	0.50	0.77
South Carolina	05	536.51	5252.13	0.23	0.48	0.30	0.40	0.78
South Carolina	06	1091.04	7137.61	0.08	0.27	0.37	0.73	0.58
South Carolina	07	492.32	5778.50	0.30	0.55	0.35	0.52	0.79
South Dakota	01	1317.47	77115.77	0.56	0.75	0.41	0.44	0.93
Tennessee	01	457.12	4465.95	0.27	0.52	0.29	0.42	0.81
Tennessee	02	451.88	2684.91	0.17	0.41	0.39	0.75	0.63
Tennessee	03	576.81	4066.55	0.15	0.39	0.35	0.64	0.65
Tennessee	04	650.29	6567.61	0.20	0.44	0.23	0.37	0.70
Tennessee	05	445.82	2077.96	0.13	0.36	0.24	0.54	0.56
Tennessee	06	553.90	6043.82	0.25	0.50	0.31	0.44	0.77
Tennessee	07	533.14	6034.42	0.27	0.52	0.42	0.73	0.78
Tennessee	08	634.44	9379.35	0.29	0.54	0.56	0.77	0.87
Tennessee	09	289.55	808.64	0.12	0.35	0.29	0.68	0.62
Texas	01	891.17	9868.81	0.16	0.40	0.34	0.62	0.70
Texas	02	190.84	659.67	0.23	0.48	0.39	0.71	0.69
Texas	03	235.03	1495.99	0.34	0.58	0.44	0.52	0.85
Texas	04	947.37	5432.06	0.08	0.28	0.22	0.45	0.53
Texas	05	568.88	3784.84	0.15	0.38	0.30	0.49	0.64
Texas	06	700.94	6019.67	0.15	0.39	0.26	0.45	0.62
Texas	07	134.82	132.81	0.09	0.30	0.22	0.50	0.48
Texas	08	409.71	3000.67	0.23	0.47	0.29	0.48	0.63
Texas	09	129.87	220.01	0.16	0.41	0.43	0.74	0.68
Texas	10	727.84	7799.59	0.19	0.43	0.34	0.63	0.66
Texas	11	890.72	19344.55	0.31	0.55	0.22	0.35	0.74
Texas	12	245.03	994.85	0.21	0.46	0.37	0.50	0.74
Texas	13	1259.86	35360.81	0.28	0.53	0.24	0.46	0.67
Texas	14	520.52	3470.66	0.16	0.40	0.18	0.29	0.56
Texas	15	841.30	6295.20	0.11	0.33	0.13	0.22	0.54
Texas	16	131.54	316.37	0.23	0.48	0.26	0.35	0.73
Texas	17	986.77	10661.54	0.14	0.37	0.25	0.39	0.65
Texas	18	207.36	232.11	0.07	0.26	0.41	0.86	0.54

