IN THE UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF MISSISSIPPI
 GREENVILLE DIVISION

DYAMONE WHITE, et al.,
PLAINTIFFS
V.

Civil Action No. 4:22-cv-00062-SA-JMV
STATE BOARD OF ELECTION COMMISSIONERS, et al.,

DEFENDANTS

PLAINTIFFS' MOTION TO PARTIALLY EXCLUDE DR. DAVID A. SWANSON AS AN EXPERT

COME NOW the Plaintiffs, Dyamone White, Derrick Simmons, Ty Pinkins, and Constance Olivia Slaughter Harvey-Burwell ("Plaintiffs"), by and through counsel, and file this motion to exclude Dr. Swanson as an expert under Federal Rule of Evidence 702 on the topics of electoral-map drawing and ecological inference analysis and in support thereof offer the following:

1. In two reports produced over the course of expert discovery in this case, Dr. Swanson purports to offer opinions on electoral map drawing and on ecological inference analysis of voting behavior in Mississippi.
2. The Court should exclude certain portions of the expert testimony put forward by Defendant's expert, Dr. David A. Swanson, and correspondingly limit the topics on which he may testify at trial because he admits he is neither an expert in electoral map drawing or in voting behavior, nor does he have the relevant knowledge, publications, or experience that might make him an expert in these areas.
3. Dr. Swanson concededly has no training, study, background, or experience in electoral map drawing or compliance with the traditional districting principles used by electoral
map drawers; he admits that much of the mapping analysis that he included in his initial report was not even conducted by him or even verified by him.
4. Dr. Swanson concededly is not a political scientist and lacks sufficient specialized training, experience, or knowledge to offer an expert opinion on the analysis of turnout by race in Mississippi proffered by Plaintiffs' expert using the ecological inference technique. He also admits that he did not attempt to replicate the results of that ecological inference analysis.
5. Under these circumstances, Rule 702 provides no basis for Dr. Swanson to properly offer expert testimony on electoral map drawing or ecological inference analysis of voting behavior.
6. Plaintiffs adopt and incorporate by reference, as if fully and completely set forth herein, the arguments authorities set forth in the Memorandum of Law in Support of Plaintiffs' Motion to Partially Exclude Defendants Expert, being filed contemporaneously herewith.
7. In further support of their motion, Plaintiffs respectfully submit the following:

Exhibit "A" Transcript of Deposition of Dr. David A. Swanson

Exhibit "B" Expert Report of Dr. Swanson
Exhibit "C" Surrebuttal Report of Dr. Swanson
Exhibit "D" Expert Report of Plaintiffs' Expert William Cooper
Exhibit "E" Expert Report of Plaintiffs' Expert Dr. Traci Burch
Exhibit "F" Rebuttal Report of Plaintiffs' Expert Dr. Burch
Exhibit "G" Transcript of Dr. Bonneau Deposition
Exhibit "H" Dr. Orey Expert Report
Exhibit "I" Responsive Declaration of William Cooper

WHEREFORE, PREMISES CONSIDERED, the Plaintiffs respectfully request that the
Court grant the Plaintiffs' motion and any other relief as may be just and proper.
THIS the 27th day of October, 2023.
Respectfully submitted,
/s/Jonathan K. Youngwood
SIMPSON THACHER \& BARTLETT LLP
Jonathan K. Youngwood (Miss. Bar No. 106441)
425 Lexington Avenue
New York, NY 100017
(212) 455-2000
jyoungwood@stblaw.com

* Admitted pro hac vice

ACLU FOUNDATION
Ari J. Savitzky*
Sophia Lin Lakin*
Ming Cheung*
125 Broad Street, 18th Floor
New York, New York 10004
(212) 549-2500
asavitzky@aclu.org
slakin@aclu.org
mcheung@aclu.org
AMERICAN CIVIL LIBERTIES UNION
OF MISSISSIPPI FOUNDATION
Joshua Tom (Miss. Bar No. 105392)
101 South Congress Street
Jackson, MS 39201
(601) 354-3408

JTom@aclu-ms.org
SOUTHERN POVERTY LAW CENTER
Jade Olivia Morgan (Miss. Bar No. 105760)
Leslie Faith Jones (Miss. Bar No. 106092)
111 East Capitol Street, Suite 280
Jackson, MS 39201
(601) 948-8882
jade.morgan@splcenter.org
leslie.jones@splcenter.org
Bradley E. Heard*
Ahmed Soussi*
Sabrina Khan*
150 E Ponce de Leon Avenue, Suite 340
Decatur, GA 30030
(470) 521-6700
bradley.heard@splcenter.org
ahmed.soussi@splcenter.org
sabrina.khan@splcenter.org

Attorneys for Plaintiffs

CERTIFICATE OF SERVICE

I, Jonathan Youngwood, hereby certify that on October 27, 2023, I electronically filed the foregoing with the Clerk of the Court using the ECF system which sent notification of such filing to all parties on file with the Court.
/s/ Jonathan K. Youngwood Jonathan Youngwood

Deposition of David Arthur Swanson, Ph.D.

White v. State Board of Election Commissioners

October 5, 2023

714 LAKEWAY DRIVE BELLINGHAM, WASHINGTON

DATE TAKEN: October 5, 2023
REPORTED BY: Evelyn M. Adrean, RPR, CCR 22009424

BUELL REALTIME REPORTING, LLC 206.287.9066 | 800.846.6989
NOAH GIMBEL, ESQUIRE (Appearing remotely)
Simpson Thacher \& Bartlett, LLP
900 G Street NW
Washington, DC 20001
202-636-5505
noah.gimbel@stblaw. com
FOR DEFENDANTS:
MICHAEL B. WALLACE, ESQUIRE
Wise Carter Child \& Caraway, P.A.
600 Heritage Building, 401 East Capitol Street
Jackson, Mississippi 39201
601-968-5534
mbw@wisecarter.com

BUELL REALTIME REPORTING, LLC 206.287.9066 । 800.846.6989

DEPOSITION OF DAVID ARTHUR SWANSON, Ph.D.	Page 4
EXAMINATION INDEX	
EXAMINATION BY	PAGE
Mr. Savitzky	6

BELLINGHAM, WASHINGTON; OCTOBER 5, 2023
8:57 a.m.
DAVID ARTHUR SWANSON, Ph.D., witness herein, having been first duly sworn on oath, was examined and testified as follows:

E X A M I N A T I O N

BY MR. SAVITZKY:
Q. Good morning, Dr. Swanson.
A. Good morning.
Q. Good to see you today. So I introduced myself already, but I'm Ari Savitzky. I'm an attorney for the ACLU. I represent the plaintiffs in this matter. Do you understand that?
A. Yes.
Q. And can you state your full name for the record and spell it?
A. David Arthur Swanson, D-a-v-i-d, A-r-t-h-u-r, S-w-a-n-s-o-n.
Q. All right. And I'll sort of briefly go over some of the ground rules for deposition. The court reporter just swore you in, you're going to be under oath, means you're swearing to the truthfulness and accuracy of your answers. Do you understand that?
A. Yes.
Q. And the oath that you just took has the same
effect as if you were testifying in court. Do you understand that?
A. Yes.
Q. And as you can see, we have the court reporter here, she's transcribing your answers. It's really important to answer audibly so that your answers can be recorded on the transcript. So no nodding or shaking your head. Do you understand that?
A. I do.
Q. And I'm going to do my best to wait until you're finished with an answer, and I would ask you to sort of wait until I'm finished giving a question before you start speaking. Does that sound fair?
A. It does.
Q. All right. I'm going to ask questions, your job is to answer the question and you have to answer the questions unless you're instructed not to answer them by your attorney. Do you understand that?
A. I do.
Q. Okay. And it's important that we understand each other. We're going to have a conversation, we're going to talk about a lot of different topics. If you don't understand a question, let me know, try to rephrase it so we can understand each other. Does that make sense?

MR. WALLACE: Did we just have somebody else chime in?

MS. JONES: Make sure they're on the record.
MR. SAVITZKY: I don't know. Do we want to have everyone who's on the Zoom announce themselves for the record at this point?

MR. YOUNGWOOD: Jonathan Youngwood with
Simpson Thacher \& Bartlett.
MS. HOUGH: Hi, this is Alexandra Hough, that's $H-o-u-g-h$, here on behalf of the plaintiffs.

MR. SAVITZKY: Anybody else on the Zoom who we haven't registered yet?

THE REPORTER: I think I got the others.
MR. SAVITZKY: Okay.
BY MR. SAVITZKY:
Q. And Dr. Swanson, is there any reason that you can't provide complete and accurate testimony here today?
A. Not that I know of.
Q. Are you taking any medications or drugs that might impact your ability to give complete and accurate testimony?
A. I don't think so.

MR. SAVITZKY: All right. Let's start by talking about your background. And actually before we do that, even, I'm just going to mark as Exhibit 1 the notice of deposition just so we have it in the record. So I'll mark as Exhibit 1. This is just the notice of deposition for today's deposition. I'll put it right there if you'd like to examine it. There's a copy for you as well.

MR. WALLACE: Is this a copy for me?
MR. SAVITZKY: This is a copy that you can look at, but no need to ask any questions about it, I just wanted to mark it in the record.

BUELL REALTIME REPORTING, LLC 206.287.9066 | 800.846.6989

BUELL REALTIME REPORTING, LLC 206.287.9066 | 800.846.6989
A. My current job is, I'm retired from the University of California Riverside, I have a . 25 full time equivalent faculty position with Portland State University's population research center.
Q. And is that population research center in a particular department or is it an independent center?
A. It's in the School of Urban Public Affairs, or whatever the name is of the school right now.
Q. And your academic career, fair to say you're a demographer?
A. Yes. Thank you.
Q. What is demography?
A. It's a study of populations, could be either human or nonhuman, wildlife, insects.
Q. Do you study human demography or the demography of other species?
A. Humans.
Q. And would you say that you are an applied demographer? What kind of demography do you --
A. I have a broad range of interests, many people call me applied, but I do academic work as well.
Q. And what type of analysis do you do as a demographer? How do you analyze human populations?
A. I usually take on what the major focuses are that demographers use, and one is on the size of a
population, second is on the geographic distribution of the population, third is on the population composition, fourth is on the components of population change for building migration, mortality, and the fifth is on the determinants and consequences of population change.
Q. Would it be fair to say that your research is focused on the areas of social demography and population health?
A. I'm probably more focused on methods other than social demography and population health, but I've covered those fields.
Q. Okay. Just one second. Have you ever held an appointment in a political science department in any institution?
A. No.
Q. And just looking we'll turn to page 147 of your resumé -- or your CV, excuse me. That's where the list of publications begins. Just let me know when you're there.
A. I'm there.
Q. Just looking at this list of publications, fair to say that most of them are about studying human populations, population change, and forecasting?
A. That's fair. I do have a book that has just been published today that's basically on population
health. It's called Socio-Demographic Perspectives on
the COVID-19 Pandemic. It's an edited book I did with
my colleague Rich Verdugo.
Q. Congratulations on the publication.
A. Thanks.
Q. And so that book is about social demography as it relates to the COVID --
A. It would be more on health demography, but it also covered methods, how to look at and estimate COVID infections very early on when you don't have the ability to use a real complex model with lots of data input requirements.
Q. Okay. So let's talk about some of the tools and methods that you use in your research. Well, why don't you tell me about the tools and methods that you use as a demographer?
A. I use most of the standard tools that demographers use, so I'll use life tables, for example, I'll do different modeling techniques, regression type techniques, so that's where it spills over into the statistical area largely and that is in common with a lot of other social science fields, we use those kinds of methods.
Q. Do you use software in your research?
A. I do.
Q. What kind of software tools do you typically use?
A. The major one I use is called NCSS, it's an acronym. It stands for Number Cruncher Statistical System.
Q. How long have you been using NCSS?
A. Since about 1980, '82.
Q. Do you ever use SPSS?
A. Not for many years.
Q. You have used it in the past?
A. I have.
Q. Ever used Stata?
A. Never.
Q. Do you ever use the R programming language?
A. No.
Q. Do you use any other programming languages?
A. Visual Basic. I have a minor in math, computer science, so I know how to program in languages that are long gone like PL/1, Fortran. Visual Basic is probably the most current one.
Q. How often does your work involve coding in

Visual Basic?
A. I've just been working on a project right now that involves using some Visual Basic coding.
Q. Do you ever use any GI S programs?

BUELL REALTIME REPORTING, LLC
A. I don't implement them, if that's what you're asking. Yeah, I don't do shape files or I don't do GIS work myself.
Q. You don't work with any geographical mapping software?
A. No.
Q. Don't work with Maptitude?
A. No
Q. Don't work with ArcGIS?
A. No.
Q. Do you use survey data in your research?
A. Yes, I have.
Q. What are some examples of the survey data that you've used?
A. Well when I was at Pacific Lutheran University, I ran a small institute, and we did annual surveys of Pierce County, so I was responsible for going out and contracting with a private vendor to actually conduct the surveys and supervise them, put the questionnaires together. When I worked on the Yucca Mountain high -level nuclear waste repository, I was responsible for surveys that were done of people that were in the impact area, so --
Q. Sorry, go ahead. Finish your --
A. That's okay. Go ahead.
Q. Those are surveys that you conducted?
A. Yes.
Q. Do you ever work with survey data that has been gathered by others?
A. I have.
Q. Do you ever work with ACS, American Community Survey --
A. I do.
Q. -- data?
A. Wrote a book on that -- or a section of a book for the ACS when that first started coming out, was part of the pilot study programs for the ACS.
Q. Do you ever use voter rolls in your work?
A. Not until I started doing expert witness work. Or looked at them, but I don't use them.
Q. You don't use voter rolls in your work?
A. No.
Q. And you said when you started doing expert work --
A. Witness work in areas like redistricting, in the case we're talking about now. I'm aware more of voter rolls, but I haven't actually used it -- yeah, there's actually one exception. I did a volunteer survey for Kitsap County, Washington that was in regard to some issue that was going to be on the ballot. And
the people I worked with that was probably now defunct, the Kitsap County Sun, which is a newspaper, had access to voting rolls. So we were calling people who registered voters.
Q. And when did you conduct this Kitsap County, Washington survey?
A. Early 1990s, late 1980s.
Q. And so other than that instance, you haven't used voter rolls in your work?
A. That's correct.
Q. Ever use ecological inference analysis?
A. I have.
Q. Tell me about your use of ecological inference.
A. It's not the guaranteeing program, but I've used ecological inferences in -- one of the publications I have, actually. It's in the Journal Demography, and it takes a state level regression method for estimating life expectancy at birth and applies it to subcounty areas. And that, in fact, would be ecological inference because you went from a higher level of aggregation to lower levels of aggregation. And the paper involved doing a test of its accuracy.
Q. And you mentioned it's not Gary King's method?
A. That's correct.
Q. So it's not the $\mathrm{R} x \mathrm{C}$ method?

BUELL REALTIME REPORTING, LLC
Q. And we'll talk about CES, Cooperative Election

Survey studies -- data later, but have you ever used that CES study before this case?
A. No.
Q. Were you familiar with the CES before your involvement in this case?
A. No.
Q. Have you ever drawn an electoral map before?
A. No.
Q. And I'm looking at pages 6 and 7 of your report. I'll let you take a second to get there. This is your --
A. This is the report of January you're talking about again?
Q. Yes, correct. The one that's been marked, I believe, as Exhibit 2. You sort of summarize here some of the expert work and some of the other references in your CV; is that right?
A. That's correct.
Q. And you say that you played an active role in the development of redistricting, a manual for practitioners, analysts, and citizens. Do I have that right?
A. That's correct.
Q. What was the role that you played in the
development of that?
A. I reviewed the work that Peter Morrison and Tom Bryan did, the authors of that book. I helped them with some questions on how to do methods.
Q. And what parts of the -- of that work did you review?
A. I can't remember. I -- basically the whole book, but I concentrated especially on some of the measurement issues.
Q. And you provided comments?
A. I did.
Q. You're not credited as an author of the book?
A. No.
Q. You're mentioned in the front matter and the dedication and acknowledgments?
A. I believe that's true.
Q. That's not a peer-reviewed publication, is it?
A. Every book I've been associated with goes through a review process that's set up by the publisher. So in a sense, it's a peer-review process. They internally will go out and ask reviewers. You know, I served as a series editor of Applied Demography for Springer Publications, and if we get a proposal, it goes out to review to other people. So in a sense it's peer reviewed, but not in the same manner that people think
of as academic journal peer reviews.
Q. So the redistricting title was not peer reviewed in the same way as an academic journal?
A. No. But it's a Springer publication, I believe, so it went through some sort of review process.
Q. And you're not aware of what their review process was, if any, for this particular title?
A. I'm just aware that they are likely to have sent it out for a review to at least one, probably two, other people to look at it before they even accepted the proposal, and they may have done it sometime during the whole process where they're putting it together. You'd have to ask the editors at -- the people in charge of it at Springer, for example.
Q. But you don't know, that's your assumption?
A. Well it's more than an assumption because I can see some of the paperwork that flows back and forth. So I know they're reviewing it, but exactly the details, I don't know.
Q. You saw the paperwork for -- with respect to this redistricting title?
A. I think I did. I see it for almost every time that's ever come through my hands when I do it for Springer, so I'm guessing that's the case.
Q. So let's talk about your prior expert work, and

```
we can stay looking at pages 7 and 8 of your January
```

 report Exhibit 2 where you list some of that work. It's
 also, I think, on page 187 of your CV, but this synapsis
 that you have here will do just fine.
 Looking at some of the on-the-stand
 testimony that you list, these mostly involved instances
 where you testified about population forecasting; is
 that right?
 A. Some -- one, two, three, at least three of them
 did.
 Q. I see a case about water rights in Arizona,
 life expectancy, patient populations. None of the cases
 you list here are voting rights or voting-related cases;
 right?
 A. That's correct.
 Q. You never testified in a voting rights case
 before?
 A. That's correct.
 Q. And do you know whether the court in the cases
 or the courts, I should say, in the cases that you
testified in previously credited your testimony?
A. What does "credited" mean?
Q. Do you know whether they viewed it favorably,
they relied on it in coming to their decision?
A. Well, I was sworn in as an expert witness in
the case where I did testify, so I assume they used it in some manner.
Q. You don't know which manner they used it in?
A. No.
Q. Okay. And looking at some of these cases that you have listed here, you indicate there's some cases where you produced -- and actually, let's look at page 8 where you say: "I produced expert reports as a consultant of potential expert witness in other court cases." You have a list of those here on page 8. None of these are voting-related cases?
A. That's correct.
Q. And you never submitted a report in any voting-related case?
A. That's correct.
Q. And then on page 8, paragraph 9 you say you served as a consultant to Bryan GeoDemographics, BGD, in regard to certain redistricting cases. Do I have that right?
A. You do.
Q. What is Bryan GeoDemographics?
A. It's a company owned and operated by Tom Bryan.

He calls it a boutique consulting company based near

Richmond or in Richmond, Virginia.
Q. What is your role as a consultant for Bryan

GeoDemographics?
A. It varies. He -- when Tom Bryan contacts me, it's usually about questions about a method.
Q. What kind of questions would he contact you with?
A. I'd have to look up to remember them all, but typically involve methods, statistical and otherwise, sometimes demographic measures, sometimes summary-type measures.
Q. What's an example?
A. I'd have to think about one off the top of my head. I believe I've worked with him on doing some statistical things. And they may have -- occur in the book that he and Peter did too. But I haven't thought about in a while, so off the top of my head I can't remember what they were.
Q. And you said you've been working as a consultant with Bryan GeoDemographics since about 2021?
A. Give or take that's correct.
Q. And you mentioned four cases here in paragraph 9 for which you serve as a consultant to Bryan GeoDemographics, two of them are Caster versus Merrill and Singleton versus Morrill; is that right?
A. Yes. Whatever's listed. And I don't remember the cases. I know they're -- I just put them down in my
vitae once I send reports to Tom and he told me what the cases were.
Q. And do you know that those are cases involving Alabama's congressional districting from the 2020 cycle?
A. Not offhand I wouldn't.
Q. What did you do as a consultant in those cases?
A. Generally, Tom would ask me questions about a method, and I would respond to them and try and give him advice.
Q. Did you conduct any analysis of Alabama's black belt as part of your consulting on those cases?
A. No.
Q. Did you conduct any analysis on the gulf coast area of Alabama as part of your analysis in those cases?
A. Not in those cases, but I've done work on -with an attorney in Texas that looked at the effects of the oil spill where we looked at all the gulf coast, and part of that involved gulf coast populations, but it wasn't a voting rights case.
Q. And you -- do you draw any electoral maps or review any electoral maps in your consulting in the Caster and Singleton case?
A. Not that I recall. I certainly didn't draw any. Usually the questions that Tom asks me are about is this an appropriate statistical method to use in this
test? If it's a t-test, for example, should I use the
equal variance assumption or the unequal variance
assumption? If I use regression after I've transformed
variables, what would I do? So those are the types of
questions I typically help with him.
Q. And so, for example, he would take the analysis
that he'd done, take it to you and say, does this
methodology look right to you?
A. Sometimes they're even in advance of that. He'd ask me what kind of advice would you give me on some technique to use. And I stress I'm probably not the only one he's asking for advice.
Q. And you know that Mr. Bryan and Bryan GeoDemographics were working to defend the electoral maps that were challenged in those Alabama cases?
A. That I do know.
Q. And do you know how the Court decided those cases?
A. No.
Q. Do you know whether the Court determined that the congressional districts in Alabama -- or the challenged congressional districts in Alabama was likely unlawful?
A. No. I don't follow the court cases.
Q. Do you know whether the Court in those cases
credited the analysis and testimony that Bryan provided?
A. I don't know.

MR. SAVITZKY: And I just want to mark
now -- what exhibit are we on?
MS. JONES: 3.
MR. SAVITZKY: Just going to mark as Exhibit
3, this is the Singleton case. And I'll hand this copy to you and this copy to you, Mr. Wallace.

MR. WALLACE: Very good.
MR. SAVITZKY: And take a peek over my copy. BY MR. SAVITZKY:
Q. And you can turn to page -- excuse me. Let's turn to page 1007. The pages are marked in the top right corner. And just let me know when you're there.
A. I'm there.
Q. And just looking at that first -- it's right in the top left, the Court says: "We're concerned about numerous other instances in which Mr. Bryan offered an opinion without a sufficient basis or in some instances any basis." Did I read that accurately?
A. Yes.
Q. And the Court lists various instances. And then looking at that time the next page, page 1008, the last sentence of the first full paragraph, the Court says that: "Mr. Bryan overstated his opinions, offered
testimony without a sufficient basis, cited material that he had not reviewed, offered opinions at the preliminary injunction hearing that he had not offered in his reports." Is that --

MR. WALLACE: Go ahead and read the whole sentence instead of paraphrasing from the middle. That's a form objection.

MR. SAVITZKY: That's fine. We can do that. BY MR. SAVITZKY:
Q. The Court said in that last sentence:
"Although the schedule might have limited Mr. Bryan's ability to perform some work that he otherwise might have performed, it did not cause him to overstate his opinions, offer testimony without a sufficient basis, cite material that he had not reviewed, or offer opinions at the preliminary injunction hearing that he had not offered in his reports." Did I read that accurately?
A. You did.
Q. And then looking at the last sentence in the last paragraph, last full paragraph, I should say, on that same page, the Court says: "Because Mr. Bryan consistently had difficulty defending both his methods and his conclusions and repeatedly offered opinions without a sufficient basis and because we observed
internal inconsistencies in his testimony on important issues, we find that his testimony is unreliable." Did I read that right?
A. You did.

MR. SAVITZKY: And just for completeness,
I'm also going to mark as Exhibit 4 the Caster case.
And here is your copy. And Mr. Wallace there's a copy for you.

BY MR. SAVITZKY:
Q. And just looking at the Caster case we can turn to pages 52 and 53 of the document. And we don't have to reread it all, but I just want you to confirm for me that --

MR. WALLACE: Can I stop you and ask: I'm trying to find the pagination here. You've got these -are you looking at the asterisks, the --

MR. SAVITZKY: No. The pagination is right at the bottom of the page.

MR. WALLACE: Oh, I see where we are. Okay. Give me those numbers again, please?

MR. SAVITZKY: It's just starting at
page 52.
MR. WALLACE: Okay.
BY MR. SAVITZKY:
Q. And I just want to confirm that this is
verbatim the same statements are in the Caster opinion as well. So starting in the first full paragraph in the seconds column on page 52: "We're concerned about numerous other instances in which

Mr. Bryan offered an opinion about a sufficient basis or in some instances any basis." Same statement?
A. Where are you reading?
Q. On page 52, last part of the first full paragraph.
A. That would be paragraph 60?
Q. No. Just on the second column, the first full paragraph of the second column on page 52.
A. The one that starts out "separate"?
Q. Correct. And the last -- after the citation there: "We are concerned about numerous instances in which Mr. Bryan offered an opinion without a sufficient basis or in some instances any basis."
A. I see that. I do.
Q. Okay. And then moving to the next page, page 53, same statement that we read from the Singleton opinion, this is in the second to the last paragraph in the first column. "Although the schedule might have limited Mr. Bryan's ability to perform some work that he otherwise might have performed, it did not cause him to overstate his opinion, offer testimony without a
sufficient basis, cite material that he had not reviewed, or offer opinions at the preliminary injunction hearing that he had not offered in his reports." Same statement as before; and that's right?
A. That is.
Q. Okay. And then just looking at the next page, page 54 , last sentence of the first paragraph there, again same conclusion: Mr. Bryan consistently had difficulty defending his methods and his conclusions, repeatedly offered opinions without a sufficient basis, and concluding that his testimony is unreliable; right?
A. I read that.
Q. Okay. So let me ask you another question: Do you know whether the supreme court ended up ruling in an appeal in the Singleton and Caster cases?
A. I do not.
Q. Do you know whether William Cooper, plaintiff's mapping expert in this case, the White case, drew any of the plaintiff's illustrative maps in the Alabama cases?
A. I don't recall. I don't know.
Q. Do you recall conducting any analysis in

Mr. Cooper's maps in the Alabama cases?
A. No.
Q. Would you dispute that a panel of three medical judges in the Singleton case found that the plans that
Mr. Cooper drew in Alabama were consistent with
traditional districting principles?
A. I'm not in a position to dispute or not dispute it.
Q. And we can just look back at Exhibit 4, which you should still have in front of you -- excuse me, Exhibit 3 in the Singleton case here. And I just want to look at page 1016 this time. Excuse me, 1015.

MR. WALLACE: 15?
MR. SAVITZKY: Sorry, 16.

MR. WALLACE: 16.
MR. SAVITZKY: Strike that. That's all
right. We don't have to do that.
BY MR. SAVITZKY
Q. And you said you didn't know whether the supreme court reviewed these decision?
A. I believe -- I knew that it went to the supreme court, but I just don't follow whatever they did with it. And I may have heard from Tom about it, but that didn't stick in my head.

MR. SAVITZKY: And we can now mark as 5, this is the supreme court's decision reviewing those Alabama -- Alabama decisions. Copy for Mr. Wallace. I'm looking at page 15 on the bottom of this document, second column, first full paragraph. Let me know when
you're there.
MR. WALLACE: All right. This is page 15 of
Westlaw print-off and it's somewhere.
MR. SAVITZKY: Second column.
MR. WALLACE: Okay.
BY MR. SAVITZKY:
Q. So first of all just in the first full sentence
in that second column, that Caster plans to rely on
illustrative maps produced by expert Bill Cooper. Do I
have that right?
A. Are you asking me?
Q. Yes.
A. Yes, that's what it says.
Q. And then looking at that next paragraph, says: "The District Court agreed, found Cooper's testimony highly credible commended Cooper for working hard to give equal weight to all traditional districting criteria." Do I have that right?
A. That's what I read.
Q. And then the last -- and actually, we'll continue on. The next sentence: "The Court also explained that Alabama's evidence of racial predominance in Cooper's maps was exceedingly thin. Alabama's expert Thomas Bryan testified he never reviewed the exhibits to Mr. Cooper's report and never reviewed one of the
illustrative plans that Cooper submitted." That's right?
A. It is.
Q. And just skipping a sentence going to: "By his own admission, Bryan's analysis of any race predominance in Cooper's maps was pretty light. District court did not err in finding that race did not predominate in Cooper's maps in light of the evidence before it." Right?
A. That's what I read, too.
Q. So you also mentioned -- and we can put those aside for now, maybe put them over here if we're not using them. We'll want to hang onto this.

And in fact, just referring back to it, page 8 of your report, you also mention that you worked on the Ardoin case, Robinson v. Ardoin? That's the Louisiana congressional districting case? I'm looking at page 8 of your report.
A. Yes.
Q. Okay. And what did you do as a consultant for Bryan GeoDemographics in that case?
A. I'd have to look back at my records and see what I did, if I have e-mail correspondence. Again, most of these where I would serve as a consultant to him, he'd either contact me via e-mail or call me and
ask me questions about particular methods or ask me for advice on these or something. And I don't recall specifically what it was.
Q. Do you recall how actively involved you were in consulting on the Ardoin case for Bryan GeoDemographics?
A. No.
Q. Do you recall whether you worked on a misallocation analysis?
A. That sounds familiar. I think I did.
Q. And to be clear, you didn't draw any electoral maps in that case?
A. I did not.
Q. Would you say that the analysis in that case from Mr. Bryan reflects your input in your analysis?
A. It may reflect some of my advice that I give to him about misallocation error or how to measure it?
Q. And by the way, for those Alabama cases, Caster and Singleton, would you say that Mr. Bryan's analysis reflects your input in your analysis as well?
A. I don't know.
Q. And you know that Thomas Bryan and Bryan GeoDemographics were working to defend the congressional districts that were challenged on behalf of the State of Louisiana in that case?
A. Yes.
Q. Did you review the Court's decision in the Ardoin case?
A. No.
Q. Do you know whether the Court determined that the challenged congressional district there likely violated the Voting Rights Act?
A. No.
Q. And this is the last one of these, I swear. I'm not going to take that back rather than swear to anything. I'm just going to mark a copy of the Ardoin case. I think we're on Exhibit 6. And --

MR. WALLACE: I'm missing the first page of it. I'm sure I can get it someplace else, but -MR. SAVITZKY: Happy to. MR. WALLACE: Did you miss a page? MR. SAVITZKY: Here, I'll give you my first page. I may have missed one.

BY MR. SAVITZKY:
Q. So would you dispute that the federal judge in the Ardoin case agreed with the plaintiffs and held that the challenged congressional districts there violated the -- likely violated the Voting Rights Act?
A. I don't know what decision the judge made, so I'm not in a position to dispute it or not dispute it.
Q. Do you know whether the Court credited the
analysis that Thomas Bryan and Bryan GeoDemographics provided?
A. I don't know.
Q. And looking at what's been marked as Exhibit 6, and turning to page 824, and we can start just in that first full paragraph. Let me know when you're there. First full sentence: "After observing Bryan on the stand in this case, the Court finds his demeanor was not so problematic as to disqualify him. But the Court found his methodology to be poorly supported, his conclusions carried little, if any, probative value on the question of racial predominance." Did I read that right?
A. You did.
Q. Okay. And then in the next paragraph, the Court discusses how Bryan opined that race was a prevailing factor in the design of plaintiff's illustrative plans based on his "index of misallocation" which purports to flag areas where a disproportionate share of the black population was grouped into a majority, minority district."

Is that the misallocation analysis that we were talking about before?
A. Yeah, I'm sure what I helped him with was in regard to how do you measure misallocation.
Q. Okay. And then looking at the next paragraph, the Court says: "Even if this misallocation method is accepted, the factual assumptions upon which his conclusions rest are absent in this case. Hence, Bryan's conclusions are unsupported by the facts and data in this case and thus wholly unreliable." Did I read that right?
A. You did.
Q. And then moving to the next column, first full paragraph, concluding, the Court says: "Finally, the Court finds that Bryan's analysis lacks rigor and thoroughness which further undermines the reliability of his opinions." Do I have that right?
A. You do.
Q. And in the last sentence: "For the foregoing reasons, the Court gives very little weight to Bryan's analysis and conclusions." Is that right?
A. It is.
Q. Okay. Now, the last case you mentioned -- and we can put that one away as well. Put it right here. Thank you.

So the last case is McConchie versus the State Board of Elections that you listed. Is that an Illinois redistricting case?
A. I think that was Illinois.
Q. Do you know what the legal issue is in that case?
A. No.
Q. Do you know whether it involved the Voting Rights Act or racial votes dilution?
A. I don't.
Q. Do you remember anything about what the case was about?
A. No. Seriously, I don't.
Q. Do you remember anything about the analysis that you did for Mr. Bryan?
A. I'd have to look back at my records and see what questions he asked me.
Q. So as I understand it, the issue in that case is whether it violated the federal constitution for Illinois to use ACS population estimates to draw their legislative districts rather than waiting for the 2020 census to come out. Does that sound right to you?
A. It does sound familiar.
Q. And the issue was that because ACS estimates are estimates and not full measures of the population as with the census, that was a one person, one vote problem, it couldn't be sure that you had one person, one vote allocation for population across the districts. Does that sound right?
A. I don't know how people viewed a sample based estimate compared to the census and how they used it. That part I don't know.
Q. But based on what you recall, it wasn't a case about racial vote dilution or racial representation?
A. I don't recall.
Q. So in the three cases where -- well, let me strike that.

You do understand that the Caster and the Singleton and Robinson cases are about racial vote dilution?
A. I believe that's the case.
Q. So in the three cases where you consulted for Bryan GeoDemographics that you know involved racial vote dilution, in each one of those cases the Court did not credit the Bryan GeoDemographics analysis; right?
A. That's what appears to be the case based on what you read.
Q. Now, in your January report looking on to page 10 -- you have it if you want to look at it -- you say: "Because of its expertise and experience, I have used the services of Bryan GeoDemographics which under my direction has assembled data, maps, and other work product." So you use Bryan GeoDemographics to assemble data, maps, and work product for your report in this
case?
A. I'm sorry, where are you at?
Q. Oh, I'm sorry. Paragraph 10 on page 8. That's my -- my mistake. Just the next paragraph from what we
were talking about: "Because of its experience and
expertise, I've used the services of Bryan
GeoDemographics to assemble data, maps, and other work
product." For this case for your report in this case,
yes?
A. Yes.
Q. And just looking -- I mean, I looked at the maps in your report, they tend to have produced by Bryan GeoDemographics legends or notes at the bottom; is that right?
A. That's correct.
Q. So who actually created those maps and other tables that are indicated as being produced by Bryan GeoDemographics in your report?
A. They were -- they were done under a request from me to -- I would -- could use a table or a graph or something like this to put together in my report.
Q. And then Thomas Bryan created them?
A. Yes.
Q. And what information did you give him to instruct him to create the report?
. I gave him a general picture of what I wanted to see in a table or a graph, and then he produced it using probably the Public Law 94171 data or whatever else was involved in it.
Q. Do you know what software he used to create --
A. Maps.
Q. To create the maps, yeah.
A. I think he uses map -- or the -- what's the company in Redlands, California -- Arcinfo. I believe that's what he used I'm pretty sure he uses things from that group.
Q. Do you know what software he used to create any data tables that he created for you for these purposes?
A. He usually uses Excel.
Q. Is this work that you could have done yourself?
A. Most of it involves really large files, and he's adept at bashing around data and big files and using parts of Excel that I don't use routinely like pivot tables. So I probably could have done it but it would have been a learning curve for me to get to that point and also assemble all the data and have it together. So it was much easier to work through Tom.
Q. Did he also provide substantive comments or analysis on the types of analysis that you were doing for your report?
Q. Do you know whether any of the methods that you used are the same methods that he used in the Louisiana or Alabama cases?
A. I'd have to look at the reports to see.
Q. Could any of the reports -- analyses that you've done be characterized as a misallocation analysis similar to what Mr. Bryan did in Louisiana?
A. I can't recall using a misallocation index.
Q. Did Bryan GeoDemographics run the compactness analyses that you use in your report?
A. He produced the Excel tables that produced numbers for that.
Q. And did he actually produce the compactness scores that you used?
A. The scores, yeah. He's got that, I think, written up in various ways so he can produce them pretty quickly.
Q. Looking back at your resumé, and I'm to turn to page 159 of your report. Just a couple more items. I don't want to -- it's a long resumé, I know. On page 158 you list some non-refereed articles. And one of them is an internet article from around the time of the 2020 election called: Is Being Republican a Risk to One's Health and the Health of Others? Do you see that?
A. I do.

MR. SAVITZKY: And I'm just going to mark a
copy of that as Exhibit 7 .
MR. WALLACE: This on page 159?
MR. SAVITZKY: Correct.

MR. WALLACE: Okay.
MR. SAVITZKY: Let me just confirm that for you. Oh, you know what, it's on page 160, third one from the bottom. It's a long list of non-refereed articles that we have here. And we're marking this article as Exhibit 7.

BY MR. SAVITZKY:
Q. And in this article, you looked at heavily Democrat and Republican counties and you compared per capita case race of COVID?
A. They were counties that had voted one way or another in the presidential election.
Q. And your finding was that: Per capita, the cases of COVID in areas that voted heavily Republican were higher and they were increasing even though they were sort of more sparsely populated?
A. That's correct.
Q. And you concluded that this finding: "Supports the view that residents of those areas are ill disposed to outside mandates to self isolate, practice social
distancing, and wear masks possibly due to misinformation they consumed from conservative media outlets."
A. Yes.
Q. And you concluded: "Our take is that political orientations should be considered along with other factors likely to generate COVID-19 cases. So along with testing and its accuracy, data suppression, potential superspreader venues, population density, rates of interaction, age, race, and ethnicity and gender, we believe that being Republican or being in proximity to them could be a very real risk factor."
A. That's correct.
Q. And you still agree that being a Republican could be considered a risk to your own health and that of others with respect to COVID?
A. It was at that point in time. Whether is it now, I'd have to go back and research it again. But it definitely appeared to be the case when we did that research.
Q. Okay. And just one other article, one of these non-refereed articles, and we'll mark that as Exhibit 8. This is an article from a publication called Zócalo entitled: Is Hawaii a Racial Paradise. Do you recall this article?
do
Q. This is, I think, a forum -- sort of internet forum set of articles. And your article's on page 5 of this document, if you want to turn to it. And it's specifically entitled: "Compare Hawaii and Mississippi." Do I have that right?
A. It is.
Q. And in your article, you note that Hawaii has a very high proportion of people who identified as multiracial, where as Mississippi has a lowest proportion of people who identify as multiracial; is that right?
A. That is.
Q. And you note that Hawaii has the highest life expectancy, and Mississippi has one of the lowest or the lowest?
A. That's correct.
Q. And you note that Mississippi is well below the U.S. average in terms of people with bachelor's degrees?
A. Yes.
Q. And you note that Hawaii has less poverty than the national average and Mississippi has significantly higher levels of poverty?
A. Yes. And I'd say that that was as of the date I did the article, so things may have changed. But

```
                                    Page 47
you're reading this correctly for the dates that I had
the data.
    Q. You don't have any reason to think that that's
changed since this article was published?
    A. I don't know.
    Q. You don't have any to reason to think that it's
changed?
    A. I haven't looked at the question since then, so
I don't know.
    Q. And you ask -- and this is in this last
paragraph -- "What is it about these two states that
relates the number of multiracial people and health,
education, and income levels?" Right?
A. I do.
Q. And you say: "Historically, both states were
dominated by a small social economic elite, primarily
made up of white plantation owners. But in Hawaii, this
domination occurred in the late 19th century whereas in
Mississippi, it was already part of the political fabric
when the territory was admitted to statehood in 1817."
Right?
A. That's correct.
Q. And you continue: "Racism and labor exploitation existed in Hawaii but they were neither as extreme nor as embedded as they were in Mississippi
```

where slavery preceded anti-miscegenation pro laws."
Right?
A. Correct.
Q. And you still agree that the embedded history of extreme racism and exploitation contribute to socioeconomic deficits that we see in Mississippi today?
A. Yes.
Q. And we can put this one away as well. That one, too. Thanks very much. So let's talk about this case. You
understand that this deposition relates to litigation brought under Section 2 the of Voting Rights Act?
A. I don't know what section of the Voting Rights Acts it is, but I understand it's a case about voting rights.
Q. Okay. When did you first learn about this case?
A. A year ago.
Q. How did you learn about it?
A. Mr. Wallace contacted me.
Q. Did you and Mr. Wallace know each other previously?
A. No.
Q. Just curious. What is your understanding of the claims brought by the plaintiffs in this case?
A. You'd have to be more specific about what it is you're asking me, because I don't follow the question exactly.
Q. What do you understand the plaintiffs to be challenging about the Mississippi Supreme Court?
A. What they seem to be challenging is the counties that are within district 1 specifically.
Q. What is your understanding about why the plaintiffs would like district 1 to be configured differently?
A. I believe -- are you asking me specifically about Dr. Burch's report?
Q. I'm asking generally about the claims in the case. I mean, your reviewed Dr. Campbell's report; right?
A. Yes. I spent more time with Dr. Burch's report.
Q. You reviewed Dr. Cooper's report?
A. I did.
Q. Excuse me. Mr. Cooper's report?
A. Yeah, Mr. Cooper.
Q. Wouldn't want to unnecessarily promote

Mr. Cooper.

Having read a few reports in the case -- and did you read the complaint that was filed in this case
by the plaintiffs?
A. Probably, but I don't recall.
Q. So I'm just asking you: What's your
understanding of why the plaintiffs think that
district 1 should be redrawn?
A. I think it's because they -- the idea is that there should be a -- either a higher majority or a straight-out majority of black voters in the district.
Q. And what is your understanding of why plaintiffs think that district should be redrawn so that there's a higher majority or a straight-out majority of black voters in district 1?
A. I guess it would have to do with some understanding of how black or white or other people vote.
Q. What's your understanding of what the term "vote dilution" means?

MR. WALLACE: That really is a legal
opinion, and I'll object to it for that reason. He can answer.
Q. You can provide your understanding if you have one.
A. I don't know.
Q. What's your understanding of what "racially polarized voting" means?
A. My understanding is that white people might tend to vote in a block, black people might tend to vote in a block, Chinese people might tend to vote in a block, Japanese American might tend to vote in a block, American Indians might to tend to vote in a block, etcetera.
Q. And so you would agree that if voting in a particular area is racially polarized, black voters are usually not going to be able to elect a candidate they want to elect unless they form a majority in that area?

MR. WALLACE: Object as facts -- object on the basis based on facts not in evidence. I was trying to think whether it was bad law or bad facts, but I object to the form because it's probably both.
Q. You can answer the question.
A. I don't know the answer to it.
Q. Let me ask it again. You would agree based on your understanding of what racially polarized voting is, that if you have an area where there is racially polarized voting, black voters will usually not be able to elect the candidate that they're voting for unless they form a majority of the population in that district?
A. Well I think what you're asking me is a research question, so I can't offer an answer off the top of my head without actually researching some
specific condition.
Q. Let me ask it one other way. If white voters are usually voting for one candidate and black voters are usually voting for the other candidate and both white and black voters are voting cohesively, then in an area where voters are supposed to be either white or black, where black voters are the minority, they're usually going to lose the election?

MS. WALLACE: Object to the form of the question as seeking legal opinion on the meaning of both "usually" and "cohesively." But you may answer.
A. I don't know.
Q. You understand you're being proffered as an expert in this case?
A. I understand that.
Q. What are you an expert in?
A. Demography.
Q. You're not an expert electoral mapping drawing?
A. That's correct.
Q. And you're not an expert in voting behavior?
A. That's correct.
Q. Do you know what the duties of an expert in a federal law suit are?

MR. WALLACE: Well, I'm going to object to the form of that as being a legal opinion. But he may
answer.
A. Does it vary by judge or court?
Q. Well let me ask it this way: Do you think that an expert is supposed to be objective?
A. That I believe. I think an expert should be objective.
Q. And when did you first learn you were going to give a deposition in this case?
A. Not too long ago. Mr. Wallace might be able to give an answer on that one. I can't recall.
Q. Unfortunately, I'm not deposing Mr. Wallace.
A. Well, I -- a month ago? A week ago? I don't recall. Certainly wasn't a year ago.
Q. And without going into the substance of any conversations that you had with your attorneys, what did you do to prepare for today's deposition?
A. I went back and reviewed the surrebuttal report I prepared.
Q. How long did you spend preparing for today's deposition?
A. Since I knew about being deposed, probably several hours.
Q. Did you meet with anyone?
A. Other than Mr. Wallace?
Q. Other than Mr. Wallace.
A. No.
Q. You met with Mr. Wallace?
A. Yes.
Q. Again without asking you about the substance of any conversations you had, about how many times did you meet with Mr. Wallace?
A. This morning, yesterday.
Q. Did you review any documents -- and I'm sorry, was that your complete answer, was this morning and yesterday?
A. I believe so. We maybe talked on the phone or e-mail, but I can't recall that. But in terms of personally talking to him about it.
Q. Did you review any documents to prepare for this deposition?
A. You asked me that question.
Q. And you mentioned your surrebuttal. Anything else that you reviewed?
A. Not that I really read or reviewed.
Q. Did you take any notes during any of the meetings or known calls that you had to prepare for this deposition?
A. No.
Q. Did you take any notes when you were reviewing documents to prepare the for deposition?

```
Page 55
A. Not that I recall.
Q. Did you do any highlighting or margin note writing in any documents as you prepared for this deposition?
A. I generally don't review printed documents because the printer at my house doesn't work, well -I'm serious. So what I generally do is look at things on-line.
Q. And you didn't make any marginal notes in any digital documents you were reviewing?
A. No.
Q. I'm also in the faulty printer club, so I feel your pain on that one.
Did you bring any documents with you to today's deposition.
A. No.
Q. Okay. I'd like to spend some time talking about the January report that we've been looking at starting with the demographic analysis that you conducted.
MR. WALLACE: Well at this point, I'm going to state our position -- and it depends on what you're looking at. The court order authorizes you to examine him on the surrebuttal report. I don't doubt that there are some things in the first report which may be
```

inextricably connected to the second report, so, you know, I'll take it up an issue at a time. But we do believe this is a deposition on the surrebuttal report. And with that, you may proceed.

MR. SAVITZKY: Thank you, Mr. Wallace. And, you know, we understand your position. Obviously, this came up at the last deposition as well. And, you know, we disagree and think this is our opportunity to take a deposition of defendant's experts, but we can hash that out another time, and your object is certainly noted. BY MR. SAVITZKY:
Q. So with that, still looking at your January report you should have in front of you, and it's marked as Exhibit 2, I just wanted to get one point out of the way. You say a few times in your report, paragraph 13, for example, that Mr. Cooper argues -- "argues that Mississippi's Supreme Court district 1 is a minority black district at 49.3 percent." You can look at paragraph 13 of your report to confirm that you say this. It is, I believe, the second full sentence. You characterize Mr. Cooper as arguing that district 1 is a minority black district at 49.3 percent?
A. I do. I write that in here.
Q. And you actually at paragraph 33, you say it again, you say: "Plaintiffs are relying on the any part
black voting age population of the district to
characterize district 1 as being minority black."
A. Yes.
Q. And in paragraph 39 you say -- you
characterize: "The claim that plaintiffs are making is
that district 1 'is a minority district' in need of
remediation."
A. Yes.
Q. Did you read Mr. Cooper's October report?
A. I did.
Q. Did you review the exhibits to the report?
A. I did.
MR. SAVITZKY: So I just want to mark the
October report now. This'll be Exhibit 9. Here's a
copy. One for Mr. Wallace.
BY MR. SAVITZKY:
Q. And just looking at page 19 of Cooper's October report, just at the very top of the page, let me know when you're there.
A. I'm there.
Q. He says: "District 1 is only a 4 percentage point plurality BVAP district; right?
A. Yes, it does say that.
Q. And that is the statement that you're pointing to when you say that Cooper argues that Mississippi

Supreme Court district 1 is a minority black district?
MR. WALLACE: That's that fist question
you've asked him since I stated my objections, and I object to it as being outside the scope of the order.

He may answer.
A. Yes.
Q. So what Mr. Cooper says he doesn't say minority, he says plurality; he says it's plurality black district; right?
A. He says that.
Q. So you think that paragraph 13 and those other references in your report should be corrected?
A. But 49.29 percent is not a majority.
Q. Right. But Mr. Cooper doesn't characterize it as a minority black district, he characterizes it at a plurality black district; right?
A. You're correct.
Q. But you say Mr. Cooper "argues that Mississippi Supreme Court district 1 is a minority black district at 49.3 percent?
A. I did.
Q. He doesn't argue that, does he?
A. That would be up to you. When someone says it's 49.29 percent, that to me is a statement that's a minority.
Q. Are a minority and a plurality the same thing?
A. A minority is when you're less than half,
depending on what the situation is. And to me, that's a
minority.
Q. A plurality would imply that you're the -well, strike that. We'll leave it there.

You don't dispute that the voting age population based on the census is the traditional standard for measuring population for purposes of drawing an electoral map?

MR. WALLACE: Objection as asking for a legal opinion. He may answer.
A. I believe that's the case.
Q. And then you look at American Community Survey data as well to analyze the demographics of the population in Mississippi in your report; right?
A. Yes.
Q. And, I mean, we can, I think, starting at paragraph 39 of your report, if you'd like a place to look, but -- and you -- strike that.

Unlike data from the census, the America Community Survey is an estimate; right?
A. It is. It's a sample-based estimate.
Q. Did you use the 2016,2020 special tabulation of the ACS?

```
                                    Page 60
    A. I believe that's the case. I'd have to look at
the actual report to see what I used, but that's the
most likely one.
Q. And you say that using ACS estimates of CVAP or citizens voting age population, the existing district 1 is majority black CVAP; right?
A. I believe that's the case. Can you point me to the paragraph so \(I\) can see it?
Q. Yeah. I believe it's on paragraph 39.
A. Yes.
Q. Do you think that the existing district 1 is reasonably configured?
MR. WALLACE: Objection as calling for a legal conclusion, but he may answer.
A. I don't know. And the sense of configured, in what manner? Geographically? Socially? Spacially? Road-wise? Communication?
Q. Is existing district 1 compact?
A. I'd have to look at the data to, again, recall if that's the case.
Q. Did you analyze the compactness and other metrics of district 1 in conducting your opinions in your January report?
A. I haven't looked at this report for quite a while that you're bringing up, so I'd have to go back
```

and review it. I didn't review it prior to this deposition.
Q. And you don't conclude anywhere in your report that the black population of Mississippi is not sufficiently numerous and geographically compact to allow for one black majority supreme court district?
A. Again, I'd have to stress I'd have to go back and look at the report because I haven't looked at it or thought about it in a while.
Q. I mean, you're welcome to review the conclusions if you want or --
A. If you want me to now, I can.
Q. The question is whether you concluded anywhere that the black population in Mississippi is not sufficiently numerous and geographically compact to support one majority black supreme court district?

MR. WALLACE: Object to the form because sufficiently numerous geographically compact requires all kinds of legal conclusions.
A. And my answer, again, is I'd have to go back and review all those since I -- I didn't do that prior to this deposition.
Q. You don't conclude that it's not possible to draw a compact majority black supreme court district in Mississippi?

MR. WALLACE: Same. Objection he my answer.
A. I don't have a conclusion about that at this point in time because it's not in my head.
Q. But you don't conclude that in your report anywhere?
A. I'd have to look back at the report to review it. I don't know. As I said, I haven't looked at this report for quite a while, so I can't recall exactly what's in it.
Q. So when calculating demographics of the different districts, you also do some analysis to adjust for prison population. Do you recall that?
A. I do.
Q. And that's starting at paragraph 46 of your report. And you conduct this analysis by subtracting the current populations of some of Mississippi's prisons from the CVAP that you've calculated; right?
A. I believe that's the case, but I'd have to look specifically again at it to recall because I don't recall off the top of my head.
Q. Well, feel free to refresh yourself by looking at paragraph 46 and neighboring paragraphs if you need to before we proceed. And let me know when you're ready.
A. I've looked at it.
Q. Okay. So you do this analysis of prison populations by subtracting the current populations of some of Mississippi's prison facilities from the CVAP that you've calculated; right?
A. Yes.
Q. And specifically, you look at the three largest prison facilities in the state of Mississippi; right?
A. I believe those are the three largest, yes.
Q. And you calculate the current population of those three facilities that we looked at as 7,000 people?
A. Can you point to me where the -- where I've got the number in there?
Q. Yeah. I'm looking at Table III E-1 on page 25.
A. And then what you're looking at is the right hand total where it has 2,996 in private prisons and 4,050 in regional correction facilities to say it's approximately 7,000?
Q. So that's right.
A. That's correct.
Q. And just to be clear, the count that you have here is a partial count of the population of incarcerated persons in Mississippi, right, you didn't include every incarcerated person?
A. Such as in county jails and the like?
Q. Sure.
A. That's correct.
Q. And your analysis shows that there is a
higher -- and I'm quoting you know according to
paragraph 48, you say: "There's a higher proportionate number of black prisoners in the three major prisons in Mississippi than white prisoners overall and by gender." Right?
A. Yes.
Q. And that table that we were looking at, Table III E-1 indicates that black Mississippians are about 60 percent of the prison population even though they are more like 36 percent of the voting age population?
A. That's an accurate characterization.
Q. And you know that in Mississippi, people with a qualifying felony are disenfranchised for life not merely when they are incarcerated?
A. I knew they were disenfranchised, I did not necessarily know it was for life, but I suspect I think I somehow knew that, yeah.
Q. And you don't try to estimate the number of persons who are unable to vote, who are disqualified from voting because of a qualifying felony conviction but who are no longer incarcerated; right?
A. That's correct.
Q. And you say, I think, on paragraph 36:
"There's no practical way to measure or locate these demographically by district in a meaningful way."
A. That's correct. I stated that.
Q. Did you review Mr. Cooper's rebuttal report from February of 2023?
A. I believe I did, but I'd have to look at his report again to refresh my memory.

MR. SAVITZKY: And we can mark that as well. And we're on Exhibit 10. Here you are. And Mr. Wallace. Okay.

BY MR. SAVITZKY:
Q. And looking at page 5 of this rebuttal report, paragraph 9, Mr. Cooper discusses the study showing that the total disenfranchised population based on qualifying felony convictions in Mississippi that were rendered between 1994 and 2017 is 56,000. Do you see that?
A. I do.
Q. And do you have any reason to dispute that?

MR. WALLACE: Now I will object as being outside of the scope of the court order, but he may answer.
Q. Do you have any reason to dispute that?
A. The only thing I question is, are they all in Mississippi.

MR. WALLACE: Same objection. He may answer.
Q. Any reason to dispute that?
A. Again, I'd have to go look at the exact data that he pulled or other sources to answer it fully, but I have no reason at this point to dispute it.
Q. It's actually quite consistent with the number that you found, isn't it?
A. It is.
Q. And that 56,000 represents convictions from the 23 year period 1994 to 2017?
A. I believe that's correct.
Q. And so Mr. Cooper then says in the next paragraph, paragraph 10 on page 6 in his rebuttal report: "It's clearly within the realm of possibility that after factoring in felony convictions going back to
1948, two additional 23-year periods, the adjusted
eligible black CVAP for voters in district 1 may drop
below 50 percent." Do you dispute that that's within
the realm of possibility?
MR. WALLACE: Same objection. He may
answer.
A. Many things are in the realm of possibly. But
again, the question is how many people may have migrated
out of Mississippi or died.
Q. So --
A. All those numbers.
Q. So you agree that it's possible that 51 percent CVAP once you adjust for all the persons who may have a qualifying felony conviction, it could be under 50 percent?

MR. WALLACE: Same objection. He may answer.
A. It could be either way depending on if they're still alive or where they live.
Q. So that's a yes, it could be under 50 percent prison adjusted CVAP?
A. That is a yes but it's qualified with the follow-up study as I mentioned earlier, to follow up on people who are in prison, discover where they're living now, are they in Mississippi or out of Mississippi, are
they alive? Are they dead? That may affect the answer.
Q. You would agree that people -- that there are likely people who were convicted of a qualifying felony in 1960, 1970, still alive today?

MR. WALLACE: Same objection. He may answer.
A. Yeah, that's -- that's a possibility, yeah. It's also a possibility that people from other states may have moved there, there are a lot of possibilities. This is a research question, as I stress.
Q. Understood. So just briefly, I want to look at a different part of your demographic analysis. I want to turn back to paragraph 34 of your report. You mention -- well, let me just read it. You say: "A useful way to look at the distribution of wNH" -- white non Hispanic -- "total and any part black total population across the three districts is to use the coefficient of variation." Do I have that right?
A. You do.
Q. And the coefficient of variation is the standard deviation of the voting age population of the three districts divided by the total voting age population?
A. Not the total, the mean.
Q. Divided by the mean?
A. That's correct.
Q. And you say: "The coefficient of variation shows the extent of variation relative to the mean."
A. It's normalized. That's what the term is, because you could have one population that has a really high mean if you're comparing it to another population that has a low mean. And what you want to do is divide the means into the standard deviation so you get a relative basis for comparison.
Q. And you say you do this for total but also white VAP, black VAP, and you say: "This shows that white total is four times higher than that same per VAP and black total is five times -- approximately five times higher than that same VAP which serves to confirm that white total and black total population are less equally distributed across the three districts in total VAP."
A. And remind me what paragraph --

MR. WALLACE: Which paragraph are we in?
MR. SAVITZKY: Paragraph 34.
MR. WALLACE: 34?
MR. SAVITZKY: Last sentence.
BY MR. SAVITZKY:
Q. You say looking at the data in this manner confirms that: "White non Hispanic total and any part
black total population are less equally distributed
across the two districts than the total voting age
population." Right?
A. That's correct.
Q. Is that another way of saying that black and white populations are not evenly distributed across Mississippi geography?
A. It would be.
Q. And you would agree that large numbers of high black VAP population are generally distributed north and south along the Mississippi River in Mississippi?

MR. WALLACE: Now I'm going to object to that for the same objection. He may answer.
A. I -- if you're asking me what my -- I would call it a research of hypothesis. It's a good question to ask as a starting point, but it's something you'd have to investigate.
Q. And let's just briefly -- let's put a pin in this page, but turn to page 96 -- excuse me, not page 96, paragraph 96 of your report on page 49. And just -the second sentence of that paragraph, just take a look at that and let me know when you're ready.
A. And it's paragraph 99?
Q. Paragraph 96, second sentence. Just take a look and let me know when you're ready .
(Witness reviewing exhibit.)
A. Yes.
Q. You would agree that large numbers -- "Large numbers of high percent any part black VAP population are generally distributed north and south along the Mississippi River; right?
A. Yes.
Q. Now having worked in Mississippi, studied Mississippi demographics, you sort of know that's true just from looking at the map and knowing the population, there's a substantial amount of black population concentrated in the Mississippi Delta and the capital region; right?

MR. WALLACE: Same objection, but he may answer.
A. Yes.
Q. And that's why it's not especially difficult to draw majority black supreme court districts and include the Mississippi Delta and the capitol regions?

MR. WALLACE: Same objection plus the objection that is asking for a legal conclusion. But he may answer.
A. I don't draw a congressional district, so I'm not in a position to really answer that question.
Q. And you don't draw supreme court districts,
either?
A. Yeah, that's correct.
Q. So let's talk about the traditional districting principles. And we're now in a section of your report starting at paragraph 56, page 29. Are you familiar with the principles that electoral map drawers consider in drawing an electoral map?
A. Somewhat.

MR. WALLACE: Objection as to form as not explaining what an electoral map drawer is.
Q. Do you understand that an electoral map drawer is a person who draws electoral maps?
A. I do.

MR. WALLACE: With political authority or sitting in his basement with a pad? Can you be more specific.
Q. So you rely in your report on a few different sources to discern the principles that a person drawing an electoral map would consider; right?
A. Yes.
Q. One of the sources you rely on is a report from the congressional research service, it discusses principles for congressional redistricting?
A. I believe that's the case, yes.

MR. SAVITZKY: And we'll just mark that. We
are on Exhibit 11. Copy for you. Copy for Mr. Wallace. BY MR. SAVITZKY:
Q. This is the report that you cite in your January report? Just confirming, this is the report that you looked at.
A. Give me a second here. I'm still trying to organize the main report you were going through --
Q. Sure, sure.
A. -- so I can find things when we go back to it again.
Q. And that's why, because we will certainly go back here.

And this congressional research service report is one of the sources that you relied on in your January report too?
A. It is.
Q. And according to this report, and we can see on page 3, page 3 of the document there -- the pagination is at the bottom. That's front matter. There we go. And just looking there, the report lists some of the principles that map -- electoral map drawers consider; right?
A. It does.
Q. And according to this source that you relied on, those principles include assuring population
equality among districts within the same state. You agree that's one of the principles to be considered?
A. That's one of the principles listed.
Q. You agree that's one of the principles listed as traditional criteria for drawing electoral maps?
A. That's what it says here, yes.
Q. And another one that's listed is protecting racial and language minorities from vote dilution while at the same time not promoting racial segregation?
A. Yes.
Q. And another principle is promoting geographic compactness and contiguity when drawing districts?
A. Yes, sir.
Q. And another principle is minimizing the number of split political subdivisions and communities of interests within districts?
A. Yes.
Q. And another principle is preserving historic stability in the cores of previous districts?
A. Yes.
Q. And then looking at this list, the list indicates that some of the considerations are more widely adopted than others; right?
A. In terms of?
Q. How many states require them, how many states
have adopted them, there are little parentheticals after each one that say how many states consider --
A. Yes, there's a different number of states listed after some of these.
Q. So contiguity appears to be expressly embraced as a required consideration by 22 states but core retention by only 7 ?
A. Correct.
Q. So when it's discussed in paragraph 58 and 59 of your January report, you also relied -- and we can put this one to the side, but we may refer back to it again. You also relied on another multistate survey of traditional districting principles from the National Conference of State Legislators; right?
A. Point me to that paragraph where I state that, please?
Q. Sure. This is Footnote 21 on paragraph 58, says: "The National Conference of State Legislatures is widely recognized, the nation's independence objective and bipartisan authority of redistricting matters published a series of principles that reflect traditional districting principles that have both informed -- that have been both informed by and adopted by many states." You cite the report in the footnote, continue on, and you say: "This guidance from the NCSL
is the basis of any assessment I make as an expert of
individual states or organizations, criteria, and
redistricting principles." Right?
A. Yes.
Q. So this NCSL guidance is the basis for your assessment of the compliance of an electoral map with traditional districting principles?
A. I use it as a guideline.
Q. A guideline to assess compliance with
traditional districting principles?
A. I use it as what's considered to use such as core, retention, and so on, yes.

MR. SAVITZKY: And we can just mark that
next, Exhibit 12. Copy, copy. Okay.
BY MR. SAVITZKY:
Q. And just looking at the list of considerations discussed right on this first page and then the bullets, seems like a similar list of criteria to the one that we just discussed; right?
A. It does.
Q. And so looking at right up on the first page, we see the second paragraph, first sentence: "All states must comply with the federal constitutional requirements related to population and antidiscrimination." Right?

```
                                    Page 77
    A. I see that.
    Q. And then we say -- or we see: "In addition to
population equality, Section 2 of the Voting Rights Act
prohibits plans to intentionally or inadvertently
discriminate on the basis of race which would dilute
that minority vote."
    A. I see that.
    Q. So then you agree those are considerations that
should be guidelines in assessing compliance of a map
with traditional districting principles?
    MR. WALLACE: Objection. Again is asking
for a legal opinion. But he can respond.
    A. My -- my answer is: I use these as guidelines.
    Q. You use them as guidelines in forming any
opinions that you form about the compliance of the plans
offered in this case with traditional districting
principles?
    A. Yes.
    Q. And the NCSL report then says: "Well beyond
that, states are allowed to adopt their own
redistricting criteria or principles for drawing plans;
right?
    A. Yes.
    Q. And then at paragraph 59 of your report -- I
think paragraph 59 of your report is basically a
```

verbatim recitation of the bottom of this first page of
the NCSL report?
A. I believe it -- that's where I found the materials so that's cited in there. Is that the case?
Q. Yeah. It's -- it's certainly cited in the footnote so I'm not trying to play gotcha. I just want to make sure this is basically what, you know, what you have done here in your report you say the traditional redistricting principles that have been adopted by many states, and then you list --
A. Yes.
Q. -- the principles and the descriptions thereof
from the NCSL report?
A. Yes.
Q. And those include compactness?
A. Yes.
Q. And they include contiguity?
A. Yes.
Q. An include preservation of counties in political subdivisions?
A. Yes.
Q. They include preservation of communities of interest?
A. Yes.
Q. And they include maintaining the cores of prior
districts to the extent possible?
A. Yes.
Q. And they include avoiding incumbent pairings?
A. Yes.
Q. And then the NCSL report goes on to indicate that different states have adopted sort of different subsets of these criteria; right?
A. Yes. I believe that's the case.
Q. And we can look at page 10 of this document.

MR. WALLACE: In Exhibit 12?
MR. SAVITZKY: Correct.
MR. WALLACE: Okay.
Q. And we can see Mississippi is included there. And just looking at the NCSL description of the criteria adopted for redistricting of Mississippi, core retention is not one of the criteria that the NCSL report that you relied on identifies as being adopted in Mississippi; right?
A. We're in Exhibit 12; correct?
Q. Yes, page 10.
A. Thank you. And your question was?
Q. My question is: Core retention is not one of the criteria that the NCSL report that you relied on says that Mississippi has adopted for redistricting?
A. What I read here is require compact contiguous,
preserve political subdivision, preserve communities of interest.
Q. And core retention is not one of the criteria that Mississippi has adopted according to the NCSL report that you rely on?
A. That would be correct.
Q. And now looking at paragraph 60 of your report -- and I think it's possible we'll rely on this again, but we can put the NCSL report up for now.

Looking at paragraph 60 of your report, you say: "Mississippi code Section 53101," which also cited in the NCSL report, "expressly identified a few criteria for legislative districts." Right?
A. Yes.
Q. And in your report, you summarized the statute is requiring the districts be compact, contiguous, and preserve political subdivisions; right?
A. Yes.

MR. WALLACE: Object to the form as saying "districts." It actually says "legislature districts." But he may answer.
Q. And just looking at the language that you quote in the block vote right below paragraph 60, would you agree it's a pretty strong emphasis on county lines in that language?

```
                                    Page }8
                    MR. WALLACE: Object to the form. But he
can answer if he can.
    A. It reads: "Districts shall be structured as
far as possible and within constitutional standards
along county lines."
            THE REPORTER: Sir, if you slow down,
please.
    A. It reads: 60B, districts shall be structured
as far as possible and within constitutional standards
along county lines, if county lines are fractured, then
election district lines shall be followed as nearly as
possible."
Q. So this statute that you point to places the emphasis on following county lines?
A. That's how I would read that.
Q. And you also in the last sentence of paragraph 60 which is the top of page 31, you also identify communities of interest, preserving communities of interest as a relevant consideration in drawing districts in Mississippi.
A. Yes.
Q. And again just looking at that statute you block quote there, core retention is not mentioned in Mississippi's statute as one of the districting criteria in Mississippi?
```

rect.
Q. And you would agree that in considering the different traditional districting principles drawing a map, and electoral map drawer is going to have to balance some of these different principles and considerations?

MR. WALLACE: Object to form once again for failure to identify electoral map drawer and asking for legal conclusions. But you may -- and also being waylaid under the court order. But subject to all those objections, he may answer.
A. That would appear to be the case to me.
Q. Sometimes if you're putting a map -- an electoral map together, you're going to have to make tradeoffs between these different principles.
A. You have to make tradeoffs in anything we do in life, correct.
Q. Including these principles, which --
A. Since it's such a generalized idea, I think that you'd have to do that with these principles.
Q. And would you agree that different map drawers could employ different approaches, make different tradeoffs and each draw a map that in the end is consistent with the set of principles we've been talking about?
one. He may answer.
A. In principle, that could happen.
Q. So let's talk about the different criteria that we've been discussing one by one starting with population equality. Why do you think population equality, in your understanding, is an important consideration in drawing an electoral map?

MR. WALLACE: Same objections. He may answer.
A. Well as one example, if you had 500 people in an area, you don't want to put 499 of them in one and 1 person in the other and then equal -- have some sort of equal representation, whatever government form it would be .
Q. Ever heard the expression one person, one vote before?
A. I have.
Q. Population equality implements that principle; is that right?
A. I believe so.
Q. And looking at Table III.D.1 on page 17 of your report -- let me know when you're there?
A. I'm sorry.
Q. You report the population of the existing
supreme court districts, these are the current districts
in Mississippi, right, the VAP. Do you see that?
A. I do. I wouldn't say a report, the population per se. These are subsets of the population in Mississippi.
Q. Well you report the VAP in that first column for each --
A. That's correct.
Q. -- of the three districts, the voting age population. And you say in a footnote, Footnote 14 that your numbers correspond to the numbers in Mr. Cooper's report with respect to the demographics of the districts?
A. I do.
Q. And just generally, you don't anywhere indicate that there's any discrepancy between the numbers that Mr. Cooper reports based on the census and the numbers that you report based on the census?
A. I'd have to look through the full report, but I believe that's the case.
Q. Now, you don't report population deviations for each of these districts; right?
A. In the sense of?
Q. You don't report how different the VAP of each district is from the ideal population size or mean
population size for all the districts?
MR. WALLACE: Objection. Comparing VAP to
mean total population size or some other mean population
size?
Q. The VAP of the district to -- to mean or ideal VAP of the district.

MR. WALLACE: All right. Objection as to -as based on a faulty legal theory. I don't think there's a requirement for equality in VAP. But go ahead, he may answer.
A. In -- so I'm not sure what you're getting at, but in one sense, comparing deviations in the sense of how much a number may vary from a mean across a number of categories or districts, that's what your asking?

MR. SAVITZKY: You know what, I'll strike that. Mr. Wallace makes a good point. BY MR. SAVITZKY:
Q. You don't report population deviations to the districts in terms of total population from the ideal districts size?
A. Well, I'm not sure what the ideal district size is. I mean in that sense, are you talking about a mean or an average taken across a number of units?
Q. If there were equally populated districts, you don't report the deviation of these districts from the
size of what an -- what an equally divided --
A. Thank you for clarifying that. Yeah, I understand. No, I don't.
Q. You would agree that looking at that population deviation is something that map drawers take into account to asses that equal population principle that we've been talking about?

MR. WALLACE: Same objection as before. He may answer.
A. I -- it may depend on the situation.
Q. And we talked about that book that you -- that Mr. Bryan and Mr. Morrison had written called Redistricting, do you recall that?
A. Yes, I do.
Q. Is that another source that you relied on to think about the different principles that mappers consider?
A. I probably have looked through the book, again, when I was looking at this, but I don't recall specifically if I did.
Q. And let's just mark that. So this is Exhibit 13, Redistricting, a Manual for Analysts, Practitioners, Citizens, published as we discussed earlier by Springer.

MR. WALLACE: This is exhibit which?

```
                                    Page }8
                    MR. SAVITZKY: 13.
                        MR. WALLACE: 13.
BY MR. SAVITZKY:
Q. Okay. And I just want to turn to page 47 of this document here. And you let me know when you're ready.
A. I'm there.
Q. And we see on page 47 that the authors list some of the same criteria that we've been talking about; right?
A. I do.
Q. And they say: "Substantial equality of population has come to mean that the population difference between the largest and smallest districts, the total deviation may not exceed 10 percent of the average district population." Do you see that?
A. Yes.
Q. Do you agree with Mr. Morrison and Mr. Bryan that for purposes of drawing an electoral map, substantial quality of population means trying to stay within a plus or minus 5 percent of the ideal of average district size?
MR. WALLACE: Objection as to asking for a legal conclusion and for being outside the scope of the court order. But he may answer.
```

A. I look at this as another guideline.
Q. You agree it's a reasonable approach to implementing the consideration of equal population?
A. Well, it seems to be an approach to doing it, yes.
Q. And by the way, the next one that Mr. Bryan and Mr. Morrison mention is minority representation?
A. I see that.
Q. Okay. So looking back at your Table III.D. 1 on page 17 of your report -- and I understand this is only VAP -- it does look like, at least looking at VAP for now --
A. And where was that again?
Q. This is on page 17 of your report.
A. Thank you.
Q. And just looking at VAP, it looks like district 2, almost 800,000 people district 1, 715,000. So there's a significant difference in total voting age population; right?
A. I read that district 1 as being 7,000 -716,000, not 715,000.
Q. Right. So -- but there's a significant about 80,000 person delta between the size of those two districts in terms of VAP?
A. There's a difference of approximately 80,000
people.
Q. And looking at Mr. Cooper's October report which is Exhibit 9, if we could pull that back out. Here it is. So looking over at Mr. Cooper's October report --
A. Thank you.
Q. -- page 19, Figure 8, let me know when you're there.
A. I'm there.
Q. So Mr. Cooper does report total population in these districts in Figure 8; right?
A. Yes.
Q. And Mr. Cooper also reports the percent deviation from the ideal district size or mean district size or mean district size; right?
A. If he calculated it, that would be the case.
Q. And you don't dispute that looking at

Mr. Cooper's Figure 8, the population deviation under the current scheme of supreme court districts is greater than plus or minus 5 percent?

MR. WALLACE: All right. Same objections as before. Asking for a legal conclusion, not authorized by the court order, and in addition, not relevant to any issue raised in the complaint. But he may answer.
A. The -- there's one deviation that's minus 5.39
percent, and one -- another one that's plus 5.07
percent.
Q. So then the population deviation range for the existing supreme court district plan is greater than plus or minus 5 percent?

MR. WALLACE: Same series of objections. He may answer.
A. Slightly greater than plus or minus 5 percent.
Q. And that's sort of made sense when you consider these districts haven't been changed since 1987?

MR. WALLACE: Same series of objections. He may answer.
A. I'm not equipped to answer other than looking at what the population history is over the same period of time.
Q. And you reviewed Mr. Cooper's October report?
A. Yes.
Q. You reviewed the population statistics that he provided for the illustrative plans?
A. Yes. And again, as I stressed, I haven't looked at those in a long time, so I'm not going to be able to speak off the top of my head. So if we refer to them, it might help refresh my memory.
Q. Okay. Well looking at page 27 of Mr. Cooper's report which provides both a map and those population
statistics for illustrative plan one?
A. And the page number was?
Q. Page 27?
A. Thank you.
Q. And looking there, you wouldn't dispute that Cooper's illustrative plan 1 brings the population deviation down under plus or minus 5 percent; right? MR. WALLACE: Same series of objections. He may answer.
A. In what he labels a table as Figure 11, he has district 1 as a minus 3.14 percent, district 3 as plus 3.02 percent.
Q. So you wouldn't dispute that he brings the population deviation down below plus or minus 5 percent with his illustrative plan 1?
A. Three percent is less than 5 percent.
Q. But the range is down by four points overall?
A. Yes.
Q. And then looking at illustrative plan 2, page 30, you wouldn't dispute that for illustrative plan 2, the population deviation is cut down to less than 3 percent total?

MR. WALLACE: Same series of objections. You may answer.
Q. Plus or mine about point-and-a-half?

BUELL REALTIME REPORTING, LLC

```
Page 92
A. In figure 14, he shows district 1 at minus 1.59 percent, district 2 at 1.05 percent, and district 3 at 0.53 percent.
Q. So would you agree that illustrative plan two significantly reduces account population deviation from the existing plan?
A. I would not use the term "significant" necessarily. It reduces it.
Q. And then looking at the figures for least change plan 1 on page 34 , same questions. Has Mr. Cooper for this plan reduced the population deviation for the supreme court districts below that plus or minus that 5 percent threshold?
MR. WALLACE: Same objections. He may answer.
A. In district 1 , he has minus 4.65 percent, district \(2,1.2\) percent, district three, 3.44 percent.
Q. So the total deviation there is less than plus or minus 5 percent?
A. It is.
Q. And then look at just the next page, we have those figures for lease change plan 2, and again Mr. Cooper has reduced the deviation range below plus or minus 5 percent?
MR. WALLACE: Same objections. He may
```

answer.
A. You're talking about Figure 18?
Q. Correct.
A. I have to ask a question why he's labels tables and figures, but -- that's odd.
Q. Back to you.
A. I'll answer it, just -- hard to look at a table
that's labeled as a figure. Okay. So here he has
district 1 at minus 2.55 percent, district 2 is at 5.70
percent, district 3 is minus . 2 -- 2.51 percent.
Q. So deviation range is less than plus minus 5
percent?
A. Well, in two of them.
Q. The total range -- I would say total range is less than 10 percent?
A. You're talking about going from minus 2.5
percent to 5 percent, yes.
Q. Correct.
A. Yes.
Q. Okay. So with respect to the traditional redistricting principle of population equality, Mr. Cooper's plans all improve on the existing plan? MR. WALLACE: Same series of objections. He may answer.
A. His plans show ranges that generally are below

```
plus or minus 10 percent.
```

Q. Plus or minus 5 percent?
A. Plus or minus 5 percent not exclusively, but generally.
Q. And just in terms of the idea of weighting every vote equally, one person, one vote Mr. Cooper's plans tends to weight every vote more equally than the existing plan?

MR. WALLACE: Same series of objections. He may answer.
A. These are not voters, it's a total population.
Q. They -- that is correct. Mr. Cooper's plans tend to weight the representation of persons in Mississippi more equally than the existing plan?

MR. WALLACE: Same objection and the question is what does "representation" mean. But he may answer if he understands it.
A. I don't understand it.
Q. Mr. Cooper's plans adhere more closely to the ideal of every person having an equal share of representation?

MR. WALLACE: Objection. And he may answer.
A. Mr. Cooper's plan shows the -- as you're discussing, the ranges in terms of deviations from ideals which I think are calculated by the means. Is
that correct?
Q. As I understand it.
A. Yeah. So if he's calculating the mean, he's showing less deviation. Now, let me ask you a question. Would it be better to use the mean or the median?
Q. I'm not going to answer your question while we're on the record.
A. Yes. So there's -- and part of the issue about using means is, what's the different between a mean and a median? What does one of them do that the other one doesn't? It's a question -- it's not fair to ask you the question, I understand. But it's a question that you can see that I'm asking in general. Why use a mean? Means are subject to outliers. If you've got outliers in certain districts, it's going to weight the mean this way or the other way. So one question you could ask of all this entire analysis is: Why not use the mean. That's my point.
Q. Do you know whether courts in evaluating compliance with the principle of population equality use mean or median or what metric they use?
A. I do not, not. I can tell you as a demographer, in certain cases I would use a median much more than I'd use a mean. It depends on what's going on with outliers and observations and what the distribution
looks like. If you have a skewed distribution, I would -- and if you want to say this represents kind of the average, I would select a median over a mean, probably.
Q. I'm tempted to ask you one question because it is interesting.
A. It is. Please ask.
Q. Well, I just -- I mean on the question of one person, one vote which is, as we discussed, the ideal that's -- that is implemented, would a median not -would the use of a median to determine equal population among districts not lead to situations where districts were unequally populated?

MR. WALLACE: He opened this, so I'll let him answer that.
A. It's possible. What I would tend to look at and with any kind of averages like this is, I would look at what the distributions look like for them and then maybe even display both of them. They might give you supporting answers, they might give you different answers.
Q. But relying on the mean allows you to ensure that the actual population of each district is as equal as possible?
A. Again, that's one way to measure what averages
are. In not every case does it represent, you know, where the bulk of the people are. If you've got something that's an extreme outlier -- income is a classic -- a whole bunch of people have low incomes, one person has a real high income, what does it do to the mean? It drives it way up. So if you're saying here's the mean income but 85 percent of the people are below that mean, does that really characterize the whole set of people?

And that's what gets back to my question about maybe it's better to use the median in some of these cases. So that's why I have a difficult time kind of answering some of your questions that it's -- are they -- is more equal to do this, because it would, I think, would require some more research, and that research would involve looking at different types of averages. And whether or not courts use it, I don't know the answer to that.
Q. So you think it would be appropriate to use the median population of each district to assess whether population equality is --
A. I would look at it as a -- possibly along means and different types of means. There might be a need for a harmonic mean. I don't know the answers in advance. I look at is as a research question. Do you follow me?

I'm not saying one's better than the other, but it may be the case -- again, depending on the distributions, if you have a distribution where people are really clustered around one point, a mean is probably going to be good, and if symmetrical, the distribution. If you have a skewed distribution, it's not symmetrical, then it may be the means is better. But it's a case by case situation where you have to evaluate what the data are showing you.
Q. So let's move on to the next districting principle. Minority vote dilution, you would agree consistent with the sources you relied on that we've discussed already that protecting against minority vote dilution is another consideration that an electoral map drawer has to think about?

MR. WALLACE: Objection to vagueness, objection as to asking for a legal conclusion, objection as to being outside the scope of the court order. But he may answer.
A. I'm not sure what a given map drawer would do. But I think vote dilution would be a consideration and something to do with redistricting.
Q. For example, the congressional research service report that you cite said protecting racial language minorities from vote dilution is a consideration to be
taken into account?
A. Yes.
Q. And you would agree that the existing Supreme Court district 1 is 49.3 percent black voting age population?
A. I believe that's the case. Point me to where it's at in here again since I haven't reviewed this report in a long time.
Q. Well, we can look at Mr. Cooper's report on page 17. I believe those numbers are accurate. Page 16, excuse me.
A. Thank you.
Q. Statistics of the current plan.
A. I'm here. So the question was?
Q. The question was: You'd agree that the black voting age population of the current district 1 is 49.3 percent, 49.29?
A. In 2020 it's 49.29 in district 1.
Q. Uh-huh. And you would agree -- and we can look at those numbers -- for example, on page 27 of Mr. Cooper's report, we start talking about the numbers to the illustrative plans. You would agree that Mr. Cooper's plans increase the black voting age population of district 1?
A. Are you talking about Figure 11?
Q. Figure 11, Figure 13, the figures we talked about.
A. In --
Q. Mr. Cooper's plans all increase the black voting age population of district 1?
A. In figure 7, it shows district 1 in 2020 as having 49.29 percent; in Figure 11, illustrative plan 1, 2020 census, it shows district 1 with a percent 18 plus black, which I'm assuming is the voting age population, just stated a different way, is 55.31 percent.
Q. So Mr. Cooper's illustrative plan 1 increases the black voting age population of the district by just 6 points?
A. That's correct.
Q. And looking at Figure 14 on page 30 ,
illustrative plan 2 increases the black voting age
population of the district by a little under 5 points?
A. You're asking about district 2 now?
Q. District 1. Excuse me.
A. In district, Figure 14 shows it as being 54.19 percent.
Q. All right. So 4.9 percent increase in black voting age population from 49.29; right?
A. It's an increase from that, yes.
Q. A 4.9 percent increase?
A. Approximately, yes.
Q. So we talked earlier about racially polarized voting. Assuming the existence of cohesive racially polarized voting patterns, increasing the black voting age population at district by 5 or 6 points is going to give black voters in that district a better chance of electing their preferred candidate; right?

MR. WALLACE: Objection to the form, objection as to being outside the scope of any report, and objection as to being outside the scope of the court's order. But he may answer if he can.
A. Could you give me more hypotheticals on it? Would this be assuming that all the race groups vote as a block, for example?
Q. Correct. Assuming block voting by black voters, block voting by white voters for different candidate, if you increase the black voting age population by 5 or 6 points as Mr. Cooper does, black voters are going to have a better chance at electing their preferred candidates?

MR. WALLACE: Same objections. He may
answer.
A. So you're -- all else equal?
Q. Yeah.
A. Everything else equal, that's how you're asking

BUELL REALTIME REPORTING, LLC 206.287.9066 | 800.846.6989
the question. In block voting, etcetera, etcetera, would appear that that would be the case.
Q. Now let's talk about contiguity. You don't dispute that all the illustrative plans outlined in Mr. Cooper's reports are contiguous, do you?

MR. WALLACE: Same set of objections. He may answer.
A. I'd have to go back and look at what he did since I haven't reviewed this report and looked at it for months until today.
Q. What is "contiguity" in your understanding?
A. It would -- meaning that you're trying to retain some kind of existence over time as you go through time.
Q. If I --
A. The characteristics would remain the same, there's continuity. It's not an abrupt change.

MR. WALLACE: I think he asked about the contiguity not continuity.
Q. Correct.
A. In that sense, it means geographic location of people separated from one another.
Q. Correct.
A. Or units separated from one another.
Q. Correct. And in terms of geographic
contiguity, all the districts in all Mr. Cooper's plans
are contiguous; right?
A. I'd have to look, but I believe that's the case. What you're asking is, there's not a county, say, in northeast Mississippi that's isolated and part of a
district 1, for example.
Q. Yeah. He didn't, like, just show Chickasaw County in district 1 or something?
A. That's correct.
Q. Okay. Same as the enacted plan, also contiguous?
A. I believe that's the case, yeah.
Q. So let's talk about compactness. Paragraph 72 of your report, page 38. If you can turn there, that would be advisable. You say: "Compactness is a tool that can be used in redistricting to compare the relative compactness of existing districts against new districts to determine whether the new districts entail
minimal or large-scale changes from the existing
districts."
A. And that's paragraph 72?
Q. Yes.
A. Thank you.
Q. Starting with the words "compactness is a tool."

```
                                    Page 104
A. I'm there.
Q. You say: "Compactness is tool a that can be used in redistricting to compare the relative compactness of existing districts against new districts to determine whether the new districts entail minimum or large-scale changes from the existing districts."
A. Corrects.
Q. What is the basis for that characterization of what compactness is?
MR. WALLACE: Same objection as being outside the scope of the court's order, but he may answer.
A. In the sense of the legal requirements, what compactness is, or some other kind of definition?
Q. I just -- where did you get this characterization of compactness that you offer up here?
A. Are you asking me -- I'd have to go back and look at my notes as to where I got it. It's not on the top of my head. As I said, I haven't looked at this report in months.
Q. What does it mean to say that "compactness is a tool that can be used in redistricting to compare the relevant compactness of districts"?
A. In that sense, it means how spread out are they.
```

Q. When you say "compactness is a tool," are you referring to the different compactness metrics like Reock and Polsby-Popper and Schwartzberg?
A. That's one of the ways of looking at it, what the summary measures are that it might be.
Q. Would you agree that compactness is a term that refers to whether a district is regularly shaped?

MR. WALLACE: Same objection plus legal conclusion, he may answer.
A. Yes.
Q. And looking at a passage from the CRS report that's Exhibit 11 -- do we still have that around here? It should be under -- oh, right here. There we go.

Looking back at Exhibit 11, page 11, let me know when you're there.
A. I am.
Q. Okay. That report from the CRS that you relied upon says: "From the geographic perspective, compactness is usually defined by reference shapes, e.g. most compact shape is a circle, followed by a square, a rectangle or references to geographic measures such as geographic dispersion perimeter measures or population measures." Do you agree with that?
A. Yes. It's consistent with what I answered before, how distributed our points are.
Q. And as you understand it, are there different ways that someone evaluating a map can know whether a district is sufficiently compact?
A. You named some of the measures.

MR. WALLACE: Same objections as before. And person's evaluating a map is completely vague. If you're talking about a judge, I object to asking for a legal conclusion. You may answer.
A. There are different measure for summarizing what compactness is, as you listed before.
Q. And there's no one particular method that's the best method for assessing compactness?
A. That was my understanding looking at the different measures, they each have their own strengths and weaknesses. So in that sense, you're certain to look at things like averages.
Q. So, for example, in paragraph 73, you say: "There's no professional consensus on the right measure and every widely used measure works differently?
A. Correct.
Q. So there's no one definitive measure of compactness?
A. From the standpoint from what I could tell looking at the literature, yes, that appears to be the case.
Q. And Mr. Cooper in his responsive report on page 8 -- and we can look at it or not, but I'll read you the quote and you can --
A. Just read it, sure.
Q. But he says: "Redistricting experts and map drawers commonly employ an eyeball test to assess whether a plan is reasonably compact." Do you agree with Mr. Cooper's statement there?
A. I don't know what map drawers do commonly.
Q. Because you're not a map drawer?
A. Or -- that's correct.
Q. You don't evaluate maps?
A. Well, I don't know -- I don't know if people who evaluate maps use an eyeball test or not routinely. I don't know the answer to that.
Q. You're not familiar with the eye test or the eyeball test for measure compactness?
A. What would the eyeball test be?
Q. The eye test?
A. You're just looking at somebody's -- how much does it vary from being a circle, for example?
Q. Yeah. You're just looking with your eye to assess the visual compactness of a district.
A. I can understand people doing that, use a lot of visual assessments in all sorts of things, but
whether that goes to the point where you're actually
going to say or use that in something or whether or not
you're going to use a metric, I don't know the answer to
that.
Q. And let's just pull up what's been marked as Exhibit 13. This is that text that Mr. Bryan and Mr. Morrison wrote. And do you still have that, Exhibit 13?
A. Yeah, somewhere.

MR. WALLACE: I'll give him mine if you can give me the page number.

MR. SAVITZKY: Page 48.
MR. WALLACE: Okay.
MR. SAVITZKY: And you tell me when you're
there.
THE WITNESS: Thank you.
BY MR. SAVITZKY:
Q. Do you see there's a paragraph about compactness there?
A. I do.
Q. And the last sentence says: "No one method is best and the colloquial eyeball test of a district's appearance and function may be germane."
A. I see that.
Q. So having reviewed the text written by

Mr. Morrison and Mr. Bryan, would you agree that the eyeball test is one measure that is used to asses the compactness of a district?

MR. WALLACE: Same objection as asking for a legal conclusion and being outside the scope of the order. The he may answer.
A. And again, what I would stress is that they wrote that as one possibility, but whether or not I agree with the eyeball test being germane is not necessarily my opinion. I tend to look more at metrics than eyeball test, but I understand there's a need for things like that when you're -- when you don't have good measures or you're initially looking at a project and you need something qualitative to start off with. So it goes back to my answer being I'm not sure if it's germane or useful or not or whether or not map drawers use it all the time.
Q. Okay. Is it fair to say that a mapper who has drawn many plans, a person who draws electoral maps and has drawn many plans and looked at many districts is going to sort of develop a better sense of whether a district is compact visually?

MR. WALLACE: Objection to the vagueness and in addition to not knowing who a map drawer is, not knowing what "better" is.
A. I can't answer that question. I don't know.
Q. Is it fair to say that someone who reviews more electoral districts is going to develop a sense of whether a district is more or less visually compact?

MR. WALLACE: Same objection. He may answer.
A. And my answer again is I don't know.
Q. On page 38, Footnote 29 of your report, you cite a lecture by Gary King called "How to Measure Legislative District Compactness If You Only Know It When You See It." Is that something that you rely on?
A. And that's footnote?
Q. 29.

MR. WALLACE: 29 on page 38.
MR. SAVITZKY: Yep.
A. Yes, I recall. Let me look at what I actually put in the text for that. Specifically, that says: "In contrast, academics have shown that compactness has multiple dimensions and have generally many conflicting measures."
Q. And let's just mark as Exhibit 14 this is the web page here. And looking at the one, two, three -third sentence -- the second sentence too. Well actually, take a look at it and then let me try to ask a summary question. Let me know when you've read the
first couple sentences.
A. Okay.
Q. So basically what they are saying is that academics have developed many very complex measurements of compactness but courts and other observers see compactness as a sort of simple visual
you-know-it-when-you-see-it-type test. And they say both of those are right, there are many complex and multidimensional tests of compactness, but there is also what they say is a particular unit dimensional ordering that represents a common understanding of compactness in the law across people. Am I accurately summarizing what King is saying here?
A. And then he goes on to say that he's developing a statistic model that predicts with high accuracy what that is, yes.
Q. Based on this unidimensional sort of common understanding that he's discerned?
A. Yes.
Q. And I just -- it's actually -- we're not going to spend too much more time on it, but it totally's fascinating. Did you look to the slides for the lecture that King did?
A. I'd have to -- I don't recall. Like I said, this is -- it's so long ago I did the report, I can't
remember what I looked at now or not.
Q. So I'm just going to mark the lecture slides as Exhibit 15 here. And again, I don't want to spend a ton if time on it because this is a long, long lecture, but if you can -- I'll point you to the page. At 424, there is a series of illustrating --
A. Yes.
Q. -- this unidimensional --
A. Uh-huh.
Q. -- you know it when you see it --
A. Uh-huh.
Q. -- metric; right?

MR. WALLACE: Page 4 --
MR. SAVITZKY: It's marked 424 at the
bottom.

MR. WALLACE: 4, slash, 24?
MR. SAVITZKY: Correct.
MR. WALLACE: Okay. I was looking for 424.
Okay.
Q. So you go down and each one is a click, you click, click, click through --
A. Yeah.
Q. -- we see as we move through, once we see all four districts there, this unidimensional ordering. All under the header: "A simple single compactness
dimension that you know when you see." Right? And as we go on and see the text below, it says dimension is intuitive; right?
A. That's what he states.
Q. Okay. And looking at this, does this give you a sense of what the eyeball test is?

MR. WALLACE: Well objection to the extent
the eyeball test is a legal test in which he has no expertise. But if he has an opinion on this report subject to the fact that it's contrary to the court's or order, he may answer.
Q. And setting aside from whatever it might mean as a legal matter, just --
A. I have an opinion.
Q. Yeah, go ahead.
A. So if you look at the four figures on one of these and since they all say 4/24, I'll have to point this out to you.
Q. Yes, I see it.
A. Okay. Suppose that the eyeball test I'm looking at the first figure on the left, to the second figure to the right of it, they're somewhere dissimilar. If I look at the figure on the left to the far figure on the far right, they're very dissimilar. So these are kind of simple examples of what could take place. Is
figure -- the third one to the right really different than the fourth one to the right? Is it more or less compact? Just eyeballing, it might be difficult to say. And again, these are examples that he put up to illustrate the point he's trying to make.

So in some cases, it may be that the eyeball test doesn't work, and I could point to each of these examples right here. Is the figure, the third most right one really more compact than the fourth most right one? You know, there would be questions from people about that. And as you get closer and closer, instead of having these discreet illustrations, if you had more of a continuous model and you're getting closer and closer to the one on the far right, which one is more or less compact? It would be hard to answer, wouldn't it?
Q. So looking at -- so would you agree if you're visually with your eyes, you can make gross distinctions but perhaps not fine distinctions?
A. Or it may be the case that if you've got something as extreme as what's on the far left here as he examples and what's on the far right, then you can say yes, it looks like the one on the far left is very much more compact than the other ones. And there's going to other cases where I think the eyeball test is going to be difficult to measure that.
Q. All right. And Mr. Cooper states -- now we're looking at -- going back to page 8 of his responsive report. This one we can definitely -- if you want to keep a copy for later, it is a quite fascinating lecture, but --
A. Thank you.
Q. Mr. Cooper states at page 8 of his rebuttal report which I believe is Exhibit 10, which you should have it there, he says --
A. I've got 9. Bear with me.
Q. Yes.
A. Thank you. And where on Exhibit 10 are we going?
Q. Page 8.
A. Thank you.
Q. And he says: "Using the eyeball test, the illustrative plans and the least changed plans, I have drawn are reasonably compact." And you are not claiming to dispute that statement, are you?

MR. WALLACE: Objection as to being outside the bounds of the court's order, but he may answer.
A. And I was not asked to review this after he wrote this report, so I can't give you an answer whether or not I dispute at this point or -- or not at this point. I have to go back and reanalyze what he did.
Q. I mean, you testified earlier that you did review Mr. Cooper's rebuttal report.
A. Yes, but I was not asked to actually do something with it, to actually analyze it. Do you follow me? So I looked at it, I read it, but I was not tasked with or asked to go on and say something back in regard to it.
Q. And as you sit here now, you're not disputing that statement?
A. I can neither dispute or not dispute it at this point. Again, it's a research question, and I wasn't asked to do that.
Q. Well, I'm asking you as you sit here now, do you dispute the statement Mr. Cooper makes that under the eyeball test, the plans he drew are reasonably compact?
A. And again, I stress that since I haven't looked at what he's arguing here with sufficient time ahead of it to know, I can't answer that question directly.
Q. Well, given that you're not saying you do dispute it, can I take that to mean that you're not currently disputing it?
A. I -- I'm not saying that. I don't have an opinion at this time on it. Would that be better?
Q. That'll do.
A. Okay.
Q. So getting back to the compactness analysis that you did, we'll talk more about your report. In your report, you analyze compactness cores of the illustrative plan supreme court districts that Mr. Cooper drew, and you concluded that they are less compact than the existing plan. Is that generally --
A. I believe that's the case, yes.
Q. And you mentioned earlier this is -- Bryan GeoDemographics did this analysis new?
A. They did at my request, computed the scores, put data together, that's correct.
Q. And as far as you know, they used the ArcGIS or ArcView program?
A. I'm pretty sure that's what Tom Bryan used.
Q. Were you able to verify the results that they provided to you?
A. In what manner?
Q. I mean did you independently verify the results that they gave you with respect to the compactness scores of the district?
A. You mean go ask somebody else who does GIS to see if that's the case?
Q. Sure, or do it yourself.
A. I'm not capable of doing it myself in that
regard since I didn't run GIS programs. And no, I didn't go ask anybody else to go review it.
Q. And just looking at pages 40 to 43, we have these various tables. Did you design these tables in this layout here or did Bryan?
A. I asked him to put these together and then -and give me information on them in regard to all these measures of doing that, and that's what he did.
Q. So Bryan GeoDemographics put these Excel tables together?
A. At my request, yes.
Q. And after reviewing these various compactness scores, you didn't conclude that the illustrative plans are insufficiently compact in terms of adhering to traditional districting principles, did you?

MR. WALLACE: Objection to asking for a legal conclusion on what's insufficient. But he may answer.
A. That's correct. Insufficient is not something I can speak to. They're just different from what the existing plans were.
Q. You're not offering an expert opinion on whether the illustrative plans compactness scores are insufficient to meet traditional districting principles?

MR. WALLACE: Objection on -- objection to
the extent traditional districting principles may be
incorporated into the law, and I'm not sure how much
that is, but I think you're still asking him for a legal
opinion. But he may answer.
A. Yeah, and insufficient is -- they're -- the "scores" are not as good on average as the score of the existing plan is my recollection on these in looking at it. Whether or not that means insufficiency, I don't know.
Q. You didn't offer -- you're not offering any expert opinion that the compactness scores for the illustrative plans mean that the districts plans are not compact?

MR. WALLACE: Objection to vagueness, but he may answer.
A. And again my answer is, they're -- the scores in the sense of compactness are not as compact as what's in the existing plan.
Q. You didn't consider whether the compactness scores of the illustrative plans are within the normal or acceptable range of compactness for an electoral districting map?

MR. WALLACE: Objection to vagueness as to normal and acceptable, but he may answer.
A. I did not.

MR. WALLACE: 16, you said?
MR. SAVITZKY: Yes.
MR. WALLACE: Okay.
BY MR. SAVITZKY:
Q. So in looking at page 8 of Exhibit 16, we can see that what the authors of this report did in their Table 5 is, they looked at the mean compactness scores for congressional districts in every state. This is following the 2010 redistricting cycle.
A. What are the page numbers?
Q. They are in very light gray at the bottom of the page.
A. Oh, wow.

MR. WALLACE: There's something there.
A. I see it okay. And you're asking about page 8?
Q. Yeah.
A. The table, not the Figure 5.
Q. Correct. Table 5, exactly.
A. Table 5.

```
                    Page 121
Q. Exactly. So looking at this table, we can see in that the last round of congressional districting, the
mean Polsby-Popper score for congressional districts in
Mississippi was 23.33; is that right?
A. I'm trying to go down and find Mississippi. I
see it. Thank you. So they're ordered by rank of
score. Okay. 23.33.
    Q. Is that right?
    A. Yes.
    Q. And the mean Schwartzberg score is 4758, .4758?
    A. 47.58, yes.
    Q. And the mean Convex Hull score is 76.84?
    A. Yes.
    Q. And I just want to note for the record that
these are presented as whole numbers rather than
fractions, but I -- usually, I see them presented as
fractions between 0 and 1 or decimals between 0 and 1,
but I think we understand that we're referring to the
same range of between 0 and 1 or in this case between 0
and 100; is that right?
    A. I'd have to look to know that that's the case,
but I believe you, you have no reason to tell me
otherwise; right?
    Q. Yeah. And then just looking at the Reock
score, we have mean Reock score of 38 --
```

Q. -- 08? Right. So you didn't look at some type of benchmark like this to assess the compactness scores for Mr. Cooper's illustrative districts?
A. I did not.
Q. And just turning back to what again I think has been marked as Exhibit 10, Mr. Cooper's responsive -- or rebuttal report, that's right, Exhibit 10. Or actually, we can look at your report at page 40. You list the scores for illustrative district 1 right here or for all of it, illustrative --

MR. WALLACE: Hang on. What page in --
MR. SAVITZKY: Page 40 of your January
report. And do keep what we marked as Exhibit 16 handy because I want to just do a little quick head-to-head look.

BY MR. SAVITZKY:
Q. So looking at the scores, what I want to do is compare the mean compactness scores for Cooper's illustrative district 1 and mean compactness scores for the Mississippi congressional districts that we were looking at on page 8 of Exhibit 16.
A. So we're comparing the supreme court district scores to the congressional district scores.
Q. Yes. Mean, mean. Exactly.

MR. WALLACE: Okay.

BY MR. SAVITZKY:
Q. So now looking at that, just looking at the scores, the mean compactness scores that you report on page 40 in Table III F.7.a and comparing those to the mean compactness scores for this Mississippi congressional district, we see Polsby-Popper score of Cooper's illustrative plan 1 as .27 mean, so that's a little higher than .23?

MR. WALLACE: Objection to relevance and objection as being outside the scope of the court's order. But he may answer if he can.
Q. You would agree that that Polsby-Popper scores are pretty similar?
A. Given that they -- for supreme court districts compared to congressional districts.
Q. Yeah.
A. They look fairly similar.
Q. And the Convex Hull scores, also very similar, Cooper's plan is just a little bit higher but basically identical, . 78 versus .6784?