Nationwide_Compactness_fromTiger.xlsx Districts

State	District	Perimeter	Area	PolsbyPop	Schwartzbe	Reock	LengthWidt	ConvexHull
Texas	19	845.17	30260.41	0.53	0.73	0.46	0.65	0.84
Texas	20	132.33	179.98	0.13	0.36	0.45	0.79	0.63
Texas	21	510.62	6332.89	0.31	0.55	0.36	0.48	0.83
Texas	22	533.34	3706.61	0.16	0.41	0.37	0.65	0.65
Texas	23	1938.00	58961.12	0.20	0.44	0.24	0.37	0.73
Texas	24	174.51	277.04	0.11	0.34	0.23	0.32	0.67
Texas	25	665.96	9135.61	0.26	0.51	0.40	0.66	0.71
Texas	26	416.32	2057.35	0.15	0.39	0.35	0.88	0.63
Texas	27	630.66	11669.69	0.37	0.61	0.49	0.65	0.82
Texas	28	830.44	11469.81	0.21	0.46	0.28	0.59	0.64
Texas	29	169.25	209.31	0.09	0.30	0.30	0.58	0.57
Texas	30	153.48	369.75	0.20	0.44	0.36	0.57	0.75
Texas	31	602.70	5712.88	0.20	0.44	0.49	0.78	0.72
Texas	32	157.08	151.20	0.08	0.28	0.22	0.60	0.48
Texas	33	273.94	225.62	0.04	0.19	0.20	0.49	0.39
Texas	34	503.08	5399.84	0.27	0.52	0.43	0.61	0.74
Texas	35	290.87	527.47	0.08	0.28	0.08	0.17	0.44
Texas	36	565.69	6320.64	0.25	0.50	0.35	0.51	0.77
Texas	37	136.16	227.02	0.15	0.39	0.42	0.68	0.72
Texas	38	176.94	310.42	0.12	0.35	0.39	0.73	0.59
Utah	01	546.57	11356.23	0.48	0.69	0.36	0.42	0.86
Utah	02	1148.43	40040.85	0.38	0.62	0.50	0.98	0.81
Utah	03	1162.09	28959.74	0.27	0.52	0.46	0.72	0.75
Utah	04	450.80	4540.96	0.28	0.53	0.47	0.81	0.71
Vermont	01	572.40	9615.19	0.37	0.61	0.42	0.64	0.82
Virginia	01	496.63	3882.61	0.20	0.45	0.41	0.63	0.72
Virginia	02	494.49	3936.00	0.20	0.45	0.22	0.50	0.59
Virginia	03	132.27	447.61	0.32	0.57	0.42	0.77	0.71
Virginia	04	388.24	3529.21	0.29	0.54	0.49	0.76	0.85
Virginia	05	582.27	9609.92	0.36	0.60	0.46	0.74	0.89
Virginia	06	625.91	6305.95	0.20	0.45	0.23	0.32	0.74
Virginia	07	410.11	2782.11	0.21	0.46	0.32	0.55	0.68
Virginia	08	82.67	158.51	0.29	0.54	0.40	0.52	0.78
Virginia	09	822.50	10162.63	0.19	0.43	0.17	0.26	0.76
Virginia	10	274.47	1705.78	0.29	0.53	0.48	0.69	0.74
Virginia	11	109.91	254.33	0.27	0.51	0.54	0.85	0.77
Washington	01	174.62	349.38	0.14	0.38	0.36	0.58	0.66
Washington	02	480.20	5836.68	0.32	0.56	0.33	0.46	0.77
Washington	03	486.06	7747.01	0.41	0.64	0.36	0.48	0.80
Washington	04	997.71	18189.92	0.23	0.48	0.40	0.77	0.69
Washington	05	688.53	18983.80	0.50	0.71	0.58	0.82	0.89
Washington	06	476.46	8939.97	0.50	0.70	0.46	0.64	0.84

Nationwide_Compactness_fromTiger.xlsx
Districts

State	District	Perimeter	Area	PolsbyPop	Schwartzbe	Reock	LengthWidt	ConvexHull
Washington	07	93.58	253.03	0.36	0.60	0.37	0.46	0.83
Washington	08	689.83	9995.92	0.26	0.51	0.47	0.67	0.74
Washington	09	106.89	213.61	0.24	0.49	0.45	0.62	0.76
Washington	10	199.34	791.03	0.25	0.50	0.28	0.34	0.80
West Virginia	01	856.47	14450.03	0.25	0.50	0.37	0.53	0.80
West Virginia	02	975.67	9779.92	0.13	0.36	0.21	0.54	0.50
Wisconsin	01	355.88	3039.13	0.30	0.55	0.24	0.26	0.87
Wisconsin	02	371.93	4368.26	0.40	0.63	0.58	0.77	0.88
Wisconsin	03	914.92	11544.15	0.17	0.42	0.31	0.67	0.59
Wisconsin	04	153.48	548.02	0.29	0.54	0.21	0.28	0.76
Wisconsin	05	274.65	2219.22	0.37	0.61	0.56	0.74	0.86
Wisconsin	06	572.23	7886.68	0.30	0.55	0.33	0.40	0.79
Wisconsin	07	1110.52	26083.51	0.27	0.52	0.42	0.74	0.72
Wisconsin	08	592.67	9807.61	0.35	0.59	0.37	0.57	0.77
Wyoming	01	1260.75	97809.44	0.77	0.88	0.55	0.57	1.00

Nationwide_Compactness_fromTiger.xlsx

[^0]: ${ }^{1}$ https://klvg4oyd4j.execute-api.us-west-
 2.amazonaws.com/prod/PublicFiles/ee3072ab0d43456cb15a51f7d82c77a2/05f5f6e8-d139-452f-a03e3a3a71ddd602/2022\%20General\%20Election\%20Candidate\%20Summary\%20Results\%20Report.pdf

[^1]: ${ }^{2}$ Richard Niemi, Bernard Grofman, Thomas Hofeller, and Carl Carlucci (1990). Measuring the Compactness and the Role of a Compactness Standard in a Test for Partisan Gerrymanderings". Journal of Politics.