MR. WALLACE: Same objections. He may answer.
A. I see the mean score Convex Hull here for Mississippi as being in the congressional district, 76.84 .


```
                                    Page 126
                            Q. Okay. And looking at -- now we'll look at
Cooper's responsive report page 10, Figure 1.
Mr. Cooper does a compactness analysis, looks head --
the head-to-head comparison between the existing plan
and the illustrative plan 1. Do you see that in
Figure 1?
    A. I do.
    Q. And with respect to the mean compactness, you
would agree that existing supreme court plan and
illustrative plan 1 are .01 apart on the Polsby-Popper
score; right?
    A. Yes.
    Q. And they're . O1 apart on Convex Hull; right?
    A. Yes.
    Q. Cooper's a little higher on Convex Hull,
existing is a little higher on Polsby-Popper?
    A. Yes.
    Q. You would agree that a . 1 difference is
basically identical?
    A. It depends on the contexts.
    Q. Okay. You would agree they're substantially
similar?
    A. Again, depends on the context. You know, if
you're looking at this from -- if you're doing a sample,
really large samples may have a very small difference in
```

some measure you're looking at like income, and $\$ 10$ is enough to say it's different. So I'm saying it depends on the context.
Q. In the context of evaluating compactness scores like Polsby-Popper and Convex Hull, you would agree that a difference of . 01 is negligible?
A. In general, that's what I agree with, yes. So in that context, yes.
Q. Great. And on the Reock -- oh, sorry. And on the Schwartzberg metric, the plans are exactly identical?
A. Yes.
Q. So the two plans are either exactly or essentially the same on three different metrics of compactness?
A. Yes.
Q. And then with respect to the Reock score, the mean Reock score for the existing plan is better at . 51 versus . 36 ?
A. It's higher, yes.
Q. Higher. Excuse me. But you don't conclude that Reock is a better or more appropriate metric than any of these other metrics, do you?
A. One of the ways to look at them, because of all these issues about it is to start looking at doing some
of an average of all the measures too since they all
have their strengths and weaknesses.
Q. Are you aware of any instance in which the different compactness metrics have been and or blended together?
A. Some of the work I've done, yes.
Q. In the work that you've done, you averaged or blended together compactness metrics like Polsby-Popper, Reock, and Convex Hull?
A. Or taking averages of them. Is that in this report that I did? I'm just asking? Since I haven't looked at it in a long time, I just asking if I did that.
Q. I mean, I'll represent to you that I don't recall your doing that in your report.
A. Okay. Then I may not have done it in is this report.
Q. Are you aware of any other person analyzing compactness of district maps who's tried to blend or average together the different metrics?
A. Yeah, I think Tom Bryan has.
Q. When did he do that?
A. I don't recall, but I think he has.
Q. Okay. And looking at Figure 2 on the same page of Mr. Cooper's report, he conducts a head-to-head
comparison between existing district 1 and illustrative plan district 1 , right, so now he's looking at the mean scores but at the compactness score for district -district 1 in particular?
A. Yes.
Q. And identical Polsby-Popper scores for both districts; right?
A. Yes.
Q. And on two of the remaining metrics, Convex Hull and original Schwartzberg, the illustrative plan district 1 is more compact than existing district 1; right?
A. It has higher scores in the Convex Hull and lower score in the original Schwartzberg.
Q. Has a lower score. Okay. Kind of got -- so just stepping back, fair to say that on some of the metrics, Mr. Cooper's illustrative plan one performs better and on some of the metrics, the existing plan performs better?
A. In the sense of -MR. WALLACE: Objections -- same objections. He may answer.
A. Yes.
Q. So let's talk about political subdivision splits. You agree that all of Mr. Cooper's illustrative
plans are drawn entirely on whole counties?
A. I'd have to refresh my memory and look at his report, but I believe that was the case.
Q. You agree that necessarily because there are no county boundaries split, the number of county splits is zero?
A. Correct.
Q. And you agree the number of precinct or election districts splits also necessarily zero?
A. Since they're all within the same county, yes.
Q. And so in terms of that metric of county and precinct splits, plans are identical, existing plan, Cooper's illustrative plans, all of them zero county splits, zero precinct splits; right?
A. Correct.
Q. Let's talk about communities of interest. What's your understanding of a community of interest?

MR. WALLACE: Objection to the extent you're asking for a legal opinion, but he may answer the question. Oh, and it's out of the court order, but everything has been so far, so he may answer that.
A. So there's a definition. Do I have it in the report somewhere of -- of that community of interest? Is it in the report.
Q. I'm not sure as I sit here whether you provide
a comprehensive definition in your report but --
A. And I don't recall if I did or didn't since I haven't looked at it in a long time.
Q. I mean, I ask you as someone who of offering analysis of --
A. So in general if you're asking me off the top of head what it means, "community of interest," it represents a lot of shared social and other characteristics, economic characteristics.
Q. You would agree it, basically, is a community, a group of people that share some common resource or interest or priority?
A. Or social -- social, economic, and other cultural characteristics, yes.
Q. Got it. You would agree there are many ways to define a community of interest?
A. There could be, yes.
Q. So like a city or town could be a community of interest?
A. I guess it depends on the composition that's their -- what criteria someone's specifically looking at.
Q. It could be a region or a group with a shared history or culture?
A. It could be.
Q. Could be a region or a group of people with shared policy interests or shared needs?
A. It could be. But I'd look at all those as possible dimensions of something that could be even broader if you're looking at community of interest.
Q. So -- and is it fair to say when we talk about communities of interest in the districting context, the idea is that where reasonable, you should try to group people with common interests in the same district? MR. WALLACE: Objection as seeking a legal opinion, but he may answer.
A. That's my picture of it.
Q. And I'll represent to you that on page 48 of that redistricting book which has been marked as Exhibit 13, Morrison and Bryan say: "Respecting existing communities of interest is often a proxy for ensuring that people of common interests are grouped within the same district." Does that -- do you agree with that statement?
A. Yes.
Q. Now, you don't analyze communities of interest anywhere in your January report; right?
A. I don't believe so. I'd have to go back and look in the sense of what the cluster analysis I did was.
Q. Setting aside the cluster analysis, which we'll talk about, you don't do any analysis that's relevant to communities of interest?
A. Not that I recall.
Q. And you don't dispute that Mr. Cooper considered Mississippi planning and development district as a community of interest and evaluated that in his report?
A. I believe that he did.
Q. And you don't dispute that a map drawer could consider Mississippi's planning and development district as a community of interest?

MR. WALLACE: Same objection as to meaning of "map drawer." He may answer.
A. It's possible.
Q. As I think you point out in the beginning of your report, Mississippi Supreme Court districts are used for transportation, public service commission, they're used for a number of appointed boards; right?
A. They are.
Q. So whether the interest of Mississippi's various planning and development districts are fractured or not by the designing of a plan could be important for that reason as well?

MR. WALLACE: Objection to the vagueness of
the importance. He may answer.
A. It would be.
Q. So in looking at -- and now we're back on

Mr. Cooper's October report, paragraph 35. This is
Exhibit 9, I believe, yeah.
MR. WALLACE: Paragraph what?
MR. SAVITZKY: 35.
MR. WALLACE: Okay.
MR. SAVITZKY: And I'll give you the page if that would be helpful. It is page 18. And let me know when you're there. I'll just clear this out.

THE WITNESS: Thank you. I'm there.
BY MR. SAVITZKY:
Q. And we can see on paragraph 35, Mr. Cooper says: "I show in the Figure 6 map" -- and if you want to look at it, it's on me preceding page -- "the 1987 plan splits five of the ten regional planning districts." And then he lists them. You don't dispute that, do you?
A. Let's see. Let me go back here again. So you're talking about Figure 6?
Q. Yeah. Figure 6 is the existing plan overlaid on those planning districts. Mr. Cooper says five of the ten districts -- planning districts are split in the existing plan. You don't dispute that, do you?

No
Q. And he says: "Supreme court district 1 contributes to each one of those splits, South Delta is the only planning district entirely within supreme court district 1." You don't dispute that, do you?
A. No.
Q. And now turning to paragraph 51 of Mr . Cooper's report, that would be on page 26 , still on exhibit 9 . You don't dispute Mr. Cooper's statements in
paragraph 51 that: "Illustrative plan 1 splits two planning districts, North Delta and Central, rather than five as in the 1987 plan?
A. I believe that's correct.
Q. And looking ahead to paragraph 56, you -- on page 31, you don't dispute Mr. Cooper's statement the illustrative plan 2 splits three planning districts rather than five as in the enacted plan?
A. That's correct.
Q. Are you familiar with the Mississippi Delta?
A. The Delta counties, the area?
Q. Or the area that's the region in Mississippi

Delta?
A. Yes, I am.
Q. Is it fair to say based on your knowledge of Mississippi that the Delta is a culturally,
historically, demographically, socioeconomically
distinct region?

MR. WALLACE: Objection to vagueness and asking for a legal conclusion and being out of time under the court's order, but he may answer.
A. It certainly shares characteristics that are common internally that are not common elsewhere in the state of Mississippi.
Q. And as someone who studied the demographics of Mississippi, you would agree the Delta is culturally, historically, demographically distinct?
A. Of other places in Mississippi?
Q. Yes.
A. Yes.
Q. And I would think it's fair to say that the Mississippi Delta is one of the most culturally, historically, demographically distinct geographic regions in the entire South if not the nation. Would you agree with a that?

MR. WALLACE: Same objection, but he may answer.
A. People in New Orleans might disagree.
Q. Well, one of the most?
A. Yeah.
Q. Would you agree with that?

MR. WALLACE: Objection as to meaning of distinct in addition to previous objections, but he may answer if he can.
A. It may or may not. There's certain sections of the state that are not in the Delta that may share some of those characteristics and needs in common with Delta counties. So again, I would say it's a research question, not something I can just answer off the top of my head from a professional opinion. As a personal opinion, I would say yes, in general I think there are issues like that that are common to a lot of Delta counties, but they may be common with counties elsewhere in Mississippi too.
Q. But the concentration of those needs in the Delta is somewhat unique?
A. Again, it may be. But part of the issue you're talking about is rural. Are rural areas of really

Northeast Missouri really different in the Delta in terms of some of the needs? That's -- again, I don't know the answer to that off the top of my head of the -looking at rural areas that are high in poverty that may or may not have the same racial distributions, that may or may not have the same access to resources. So I would suspect while there definitely are distinct areas of interest in the Delta counties, I think they may share some things with the counties elsewhere in the State of Mississippi too.
Q. You'd agree that the Mississippi Delta could be considered a community of interest?
A. It could be. It depends on what kind of criteria you're looking at.
Q. Would you consider it a community of interest?
A. Again, it depends on what someone was asking me. From the ecological standpoint? From the cultural standpoint? From the music standpoint?
Q. Sure.
A. Yeah. It could vary. You know, there are places on the Delta that would share a lot of common history in terms of plantation stuff with the counties over on the Alabama border, for example, and they're not contiguous, they're different. So if you look at the counties in areas of Northeast Mississippi where they
sing not Delta Blues but Hill Blues. You know, they're different styles of music, so --
Q. One aspect of the culturally distinct nature of the Delta?
A. That's one, yeah.
Q. And the existing supreme court plan fractures the Delta?

MR. WALLACE: Objection to the meaning of the word "fractures," but he may answer.
A. I -- it's -- whether or not it fractures the Delta, I can't say.
Q. But we can just look briefly at page 16 of Mr. Cooper's report right there --
A. Sure.
Q. -- and just looking at the map, the Mississippi Delta is divided under the existing supreme court districting plan; is that fair to say?
A. Does page 16 show the supreme court districts in colors, is that what you're saying?
Q. Correct.
A. And under the existing supreme court plan, you're asking me how is it fractured?
Q. I'm asking you if the existing plan divides the Delta.
A. Well, in what sense is divide the Delta? Are
you --
Q. Divides the Delta -- excuse me. The plan divides the Delta between multiple districts?
A. So parts of the North Delta that are in here?

In the sense of these are, again, the planning districts that are named in this map? So from a planning district standpoint, the North Delta district is in a separate supreme court district than is the South Delta district.
Q. And just setting aside the planning districts for the moment, are you generally aware of which counties are in the Mississippi Delta, the region, the Mississippi Delta, as you understand it?
A. I do. You're talking about from Tunica down towards Vicksburg generally?
Q. And thinking about that region, that set of counties from Tunica down to Vicksburg, the existing supreme court plan divides that region between different supreme court districts; right?
A. If you're looking from the standpoint of Delta counties, yes.
Q. And we can just turn briefly to Mr. Cooper's illustrative plan 1 on page 27. And just looking at that plan and thinking about the Mississippi Delta region from Tunica Don to Vicksburg, Mr. Cooper's illustrative district 1 unites the Delta in one
district; right?
A. He also had some of the counties that I wouldn't put in the Delta in that district, so it splits off from other areas. I mean, that's what it looks like just looking at his map.
Q. But in terms of the distinct region that we've been talking about, the Mississippi Delta, it is kept together in Mr. Cooper's configuration of the supreme court map; right?
A. You know, I'd have to think about DeSoto County, whether or not it's really a Delta county or not, that he's got on there, but that's one possibility.
Q. Setting aside DeSoto County, the Delta is united in Mr. Cooper's illustrative plan 1?
A. Generally speaking, I would agree to that.
Q. And just looking at page 30 of the report at illustrative plan 2 -- are you on page 30 ?
A. I am.
Q. And you can see even if you include DeSoto County, the Delta is united in this version of the plan; right?
A. Yeah, it varies again because now Lincoln County is outside of it, and it was inside the Delta initially.
Q. Would you say that Lincoln County is in the

Mississippi Delta?
A. I'd have to look specifically, as I don't know the answer to that, if it's a Delta county or not, if I'd label it that way. I don't know what all the characteristics are in Lincoln County. I can just see looking at the two maps, that's one difference right there.
Q. Lincoln County is south of Vicksburg, isn't it?
A. It's east.
Q. South and east?
A. Yeah.
Q. Okay. All right. Let's talk about core retention. And turning back to your January report, look at Table III.F. 5 on page 37 of your January report.

MR. WALLACE: On page what?
MR. SAVITZKY: 37.
MR. WALLACE: Okay.
BY MR. SAVITZKY:
Q. Oh, excuse me. So your core retention analysis begins on page 31, paragraph 62, but let's look at that page 37, and look at that table that you have, it's the core retention analysis by plaintiff's plan. Let me know when you're there.
A. It may be a while since I have so many papers here.

```
                                    Page 143
            MR. SAVITZKY: When we take a break for
    lunch, I'll come over and see what I can clean up there.
Page 37.
    MR. WALLACE: Now you're getting into
somebody else's report, that your problem.
    THE WITNESS: Yeah, that's it.
    MR. WALLACE: Is this yours? We're missing
20 pages of it.
    THE WITNESS: It's in here somewhere.
    MR. WALLACE: I'll give you mine.
    MR. SAVITZKY: Do you mind if I come around
and sort things out or --
    MR. WALLACE: I can give him mine if you
want to get on with --
    MS. SAVITZKY: That's fine. Yeah, during
the break, we can sort it out.
BY MR. SAVITZKY:
    Q. So just looking at Table III.F.5, your analysis
is that Cooper's illustrative plan 1 keeps
74.3 percent of Mississippians in the same district as
they were in in the existing supreme court plan; right?
    A. Yes.
    Q. And your analysis is that Cooper's illustrative
plan 2 keeps 66.8 percent of Mississippians in the same
district as they were in the existing plan; right?
```

A. Correct.
Q. And you say -- and we don't need to turn, I'll
represent to you -- you can turn there if you want. But
I'll represent to you in the first instance in
paragraph 15 of your report you say: "Core retention
for the illustrative plans is low." You use the word
"low." Do you recall that?
A. I do.
Q. What's the basis for your opinion that keeping
a supermajority of Mississippians in the same district is a low level of core retention?

MR. WALLACE: Objection as being outside the scope of the court's order, but he may answer.
A. It's just the drop-off in the percent of people that are maintained.
Q. Well I guess my question is: Low compared to what?
A. Yeah, that's a good question. Yeah.
Q. I mean, did you compare this level of core retention to --
A. No. And that's the case where just I used my judgment and said it looked low. I was comparing it more and likely to what the existing plan was.
Q. And --
A. So it's lower.
Q. And just -- so what is the basis for your judgment that it's low?
A. It would be comparing it to the existing plans.
Q. Well, the existing plans are a hundred percent the same as the existing plan. So what's your basis for saying that this level core retention is low as opposed to, you know, relatively high? Most of the population is kept in the same district.
A. I hear you. I -- it just looked to me like it was low when you get down to those numbers, that's all. Just it's just my person opinion that it appeared to be low.
Q. Someone else could look and these numbers and say that's a relatively high level of core retention?
A. They could.
Q. Now, in addition to looking at core retention in terms of total population in the same district, you also break down the differences in population assignments by race between the existing plan and the illustrative plans; right?
A. Yes.
Q. And what do you think is the purpose of that analysis?

MR. WALLACE: Same objection as to being outside the scope of the court's order, but he may
answer.
A. Yeah, in the one sense that since the case is about voting rights and specifically about black voting rights, I thought it would be useful to look at that, the issue of race.
Q. So on page 33, just flip back a couple pages. On page 33 top of the page you say -- and this is discusses illustrative plan 1, by way of example, you say: "Only half of the white, non Hispanic population from district 1 is retained, while 76.9 percent of the any part black population is retained." Right?
A. Correct.
Q. So is your point that the population -- is your point that comparatively more white population has moved out of the district? Is that what you're saying?
A. That's what the numbers show in a relative sense, yes.
Q. And what is -- is in your view, the relevance of that in assessing these districts?

MR. WALLACE: Objection as to asking A., out of time; B., asking for a legal opinion. He may answer if he can.
A. It just looks to me like their racial differentiation was different in the sense of what percent of one group is moved out, what percent of the
other group that was moved out or stayed, that's all.
Q. And discussed before that illustrative plan 1, district 1 runs north to south on the western side of the state encompassing the Delta, the counties along the Mississippi River; right?
A. Correct.
Q. And that configuration is different from the sort the Y-shaped configuration of the district 1 where you have a band of counties going east towards Alabama that are also included in existing district 1 ; right?
A. That's correct. All the districts generally speaking in the existing plans run east to west generally speaking.
Q. So, I guess, doesn't it intuitively make sense that comparatively, more white population would be moved out of the district if you're moving that band of counties stretching east to Alabama out of the district and including the entire Mississippi Delta in the district?

MR. WALLACE: Objection to the vagueness of 'makes sense" in addition to the previous objections, but he may answer if he can.
A. Looking at race as a possible index of things it would mean that some proportion of people may be accustomed to having -- having things in common with
elsewhere are now going to be put into whether they're white or black in places that might have differences. That's all.
Q. I guess I just mean doesn't it sort of make sense that you would see comparatively more white population moved out of the district if you're reconfiguring the district so that while maintaining equal population, you're uniting the Mississippi Delta, which --

MR. WALLACE: Same objection. He may answer.
A. My answer to that in general is that Northern Delta may not have as much in common with the Southern Delta as you think. I'm just pointing out the fact that you're moving differentially people by racial groups around in doing this.
Q. And just looking at page 28 of Mr. Cooper's report, and that's Exhibit 9 just for the record.
A. Page?
Q. Excuse me. Page 28, Figure 12. Let me know when you're there.
A. I'm there.
Q. So just looking at this map, you would agree that this shows illustrative plan 1 overlaying with the boundaries of congressional district 2, current
congressional district 2 ; is that right?
A. That what it appears to do.
Q. And you would you agree that illustrative plan district 1 was configured similarly to congressional district 2 in the current congressional plan?

MR. WALLACE: Objection, I guess, to the vagueness of "similarly," but he can answer.
A. It is similar.
Q. All. Now, is it -- and you can put that one down for now. Thank you.

So in addition to the illustrative plan, you also did a core retention analysis of the least changed plans. And we're looking now again at your report -your January report, page 37, that same chart that we were looking that. And that would be the summary table of the core retention analysis. And now looking at the -- and when you're ready --
A. I'm ready.
Q. Looking at least change plans, your analysis is that Cooper's least change plan 1 keeps 92.4 percent of Mississippians in the same district as the existing plan?
A. Yes.
Q. And in least change 2 plan, taking 95.8 percent of Mississippians in the same plan as the existing plan?

MR. WALLACE objection to the -- objection to the vagueness of "someone," but he can answer the question.
A. That appears to be the case.
Q. And you have no basis to think that core retention is, in fact, a consideration that a Mississippi map drawer would consider?

MR. WALLACE: Objection. Once again, the only map drawer of -- the only map drawer of Mississippi supreme court districts in the last 200 years is the legislature. But he may answer.
A. I -- I don't know.
Q. And just stepping back, do you think it would make sense to consider core retention in drawing -- in redrawing districts that haven't changed for 35 years?

MR. WALLACE: Objection to the vagueness of makes sense, but he may answer.
A. It's a principle regardless of how long they've been around. If you think, you know, these people have something in common to politicians or whatever the case may be that they're voting for, used to going certain places, yeah.
Q. When you say "used to going certain places," what do you mean?
A. Well for example, if you're going to go vote, you know, where the voting place is going to be and things like that.
Q. The supreme court lines don't affect where your polling place is, do they?
A. Well but you're -- if you're now in a new district, that's what I'm getting at, now where your vote is in a different district might be the case.
Q. You mean, you wouldn't vote --
A. If you're moving --
Q. Your ballot would reflect a different district?
A. Yeah, that's what I'm getting at. And it might be that you're not accustomed to people who are running in that district, you don't know the history, things like that; where as in the district you were in, you would. Just bring that up as a possibility.
Q. Looking at paragraph 68 of your report on page 36, you opine that your core retention analysis shows that illustrative plans -- "shows that illustrative plans 1 and 2 are significantly disruptive to large numbers of Mississippians across the state in order to achieve small increase in the percent $A P B$ in district 1.
A. Correct.
Q. So in addition to creating -- in addition to increasing the percent $A P B$ in district 1 the changes in illustrative plans also decrease the level of population imbalance between the districts from the existing plan; right?

MR. WALLACE: Objection as out of time. He may answer it.
A. I believe that was the case, yes.
Q. And in addition to increasing the percent APB in district 1, it changes in the illustrative plans, also maintains a system with zero county splits and zero precinct splits; right?
A. That's correct.

MR. WALLACE: Same objection.
Q. And in addition to achieving small increases in the percent $A P B$ in district 1 , the changes in illustrative plans also ensure that there are fewer planning district splits right?

MR. WALLACE: Same objection and relevance but he may answer.
A. That appears to be the case.
Q. And in addition to achieving small increases in the percent $A P B$ in district 1 , the changes in the illustrative plans also unite the Mississippi Delta as a communities of interest in the single supreme court district; right?

MR. WALLACE: Same objection, but he may answer.
A. If the entire Mississippi Delta is a single community of interest that's a research question that needs to be answered.
Q. And assuming it is, then the answer to my previous question is yes?
A. If -- if that proved to be the case, that there were enough commonalities to say that it is a community of interest, it would be the case.

MR. SAVITZKY: So I want to talk about your cluster analysis next. And I would be, you know, just -- just stepping out of the questioning for a second and in terms of our timing, I would be happy to continue on discussing the January report and the sort of mapping elements and then break and then discuss voter turnout. But if you folks would like to take a
break earlier, we can stop here -- we're at the next
stopping place -- or any other time.

MR. WALLACE: Whatever is convenient for
Dr. Swanson. We've been going over three hours, but I'm fine, we can break now or later, take your pick.

THE WITNESS: So when would the break about
if it's not now?

MR. SAVITZKY: Could be in 20 minutes, in 40 minutes, an hour.

THE WITNESS: I prefer to do it now.
MR. SAVITZKY: Okay. That's why I asked.
So let's go off the record, then.
(A break was taken from 12:07 to 1:03 p.m.)

MR. SAVITZKY: Back on the record.
BY MR. SAVITZKY:
Q. Hope you had a good lunch, Dr. Swanson.
A. It was.
Q. Okay. And you and Mr. Wallace didn't talk about the substance of the case during lunch?

THE WITNESS: Did we talk about the substance of the case?

MR. WALLACE: I --
A. We had a long conversation and parts of it were about things like that, but it was like a substantive conversation, so what do you mean by a substantial
conversation?
Q. Without get into the details of your conversation, I just want to make sure there weren't any sort of instructions about testimony or --
A. Oh, no.
Q. -- talking about the sort of -- about the deposition?
A. No. He said -- the only thing he said to me, said to answer questions as truthfully as you can. That's about the instruction level I got.
Q. Noted. And I didn't want to elicit any specific -- that is good advice.

MR. WALLACE: We talked a lot about his Indian cases. If you want to talk about those, they're probably in his CV too.

MR. SAVITZKY: They are in the CV, but I don't want to get into them. All right. BY MR. SAVITZKY:
Q. So I think what we were -- we were just on the cluster analysis. So sticking with the January report which you should still have in front of you, I'd like to go to page 29 -- or excuse me, page 14, paragraph 19. And before we get into the cluster analysis, just more generally -- tell me when you're on paragraph 29.
A. Yeah.

```
                    Page 156
Q. So you say in paragraph 29: "Compared to the U.S. as a whole, Mississippi is not as diverse in terms of race and ethnicity." Do I have that right?
A. Correct.
Q. And what do you mean when you say "diversity"?
A. The majority racial groups in Mississippi are black and white. And if you look at ethnicity -- and you understand the way the census bureau uses ethnicity as opposed to race; correct?
Q. Yes.
A. So the ethic distribution is not what you'd see in a lot of other states as well.
Q. So your point is that Mississippi is 36 percent black, 56 percent white, relatively low percent of Hispanic folks, so the vast majority of the population is either black or white?
A. Correct.
Q. And where does that definition of diversity come from?
MR. WALLACE: Let me -- asleep at the switch while I was drinking my coffee. This is all outside of the court's order. And with that objection, he may answer.
Q. And where do you get that definition of diversity?
```

Racial diversity is a common one, start looking at what the distribution is of people by race.
Q. Well, would it be fair to say that if we measured diversity by the percentage of nonwhite people, non Hispanic white people, Mississippi would be one of the more diverse states?
A. If all you're looking at is two racial groups, if you categorize and collapse everything into white and nonwhite.
Q. Yes.
A. Then it would be a different story.
Q. And looking at things that way, Mississippi would be one of the more diverse states in the country?
A. Yeah. I -- I have trouble looking at diversity from the standpoint of two categories. I would use the term "distribution" rather than "diversity."
Q. How would you use the term "distribution"?
A. Well, distribution. So if you flip a coin, is it 50:50 or is it an unbiased or a biased coin so it's 60:50? So diversity in my head does not mean that you're looking at what is the distribution between two possible categories. Diversity to me means there's more than one or two categories. Do you follow me?
Q. I do. And so your metric of diversity is how many different categories are represented in the extent
to which the population is distributed among many
different categories?
A. Thank you.
Q. Is that accurate?
A. Yes. That's more accurate than I think looking at just two classes of whatever they might be.
Q. Well, whether or not it's more accurate, that's your definition of diversity?
A. Yes.
Q. And if we were to define diversity as what is the percentage of people who are from racial and ethic minority groups, then Mississippi is one of the more diverse states?
A. Then that would be your definition. And that what you just said, if we were to define it, so you could define it that way.
Q. And I know that --

MR. WALLACE: And let me object to form.
Isn't somebody, everybody from a racial or ethic group?
MR. SAVITZKY: Minority groups.
MR. WALLACE: Oh, okay.
BY MR. SAVITZKY:
Q. So -- and as someone who studies demographics, reads about demographic issues, would you agree that colloquially when people talk about the word
"diversity," they're generally referring to the amount of people with the presence of members of racial minority groups?

MR. WALLACE: Objection to the vagueness and irrelevance of colloquiality in a law court, but he may answer.
A. I'm not sure what they'd say in terms of diversity in terms of colloquially. It probably varies from region of the U.S. to another region. It certainly would be probably very different in Hawaii than it would be in Hawaii as opposed to in Mississippi or elsewhere. So I'm not sure what to say in terms of a general statement about that.
Q. And looking at Exhibit 10, Mr. Cooper's rebuttal report at paragraph 36. And let me know when you're there. Do you see it?
A. I do.
Q. And do you dispute his assertion that: "As defined by the percentage of the state level population that is not non Hispanic white, Mississippi is the 12 th most racially diverse state in the nation?"

MR. WALLACE: You know, objection as to being out of time, but you may answer.
A. I just would not use the term "diversity" in that sense. He can, you know, and he says that whatever
the ranking is and whatever he's computed it on, it's the 12th most racially something in the -- I just wouldn't use the word "diversity."
Q. And so you would not dispute his assertion that" "as defined by the percentage of the state level population that is not non Hispanic white," using that definition of diversity, "Mississippi is the 12th most racially diverse state in the nation?
A. Well, I don't know if it's the 12th most or not. That's another thing I would have to look up, so I don't know the answer to it.
Q. So you're not disputing it?
A. Well, I can't say yes or no. You're asking me to state -- agree with the fact that I'm not sure if it's 12th most racially diverse state in the county. And what year? Are we talking about the 2020 census? The ACS? I mean, there's a lot of places you could measure this from. I'm not trying to be obstructive, but I'm just saying, you know, it's hard for me to answer the statement just off the top of my head like that.
Q. And, I mean, looking at the paragraph, I think Mr. Cooper says that it's looking at census data?
A. Well, it couldn't be 2020 census data, was it? I -- you know, I'm just asking.
Q. Yes, 2020 census data.
A. So he had 2020 census data when he wrote this report?
Q. Yes.
A. Okay.
Q. The report from October of 2022.
A. Okay. I mean, and it could be the case. A lot of information wasn't released that soon, but I'm -- I don't know. But the point is, I don't know if it's the 12th most diverse state in terms of whatever measurement you've got or not because I don't know the source of his data, I don't -- I haven't looked at a ranking like that, so it's -- I can't answer the question. I cannot give you an opinion on it.
Q. Have you ever seen your definition of diversity used as a consideration in the electoral districting context?

MR. WALLACE: Objection. I think it's asking for a legal opinion, maybe it's a legal fact. But I will allow him to answer.
Q. I'm asking, to be clear, what you have personally seen in your life and work in this area. Have you seen this definition of diversity that you proffered used in the electoral districting context?
A. I don't know.
here?
A. No, I can't recall.
Q. Does any source that you are aware of as someone who's being proofed as an expert in this case indicates that your definition of diversity is a proper consideration in the electoral districting contest?

MR. WALLACE: Same objection, but he can
answer it.
A. So is it -- repeat that one again.
Q. Well, let me ask it this way. We looked at that National Conference of State Legislatures report that you relied on?
A. Okay.
Q. And we looked at that congressional research service report that you relied on; right?
A. Yes.
Q. And we looked at that redistricting monograph that Mr. Bryan and Morrison wrote?
A. Yes.
Q. And did any of those sources indicate that your definition of diversity is an appropriate consideration in the electoral districting context?
A. Not that I recall.
Q. And are you aware of any other sources that
indicate that your definition of diversity is an
appropriate consideration for the electoral districting
context?
A. Not that I recall.
Q. So if a map drawer -- and I'm asking you this not as a legal conclusion but as someone who's being proffered as an expert in this case -- if a map drawer were to optimize for this definition of diversity that you've laid out there, that would mean they would want to spread the black population among the three districts, right, so that they were maximally -- each district was maximally diverse according to your definition; right?

MR. WALLACE: I adopt your objection to your own question. He can answer it.
A. If you're looking at just a race, that's one way you could do it, but there's other dimensions to population composition beyond race.
Q. Fair enough. And so if a map drawer were trying to optimize for racial diversity which is what you were talking about when you said that Mississippi is not as diverse in terms of race and ethnicity, if you were trying to optimize for racial diversity, you would spread the black population among the different districts?

MR. WALLACE: Same objection. He may
answer.
A. You mean in the sense of someone -- like you said, a map drawer is trying to do something and looking for diversity, and all you're looking at is black versus one other racial category.
Q. Yeah. Or ir you're using your definition of diversity to draw districts in Mississippi, if you were trying to implement that definition and optimize for racial diversity, you would spread the black population across the districts so that all of them had black population in them; right?
A. Well, if you're just simply looking at the categories, again, of where I told you white and black, to me that's -- if you're using two categories, it's not a good example of the use of the word "diversity." So you'd want to -- I'd introduce more elements than just black -- distribution of the black population or the white population or the Chinese population across all the countries in Mississippi.
Q. So would you say that your definition of diversity or at least with respect to racial diversity is not really something that an electoral map drawer in Mississippi should factor in?

MR. WALLACE: Same objection as before.

```
Page 165
A. I don't know. It depends on the task, I guess.
I don't know. I can't speak for other map drawers or
any map drawers. I don't know.
Q. Well speaking for yourself and a person who's offering expert opinions about the qualities of electoral maps in this lawsuit, are you saying that one -- that you would consider the racial diversity of different districts in evaluating the districting plans?
A. Along with other measures of diversity, other measures of how human beings vary.
Q. And if you were optimizing for that definition of racial diversity that you described, that would mean drawing three black minority districts; right?
A. Again, I stress that I'm not looking at it just in terms of race. So when looking at the human -- you know, the composition of the population, you're looking, as I did, beyond race and what diversity might represent.
Q. So you don't think it's a good idea to look at racial diversity as you've described it?
A. I didn't say that. I said I would look at things beyond that if I'm looking at diversity.
Q. You wouldn't look just at racial diversity?
A. That's correct.
Q. Okay. So let's -- and just -- let's go to
```

paragraph 31, which I think we're basically on in your report, your January report, excuse me. This is pages 15 into 16. Just briefly, you know that the supreme court districts are also the districts that are used for various other elective and appointive offices in Mississippi; right?
A. I do.
Q. And what's the relevance of that in your opinion as someone who's being proffered as an expert in this case?

MR. WALLACE: Objection to the extent you're asking him for a legal opinion on relevance, but he may answer.
A. They're important in the sense that they -that those districts determine a lot of other issues that $g o$ on in the state like the institutes of higher learning and appointments of boards and the bar and the bar exam board.
Q. Is it your opinion that having one of the three supreme court districts be majority black voting age population would decrease diversity in state government in Mississippi?

MR. WALLACE: Again, objection as outside the scope of the court's order, but he can answer.
A. And again, I'd stress that my answer is, it's
beyond race and it's not just affecting the government in Mississippi. So I think it's important in that regard whether I was going to use diversity of the population measuring a lot of dimensions.
Q. And just on this point, you're not saying, you're not opining that having one of the three supreme court districts be majority black would decrease diversity in state government?
A. I don't know the answer to that question. I don't know if diverse -- when you say diversity in state government, people who work for the state? What's the question you're asking?
Q. People who are appointed to -- I mean, you --
A. Okay.
Q. We're talking in reference to these various appointed and elected offices.
A. Okay. So you're talking about the appointive offices, not people who are necessarily employes of the State of Mississippi; right?
Q. Right. With respect to those offices that you mentioned in this part of your report, you are not opining that the occupants of those offices will be less diverse if one of the three districts is majority black?
A. I don't know the answer, yeah, and I haven't opined on that, and I'm not in a position to do that
now.
Q. Now, you mentioned The Institute of Higher Learning, and I believe you note in your report that the 12-member body that's appointed by the governor of Mississippi, 4 members for each of the three districts?
A. I believe that's correct. I'd have to look in my record, but I believe that's correct.
Q. Yeah, you say: "In regard to IHL, 4 of the 12-member board of trustees for the state IHL are appointed by the governor from each of the three supreme court districts." Do I have that right?
A. You do.
Q. And you say in paragraph 31, and you mention this again later as well, you say: "The board has a diversity statement."
A. It does.
Q. And you cite Section 102.06 of the board's policy manual, and you say it acknowledges the value of the diversity for Mississippi.
A. Yes.

MR. SAVITZKY: And we'll just mark that.
Copy for you, copy for Mr. Wallace.
MR. WALLACE: What number?
MR. SAVITZKY: This is going to be -- oh.
Dr. Swanson, could I please that have back? Thank you.
I was quick on the draw there. Here you go, No. 17.
BY MR. SAVITZKY:
Q. This is the IHL board of trustees' policies and bylaws that you reference in your report. And then looking at pages 14 and 15 of this document, we see the diversity statements that you reference there. Let me know when you're there and confirm that that's the diversity statement that you're referencing?
A. I'm there.
Q. Okay. And looking at this statement and especially looking at on page 15, you would agree that the board here adopts a set of goals for higher education in Mississippi --
A. Yes.
Q. -- related to diversity?
A. Yes.
Q. And the goals they adopt are: "One, to increase the enrollment and graduation rate of underrepresented students at our institutions"?
A. Yes.
Q. "Two, to increase the employment of
underrepresented individuals in administrative faculty and staff positions?"
A. Yes.
Q. "Three, to enhance the overall educational

```
                                    Page 170
experience through infusion of curricular content and
cocurricular programming that enhanced multicultural
awareness and understanding?"
A. Yes.
Q. "Four, to increase the use of unrepresented professionals, contractors, and other vendors?"
A. Yes.
Q. Fair to say that the diversity goals adopted by IHL focus on representation for "underrepresented individuals"?
```

A. Yes.
Q. Not necessarily on -- strike that.

In your view, is anything about these goals
diminished by changing the supreme court district so that one of them is majority black voting age population.
A. I don't know the answer to that question.
Q. Do you offer any opinion that these goals, these diversity goals, would be diminished in any way by having one of the supreme court districts be majority black?
A. Are you talking about the four points that's you just raised?
Q. Yes.
A. I don't know the answer to that.
A. I understand.
Q. -- which I just turned to. All right. So beginning at paragraph 90 of your report, your January report, you conduct what you call a diversity evaluation; right?
A. I do.
Q. And you base that on what you call a cluster analysis; right?
A. Correct.
Q. And you say that you conduct this cluster analysis to evaluate the issue of population diversity?
A. Socio and economic diversity is in that too.
Q. Well just looking at that first paragraph 90, the last sentence, you say --
A. Population diversity, correct.
Q. Right. And to do the cluster analysis, you took county level data on a number of the different indices of health and wellbeing from the 2017
Mississippi Health \& Hunger Atlas?
A. I did.
Q. And before we talk about that, why didn't you use ACS data?

MR. WALLACE: All right. Now that you've
asked a question, I'm going to ask -- I'm going to
object to that as being outside the scope of the Court's
order, but he may answer it.
A. It's a consistent set of data which may or may not include some census bureau data in there that goes beyond what you can get from the ACS.
Q. Oh, it includes --
A. It may or may not.
Q. -- the ACS data?
A. It may or may not. I'd have to go back and look, but I'm sure it has census data of some sort in there somewhere, but I have to go back and look and refresh my memory.
Q. Was there a more recent version of the Mississippi Health \& Hunger Atlas available?
A. Not when I contacted people at Ole Miss. I got --
Q. And you got -- I'm sorry. Please finish.
A. I got it from people at Ole Miss, my former colleagues.
recent version?
A. The only version as far as I know.
Q. So you say -- and I think this is in paragraph 93 of your report on page 37, you say: "Health and hunger are correlated with socioeconomic status which in turn in correlated with race." Is that right?
A. Correct.
Q. And so in your view, the health and hunger indices also serve as indices of race and socioeconomic status?
A. They're --

MR. WALLACE: Same objection. He may answer.
A. They're correlated.
Q. Okay. And just looking at the last sentence of this paragraph, you say: "These correlations support the argument that the health and hunger indices also serve as indices of race and socioeconomic status."
A. Correct, right.
Q. And just in layman's terms, is your point that black Mississippians are worse off in terms of health and hunger and other socioeconomic metrics than white Mississippians?

MR. WALLACE: Same objection. He can answer.
A. It was my point that any group is better or worse off in terms of that, just some groups may be higher in some indices and other ones lower in other indices. That's my point.
Q. What do you mean when you say that: "The health and hunger indices also serve as indices of race and socioeconomic status"?
A. Well then in that case, generally speaking, that if you're -- if you score low on one dimension, you're probably going to -- it's going to be correlated with a low score in another dimension.
Q. So -- and specifically, if you score low on the health and hunger indices in that data you looked at, you would also be likely to score low on other indicators of socioeconomic status?
A. Yes.
Q. And you would also be more likely to be black?
A. It depends on the part of the state you're in. There may be parts of the state where you have rural white folks, for example, that would probably score similarly if -- where you're looking at different parts of state. But yeah, in general, I'd say you're probably more likely to be black.
Q. Let's talk about how you created these indices. And I'm looking, for reference -- you can do too if you want, but I'll ask you questions and see if you want to look. I'm looking, for reference, at page 48 in your report in Exhibit III.H.1. To create your need index, you use nine different health need indicators like teen pregnancy and adult obesity; is that right?
A. This is what the people did who put the Hunger Act list together, they -- the need indicators, this is what they created, not me.
Q. Okay. So you used the indices sort of fully formed as provided to you in the Health \& Hunger Atlas?
A. Correct.
Q. Okay. So you used a need index from the Health \& Hunger Atlas that includes nine different health need indicators like teen pregnancy and adult obesity?
A. I'd have to look to see exactly which ones I used, but in general these were the variables that were available to use as they categorize them from the report. But I don't recall which ones, if all of them I used or some that were specific. So we need to go through that.
Q. Well, let me ask you this: Do you know how these different indices were constructed by the folks who put together the Health \& Hunger Atlas?
A. They wrote it up in the hunger atlas, and I don't recall off the top of my head what they said. I'd have to go back and review the atlas.
Q. And do you know the source of the different metrics that they include in these indices?
A. You'd have to go back and look at the -- it's in there. They have it documented.
Q. Do you know that the sources that they used for these indices are reliable?
A. My general impression in my memory based on the work they did and the people who did it, I don't think they would pick indices and data that were from sources that were not reliable. But if you're asking if I went back and independently verified it for myself, I didn't.
Q. Do you know why they created this particular index of metrics?
A. I think it has to do with looking up Mississippi. So again, if you -- you need to look at their report to see what they say in terms of what the goals exactly of the report were.
Q. And so you actually use a number of indices. You have a need index, you also have a hunger -- sorry, you have a health need index, and you also have a hunger need index ; right?
A. Well when you say I have, those, again, are how
they classified the indicators they used. So I would say those -- this is a description of what they have in the report and how they categorized it.
Q. So you used the Health \& Hunger Atlas's need index and its hunger -- or excuse me, their -- yes, their need index -- their health need index, excuse me, and their hunger need index, you used both of those for your diversity analysis?
A. Yes. I'd have to go back and see if I actually pulled off the individual elements of each index or used the index, because I don't recall off the top of my head what I did. Do you follow me? I can't recall now that if I used the index in itself or if I used the individual indicators in there as part of the cluster analysis.
Q. So you don't know whether you used all the different indicators that are listed here?
A. As I said, the last time I read this report was months and months ago, so I've haven't thought about it until today when you started asking me questions on it. So I need go back and look at how I aggregated. So the basics of that, I -- I would need to go back and review what I did for it to see what's in there.
Q. You say: "These two indices form the input for the cluster analysis."
A. Okay. Then -- then that's what it has, these two indices. Where are you at?
Q. I'm looking the second to the last sentence in paragraph 94.
A. Then that's what I did.
Q. And when you say "these two indices," you're referring to the need index which includes both health indicators and hunger indicators, and the second one is the performance index which includes health and hunger indicators; right?
A. Yes.
Q. And so you took all these different indicators from these two indices, and those are the inputs for your cluster analysis?
A. Well, let's look at Appendix 2, because it says I list them in Appendix $2 . \mathrm{J}$.
Q. And that would be starting at page 94 of your report? Excuse me, page 93.
A. Thank you.
Q. Yep.
A. Now I can see it. Yeah, I used their indices in need and the performance indices. Thank you.
Q. And again, you didn't select these different indicators, you just used the two indices that the Health \& Hunger Atlas people put together?
correct
Q. Someone could have selected a different set of indicators to measure health and hunger in Mississippi?
A. Well if there are data available, I guess they could have and want to construct it.
Q. You could have constructed one out of ACS data?
A. I don't think you're going to get SNAP enrollment and primary care physicians for 100,000 food-insecure individuals, you know, whatever else may be in here that's necessarily in ACS data. You may or may not. But if you did, you'd have to go to a lot of different reports to find it. And if that's what you're asking me, and you may end up having to use ACS data from different time points.
Q. And to be clear, I'm not trying to knock you for, you know --
A. Yeah, I understand.
Q. -- for not doing that, I'm just -- I want to make sure this isn't the one definitive set of indicators that one could use to measure health and hunger, this is the one that the Mississippi Health \& Hunger Atlas people happened to choose; right?
A. That's correct. And relates directly to Mississippi. And in that sense, it was convenient in the sense that it's all assembled in one place and
relates to the State of Mississippi?
Q. Now, how does this -- how do these indicators
help you measure population diversity?
A. From the correlations that I described there in
the report. If you go back to what you just read
about --
Q. Well --
A. -- in paragraph 93.
Q. Uh-huh. So when you say population diversity,
you mean diversity with respect to health and hunger
needs and issues?
A. And they're correlated with other forms of
diversity such as race and socioeconomic status.
Q. And you say that this analysis: "Enables us to
understand the geographic distribution of population
diversity beyond the raw percent any part black for each
geographic distribution of this particular definition of
diversity that you've constructed using the
mealth \& Hunger Atlas indices?
A. Yes.

BUELL REALTIME REPORTING, LLC
A. And to the extent, again, that they're
correlated with these other socioeconomic indicators
including race, I would say they represent a reasonable
index for doing that.
Q. And your unit of analysis in conducting this
cluster analysis is the county; right?
A. Correct.
Qigh or low need counties among the different districts;
right?
A. Correct.
Q. So I think you'd agree with me that there are
some counties in Mississippi that are small in
population and some that are very large in population;
right?
A. The needs -- I think you'd have to took at the
report again, and I don't believe they're biased by the
number of people in the county, I believe the need
indicators are set up, and you can see it in here where
they're talking about percentages and rates. So in a
sense you're trying to be dimensionalist, you're
certainly going to have a lot more people one category,
say, in Hinds county than you would in some other
smaller county. But when you start looking at things
Q. But I guess my point is just in terms of what we can take from your analysis, it doesn't speak to the distribution of population across the districts, it speaks to distribution of counties with certain characteristics across the districts?
A. It speaks to the distribution of these indicators across counties, and what that speaks to going beyond the -- back to paragraph 93 is the correlation that they have with socioeconomic and racial categories.
Q. Now, you could have designed some cluster analysis that looks at the distrubution of population; right?
A. How would you do that? Could you give me an example?
Q. Looking at the number of people with particular health needs or hunger needs?
A. Well that's what this does, but it looks at, again, rates not numbers, so attempts to make it dimensionalist so you're not affected by what the population size is in a given county.
Q. Right. And you -- but you could have looked at the number of people as opposed to the rates that you're seeing in the particular need?
A. Well, the number if people would be affected by
the population counts in the counties then.
Q. Right. But your analysis looking at the distribution of the counties of particular rates doesn't indicate whether one supreme court district has a very large county with high need and therefore there are more unhealthy or hungry people in that district?

MR. WALLACE: Object as being out of the time and argumentative, but you may answer.
A. Yeah. Well my take is if you're looking at an index of need, it's indicating need. And I think that my take on reading the report that the folks put together is that they did a good job of putting those things together. They had good arguments. And I would direct you to go read their report to see whether or not you think it's reliable.
Q. And so in terms of the analysis you did, you sort of grouped counties together into three groups, high need, high performance, which means there's a lot of health and hunger need, but also fairly strong access to services or resources; is that --
A. Correct.
Q. -- right?
A. Correct.
Q. And then you have a medium need, medium performance group, and that's about half the counties in
state fall into that group?
A. Correct.
Q. Fair to say those counties are maybe a little bit better off in the sense that somewhat less health and hunger need?
A. Than in cluster 3, the high need, low performance.
Q. And that's what I was getting to.
A. Yeah.
Q. You also have the high need, low performance set of counties which means there's a lot of health and hunger need, but not a lot of resources or access to resources. Do I have that right?
A. You do.
Q. So those counties are the worst off?
A. Yes.
Q. And just looking at that map on page 50 of your report, those high need, low performance counties are in purple; is that right?
A. Yes.
Q. And fair to say that many of them are in the Mississippi Delta?
A. Well, let's count them up. If you're -- when you say "many," you mean a majority or --
Q. Looks like about half. You can count them.

Page 185
A. Well if you count Tunica, Coahoma, Washington, they're -- those are definitely -- Bolivar, Sharkey, Issaquena, those are definitely Delta counties, correct? They're not there. So I'm not sure it's even half, but it's somewhere around that number.
Q. And then the balance of your analysis is basically looking at the distribution of these counties in each of the supreme court districts; right?
A. Correct.
Q. And so looking at page 52 of your report, Exhibit III-H-3X-c which is a little bar chart at the bottom, you show that about half of the high need, low performance counties are in district 3 under the existing --
A. Yes.
Q. -- map. And then the other half are divided between districts 1 and 2?
A. Yes.
Q. And again, because what you're doing is looking at the percentage of counties in each district, the counties you used in the analysis -- and some counties are larger than others, we don't actually know whether district 3 or district 2 or district 1 has more hungry or unhealthy people in it compared to the other --
A. Well, if you did that comparison, as I answered
you before, you're obviously going to have, given that all else is equal, in a county with a larger population, you're going to have more in that county of a particular characteristic. Hence, they used rates in an attempt to make it dimensionalist so it is comparable. Is the rate higher in one county or another regardless of the population size.
Q. But I guess my question is, you know, the unit of analysis here is the county --
A. Yes.
Q. -- but now you're looking at the distribution of counties in the supreme court districts and making what I understand to be a statement about the population diversity in the supreme court districts; right?
A. That would be correct. But in this sense what you're looking at are the dimensionalist rates that represent those populations. So if you look at it from the standpoint of where are needs the highest and the performance the lowest, and you center correlated again with socioeconomic status and race, that's what you're looking at with maps.
Q. And I guess what I'm trying to understand is, looking at the existing plan, you see about half of the counties you identified as high need and low performance in district 3, but if they're all very small counties;
and meanwhile district 1 , you have a smaller percentage of those counties, but Hinds County's in district 1. It may be that there's more health and hunger need in district 1?
A. Well there's always going to be a higher need in a county that has a higher population. That's not what I looked at.
Q. But the supreme count districts have not equal but similar populations?
A. I hear what you're saying. And what this does is look at it from a similar perspective. When you're looking at the rates across there, okay, what -regardless of what population size is, what do the rates look like at a county level?
Q. Well, couldn't you aggregate the counties and actually look at the rates among the population as a whole?
A. Let's see. Why would I do that?
Q. So that you can compare the populations of the different districts. If I want to look at teen pregnancy or obesity rates or SNAP rates, I could aggregate the information for each county up to the district level, and I could see which of these districts has higher rate of SNAP use.
A. Now I see what you're getting at. Okay. So
yeah, if I had the data. And I didn't have the raw data to be able to do that with the data are and the report are given rates by county. So without knowing what all the numbers are in there, I'd have to go reconstruct and put them up at the district level. That's what you're asking --
Q. Yes.
A. -- and I didn't do that.
Q. And you didn't do that?
A. That's correct.
Q. So -- and without doing that, you can't speak to the similarity or difference of the districts in terms of those different metrics?

MR. WALLACE: Objection. Same objection as before and objection as to vagueness, can't speak to the differences, did you say? I'm -- I lost your meaning.
A. I think I follow your meaning. But the point is, I looked at counties.
Q. So --
A. And if you reaggregate the lines by county, you're starting to see from the county perspective what the numbers are by that is you can tell.
Q. And looking at page 55, we're looking at illustrative plan 1, same bar chart. And you say that under this illustrative plan 1: "The majority of the
high need, low performance counties are now in district 1 under Cooper's illustrative plan 1."
A. Yes.
Q. And that -- again, that makes sense because as we've discussed, illustrative district 1 includes all the Mississippi Delta, all the counties north, south along the Mississippi River, and a lot of the high need, low performance counties, some of which are very small in population, are in that area.
A. So as you asked before, it means it's correlated with race and socioeconomic status, an indicator of that.
Q. And the result -- I mean, your analysis shows that what -- one of the things that Mr. Cooper's map does is that more of these counties with that high level of need and low level of resources are being grouped together in district 1?
A. Correct.
Q. So Mr. Cooper's illustrative plan 1 is grouping together counties with similar socioeconomic needs and interests?
A. And making it less diverse.
Q. But you agree he's grouping together counties with similar socioeconomic needs and interests?
A. I just said that.

MR. WALLACE: Well, I'm -- go ahead. Let me let you finish your question. I thought you had, and then you kept going so pardon me.
Q. What do you think is more in line with the districting principles we discussed earlier, grouping together areas that share common needs and interests or grouping areas together in a way that maximizes the diversity and spread of those interests among different defenses?
A. To answer that question --

BUELL REALTIME REPORTING, LLC 206.287.9066 । 800.846.6989

MR. WALLACE: Let me get my objection in. He's asking for -- first of all, he's vague; second of all, he's asking for legal opinions; and third of all, it's outside the scope of court's order. And having said that, you may continue your answer.
A. As you said earlier, it -- there's a lot of tradeoffs when you're looking at different metrics and measurements in doing this. And that might be one of the tradeoffs you're looking at.
Q. And having looked at some of those districting principles and offered opinions about them in your expert report in this case, what do you think is more consistent with the principles that are reflected in the Congressional Research Service Report, Redistricting Manual, National Conference of State Legislatures?

MR. WALLACE: Same objection.
A. They emphasize more of the issues I think you're getting at as opposed to the diversity issue.
Q. They emphasis grouping together areas with common interests and needs?

MR. WALLACE: Same objection. He may
answer.
A. Yeah. And I would again go -- aren't all those groupings -- again, I use them as a guideline, but aren't they generally for congressional districts; is
that the case?
Q. The National Conference of State Legislatures report that you cited related to considerations for state legislative and other districts as well, didn't it?
A. That -- I mean, when I say congressional, that's what I meant, state and federal. I don't think there's anything in there about a supreme court district.
Q. Right. And the Redistricting Manual from Morrison and Bryan, is that similarly applicable?
A. Well again, I -- how many -- I didn't see things specifically on supreme court cases in those materials, so that's why I used them as a guideline.
Q. And is there something about supreme court districts that makes this diversity metric that you're discussing more relevant than the legislature district?
A. Well, you read it yourself --

MR. WALLACE: Same objection. He may answer.
A. You heard from the IHL, said their -- one of the goals is to be more diverse.
Q. I mean, did anything in the IHL statement describe diversity in the way that you are discussing it now? Page 193
A. One of -- the lead-in statement before it listed the four points talked about cultural diversity. And so cultural diversity covers a lot of ground.
Q. Other than the IHL policies and bylaws that we discussed, is there any other reason why this diversity metric?
A. Well there's --

MR. WALLACE: Same objection. You may
answer.
A. There was the court case that I saw too on it.
Q. The court case that used the word "diversity"?
A. Yes.
Q. And you don't know as you sit here whether that court case was using the word "diversity" in the way that you mean the word "diversity"?
A. I do not know.
Q. Anything else?
A. Not that I can think of at this time.
Q. So let's talk about your analysis of polling places, and turning to the paragraph 81 of your report. Starting at paragraph 81, you have a voting age population polling place spacial analysis?
A. Correct.
Q. And in paragraph 81 you ask: "What are the differences in proximity, the differences in distance,
and the distance of black voting age population to current polling stations compared to all voting age population, and in a particular, white non Hispanic voting age population." Is that right?
A. Correct.
Q. And you say: "My hypothesis for this question was that if the black voting age population were being systematically disenfranchised by the State of Mississippi, a symptomatic indicator of that would be seeing fewer of them close to polling places and more of them of a greater distance from polling places."
A. Correct.
Q. How did you form that hypothesis?
A. Just in general knowing what propensity, close to things, mean.
Q. Can you say more about that?
A. Yeah. So for example, I've done studies of where graduates from high school go to college in the State of Washington, and propensity is a big indicator of it. So many of the freshman or transfer students who go to Western Washington here in Bellingham, Washington are from Western Washington, they're not from Southeast Washington. Many of the students who --

MR. WALLACE: Did you mean "propensity" or
"proximity"? I'm looking at your --
A. Yeah, proximity. I'm sorry. Thank you. So that's what I mean. So, you know, if you're close to something, you're probably more likely to be able to do it or go there. And there's not -- I can't cite all the literature off the top of my head, but there's a lot of literature, probably in marketing and a lot of other fields it's that. That's one of the reasons why does Target site stores in certain places.
Q. Would you agree the decision to leave your family for the first time and go to college somewhere close to home rather than far away when you're away four years is a little different than whether or not you're going to go vote on a Tuesday; right?
A. But it's a little different than deciding whether you're going to go buy gasoline or clothes too, but as I said, there's -- without being able to speak to it all in my head, there's a lot of literature on how relatively close you are to things that triggers whether or not you're taking advantage or doing it. That's the point. So yeah, there is a lot of variation of why people are doing it, but you're close to something is a determinant of whether or not you do it.
Q. When you put up a Target store, there's a big Target logo and a big sign that says Target on it; right?
A. As far as I know there is, yeah.
Q. But there isn't one on a polling place, is
there?
A. No. And I just said there's a lot of differences in all these things, but the -- is the word propinquity? That might be it. How close you are to things is one of the determinants of whether or not you take advantage or use them or don't. It's not the only thing, but it's one of them.
Q. But you would have to know where something is in order to -- in order for that logic to apply?
A. Well I guess you could stumble across it if you're doing a random search.
Q. On a polling location, you'd have to stumble upon it on a Tuesday in November; right?
A. Do they move around all the time?
Q. Well, that's my next question. Do you know who decides polling locations in Mississippi?
A. No, I don't.
Q. So when you say that --
A. It's probably at the county level, but I'm, you know, just saying I don't know.
Q. So when you say that polling place proximity could be evidence of systematic disenfranchisement, that's despite the fact that locations of polling places
is decided, you would think, at a local level?
A. Yes.
Q. And do you know whether there are racial
disparities in access to vehicles in Mississippi that might affect the ability of Mississippians to get to the polls on election day?

MR. WALLACE: Same objection. You may
answer.
A. There might be, but people are people, so there may be different ways to overcome some of those disparities.
Q. Well -- and just looking at Mr. Cooper's responsive declaration, Exhibit 10, paragraph 34 --
A. In exhibit?
Q. It's Exhibit 10, but it's paragraph 34 of the responsive declaration. I just want to make sure you're looking at the responsive declaration.
A. That's Exhibit 9. This is 12.
Q. We want Exhibit 10.

MR. WALLACE: This one?
MR. SAVITZKY: You've got it.
BY MR. SAVITZKY:
Q. And looking at paragraph 34 --
A. Yes.
Q. -- Mr. Cooper says: "Statewide, 10 percent of
black households do not have a car versus 4.3 percent of white households."
A. I see it.
Q. Do you have any reason to dispute that?
A. No.
Q. He says: "The racial disparity expands to

12 percent versus 4.5 percent in the Delta region." Any reason to dispute that?
A. No.
Q. Do you know if there are racial disparities between who has the type of job where they can get off work and vote on a Tuesday in Mississippi?
A. I do not know.
Q. Based on the discussion we've had about socioeconomic indicators, is it likely that black Mississippians are less likely to be able to take off work and vote on a Tuesday?
A. I'd look at it as a research question.
Q. Do you know whether there are racial
disparities in Mississippi in terms of single-parent households that might affect the ability to get to the polls and vote on a Tuesday in light of work and childcare obligations?
A. Differentially than other population racial groups? Is that what you're asking me?
Q. Correct. Are there more black single-parent households than white single-parent households in Mississippi?
A. I don't know exactly if that's the case or not.
Q. And just looking at that exhibit that we just -- looking at Mr. Cooper's responsive report in paragraph 33, he says: "Other voters may have responsibilities that make it impossible to walk. 51.4 percent of the black female head of households with children live in poverty compared to 37.4 percent of their white counterparts." Any reason to dispute that?
A. Does he give a source? Again, I don't have any reason to dispute it, but I just wonder what the sources are and how consistent they are, that's all.
Q. I can represent to you that it's all ACS data.
A. Okay. And then the question is, again, you know, the sample sizes and whether or not they're statistically different. So if you just pull things off the ACS and start comparing them, depending on where you're at and depending what the census bureau does, I would prefer not to answer that until I actually saw the size of the sample, what the margins of errors are on it, because it may be the case in some of these comparisons that there's no statistically different -significant difference. Do you follow me? So I don't
know in advance, just asked -- if you're asking about the state as a whole and that's what he's arguing, for the state as a whole, then it may be the case there is one.
Q. And by the way did you do a test of significance, a T-test or something else to look at your analysis of polling place proximity?
A. No.
Q. By the way, do you know if there are racial disparities in Mississippi in terms of how long people have to wait to vote at the polls in Mississippi?
A. I don't know.

MR. SAVITZKY: And we can mark right now -it's a little out of order, but this is just where it is. This is Dr. Burch's rebuttal report, marking it as Exhibit 18. There should be a copy for you, Mike, but I'm not seeing it. Give you mine.

BY MR. SAVITZKY:
Q. And looking at pages 12 to 13 of Dr. Burch's rebuttal report -- let me know when you're there.
A. I see it.
Q. Looking at the bottom, she says: "Further analysis of the CES which I report shows that among validated Mississippi voters, 18.9 percent of white voters report they waited for more than 30 minutes to
vote compared to 40.7 percent of black voters." Any reason to despite that?
A. Yeah, there is.
Q. Any reason other than the criticisms of the CES that we'll talk about presently?
A. That I don't know. But definitely I'd start with CES.
Q. All right. And we'll get to that. And hang on to -- you can put Dr. Burch's rebuttal aside, but don't get let it get too far.

So you can't say whether the various racial disparities we talked about including the ones that are reflected in ACS might negate any theoretical advantage in terms of polling place proximity for black Mississippians?
A. If you're asking me right off the top of my head, my answers were, I think, pretty consistent saying for the most part, some of them are research questions, so they have to be looked into in order to answer the full question.
Q. And looking at paragraph 82 of your report, you say: "While each of Mr. Cooper's illustrative and least change plan increases the percent of the black population in district 1, I want to know if the increases he achieved came at the expense of black voter
proximity to the polls." What do you mean by that?
MR. WALLACE: Same objection as to outside the scope of the court's order, but he may answer.
A. Yeah, it looks on average if you change the counties around and you're moving black populations around, what does it look like in terms of proximity to the polls.
Q. Well, why would putting different counties into supreme court districts change the proximity to the polling places which are intra county?
A. Yeah. Well, it's a question I asked.
Q. Well, I guess my question is: How could it possibly change the proximity of people to polling places to put them in one supreme court district or another if all the supreme court districts are made up of whole counties?
A. It's a question that I asked. So -- and again, I stress that I don't know exactly where the -- how they were placed initially.
Q. Would you agree that whether a county is in one supreme court district or another doesn't have any bearing on where your polling place is?
A. That I don't know.
Q. You say: "If Mr. Cooper's plans increase the number and proportion of blacks but he moved close poll
proximity blacks out of district 1 and moved distant poll proximity blacks into district 1 , one could argue that the actual impact of such plans would be to increase black voter disenfranchisement and risk fewer blacks actually turning out to vote."
A. Yes.
Q. What is the basis -- what is your basis for suggesting that changing the supreme court lines to draw a black majority district would increase black voter disenfranchisement and risk fewer blacks actually turning out to vote?
A. Well maybe that the average citizen's in a county, not in supreme court district 1 , is different than a county that is in supreme court district 1 that has moved out of it. So for example, what -- pick a county. In every county in every state are the polling distances for any given population exactly the same, they probably vary. So urban areas are probably in a closer proximity, correct, would you agree, than you would be in rural areas. So that's one example of how they might change. So even there it's at county level, it may be the case that by moving them around, you've now put people that were on average farther away from a voting poll into this new district.
Q. Did you do any analysis to demonstrate that
so-called close poll proximity blacks are more likely to
vote than so-called distant poll proximity blacks?
A. No.
Q. Now in your report, did you ever go back and answer the question that you posed and offer an opinion or a conclusion about whether the actual impact of Mr. Cooper's illustrative plans would be to increase black voter disenfranchisement and risk fewer blacks actually turning out to vote?
A. I'd have to look in the report again, so I don't recall off the top of my head if I did.
Q. It's not that many paragraphs, if you want to just take a quick look.
A. Sure, I'll look here.
Q. It's the section between paragraphs 81 --
A. Or even in the executive summary.
Q. -- or 89 .
A. Yeah. I'm looking at the executive summary.

Paragraph, what was it, 9?
Q. 81 through 89 is your discussion of this issue.
A. Thank you.
(Witness reviewing exhibit.)
A. So no, I didn't look at it by district, I
looked it on average for the state as a whole.
Q. So you didn't go back and look at what you
called "the question" of whether the increases Cooper achieved came at the expense of black voter proximity to the polls?
A. That's correct, I did not. Thank you.
Q. Now let's talk about the analysis that you did. How did you go about calculating the voting age population living within a half mile of their polling place?
A. Let's see how it's described here. This is done using the geospacial stuff that Tom Bryan has access to, and I asked him to give me ideas about how far people were from polling places. So when he got the list of where they were located, then he could do the GIS magic with VAPs and VAP by race within certain distances of those places. So that's how they're done.
Q. So Bryan GeoDemographics did this analysis?
A. Oh, absolutely. Yeah.
Q. What parameters did you give them?
A. Just what I told you. I said that I'd like to see what the distances are to polling places and, you know, if it's -- do you want to do categories on it that make sense or if you want just give me average distances, and we discussed it a bit, and I said, yeah, those look good in terms of what percent might be within a quarter mile, half mile, up to a mile or so. And that
was done in conjunction with the data that were available, how hard it was to assemble it and do it.
Q. And did you count the population of any census block that contains a polling place as living within a half mile of the polling place?
A. I can't remember the exact details and how it was done. When you're looking at census blocks, that's the lowest geography you get and there are ways that I know in GIS you split those using different algorithms. And that's likely what he did to do it, but I don't recall the details.
Q. And the census block can be larger than a mile around; right?
A. It can, depending what the population of where it's at, what makes up natural boundaries for one.
Q. So if you count on the population of the census block containing polling places, living within a half mile of that polling place, some of the people in that census block might actually live more than a half mile away from the polling place?
A. But again, I stress that there are algorithms I know GIS people use that will try and accommodate that so you're not just doing something that gross. Do you follow me? And what they do exactly, I don't know.
Q. And you don't know what Bryan GeoDemographics
did in this case?
A. I don't.
Q. You don't know whether he used an algorithm to make that distinction between people in the census block that are actually within the half mile and people who are actually outside the half mile?
A. I don't.
Q. And let's just look at Mr. Cooper's responsive report. Again, it's Exhibit 10. You should have it?
A. On report 9 or 10?
Q. 10 .
A. Thank you.
Q. I'm a little concerned that your Exhibit 10 has gone missing here.

MR. WALLACE: I have a 10 if you need it.

THE WITNESS: Thank you.
MR. SAVITZKY: Do you have it?
MR. WALLACE: Yeah. Tell me what paragraph you want.

MR. SAVITZKY: I'm looking at page 12. BY MR. SAVITZKY:
Q. And what Mr. Cooper does here in Figure 4 is, shows the census blocks which are in blue and then the half mile radii which are the circles there. So you can see there's significant amounts of those census blocks
that are outside the half mile radius of the polling place; right?
A. Correct. I can see that.
Q. Okay. And did you review Mr. Cooper's analysis in his report of this polling place proximity analysis that you did?
A. I remember reading through this and putting it aside.
Q. All right. And just starting at paragraph 24 on page 11 of Mr. Cooper's responsive report, Mr. Cooper used geospacial analysis to calculate that actually 26.3 percent of black voters live within a half mile of their polling place; right?
A. That's what it says here in paragraph 24.
Q. And do you dispute his analysis?
A. I've got no reason to dispute or not dispute it.
Q. And Mr. Cooper conducted -- after conducting this analysis said that the Bryan GeoDemographics analysis erroneously does count the entire VAP living in a given census block as being half mile from a polling place?

MR. WALLACE: Where does he say that?
Q. Paragraph 25.

MR. WALLACE: It's in 25?
A. Yeah, I saw it.
Q. Okay.
A. That's what he says.
Q. And you don't have any reason to dispute that?
A. Not at this time.
Q. All right. So just a few questions about socioeconomic analysis performed by Mr. Cooper and Dr. Burch. Looking at Exhibit 9, Mr. Cooper's October report and beginning on page $36, \mathrm{Mr}$. Cooper analyzes the socioeconomic profiles of the State of Mississippi using five year ACS data. Let me know when you're there.
A. I'm there.
Q. You don't dispute any of his analysis with respect to the ACS data there?
A. Let me read through this. So it appears it's from the 2021 ACS data, singular data for the State of Mississippi. Okay. No, I have no reason to dispute that those are numbers he took from the single year 2021 ACS data.
Q. Thank you. And by the way, just because it came up earlier, looking at the top of page 37, it does like seem you get SNAP participation rates with the ACS?
A. It looks like it, yes.
Q. And in paragraph 64 of his report on page 36, Mr. Cooper says: "In Mississippi, African Americans
trail non Hispanic whites across most key indicators of socioeconomic wellbeing." Do you dispute that?
A. Based on what's in the ACS, no.
Q. And in paragraph 66 and 67 of Mr. Cooper's report, there's the last two paragraphs, he explains that he reviewed and prepared charts of the same ACS data for counties and municipalities and that socioeconomic disparities by race also exist at the county and municipal levels throughout Mississippi. Do you dispute that?
A. Well, that's one where because it's at the county level and because of the sizes, I'd want to look at what the margins of error are before I made those statements. I trust it at the state level that the margins of error are sufficiently small, it's not an issue, but you see it down some of the counties, it could be.
Q. You dispute that the ACS data reflects those disparities?
A. That I don't dispute, it's just a matter of how you interpret it and if -- if the margins of error, if they're 90 percent margin of error overlap the mean of the other group, then there's no statistically significant difference. So you can't make the statement. Do you follow me?
Q. Understood. And setting aside whether or not -- setting aside any issues with respect to the sub sample size for counties or municipalities, with respect to ACS data for Mississippi, you don't dispute that that is what the ACS data is --
A. No, I don't have any reason to believe Mr. Cooper put down other data in there other than what he took out of it.
Q. And let's now mark -- we did it a little out of order because her rebuttal is already marked, but the -mark Dr. Burch's report now as Exhibit 19.
A. I've got this piece of paper handed to me with nothing on it. I don't know what it is.
Q. That's Dr. Burch's rebuttal report.
A. Okay.

MR. WALLACE: Have we got one marked?
MR. SAVITZKY: Should be 18. Here's 19.
THE WITNESS: Here's 18

MR. SAVITZKY: Okay.
THE WITNESS: That was just some other piece of paper, same thing, I guess. Okay. That's.

MR. WALLACE: We do have 19 for me? I've got 18

MR. SAVITZKY: 19 for you, 19 for me. All right. We all have 18 and 19 which we'll be looking at
more presently.
BY MR. SAVITZKY:
Q. But just for now looking at what's been marked as Exhibit 19, on pages 3 through 10 of this report, Dr. Burch analyzes educational markers like student test scores and school district segregation, education attainment by race. You don't dispute her analysis of racial disparities in education in Mississippi on that front?

MR. WALLACE: Objection to being outside the scope of the court's order, but he may respond if he can.
A. In general, no. I'd have to look at some of the details on where she got the data and what she's pulling off to make a definitive statement. But in general, no.
Q. And looking at pages 10 to 13 of this report, starting at page 10, Dr. Burch analyzes racial disparities with respect to income, poverty and wealth looking at, for example, household income, access to a car, poverty, unemployment.
A. I mean, again, I --

MR. WALLACE: He didn't ask a question yet.
Q. You don't dispute her analysis of those racial disparities with respect to income and poverty?
. WALLACE: Same objection. He may answer.
A. Well, I don't -- I haven't -- I'm not looking at her analysis in depth, but I don't dispute the data she got from the American Community Survey as being reasonably accurate. The same from the Current Population Survey for the state as a whole.
Q. Or for example, I'm just drilling down on page 16, the last sentence, last two sentences in her report, she says: "The 2019 report by the Mississippi Home Corporation, a state entity, found that black people in Mississippi were denied mortgage loans more
frequently and faced discrimination in rental markets." MR. WALLACE: Where is that?

MR. SAVITZKY: This is the second to the
last sentence in the second to the last paragraph on page 16 of Exhibit 19, Dr. Burch's October report.

MR. WALLACE: All right. Same objection. He may answer.
A. No. I've got no reason to dispute it.
Q. And she goes on, she says: "Other studies have also shown that black Mississippi applicants faced discrimination in home lending, discriminatory practices affect ability of black renters to find rental housing in Mississippi." And that's from the National Fair Housing Compliance, DOJ?

MR. WALLACE: Same objection. He may answer.
A. My answer is the same as the last time.
Q. No dispute?
A. No dispute.
Q. Okay. And looking at pages 16 through 18 of Dr. Burch's report, she discusses racial disparities with respect to health, for example, in heart disease, access to healthcare, access to a primary doctor, health insurance. You don't dispute her analysis of racial disparities with respect to health in Mississippi?

MR. WALLACE: Same objection. He may answer.
A. If she's summarizing the data that is shown in the tables given the sources that they're from, I have no reason to dispute it.
Q. And looking at pages 18 to 20 of her report, Dr. Burch analyzes racial disparities with respect to criminal justice. And like you, she looks at the racial makeup of the correctional facility populations and, just looking at her chart here on page 19, looks like she got a very similar result to you in terms of 60 percent of the prison population being black?

MR. WALLACE: Same objection. He may answer.
A. And again, based on the fact that her analysis are really descriptive, verbal descriptions of what's in the tables, I have no reason to dispute it.
Q. You don't dispute the political science literature discussed in Dr. Burch's report that voting participation is generally correlated with socioeconomic wellbeing?

MR. WALLACE: Same objection, and perhaps outside the range of a demographer's expertise, but he may answer.
A. Given my knowledge of it, I don't dispute it.

```
                                    Page 216
                            Q. You don't dispute that this letter -- this
literature shows generally that when a person has more
education, more income, more health, they're more likely
to vote and participate in politics?
    A. In general, I think that's -- I agree with
that.
    Q. And in light of that general rule, it would be
a reasonable hypothesis that if there was racial
minority group in a jurisdiction that had less
socioeconomic wellbeing, less education, less income,
less health, they would have lower levels of voting and
participation?
                    MR. WALLACE: Same objection. But he may
answer.
    A. And my answer to that again is that it depends
on what racial group and what part of country and when
and where you're looking at it. It's a research
question.
    Q. In light of -- let me ask it differently, then.
    It would be a reasonable hypothesis in light
of that general rule that the correlation between
socioeconomic wellbeing and voting and political
participation, that black voters in Mississippi who have
less socioeconomic wellbeing, less income, less
education, less health, less access to housing would
```

have lower levels of voting and political participation? MR. WALLACE: Same objection. He may answer.
A. Again, it's -- it's not an easy question to answer from the standpoint of it's still pretty general. So it may be that certain areas of the state, people who are in exactly the same condition vote at a much higher rate than people very similar, exact same characteristics elsewhere.
Q. Well my question is: Given all of this information that we just discussed that you don't dispute from the ACS, from other reputable sources showing the racial disparities across many different indicators and given the political science literature that you don't dispute that socioeconomic wellbeing and voting are correlated, it would be a reasonable hypothesis that black voters in Mississippi vote less and participate less than white voters in Mississippi?

MR. WALLACE: Same objection, and he may answer.
A. And that's a reasonable hypothesis.
Q. So let's now -- well first of all, I think we're done talking about Mr. Cooper's reports at this point, so we can move those to the side if that'll make things a little easier for you before we start our next
set of questions. And these ones can go to the side as
well, actually. And do you have Exhibit 10? Are we
still --
MR. WALLACE: I've got 10 if he doesn't.
MR. SAVITZKY: We'll re-mark it if we have
to.
MR. WALLACE: Is Cooper No. 10?
MR. SAVITZKY: Yes.
MR. WALLACE: Yeah, I've got it. You don't
have it over there, is your problem; right? She doesn't
have it.
MR. SAVITZKY: Yeah, we'll --
it's floating around here somewhere.
MR. WALLACE: We'll check it later.
BY MR. SAVITZKY:
Q. So with that, I want to talk about the voter
turnout piece of this in your analysis of voter turnout
in Mississippi starting with the current population
survey.
A. And is that from the initial report or from
another report? Are you talking about the report that
we've been talking about here that you've given me, this
one? That's what we're talking about?
Q. I'm actually going to -- I'm talking about your
surrebuttal -- we'll eventually talk about your
surrebuttal.
A. Okay.

MR. SAVITZKY: In fact, this is a great time to mark your surrebuttal report. Hold on. All right.

So I'm now going to mark as Exhibit 20, I believe.
MS. JONES: Yes.
MR. SAVITZKY: Your -- oh, this isn't your
surrebuttal report. I'm sorry. Bear with me.
(Pause in the proceedings.)
MR. SAVITZKY: Well --

MR. WALLACE: Tell you what, I have to go check out of the hotel. You can keep digging while I'm checking out of the hotel. I'll be back in, you know, ten minutes, and maybe you will have found it by then.

MR. SAVITZKY: Thanks. Let's go off the record.
(A break was taken from 2:31 to 2:55 p.m.)
MR. SAVITZKY: Back on the record. So we
were marking Exhibit 20 which is your surrebuttal report. That's marked for you here. Mr. Wallace, a copy. And I have that here. Okay. BY MR. SAVITZKY:
Q. Now, before we sort of get into numbers and dig into the details, let's start with the CPS. What is the CPS?
A. The Current Population Survey?
Q. Yeah.
A. It's a regular survey that's done by the census
bureau. It's large scale survey, it has supplements in
it, so one of the supplements is a demographic
supplement.
Q. Is it done by the census bureau?
A. It's -- it's probably done for other agencies, but the census bureau is the one that does a lot of survey research, so the CPS is technically done, I think, by the census bureau.
Q. And the CPS includes a voting and registration supplement?
A. That's one of the supplements.
Q. And that includes questions about whether the respondent's registered and voted?
A. Yes.
Q. And no one goes back and asks the respondents -- or sorry, strike that.

No one goes back and checks whether the respondents actually are registered to vote.
A. As far as I know, they don't.
Q. No one goes back and checks if the respondents actually voted?
A. Just like everything else that's in there, they
don't go back and check are you really this age? Are you really this ethnicity? Yeah, so as far as I know, it's -- they pretty much take the respondents' words as given.
Q. It's purely a survey, there's no sort of external validation process?
A. You mean in the sense of the answers --
Q. Correct.
A. -- they've given?
Q. The veracity of the answers are not externally validated?
A. That's what I understand the case to be, correct.
Q. And then looking at your January report still and a page 70, you have a table, Table IV.A. 2 where you looked at Mississippi voting by race and ethnicity using CPS data; is that right?
A. Yes.
Q. And based on the data, you conclude that black turnout in Mississippi in 2020 was 72.9 percent and white turnout was 69.8 percent?
A. Correct.
Q. And this CPS data is the primary basis for your conclusion that blacks vote at higher rates than whites in Mississippi as a whole?
A. It is.
Q. And looking at this table, you conclude overall that the -- that 70 percent of Mississippians voted, 70.3 percent, I suppose, of Mississippians voted in the 2023 election?
A. Yes.
Q. And you agree, as you set out in your table in that total voted column, that 70.3 percent turnout would mean that 1.531 million people voted in Mississippi in 2020?
A. Yes.
Q. And just looking at Dr. Burch's rebuttal report which was previously marked as Exhibit 18, and turning to page 2 of that report --
A. So we're on 18 again --
Q. Yeah.
A. -- or 20 .
Q. 18. Right here. You have it right here.

And looking just at page 2, second full paragraph Dr. Burch says: "The official vote count certified by the Mississippi Secretary of State show that only 1,313,759 votes were cast or present, highest participation rate in Mississippi in the November 2020 election." Do you dispute that?
A. No.
Q. So the CPS overstates the level of turnout in Mississippi by about 200,000 people, 1.531 million versus 1.313 million?
A. Given the years where this is done and the fact it's Mississippi, that appears to be the case.
Q. I'm sorry, I just want to make sure, is that answer qualified somehow?
A. Well it's qualified with the data that are used to do it. In that sense, are the CPS data exactly for the same year that the turnout data are for and things like that.
Q. Right. And so --
A. That's all the qualifications I'm making.
Q. So with respect to the 2020 election --
A. Yes.
Q. -- and comparing that number from the official vote count by the Mississippi Secretary of State, and the CPS estimate you derived from the 2020 general election turnout, the CPS overstates the level of turnout by about 200,000 ?
A. Yes.
Q. And you agree, and you stated this at paragraph 149 of your report, page 83, that there is a "likelihood of overreporting on the CPS voting and registration supplement."
he didn't hear a question, and I don't think I did either.
Q. You agree that there's a likelihood of overreporting on the $C P S$ voting and registration supplement?
A. I do.
Q. And that -- meaning that when the respondents get the survey questions to the CPS, when they overreport, we mean they tend to say they registered or they voted even when they aren't registered or didn't vote?
A. That's how I'd interpret overreporting.
Q. And looking at paragraph 148 of your report on page 83, you would agree that this issue of overreporting of political participation is present with any survey data related to voting?

MR. WALLACE: This is in his original
report?
MR. SAVITZKY: Correct.
MR. WALLACE: Here it is.
A. It could be. I don't know enough about every survey that's ever done to say whether or not they do it, so of the ones I'm familiar with like the CPS, it's looks like they overreport.
Q. Right. And you say this caveat -- this is the last sentence -- last sentence of this paragraph: "This caveat would not only apply to the SSRC survey data but also the CPS, the APS, any other survey in the United States that includes questions on voter registration" --
A. And I stress it's a caveat. But again, we don't know exactly what's going on, but I'd be careful if I was looking at voter registration survey information and voting information.
Q. And you wouldn't dispute that the CPS itself says that respondent misreporting is a source of error in the CPS estimates?
A. Absolutely I would not dispute that.
Q. And looking at paragraph 148 that we've been looking at of your January report, you say with some citations to the literature that: "While both blacks and whites tend to overreport voter registration, blacks may do so at higher rates -- at a higher rate that white as is also the case with voting."
A. Correct.
Q. And in the bibliography of your report, you cite some literature going into detail on this, a 2021 piece called: Vote Overreporting While Black: Identifying the Mechanism Behind Black Survey Respondents Vote Overreporting. And let's just grab
that and mark it as Exhibit 21. Copy, copy. This is the piece that was in your bibliography mark it as Exhibit 21.

You reviewed this article in putting your
report together?
A. I did.
Q. And looking at page 3, I think right at the top -- just let me know when you're there.
A. That's the paragraph that starts:
"Overreporting among African Americans"?
Q. Correct. And the next sentence is: "Perhaps one of the most consistently documented aspect of overreporting is that African Americans overreport at higher rates than whites."
A. That's correct.
Q. Do you agree with that assessment?
A. Yes. Based on the evidence I've seen.
Q. And in her rebuttal report, Dr. Burch also pointed to another 2022 article by Ansolabehere and Fraga and Shaffner in American -- I think it's in American Politics Research specifically about overreporting on the CPS. Do you recall that?
A. No. I have to look at it, but it sounds familiar, so --

MR. WALLACE: It's in here, 18.

THE WITNESS: Thank you. And where is it? What page was it?

MR. SAVITZKY: Well I was going to mark the actual article, but I can -- I can refer you to the -so it's cited on page 3, Footnote 6 of her report. She says: "New research shows not only does the CPS overestimate turnover for all groups, it does so differentially by race such that it consistently overestimates black turnout even more than white turnout."
A. Yes.
Q. And she cites in an article that I'm now going to mark as Exhibit 22 entitled The Current Population Survey Voting and Registration Supplement Overstates Minority Turnout.

MR. WALLACE: Where is this cited?
MR. SAVITZKY: This is cited in Footnote 6 of Dr. Burch's rebuttal report.

BY MR. SAVITZKY:
Q. Do you agree that this is a paper by a reputable political scientist in an academic journal for the discipline?
A. Well I don't know them personally, so if you want me to attest to their reputations, I'm assuming they're reputable, but yes, I agree that this is a --
this is an article by academics that's published in an academic peer-reviewed journal.
Q. I'm just looking at the summary text on page 1 there, it says: "We compare CPS estimates to official voter turnout records from 2008 to 2018 , document consistent significant discrepancies that call into question the reliability of CPS turnout statistics." Do you see that?
A. I do.
Q. And it states: "Specifically, the CPS overestimates black and Hispanic turnout relative to non Hispanic whites whether relying on turnout rates as a shared, eligible citizens or the racial ethnic composition of the voting population." Do I have that right?
A. You do.
Q. And they say: "Sampling error in commonly used adjustments to CPS estimates do not account for or correct the bias."
A. All of it, correct.
Q. And just looking at their conclusion in the last page -- or excuse me, on page, I think, 4 -- oh, no, it's on page 5, excuse me, of the document, yeah, conclusion, states: "The author suggests that CPS should conduct a voter validation study akin to those
undertaken by other surveys." Do you see that?
A. I do.
Q. You agree with that?
A. I do.
Q. And they say: "In the meantime, we suggest that analysts uses caution when making inferences about variation and turnout rates by racial or ethnic groups." Right?
A. They do.
Q. Do you agree with their assessment?
A. I think for the research at this point in time, I think their assessment is well taken.
Q. So given the fact that the top line CPS estimate of voting in Mississippi shows overreporting by about 200,000 -- I think it's 12 percent overage -- it would be a reasonable hypothesis that this overreporting would in particular overstate black turnout?
A. That would be a reasonable hypothesis.
Q. So let's go back to your conclusion. You conclude based on the CPS that blacks vote at higher rates than whites in Mississippi as a whole?
A. That's correct.
Q. As we discussed, setting aside the issue of overreporting, just assuming the CPS is reliable for the moment, your analysis of the CPS data for 2020 shows a

3 point difference between black and white turnout rates, 72.9 versus 69.8; right?
A. Correct.
Q. So even a modest racial differential in
overreporting on the CPS would mean that black turnout would, in fact, be lower than white turnout?

MR. WALLACE: Object to vagueness of
"modest," but you may answer.
A. It could be.
Q. Particularly given of the fact that you have overreporting at the level of 200,000 voters?
A. It could be.
Q. And you didn't run any type of t-test on those two numbers $72.9,69.8$ to determine whether there's a significant difference between them, did you?
A. That's correct. I did not.
Q. And actually looking at that table we looked at before on page 70 of your report?
A. This is my original report?
Q. Yeah, your January report. Thank you. Table IV.A. 2?
A. Yes.
Q. You report a margin of error for some of these numbers --
A. Yes.
Q. -- 4.1 for white non Hispanic turnout and 4.8 for black turnout; right?
A. That's correct.
Q. And what does the margin of error mean in this context?
A. The margin of error means that the percentage points can go up and down over the mean, the percentage which is the type of mean on that. So as I recall, the -- unlike the ACS, I think the CPS does 95 percent confidence intervals, I believe. I could be wrong, but -- so what this is stating, then, is saying that we're 95 percent certain that the true amount is within plus or minus 4.8 percent of 72.9 .
Q. So fair to say that, again, just setting aside the overreporting issue for the moment, assuming, you know, the veracity of the responses, the real number for self reported black turnout in Mississippi on the CPS could be as low as 68.1 percent?
A. It could be if you're looking at the -- if you want to look at a 95 percent confidence interval. So if you look at it that way, there's a range of numbers and we say we're 95 percent certain that it -- it's a range estimate rather than a point estimate.
Q. And what the CPS is telling us is that the confidence interval is between 68.1 percent and 77.7?

```
                                    Page 232
    A. Give or take, yeah, that's what it's telling
us. And I believe it is a 95 percent confidence
interval.
Q. And then looking at the white turnout number of 69.8 percent, margin of error there is 4.1 ; meaning that, again, setting aside overreporting, assuming the veracity of the responses, the real white turnout number could be as high as 73.9 percent, and that would be within the confidence interval for the survey?
A. Yes.
Q. So 68.1, the lower bound of the confidence interval for black turnout is lower than 69.8, the mean white turnout number?
A. Yes.
Q. And 73.9, the high bound of that confidence interval for white turnout is higher than 72.9, the mean level of estimation of black turnout?
A. Absolutely.
Q. So these confidence intervals for black turnout and white turnout in the CPS substantially overlap?
A. Yes, they overlap. The upper end of one extends across the mean of the other one and vice versa. In that sense, they overlap.
Q. I mean, they don't overlap by just a little bit, the mean of one is within the confidence interval
```

of the other?
A. That's what I just said, I thought.
Q. But not just over -- in other words, they don't just -- it's not simply that the upper bound of one and the lower bound of other cross a little bit, the mean are within the confidence interval?
A. That's the important part. It's not the confidence interval themselves that overlap, it's do they cross over the mean of the other independent sample.
Q. And when the confidence intervals of the two means overlap, that can indicate that the difference between the two numbers is not statistically significant?
A. It's indistinguishable, that's correct.
Q. And would you say that these numbers are not statistically --
A. From a statistical standpoint, that's correct.
Q. So -- but your conclusion wasn't that black voters and white voters vote at statistically similar rates based on the CVS?
A. That's correct.
Q. Your conclusion was that blacks vote at higher rates?
A. Yes.
Q. But the CPS only supports the conclusion that blacks and whites vote at statistically similar rates?
A. Yeah. If you take that into account, and in this case I took the point estimates at face value because it's a relatively large sample, even though the confidence intervals, one end overlap the mean. But that's correct, you're absolutely correct.
Q. So let's talk about the CES. You would agree that Dr. Burch in her rebuttal report analyzes turnout using alternate data sources other than CPS, they're not purely survey based?
A. Yes.
Q. And one of those is the CES, the Cooperative Election Survey?
A. Correct.
Q. Actually, it's -- excuse me. It's Cooperative Election Study?
A. Study, I think that's correct.
Q. As you say in paragraph 11 of your surrebuttal report which has been marked as Exhibit 20, you agree the CES "has been available and has been used by experts in the field for many years."
A. That's paragraph 11?
Q. Correct.
A. Yeah, I'm pretty sure I said that in paragraph
11. Yes, I did.
Q. And you agree with that still?
A. Yes.
Q. And you would agree that one aspect of the CES is that political participation by voters who respond to the CES is independently validated?
A. Yes.
Q. So I want to discuss how the CES works to make sure we're on the same page. And let's mark at this point the technical documentation that you refer to in your surrebuttal report, and we'll need one more sticky, if you don't mind. Are we at 23?

MS. JONES: Yes.
MR. SAVITZKY: I'm marking as Exhibit 23
Guide to the 2020 Cooperative Election Study. And this
is the guide that you were looking at and referencing in your surrebuttal report?
A. It is.
Q. Now you agree that with the CES, the first step is that there's a preelection survey of adults that includes demographic questions; right?
A. Yes.
Q. And in Mississippi, 462 adults responded to that survey?
A. Yes.
Q. And in a 95 percent confidence level with a 5 percent margin of error, a sample size of 384 is going to be representative of population of -- the population of Mississippi?
A. In general I would say that, but you've got another -- it's another set of qualifications that goes with it just like they would go with the CPS and particularly the CES. And that's involves the weighting
Q. So setting aside weighting and talking only about whether or not the sample size is sufficient to be representative, a sample size of over 384 will be sufficiently large to be representative?
A. It depends on the purpose when you say that. So I'll go slightly into lecture mode here, if that's okay. So it depends on what's going to be important in terms of confidence intervals and how willing you are to live with error. So a sample size of 25 , because it's under what's called large sample theory might be sufficient to answer questions for something and, you know, they can deal with the confidence interval as they come. When you generally get up to a sample size of around 400, the rule of thumb is that with that, you can say you're 95 percent certain you're within plus or minus 5 percentage points of what the true number is
excluding all sources of other issues. But in general, that's the case.

So when you say it's representative, a sample, any sample, as long as it's taken scientifically is designed to be representative of the population it's taken from. That, I think, you clearly understand. So the sample size simply makes your ability to refine where the point estimates are and in general as long as there's no change in variation, standard deviations, you can then start to reduce the confidence intervals so you're more certain where the actual true number lies in the population when you're trying to infer to it.

So in that sense, every scientific sample should be representative, I mean, that's the whole goal. And what in particularly is important when it's representative is the variation. What you want is not so much the mean in the sample to be the same as the population mean, what you want out of the sample ideally is that the variation of the sample if not exactly the same, is very similar to what you get in the variation of the population.
Q. And that's why you use weighting; once you have a sufficient sample size, you also need to do weighting to make sure that the sample accurately reflects all the different attributes of the population?
A. Yeah, I would not probably not describe it as exactly that, but what you're trying to do is say, look, we know we don't have enough people in this particular category, you know, race, socioeconomic, age, whatever it might be category, and so we know -- and they may be differentially representative in the sample, so we're going to say here's something that we think is a population that would fit to it. So it's post ratification that's -- again, I'll go into slight lecturing mode.

So you may have a sample survey and
60 percent of -- in a telephone survey, 60 percent of the respondents say yes to a question. It turns out that 60 percent of the population's female, 40 percent is male, and all 60 percent of the -- 60 of the females would say yes and all males would say no. So you've got to readjust it -- do you follow me -- so that you've got the right estimate of what you think the population estimates are, because when you do that, then it looks like it's going to be 50:50. And that's what weighting attempts to do.
Q. And we'll talk a little bit more about weighting, but I want to -- in terms of sample size -and I believe it's the Krejcie and Morgan, you know, formula originally, but we agree that once you get up
above 400, you should have a sufficient number of respondents?
A. But again, what I stress in that regard is that what you're doing is, you're -- you can make a statement such as I'm 95 percent certain that I'm within plus or minus 5 percentage points of what might be the case. If you get up to 800, you can say I'm 99 percent certain. So what it does is, it reduces the uncertainty around the point estimate that you've gotten and the range estimate.
Q. And I think we're totally on the same page, let me restate the question just for clarity.

For purposes of being able to speak to something with 95 percent confidence and with a 5 percent margin of error, once you get to 400 or more respondents on a survey, you will have a sufficient number of respondents to speak to the question at that level of confidence?
A. Given that the survey was done on a scientific, you know, random selection basis, given that you don't have a whole lot of bias in the survey, given that people -- there's not a lot of differential nonreporting at the personal level, etcetera, etcetera, etcetera, all else being equal, yes.
Q. Okay. And just looking briefly at Dr. Burch's
surrebuttal report which I think is -- oh, her rebuttal report, excuse me, which is Exhibit 18, and looking at page 4, Footnote 12 --

MR. WALLACE: Page 4, Footnote 12.
MR. SAVITZKY: Yep.

BY MR. SAVITZKY:
Q. Let me know when your there.
A. I'm there.
Q. You would agree that 462 respondents sample for Mississippi is above the minimum sample size to detect small effects, co D equals . 2 with a standard level of statistical power pointing -- in a significance level of . 05 ?
A. I agree, as I just said, when it's above that number, then you've got a 95 percent chance of your confidence -- your confidence intervals as stated, I'm 95 percent certain that the estimate that we're getting is plus or minus 5 percent of what the true number of the population is.
Q. And you wouldn't dispute Dr. Burch's characterization that this number, that 462 is above the minimum sample size to attack small effect at that level of statistical power and significance?
A. Yeah, I would dispute that because there may be small effects that that sample is not going to pick up
that large. Do you follow me? There could be really minimal differences that are important in a certain situation where a sample size of 400 is not large enough to detect that it's a statistically significant difference. So in that sense, it depends on the context. And if you're asking about the context in which we're talking about voting survey, then it probably is adequate. I think that's a question you wanted to ask me.
Q. Yes. And specifically in the context of analyzing voting by race in Mississippi?
A. Yes. And I would qualify my answer again, everything else being equal, it should be.
Q. So getting back to how the CES is done, we talked about the first round of questions. Then there's a second postelection wave of questions that are asked of the same respondents in a postelection second set of questions; right?
A. Yes.
Q. And the postelection wave, post wave of questions includes questions about whether or not the person voted?
A. Yes.
Q. Not every voter responds to the second wave?
A. That's correct.
Q. Most of them do.
A. (Nods head.)
Q. And then in addition to the data from these two waves of survey questions, there's also vote validation information that is added to the dataset --
A. Correct.
Q. -- for all the respondents; right?
A. I believe that's correct, for all the respondents.
Q. And the validation is done using state voter history databases to check whether voters are registered and whether according to their vote history they actually voted?
A. Yes.
Q. And we can look at the CES documentation which was marked as Exhibit 23?
A. Yes, it's over here. I've got it.
Q. Looking at page 19 at the vote validation variables, we can see -- so one of the variables is CL voter status which reflects whether the voter is registered; and if that's missing, then there was no match on their registration record. Does that sound right?
A. I think so.
Q. And then if you have CL 2020 GVM which is
whether the respondent voted in the 2020 general election; right?
A. And how they voted.
Q. And their method of voting?
A. Yes.
Q. And if there's no data for that variable, then they were not validated as having voted?
A. It's unknown, I believe, is what they put in there.
Q. They say: "If missing, respondent did not have a report of voting."
A. Yes.
Q. Okay. And you would agree with the statement on page -- the next page, page 20 of the documentation, if a person has any nonmissing value for CL 2020 and GVM, they have a validated vote record for that election?
A. Correct.
Q. And you would agree that this validation procedure was performed for every survey respondent whether or not they responded to the second wave questions?
A. That's what the study states.
Q. You would agree that the validation was performed whether or not they say they voted?
A. That's what they state, so I have no reason to disagree with what they state they did.
Q. And so you'd expect in the data, there are some respondents who did not answer the second wave of the survey but can be and were validated as being registered and having voted in the 2020 election?
A. Yes, that could happen.

MR. SAVITZKY: And just for completeness, why don't we now mark two more exhibits. I didn't end up marking Krejcie and Morgan, but I could. So what I'm going to mark here, first with Exhibit 24, I'm going to mark -- so I'm going to mark Exhibit 24, and you can just look at that. That is the raw data, not every variable, the selection variables, otherwise, the raw data for the Mississippi CES. BY MR. SAVITZKY:
Q. Can you just check that, see if you have any reason to dispute that, and you can also confirm that it has 462 rows.
A. I confirm that.
Q. Okay. And I'm also marking as Exhibit 25 same exact data but this one just for ease of use, we have re-coded the raw data with the equivalent textual information so it's legible to work with.
A. Okay.

```
                                    Page 245
                            Q. Okay. And we can see in these columns there's
a variable that says: "Took post," do you see that?
    A. Yes.
    Q. Which means that they took the post wave
    survey?
    A. Yes.
    Q. And then for those who didn't -- who have a no
for took post, they also have an N/A for their weight in
the common post weight weighting; right?
    A. I see that.
    Q. And we can see the CL voter status and CL 2020
GVM information is there as well?
    A. I do.
    Q. Okay. And take my copy out too.
            And just to confirm what we were talking
    about earlier, looking at row 60, which is on the second
    page --
    A. Of Exhibit 25, right.
    Q. -- of Exhibit 25, we can see this row 60 is a
    respondent who did not take the postelection survey;
    right?
    A. Yes.
    Q. And they're not weighted in the post weight
weighting metrics; right?
    A. That's correct.
```

Q. But if we look at whether they're registered and whether they voted, they're active and they had a validated vote; right?
A. Yes.
Q. And if we look at row 108 on the next page, another example, took post N/A, not weighted, if we look at common post weight and VV weight?

MR. WALLACE: What number are we on now?
THE WITNESS: 108.
MR. WALLACE: 108. Okay.
Q. Right, took post N/A, no weighting in common post weight and VV weight; right?
A. Correct.
Q. But active with a registration record, and their vote was validated?
A. Correct.
Q. I could actually go through a bunch of these, but if I represented to you there are 29 such records overall of voters who didn't take the post wave survey but whose votes were validated, would you dispute that?
A. I believe you.
Q. All right. So we may -- we my use these again, we'll just set them aside for now.

So the last part of the CES I want to make
sure we're square on is the weighting system, and we
started talking about this a little already. Generally speaking, you would agree that weighting is used to make statistics computed from the data more representative of the population.
A. That's the idea, yes.
Q. And you would agree that using weights is more or less ubiquitous in survey-based research?
A. It is.
Q. ACS is weighted? CPS is weighted.
A. (Nods head.)
Q. You would agree that if the sample is not self weighted, it's a good idea to use weights as often as possible?
A. I don't know if I can say that about any case, but if you want to -- if you know the -- or have reason to believe the sample is not representative of the population in the sense you're talking about and that it is a scientifically drawn random, even if it's a complex random sample, then in general the idea would be you'd want to use weights but you want to make sure the weights represented the population in question too.
Q. And as you explain in your report: "The basic idea of weighting in a survey is, you're assigning weights to each of the responses in order to have the attributes of the sample population more actively mirror
the attributes of the overall population."
A. Correct.
Q. And for the CES -- and we can look at page 16 of that technical documentation that I believe was marked as Exhibit 23 -- you would agree the CES samples were weighted to match the distributions of the 2019 ACS on gender, age, race, Hispanic origin, and education level?
A. And where's this?
Q. This is on page 16.
A. Thank you.

MR. WALLACE: 16? Okay. I thought you said 19.

MR. SAVITZKY: 16.
BY MR. SAVITZKY:
Q. Last sentence of the first paragraph: "The CES sample was weighted to match the distributions in the 2019 ACS on gender, age, race, Hispanic origin, and education level."
A. Yes.
Q. All right. And that is the set of weights that are used for the common weight and common post weight --
A. Yes.
Q. -- systems. And then there's another set of weights that was created, the VV weight and VV weight
post that's only for respondents for whom there was a validated voter registration number; right?
A. Yes.
Q. And those were matched to the demographic attributes of registered voters according to the 2020 CPS?
A. Yes.
Q. Now staying on page 16 of this technical documentation that we're looking at and looking down the page, we can see the four weighting variables that we talked about earlier; right?
A. We can.
Q. Common weight, common post weight, VV weight, VV weight post?
A. Yes.
Q. And the idea is that because we have common and VV weights that represent the whole population of adults versus with the VV weights, only those with a validated registration record, and then we have post versions that should be used when talking about the second wave questions?
A. Correct.
Q. Because the population that answer the second wave is slightly different, so you need to use different weights to true them up to either the ACS in the face of
common most weight or the CPS in the case of VV wave post?
A. Correct.
Q. And just continuing to refer to this discussion of weighting in the technical documentation, you would agree that the common weights are meant to ensure that the sample is representative of all adults in Mississippi in this case?
A. Yes.
Q. And the VV weights are meant to ensure the samples are representative of all adult registered voters?
A. Yes.
Q. And you would agree, as I think they say in the technical documentation, common weight should be used when you're characterizing the behavior of all adults?
A. Yes.
Q. And you would agree that common post weight should be used when characterizing the behavior of all adults but referring to variables from the second postelection wave of questions?
A. That would be the ones who actually voted or -right? They responded to the second wave, that's a better way to say it, and reported whether they voted or not.

```
Page 251
Q. So you should use common post weight when referring to all adults but looking at responses to the second wave questions?
A. Yes.
Q. And you would agree that VV weight should be used when characterizing the behavior only of registered voters in Mississippi?
A. Yes.
Q. And you'd agree that VV weight post should be used for characterizing the behavior of only registered adults and also looking through results of those second wave, post wave questions?
A. Yes.
Q. And just sticking with the VV weights for a moment, you would agree that by definition, the VV weights exclude people who were not independently validated as being registered to vote?
A. I believe that's the case, yes.
Q. Meaning that those responses were given a weight of zero, so when you apply the VV weight variable, they're not counted?
A. I believe that's correct.
Q. So if someone reported on the second wave of questions that they had voted but in fact they weren't even registered, that would be an instance of
```

overreporting; right?
A. Yes.
Q. But that instance of overreporting wouldn't show up if you used a VV post, it would be excluded from the sample?
A. It could be, yes.
Q. Well --
A. Yes. Well, if that's the weight you're using, giving the weight of zero, that's what you're saying.
Q. Yes.
A. Yes.
Q. So if you applied VV weight post, you would exclude that instance of overreporting?
A. Yes.
Q. And that's because VV weight post only includes people who were independently validated as registered?
A. Yes.
Q. And so if there are racial disparities in who was validated is registered in the first instance, those would all be masked when you use VV weight as well?
A. They could well be masked, yes, depending on how many people were not carried forward into survey, but they could be, yes.
Q. Well when you use VV weight or VV wait post, you're only looking at voters who have a validated
registration?
A. I understand that. But the issue is how many of the initial sample were not followed up in that part of the survey. Do you follow me? So if it's a pretty high number, then you would be having some problems; if it's not so high a number, you may not be.
Q. I guess my question is: If there are racial disparities in who is registered to vote and you use VV weight such that people who aren't registered to vote with a validated registration are taken out, you're not going to pick up those disparities?
A. Right. On a visual basis, yes.
Q. And another item on the CES generally, in looking at page 17 of this technical documentation, there's a sort of discussion under the heading Accuracy of the CES Sample with some discussion about validating the sampling done in the CES by comparing survey results to actual election results. Do you see that?
A. I do.
Q. And the authors say: "In the large sample, the CES allows us to validate sampling by comparing the state level samples within the survey with the actual election results."
A. I do.
Q. You dispute that?

NO .
Q. And the authors conclude that: "Overall the results from these analyses demonstrate the CES is a reliable source of data on voting at both the national and state level." Do you dispute that?
A. That's their conclusion. I don't dispute it.
Q. So let's look at your surrebuttal report, which we marked as Exhibit 20? Is that right?

MS. JONES: Yes.
Q. And looking at paragraph 11 of your report, you say: "Generally speaking, when a survey sample is being used to analyze extremely small populations, the largest sample possible is most beneficial." Right?
A. Correct.
Q. Do you contend that Dr. Burch analyzed an extremely small population in looking at black voter turnout and white voter turnout in Mississippi?
A. When you look at the black voters, they're in the 462 sample set, it starts to look small, yes.
Q. Do you know how many black respondents there are of that 462?
A. I'd have to go back and look.
Q. If I represented to you that it's 160 respondents who were black?
A. That's sounds correct, yeah.
Q. And is that an extremely small sample size?
A. Well it depends again on the context of what you're trying to do and what you need for confidence intervals and margins of error and all that. So it's hard, again, in general to say this is an extremely small sample size or not. So in the context of this, it may be the fact, and as I looked at it, that it could be that it's a small sample.
Q. Well just to be clear, you don't see it's a small sample, you say: "When a survey sample is being used to analyze extremely small populations." Do you contend that black voters in Mississippi are an extremely small population?
A. No. The statement there is general. But what goes on with the -- when you're using this, if you start to get -- for example, if you're looking at Dr. Burch's analysis, so let's look at somebody who might be, let's say, black of a certain age, they're eligible to vote, what their educational attainment is, you're starting to drop the sample size down. So from the 462, you're starting to go get down to small numbers.
Q. And did Dr. Burch analyze behavior by black voters in a particular subregion with particular educational and socioeconomic characteristics?
A. Well for the sake of Mississippi, she did.

A. So Case 320. The common weight is 7.2 , the common post weight is 14.298, the VV weight is 7.8, and the VV weight post is 6.6. Those are really high weights, and they're indications to me of exactly what I was saying about if you've got weights that high, you get down to subcategories of people that are so small, you're weighting them up really highly. And that's what's going on here.
Q. And I guess my question is: What are the subcategories that you contend that Dr. Burch analyzed?
A. Well if she analyzed anything with these people in it, then they have these weights on it. If she analyzed Case No. 320, and I didn't see anything that said she excluded it, that has a weight of 7.2 .
Q. But you agreed previously that we use weights in order to make the surveys more accurate and to true it up to the characteristics of the population?
A. I understand that. But the -- as we said earlier too, there's a lot of tradeoffs in this. And so what you get is, if you've only got one person that fits in certain categories and you have to weight that person by a factor of 7 just on the common weight, it means you're putting a lot of burden on that person. What you've got is an inverted pyramid. So you've got one person representing a whole set of people. And that's
what I mean. Whatever the categories were that they took in detail that they decided they only needed to -that they need to put a weight that big on the common weight is really representative of the fact that there's a lot of -- and this goes on and on throughout this entire survey. You can see it. I mean, carry this one over, you get into the common post weights for this person, it's 14. This person's representing 14 people. And when you look at the diagnostics on Dr. Burch's logistic regressions, you can start to see that the diagnostics and the differences in the DF betas, they're all indicating that you've got outliers scattered throughout this dataset that if you took one of them out, your results change. And that's what that says, and that's what the meaning of my statement is.
Q. And we'll just get into this, but just to be clear, when you talk about the diagnostics, those are diagnostics that you ran using the VV weight?
A. Or any other weights. But you can see them on here, I just ran the VV weights. But using any other weights, it's going to be very similar. I can tell from experience and looking at weights and running regression, all those diagnostic things are not exclusively logistic regression, they're used throughout all kinds of regression analyses, and I've used them.

You start seeing the matrix Ds, the Cook distances, the DFFITS, the DFBETAs -- I'm sorry for all the acronyms -you start looking at those things, and you start to see how many of them are fairly large and you go, my goodness, you take -- so here's the simple example. Picture a diagonal -- you know, a 45-degree angle line like this, all right? So you have a regression line, all the data points on it, the R-squared on that's going to be 1, you know, the X variable perfectly predicts the Y variable. You could have an outlier up here in one, okay. And so the regression line, the R-squared is not going to be 1, it's going to be something else. You took that one point out of there, and all of a sudden it's 1. That's what these are indicating to you. So there's a lot of -- because the case sizes and whatever the categories are that the CES uses are so small, however they did it, age, education, whatever they all are that they weighted up to, whether it's ACS or the CPS, you're looking at these weights like this, my goodness, this -- you're putting a lot of burden -- as I said, it's like an inverse triangle on different people, such that if you took a few of these cases out, you might get a totally different answer. That is major problem I see with using the CES. Whether it's exclusively to Mississippi, I don't know. So all
the arguments about the sample size being sufficient, 462, yes, in general you get what I said, 95 percent confidence plus or minus 5 percent. But you start getting down to these weights -- and it crosses them. Doesn't matter if you use common weights, common post weights, the VV weight, the VV weight post, you're starting to look at things and go, my goodness, what this starts to indicate to me, not only do you get differences in how the FITS are, but how the parameters are. The models can change dramatically, dramatically. Sorry for the lecture mode. That's one of the big issues I see with it.
Q. So -- and by the way, you referenced the CPS and ACS. Those are also weighted?
A. Yeah, they're weighted themselves.
Q. And --
A. And then you're weighting to, you know -- so it's becomes complex. And however all the process was done to get to the point -- and I think the people who put this study together did the best job they could and I don't have any reason -- they weren't trying to bias anything, they're trying to make a good survey that people can use. But the point is, you get to things -if all the weights were something like . 094 and 2 and 1, things like that across the board on all these, that
might be something different.
But my goodness, when you start to see weights like I just noted 7, there's another one. So No. -- I think it's No. 35, 7.39 common weight, 10 on the common post weight, then it's 8 on the VV weight, and it drops way down to 1 on this. I mean, you get all kind of variations in this. And that really affects the models and what you can do with it.
Q. So I understand your opinion that the weights are high.
A. Well, it's not -- the weights are high. It's not my opinion. When you run the diagnostics on the logistic regression analysis, you can see it in the diagnostic information. As I said, what are called the DFBETAs, the differential change in the coefficients in the model, the DFFITS, DFFITS is what it's called, the differential changes in the FITS. In the Cook's distance, how far are you moving away from something. And they all apply, which indicates you've got a lot of instability in the model.
Q. So this is -- you're anticipating my next question. I had one other to ask, I'll go back and ask you, but you run a Cook's distance test?
A. They're all -- all that stuff is in the output that I put on the appendix in my report. It's all
there. I put up -- Dr. Burch did not put any of those diagnostics in her report. All those diagnostics are in my report.
Q. And you ran tests to measure the influence of particular respondents on the survey?
A. They show it. That's what these lines are back here.

MR. WALLACE: What page you're looking?
A. Well, pick one. Pick page 85. You know, I -let me pick something that's -- let's go to page 77. Are you ready?
Q. Uh-huh.
A. Page 77, top part, look at Case No. 460. So remember, Burch dropped 2 out of her test, right, so she ended up with 460 .
Q. Correct. Because those are non citizens.
A. Right. So look across here, it says Cook's distance C and Cook's distance C bar --
Q. Uh-huh.
A. -- do you see those? Look at the numbers on these. And these are not the only ones. These start to indicate to me that with these kinds of distances -- and C means it's specific to. If you take this out, what kind of change do you get -- and the Cook's distance, C bar is an aggregate of it, you're going to start
getting big changes in what the parameters are. And the parameters would be -- let me go to the front where you actually get logistic regression models. Bear with me while I go through page changes here. So where it says here regression coefficients --

MR. WALLACE: Which page?
A. Okay. I'm sorry, page 21.

MR. WALLACE: OKAY.
A. So when you start -- these are the --
basically, this is her model that I replicated. You know, I'd have to look at this in detail. But what I'm talking about is in general, those numbers. And that's what generates the estimates. Is this going to be in category 1, the validated voter or not a validated voter? Those numbers can change dramatically.

And so I -- she didn't provide any of this kind of residual analysis in her report -- let me finish -- and when I ran them, it looked to me like there's a lot of instability in the dataset itself and it probably has to do a lot with the weights. You know, that's just my hypothesis at this point. Such that if you pull certain people out or if something changed smally (sic), you can get a big change on what the model looks like including the parameters, whether or not it's statistically significant, all sorts of issues like
that.
And I didn't see anything in the literature about any of these issues. So when I looked at it myself having had the experience with exactly doing this with every form of regression analysis I run, you start going, my goodness, this -- there's a lot of instability in the dataset itself.
Q. And just looking at page 21 here, what is it here that you were relying on for the statement that if you changed a few of the respondents, you'd get a different result?
A. What I'm saying is, see -- page 21 , see where it says odds ratios? Where it says, independent variables, see where it says intercept, black and other race? Those are the variables she used in her model. Then move over, see where the column that says had reduction coefficient, see where it says B and then in parenthesis i, B1, B2, B3. The intercept value is .25, the black coefficient is minus 0.354, the other rates is minus 1.24. These are the ones that generate whether -this is what generates are you going to be placed in the category of the validated voter or a nonvalidated voter; right? But if you start getting the .25 because you pull out of the real influential places on there, that could change -- I'm just hypothetically making this up
to show you -- that could change to . 3 from . 25 , could change to .4. The minus 5.4 could change -- the point I'm trying to make is, you could get number changes from this that then put something in a different category.

That's what I mean by the dataset looks to me with those kinds of weights -- and when I looked at the residual analysis, that is diagnostics from all the standpoints I know how to look at it from given that you had a multidimensional problem, you've got an issue. Here's another issue. This is called a ROC curve --

MR. WALLACE: Which page?
A. I'm sorry. Page 37. Receiver operating characteristics. Do you follow me where it says rock curves, combined and separate. That diagonal line is if there's no explanation in something as you're going on. What the ROC curve shows you is as you start to get up to certain probabilities of predicting correctly not having a -- what's the term they use, a type 2 error, there's another term they use in the medical profession, but it's a probability -- it's mislabeled. So you're correctly predicting it's going to be head and it turns out to be head. But if you're correctly predicting a head and it turns out to be tails, you've made an error. Do you follow me?

So what you ideally want to see in a ROC

BUELL REALTIME REPORTING, LLC 206.287.9066 | 800.846.6989
curve relative to this diagonal line is a line that's almost vertical going up from zero here as high as it goes and then goes across like this. What that means is, hey, I can get up to a real high probability of being correct with still maintaining a low probability of it going into the wrong category. And what these ROC curves show to me is that her model is not much different than the diagonal, it's not doing that. At every level, she's getting probability of predicting incorrectly, and she has probabilities of correctly
predicting. That to me is not --
Q. Well it's not equal, it's the same. I think in your report you say --
A. If it would be equal, the same, but it is almost the same. You go back to the one point in my report where I said her classification system only gets something like 54, 50 percent.
Q. You said 57 percent.
A. Yeah. That's not very good.
Q. With one variable getting a --
A. Well, her model --
Q. -- heads or tails?
A. -- right -- right there, just her model in
general, 57 percent. I could flip a coin and say every time I'm going to flip it, I'm going to get heads. I'm
right 50 percent of the time. And if you look at people who recommend using logistic regression, if you're down to 50.57 your model does correctly, you look at the ROC curves and everything else, it's suggests to me that the model is not very good. And I think it's not that she's necessarily flawed on trying to run logistic regression -- I don't know the answer to that -- but I think it reflects a lot of problems in the stability of the dataset. Does that help?
Q. You don't think that there's any reason why the weighting that was applied by the CES is not accurate in terms of trueing up this sample to the ACS or CPS?
A. Again, I stress the fact when you get down to categories of people. What's their age? What's their race? What's their educational attained? Whatever else they've collected in that survey, that's what they're trying to match back to, all those characteristics in either the CPS or the ACS. And you start getting to also, okay. You have 462 people. How many are black? 167. How many have an educational attainment of -okay, now you're down to 90. How many have this, you're down to 80. How many have that, you're down to 50, you're down the 40, you're down to 30. You're down to small numbers. And you go, okay, to get it up correctly so we have the right distribution of people relative to
what we see in the ACS or the CPS, we've got to assign a weight. In some cases, they're pretty low, they're not much; but in some cases, in quite a few of them, you've got some tremendous weights when you start looking at them. One person's representing 7 people? And I think one of them that I found when I looked through this earlier had a weight of 14.
Q. But again -- I just want to be clear on this -you're not saying that weighting is inaccurate in terms of doing what it is supposed to do and conforming the characteristics of the sample to the characteristics of the general --
A. I'm not saying that. The tradeoff in doing that is, you get an unstable model when you're -because of those weights that -- and I think -- I can't attest to exactly that's the whole problem with it, but when I looked at the diagnostics that I ran and saw what I saw, I'm telling you there's a problem with the model. And my guess is, it reflects the facts that you've got what I would call influential outliers. And those influential outliers are the people with really large weights.
Q. Well, I mean you say that there are indictions of instability in the model, but you also agreed that the CES, I believe we said, is a reliable source of data
on voting at both the national and state level?
A. Did -- when they designed the CES, did they design it necessarily to run with logistic regression? No. What they designed those samples for is, they want to be representative of the population. Researchers are out looking for datasets to use. So when they go out looking for datasets to use, they may not be expressly designed for the datasets we're using. Can I finish? You look like you're yawning because I'm lecturing, or else --
Q. No, no, no.
A. I couldn't tell.
Q. I was opening my mouth. Go ahead.
A. Thank you. So the datasets initially are not designed for that, they're designed to say it's descriptive, here's what we think is going in on the United States or this state or some place at this point in time. The researchers have got to pull those datasets out to use them. And so again, I go back to the point you've got tradeoffs. Yes, we made it so it represents a population and if you look at it just as it is, we think it did a pretty good job. We can say we're 95 percent certain within plus or minus 5 percentage points. Then you go and start to do for a research question or a model building session, and all of a
sudden you realize, I've got weights in here that are 1 person's equal to 14 or 7 . Well, that may or may not be a problem until I run something I'm trying to do, and then I'm looking at the diagnostics, as I've shown the examples of, and the diagnostics I ran indicate to me they're -- you've got a lot of instability, and I think it comes -- stems from the weights that are on these relative to the sample size. And it's because you're not using a sample that was designed to be -- all the samples are designed to be somewhat representative of the populations, but they're not necessarily designed for people to run models on.
Q. You talk about running models. You would agree that Dr. Burch did not only conduct a logistic regression analysis but also arithmetically reported the percentage of validated voters based on race in Mississippi?
A. I agree.
Q. And her numbers reporting those arithmetically are the same as the numbers that she obtained through the regression analysis?
A. They -- when you look at the -- when you look at, like, the percent voters on the same, look at it that way, how I would characterize that is, you didn't have to go through the regression analysis to aggregate
back up. She had the data to start with in the beginning. She had it. Just run a simple t-test on it. Do you follow me? You have the ability -- it'd be like saying, okay, I've got household level data, income level, all right, and I also have the income levels of everybody in the household, six people. I'm going to build a model now that accurately estimates what their incomes are, and I'm going to add that up to get the household level data. Why would you go through the individual people if you already got the top. And she could have just done a t-test at the beginning, and I believe had she done so, the results would have said, yes, it looks like there's a higher percentage of white voters than there are black voters that actually went out to vote and all that. But the results are statistically not significant. You can't tell the difference on them because the margins of errors or so wide.
Q. And you didn't run that t-test?
A. I did.
Q. You didn't run t-test on top line numbers --
A. Yes, I did.
Q. -- that she obtained.
A. I didn't put it in my report. If you're asking me if I ran one, I ran one at one point in time and said
to myself why did she run a regression analysis to get
back up to this point? Why didn't she just do a t-test?
Q. And you did run a t-est.
A. Yes.
Q. You didn't include it in your?
A. I didn't.
Q. Why not?
A. I just didn't think about it at the time, that
it was important.
Q. Can you provide it?
A. I can, yeah.
Q. Okay. And just while we're on the subject, you
talk about those four respondents that you identified
with those high weights?
A. Well and there's more, I just picked them out just glancing through the set.
Q. And you say they form a potentially influential set of cases in this small sub sample Dr. Burch's used in her analysis?
A. In the entire sample for State of Mississippi, somebody with a weight of 14 or 7 , the residual analysis, that is, how good is the model analysis I performed on her logistics model and looking at the logistics model I ran indicate to me that in however you want to look at it, this dataset is such that with those
high weights, you can really create some instability. It's instable, the models you're getting.
Q. And when you say "unstable" or "instability," what do you mean?
A. I mean by this. Again, I'll -- I have to visualize this. So you've got an X by Y grid. So the X values are down here in this dimension that you're using to predict something. This is standard just two variable regression analysis. If you've got a diagonal line this like and all the dots on your observations fit it, you've perfectly predicted Y from X. If one of those dots, though, is non on line, it's up here, it's going to pull the regression line up. It's influential. Everything is along this line and that's way up here, that's an influential observation such that it may say, okay, now you're R-squared, your coefficient of determination is, say, . 87 let's say .85, whatever it might -- you pull that observation out, and it's a 1. And the coefficients will change dramatically. I can't visualize that because when you use two variables or three, all of a sudden you're, you know, three space -two space or three spaces or four space, so you can't see it.

But what I'm saying is, all these diagnostics in there, Cook's distance, DFBETAs,

DIFFITTs, different FITTs, there's saying there's a lot of observations in here that if you take them out, all of a sudden you're going to get some big changes in both the model parameters and how well the data fit according to the model which indicates to me there's a lot of stability in the models. If she decided or someone else decided the people that were pulled out that were not citizens, if for some reason one other thing -- one other person was pulled out that had a high weight, the model would look completely different.

So that's what I mean about I think the dataset itself for Mississippi looks to me that it's not really the best dataset to use to try and develop models.
Q. And understanding -- well, strike that.

Did you take out these four voters you identified or some other respondents and sort --
A. No. Once --
Q. -- of see what the effect would be?
A. No. Once -- well, I can see the effect, see it already in here. It's telling you what the effects are. In general, it's the summary of what you're going to see. You're going to get dramatic changes in them. And I didn't pull them out and do that. Once I looked at the diagnostics, I could see, yes, this is -- these are
not good signs for building a model.
Q. But you're not able to say what the precise effect would be or if you used different weighting, whether you --
A. Well, you could say what the effects are going to be in terms of the diagnostic measures, they're telling you. That's what they indicate. But if I pull them out, then that would be the next step. So I can go ahead and pull them out, but --
Q. You didn't do that?
A. No, I didn't do that. There's a lot of them that would end up pulling out because of the weights in them to start looking at them. And I could use this as a guide to see which ones and see how much they change, but I didn't do that. But the indications are, I'll stress, that you've -- and people read -- talk to somebody else who knows something about regression analysis, if you look at it, they're going to yes, the potential is there that this model could really change in parameters and/or the FITTS, the model estimates of the data or both. And that's not a good sign for a model.
Q. And again, you're referencing model. When you say "model," what you're talking about is using this data in some type of regression?
wike the two logistic regression analyses.
Q. But again, Dr. Burch conducted other analyses that were -- with the CS data that were not --
A. Well, then --
Q. -- logistic regression analysis?
A. -- they -- whether or not that affects it, I don't know enough about King's ecological inference model, if that's what you're going to go to next. But that could be the case too. I just don't know enough about that model to diagnose it.
Q. And I wasn't talking about that all -- we'll get into it --
A. Okay.
Q. -- I again mean just sort of her arithmetically calculating voter turnout by race, using the survey responses in the weighting without --
A. As opposed to what she did in her first report wherein she included the population under 18 in her numbers.
Q. Yeah. I mean --
A. She's not made that kind of mistake here in that regard other than the fact she put one county into district 1 that shouldn't have been there and another one out of it. But yeah, it looks to me like she pulled the dataset correctly. And it's not her fault there, it
looks to me it's just a condition of the dataset.
Q. When you say Dr. Burch concluded ignoring the warning found at the CES study guide. "We advise caution when analyzing very small subsamples as random measurement error may lead to faulty inferences about analyzing very small subpopulations."
A. Yeah. And I may not have expressed that in the best way, but what I'm getting at is the fact that what I just said, there's -- some of these categories of people of white, male, age 18 who has a less than a high school education X, Y, Z, and you have the bond (phonetic) to it, all of a sudden you're not at whatever the white count was of voters, you're down to a really small number. And then they're trying to match that either or both to the American Community Survey or the Current Population Survey, and suddenly you've got a really small number -- a sub sample that gets a tremendous weight.
Q. And so if you were analyzing that very small subpopulation like a white, you know, person of a particular age, education, you know, geographic location, etcetera, that's where that warning that you reference would come in?
A. Yeah. And then what happens is, in general when you're modeling, you have those kinds of conditions
because weights are set on those small categories, the subcategories, and you start seeing, okay, I can see it. Whatever the categories were for that person, the fact that you've got a weight of 14 or 7 or 9 , says you're dealing now with really small sub samples that are part of your larger sample, and it's going to affect what you're going to do because they've got these weights on them.
Q. But that isn't what this warning from the study guide is talking about; right? They're talking about when you analyze the very small subpopulation, when you break it out of the survey, not the mere fact that that subpopulation is included among the larger population that you're looking at?
A. Well, you know, it's hard to say. These people run models, don't they, they built the study, you just cited one of them in a study you showed me. They're building models. So maybe they understand those issues and maybe the way they worded it was not so great, and what they're talking about is, you need to be careful because of these issues, and that's their way of saying that. I can't speak to them. You'd have to ask them.
Q. So you don't know whether their meaning was the one that you're interpreting?
A. Right. Or both. You know, the way you're
interpreting or both, yeah, I don't know.
Q. And just looking at the page that you're
referencing there when you look at that, this is on page 23 of the study guide.
A. Of their study guide.
Q. Of their study guide --
A. Right.
Q. -- right.
A. Where they say be careful of the
subcategories --
Q. Correct.
A. -- that's what I'm referencing.
Q. And they then say: "Follow the link for more information about this issue," and they cite an article. Did you look at that article?
A. Yeah, I can't remember if I did or not, no.

MR. SAVITZKY: Well, let's mark it. Getting down to the end here.

MR. WALLACE: On that subject, we started before 9:00, we took out a little less than an hour for lunch, and about ten minutes for me to check out. So giving you those breaks, I think we're done by 5:00. If you count it differently, let me know.

MR. SAVITZKY: You tell me.
MS. JONES: One hour and 11 minutes. So

BUELL REALTIME REPORTING, LLC
almost one hour, ten minutes.
THE WITNESS: That's 5:00.

MS. JONES: And that's a rough.
MR. SAVITZKY: Yeah, so probably closer to
5:20-something but --
MR. WALLACE: No. We started before 9:00, but, you know, if you get there and we've got one question left, that's one thing. If you're starting a new subject, we're going home.

MS. JONES: So we -- can we go off the record to talk about time?

MR. SAVITZKY: Let's go off the record for one second.
(Discussion held off the record.)
MR. SAVITZKY: Back on the record. And I'll
mark as Exhibit 26 the article that's linked there in the study guide.
A. Yeah.
Q. And you looked at this article?
A. Let me refresh my memory. I did.
(Witness reviewing exhibit.)
A. And in general, this article, again, goes to, I think, the definition of small sample sizes, subsamples that you were describing. But the fact that these people also built models in the same vein as logistic
models would suggest to me that they might even be saying in there even though it's not stated that precisely that you need to be careful using some of these data because of the weights. I mean, I found it amazing, and I can't say I read every page exactly, but I don't recall seeing a super warning anywhere in this dataset about the fact you may run into high rates, really large weights, and then being careful to use it. Did I miss something?
Q. No. They represented it or they say they trimmed the weights at 7 for the common and 14 for the post, I think?
A. Yeah, that might be it. That's about it. But those are some big weights in a survey, in my opinion, in my experience as with surveys.
Q. But you're not saying that they're inaccurate based on what they're trying to attribute --
A. No.
Q. -- to the population?
A. No, no.
Q. And just looking at the article that we just marked as Exhibit 26, you would agree that what the authors there talking about and what the warning that you reference in your report is talking about is analyzing the behavior of relatively rare individuals in
a population; in other words, if you were looking at black voters of a certain age, etcetera, etcetera, and looking at that and looking at the behavior of that subpopulation, not the mere presence of the subpopulation in the sample?
A. But -- well that gets to my point. If they're warning about looking at people like that that are really a small sample and that's in your dataset and they have a large weight, they could affect what you're doing to build a model. That goes back to the point I'm making. So maybe that's what they meant. They didn't state it precisely, so I can't speak to what they thought they were saying. But after running the analysis and looking at all this, it sure indicates to me that they've got weights in there that are so large and they're so many people with such large weights that you get a lot of instability in the models you're trying to construct from if you're trying to do regression type models.
Q. If you're trying to do regression-type models?
A. Yes.
Q. But if you're not doing the regression-type models, this instability is less of a concern?
A. I don't know. It depends on the context of what you're trying to do with it. It might be a
concern. For example, if you're doing a t-test and if one of the persons was pulled out of the sample, that makes a difference in the test score, it could make a big difference.
Q. Now turning to Dr. Burch analysis of the CES in her rebuttal report which was marked as 18, Exhibit 18, and looking at page 5, she reports the $C S$ team was able to validate that 53 percent of the respondents voted in the 2020 general election.
A. I don't have it in the front of me, but I believe you if that's what she said.

MR. WALLACE: Which page?
MR. SAVITZKY: Page 5, last paragraph.
Q. And you don't dispute that using the common weight weighting, that's accurate?
A. No, I don't.
Q. And you don't dispute that that's fairly close to the 58.7 percent turnout reported by the secretary of state in the official totals?
A. That's correct. I don't dispute that.
Q. And on page 6 of her rebuttal report, Dr. Burch reports that breaking this -- and this is the first sentence on the top of that page: "Breaking the CES data down further by race, 60 percent of white respondents and 46 percent of black respondents voted in

Mississippi in the 2020 election." Again, you don't dispute that using the common weight weighting, that's accurate?
A. That's correct.
Q. And Dr. Burch reports that she conducted a logit regression analysis, she said: "My regression analysis validated turnout by race, and the CES confirms these percentages finding the same large statistically significant gap between black and white Mississippi voters."
A. That's right. Brings into play all the criticism I have of the dataset when using logistic regression.
Q. But you don't dispute that that is the result of the logit regression analysis run on the data?
A. No, I don't despite that.
Q. And you don't dispute that that matches up with what simply arithmetically calculating the validated voting for black and white voters in the --
A. I don't dispute that.
Q. Okay. And looking at paragraph 29 of your surrebuttal report, you say Dr. Burch does not describe the fit of her model to the data and whether or not any of the assumptions underlying logistic regression, it would suggest the regression model was violated?
rect.
Q. And you don't cite any support for the
suggestion that a goodness-of-fit test is required for a
binary login analysis?
A. Well it's my oversight, but I assume that anybody who runs a model understands that it should have a good fit if you're going to use it. So that was my mistake in not citing a whole bunch of references saying that you should use it, because my understanding with every researcher, the idea is, you have a model and you should report what it looks like. I just thought that would be common knowledge, so my error.
Q. Would you agree that model diagnostics can create as many problems as they solve?
A. Well depends on --

MR. WALLACE: I guess I'll object to the
form, but he my answer.
A. I guess it depends on what the problem is. So if you're trying to build a model to argue something and the diagnostics suggest you don't have a good model, that would be a problem, if you follow what I'm saying. And if you're trying to build a model that's exclusively designed to do something and the model says this is not very good at doing that, it's a problem, if it -- if it means that. You look at the diagnostics and it's going
to create other problems, more generally I would see the problem that's being created and it's telling you you should probably not use this model or look for other variables or use some other different approach.
Q. Would you agree that there's no distributional assumption for a binary logistic model?
A. I can't remember what the distributional assumptions are on binary logistics models, if there are ones or not, I just can't recall if it's assuming some sort of distributional function. And there may be different algorithms through different approaches to logistic regression that do assume them and some that don't.
Q. Would you agree --
A. I don't know the answer to that off the top of my head.
Q. Would you agree that in a model where there's no distributional assumption, it would make less sense to use a goodness-of-fit diagnostic?
A. No, I wouldn't agree to that. I mean, any kind of model would -- this is semi lecture mode. So in any model, you've got -- two out -- you're doing one of two things, really. You're trying to predict something or you're trying to have a causal explanation as best you can with the model what the determinants are on
something. And it -- it looks like she's doing both in some of these models. But basically, it's -- the overall focus is on prediction. And if you're going to predict something, that is, you're going to classify people into one group or another group, then you need to be very careful about how well your model fits. It may be less important if you're focus is on you're trying to explain things. It may be that you've got a really low explanatory power in your model but it's sufficient to say I think this variable, whether or not you've completed high school, has a fairly large effect on what your future income's going to be at age 50. That's a different story. But if you're trying to put -classify and correctly put things, you better have a model that fits well; otherwise, you get things like where it said right in here where I said classification system's only . 57, it's not better than just, you know, randomly tossing a coin and saying every time I'm going to say heads and I'm going to be right 50 percent of the time. And that part is definitely in the literature about saying if you are not well over that, you don't have a very good model. And that's consistent with all the diagnostic things I looked at, that the model is not particularly good.

THE REPORTER: I think we lost everybody on

Zoom.
MR. WALLACE: Hold on.
MR. SAVITZKY: Let's go off for a second.
(Discussion held off the record.)
MR. SAVITZKY: Back on the record.
BY MR. SAVITZKY:
Q. And did you run those model diagnostics yourself?
A. Yes.
Q. That's what you were talking about earlier?
A. Yes. The examples I pointed to are all models I ran. I replicated her model first and then said here, if I put these different weights in, here's what you get.
Q. In your surrebuttal report, you say that Dr. Burch's analysis was wrong because she should have used the -- she should not have used the common weight weighting?
A. Yes, that's what I said.
Q. Do you still agree with that?
A. I -- I might revise that. I think it's still better to have used the weights that I ended up using in the suggesting.
Q. And you said in your report -- and again, if you want to revise that and back off that statement, we
don't have to get into it, but --
A. Yeah. And I just said yes, I think she's not as incorrect as I thought she was initially when I read it.

MR. WALLACE: Let's get what paragraph we're talking about so we know what you're revising.
Q. Let's talk about paragraph 37 in your rebuttal report. You say --
A. Yes.
Q. -- "Because Dr. Burch uses the validation variable in her logistic model, she should have used the common post weight weighting because she's reaching across to the postelection wave with a validation of I voted takes place." Right?
A. Correct.
Q. But as we discussed, the validation is done independently of the postelection wave questioning?
A. That's correct.
Q. There are numerous validated voters, as we went through, who did not answer the postelection wave and who are omitted from common post weight; right?
A. Correct.
Q. So Dr. Burch was not reaching across to the postelection wave, she was analyzing a variable validated voting that applies to the entire sample?
A. That's correct.
Q. And because she was looking at the entire set of 462 or 460 minus the non-citizens respondents, common weight which is used for all adults where none of the variables from the postelection wave of questions being studied was the correct weight to use?
A. That is correct.
Q. And that is what I was referring to which should be corrected.

And turning back to Dr. Burch's rebuttal report on page 6, she then discusses another analysis where she looks into overreporting. And we can --
A. That's Exhibit 18 again?
Q. Correct. So Dr. Burch first looks at -- she concludes that 60 percent of white respondents and 46 percent of black respondents voted in the city based on the CES data, and then she also said: "It's worth noting the CES allows us to examine overreporting of voting." Right? So she looks at what is turnout by race, and she also looks at overreporting; right?
A. I believe that's correct. So we're on page 6; right?
Q. Page 6, the paragraph at the bottom under the chart.
A. Yes, yes.
Q. Right? So she's -- having looked at sort of what are the CES numbers show from (inaudible) she then says we can use this data to examine overreporting of voting by black voters and white voters; right?
A. She states that, yes.
Q. And she says the CES -- excuse me. The CES allows us to examine overreporting of voting by comparing self reported voter turnout to validated voter turnout; right?
A. Correct.
Q. Conceptually that makes sense; right?
A. Yes.
Q. So what she's doing, she's looking at respondents who reported voting in the second wave of questions, and she's seeing how many of those folks were actually independently validated as having voted; right?
A. That's, I believe, what she was doing, yes.
Q. And because this time she's looking at a variable from the postelection wave of questions, she uses the common post weight weighting as she notes in Footnote 22; right?
A. Yes.
Q. Okay. And Dr. Burch reports that 74 percent of white Mississippi respondents who said that they voted in the second wave actually did so according to the
independent validation; right?
A. I believe that's correct, yes.
Q. And you don't dispute that?
A. No.
Q. And she says that by contrast, 57 percent of the black Mississippi respondents who said they voted on the second wave were actually validated?
A. That's correct.
Q. You don't dispute her numbers on that?
A. No.
Q. And you replicated them, actually?
A. Yes.
Q. And you agree that using a common post weight weighting, they're accurate?
A. Yes.
Q. Now, at pages 8 and 9 of your report, your surrebuttal report, you say that: "Rather than using common post weight for this analysis comparing reported voting to validated voting, Dr. Burch should have used VV weighted post." Do you also want to revise that assertion?
A. Yeah, I think she still should have used it, but I think you're correct, that's a mistake I made. MR. WALLACE: It's on page what? THE WITNESS: 8 and 9.

MR. WALLACE: Of yours.
THE WITNESS: Correct.
BY MR. SAVITZKY:
Q. Right. And we discussed the VV weights only include people who were independently validated as being registered?
A. Correct.
Q. And that would mean excluding people who were reported -- who reported that they voted on the second wave of survey question but, in fact, weren't registered and didn't vote?
A. Correct.
Q. And if you're trying to detect overreporting, you're going to exclude potentially a lot of overreporting that way?
A. Correct.
Q. And by the way, do you know if there were respondents like that in the sample who reported voting but in fact were not registered and were excluded from the --
A. I believe there were. I would have to go back and look, but I believe there were instances like that.
Q. And we actually -- I mean, can look at them.
A. We can.
Q. Just briefly, we can pull back out what's

Exhibit 25. And just starting with row 29. Tell me when you're ready?
A. I'm ready.
Q. And this is a person who on CC2401, the question whether they voted, they said I definitely voted; right?
A. Yes.
Q. Voter status N/A, no validated vote and the VV weight given the zero weight --
A. Yes.
Q. -- and they are excluded?
A. Yes.
Q. 47 is another one on this page, right, I definitely voted.
A. Yes.
Q. No validated vote, no registration, no weight in the VV weights?
A. That's correct.
Q. And we could go through those. Would you dispute it if I told you there are 45 respondents in the Mississippi sample who said that they voted but whose registration was not independently validated?
A. No, I believe you. I believe that that -MR. WALLACE: Registration or voting was not validated?

MR. SAVITZKY: Well, neither.
A. Neither, yeah.
Q. You wouldn't dispute that it's 45?
A. No.
Q. And there were 15 instances that you found of overreporting by respondents whose registration was validated?
A. I believe that's correct.
Q. And you discuss in your report how with only I think it was six white voters who over -- registered who overreport and only 9 black voters who overreported, that's a example of the small samples?
A. Exactly.
Q. But in fact, the total numbers of respondents who overreported is not 15, it's 60?
A. But even when you have the denominators in there, I think I -- didn't I perform a t-test there?
Q. Well, you performed a t-test on looking at that six versus 9.
A. Right. But there's not -- there's a denominator in there, that that's the key point. That's the 6 versus 9, so the sample is still small, and it's indistinguishable. It's not just the fact that it's 6 to 9 -- what's the paragraph number? And I can be more accurate on that.
Q. I believe it's paragraph 25.
A. Yes. So the test is not 6 versus 9, it's 6 out of 140 and 9 over 61. That's the test. That's what gives you the percent, that's the mean. And that -when you ran that test with those numbers, 6 over 140 and 9 over 67 and run a t-test on it, are the means the same, yields the result, you know, with a alpha level of . 05 that you cannot distinguish statistically between the two groups.
Q. But as we've established, the numerator and the denominator are all based on the VV weight -- or rather, the enumerator is based on the VV weight, and the denominator is too.
A. Yeah, I think it's consistent in this. I'd have to look at the details of it, but I ran it consistently, I believe. And so when you look at it that way, it just says they're =not statistically significant.
Q. Right. And my point is that you ran that t-test using the weighting that excluded most of the voters who overreported?
A. I'd have to go back and look at it to -- but you may be right.
Q. Well, we just discussed that you used the VV weight?

Inat correct
Q. And that we just discussed the VV weight would exclude 45 of the 60 respondents who overreported voting?
A. Yes.
Q. So you ran your t-test on data that excluded most of the people who overreported?
A. And to answer the question -- to answer the question you're asking, I -- we could run it again with the different denominator and see what happens. It may be a different result or the same.
Q. Well, let's answer the question I did ask. You ran your t-test on data that excluded most of the people who overreported voting; right?
A. That could be the case, yes.
Q. I think a yes or no would be proper --
A. Okay. Yes.
Q. -- to be objective. Yes; right?
A. I'll say yes.
Q. Thank you. And you didn't run a t-test on the data using the common weight which would have included most of the overreporting in the sample; right?
A. That's correct.
Q. So you don't know whether the level of overreporting that Dr. Burch reports using the correct
weighting is statistically significant?
A. I don't know.
Q. Almost done with the CES, couple other points.
First, you say in paragraph 28 of your
surrebuttal report: "In her use of CES data because it
has validated voters, Dr. Burch analysis is again tied
to the CPS." Right?
A. Yes.
Q. Dr. Burch didn't use the VV weights in her
analysis in the --
A. Then that's incorrect. So it's just tied to
the ACS.
Q. So this statement that Dr. Burch's analysis is
tied to the CPS is not correct?
A. That's correct.
Q. And turning to pages 7 and 9 of Dr. Burch's
rebuttal report. Dr. Burch uses CES data to analyze
eduction in voting; right?
A. Where are we?
Q. Starting at page 7 of Dr. Burch's rebuttal
report, which I believe is Exhibit 18.
A. Okay.
Q. Are you there?
A. I am.
Q. Okay. And you don't discuss this analysis of
educational -- education voting in your surrebuttal report, do you?
A. But you -- one of her models in the logistic modeling that she did is with this dataset, correct, her model 2?
Q. That's correct.
A. So that I did analyze.
Q. You don't dispute her analysis on page 7, Figure 2 of page 8 that there's a small, not statistically significant gap between black and white validated voter turnout at each educational level?
A. You're talking about what she's got in Figure 2 and Figure 3. No, I'm not disputing that. The only qualification I make to it, again, is even with doing some descriptive statistics, she may run into issues with the weighting if you looked at it. But no, I don't dispute it.
Q. But you don't dispute that her analysis indicates that education is the significant explanatory variable in explaining the difference in turnout between black and white voters?
A. I think she's making a leap of faith in that. Causal analysis is really hard to determine through correlations. They're correlated, but to say it's specifically the causal effect is difficult. And that's
one of the things you run into with regression analysis of any type or even descriptive analysis.
Q. I'm looking at page 16 of her report. I mean, she reports that the P value on education is significant at the . 001 level for voting?
A. But even that -- all that does it say the model fits well, doesn't say that that's a consolation.
Q. Understanding, I mean, all we can do in statistics is what we can do here which is to show that there is an extremely good fit between education and voting in Mississippi. You would agree with that?
A. That I agree, that it's a -- it's a parameter that helps fit the data -- the model to the data. So in the statistical sense, when you look at it, if you look at the partial R-squareds and look at the standardized coefficients, which she did not report, then you can see what the effects were. But she failed to report the standardized coefficients.
Q. But you don't dispute that result that she arrives at?
A. Not in that sense, no, I don't dispute it.
Q. And you don't dispute the ACS data which is reflected in the chart here on page 9, educational attainment by race in Mississippi showing a large gap in attainment of bachelor's degree or higher?
A. That's correct. I don't dispute that.
Q. And you don't dispute Dr, Burch's conclusion that: "While black and white people with similar educational backgrounds vote similarly, people with lower educational attainment vote at lower rates overall than people with higher educational attainment"?
A. I don't dispute that.
Q. And you don't dispute her conclusion that: "Black Mississippians are more likely to have lower educational attainment and thus lower voter turnout than white Mississippians"?
A. I don't dispute that.
Q. And --

MR. WALLACE: Objection to the form of
"thus," but otherwise he may answer.
Q. And we can go now to the ecological inference analysis in Dr. Burch's report. I think it starts on page 9 , so we can just stay where we are for the moment. Looking at page 9 of Dr. Burch's rebuttal report, she explains that she conducted this ecological inference analysis using of the voter file -- the Mississippi voter file as a dataset to estimate voter turnout by race; right?
A. That's what she says, yes.
Q. You don't disagree with that?

No
Q. So this is not the CES, this is the actual voter history of voters in Mississippi?
A. Yes.
Q. And she aggregated turnout data from the voter file up to the block group level and then married the block group level turnout data with block group level racial demographic data on non Hispanic white population, nonwhite population, and then ran the EI analysis; right?
A. I think her definition of nonwhite included Hispanics who were white among others and Indians. So as she puts in her report, it's nonwhite, so it's not a comparison between white and black. Is that correct?
Q. We can get into it, but yes, she runs the EI between non Hispanic white and other groups --
A. Correct.
Q. -- as a binary; right? And she does that by aggregating up the turnout data and the race data, marrying them together into a dataset that can be used for EI; right?
A. That's correct. And I -- again, I think under the other or nonwhite category, however she described it, she has, for example, people who might -- who say my ethnicity is Hispanic but I'm white racially, and then
she includes every other race, whether they're Choctaw or Chinese or Vietnamese, etcetera, in that group, yes.
Q. And by the way, just looking at page 11, Footnote 31 -- do you see Footnote 31 there?
A. I do.
Q. -- Dr. Burch says: "Performing the analysis with non Hispanic, black alone or a combination and nonblack as reference categories also produces estimates of lower black turnout relevant to nonblack residents both statewide and in the central district." Do you see that?
A. Yes, but it wasn't in her original report, was it?
Q. I mean, it's in the surrebuttal report along with the rest of her EI analysis; right?
A. But that's in the surrebuttal report, that's not the report that I was commenting on. Did she have it in her original report that I comment on, that's what question I'm asking.
Q. She had it in the rebuttal report that you commented on in your surrebuttal report --
A. Yeah.
Q. -- right?
A. Yeah.
Q. Okay. All right. And by the -- well, we'll
get back to it in one second. But going back to the EI analysis. Looking at pages 10 to 11 of Dr. Burch's rebuttal report, she finds a significant racial turnout gap both statewide and in supreme court district 1. Do you agree with that?
A. And that's where?
Q. Page 10, last paragraph: "The estimates obtained using the ecological inference show that there's a statistically significant racial gap in turnout in Mississippi." Right?
A. And where's the results of the statistical test?
Q. I don't -- I'm asking you if that's what she found.
A. Well that's what she says, but where's the result of the statistical test, is my question.
Q. Did you run a statistical test to confirm whether those results are significant?
A. I didn't.
Q. Okay. You had no basis to dispute --
A. Well I can't answer whether or not -- what test she did and how she ran it, so I don't -- I'm not in a position to give an opinion on it right now.
Q. You don't give an opinion on it?
A. That's correct. I don't know whether or not
it's -- I can't agree with it, but I don't have an opinion on it because I didn't run an independent statistical test, and she doesn't show one here, she just says she did.
Q. She reports that her statewide EI analysis shows that the white turnout was 58 percent, nonwhite turnout was 42 percent, 16 point gap?
A. She says that.
Q. And in the central district turnout -- black turnout is 44 percent white turnout 62 percent?
A. She said that.
Q. And by the way, when she runs well -- strike that.

And Dr. Burch says in the next sentence at the top of the page 11: "The statewide and central district estimates for each racial group produced using EI and the CES are realistic given what we know about the actual voter participation statewide in the central district, in other words, they match up with the benchmark reported by the secretary of state." Do you dispute that?
A. Well, I didn't run an EI analysis myself to look at what she did, so I'm not in a position to dispute or not dispute it.
Q. You don't claim that Dr. Burch didn't
accurately report the results of her analysis?
A. No, I'm not claiming that.
Q. With respect to the EI analysis for district 1, you say -- turning to paragraph 43 of your surrebuttal
report. You say: "Dr. Burch included Adams County rather than Bolivar County in district 1"?
A. That's correct.
Q. Now assuming that's the case, do you have any reason to think that the inclusion of Adams versus Bolivar would have a material effect on the estimation of turnout by race on a districtwide basis?
A. I don't know the answer to that until I've looked at what the results would be.
Q. You didn't look at the results?
A. I didn't.
Q. Do you know the populations of those two counties are nearly identical 28,000 versus $30,000 ?$
A. No, I didn't.
Q. Did you know they're both black majority counties?
A. No, I didn't.
Q. Would it stand to reason that in a district of 750,000 by voting age population including one similarly-sized majority black county versus another is not going to make a difference in terms of measuring the
districtwide turnout gap using EI?
A. No, I'm not going to agree to that because I don't know what she did in the EI, and I don't know what other factors may have come into play.
Q. But you didn't run an analysis yourself to check?
A. Yes, I didn't.
Q. Have you received any further information about whether or not Dr. Burch conducted -- looked at it with Bolivar instead of Adams?
A. I think she did and sent it on to the attorneys, but Mike and I haven't looked at it.
Q. Do you know what the overall result that she obtained was?
A. No, I don't.
Q. If I told you the result was so similar that we didn't have to change anything in the report, would you dispute that?
A. No, I wouldn't dispute it other than the fact that someone had the wrong county in there.
Q. Right. But you wouldn't dispute that the results don't actually change if I represented that to you?
A. No, I wouldn't.
Q. You also say that because Dr. Burch coded
racial demographic information as white and nonwhite, more specifically not Hispanic white versus non -- non Hispanic white, she is expressing an opinion about white voters relative to nonwhite voters, not an opinion about white voters relative to black voters?
A. Correct.
Q. All right. But you would agree that in Mississippi, the vast majority of nonwhite voters are black?
A. I would.
Q. You would agree that black and white Mississippians together form 96.5 percent of the population of Mississippi?
A. I'd have to look at it, but that sounds about right to me.
Q. Do you contend that the existence of a small number of nonwhite, nonblack Mississippians means that it's not possible to draw inferences about black Mississippians' voting behavior based on the actions of nonwhite Mississippians?
A. The issue I have with it is more why not stay with the black population? Why change the racial definitions for this part of the analysis? That's the problem I have with it.
Q. But given that 4 percent of the state's CVAP is
nonblack or nonwhite or thereabouts, doesn't matter if the turnout in that group is 0 percent or 100 percent?
A. It's a question I can't answer without looking at that data. It might be just as with the cases of some of these observations that are in the CES file where they have large weights, there could be effects that are like that. So offhand, I'm not able to answer that question without looking at the data.
Q. I mean, even if the turnout among that small number of nonblack potential voters who are included in the nonwhite category for purposes of the EI analysis was 0 percent, the implied black turnout rate would go up by 4 percent?
A. Again, it's a question that -- you can ask it as many different ways as you can. My point goes back to: Why didn't she look at black voters in the first place? And to answer the question that you're trying to ask me, it could be that among those 4 percent are cases that are -- that are going to be significant as found in the CES file. So I don't know, so I can't answer the question.
Q. And again, this isn't a survey, this is based on the voter file itself, that's the dataset here.
A. Yeah, and I'm not saying it's from a survey, I'm saying again there's, you know, why switch the
definition? And I can't answer the question without knowing more of it or if I started looking deeper in the analysis, which I haven't done.
Q. And as we discussed, looking again at Footnote 31 of Dr. Burch's report, she actually did look at black versus nonblack turnout, and she found looking again at that footnote that black turnout was estimated to be

42 percent while nonblack turnout was estimated to be 57 percent. Any reason to dispute that?
A. Yeah, and then there's -- again, why is it black versus nonblack, is the question. Why isn't it black versus white?
Q. Right. So the question is: Do you dispute that that's the result that she obtained?
A. I believe that -- I believe whatever the results she's pointing at, I think she's doing as accurately as she can. The issue is white versus black and suddenly we're in white and nonwhite, and then we're in black and nonblack.
Q. Well, having estimated black turnout at 42 percent and having estimated white turnout at 58 percent, can you not look at both the EI analysis and then say she did look at white turnout and black turnout?
A. My question is: Why didn't she do it? You don't have to ask me that question, ask her why she didn't stick with the same categories. I don't know the answer to that.
Q. Right. And --
A. All I can say is that I'm looking at something that says you're looking at these two categories and now suddenly the categories are switched. So it's difficult for me to answer those questions.
Q. Right. My question --
A. Regardless of what the numbers are or anything else, it's why -- why change?
Q. Well, I mean, I understand. But my question is: It seems like she did do that, that looking at the data, she ran the analysis both white versus nonwhite and black Versus nonblack, and so she does provide that information that you're looking for in her report.
A. But it's not direct, it's not white versus black. And that's a problem because that's what most of her analysis and that's what it seems everything in this is based on.
Q. Well, it's the same --
A. No matter how many times you ask me this, that's going to be my same answer. I can tell you right now.
Q. Well, why can you not look --
A. Because it's -- the problem is, why did someone change the categories they're doing an analysis from white to black to now it's nonblack and -- or nonwhite?

To me, I don't understand the reasons for the change. And you have to wonder why it was done. And could the categories in the definitions by race in the voter file be different than they are elsewhere? Is that the reason? I don't know. And it could be that -- you know, it could be that there's lots of other issues there, and I'm going on the voter file about race and ethnic definitions that are not brought to the surface here. I don't know the answer to that.
Q. Well again, the dataset for the EI analysis we also discussed, the racial data comes from the census, right, block group level census data on race; right?
A. Yes.
Q. That's the source of the data?
A. Yes.
Q. Okay. So let's --
A. But the source of the data is -- it's the

PL94171 data file.
Q. Yes.
A. Yes. Okay.
Q. So understanding that we're using census data,
that it's the same dataset --
A. I understand. But in looking at that, another issue that comes into play that she doesn't mention is, what's the effected differential privacy when you get down to that smaller end, the differential privacy protections that the census bureau has placed on small area data, which I believe are even in the public 94 -the PL94171 data.
Q. Do you have any reason to think that differential privacy has an effect on the statewide or central districtwide EI analysis of voter turnout by race?
A. When you're aggregating up to smaller levels, up to some point they might. The census bureau will claim that's when you get to the state level or even lower levels that the differences wash out, but I'm not inclined to believe that that's necessarily the case, and they certainly appear at smaller levels of geography.
Q. This isn't something you mention in your report?
A. No.
Q. Is it something you're just thinking about right now?
A. It's -- it is something that I think can have
an effect on it when you start using different datasets like that and go down to small areas, yes.
Q. And setting aside the punitive effect of differential privacy, you would agree that using a single dataset based on Mississippi voter data from the secretary of state and race data from the U.S. census, Dr. Burch measured using EI white turnout and black turnout, and we can compare them?
A. I don't agree with that statement at all, because I don't know what the definitions are in the Mississippi voter dataset, how they might vary, what kind of matches you get between the two. So the -again, I can go back and answer you why switch from white versus black to white, nonwhite and then black, nonblack. I just don't understand the basis for that.
Q. What do you mean by definition in the Mississippi voter data?
A. Whatever -- how are people defined? Is it self reporting? When -- what are the definitions of race that are in the Mississippi voter data file?
Q. The voter --
A. It's not in there, is it?
Q. I will tell you the voter data --
A. Yeah.
Q. -- In Mississippi does not --
Q. Which is why --

THE REPORTER: Gentleman, one at a time,
please.
A. That's the point I'm bringing up. So that's not there. So what you're relying on -- totally on the census bureau data for race.
Q. Right.
A. And again, if you've got the sentence data for race, you've got black, you've got white, you've got all the other race categories, why not use them?
Q. We talked about how you used an EI type analysis in the early nineties; right?
A. That's current.
Q. You haven't run an EI analysis since then?
A. No.
Q. Do you have much familiarity with the type of EI analysis that Dr. Burch ran in this case?
A. I can see Beijing type analysis. I looked through what's on the websites and some of the documentation for the -- both the hard version, the easy version of Brinnon (phonetic), and that's what I know. And for example, one of the points I made in my report about it, she didn't report any priors on what the distributions are and assumptions. And that's usually
common in a Beijing analysis.
Q. And --
A. But that still doesn't get to my question.

Why, if you've got the data for white and black and why switch the racial categories? I don't understand why she would do that.
Q. Are there reasons why if you're doing an analysis like this, you would not want to include a third group as a very small population?
A. I don't know the answer to that. I just -- my question still is: Why not look at black versus white if you've got the data for it?
Q. How would you go about looking at black versus white?
A. Well, she had it. She's using the ACS; correct? They use those same racial categories, correct, in her EI analysis. That's in there; correct? Where did she get the data for race if it's not from the ACS ?
Q. From the U.S. census, from the PL --
A. The PL9R, yeah. My mistake. So from that dataset, they're in there too, white, black, any part black, all those issues. So why switch?
Q. So you're suggesting that the EI analysis could also have been run with many different racial categories
estimating the voter turnout not only of black voters and white voters but also of American Indian voters and, you know, Hispanic voters, understanding --
A. That's not what I'm suggesting. What I'm suggesting is -- and I'm asking the question -- why didn't she run that analysis? Why did she switch the categories from what she did elsewhere in her report where it's white and black? That's what's I don't understand.
Q. Right. And I guess I'm asking: How would you run an EI analysis on more than two variables --
A. It's not running more than two.
Q. -- reference categories?
A. How did she run it -- it's the same thing. Here's white, nonwhite. She ran that; correct?
Q. Correct.
A. Why didn't she run white, black?
Q. Right. And I'm asking the questions, I'm not going to answer them. But you don't -- you don't know -- I think the answer is clearly you don't, but you don't know of reasons why you would want to consolidate voters into two reference groups in order to, for example, not have part of your analysis be on very small numbers of members of a particular racial group that's not white and not black because the effects would be
less accurate?
A. I didn't say she needed to run it on, say, the Cherokee population. I'm saying why didn't she just run white versus black? She didn't do that. She ran white versus, you know, non Hispanic white versus everybody else.
Q. Do you know whether it's possible to do the thing you're suggesting using EI analysis?
A. Why didn't she do it? That's a question I'm asking. I can't answer that question. I don't know what's possible in the EI analysis. My question is: Why didn't she run white versus black? Because everything in the reports up to this point are -- uses those two categories. It's not nonwhite, did you report to me something about, well, here's the nonwhite VAP in a certain county, and they outnumber the white VAP. No. It was all white versus black. So why is it suddenly changing in the EI analysis to a new category of race? That's my question.
Q. And Dr. Burch found that white turnout was 58 percent statewide and 62 percent in district 1 ?
A. Using the definition of white that she used in the EI analysis?
Q. Non Hispanic white as defined by the census?
A. Yes.
Q. And she found that non Hispanic black alone or in combination turnout was 42 percent statewide and 43 percent in district $1 ?$
A. That's on -- where is that found again?
Q. Footnote 31.
A. That's what she says. But again, why didn't she just put that in her report? And again, down here, it says again it's -- it's black turnout is estimated this while nonblack turnout was this. Why didn't she have black versus white even in this footnote? That's what I don't understand. She has white, nonwhite, and then down here she has black, nonblack. And why the switch? To me, that's mystifying.
Q. But you don't run an EI analysis, so you wouldn't be able to say whether there's an understandable reason to construct your analysis that way?
A. Well, no matter what analysis, I would be running ones I was familiar with or not. The question I would ask is: Why did someone switch these categories in this way? To me, that's -- it's not a good sign. And whether or not it's -- it's okay that the numbers are really small and everything turned out to be the same; if that's the case, why not run it that way instead of do this?
Q. It's not a good sign because you don't understand why she did it?
A. Yes. She doesn't give any explanation. So reading the reports that she does, white, black, white, black, white, black. So when we get to this point, it's white, nonwhite, and even down here in the footnote it's black, nonblack.
Q. Because this is a different analysis, the EI analysis?
A. I understand. But the whole function of the report wasn't to suggest that it's black voters that are turning out at a lower rate than white voters. Isn't that the intent of the entire exercise here? I'm asking you. So all of a sudden, we have black and nonblack and then white and nonwhite.
Q. So it could be that she did it this way to ensure the accuracy of her results?
A. But if that's the case, why would that be more accurate than saying white and black and black and white? I don't know the answer. I can't answer what she did in the analysis. All I can do is read what she said. And what she says is not consistent with things she said elsewhere up to this point in the report she's done.
Q. She constructed a different analysis
differently?
A. That's what it appears to be. That's my question, is, you know, why? Doesn't seem to be the topic.
Q. So just zooming out and talking about your surrebuttal report, how much time did you spend putting that surrebuttal report together?
A. It's quite a bit of time, especially starting to look into the EI analysis which I was not familiar with. So I spent a fair amount of time doing that thinking I don't want to have to learn R to do this, you know, it looks painful. I mean, I started down the path to do it, but then when I started reading the report again and said well, I see Dr. Burch now switched categories, and I -- that to me is a problem right there, I think I'll stop at that point.
Q. And how much time do you think it was total?
A. I'd have to look. It's a lot of hours.
Q. More than 40?
A. I don't know. Maybe. Again I'd have to look.

Once I send the hours in, I don't keep track of it.
Q. You sent them in?
A. I have them -- I've got them posted. If you want to look at them, I've got an Excel spreadsheet.
Q. You kept records --
A. Yes.
Q. -- contemporaneous of your hours?
A. Oh, yes. Sure.
Q. Did you do any analyses that you left out of your surrebuttal report? You mentioned a t-test.
A. No. Other than that I did subsequently, as I said, I don't think so.
Q. You did the t-test subsequent to --
A. Well, when I was doing the original analysis, I just didn't put it in the report.
Q. Okay. And you can provide that to us?
A. I can.
Q. And --

MR. WALLACE: We will take that under consideration, and we'll let you know. You've also asked for a piece paper from the other expert and we're in the process, we'll get back to you soon.

MR. SAVITZKY: Thank you.
BY MR. SAVITZKY:
Q. And any -- other than that t-test, any other analysis that you sort of ran but didn't include in the report?
A. No.
Q. How about for your initial report?

MR. WALLACE: Same objection as to being out
of time. He may answer if he remembers.
A. I can't recall running different analysis that
are not in the report.

MR. SAVITZKY: Just one second. Can we take
three minutes, just go off. Thank you.
MR. WALLACE: Thank you.
(Short recess from 4:55 to 5:08 p.m.)
MR. SAVITZKY: Back on the record.
That concludes my questioning for
Dr. Swanson at this point, so --
MR. WALLACE: I have one statement I need to
make in response to your question about correcting
things at the front end, and if you want me to ask him
to swear to it, I will. He has not testified in court
in the voting rights case. That was his testimony. It
was true, but in an abundance of caution, he has given a
deposition in the voting rights case in Louisiana. And
I wanted to make sure you knew that -- I suspect you
already do, but I wanted to clarify it on the record.
MR. SAVITZKY: And just -- that's in the
Ardoin case?
MR. WALLACE: It is Ardoin, isn't it?
THE WITNESS: It is.
MR. SAVITZKY: Congressional redistricting
case?

BUELL REALTIME REPORTING, LLC 206.287.9066 | 800.846.6989

Creem/Midrean

STATE OF WASHINGTON
COUNTY OF WHATCOM

I, Evelyn M. Adrean, RPR, a Certified Shorthand Reporter in and for the State of Washington, do hereby certify that the foregoing transcript of the deposition of DAVID ARTHUR SWANSON, Ph.D., having been duly sworn on OCTOBER 5, 2023, is true and accurate to the best of my knowledge, skill, and ability. Reading and signing was requested pursuant to FRCP Rule $30(e)$.

IN WITNESS WHEREOF, I have hereunto set my hand and seal this 20th day of October 2023.

EVELYN M. ADREAN, RPR, CCR-WA

Deposition of David Arthur Swanson, Ph.D.

White v. State Board of Election Commissioners

October 5, 2023

714 LAKEWAY DRIVE BELLINGHAM, WASHINGTON

DATE TAKEN: October 5, 2023
REPORTED BY: Evelyn M. Adrean, RPR, CCR 22009424

BUELL REALTIME REPORTING, LLC 206.287.9066 | 800.846.6989
NOAH GIMBEL, ESQUIRE (Appearing remotely)
Simpson Thacher \& Bartlett, LLP
900 G Street NW
Washington, DC 20001
202-636-5505
noah.gimbel@stblaw. com
FOR DEFENDANTS:
MICHAEL B. WALLACE, ESQUIRE
Wise Carter Child \& Caraway, P.A.
600 Heritage Building, 401 East Capitol Street
Jackson, Mississippi 39201
601-968-5534
mbw@wisecarter.com

BUELL REALTIME REPORTING, LLC 206.287.9066 । 800.846.6989

DEPOSITION OF DAVID ARTHUR SWANSON, Ph.D.	Page 4
EXAMINATION INDEX	
EXAMINATION BY	PAGE
Mr. Savitzky	6

BELLINGHAM, WASHINGTON; OCTOBER 5, 2023
8:57 a.m.
DAVID ARTHUR SWANSON, Ph.D., witness herein, having been first duly sworn on oath, was examined and testified as follows:

E X A M I N A T I O N

BY MR. SAVITZKY:
Q. Good morning, Dr. Swanson.
A. Good morning.
Q. Good to see you today. So I introduced myself already, but I'm Ari Savitzky. I'm an attorney for the ACLU. I represent the plaintiffs in this matter. Do you understand that?
A. Yes.
Q. And can you state your full name for the record and spell it?
A. David Arthur Swanson, D-a-v-i-d, A-r-t-h-u-r, S-w-a-n-s-o-n.
Q. All right. And I'll sort of briefly go over some of the ground rules for deposition. The court reporter just swore you in, you're going to be under oath, means you're swearing to the truthfulness and accuracy of your answers. Do you understand that?
A. Yes.
Q. And the oath that you just took has the same
effect as if you were testifying in court. Do you understand that?
A. Yes.
Q. And as you can see, we have the court reporter here, she's transcribing your answers. It's really important to answer audibly so that your answers can be recorded on the transcript. So no nodding or shaking your head. Do you understand that?
A. I do.
Q. And I'm going to do my best to wait until you're finished with an answer, and I would ask you to sort of wait until I'm finished giving a question before you start speaking. Does that sound fair?
A. It does.
Q. All right. I'm going to ask questions, your job is to answer the question and you have to answer the questions unless you're instructed not to answer them by your attorney. Do you understand that?
A. I do.
Q. Okay. And it's important that we understand each other. We're going to have a conversation, we're going to talk about a lot of different topics. If you don't understand a question, let me know, try to rephrase it so we can understand each other. Does that make sense?

MR. WALLACE: Did we just have somebody else chime in?

MS. JONES: Make sure they're on the record.
MR. SAVITZKY: I don't know. Do we want to have everyone who's on the Zoom announce themselves for the record at this point?

MR. YOUNGWOOD: Jonathan Youngwood with
Simpson Thacher \& Bartlett.
MS. HOUGH: Hi, this is Alexandra Hough, that's $H-o-u-g-h$, here on behalf of the plaintiffs.

MR. SAVITZKY: Anybody else on the Zoom who we haven't registered yet?

THE REPORTER: I think I got the others.
MR. SAVITZKY: Okay.
BY MR. SAVITZKY:
Q. And Dr. Swanson, is there any reason that you can't provide complete and accurate testimony here today?
A. Not that I know of.
Q. Are you taking any medications or drugs that might impact your ability to give complete and accurate testimony?
A. I don't think so.

MR. SAVITZKY: All right. Let's start by talking about your background. And actually before we do that, even, I'm just going to mark as Exhibit 1 the notice of deposition just so we have it in the record. So I'll mark as Exhibit 1. This is just the notice of deposition for today's deposition. I'll put it right there if you'd like to examine it. There's a copy for you as well.

MR. WALLACE: Is this a copy for me?
MR. SAVITZKY: This is a copy that you can look at, but no need to ask any questions about it, I just wanted to mark it in the record.

BUELL REALTIME REPORTING, LLC 206.287.9066 | 800.846.6989

BUELL REALTIME REPORTING, LLC 206.287.9066 | 800.846.6989
A. My current job is, I'm retired from the University of California Riverside, I have a . 25 full time equivalent faculty position with Portland State University's population research center.
Q. And is that population research center in a particular department or is it an independent center?
A. It's in the School of Urban Public Affairs, or whatever the name is of the school right now.
Q. And your academic career, fair to say you're a demographer?
A. Yes. Thank you.
Q. What is demography?
A. It's a study of populations, could be either human or nonhuman, wildlife, insects.
Q. Do you study human demography or the demography of other species?
A. Humans.
Q. And would you say that you are an applied demographer? What kind of demography do you --
A. I have a broad range of interests, many people call me applied, but I do academic work as well.
Q. And what type of analysis do you do as a demographer? How do you analyze human populations?
A. I usually take on what the major focuses are that demographers use, and one is on the size of a
population, second is on the geographic distribution of the population, third is on the population composition, fourth is on the components of population change for building migration, mortality, and the fifth is on the determinants and consequences of population change.
Q. Would it be fair to say that your research is focused on the areas of social demography and population health?
A. I'm probably more focused on methods other than social demography and population health, but I've covered those fields.
Q. Okay. Just one second. Have you ever held an appointment in a political science department in any institution?
A. No.
Q. And just looking we'll turn to page 147 of your resumé -- or your CV, excuse me. That's where the list of publications begins. Just let me know when you're there.
A. I'm there.
Q. Just looking at this list of publications, fair to say that most of them are about studying human populations, population change, and forecasting?
A. That's fair. I do have a book that has just been published today that's basically on population
health. It's called Socio-Demographic Perspectives on
the COVID-19 Pandemic. It's an edited book I did with
my colleague Rich Verdugo.
Q. Congratulations on the publication.
A. Thanks.
Q. And so that book is about social demography as it relates to the COVID --
A. It would be more on health demography, but it also covered methods, how to look at and estimate COVID infections very early on when you don't have the ability to use a real complex model with lots of data input requirements.
Q. Okay. So let's talk about some of the tools and methods that you use in your research. Well, why don't you tell me about the tools and methods that you use as a demographer?
A. I use most of the standard tools that demographers use, so I'll use life tables, for example, I'll do different modeling techniques, regression type techniques, so that's where it spills over into the statistical area largely and that is in common with a lot of other social science fields, we use those kinds of methods.
Q. Do you use software in your research?
A. I do.
Q. What kind of software tools do you typically use?
A. The major one I use is called NCSS, it's an acronym. It stands for Number Cruncher Statistical System.
Q. How long have you been using NCSS?
A. Since about 1980, '82.
Q. Do you ever use SPSS?
A. Not for many years.
Q. You have used it in the past?
A. I have.
Q. Ever used Stata?
A. Never.
Q. Do you ever use the R programming language?
A. No.
Q. Do you use any other programming languages?
A. Visual Basic. I have a minor in math, computer science, so I know how to program in languages that are long gone like PL/1, Fortran. Visual Basic is probably the most current one.
Q. How often does your work involve coding in

Visual Basic?
A. I've just been working on a project right now that involves using some Visual Basic coding.
Q. Do you ever use any GI S programs?

BUELL REALTIME REPORTING, LLC
A. I don't implement them, if that's what you're asking. Yeah, I don't do shape files or I don't do GIS work myself.
Q. You don't work with any geographical mapping software?
A. No.
Q. Don't work with Maptitude?
A. No
Q. Don't work with ArcGIS?
A. No.
Q. Do you use survey data in your research?
A. Yes, I have.
Q. What are some examples of the survey data that you've used?
A. Well when I was at Pacific Lutheran University, I ran a small institute, and we did annual surveys of Pierce County, so I was responsible for going out and contracting with a private vendor to actually conduct the surveys and supervise them, put the questionnaires together. When I worked on the Yucca Mountain high -level nuclear waste repository, I was responsible for surveys that were done of people that were in the impact area, so --
Q. Sorry, go ahead. Finish your --
A. That's okay. Go ahead.
Q. Those are surveys that you conducted?
A. Yes.
Q. Do you ever work with survey data that has been gathered by others?
A. I have.
Q. Do you ever work with ACS, American Community Survey --
A. I do.
Q. -- data?
A. Wrote a book on that -- or a section of a book for the ACS when that first started coming out, was part of the pilot study programs for the ACS.
Q. Do you ever use voter rolls in your work?
A. Not until I started doing expert witness work. Or looked at them, but I don't use them.
Q. You don't use voter rolls in your work?
A. No.
Q. And you said when you started doing expert work --
A. Witness work in areas like redistricting, in the case we're talking about now. I'm aware more of voter rolls, but I haven't actually used it -- yeah, there's actually one exception. I did a volunteer survey for Kitsap County, Washington that was in regard to some issue that was going to be on the ballot. And
the people I worked with that was probably now defunct, the Kitsap County Sun, which is a newspaper, had access to voting rolls. So we were calling people who registered voters.
Q. And when did you conduct this Kitsap County, Washington survey?
A. Early 1990s, late 1980s.
Q. And so other than that instance, you haven't used voter rolls in your work?
A. That's correct.
Q. Ever use ecological inference analysis?
A. I have.
Q. Tell me about your use of ecological inference.
A. It's not the guaranteeing program, but I've used ecological inferences in -- one of the publications I have, actually. It's in the Journal Demography, and it takes a state level regression method for estimating life expectancy at birth and applies it to subcounty areas. And that, in fact, would be ecological inference because you went from a higher level of aggregation to lower levels of aggregation. And the paper involved doing a test of its accuracy.
Q. And you mentioned it's not Gary King's method?
A. That's correct.
Q. So it's not the $\mathrm{R} x \mathrm{C}$ method?

BUELL REALTIME REPORTING, LLC
Q. And we'll talk about CES, Cooperative Election

Survey studies -- data later, but have you ever used that CES study before this case?
A. No.
Q. Were you familiar with the CES before your involvement in this case?
A. No.
Q. Have you ever drawn an electoral map before?
A. No.
Q. And I'm looking at pages 6 and 7 of your report. I'll let you take a second to get there. This is your --
A. This is the report of January you're talking about again?
Q. Yes, correct. The one that's been marked, I believe, as Exhibit 2. You sort of summarize here some of the expert work and some of the other references in your CV; is that right?
A. That's correct.
Q. And you say that you played an active role in the development of redistricting, a manual for practitioners, analysts, and citizens. Do I have that right?
A. That's correct.
Q. What was the role that you played in the
development of that?
A. I reviewed the work that Peter Morrison and Tom Bryan did, the authors of that book. I helped them with some questions on how to do methods.
Q. And what parts of the -- of that work did you review?
A. I can't remember. I -- basically the whole book, but I concentrated especially on some of the measurement issues.
Q. And you provided comments?
A. I did.
Q. You're not credited as an author of the book?
A. No.
Q. You're mentioned in the front matter and the dedication and acknowledgments?
A. I believe that's true.
Q. That's not a peer-reviewed publication, is it?
A. Every book I've been associated with goes through a review process that's set up by the publisher. So in a sense, it's a peer-review process. They internally will go out and ask reviewers. You know, I served as a series editor of Applied Demography for Springer Publications, and if we get a proposal, it goes out to review to other people. So in a sense it's peer reviewed, but not in the same manner that people think
of as academic journal peer reviews.
Q. So the redistricting title was not peer reviewed in the same way as an academic journal?
A. No. But it's a Springer publication, I believe, so it went through some sort of review process.
Q. And you're not aware of what their review process was, if any, for this particular title?
A. I'm just aware that they are likely to have sent it out for a review to at least one, probably two, other people to look at it before they even accepted the proposal, and they may have done it sometime during the whole process where they're putting it together. You'd have to ask the editors at -- the people in charge of it at Springer, for example.
Q. But you don't know, that's your assumption?
A. Well it's more than an assumption because I can see some of the paperwork that flows back and forth. So I know they're reviewing it, but exactly the details, I don't know.
Q. You saw the paperwork for -- with respect to this redistricting title?
A. I think I did. I see it for almost every time that's ever come through my hands when I do it for Springer, so I'm guessing that's the case.
Q. So let's talk about your prior expert work, and

```
we can stay looking at pages 7 and 8 of your January
```

 report Exhibit 2 where you list some of that work. It's
 also, I think, on page 187 of your CV, but this synapsis
 that you have here will do just fine.
 Looking at some of the on-the-stand
 testimony that you list, these mostly involved instances
 where you testified about population forecasting; is
 that right?
 A. Some -- one, two, three, at least three of them
 did.
 Q. I see a case about water rights in Arizona,
 life expectancy, patient populations. None of the cases
 you list here are voting rights or voting-related cases;
 right?
 A. That's correct.
 Q. You never testified in a voting rights case
 before?
 A. That's correct.
 Q. And do you know whether the court in the cases
 or the courts, I should say, in the cases that you
testified in previously credited your testimony?
A. What does "credited" mean?
Q. Do you know whether they viewed it favorably,
they relied on it in coming to their decision?
A. Well, I was sworn in as an expert witness in
the case where I did testify, so I assume they used it in some manner.
Q. You don't know which manner they used it in?
A. No.
Q. Okay. And looking at some of these cases that you have listed here, you indicate there's some cases where you produced -- and actually, let's look at page 8 where you say: "I produced expert reports as a consultant of potential expert witness in other court cases." You have a list of those here on page 8. None of these are voting-related cases?
A. That's correct.
Q. And you never submitted a report in any voting-related case?
A. That's correct.
Q. And then on page 8, paragraph 9 you say you served as a consultant to Bryan GeoDemographics, BGD, in regard to certain redistricting cases. Do I have that right?
A. You do.
Q. What is Bryan GeoDemographics?
A. It's a company owned and operated by Tom Bryan.

He calls it a boutique consulting company based near

Richmond or in Richmond, Virginia.
Q. What is your role as a consultant for Bryan

GeoDemographics?
A. It varies. He -- when Tom Bryan contacts me, it's usually about questions about a method.
Q. What kind of questions would he contact you with?
A. I'd have to look up to remember them all, but typically involve methods, statistical and otherwise, sometimes demographic measures, sometimes summary-type measures.
Q. What's an example?
A. I'd have to think about one off the top of my head. I believe I've worked with him on doing some statistical things. And they may have -- occur in the book that he and Peter did too. But I haven't thought about in a while, so off the top of my head I can't remember what they were.
Q. And you said you've been working as a consultant with Bryan GeoDemographics since about 2021?
A. Give or take that's correct.
Q. And you mentioned four cases here in paragraph 9 for which you serve as a consultant to Bryan GeoDemographics, two of them are Caster versus Merrill and Singleton versus Morrill; is that right?
A. Yes. Whatever's listed. And I don't remember the cases. I know they're -- I just put them down in my
vitae once I send reports to Tom and he told me what the cases were.
Q. And do you know that those are cases involving Alabama's congressional districting from the 2020 cycle?
A. Not offhand I wouldn't.
Q. What did you do as a consultant in those cases?
A. Generally, Tom would ask me questions about a method, and I would respond to them and try and give him advice.
Q. Did you conduct any analysis of Alabama's black belt as part of your consulting on those cases?
A. No.
Q. Did you conduct any analysis on the gulf coast area of Alabama as part of your analysis in those cases?
A. Not in those cases, but I've done work on -with an attorney in Texas that looked at the effects of the oil spill where we looked at all the gulf coast, and part of that involved gulf coast populations, but it wasn't a voting rights case.
Q. And you -- do you draw any electoral maps or review any electoral maps in your consulting in the Caster and Singleton case?
A. Not that I recall. I certainly didn't draw any. Usually the questions that Tom asks me are about is this an appropriate statistical method to use in this
test? If it's a t-test, for example, should I use the
equal variance assumption or the unequal variance
assumption? If I use regression after I've transformed
variables, what would I do? So those are the types of
questions I typically help with him.
Q. And so, for example, he would take the analysis
that he'd done, take it to you and say, does this
methodology look right to you?
A. Sometimes they're even in advance of that. He'd ask me what kind of advice would you give me on some technique to use. And I stress I'm probably not the only one he's asking for advice.
Q. And you know that Mr. Bryan and Bryan GeoDemographics were working to defend the electoral maps that were challenged in those Alabama cases?
A. That I do know.
Q. And do you know how the Court decided those cases?
A. No.
Q. Do you know whether the Court determined that the congressional districts in Alabama -- or the challenged congressional districts in Alabama was likely unlawful?
A. No. I don't follow the court cases.
Q. Do you know whether the Court in those cases
credited the analysis and testimony that Bryan provided?
A. I don't know.

MR. SAVITZKY: And I just want to mark
now -- what exhibit are we on?
MS. JONES: 3.
MR. SAVITZKY: Just going to mark as Exhibit
3, this is the Singleton case. And I'll hand this copy to you and this copy to you, Mr. Wallace.

MR. WALLACE: Very good.
MR. SAVITZKY: And take a peek over my copy. BY MR. SAVITZKY:
Q. And you can turn to page -- excuse me. Let's turn to page 1007. The pages are marked in the top right corner. And just let me know when you're there.
A. I'm there.
Q. And just looking at that first -- it's right in the top left, the Court says: "We're concerned about numerous other instances in which Mr. Bryan offered an opinion without a sufficient basis or in some instances any basis." Did I read that accurately?
A. Yes.
Q. And the Court lists various instances. And then looking at that time the next page, page 1008, the last sentence of the first full paragraph, the Court says that: "Mr. Bryan overstated his opinions, offered
testimony without a sufficient basis, cited material that he had not reviewed, offered opinions at the preliminary injunction hearing that he had not offered in his reports." Is that --

MR. WALLACE: Go ahead and read the whole sentence instead of paraphrasing from the middle. That's a form objection.

MR. SAVITZKY: That's fine. We can do that. BY MR. SAVITZKY:
Q. The Court said in that last sentence:
"Although the schedule might have limited Mr. Bryan's ability to perform some work that he otherwise might have performed, it did not cause him to overstate his opinions, offer testimony without a sufficient basis, cite material that he had not reviewed, or offer opinions at the preliminary injunction hearing that he had not offered in his reports." Did I read that accurately?
A. You did.
Q. And then looking at the last sentence in the last paragraph, last full paragraph, I should say, on that same page, the Court says: "Because Mr. Bryan consistently had difficulty defending both his methods and his conclusions and repeatedly offered opinions without a sufficient basis and because we observed
internal inconsistencies in his testimony on important issues, we find that his testimony is unreliable." Did I read that right?
A. You did.

MR. SAVITZKY: And just for completeness,
I'm also going to mark as Exhibit 4 the Caster case.
And here is your copy. And Mr. Wallace there's a copy for you.

BY MR. SAVITZKY:
Q. And just looking at the Caster case we can turn to pages 52 and 53 of the document. And we don't have to reread it all, but I just want you to confirm for me that --

MR. WALLACE: Can I stop you and ask: I'm trying to find the pagination here. You've got these -are you looking at the asterisks, the --

MR. SAVITZKY: No. The pagination is right at the bottom of the page.

MR. WALLACE: Oh, I see where we are. Okay. Give me those numbers again, please?

MR. SAVITZKY: It's just starting at
page 52.
MR. WALLACE: Okay.
BY MR. SAVITZKY:
Q. And I just want to confirm that this is
verbatim the same statements are in the Caster opinion as well. So starting in the first full paragraph in the seconds column on page 52: "We're concerned about numerous other instances in which

Mr. Bryan offered an opinion about a sufficient basis or in some instances any basis." Same statement?
A. Where are you reading?
Q. On page 52, last part of the first full paragraph.
A. That would be paragraph 60?
Q. No. Just on the second column, the first full paragraph of the second column on page 52.
A. The one that starts out "separate"?
Q. Correct. And the last -- after the citation there: "We are concerned about numerous instances in which Mr. Bryan offered an opinion without a sufficient basis or in some instances any basis."
A. I see that. I do.
Q. Okay. And then moving to the next page, page 53, same statement that we read from the Singleton opinion, this is in the second to the last paragraph in the first column. "Although the schedule might have limited Mr. Bryan's ability to perform some work that he otherwise might have performed, it did not cause him to overstate his opinion, offer testimony without a
sufficient basis, cite material that he had not reviewed, or offer opinions at the preliminary injunction hearing that he had not offered in his reports." Same statement as before; and that's right?
A. That is.
Q. Okay. And then just looking at the next page, page 54 , last sentence of the first paragraph there, again same conclusion: Mr. Bryan consistently had difficulty defending his methods and his conclusions, repeatedly offered opinions without a sufficient basis, and concluding that his testimony is unreliable; right?
A. I read that.
Q. Okay. So let me ask you another question: Do you know whether the supreme court ended up ruling in an appeal in the Singleton and Caster cases?
A. I do not.
Q. Do you know whether William Cooper, plaintiff's mapping expert in this case, the White case, drew any of the plaintiff's illustrative maps in the Alabama cases?
A. I don't recall. I don't know.
Q. Do you recall conducting any analysis in

Mr. Cooper's maps in the Alabama cases?
A. No.
Q. Would you dispute that a panel of three medical judges in the Singleton case found that the plans that
Mr. Cooper drew in Alabama were consistent with
traditional districting principles?
A. I'm not in a position to dispute or not dispute it.
Q. And we can just look back at Exhibit 4, which you should still have in front of you -- excuse me, Exhibit 3 in the Singleton case here. And I just want to look at page 1016 this time. Excuse me, 1015.

MR. WALLACE: 15?
MR. SAVITZKY: Sorry, 16.

MR. WALLACE: 16.
MR. SAVITZKY: Strike that. That's all
right. We don't have to do that.
BY MR. SAVITZKY
Q. And you said you didn't know whether the supreme court reviewed these decision?
A. I believe -- I knew that it went to the supreme court, but I just don't follow whatever they did with it. And I may have heard from Tom about it, but that didn't stick in my head.

MR. SAVITZKY: And we can now mark as 5, this is the supreme court's decision reviewing those Alabama -- Alabama decisions. Copy for Mr. Wallace. I'm looking at page 15 on the bottom of this document, second column, first full paragraph. Let me know when
you're there.
MR. WALLACE: All right. This is page 15 of
Westlaw print-off and it's somewhere.
MR. SAVITZKY: Second column.
MR. WALLACE: Okay.
BY MR. SAVITZKY:
Q. So first of all just in the first full sentence
in that second column, that Caster plans to rely on
illustrative maps produced by expert Bill Cooper. Do I
have that right?
A. Are you asking me?
Q. Yes.
A. Yes, that's what it says.
Q. And then looking at that next paragraph, says: "The District Court agreed, found Cooper's testimony highly credible commended Cooper for working hard to give equal weight to all traditional districting criteria." Do I have that right?
A. That's what I read.
Q. And then the last -- and actually, we'll continue on. The next sentence: "The Court also explained that Alabama's evidence of racial predominance in Cooper's maps was exceedingly thin. Alabama's expert Thomas Bryan testified he never reviewed the exhibits to Mr. Cooper's report and never reviewed one of the
illustrative plans that Cooper submitted." That's right?
A. It is.
Q. And just skipping a sentence going to: "By his own admission, Bryan's analysis of any race predominance in Cooper's maps was pretty light. District court did not err in finding that race did not predominate in Cooper's maps in light of the evidence before it." Right?
A. That's what I read, too.
Q. So you also mentioned -- and we can put those aside for now, maybe put them over here if we're not using them. We'll want to hang onto this.

And in fact, just referring back to it, page 8 of your report, you also mention that you worked on the Ardoin case, Robinson v. Ardoin? That's the Louisiana congressional districting case? I'm looking at page 8 of your report.
A. Yes.
Q. Okay. And what did you do as a consultant for Bryan GeoDemographics in that case?
A. I'd have to look back at my records and see what I did, if I have e-mail correspondence. Again, most of these where I would serve as a consultant to him, he'd either contact me via e-mail or call me and
ask me questions about particular methods or ask me for advice on these or something. And I don't recall specifically what it was.
Q. Do you recall how actively involved you were in consulting on the Ardoin case for Bryan GeoDemographics?
A. No.
Q. Do you recall whether you worked on a misallocation analysis?
A. That sounds familiar. I think I did.
Q. And to be clear, you didn't draw any electoral maps in that case?
A. I did not.
Q. Would you say that the analysis in that case from Mr. Bryan reflects your input in your analysis?
A. It may reflect some of my advice that I give to him about misallocation error or how to measure it?
Q. And by the way, for those Alabama cases, Caster and Singleton, would you say that Mr. Bryan's analysis reflects your input in your analysis as well?
A. I don't know.
Q. And you know that Thomas Bryan and Bryan GeoDemographics were working to defend the congressional districts that were challenged on behalf of the State of Louisiana in that case?
A. Yes.
Q. Did you review the Court's decision in the Ardoin case?
A. No.
Q. Do you know whether the Court determined that the challenged congressional district there likely violated the Voting Rights Act?
A. No.
Q. And this is the last one of these, I swear. I'm not going to take that back rather than swear to anything. I'm just going to mark a copy of the Ardoin case. I think we're on Exhibit 6. And --

MR. WALLACE: I'm missing the first page of it. I'm sure I can get it someplace else, but -MR. SAVITZKY: Happy to. MR. WALLACE: Did you miss a page? MR. SAVITZKY: Here, I'll give you my first page. I may have missed one.

BY MR. SAVITZKY:
Q. So would you dispute that the federal judge in the Ardoin case agreed with the plaintiffs and held that the challenged congressional districts there violated the -- likely violated the Voting Rights Act?
A. I don't know what decision the judge made, so I'm not in a position to dispute it or not dispute it.
Q. Do you know whether the Court credited the
analysis that Thomas Bryan and Bryan GeoDemographics provided?
A. I don't know.
Q. And looking at what's been marked as Exhibit 6, and turning to page 824, and we can start just in that first full paragraph. Let me know when you're there. First full sentence: "After observing Bryan on the stand in this case, the Court finds his demeanor was not so problematic as to disqualify him. But the Court found his methodology to be poorly supported, his conclusions carried little, if any, probative value on the question of racial predominance." Did I read that right?
A. You did.
Q. Okay. And then in the next paragraph, the Court discusses how Bryan opined that race was a prevailing factor in the design of plaintiff's illustrative plans based on his "index of misallocation" which purports to flag areas where a disproportionate share of the black population was grouped into a majority, minority district."

Is that the misallocation analysis that we were talking about before?
A. Yeah, I'm sure what I helped him with was in regard to how do you measure misallocation.
Q. Okay. And then looking at the next paragraph, the Court says: "Even if this misallocation method is accepted, the factual assumptions upon which his conclusions rest are absent in this case. Hence, Bryan's conclusions are unsupported by the facts and data in this case and thus wholly unreliable." Did I read that right?
A. You did.
Q. And then moving to the next column, first full paragraph, concluding, the Court says: "Finally, the Court finds that Bryan's analysis lacks rigor and thoroughness which further undermines the reliability of his opinions." Do I have that right?
A. You do.
Q. And in the last sentence: "For the foregoing reasons, the Court gives very little weight to Bryan's analysis and conclusions." Is that right?
A. It is.
Q. Okay. Now, the last case you mentioned -- and we can put that one away as well. Put it right here. Thank you.

So the last case is McConchie versus the State Board of Elections that you listed. Is that an Illinois redistricting case?
A. I think that was Illinois.
Q. Do you know what the legal issue is in that case?
A. No.
Q. Do you know whether it involved the Voting Rights Act or racial votes dilution?
A. I don't.
Q. Do you remember anything about what the case was about?
A. No. Seriously, I don't.
Q. Do you remember anything about the analysis that you did for Mr. Bryan?
A. I'd have to look back at my records and see what questions he asked me.
Q. So as I understand it, the issue in that case is whether it violated the federal constitution for Illinois to use ACS population estimates to draw their legislative districts rather than waiting for the 2020 census to come out. Does that sound right to you?
A. It does sound familiar.
Q. And the issue was that because ACS estimates are estimates and not full measures of the population as with the census, that was a one person, one vote problem, it couldn't be sure that you had one person, one vote allocation for population across the districts. Does that sound right?
A. I don't know how people viewed a sample based estimate compared to the census and how they used it. That part I don't know.
Q. But based on what you recall, it wasn't a case about racial vote dilution or racial representation?
A. I don't recall.
Q. So in the three cases where -- well, let me strike that.

You do understand that the Caster and the Singleton and Robinson cases are about racial vote dilution?
A. I believe that's the case.
Q. So in the three cases where you consulted for Bryan GeoDemographics that you know involved racial vote dilution, in each one of those cases the Court did not credit the Bryan GeoDemographics analysis; right?
A. That's what appears to be the case based on what you read.
Q. Now, in your January report looking on to page 10 -- you have it if you want to look at it -- you say: "Because of its expertise and experience, I have used the services of Bryan GeoDemographics which under my direction has assembled data, maps, and other work product." So you use Bryan GeoDemographics to assemble data, maps, and work product for your report in this
case?
A. I'm sorry, where are you at?
Q. Oh, I'm sorry. Paragraph 10 on page 8. That's my -- my mistake. Just the next paragraph from what we
were talking about: "Because of its experience and
expertise, I've used the services of Bryan
GeoDemographics to assemble data, maps, and other work
product." For this case for your report in this case,
yes?
A. Yes.
Q. And just looking -- I mean, I looked at the maps in your report, they tend to have produced by Bryan GeoDemographics legends or notes at the bottom; is that right?
A. That's correct.
Q. So who actually created those maps and other tables that are indicated as being produced by Bryan GeoDemographics in your report?
A. They were -- they were done under a request from me to -- I would -- could use a table or a graph or something like this to put together in my report.
Q. And then Thomas Bryan created them?
A. Yes.
Q. And what information did you give him to instruct him to create the report?
. I gave him a general picture of what I wanted to see in a table or a graph, and then he produced it using probably the Public Law 94171 data or whatever else was involved in it.
Q. Do you know what software he used to create --
A. Maps.
Q. To create the maps, yeah.
A. I think he uses map -- or the -- what's the company in Redlands, California -- Arcinfo. I believe that's what he used I'm pretty sure he uses things from that group.
Q. Do you know what software he used to create any data tables that he created for you for these purposes?
A. He usually uses Excel.
Q. Is this work that you could have done yourself?
A. Most of it involves really large files, and he's adept at bashing around data and big files and using parts of Excel that I don't use routinely like pivot tables. So I probably could have done it but it would have been a learning curve for me to get to that point and also assemble all the data and have it together. So it was much easier to work through Tom.
Q. Did he also provide substantive comments or analysis on the types of analysis that you were doing for your report?
Q. Do you know whether any of the methods that you used are the same methods that he used in the Louisiana or Alabama cases?
A. I'd have to look at the reports to see.
Q. Could any of the reports -- analyses that you've done be characterized as a misallocation analysis similar to what Mr. Bryan did in Louisiana?
A. I can't recall using a misallocation index.
Q. Did Bryan GeoDemographics run the compactness analyses that you use in your report?
A. He produced the Excel tables that produced numbers for that.
Q. And did he actually produce the compactness scores that you used?
A. The scores, yeah. He's got that, I think, written up in various ways so he can produce them pretty quickly.
Q. Looking back at your resumé, and I'm to turn to page 159 of your report. Just a couple more items. I don't want to -- it's a long resumé, I know. On page 158 you list some non-refereed articles. And one of them is an internet article from around the time of the 2020 election called: Is Being Republican a Risk to One's Health and the Health of Others? Do you see that?
A. I do.

MR. SAVITZKY: And I'm just going to mark a
copy of that as Exhibit 7 .
MR. WALLACE: This on page 159?
MR. SAVITZKY: Correct.

MR. WALLACE: Okay.
MR. SAVITZKY: Let me just confirm that for you. Oh, you know what, it's on page 160, third one from the bottom. It's a long list of non-refereed articles that we have here. And we're marking this article as Exhibit 7.

BY MR. SAVITZKY:
Q. And in this article, you looked at heavily Democrat and Republican counties and you compared per capita case race of COVID?
A. They were counties that had voted one way or another in the presidential election.
Q. And your finding was that: Per capita, the cases of COVID in areas that voted heavily Republican were higher and they were increasing even though they were sort of more sparsely populated?
A. That's correct.
Q. And you concluded that this finding: "Supports the view that residents of those areas are ill disposed to outside mandates to self isolate, practice social
distancing, and wear masks possibly due to misinformation they consumed from conservative media outlets."
A. Yes.
Q. And you concluded: "Our take is that political orientations should be considered along with other factors likely to generate COVID-19 cases. So along with testing and its accuracy, data suppression, potential superspreader venues, population density, rates of interaction, age, race, and ethnicity and gender, we believe that being Republican or being in proximity to them could be a very real risk factor."
A. That's correct.
Q. And you still agree that being a Republican could be considered a risk to your own health and that of others with respect to COVID?
A. It was at that point in time. Whether is it now, I'd have to go back and research it again. But it definitely appeared to be the case when we did that research.
Q. Okay. And just one other article, one of these non-refereed articles, and we'll mark that as Exhibit 8. This is an article from a publication called Zócalo entitled: Is Hawaii a Racial Paradise. Do you recall this article?
do
Q. This is, I think, a forum -- sort of internet forum set of articles. And your article's on page 5 of this document, if you want to turn to it. And it's specifically entitled: "Compare Hawaii and Mississippi." Do I have that right?
A. It is.
Q. And in your article, you note that Hawaii has a very high proportion of people who identified as multiracial, where as Mississippi has a lowest proportion of people who identify as multiracial; is that right?
A. That is.
Q. And you note that Hawaii has the highest life expectancy, and Mississippi has one of the lowest or the lowest?
A. That's correct.
Q. And you note that Mississippi is well below the U.S. average in terms of people with bachelor's degrees?
A. Yes.
Q. And you note that Hawaii has less poverty than the national average and Mississippi has significantly higher levels of poverty?
A. Yes. And I'd say that that was as of the date I did the article, so things may have changed. But

```
                                    Page 47
you're reading this correctly for the dates that I had
the data.
    Q. You don't have any reason to think that that's
changed since this article was published?
    A. I don't know.
    Q. You don't have any to reason to think that it's
changed?
    A. I haven't looked at the question since then, so
I don't know.
    Q. And you ask -- and this is in this last
paragraph -- "What is it about these two states that
relates the number of multiracial people and health,
education, and income levels?" Right?
A. I do.
Q. And you say: "Historically, both states were
dominated by a small social economic elite, primarily
made up of white plantation owners. But in Hawaii, this
domination occurred in the late 19th century whereas in
Mississippi, it was already part of the political fabric
when the territory was admitted to statehood in 1817."
Right?
A. That's correct.
Q. And you continue: "Racism and labor exploitation existed in Hawaii but they were neither as extreme nor as embedded as they were in Mississippi
```

where slavery preceded anti-miscegenation pro laws."
Right?
A. Correct.
Q. And you still agree that the embedded history of extreme racism and exploitation contribute to socioeconomic deficits that we see in Mississippi today?
A. Yes.
Q. And we can put this one away as well. That one, too. Thanks very much. So let's talk about this case. You
understand that this deposition relates to litigation brought under Section 2 the of Voting Rights Act?
A. I don't know what section of the Voting Rights Acts it is, but I understand it's a case about voting rights.
Q. Okay. When did you first learn about this case?
A. A year ago.
Q. How did you learn about it?
A. Mr. Wallace contacted me.
Q. Did you and Mr. Wallace know each other previously?
A. No.
Q. Just curious. What is your understanding of the claims brought by the plaintiffs in this case?
A. You'd have to be more specific about what it is you're asking me, because I don't follow the question exactly.
Q. What do you understand the plaintiffs to be challenging about the Mississippi Supreme Court?
A. What they seem to be challenging is the counties that are within district 1 specifically.
Q. What is your understanding about why the plaintiffs would like district 1 to be configured differently?
A. I believe -- are you asking me specifically about Dr. Burch's report?
Q. I'm asking generally about the claims in the case. I mean, your reviewed Dr. Campbell's report; right?
A. Yes. I spent more time with Dr. Burch's report.
Q. You reviewed Dr. Cooper's report?
A. I did.
Q. Excuse me. Mr. Cooper's report?
A. Yeah, Mr. Cooper.
Q. Wouldn't want to unnecessarily promote

Mr. Cooper.

Having read a few reports in the case -- and did you read the complaint that was filed in this case
by the plaintiffs?
A. Probably, but I don't recall.
Q. So I'm just asking you: What's your
understanding of why the plaintiffs think that
district 1 should be redrawn?
A. I think it's because they -- the idea is that there should be a -- either a higher majority or a straight-out majority of black voters in the district.
Q. And what is your understanding of why plaintiffs think that district should be redrawn so that there's a higher majority or a straight-out majority of black voters in district 1?
A. I guess it would have to do with some understanding of how black or white or other people vote.
Q. What's your understanding of what the term "vote dilution" means?

MR. WALLACE: That really is a legal
opinion, and I'll object to it for that reason. He can answer.
Q. You can provide your understanding if you have one.
A. I don't know.
Q. What's your understanding of what "racially polarized voting" means?
A. My understanding is that white people might tend to vote in a block, black people might tend to vote in a block, Chinese people might tend to vote in a block, Japanese American might tend to vote in a block, American Indians might to tend to vote in a block, etcetera.
Q. And so you would agree that if voting in a particular area is racially polarized, black voters are usually not going to be able to elect a candidate they want to elect unless they form a majority in that area?

MR. WALLACE: Object as facts -- object on the basis based on facts not in evidence. I was trying to think whether it was bad law or bad facts, but I object to the form because it's probably both.
Q. You can answer the question.
A. I don't know the answer to it.
Q. Let me ask it again. You would agree based on your understanding of what racially polarized voting is, that if you have an area where there is racially polarized voting, black voters will usually not be able to elect the candidate that they're voting for unless they form a majority of the population in that district?
A. Well I think what you're asking me is a research question, so I can't offer an answer off the top of my head without actually researching some
specific condition.
Q. Let me ask it one other way. If white voters are usually voting for one candidate and black voters are usually voting for the other candidate and both white and black voters are voting cohesively, then in an area where voters are supposed to be either white or black, where black voters are the minority, they're usually going to lose the election?

MS. WALLACE: Object to the form of the question as seeking legal opinion on the meaning of both "usually" and "cohesively." But you may answer.
A. I don't know.
Q. You understand you're being proffered as an expert in this case?
A. I understand that.
Q. What are you an expert in?
A. Demography.
Q. You're not an expert electoral mapping drawing?
A. That's correct.
Q. And you're not an expert in voting behavior?
A. That's correct.
Q. Do you know what the duties of an expert in a federal law suit are?

MR. WALLACE: Well, I'm going to object to the form of that as being a legal opinion. But he may
answer.
A. Does it vary by judge or court?
Q. Well let me ask it this way: Do you think that an expert is supposed to be objective?
A. That I believe. I think an expert should be objective.
Q. And when did you first learn you were going to give a deposition in this case?
A. Not too long ago. Mr. Wallace might be able to give an answer on that one. I can't recall.
Q. Unfortunately, I'm not deposing Mr. Wallace.
A. Well, I -- a month ago? A week ago? I don't recall. Certainly wasn't a year ago.
Q. And without going into the substance of any conversations that you had with your attorneys, what did you do to prepare for today's deposition?
A. I went back and reviewed the surrebuttal report I prepared.
Q. How long did you spend preparing for today's deposition?
A. Since I knew about being deposed, probably several hours.
Q. Did you meet with anyone?
A. Other than Mr. Wallace?
Q. Other than Mr. Wallace.
A. No.
Q. You met with Mr. Wallace?
A. Yes.
Q. Again without asking you about the substance of any conversations you had, about how many times did you meet with Mr. Wallace?
A. This morning, yesterday.
Q. Did you review any documents -- and I'm sorry, was that your complete answer, was this morning and yesterday?
A. I believe so. We maybe talked on the phone or e-mail, but I can't recall that. But in terms of personally talking to him about it.
Q. Did you review any documents to prepare for this deposition?
A. You asked me that question.
Q. And you mentioned your surrebuttal. Anything else that you reviewed?
A. Not that I really read or reviewed.
Q. Did you take any notes during any of the meetings or known calls that you had to prepare for this deposition?
A. No.
Q. Did you take any notes when you were reviewing documents to prepare the for deposition?

```
Page 55
A. Not that I recall.
Q. Did you do any highlighting or margin note writing in any documents as you prepared for this deposition?
A. I generally don't review printed documents because the printer at my house doesn't work, well -I'm serious. So what I generally do is look at things on-line.
Q. And you didn't make any marginal notes in any digital documents you were reviewing?
A. No.
Q. I'm also in the faulty printer club, so I feel your pain on that one.
Did you bring any documents with you to today's deposition.
A. No.
Q. Okay. I'd like to spend some time talking about the January report that we've been looking at starting with the demographic analysis that you conducted.
MR. WALLACE: Well at this point, I'm going to state our position -- and it depends on what you're looking at. The court order authorizes you to examine him on the surrebuttal report. I don't doubt that there are some things in the first report which may be
```

inextricably connected to the second report, so, you know, I'll take it up an issue at a time. But we do believe this is a deposition on the surrebuttal report. And with that, you may proceed.

MR. SAVITZKY: Thank you, Mr. Wallace. And, you know, we understand your position. Obviously, this came up at the last deposition as well. And, you know, we disagree and think this is our opportunity to take a deposition of defendant's experts, but we can hash that out another time, and your object is certainly noted. BY MR. SAVITZKY:
Q. So with that, still looking at your January report you should have in front of you, and it's marked as Exhibit 2, I just wanted to get one point out of the way. You say a few times in your report, paragraph 13, for example, that Mr. Cooper argues -- "argues that Mississippi's Supreme Court district 1 is a minority black district at 49.3 percent." You can look at paragraph 13 of your report to confirm that you say this. It is, I believe, the second full sentence. You characterize Mr. Cooper as arguing that district 1 is a minority black district at 49.3 percent?
A. I do. I write that in here.
Q. And you actually at paragraph 33, you say it again, you say: "Plaintiffs are relying on the any part
black voting age population of the district to
characterize district 1 as being minority black."
A. Yes.
Q. And in paragraph 39 you say -- you
characterize: "The claim that plaintiffs are making is
that district 1 'is a minority district' in need of
remediation."
A. Yes.
Q. Did you read Mr. Cooper's October report?
A. I did.
Q. Did you review the exhibits to the report?
A. I did.
MR. SAVITZKY: So I just want to mark the
October report now. This'll be Exhibit 9. Here's a
copy. One for Mr. Wallace.
BY MR. SAVITZKY:
Q. And just looking at page 19 of Cooper's October report, just at the very top of the page, let me know when you're there.
A. I'm there.
Q. He says: "District 1 is only a 4 percentage point plurality BVAP district; right?
A. Yes, it does say that.
Q. And that is the statement that you're pointing to when you say that Cooper argues that Mississippi

Supreme Court district 1 is a minority black district?
MR. WALLACE: That's that fist question
you've asked him since I stated my objections, and I object to it as being outside the scope of the order.

He may answer.
A. Yes.
Q. So what Mr. Cooper says he doesn't say minority, he says plurality; he says it's plurality black district; right?
A. He says that.
Q. So you think that paragraph 13 and those other references in your report should be corrected?
A. But 49.29 percent is not a majority.
Q. Right. But Mr. Cooper doesn't characterize it as a minority black district, he characterizes it at a plurality black district; right?
A. You're correct.
Q. But you say Mr. Cooper "argues that Mississippi Supreme Court district 1 is a minority black district at 49.3 percent?
A. I did.
Q. He doesn't argue that, does he?
A. That would be up to you. When someone says it's 49.29 percent, that to me is a statement that's a minority.
Q. Are a minority and a plurality the same thing?
A. A minority is when you're less than half,
depending on what the situation is. And to me, that's a
minority.
Q. A plurality would imply that you're the -well, strike that. We'll leave it there.

You don't dispute that the voting age population based on the census is the traditional standard for measuring population for purposes of drawing an electoral map?

MR. WALLACE: Objection as asking for a legal opinion. He may answer.
A. I believe that's the case.
Q. And then you look at American Community Survey data as well to analyze the demographics of the population in Mississippi in your report; right?
A. Yes.
Q. And, I mean, we can, I think, starting at paragraph 39 of your report, if you'd like a place to look, but -- and you -- strike that.

Unlike data from the census, the America Community Survey is an estimate; right?
A. It is. It's a sample-based estimate.
Q. Did you use the 2016,2020 special tabulation of the ACS?

```
                                    Page 60
    A. I believe that's the case. I'd have to look at
the actual report to see what I used, but that's the
most likely one.
Q. And you say that using ACS estimates of CVAP or citizens voting age population, the existing district 1 is majority black CVAP; right?
A. I believe that's the case. Can you point me to the paragraph so \(I\) can see it?
Q. Yeah. I believe it's on paragraph 39.
A. Yes.
Q. Do you think that the existing district 1 is reasonably configured?
MR. WALLACE: Objection as calling for a legal conclusion, but he may answer.
A. I don't know. And the sense of configured, in what manner? Geographically? Socially? Spacially? Road-wise? Communication?
Q. Is existing district 1 compact?
A. I'd have to look at the data to, again, recall if that's the case.
Q. Did you analyze the compactness and other metrics of district 1 in conducting your opinions in your January report?
A. I haven't looked at this report for quite a while that you're bringing up, so I'd have to go back
```

and review it. I didn't review it prior to this deposition.
Q. And you don't conclude anywhere in your report that the black population of Mississippi is not sufficiently numerous and geographically compact to allow for one black majority supreme court district?
A. Again, I'd have to stress I'd have to go back and look at the report because I haven't looked at it or thought about it in a while.
Q. I mean, you're welcome to review the conclusions if you want or --
A. If you want me to now, I can.
Q. The question is whether you concluded anywhere that the black population in Mississippi is not sufficiently numerous and geographically compact to support one majority black supreme court district?

MR. WALLACE: Object to the form because sufficiently numerous geographically compact requires all kinds of legal conclusions.
A. And my answer, again, is I'd have to go back and review all those since I -- I didn't do that prior to this deposition.
Q. You don't conclude that it's not possible to draw a compact majority black supreme court district in Mississippi?

MR. WALLACE: Same. Objection he my answer.
A. I don't have a conclusion about that at this point in time because it's not in my head.
Q. But you don't conclude that in your report anywhere?
A. I'd have to look back at the report to review it. I don't know. As I said, I haven't looked at this report for quite a while, so I can't recall exactly what's in it.
Q. So when calculating demographics of the different districts, you also do some analysis to adjust for prison population. Do you recall that?
A. I do.
Q. And that's starting at paragraph 46 of your report. And you conduct this analysis by subtracting the current populations of some of Mississippi's prisons from the CVAP that you've calculated; right?
A. I believe that's the case, but I'd have to look specifically again at it to recall because I don't recall off the top of my head.
Q. Well, feel free to refresh yourself by looking at paragraph 46 and neighboring paragraphs if you need to before we proceed. And let me know when you're ready.
A. I've looked at it.
Q. Okay. So you do this analysis of prison populations by subtracting the current populations of some of Mississippi's prison facilities from the CVAP that you've calculated; right?
A. Yes.
Q. And specifically, you look at the three largest prison facilities in the state of Mississippi; right?
A. I believe those are the three largest, yes.
Q. And you calculate the current population of those three facilities that we looked at as 7,000 people?
A. Can you point to me where the -- where I've got the number in there?
Q. Yeah. I'm looking at Table III E-1 on page 25.
A. And then what you're looking at is the right hand total where it has 2,996 in private prisons and 4,050 in regional correction facilities to say it's approximately 7,000?
Q. So that's right.
A. That's correct.
Q. And just to be clear, the count that you have here is a partial count of the population of incarcerated persons in Mississippi, right, you didn't include every incarcerated person?
A. Such as in county jails and the like?
Q. Sure.
A. That's correct.
Q. And your analysis shows that there is a
higher -- and I'm quoting you know according to
paragraph 48, you say: "There's a higher proportionate number of black prisoners in the three major prisons in Mississippi than white prisoners overall and by gender." Right?
A. Yes.
Q. And that table that we were looking at, Table III E-1 indicates that black Mississippians are about 60 percent of the prison population even though they are more like 36 percent of the voting age population?
A. That's an accurate characterization.
Q. And you know that in Mississippi, people with a qualifying felony are disenfranchised for life not merely when they are incarcerated?
A. I knew they were disenfranchised, I did not necessarily know it was for life, but I suspect I think I somehow knew that, yeah.
Q. And you don't try to estimate the number of persons who are unable to vote, who are disqualified from voting because of a qualifying felony conviction but who are no longer incarcerated; right?
A. That's correct.
Q. And you say, I think, on paragraph 36:
"There's no practical way to measure or locate these demographically by district in a meaningful way."
A. That's correct. I stated that.
Q. Did you review Mr. Cooper's rebuttal report from February of 2023?
A. I believe I did, but I'd have to look at his report again to refresh my memory.

MR. SAVITZKY: And we can mark that as well. And we're on Exhibit 10. Here you are. And Mr. Wallace. Okay.

BY MR. SAVITZKY:
Q. And looking at page 5 of this rebuttal report, paragraph 9, Mr. Cooper discusses the study showing that the total disenfranchised population based on qualifying felony convictions in Mississippi that were rendered between 1994 and 2017 is 56,000. Do you see that?
A. I do.
Q. And do you have any reason to dispute that?

MR. WALLACE: Now I will object as being outside of the scope of the court order, but he may answer.
Q. Do you have any reason to dispute that?
A. The only thing I question is, are they all in Mississippi.

MR. WALLACE: Same objection. He may answer.
Q. Any reason to dispute that?
A. Again, I'd have to go look at the exact data that he pulled or other sources to answer it fully, but I have no reason at this point to dispute it.
Q. It's actually quite consistent with the number that you found, isn't it?
A. It is.
Q. And that 56,000 represents convictions from the 23 year period 1994 to 2017?
A. I believe that's correct.
Q. And so Mr. Cooper then says in the next paragraph, paragraph 10 on page 6 in his rebuttal report: "It's clearly within the realm of possibility that after factoring in felony convictions going back to
1948, two additional 23-year periods, the adjusted
eligible black CVAP for voters in district 1 may drop
below 50 percent." Do you dispute that that's within
the realm of possibility?
MR. WALLACE: Same objection. He may
answer.
A. Many things are in the realm of possibly. But
again, the question is how many people may have migrated
out of Mississippi or died.
Q. So --
A. All those numbers.
Q. So you agree that it's possible that 51 percent CVAP once you adjust for all the persons who may have a qualifying felony conviction, it could be under 50 percent?

MR. WALLACE: Same objection. He may answer.
A. It could be either way depending on if they're still alive or where they live.
Q. So that's a yes, it could be under 50 percent prison adjusted CVAP?
A. That is a yes but it's qualified with the follow-up study as I mentioned earlier, to follow up on people who are in prison, discover where they're living now, are they in Mississippi or out of Mississippi, are
they alive? Are they dead? That may affect the answer.
Q. You would agree that people -- that there are likely people who were convicted of a qualifying felony in 1960, 1970, still alive today?

MR. WALLACE: Same objection. He may answer.
A. Yeah, that's -- that's a possibility, yeah. It's also a possibility that people from other states may have moved there, there are a lot of possibilities. This is a research question, as I stress.
Q. Understood. So just briefly, I want to look at a different part of your demographic analysis. I want to turn back to paragraph 34 of your report. You mention -- well, let me just read it. You say: "A useful way to look at the distribution of wNH" -- white non Hispanic -- "total and any part black total population across the three districts is to use the coefficient of variation." Do I have that right?
A. You do.
Q. And the coefficient of variation is the standard deviation of the voting age population of the three districts divided by the total voting age population?
A. Not the total, the mean.
Q. Divided by the mean?
A. That's correct.
Q. And you say: "The coefficient of variation shows the extent of variation relative to the mean."
A. It's normalized. That's what the term is, because you could have one population that has a really high mean if you're comparing it to another population that has a low mean. And what you want to do is divide the means into the standard deviation so you get a relative basis for comparison.
Q. And you say you do this for total but also white VAP, black VAP, and you say: "This shows that white total is four times higher than that same per VAP and black total is five times -- approximately five times higher than that same VAP which serves to confirm that white total and black total population are less equally distributed across the three districts in total VAP."
A. And remind me what paragraph --

MR. WALLACE: Which paragraph are we in?
MR. SAVITZKY: Paragraph 34.
MR. WALLACE: 34?
MR. SAVITZKY: Last sentence.
BY MR. SAVITZKY:
Q. You say looking at the data in this manner confirms that: "White non Hispanic total and any part
black total population are less equally distributed
across the two districts than the total voting age
population." Right?
A. That's correct.
Q. Is that another way of saying that black and white populations are not evenly distributed across Mississippi geography?
A. It would be.
Q. And you would agree that large numbers of high black VAP population are generally distributed north and south along the Mississippi River in Mississippi?

MR. WALLACE: Now I'm going to object to that for the same objection. He may answer.
A. I -- if you're asking me what my -- I would call it a research of hypothesis. It's a good question to ask as a starting point, but it's something you'd have to investigate.
Q. And let's just briefly -- let's put a pin in this page, but turn to page 96 -- excuse me, not page 96, paragraph 96 of your report on page 49. And just -the second sentence of that paragraph, just take a look at that and let me know when you're ready.
A. And it's paragraph 99?
Q. Paragraph 96, second sentence. Just take a look and let me know when you're ready .
(Witness reviewing exhibit.)
A. Yes.
Q. You would agree that large numbers -- "Large numbers of high percent any part black VAP population are generally distributed north and south along the Mississippi River; right?
A. Yes.
Q. Now having worked in Mississippi, studied Mississippi demographics, you sort of know that's true just from looking at the map and knowing the population, there's a substantial amount of black population concentrated in the Mississippi Delta and the capital region; right?

MR. WALLACE: Same objection, but he may answer.
A. Yes.
Q. And that's why it's not especially difficult to draw majority black supreme court districts and include the Mississippi Delta and the capitol regions?

MR. WALLACE: Same objection plus the objection that is asking for a legal conclusion. But he may answer.
A. I don't draw a congressional district, so I'm not in a position to really answer that question.
Q. And you don't draw supreme court districts,
either?
A. Yeah, that's correct.
Q. So let's talk about the traditional districting principles. And we're now in a section of your report starting at paragraph 56, page 29. Are you familiar with the principles that electoral map drawers consider in drawing an electoral map?
A. Somewhat.

MR. WALLACE: Objection as to form as not explaining what an electoral map drawer is.
Q. Do you understand that an electoral map drawer is a person who draws electoral maps?
A. I do.

MR. WALLACE: With political authority or sitting in his basement with a pad? Can you be more specific.
Q. So you rely in your report on a few different sources to discern the principles that a person drawing an electoral map would consider; right?
A. Yes.
Q. One of the sources you rely on is a report from the congressional research service, it discusses principles for congressional redistricting?
A. I believe that's the case, yes.

MR. SAVITZKY: And we'll just mark that. We
are on Exhibit 11. Copy for you. Copy for Mr. Wallace. BY MR. SAVITZKY:
Q. This is the report that you cite in your January report? Just confirming, this is the report that you looked at.
A. Give me a second here. I'm still trying to organize the main report you were going through --
Q. Sure, sure.
A. -- so I can find things when we go back to it again.
Q. And that's why, because we will certainly go back here.

And this congressional research service report is one of the sources that you relied on in your January report too?
A. It is.
Q. And according to this report, and we can see on page 3, page 3 of the document there -- the pagination is at the bottom. That's front matter. There we go. And just looking there, the report lists some of the principles that map -- electoral map drawers consider; right?
A. It does.
Q. And according to this source that you relied on, those principles include assuring population
equality among districts within the same state. You agree that's one of the principles to be considered?
A. That's one of the principles listed.
Q. You agree that's one of the principles listed as traditional criteria for drawing electoral maps?
A. That's what it says here, yes.
Q. And another one that's listed is protecting racial and language minorities from vote dilution while at the same time not promoting racial segregation?
A. Yes.
Q. And another principle is promoting geographic compactness and contiguity when drawing districts?
A. Yes, sir.
Q. And another principle is minimizing the number of split political subdivisions and communities of interests within districts?
A. Yes.
Q. And another principle is preserving historic stability in the cores of previous districts?
A. Yes.
Q. And then looking at this list, the list indicates that some of the considerations are more widely adopted than others; right?
A. In terms of?
Q. How many states require them, how many states
have adopted them, there are little parentheticals after each one that say how many states consider --
A. Yes, there's a different number of states listed after some of these.
Q. So contiguity appears to be expressly embraced as a required consideration by 22 states but core retention by only 7 ?
A. Correct.
Q. So when it's discussed in paragraph 58 and 59 of your January report, you also relied -- and we can put this one to the side, but we may refer back to it again. You also relied on another multistate survey of traditional districting principles from the National Conference of State Legislators; right?
A. Point me to that paragraph where I state that, please?
Q. Sure. This is Footnote 21 on paragraph 58, says: "The National Conference of State Legislatures is widely recognized, the nation's independence objective and bipartisan authority of redistricting matters published a series of principles that reflect traditional districting principles that have both informed -- that have been both informed by and adopted by many states." You cite the report in the footnote, continue on, and you say: "This guidance from the NCSL
is the basis of any assessment I make as an expert of
individual states or organizations, criteria, and
redistricting principles." Right?
A. Yes.
Q. So this NCSL guidance is the basis for your assessment of the compliance of an electoral map with traditional districting principles?
A. I use it as a guideline.
Q. A guideline to assess compliance with
traditional districting principles?
A. I use it as what's considered to use such as core, retention, and so on, yes.

MR. SAVITZKY: And we can just mark that
next, Exhibit 12. Copy, copy. Okay.
BY MR. SAVITZKY:
Q. And just looking at the list of considerations discussed right on this first page and then the bullets, seems like a similar list of criteria to the one that we just discussed; right?
A. It does.
Q. And so looking at right up on the first page, we see the second paragraph, first sentence: "All states must comply with the federal constitutional requirements related to population and antidiscrimination." Right?

```
                                    Page 77
    A. I see that.
    Q. And then we say -- or we see: "In addition to
population equality, Section 2 of the Voting Rights Act
prohibits plans to intentionally or inadvertently
discriminate on the basis of race which would dilute
that minority vote."
    A. I see that.
    Q. So then you agree those are considerations that
should be guidelines in assessing compliance of a map
with traditional districting principles?
    MR. WALLACE: Objection. Again is asking
for a legal opinion. But he can respond.
    A. My -- my answer is: I use these as guidelines.
    Q. You use them as guidelines in forming any
opinions that you form about the compliance of the plans
offered in this case with traditional districting
principles?
    A. Yes.
    Q. And the NCSL report then says: "Well beyond
that, states are allowed to adopt their own
redistricting criteria or principles for drawing plans;
right?
    A. Yes.
    Q. And then at paragraph 59 of your report -- I
think paragraph 59 of your report is basically a
```

verbatim recitation of the bottom of this first page of
the NCSL report?
A. I believe it -- that's where I found the materials so that's cited in there. Is that the case?
Q. Yeah. It's -- it's certainly cited in the footnote so I'm not trying to play gotcha. I just want to make sure this is basically what, you know, what you have done here in your report you say the traditional redistricting principles that have been adopted by many states, and then you list --
A. Yes.
Q. -- the principles and the descriptions thereof
from the NCSL report?
A. Yes.
Q. And those include compactness?
A. Yes.
Q. And they include contiguity?
A. Yes.
Q. An include preservation of counties in political subdivisions?
A. Yes.
Q. They include preservation of communities of interest?
A. Yes.
Q. And they include maintaining the cores of prior
districts to the extent possible?
A. Yes.
Q. And they include avoiding incumbent pairings?
A. Yes.
Q. And then the NCSL report goes on to indicate that different states have adopted sort of different subsets of these criteria; right?
A. Yes. I believe that's the case.
Q. And we can look at page 10 of this document.

MR. WALLACE: In Exhibit 12?
MR. SAVITZKY: Correct.
MR. WALLACE: Okay.
Q. And we can see Mississippi is included there. And just looking at the NCSL description of the criteria adopted for redistricting of Mississippi, core retention is not one of the criteria that the NCSL report that you relied on identifies as being adopted in Mississippi; right?
A. We're in Exhibit 12; correct?
Q. Yes, page 10.
A. Thank you. And your question was?
Q. My question is: Core retention is not one of the criteria that the NCSL report that you relied on says that Mississippi has adopted for redistricting?
A. What I read here is require compact contiguous,
preserve political subdivision, preserve communities of interest.
Q. And core retention is not one of the criteria that Mississippi has adopted according to the NCSL report that you rely on?
A. That would be correct.
Q. And now looking at paragraph 60 of your report -- and I think it's possible we'll rely on this again, but we can put the NCSL report up for now.

Looking at paragraph 60 of your report, you say: "Mississippi code Section 53101," which also cited in the NCSL report, "expressly identified a few criteria for legislative districts." Right?
A. Yes.
Q. And in your report, you summarized the statute is requiring the districts be compact, contiguous, and preserve political subdivisions; right?
A. Yes.

MR. WALLACE: Object to the form as saying "districts." It actually says "legislature districts." But he may answer.
Q. And just looking at the language that you quote in the block vote right below paragraph 60, would you agree it's a pretty strong emphasis on county lines in that language?

```
                                    Page }8
                    MR. WALLACE: Object to the form. But he
can answer if he can.
    A. It reads: "Districts shall be structured as
far as possible and within constitutional standards
along county lines."
            THE REPORTER: Sir, if you slow down,
please.
    A. It reads: 60B, districts shall be structured
as far as possible and within constitutional standards
along county lines, if county lines are fractured, then
election district lines shall be followed as nearly as
possible."
Q. So this statute that you point to places the emphasis on following county lines?
A. That's how I would read that.
Q. And you also in the last sentence of paragraph 60 which is the top of page 31, you also identify communities of interest, preserving communities of interest as a relevant consideration in drawing districts in Mississippi.
A. Yes.
Q. And again just looking at that statute you block quote there, core retention is not mentioned in Mississippi's statute as one of the districting criteria in Mississippi?
```

rect.
Q. And you would agree that in considering the different traditional districting principles drawing a map, and electoral map drawer is going to have to balance some of these different principles and considerations?

MR. WALLACE: Object to form once again for failure to identify electoral map drawer and asking for legal conclusions. But you may -- and also being waylaid under the court order. But subject to all those objections, he may answer.
A. That would appear to be the case to me.
Q. Sometimes if you're putting a map -- an electoral map together, you're going to have to make tradeoffs between these different principles.
A. You have to make tradeoffs in anything we do in life, correct.
Q. Including these principles, which --
A. Since it's such a generalized idea, I think that you'd have to do that with these principles.
Q. And would you agree that different map drawers could employ different approaches, make different tradeoffs and each draw a map that in the end is consistent with the set of principles we've been talking about?
one. He may answer.
A. In principle, that could happen.
Q. So let's talk about the different criteria that we've been discussing one by one starting with population equality. Why do you think population equality, in your understanding, is an important consideration in drawing an electoral map?

MR. WALLACE: Same objections. He may answer.
A. Well as one example, if you had 500 people in an area, you don't want to put 499 of them in one and 1 person in the other and then equal -- have some sort of equal representation, whatever government form it would be .
Q. Ever heard the expression one person, one vote before?
A. I have.
Q. Population equality implements that principle; is that right?
A. I believe so.
Q. And looking at Table III.D.1 on page 17 of your report -- let me know when you're there?
A. I'm sorry.
Q. You report the population of the existing
supreme court districts, these are the current districts
in Mississippi, right, the VAP. Do you see that?
A. I do. I wouldn't say a report, the population per se. These are subsets of the population in Mississippi.
Q. Well you report the VAP in that first column for each --
A. That's correct.
Q. -- of the three districts, the voting age population. And you say in a footnote, Footnote 14 that your numbers correspond to the numbers in Mr. Cooper's report with respect to the demographics of the districts?
A. I do.
Q. And just generally, you don't anywhere indicate that there's any discrepancy between the numbers that Mr. Cooper reports based on the census and the numbers that you report based on the census?
A. I'd have to look through the full report, but I believe that's the case.
Q. Now, you don't report population deviations for each of these districts; right?
A. In the sense of?
Q. You don't report how different the VAP of each district is from the ideal population size or mean
population size for all the districts?
MR. WALLACE: Objection. Comparing VAP to
mean total population size or some other mean population
size?
Q. The VAP of the district to -- to mean or ideal VAP of the district.

MR. WALLACE: All right. Objection as to -as based on a faulty legal theory. I don't think there's a requirement for equality in VAP. But go ahead, he may answer.
A. In -- so I'm not sure what you're getting at, but in one sense, comparing deviations in the sense of how much a number may vary from a mean across a number of categories or districts, that's what your asking?

MR. SAVITZKY: You know what, I'll strike that. Mr. Wallace makes a good point. BY MR. SAVITZKY:
Q. You don't report population deviations to the districts in terms of total population from the ideal districts size?
A. Well, I'm not sure what the ideal district size is. I mean in that sense, are you talking about a mean or an average taken across a number of units?
Q. If there were equally populated districts, you don't report the deviation of these districts from the
size of what an -- what an equally divided --
A. Thank you for clarifying that. Yeah, I understand. No, I don't.
Q. You would agree that looking at that population deviation is something that map drawers take into account to asses that equal population principle that we've been talking about?

MR. WALLACE: Same objection as before. He may answer.
A. I -- it may depend on the situation.
Q. And we talked about that book that you -- that Mr. Bryan and Mr. Morrison had written called Redistricting, do you recall that?
A. Yes, I do.
Q. Is that another source that you relied on to think about the different principles that mappers consider?
A. I probably have looked through the book, again, when I was looking at this, but I don't recall specifically if I did.
Q. And let's just mark that. So this is Exhibit 13, Redistricting, a Manual for Analysts, Practitioners, Citizens, published as we discussed earlier by Springer.

MR. WALLACE: This is exhibit which?

```
                                    Page }8
                    MR. SAVITZKY: 13.
                        MR. WALLACE: 13.
BY MR. SAVITZKY:
Q. Okay. And I just want to turn to page 47 of this document here. And you let me know when you're ready.
A. I'm there.
Q. And we see on page 47 that the authors list some of the same criteria that we've been talking about; right?
A. I do.
Q. And they say: "Substantial equality of population has come to mean that the population difference between the largest and smallest districts, the total deviation may not exceed 10 percent of the average district population." Do you see that?
A. Yes.
Q. Do you agree with Mr. Morrison and Mr. Bryan that for purposes of drawing an electoral map, substantial quality of population means trying to stay within a plus or minus 5 percent of the ideal of average district size?
MR. WALLACE: Objection as to asking for a legal conclusion and for being outside the scope of the court order. But he may answer.
```

A. I look at this as another guideline.
Q. You agree it's a reasonable approach to implementing the consideration of equal population?
A. Well, it seems to be an approach to doing it, yes.
Q. And by the way, the next one that Mr. Bryan and Mr. Morrison mention is minority representation?
A. I see that.
Q. Okay. So looking back at your Table III.D. 1 on page 17 of your report -- and I understand this is only VAP -- it does look like, at least looking at VAP for now --
A. And where was that again?
Q. This is on page 17 of your report.
A. Thank you.
Q. And just looking at VAP, it looks like district 2, almost 800,000 people district 1, 715,000. So there's a significant difference in total voting age population; right?
A. I read that district 1 as being 7,000 -716,000, not 715,000.
Q. Right. So -- but there's a significant about 80,000 person delta between the size of those two districts in terms of VAP?
A. There's a difference of approximately 80,000
people.
Q. And looking at Mr. Cooper's October report which is Exhibit 9, if we could pull that back out. Here it is. So looking over at Mr. Cooper's October report --
A. Thank you.
Q. -- page 19, Figure 8, let me know when you're there.
A. I'm there.
Q. So Mr. Cooper does report total population in these districts in Figure 8; right?
A. Yes.
Q. And Mr. Cooper also reports the percent deviation from the ideal district size or mean district size or mean district size; right?
A. If he calculated it, that would be the case.
Q. And you don't dispute that looking at

Mr. Cooper's Figure 8, the population deviation under the current scheme of supreme court districts is greater than plus or minus 5 percent?

MR. WALLACE: All right. Same objections as before. Asking for a legal conclusion, not authorized by the court order, and in addition, not relevant to any issue raised in the complaint. But he may answer.
A. The -- there's one deviation that's minus 5.39
percent, and one -- another one that's plus 5.07
percent.
Q. So then the population deviation range for the existing supreme court district plan is greater than plus or minus 5 percent?

MR. WALLACE: Same series of objections. He may answer.
A. Slightly greater than plus or minus 5 percent.
Q. And that's sort of made sense when you consider these districts haven't been changed since 1987?

MR. WALLACE: Same series of objections. He may answer.
A. I'm not equipped to answer other than looking at what the population history is over the same period of time.
Q. And you reviewed Mr. Cooper's October report?
A. Yes.
Q. You reviewed the population statistics that he provided for the illustrative plans?
A. Yes. And again, as I stressed, I haven't looked at those in a long time, so I'm not going to be able to speak off the top of my head. So if we refer to them, it might help refresh my memory.
Q. Okay. Well looking at page 27 of Mr. Cooper's report which provides both a map and those population
statistics for illustrative plan one?
A. And the page number was?
Q. Page 27?
A. Thank you.
Q. And looking there, you wouldn't dispute that Cooper's illustrative plan 1 brings the population deviation down under plus or minus 5 percent; right? MR. WALLACE: Same series of objections. He may answer.
A. In what he labels a table as Figure 11, he has district 1 as a minus 3.14 percent, district 3 as plus 3.02 percent.
Q. So you wouldn't dispute that he brings the population deviation down below plus or minus 5 percent with his illustrative plan 1?
A. Three percent is less than 5 percent.
Q. But the range is down by four points overall?
A. Yes.
Q. And then looking at illustrative plan 2, page 30, you wouldn't dispute that for illustrative plan 2, the population deviation is cut down to less than 3 percent total?

MR. WALLACE: Same series of objections. You may answer.
Q. Plus or mine about point-and-a-half?

BUELL REALTIME REPORTING, LLC

```
Page 92
A. In figure 14, he shows district 1 at minus 1.59 percent, district 2 at 1.05 percent, and district 3 at 0.53 percent.
Q. So would you agree that illustrative plan two significantly reduces account population deviation from the existing plan?
A. I would not use the term "significant" necessarily. It reduces it.
Q. And then looking at the figures for least change plan 1 on page 34 , same questions. Has Mr. Cooper for this plan reduced the population deviation for the supreme court districts below that plus or minus that 5 percent threshold?
MR. WALLACE: Same objections. He may answer.
A. In district 1 , he has minus 4.65 percent, district \(2,1.2\) percent, district three, 3.44 percent.
Q. So the total deviation there is less than plus or minus 5 percent?
A. It is.
Q. And then look at just the next page, we have those figures for lease change plan 2, and again Mr. Cooper has reduced the deviation range below plus or minus 5 percent?
MR. WALLACE: Same objections. He may
```

answer.
A. You're talking about Figure 18?
Q. Correct.
A. I have to ask a question why he's labels tables and figures, but -- that's odd.
Q. Back to you.
A. I'll answer it, just -- hard to look at a table
that's labeled as a figure. Okay. So here he has
district 1 at minus 2.55 percent, district 2 is at 5.70
percent, district 3 is minus . 2 -- 2.51 percent.
Q. So deviation range is less than plus minus 5
percent?
A. Well, in two of them.
Q. The total range -- I would say total range is less than 10 percent?
A. You're talking about going from minus 2.5
percent to 5 percent, yes.
Q. Correct.
A. Yes.
Q. Okay. So with respect to the traditional redistricting principle of population equality, Mr. Cooper's plans all improve on the existing plan? MR. WALLACE: Same series of objections. He may answer.
A. His plans show ranges that generally are below

```
plus or minus 10 percent.
```

Q. Plus or minus 5 percent?
A. Plus or minus 5 percent not exclusively, but generally.
Q. And just in terms of the idea of weighting every vote equally, one person, one vote Mr. Cooper's plans tends to weight every vote more equally than the existing plan?

MR. WALLACE: Same series of objections. He may answer.
A. These are not voters, it's a total population.
Q. They -- that is correct. Mr. Cooper's plans tend to weight the representation of persons in Mississippi more equally than the existing plan?

MR. WALLACE: Same objection and the question is what does "representation" mean. But he may answer if he understands it.
A. I don't understand it.
Q. Mr. Cooper's plans adhere more closely to the ideal of every person having an equal share of representation?

MR. WALLACE: Objection. And he may answer.
A. Mr. Cooper's plan shows the -- as you're discussing, the ranges in terms of deviations from ideals which I think are calculated by the means. Is
that correct?
Q. As I understand it.
A. Yeah. So if he's calculating the mean, he's showing less deviation. Now, let me ask you a question. Would it be better to use the mean or the median?
Q. I'm not going to answer your question while we're on the record.
A. Yes. So there's -- and part of the issue about using means is, what's the different between a mean and a median? What does one of them do that the other one doesn't? It's a question -- it's not fair to ask you the question, I understand. But it's a question that you can see that I'm asking in general. Why use a mean? Means are subject to outliers. If you've got outliers in certain districts, it's going to weight the mean this way or the other way. So one question you could ask of all this entire analysis is: Why not use the mean. That's my point.
Q. Do you know whether courts in evaluating compliance with the principle of population equality use mean or median or what metric they use?
A. I do not, not. I can tell you as a demographer, in certain cases I would use a median much more than I'd use a mean. It depends on what's going on with outliers and observations and what the distribution
looks like. If you have a skewed distribution, I would -- and if you want to say this represents kind of the average, I would select a median over a mean, probably.
Q. I'm tempted to ask you one question because it is interesting.
A. It is. Please ask.
Q. Well, I just -- I mean on the question of one person, one vote which is, as we discussed, the ideal that's -- that is implemented, would a median not -would the use of a median to determine equal population among districts not lead to situations where districts were unequally populated?

MR. WALLACE: He opened this, so I'll let him answer that.
A. It's possible. What I would tend to look at and with any kind of averages like this is, I would look at what the distributions look like for them and then maybe even display both of them. They might give you supporting answers, they might give you different answers.
Q. But relying on the mean allows you to ensure that the actual population of each district is as equal as possible?
A. Again, that's one way to measure what averages
are. In not every case does it represent, you know, where the bulk of the people are. If you've got something that's an extreme outlier -- income is a classic -- a whole bunch of people have low incomes, one person has a real high income, what does it do to the mean? It drives it way up. So if you're saying here's the mean income but 85 percent of the people are below that mean, does that really characterize the whole set of people?

And that's what gets back to my question about maybe it's better to use the median in some of these cases. So that's why I have a difficult time kind of answering some of your questions that it's -- are they -- is more equal to do this, because it would, I think, would require some more research, and that research would involve looking at different types of averages. And whether or not courts use it, I don't know the answer to that.
Q. So you think it would be appropriate to use the median population of each district to assess whether population equality is --
A. I would look at it as a -- possibly along means and different types of means. There might be a need for a harmonic mean. I don't know the answers in advance. I look at is as a research question. Do you follow me?

I'm not saying one's better than the other, but it may be the case -- again, depending on the distributions, if you have a distribution where people are really clustered around one point, a mean is probably going to be good, and if symmetrical, the distribution. If you have a skewed distribution, it's not symmetrical, then it may be the means is better. But it's a case by case situation where you have to evaluate what the data are showing you.
Q. So let's move on to the next districting principle. Minority vote dilution, you would agree consistent with the sources you relied on that we've discussed already that protecting against minority vote dilution is another consideration that an electoral map drawer has to think about?

MR. WALLACE: Objection to vagueness, objection as to asking for a legal conclusion, objection as to being outside the scope of the court order. But he may answer.
A. I'm not sure what a given map drawer would do. But I think vote dilution would be a consideration and something to do with redistricting.
Q. For example, the congressional research service report that you cite said protecting racial language minorities from vote dilution is a consideration to be
taken into account?
A. Yes.
Q. And you would agree that the existing Supreme Court district 1 is 49.3 percent black voting age population?
A. I believe that's the case. Point me to where it's at in here again since I haven't reviewed this report in a long time.
Q. Well, we can look at Mr. Cooper's report on page 17. I believe those numbers are accurate. Page 16, excuse me.
A. Thank you.
Q. Statistics of the current plan.
A. I'm here. So the question was?
Q. The question was: You'd agree that the black voting age population of the current district 1 is 49.3 percent, 49.29?
A. In 2020 it's 49.29 in district 1.
Q. Uh-huh. And you would agree -- and we can look at those numbers -- for example, on page 27 of Mr. Cooper's report, we start talking about the numbers to the illustrative plans. You would agree that Mr. Cooper's plans increase the black voting age population of district 1?
A. Are you talking about Figure 11?
Q. Figure 11, Figure 13, the figures we talked about.
A. In --
Q. Mr. Cooper's plans all increase the black voting age population of district 1?
A. In figure 7, it shows district 1 in 2020 as having 49.29 percent; in Figure 11, illustrative plan 1, 2020 census, it shows district 1 with a percent 18 plus black, which I'm assuming is the voting age population, just stated a different way, is 55.31 percent.
Q. So Mr. Cooper's illustrative plan 1 increases the black voting age population of the district by just 6 points?
A. That's correct.
Q. And looking at Figure 14 on page 30 ,
illustrative plan 2 increases the black voting age
population of the district by a little under 5 points?
A. You're asking about district 2 now?
Q. District 1. Excuse me.
A. In district, Figure 14 shows it as being 54.19 percent.
Q. All right. So 4.9 percent increase in black voting age population from 49.29; right?
A. It's an increase from that, yes.
Q. A 4.9 percent increase?
A. Approximately, yes.
Q. So we talked earlier about racially polarized voting. Assuming the existence of cohesive racially polarized voting patterns, increasing the black voting age population at district by 5 or 6 points is going to give black voters in that district a better chance of electing their preferred candidate; right?

MR. WALLACE: Objection to the form, objection as to being outside the scope of any report, and objection as to being outside the scope of the court's order. But he may answer if he can.
A. Could you give me more hypotheticals on it? Would this be assuming that all the race groups vote as a block, for example?
Q. Correct. Assuming block voting by black voters, block voting by white voters for different candidate, if you increase the black voting age population by 5 or 6 points as Mr. Cooper does, black voters are going to have a better chance at electing their preferred candidates?

MR. WALLACE: Same objections. He may
answer.
A. So you're -- all else equal?
Q. Yeah.
A. Everything else equal, that's how you're asking

BUELL REALTIME REPORTING, LLC 206.287.9066 | 800.846.6989
the question. In block voting, etcetera, etcetera, would appear that that would be the case.
Q. Now let's talk about contiguity. You don't dispute that all the illustrative plans outlined in Mr. Cooper's reports are contiguous, do you?

MR. WALLACE: Same set of objections. He may answer.
A. I'd have to go back and look at what he did since I haven't reviewed this report and looked at it for months until today.
Q. What is "contiguity" in your understanding?
A. It would -- meaning that you're trying to retain some kind of existence over time as you go through time.
Q. If I --
A. The characteristics would remain the same, there's continuity. It's not an abrupt change.

MR. WALLACE: I think he asked about the contiguity not continuity.
Q. Correct.
A. In that sense, it means geographic location of people separated from one another.
Q. Correct.
A. Or units separated from one another.
Q. Correct. And in terms of geographic
contiguity, all the districts in all Mr. Cooper's plans
are contiguous; right?
A. I'd have to look, but I believe that's the case. What you're asking is, there's not a county, say, in northeast Mississippi that's isolated and part of a
district 1, for example.
Q. Yeah. He didn't, like, just show Chickasaw County in district 1 or something?
A. That's correct.
Q. Okay. Same as the enacted plan, also contiguous?
A. I believe that's the case, yeah.
Q. So let's talk about compactness. Paragraph 72 of your report, page 38. If you can turn there, that would be advisable. You say: "Compactness is a tool that can be used in redistricting to compare the relative compactness of existing districts against new districts to determine whether the new districts entail
minimal or large-scale changes from the existing
districts."
A. And that's paragraph 72?
Q. Yes.
A. Thank you.
Q. Starting with the words "compactness is a tool."

```
                                    Page 104
A. I'm there.
Q. You say: "Compactness is tool a that can be used in redistricting to compare the relative compactness of existing districts against new districts to determine whether the new districts entail minimum or large-scale changes from the existing districts."
A. Corrects.
Q. What is the basis for that characterization of what compactness is?
MR. WALLACE: Same objection as being outside the scope of the court's order, but he may answer.
A. In the sense of the legal requirements, what compactness is, or some other kind of definition?
Q. I just -- where did you get this characterization of compactness that you offer up here?
A. Are you asking me -- I'd have to go back and look at my notes as to where I got it. It's not on the top of my head. As I said, I haven't looked at this report in months.
Q. What does it mean to say that "compactness is a tool that can be used in redistricting to compare the relevant compactness of districts"?
A. In that sense, it means how spread out are they.
```

Q. When you say "compactness is a tool," are you referring to the different compactness metrics like Reock and Polsby-Popper and Schwartzberg?
A. That's one of the ways of looking at it, what the summary measures are that it might be.
Q. Would you agree that compactness is a term that refers to whether a district is regularly shaped?

MR. WALLACE: Same objection plus legal conclusion, he may answer.
A. Yes.
Q. And looking at a passage from the CRS report that's Exhibit 11 -- do we still have that around here? It should be under -- oh, right here. There we go.

Looking back at Exhibit 11, page 11, let me know when you're there.
A. I am.
Q. Okay. That report from the CRS that you relied upon says: "From the geographic perspective, compactness is usually defined by reference shapes, e.g. most compact shape is a circle, followed by a square, a rectangle or references to geographic measures such as geographic dispersion perimeter measures or population measures." Do you agree with that?
A. Yes. It's consistent with what I answered before, how distributed our points are.
Q. And as you understand it, are there different ways that someone evaluating a map can know whether a district is sufficiently compact?
A. You named some of the measures.

MR. WALLACE: Same objections as before. And person's evaluating a map is completely vague. If you're talking about a judge, I object to asking for a legal conclusion. You may answer.
A. There are different measure for summarizing what compactness is, as you listed before.
Q. And there's no one particular method that's the best method for assessing compactness?
A. That was my understanding looking at the different measures, they each have their own strengths and weaknesses. So in that sense, you're certain to look at things like averages.
Q. So, for example, in paragraph 73, you say: "There's no professional consensus on the right measure and every widely used measure works differently?
A. Correct.
Q. So there's no one definitive measure of compactness?
A. From the standpoint from what I could tell looking at the literature, yes, that appears to be the case.
Q. And Mr. Cooper in his responsive report on page 8 -- and we can look at it or not, but I'll read you the quote and you can --
A. Just read it, sure.
Q. But he says: "Redistricting experts and map drawers commonly employ an eyeball test to assess whether a plan is reasonably compact." Do you agree with Mr. Cooper's statement there?
A. I don't know what map drawers do commonly.
Q. Because you're not a map drawer?
A. Or -- that's correct.
Q. You don't evaluate maps?
A. Well, I don't know -- I don't know if people who evaluate maps use an eyeball test or not routinely. I don't know the answer to that.
Q. You're not familiar with the eye test or the eyeball test for measure compactness?
A. What would the eyeball test be?
Q. The eye test?
A. You're just looking at somebody's -- how much does it vary from being a circle, for example?
Q. Yeah. You're just looking with your eye to assess the visual compactness of a district.
A. I can understand people doing that, use a lot of visual assessments in all sorts of things, but
whether that goes to the point where you're actually
going to say or use that in something or whether or not
you're going to use a metric, I don't know the answer to
that.
Q. And let's just pull up what's been marked as Exhibit 13. This is that text that Mr. Bryan and Mr. Morrison wrote. And do you still have that, Exhibit 13?
A. Yeah, somewhere.

MR. WALLACE: I'll give him mine if you can give me the page number.

MR. SAVITZKY: Page 48.
MR. WALLACE: Okay.
MR. SAVITZKY: And you tell me when you're
there.
THE WITNESS: Thank you.
BY MR. SAVITZKY:
Q. Do you see there's a paragraph about compactness there?
A. I do.
Q. And the last sentence says: "No one method is best and the colloquial eyeball test of a district's appearance and function may be germane."
A. I see that.
Q. So having reviewed the text written by

Mr. Morrison and Mr. Bryan, would you agree that the eyeball test is one measure that is used to asses the compactness of a district?

MR. WALLACE: Same objection as asking for a legal conclusion and being outside the scope of the order. The he may answer.
A. And again, what I would stress is that they wrote that as one possibility, but whether or not I agree with the eyeball test being germane is not necessarily my opinion. I tend to look more at metrics than eyeball test, but I understand there's a need for things like that when you're -- when you don't have good measures or you're initially looking at a project and you need something qualitative to start off with. So it goes back to my answer being I'm not sure if it's germane or useful or not or whether or not map drawers use it all the time.
Q. Okay. Is it fair to say that a mapper who has drawn many plans, a person who draws electoral maps and has drawn many plans and looked at many districts is going to sort of develop a better sense of whether a district is compact visually?

MR. WALLACE: Objection to the vagueness and in addition to not knowing who a map drawer is, not knowing what "better" is.
A. I can't answer that question. I don't know.
Q. Is it fair to say that someone who reviews more electoral districts is going to develop a sense of whether a district is more or less visually compact?

MR. WALLACE: Same objection. He may answer.
A. And my answer again is I don't know.
Q. On page 38, Footnote 29 of your report, you cite a lecture by Gary King called "How to Measure Legislative District Compactness If You Only Know It When You See It." Is that something that you rely on?
A. And that's footnote?
Q. 29.

MR. WALLACE: 29 on page 38.
MR. SAVITZKY: Yep.
A. Yes, I recall. Let me look at what I actually put in the text for that. Specifically, that says: "In contrast, academics have shown that compactness has multiple dimensions and have generally many conflicting measures."
Q. And let's just mark as Exhibit 14 this is the web page here. And looking at the one, two, three -third sentence -- the second sentence too. Well actually, take a look at it and then let me try to ask a summary question. Let me know when you've read the
first couple sentences.
A. Okay.
Q. So basically what they are saying is that academics have developed many very complex measurements of compactness but courts and other observers see compactness as a sort of simple visual
you-know-it-when-you-see-it-type test. And they say both of those are right, there are many complex and multidimensional tests of compactness, but there is also what they say is a particular unit dimensional ordering that represents a common understanding of compactness in the law across people. Am I accurately summarizing what King is saying here?
A. And then he goes on to say that he's developing a statistic model that predicts with high accuracy what that is, yes.
Q. Based on this unidimensional sort of common understanding that he's discerned?
A. Yes.
Q. And I just -- it's actually -- we're not going to spend too much more time on it, but it totally's fascinating. Did you look to the slides for the lecture that King did?
A. I'd have to -- I don't recall. Like I said, this is -- it's so long ago I did the report, I can't
remember what I looked at now or not.
Q. So I'm just going to mark the lecture slides as Exhibit 15 here. And again, I don't want to spend a ton if time on it because this is a long, long lecture, but if you can -- I'll point you to the page. At 424, there is a series of illustrating --
A. Yes.
Q. -- this unidimensional --
A. Uh-huh.
Q. -- you know it when you see it --
A. Uh-huh.
Q. -- metric; right?

MR. WALLACE: Page 4 --
MR. SAVITZKY: It's marked 424 at the
bottom.

MR. WALLACE: 4, slash, 24?
MR. SAVITZKY: Correct.
MR. WALLACE: Okay. I was looking for 424.
Okay.
Q. So you go down and each one is a click, you click, click, click through --
A. Yeah.
Q. -- we see as we move through, once we see all four districts there, this unidimensional ordering. All under the header: "A simple single compactness
dimension that you know when you see." Right? And as we go on and see the text below, it says dimension is intuitive; right?
A. That's what he states.
Q. Okay. And looking at this, does this give you a sense of what the eyeball test is?

MR. WALLACE: Well objection to the extent
the eyeball test is a legal test in which he has no expertise. But if he has an opinion on this report subject to the fact that it's contrary to the court's or order, he may answer.
Q. And setting aside from whatever it might mean as a legal matter, just --
A. I have an opinion.
Q. Yeah, go ahead.
A. So if you look at the four figures on one of these and since they all say 4/24, I'll have to point this out to you.
Q. Yes, I see it.
A. Okay. Suppose that the eyeball test I'm looking at the first figure on the left, to the second figure to the right of it, they're somewhere dissimilar. If I look at the figure on the left to the far figure on the far right, they're very dissimilar. So these are kind of simple examples of what could take place. Is
figure -- the third one to the right really different than the fourth one to the right? Is it more or less compact? Just eyeballing, it might be difficult to say. And again, these are examples that he put up to illustrate the point he's trying to make.

So in some cases, it may be that the eyeball test doesn't work, and I could point to each of these examples right here. Is the figure, the third most right one really more compact than the fourth most right one? You know, there would be questions from people about that. And as you get closer and closer, instead of having these discreet illustrations, if you had more of a continuous model and you're getting closer and closer to the one on the far right, which one is more or less compact? It would be hard to answer, wouldn't it?
Q. So looking at -- so would you agree if you're visually with your eyes, you can make gross distinctions but perhaps not fine distinctions?
A. Or it may be the case that if you've got something as extreme as what's on the far left here as he examples and what's on the far right, then you can say yes, it looks like the one on the far left is very much more compact than the other ones. And there's going to other cases where I think the eyeball test is going to be difficult to measure that.
Q. All right. And Mr. Cooper states -- now we're looking at -- going back to page 8 of his responsive report. This one we can definitely -- if you want to keep a copy for later, it is a quite fascinating lecture, but --
A. Thank you.
Q. Mr. Cooper states at page 8 of his rebuttal report which I believe is Exhibit 10, which you should have it there, he says --
A. I've got 9. Bear with me.
Q. Yes.
A. Thank you. And where on Exhibit 10 are we going?
Q. Page 8.
A. Thank you.
Q. And he says: "Using the eyeball test, the illustrative plans and the least changed plans, I have drawn are reasonably compact." And you are not claiming to dispute that statement, are you?

MR. WALLACE: Objection as to being outside the bounds of the court's order, but he may answer.
A. And I was not asked to review this after he wrote this report, so I can't give you an answer whether or not I dispute at this point or -- or not at this point. I have to go back and reanalyze what he did.
Q. I mean, you testified earlier that you did review Mr. Cooper's rebuttal report.
A. Yes, but I was not asked to actually do something with it, to actually analyze it. Do you follow me? So I looked at it, I read it, but I was not tasked with or asked to go on and say something back in regard to it.
Q. And as you sit here now, you're not disputing that statement?
A. I can neither dispute or not dispute it at this point. Again, it's a research question, and I wasn't asked to do that.
Q. Well, I'm asking you as you sit here now, do you dispute the statement Mr. Cooper makes that under the eyeball test, the plans he drew are reasonably compact?
A. And again, I stress that since I haven't looked at what he's arguing here with sufficient time ahead of it to know, I can't answer that question directly.
Q. Well, given that you're not saying you do dispute it, can I take that to mean that you're not currently disputing it?
A. I -- I'm not saying that. I don't have an opinion at this time on it. Would that be better?
Q. That'll do.
A. Okay.
Q. So getting back to the compactness analysis that you did, we'll talk more about your report. In your report, you analyze compactness cores of the illustrative plan supreme court districts that Mr. Cooper drew, and you concluded that they are less compact than the existing plan. Is that generally --
A. I believe that's the case, yes.
Q. And you mentioned earlier this is -- Bryan GeoDemographics did this analysis new?
A. They did at my request, computed the scores, put data together, that's correct.
Q. And as far as you know, they used the ArcGIS or ArcView program?
A. I'm pretty sure that's what Tom Bryan used.
Q. Were you able to verify the results that they provided to you?
A. In what manner?
Q. I mean did you independently verify the results that they gave you with respect to the compactness scores of the district?
A. You mean go ask somebody else who does GIS to see if that's the case?
Q. Sure, or do it yourself.
A. I'm not capable of doing it myself in that
regard since I didn't run GIS programs. And no, I didn't go ask anybody else to go review it.
Q. And just looking at pages 40 to 43, we have these various tables. Did you design these tables in this layout here or did Bryan?
A. I asked him to put these together and then -and give me information on them in regard to all these measures of doing that, and that's what he did.
Q. So Bryan GeoDemographics put these Excel tables together?
A. At my request, yes.
Q. And after reviewing these various compactness scores, you didn't conclude that the illustrative plans are insufficiently compact in terms of adhering to traditional districting principles, did you?

MR. WALLACE: Objection to asking for a legal conclusion on what's insufficient. But he may answer.
A. That's correct. Insufficient is not something I can speak to. They're just different from what the existing plans were.
Q. You're not offering an expert opinion on whether the illustrative plans compactness scores are insufficient to meet traditional districting principles?

MR. WALLACE: Objection on -- objection to
the extent traditional districting principles may be
incorporated into the law, and I'm not sure how much
that is, but I think you're still asking him for a legal
opinion. But he may answer.
A. Yeah, and insufficient is -- they're -- the "scores" are not as good on average as the score of the existing plan is my recollection on these in looking at it. Whether or not that means insufficiency, I don't know.
Q. You didn't offer -- you're not offering any expert opinion that the compactness scores for the illustrative plans mean that the districts plans are not compact?

MR. WALLACE: Objection to vagueness, but he may answer.
A. And again my answer is, they're -- the scores in the sense of compactness are not as compact as what's in the existing plan.
Q. You didn't consider whether the compactness scores of the illustrative plans are within the normal or acceptable range of compactness for an electoral districting map?

MR. WALLACE: Objection to vagueness as to normal and acceptable, but he may answer.
A. I did not.

MR. WALLACE: 16, you said?
MR. SAVITZKY: Yes.
MR. WALLACE: Okay.
BY MR. SAVITZKY:
Q. So in looking at page 8 of Exhibit 16, we can see that what the authors of this report did in their Table 5 is, they looked at the mean compactness scores for congressional districts in every state. This is following the 2010 redistricting cycle.
A. What are the page numbers?
Q. They are in very light gray at the bottom of the page.
A. Oh, wow.

MR. WALLACE: There's something there.
A. I see it okay. And you're asking about page 8?
Q. Yeah.
A. The table, not the Figure 5.
Q. Correct. Table 5, exactly.
A. Table 5.

```
                    Page 121
Q. Exactly. So looking at this table, we can see in that the last round of congressional districting, the
mean Polsby-Popper score for congressional districts in
Mississippi was 23.33; is that right?
A. I'm trying to go down and find Mississippi. I
see it. Thank you. So they're ordered by rank of
score. Okay. 23.33.
    Q. Is that right?
    A. Yes.
    Q. And the mean Schwartzberg score is 4758, .4758?
    A. 47.58, yes.
    Q. And the mean Convex Hull score is 76.84?
    A. Yes.
    Q. And I just want to note for the record that
these are presented as whole numbers rather than
fractions, but I -- usually, I see them presented as
fractions between 0 and 1 or decimals between 0 and 1,
but I think we understand that we're referring to the
same range of between 0 and 1 or in this case between 0
and 100; is that right?
    A. I'd have to look to know that that's the case,
but I believe you, you have no reason to tell me
otherwise; right?
    Q. Yeah. And then just looking at the Reock
score, we have mean Reock score of 38 --
```

Q. -- 08? Right. So you didn't look at some type of benchmark like this to assess the compactness scores for Mr. Cooper's illustrative districts?
A. I did not.
Q. And just turning back to what again I think has been marked as Exhibit 10, Mr. Cooper's responsive -- or rebuttal report, that's right, Exhibit 10. Or actually, we can look at your report at page 40. You list the scores for illustrative district 1 right here or for all of it, illustrative --

MR. WALLACE: Hang on. What page in --
MR. SAVITZKY: Page 40 of your January
report. And do keep what we marked as Exhibit 16 handy because I want to just do a little quick head-to-head look.

BY MR. SAVITZKY:
Q. So looking at the scores, what I want to do is compare the mean compactness scores for Cooper's illustrative district 1 and mean compactness scores for the Mississippi congressional districts that we were looking at on page 8 of Exhibit 16.
A. So we're comparing the supreme court district scores to the congressional district scores.
Q. Yes. Mean, mean. Exactly.

MR. WALLACE: Okay.

BY MR. SAVITZKY:
Q. So now looking at that, just looking at the scores, the mean compactness scores that you report on page 40 in Table III F.7.a and comparing those to the mean compactness scores for this Mississippi congressional district, we see Polsby-Popper score of Cooper's illustrative plan 1 as .27 mean, so that's a little higher than .23?

MR. WALLACE: Objection to relevance and objection as being outside the scope of the court's order. But he may answer if he can.
Q. You would agree that that Polsby-Popper scores are pretty similar?
A. Given that they -- for supreme court districts compared to congressional districts.
Q. Yeah.
A. They look fairly similar.
Q. And the Convex Hull scores, also very similar, Cooper's plan is just a little bit higher but basically identical, . 78 versus .6784?

MR. WALLACE: Same objections. He may answer.
A. I see the mean score Convex Hull here for Mississippi as being in the congressional district, 76.84 .


```
                                    Page 126
                            Q. Okay. And looking at -- now we'll look at
Cooper's responsive report page 10, Figure 1.
Mr. Cooper does a compactness analysis, looks head --
the head-to-head comparison between the existing plan
and the illustrative plan 1. Do you see that in
Figure 1?
    A. I do.
    Q. And with respect to the mean compactness, you
would agree that existing supreme court plan and
illustrative plan 1 are .01 apart on the Polsby-Popper
score; right?
    A. Yes.
    Q. And they're . O1 apart on Convex Hull; right?
    A. Yes.
    Q. Cooper's a little higher on Convex Hull,
existing is a little higher on Polsby-Popper?
    A. Yes.
    Q. You would agree that a . 1 difference is
basically identical?
    A. It depends on the contexts.
    Q. Okay. You would agree they're substantially
similar?
    A. Again, depends on the context. You know, if
you're looking at this from -- if you're doing a sample,
really large samples may have a very small difference in
```

some measure you're looking at like income, and $\$ 10$ is enough to say it's different. So I'm saying it depends on the context.
Q. In the context of evaluating compactness scores like Polsby-Popper and Convex Hull, you would agree that a difference of . 01 is negligible?
A. In general, that's what I agree with, yes. So in that context, yes.
Q. Great. And on the Reock -- oh, sorry. And on the Schwartzberg metric, the plans are exactly identical?
A. Yes.
Q. So the two plans are either exactly or essentially the same on three different metrics of compactness?
A. Yes.
Q. And then with respect to the Reock score, the mean Reock score for the existing plan is better at . 51 versus . 36 ?
A. It's higher, yes.
Q. Higher. Excuse me. But you don't conclude that Reock is a better or more appropriate metric than any of these other metrics, do you?
A. One of the ways to look at them, because of all these issues about it is to start looking at doing some
of an average of all the measures too since they all
have their strengths and weaknesses.
Q. Are you aware of any instance in which the different compactness metrics have been and or blended together?
A. Some of the work I've done, yes.
Q. In the work that you've done, you averaged or blended together compactness metrics like Polsby-Popper, Reock, and Convex Hull?
A. Or taking averages of them. Is that in this report that I did? I'm just asking? Since I haven't looked at it in a long time, I just asking if I did that.
Q. I mean, I'll represent to you that I don't recall your doing that in your report.
A. Okay. Then I may not have done it in is this report.
Q. Are you aware of any other person analyzing compactness of district maps who's tried to blend or average together the different metrics?
A. Yeah, I think Tom Bryan has.
Q. When did he do that?
A. I don't recall, but I think he has.
Q. Okay. And looking at Figure 2 on the same page of Mr. Cooper's report, he conducts a head-to-head
comparison between existing district 1 and illustrative plan district 1 , right, so now he's looking at the mean scores but at the compactness score for district -district 1 in particular?
A. Yes.
Q. And identical Polsby-Popper scores for both districts; right?
A. Yes.
Q. And on two of the remaining metrics, Convex Hull and original Schwartzberg, the illustrative plan district 1 is more compact than existing district 1; right?
A. It has higher scores in the Convex Hull and lower score in the original Schwartzberg.
Q. Has a lower score. Okay. Kind of got -- so just stepping back, fair to say that on some of the metrics, Mr. Cooper's illustrative plan one performs better and on some of the metrics, the existing plan performs better?
A. In the sense of -MR. WALLACE: Objections -- same objections. He may answer.
A. Yes.
Q. So let's talk about political subdivision splits. You agree that all of Mr. Cooper's illustrative
plans are drawn entirely on whole counties?
A. I'd have to refresh my memory and look at his report, but I believe that was the case.
Q. You agree that necessarily because there are no county boundaries split, the number of county splits is zero?
A. Correct.
Q. And you agree the number of precinct or election districts splits also necessarily zero?
A. Since they're all within the same county, yes.
Q. And so in terms of that metric of county and precinct splits, plans are identical, existing plan, Cooper's illustrative plans, all of them zero county splits, zero precinct splits; right?
A. Correct.
Q. Let's talk about communities of interest. What's your understanding of a community of interest?

MR. WALLACE: Objection to the extent you're asking for a legal opinion, but he may answer the question. Oh, and it's out of the court order, but everything has been so far, so he may answer that.
A. So there's a definition. Do I have it in the report somewhere of -- of that community of interest? Is it in the report.
Q. I'm not sure as I sit here whether you provide
a comprehensive definition in your report but --
A. And I don't recall if I did or didn't since I haven't looked at it in a long time.
Q. I mean, I ask you as someone who of offering analysis of --
A. So in general if you're asking me off the top of head what it means, "community of interest," it represents a lot of shared social and other characteristics, economic characteristics.
Q. You would agree it, basically, is a community, a group of people that share some common resource or interest or priority?
A. Or social -- social, economic, and other cultural characteristics, yes.
Q. Got it. You would agree there are many ways to define a community of interest?
A. There could be, yes.
Q. So like a city or town could be a community of interest?
A. I guess it depends on the composition that's their -- what criteria someone's specifically looking at.
Q. It could be a region or a group with a shared history or culture?
A. It could be.
Q. Could be a region or a group of people with shared policy interests or shared needs?
A. It could be. But I'd look at all those as possible dimensions of something that could be even broader if you're looking at community of interest.
Q. So -- and is it fair to say when we talk about communities of interest in the districting context, the idea is that where reasonable, you should try to group people with common interests in the same district? MR. WALLACE: Objection as seeking a legal opinion, but he may answer.
A. That's my picture of it.
Q. And I'll represent to you that on page 48 of that redistricting book which has been marked as Exhibit 13, Morrison and Bryan say: "Respecting existing communities of interest is often a proxy for ensuring that people of common interests are grouped within the same district." Does that -- do you agree with that statement?
A. Yes.
Q. Now, you don't analyze communities of interest anywhere in your January report; right?
A. I don't believe so. I'd have to go back and look in the sense of what the cluster analysis I did was.
Q. Setting aside the cluster analysis, which we'll talk about, you don't do any analysis that's relevant to communities of interest?
A. Not that I recall.
Q. And you don't dispute that Mr. Cooper considered Mississippi planning and development district as a community of interest and evaluated that in his report?
A. I believe that he did.
Q. And you don't dispute that a map drawer could consider Mississippi's planning and development district as a community of interest?

MR. WALLACE: Same objection as to meaning of "map drawer." He may answer.
A. It's possible.
Q. As I think you point out in the beginning of your report, Mississippi Supreme Court districts are used for transportation, public service commission, they're used for a number of appointed boards; right?
A. They are.
Q. So whether the interest of Mississippi's various planning and development districts are fractured or not by the designing of a plan could be important for that reason as well?

MR. WALLACE: Objection to the vagueness of
the importance. He may answer.
A. It would be.
Q. So in looking at -- and now we're back on

Mr. Cooper's October report, paragraph 35. This is
Exhibit 9, I believe, yeah.
MR. WALLACE: Paragraph what?
MR. SAVITZKY: 35.
MR. WALLACE: Okay.
MR. SAVITZKY: And I'll give you the page if that would be helpful. It is page 18. And let me know when you're there. I'll just clear this out.

THE WITNESS: Thank you. I'm there.
BY MR. SAVITZKY:
Q. And we can see on paragraph 35, Mr. Cooper says: "I show in the Figure 6 map" -- and if you want to look at it, it's on me preceding page -- "the 1987 plan splits five of the ten regional planning districts." And then he lists them. You don't dispute that, do you?
A. Let's see. Let me go back here again. So you're talking about Figure 6?
Q. Yeah. Figure 6 is the existing plan overlaid on those planning districts. Mr. Cooper says five of the ten districts -- planning districts are split in the existing plan. You don't dispute that, do you?

No
Q. And he says: "Supreme court district 1 contributes to each one of those splits, South Delta is the only planning district entirely within supreme court district 1." You don't dispute that, do you?
A. No.
Q. And now turning to paragraph 51 of Mr . Cooper's report, that would be on page 26 , still on exhibit 9 . You don't dispute Mr. Cooper's statements in
paragraph 51 that: "Illustrative plan 1 splits two planning districts, North Delta and Central, rather than five as in the 1987 plan?
A. I believe that's correct.
Q. And looking ahead to paragraph 56, you -- on page 31, you don't dispute Mr. Cooper's statement the illustrative plan 2 splits three planning districts rather than five as in the enacted plan?
A. That's correct.
Q. Are you familiar with the Mississippi Delta?
A. The Delta counties, the area?
Q. Or the area that's the region in Mississippi

Delta?
A. Yes, I am.
Q. Is it fair to say based on your knowledge of Mississippi that the Delta is a culturally,
historically, demographically, socioeconomically
distinct region?

MR. WALLACE: Objection to vagueness and asking for a legal conclusion and being out of time under the court's order, but he may answer.
A. It certainly shares characteristics that are common internally that are not common elsewhere in the state of Mississippi.
Q. And as someone who studied the demographics of Mississippi, you would agree the Delta is culturally, historically, demographically distinct?
A. Of other places in Mississippi?
Q. Yes.
A. Yes.
Q. And I would think it's fair to say that the Mississippi Delta is one of the most culturally, historically, demographically distinct geographic regions in the entire South if not the nation. Would you agree with a that?

MR. WALLACE: Same objection, but he may answer.
A. People in New Orleans might disagree.
Q. Well, one of the most?
A. Yeah.
Q. Would you agree with that?

MR. WALLACE: Objection as to meaning of distinct in addition to previous objections, but he may answer if he can.
A. It may or may not. There's certain sections of the state that are not in the Delta that may share some of those characteristics and needs in common with Delta counties. So again, I would say it's a research question, not something I can just answer off the top of my head from a professional opinion. As a personal opinion, I would say yes, in general I think there are issues like that that are common to a lot of Delta counties, but they may be common with counties elsewhere in Mississippi too.
Q. But the concentration of those needs in the Delta is somewhat unique?
A. Again, it may be. But part of the issue you're talking about is rural. Are rural areas of really

Northeast Missouri really different in the Delta in terms of some of the needs? That's -- again, I don't know the answer to that off the top of my head of the -looking at rural areas that are high in poverty that may or may not have the same racial distributions, that may or may not have the same access to resources. So I would suspect while there definitely are distinct areas of interest in the Delta counties, I think they may share some things with the counties elsewhere in the State of Mississippi too.
Q. You'd agree that the Mississippi Delta could be considered a community of interest?
A. It could be. It depends on what kind of criteria you're looking at.
Q. Would you consider it a community of interest?
A. Again, it depends on what someone was asking me. From the ecological standpoint? From the cultural standpoint? From the music standpoint?
Q. Sure.
A. Yeah. It could vary. You know, there are places on the Delta that would share a lot of common history in terms of plantation stuff with the counties over on the Alabama border, for example, and they're not contiguous, they're different. So if you look at the counties in areas of Northeast Mississippi where they
sing not Delta Blues but Hill Blues. You know, they're different styles of music, so --
Q. One aspect of the culturally distinct nature of the Delta?
A. That's one, yeah.
Q. And the existing supreme court plan fractures the Delta?

MR. WALLACE: Objection to the meaning of the word "fractures," but he may answer.
A. I -- it's -- whether or not it fractures the Delta, I can't say.
Q. But we can just look briefly at page 16 of Mr. Cooper's report right there --
A. Sure.
Q. -- and just looking at the map, the Mississippi Delta is divided under the existing supreme court districting plan; is that fair to say?
A. Does page 16 show the supreme court districts in colors, is that what you're saying?
Q. Correct.
A. And under the existing supreme court plan, you're asking me how is it fractured?
Q. I'm asking you if the existing plan divides the Delta.
A. Well, in what sense is divide the Delta? Are
you --
Q. Divides the Delta -- excuse me. The plan divides the Delta between multiple districts?
A. So parts of the North Delta that are in here?

In the sense of these are, again, the planning districts that are named in this map? So from a planning district standpoint, the North Delta district is in a separate supreme court district than is the South Delta district.
Q. And just setting aside the planning districts for the moment, are you generally aware of which counties are in the Mississippi Delta, the region, the Mississippi Delta, as you understand it?
A. I do. You're talking about from Tunica down towards Vicksburg generally?
Q. And thinking about that region, that set of counties from Tunica down to Vicksburg, the existing supreme court plan divides that region between different supreme court districts; right?
A. If you're looking from the standpoint of Delta counties, yes.
Q. And we can just turn briefly to Mr. Cooper's illustrative plan 1 on page 27. And just looking at that plan and thinking about the Mississippi Delta region from Tunica Don to Vicksburg, Mr. Cooper's illustrative district 1 unites the Delta in one
district; right?
A. He also had some of the counties that I wouldn't put in the Delta in that district, so it splits off from other areas. I mean, that's what it looks like just looking at his map.
Q. But in terms of the distinct region that we've been talking about, the Mississippi Delta, it is kept together in Mr. Cooper's configuration of the supreme court map; right?
A. You know, I'd have to think about DeSoto County, whether or not it's really a Delta county or not, that he's got on there, but that's one possibility.
Q. Setting aside DeSoto County, the Delta is united in Mr. Cooper's illustrative plan 1?
A. Generally speaking, I would agree to that.
Q. And just looking at page 30 of the report at illustrative plan 2 -- are you on page 30 ?
A. I am.
Q. And you can see even if you include DeSoto County, the Delta is united in this version of the plan; right?
A. Yeah, it varies again because now Lincoln County is outside of it, and it was inside the Delta initially.
Q. Would you say that Lincoln County is in the

Mississippi Delta?
A. I'd have to look specifically, as I don't know the answer to that, if it's a Delta county or not, if I'd label it that way. I don't know what all the characteristics are in Lincoln County. I can just see looking at the two maps, that's one difference right there.
Q. Lincoln County is south of Vicksburg, isn't it?
A. It's east.
Q. South and east?
A. Yeah.
Q. Okay. All right. Let's talk about core retention. And turning back to your January report, look at Table III.F. 5 on page 37 of your January report.

MR. WALLACE: On page what?
MR. SAVITZKY: 37.
MR. WALLACE: Okay.
BY MR. SAVITZKY:
Q. Oh, excuse me. So your core retention analysis begins on page 31, paragraph 62, but let's look at that page 37, and look at that table that you have, it's the core retention analysis by plaintiff's plan. Let me know when you're there.
A. It may be a while since I have so many papers here.

```
                                    Page 143
            MR. SAVITZKY: When we take a break for
    lunch, I'll come over and see what I can clean up there.
Page 37.
    MR. WALLACE: Now you're getting into
somebody else's report, that your problem.
    THE WITNESS: Yeah, that's it.
    MR. WALLACE: Is this yours? We're missing
20 pages of it.
    THE WITNESS: It's in here somewhere.
    MR. WALLACE: I'll give you mine.
    MR. SAVITZKY: Do you mind if I come around
and sort things out or --
    MR. WALLACE: I can give him mine if you
want to get on with --
    MS. SAVITZKY: That's fine. Yeah, during
the break, we can sort it out.
BY MR. SAVITZKY:
    Q. So just looking at Table III.F.5, your analysis
is that Cooper's illustrative plan 1 keeps
74.3 percent of Mississippians in the same district as
they were in in the existing supreme court plan; right?
    A. Yes.
    Q. And your analysis is that Cooper's illustrative
plan 2 keeps 66.8 percent of Mississippians in the same
district as they were in the existing plan; right?
```

A. Correct.
Q. And you say -- and we don't need to turn, I'll
represent to you -- you can turn there if you want. But
I'll represent to you in the first instance in
paragraph 15 of your report you say: "Core retention
for the illustrative plans is low." You use the word
"low." Do you recall that?
A. I do.
Q. What's the basis for your opinion that keeping
a supermajority of Mississippians in the same district is a low level of core retention?

MR. WALLACE: Objection as being outside the scope of the court's order, but he may answer.
A. It's just the drop-off in the percent of people that are maintained.
Q. Well I guess my question is: Low compared to what?
A. Yeah, that's a good question. Yeah.
Q. I mean, did you compare this level of core retention to --
A. No. And that's the case where just I used my judgment and said it looked low. I was comparing it more and likely to what the existing plan was.
Q. And --
A. So it's lower.
Q. And just -- so what is the basis for your judgment that it's low?
A. It would be comparing it to the existing plans.
Q. Well, the existing plans are a hundred percent the same as the existing plan. So what's your basis for saying that this level core retention is low as opposed to, you know, relatively high? Most of the population is kept in the same district.
A. I hear you. I -- it just looked to me like it was low when you get down to those numbers, that's all. Just it's just my person opinion that it appeared to be low.
Q. Someone else could look and these numbers and say that's a relatively high level of core retention?
A. They could.
Q. Now, in addition to looking at core retention in terms of total population in the same district, you also break down the differences in population assignments by race between the existing plan and the illustrative plans; right?
A. Yes.
Q. And what do you think is the purpose of that analysis?

MR. WALLACE: Same objection as to being outside the scope of the court's order, but he may
answer.
A. Yeah, in the one sense that since the case is about voting rights and specifically about black voting rights, I thought it would be useful to look at that, the issue of race.
Q. So on page 33, just flip back a couple pages. On page 33 top of the page you say -- and this is discusses illustrative plan 1, by way of example, you say: "Only half of the white, non Hispanic population from district 1 is retained, while 76.9 percent of the any part black population is retained." Right?
A. Correct.
Q. So is your point that the population -- is your point that comparatively more white population has moved out of the district? Is that what you're saying?
A. That's what the numbers show in a relative sense, yes.
Q. And what is -- is in your view, the relevance of that in assessing these districts?

MR. WALLACE: Objection as to asking A., out of time; B., asking for a legal opinion. He may answer if he can.
A. It just looks to me like their racial differentiation was different in the sense of what percent of one group is moved out, what percent of the
other group that was moved out or stayed, that's all.
Q. And discussed before that illustrative plan 1, district 1 runs north to south on the western side of the state encompassing the Delta, the counties along the Mississippi River; right?
A. Correct.
Q. And that configuration is different from the sort the Y-shaped configuration of the district 1 where you have a band of counties going east towards Alabama that are also included in existing district 1 ; right?
A. That's correct. All the districts generally speaking in the existing plans run east to west generally speaking.
Q. So, I guess, doesn't it intuitively make sense that comparatively, more white population would be moved out of the district if you're moving that band of counties stretching east to Alabama out of the district and including the entire Mississippi Delta in the district?

MR. WALLACE: Objection to the vagueness of 'makes sense" in addition to the previous objections, but he may answer if he can.
A. Looking at race as a possible index of things it would mean that some proportion of people may be accustomed to having -- having things in common with
elsewhere are now going to be put into whether they're white or black in places that might have differences. That's all.
Q. I guess I just mean doesn't it sort of make sense that you would see comparatively more white population moved out of the district if you're reconfiguring the district so that while maintaining equal population, you're uniting the Mississippi Delta, which --

MR. WALLACE: Same objection. He may answer.
A. My answer to that in general is that Northern Delta may not have as much in common with the Southern Delta as you think. I'm just pointing out the fact that you're moving differentially people by racial groups around in doing this.
Q. And just looking at page 28 of Mr. Cooper's report, and that's Exhibit 9 just for the record.
A. Page?
Q. Excuse me. Page 28, Figure 12. Let me know when you're there.
A. I'm there.
Q. So just looking at this map, you would agree that this shows illustrative plan 1 overlaying with the boundaries of congressional district 2, current
congressional district 2 ; is that right?
A. That what it appears to do.
Q. And you would you agree that illustrative plan district 1 was configured similarly to congressional district 2 in the current congressional plan?

MR. WALLACE: Objection, I guess, to the vagueness of "similarly," but he can answer.
A. It is similar.
Q. All. Now, is it -- and you can put that one down for now. Thank you.

So in addition to the illustrative plan, you also did a core retention analysis of the least changed plans. And we're looking now again at your report -your January report, page 37, that same chart that we were looking that. And that would be the summary table of the core retention analysis. And now looking at the -- and when you're ready --
A. I'm ready.
Q. Looking at least change plans, your analysis is that Cooper's least change plan 1 keeps 92.4 percent of Mississippians in the same district as the existing plan?
A. Yes.
Q. And in least change 2 plan, taking 95.8 percent of Mississippians in the same plan as the existing plan?

MR. WALLACE objection to the -- objection to the vagueness of "someone," but he can answer the question.
A. That appears to be the case.
Q. And you have no basis to think that core retention is, in fact, a consideration that a Mississippi map drawer would consider?

MR. WALLACE: Objection. Once again, the only map drawer of -- the only map drawer of Mississippi supreme court districts in the last 200 years is the legislature. But he may answer.
A. I -- I don't know.
Q. And just stepping back, do you think it would make sense to consider core retention in drawing -- in redrawing districts that haven't changed for 35 years?

MR. WALLACE: Objection to the vagueness of makes sense, but he may answer.
A. It's a principle regardless of how long they've been around. If you think, you know, these people have something in common to politicians or whatever the case may be that they're voting for, used to going certain places, yeah.
Q. When you say "used to going certain places," what do you mean?
A. Well for example, if you're going to go vote, you know, where the voting place is going to be and things like that.
Q. The supreme court lines don't affect where your polling place is, do they?
A. Well but you're -- if you're now in a new district, that's what I'm getting at, now where your vote is in a different district might be the case.
Q. You mean, you wouldn't vote --
A. If you're moving --
Q. Your ballot would reflect a different district?
A. Yeah, that's what I'm getting at. And it might be that you're not accustomed to people who are running in that district, you don't know the history, things like that; where as in the district you were in, you would. Just bring that up as a possibility.
Q. Looking at paragraph 68 of your report on page 36, you opine that your core retention analysis shows that illustrative plans -- "shows that illustrative plans 1 and 2 are significantly disruptive to large numbers of Mississippians across the state in order to achieve small increase in the percent $A P B$ in district 1.
A. Correct.
Q. So in addition to creating -- in addition to increasing the percent $A P B$ in district 1 the changes in illustrative plans also decrease the level of population imbalance between the districts from the existing plan; right?

MR. WALLACE: Objection as out of time. He may answer it.
A. I believe that was the case, yes.
Q. And in addition to increasing the percent APB in district 1, it changes in the illustrative plans, also maintains a system with zero county splits and zero precinct splits; right?
A. That's correct.

MR. WALLACE: Same objection.
Q. And in addition to achieving small increases in the percent $A P B$ in district 1 , the changes in illustrative plans also ensure that there are fewer planning district splits right?

MR. WALLACE: Same objection and relevance but he may answer.
A. That appears to be the case.
Q. And in addition to achieving small increases in the percent $A P B$ in district 1 , the changes in the illustrative plans also unite the Mississippi Delta as a communities of interest in the single supreme court district; right?

MR. WALLACE: Same objection, but he may answer.
A. If the entire Mississippi Delta is a single community of interest that's a research question that needs to be answered.
Q. And assuming it is, then the answer to my previous question is yes?
A. If -- if that proved to be the case, that there were enough commonalities to say that it is a community of interest, it would be the case.

MR. SAVITZKY: So I want to talk about your cluster analysis next. And I would be, you know, just -- just stepping out of the questioning for a second and in terms of our timing, I would be happy to continue on discussing the January report and the sort of mapping elements and then break and then discuss voter turnout. But if you folks would like to take a
break earlier, we can stop here -- we're at the next
stopping place -- or any other time.

MR. WALLACE: Whatever is convenient for
Dr. Swanson. We've been going over three hours, but I'm fine, we can break now or later, take your pick.

THE WITNESS: So when would the break about
if it's not now?

MR. SAVITZKY: Could be in 20 minutes, in 40 minutes, an hour.

THE WITNESS: I prefer to do it now.
MR. SAVITZKY: Okay. That's why I asked.
So let's go off the record, then.
(A break was taken from 12:07 to 1:03 p.m.)

MR. SAVITZKY: Back on the record.
BY MR. SAVITZKY:
Q. Hope you had a good lunch, Dr. Swanson.
A. It was.
Q. Okay. And you and Mr. Wallace didn't talk about the substance of the case during lunch?

THE WITNESS: Did we talk about the substance of the case?

MR. WALLACE: I --
A. We had a long conversation and parts of it were about things like that, but it was like a substantive conversation, so what do you mean by a substantial
conversation?
Q. Without get into the details of your conversation, I just want to make sure there weren't any sort of instructions about testimony or --
A. Oh, no.
Q. -- talking about the sort of -- about the deposition?
A. No. He said -- the only thing he said to me, said to answer questions as truthfully as you can. That's about the instruction level I got.
Q. Noted. And I didn't want to elicit any specific -- that is good advice.

MR. WALLACE: We talked a lot about his Indian cases. If you want to talk about those, they're probably in his CV too.

MR. SAVITZKY: They are in the CV, but I don't want to get into them. All right. BY MR. SAVITZKY:
Q. So I think what we were -- we were just on the cluster analysis. So sticking with the January report which you should still have in front of you, I'd like to go to page 29 -- or excuse me, page 14, paragraph 19. And before we get into the cluster analysis, just more generally -- tell me when you're on paragraph 29.
A. Yeah.

```
                    Page 156
Q. So you say in paragraph 29: "Compared to the U.S. as a whole, Mississippi is not as diverse in terms of race and ethnicity." Do I have that right?
A. Correct.
Q. And what do you mean when you say "diversity"?
A. The majority racial groups in Mississippi are black and white. And if you look at ethnicity -- and you understand the way the census bureau uses ethnicity as opposed to race; correct?
Q. Yes.
A. So the ethic distribution is not what you'd see in a lot of other states as well.
Q. So your point is that Mississippi is 36 percent black, 56 percent white, relatively low percent of Hispanic folks, so the vast majority of the population is either black or white?
A. Correct.
Q. And where does that definition of diversity come from?
MR. WALLACE: Let me -- asleep at the switch while I was drinking my coffee. This is all outside of the court's order. And with that objection, he may answer.
Q. And where do you get that definition of diversity?
```

Racial diversity is a common one, start looking at what the distribution is of people by race.
Q. Well, would it be fair to say that if we measured diversity by the percentage of nonwhite people, non Hispanic white people, Mississippi would be one of the more diverse states?
A. If all you're looking at is two racial groups, if you categorize and collapse everything into white and nonwhite.
Q. Yes.
A. Then it would be a different story.
Q. And looking at things that way, Mississippi would be one of the more diverse states in the country?
A. Yeah. I -- I have trouble looking at diversity from the standpoint of two categories. I would use the term "distribution" rather than "diversity."
Q. How would you use the term "distribution"?
A. Well, distribution. So if you flip a coin, is it 50:50 or is it an unbiased or a biased coin so it's 60:50? So diversity in my head does not mean that you're looking at what is the distribution between two possible categories. Diversity to me means there's more than one or two categories. Do you follow me?
Q. I do. And so your metric of diversity is how many different categories are represented in the extent
to which the population is distributed among many
different categories?
A. Thank you.
Q. Is that accurate?
A. Yes. That's more accurate than I think looking at just two classes of whatever they might be.
Q. Well, whether or not it's more accurate, that's your definition of diversity?
A. Yes.
Q. And if we were to define diversity as what is the percentage of people who are from racial and ethic minority groups, then Mississippi is one of the more diverse states?
A. Then that would be your definition. And that what you just said, if we were to define it, so you could define it that way.
Q. And I know that --

MR. WALLACE: And let me object to form.
Isn't somebody, everybody from a racial or ethic group?
MR. SAVITZKY: Minority groups.
MR. WALLACE: Oh, okay.
BY MR. SAVITZKY:
Q. So -- and as someone who studies demographics, reads about demographic issues, would you agree that colloquially when people talk about the word
"diversity," they're generally referring to the amount of people with the presence of members of racial minority groups?

MR. WALLACE: Objection to the vagueness and irrelevance of colloquiality in a law court, but he may answer.
A. I'm not sure what they'd say in terms of diversity in terms of colloquially. It probably varies from region of the U.S. to another region. It certainly would be probably very different in Hawaii than it would be in Hawaii as opposed to in Mississippi or elsewhere. So I'm not sure what to say in terms of a general statement about that.
Q. And looking at Exhibit 10, Mr. Cooper's rebuttal report at paragraph 36. And let me know when you're there. Do you see it?
A. I do.
Q. And do you dispute his assertion that: "As defined by the percentage of the state level population that is not non Hispanic white, Mississippi is the 12 th most racially diverse state in the nation?"

MR. WALLACE: You know, objection as to being out of time, but you may answer.
A. I just would not use the term "diversity" in that sense. He can, you know, and he says that whatever
the ranking is and whatever he's computed it on, it's the 12th most racially something in the -- I just wouldn't use the word "diversity."
Q. And so you would not dispute his assertion that" "as defined by the percentage of the state level population that is not non Hispanic white," using that definition of diversity, "Mississippi is the 12th most racially diverse state in the nation?
A. Well, I don't know if it's the 12th most or not. That's another thing I would have to look up, so I don't know the answer to it.
Q. So you're not disputing it?
A. Well, I can't say yes or no. You're asking me to state -- agree with the fact that I'm not sure if it's 12th most racially diverse state in the county. And what year? Are we talking about the 2020 census? The ACS? I mean, there's a lot of places you could measure this from. I'm not trying to be obstructive, but I'm just saying, you know, it's hard for me to answer the statement just off the top of my head like that.
Q. And, I mean, looking at the paragraph, I think Mr. Cooper says that it's looking at census data?
A. Well, it couldn't be 2020 census data, was it? I -- you know, I'm just asking.
Q. Yes, 2020 census data.
A. So he had 2020 census data when he wrote this report?
Q. Yes.
A. Okay.
Q. The report from October of 2022.
A. Okay. I mean, and it could be the case. A lot of information wasn't released that soon, but I'm -- I don't know. But the point is, I don't know if it's the 12th most diverse state in terms of whatever measurement you've got or not because I don't know the source of his data, I don't -- I haven't looked at a ranking like that, so it's -- I can't answer the question. I cannot give you an opinion on it.
Q. Have you ever seen your definition of diversity used as a consideration in the electoral districting context?

MR. WALLACE: Objection. I think it's asking for a legal opinion, maybe it's a legal fact. But I will allow him to answer.
Q. I'm asking, to be clear, what you have personally seen in your life and work in this area. Have you seen this definition of diversity that you proffered used in the electoral districting context?
A. I don't know.
here?
A. No, I can't recall.
Q. Does any source that you are aware of as someone who's being proofed as an expert in this case indicates that your definition of diversity is a proper consideration in the electoral districting contest?

MR. WALLACE: Same objection, but he can
answer it.
A. So is it -- repeat that one again.
Q. Well, let me ask it this way. We looked at that National Conference of State Legislatures report that you relied on?
A. Okay.
Q. And we looked at that congressional research service report that you relied on; right?
A. Yes.
Q. And we looked at that redistricting monograph that Mr. Bryan and Morrison wrote?
A. Yes.
Q. And did any of those sources indicate that your definition of diversity is an appropriate consideration in the electoral districting context?
A. Not that I recall.
Q. And are you aware of any other sources that
indicate that your definition of diversity is an
appropriate consideration for the electoral districting
context?
A. Not that I recall.
Q. So if a map drawer -- and I'm asking you this not as a legal conclusion but as someone who's being proffered as an expert in this case -- if a map drawer were to optimize for this definition of diversity that you've laid out there, that would mean they would want to spread the black population among the three districts, right, so that they were maximally -- each district was maximally diverse according to your definition; right?

MR. WALLACE: I adopt your objection to your own question. He can answer it.
A. If you're looking at just a race, that's one way you could do it, but there's other dimensions to population composition beyond race.
Q. Fair enough. And so if a map drawer were trying to optimize for racial diversity which is what you were talking about when you said that Mississippi is not as diverse in terms of race and ethnicity, if you were trying to optimize for racial diversity, you would spread the black population among the different districts?

MR. WALLACE: Same objection. He may
answer.
A. You mean in the sense of someone -- like you said, a map drawer is trying to do something and looking for diversity, and all you're looking at is black versus one other racial category.
Q. Yeah. Or ir you're using your definition of diversity to draw districts in Mississippi, if you were trying to implement that definition and optimize for racial diversity, you would spread the black population across the districts so that all of them had black population in them; right?
A. Well, if you're just simply looking at the categories, again, of where I told you white and black, to me that's -- if you're using two categories, it's not a good example of the use of the word "diversity." So you'd want to -- I'd introduce more elements than just black -- distribution of the black population or the white population or the Chinese population across all the countries in Mississippi.
Q. So would you say that your definition of diversity or at least with respect to racial diversity is not really something that an electoral map drawer in Mississippi should factor in?

MR. WALLACE: Same objection as before.

```
Page 165
A. I don't know. It depends on the task, I guess.
I don't know. I can't speak for other map drawers or
any map drawers. I don't know.
Q. Well speaking for yourself and a person who's offering expert opinions about the qualities of electoral maps in this lawsuit, are you saying that one -- that you would consider the racial diversity of different districts in evaluating the districting plans?
A. Along with other measures of diversity, other measures of how human beings vary.
Q. And if you were optimizing for that definition of racial diversity that you described, that would mean drawing three black minority districts; right?
A. Again, I stress that I'm not looking at it just in terms of race. So when looking at the human -- you know, the composition of the population, you're looking, as I did, beyond race and what diversity might represent.
Q. So you don't think it's a good idea to look at racial diversity as you've described it?
A. I didn't say that. I said I would look at things beyond that if I'm looking at diversity.
Q. You wouldn't look just at racial diversity?
A. That's correct.
Q. Okay. So let's -- and just -- let's go to
```

paragraph 31, which I think we're basically on in your report, your January report, excuse me. This is pages 15 into 16. Just briefly, you know that the supreme court districts are also the districts that are used for various other elective and appointive offices in Mississippi; right?
A. I do.
Q. And what's the relevance of that in your opinion as someone who's being proffered as an expert in this case?

MR. WALLACE: Objection to the extent you're asking him for a legal opinion on relevance, but he may answer.
A. They're important in the sense that they -that those districts determine a lot of other issues that $g o$ on in the state like the institutes of higher learning and appointments of boards and the bar and the bar exam board.
Q. Is it your opinion that having one of the three supreme court districts be majority black voting age population would decrease diversity in state government in Mississippi?

MR. WALLACE: Again, objection as outside the scope of the court's order, but he can answer.
A. And again, I'd stress that my answer is, it's
beyond race and it's not just affecting the government in Mississippi. So I think it's important in that regard whether I was going to use diversity of the population measuring a lot of dimensions.
Q. And just on this point, you're not saying, you're not opining that having one of the three supreme court districts be majority black would decrease diversity in state government?
A. I don't know the answer to that question. I don't know if diverse -- when you say diversity in state government, people who work for the state? What's the question you're asking?
Q. People who are appointed to -- I mean, you --
A. Okay.
Q. We're talking in reference to these various appointed and elected offices.
A. Okay. So you're talking about the appointive offices, not people who are necessarily employes of the State of Mississippi; right?
Q. Right. With respect to those offices that you mentioned in this part of your report, you are not opining that the occupants of those offices will be less diverse if one of the three districts is majority black?
A. I don't know the answer, yeah, and I haven't opined on that, and I'm not in a position to do that
now.
Q. Now, you mentioned The Institute of Higher Learning, and I believe you note in your report that the 12-member body that's appointed by the governor of Mississippi, 4 members for each of the three districts?
A. I believe that's correct. I'd have to look in my record, but I believe that's correct.
Q. Yeah, you say: "In regard to IHL, 4 of the 12-member board of trustees for the state IHL are appointed by the governor from each of the three supreme court districts." Do I have that right?
A. You do.
Q. And you say in paragraph 31, and you mention this again later as well, you say: "The board has a diversity statement."
A. It does.
Q. And you cite Section 102.06 of the board's policy manual, and you say it acknowledges the value of the diversity for Mississippi.
A. Yes.

MR. SAVITZKY: And we'll just mark that.
Copy for you, copy for Mr. Wallace.
MR. WALLACE: What number?
MR. SAVITZKY: This is going to be -- oh.
Dr. Swanson, could I please that have back? Thank you.
I was quick on the draw there. Here you go, No. 17.
BY MR. SAVITZKY:
Q. This is the IHL board of trustees' policies and bylaws that you reference in your report. And then looking at pages 14 and 15 of this document, we see the diversity statements that you reference there. Let me know when you're there and confirm that that's the diversity statement that you're referencing?
A. I'm there.
Q. Okay. And looking at this statement and especially looking at on page 15, you would agree that the board here adopts a set of goals for higher education in Mississippi --
A. Yes.
Q. -- related to diversity?
A. Yes.
Q. And the goals they adopt are: "One, to increase the enrollment and graduation rate of underrepresented students at our institutions"?
A. Yes.
Q. "Two, to increase the employment of
underrepresented individuals in administrative faculty and staff positions?"
A. Yes.
Q. "Three, to enhance the overall educational

```
                                    Page 170
experience through infusion of curricular content and
cocurricular programming that enhanced multicultural
awareness and understanding?"
A. Yes.
Q. "Four, to increase the use of unrepresented professionals, contractors, and other vendors?"
A. Yes.
Q. Fair to say that the diversity goals adopted by IHL focus on representation for "underrepresented individuals"?
```

A. Yes.
Q. Not necessarily on -- strike that.

In your view, is anything about these goals
diminished by changing the supreme court district so that one of them is majority black voting age population.
A. I don't know the answer to that question.
Q. Do you offer any opinion that these goals, these diversity goals, would be diminished in any way by having one of the supreme court districts be majority black?
A. Are you talking about the four points that's you just raised?
Q. Yes.
A. I don't know the answer to that.
A. I understand.
Q. -- which I just turned to. All right. So beginning at paragraph 90 of your report, your January report, you conduct what you call a diversity evaluation; right?
A. I do.
Q. And you base that on what you call a cluster analysis; right?
A. Correct.
Q. And you say that you conduct this cluster analysis to evaluate the issue of population diversity?
A. Socio and economic diversity is in that too.
Q. Well just looking at that first paragraph 90, the last sentence, you say --
A. Population diversity, correct.
Q. Right. And to do the cluster analysis, you took county level data on a number of the different indices of health and wellbeing from the 2017
Mississippi Health \& Hunger Atlas?
A. I did.
Q. And before we talk about that, why didn't you use ACS data?

MR. WALLACE: All right. Now that you've
asked a question, I'm going to ask -- I'm going to
object to that as being outside the scope of the Court's
order, but he may answer it.
A. It's a consistent set of data which may or may not include some census bureau data in there that goes beyond what you can get from the ACS.
Q. Oh, it includes --
A. It may or may not.
Q. -- the ACS data?
A. It may or may not. I'd have to go back and look, but I'm sure it has census data of some sort in there somewhere, but I have to go back and look and refresh my memory.
Q. Was there a more recent version of the Mississippi Health \& Hunger Atlas available?
A. Not when I contacted people at Ole Miss. I got --
Q. And you got -- I'm sorry. Please finish.
A. I got it from people at Ole Miss, my former colleagues.
recent version?
A. The only version as far as I know.
Q. So you say -- and I think this is in paragraph 93 of your report on page 37, you say: "Health and hunger are correlated with socioeconomic status which in turn in correlated with race." Is that right?
A. Correct.
Q. And so in your view, the health and hunger indices also serve as indices of race and socioeconomic status?
A. They're --

MR. WALLACE: Same objection. He may answer.
A. They're correlated.
Q. Okay. And just looking at the last sentence of this paragraph, you say: "These correlations support the argument that the health and hunger indices also serve as indices of race and socioeconomic status."
A. Correct, right.
Q. And just in layman's terms, is your point that black Mississippians are worse off in terms of health and hunger and other socioeconomic metrics than white Mississippians?

MR. WALLACE: Same objection. He can answer.
A. It was my point that any group is better or worse off in terms of that, just some groups may be higher in some indices and other ones lower in other indices. That's my point.
Q. What do you mean when you say that: "The health and hunger indices also serve as indices of race and socioeconomic status"?
A. Well then in that case, generally speaking, that if you're -- if you score low on one dimension, you're probably going to -- it's going to be correlated with a low score in another dimension.
Q. So -- and specifically, if you score low on the health and hunger indices in that data you looked at, you would also be likely to score low on other indicators of socioeconomic status?
A. Yes.
Q. And you would also be more likely to be black?
A. It depends on the part of the state you're in. There may be parts of the state where you have rural white folks, for example, that would probably score similarly if -- where you're looking at different parts of state. But yeah, in general, I'd say you're probably more likely to be black.
Q. Let's talk about how you created these indices. And I'm looking, for reference -- you can do too if you want, but I'll ask you questions and see if you want to look. I'm looking, for reference, at page 48 in your report in Exhibit III.H.1. To create your need index, you use nine different health need indicators like teen pregnancy and adult obesity; is that right?
A. This is what the people did who put the Hunger Act list together, they -- the need indicators, this is what they created, not me.
Q. Okay. So you used the indices sort of fully formed as provided to you in the Health \& Hunger Atlas?
A. Correct.
Q. Okay. So you used a need index from the Health \& Hunger Atlas that includes nine different health need indicators like teen pregnancy and adult obesity?
A. I'd have to look to see exactly which ones I used, but in general these were the variables that were available to use as they categorize them from the report. But I don't recall which ones, if all of them I used or some that were specific. So we need to go through that.
Q. Well, let me ask you this: Do you know how these different indices were constructed by the folks who put together the Health \& Hunger Atlas?
A. They wrote it up in the hunger atlas, and I don't recall off the top of my head what they said. I'd have to go back and review the atlas.
Q. And do you know the source of the different metrics that they include in these indices?
A. You'd have to go back and look at the -- it's in there. They have it documented.
Q. Do you know that the sources that they used for these indices are reliable?
A. My general impression in my memory based on the work they did and the people who did it, I don't think they would pick indices and data that were from sources that were not reliable. But if you're asking if I went back and independently verified it for myself, I didn't.
Q. Do you know why they created this particular index of metrics?
A. I think it has to do with looking up Mississippi. So again, if you -- you need to look at their report to see what they say in terms of what the goals exactly of the report were.
Q. And so you actually use a number of indices. You have a need index, you also have a hunger -- sorry, you have a health need index, and you also have a hunger need index ; right?
A. Well when you say I have, those, again, are how
they classified the indicators they used. So I would say those -- this is a description of what they have in the report and how they categorized it.
Q. So you used the Health \& Hunger Atlas's need index and its hunger -- or excuse me, their -- yes, their need index -- their health need index, excuse me, and their hunger need index, you used both of those for your diversity analysis?
A. Yes. I'd have to go back and see if I actually pulled off the individual elements of each index or used the index, because I don't recall off the top of my head what I did. Do you follow me? I can't recall now that if I used the index in itself or if I used the individual indicators in there as part of the cluster analysis.
Q. So you don't know whether you used all the different indicators that are listed here?
A. As I said, the last time I read this report was months and months ago, so I've haven't thought about it until today when you started asking me questions on it. So I need go back and look at how I aggregated. So the basics of that, I -- I would need to go back and review what I did for it to see what's in there.
Q. You say: "These two indices form the input for the cluster analysis."
A. Okay. Then -- then that's what it has, these two indices. Where are you at?
Q. I'm looking the second to the last sentence in paragraph 94.
A. Then that's what I did.
Q. And when you say "these two indices," you're referring to the need index which includes both health indicators and hunger indicators, and the second one is the performance index which includes health and hunger indicators; right?
A. Yes.
Q. And so you took all these different indicators from these two indices, and those are the inputs for your cluster analysis?
A. Well, let's look at Appendix 2, because it says I list them in Appendix $2 . \mathrm{J}$.
Q. And that would be starting at page 94 of your report? Excuse me, page 93.
A. Thank you.
Q. Yep.
A. Now I can see it. Yeah, I used their indices in need and the performance indices. Thank you.
Q. And again, you didn't select these different indicators, you just used the two indices that the Health \& Hunger Atlas people put together?
correct
Q. Someone could have selected a different set of indicators to measure health and hunger in Mississippi?
A. Well if there are data available, I guess they could have and want to construct it.
Q. You could have constructed one out of ACS data?
A. I don't think you're going to get SNAP enrollment and primary care physicians for 100,000 food-insecure individuals, you know, whatever else may be in here that's necessarily in ACS data. You may or may not. But if you did, you'd have to go to a lot of different reports to find it. And if that's what you're asking me, and you may end up having to use ACS data from different time points.
Q. And to be clear, I'm not trying to knock you for, you know --
A. Yeah, I understand.
Q. -- for not doing that, I'm just -- I want to make sure this isn't the one definitive set of indicators that one could use to measure health and hunger, this is the one that the Mississippi Health \& Hunger Atlas people happened to choose; right?
A. That's correct. And relates directly to Mississippi. And in that sense, it was convenient in the sense that it's all assembled in one place and
relates to the State of Mississippi?
Q. Now, how does this -- how do these indicators
help you measure population diversity?
A. From the correlations that I described there in
the report. If you go back to what you just read
about --
Q. Well --
A. -- in paragraph 93.
Q. Uh-huh. So when you say population diversity,
you mean diversity with respect to health and hunger
needs and issues?
A. And they're correlated with other forms of
diversity such as race and socioeconomic status.
Q. And you say that this analysis: "Enables us to
understand the geographic distribution of population
diversity beyond the raw percent any part black for each
geographic distribution of this particular definition of
diversity that you've constructed using the
mealth \& Hunger Atlas indices?
A. Yes.

BUELL REALTIME REPORTING, LLC
A. And to the extent, again, that they're
correlated with these other socioeconomic indicators
including race, I would say they represent a reasonable
index for doing that.
Q. And your unit of analysis in conducting this
cluster analysis is the county; right?
A. Correct.
Qigh or low need counties among the different districts;
right?
A. Correct.
Q. So I think you'd agree with me that there are
some counties in Mississippi that are small in
population and some that are very large in population;
right?
A. The needs -- I think you'd have to took at the
report again, and I don't believe they're biased by the
number of people in the county, I believe the need
indicators are set up, and you can see it in here where
they're talking about percentages and rates. So in a
sense you're trying to be dimensionalist, you're
certainly going to have a lot more people one category,
say, in Hinds county than you would in some other
smaller county. But when you start looking at things
Q. But I guess my point is just in terms of what we can take from your analysis, it doesn't speak to the distribution of population across the districts, it speaks to distribution of counties with certain characteristics across the districts?
A. It speaks to the distribution of these indicators across counties, and what that speaks to going beyond the -- back to paragraph 93 is the correlation that they have with socioeconomic and racial categories.
Q. Now, you could have designed some cluster analysis that looks at the distrubution of population; right?
A. How would you do that? Could you give me an example?
Q. Looking at the number of people with particular health needs or hunger needs?
A. Well that's what this does, but it looks at, again, rates not numbers, so attempts to make it dimensionalist so you're not affected by what the population size is in a given county.
Q. Right. And you -- but you could have looked at the number of people as opposed to the rates that you're seeing in the particular need?
A. Well, the number if people would be affected by
the population counts in the counties then.
Q. Right. But your analysis looking at the distribution of the counties of particular rates doesn't indicate whether one supreme court district has a very large county with high need and therefore there are more unhealthy or hungry people in that district?

MR. WALLACE: Object as being out of the time and argumentative, but you may answer.
A. Yeah. Well my take is if you're looking at an index of need, it's indicating need. And I think that my take on reading the report that the folks put together is that they did a good job of putting those things together. They had good arguments. And I would direct you to go read their report to see whether or not you think it's reliable.
Q. And so in terms of the analysis you did, you sort of grouped counties together into three groups, high need, high performance, which means there's a lot of health and hunger need, but also fairly strong access to services or resources; is that --
A. Correct.
Q. -- right?
A. Correct.
Q. And then you have a medium need, medium performance group, and that's about half the counties in
state fall into that group?
A. Correct.
Q. Fair to say those counties are maybe a little bit better off in the sense that somewhat less health and hunger need?
A. Than in cluster 3, the high need, low performance.
Q. And that's what I was getting to.
A. Yeah.
Q. You also have the high need, low performance set of counties which means there's a lot of health and hunger need, but not a lot of resources or access to resources. Do I have that right?
A. You do.
Q. So those counties are the worst off?
A. Yes.
Q. And just looking at that map on page 50 of your report, those high need, low performance counties are in purple; is that right?
A. Yes.
Q. And fair to say that many of them are in the Mississippi Delta?
A. Well, let's count them up. If you're -- when you say "many," you mean a majority or --
Q. Looks like about half. You can count them.

Page 185
A. Well if you count Tunica, Coahoma, Washington, they're -- those are definitely -- Bolivar, Sharkey, Issaquena, those are definitely Delta counties, correct? They're not there. So I'm not sure it's even half, but it's somewhere around that number.
Q. And then the balance of your analysis is basically looking at the distribution of these counties in each of the supreme court districts; right?
A. Correct.
Q. And so looking at page 52 of your report, Exhibit III-H-3X-c which is a little bar chart at the bottom, you show that about half of the high need, low performance counties are in district 3 under the existing --
A. Yes.
Q. -- map. And then the other half are divided between districts 1 and 2?
A. Yes.
Q. And again, because what you're doing is looking at the percentage of counties in each district, the counties you used in the analysis -- and some counties are larger than others, we don't actually know whether district 3 or district 2 or district 1 has more hungry or unhealthy people in it compared to the other --
A. Well, if you did that comparison, as I answered
you before, you're obviously going to have, given that all else is equal, in a county with a larger population, you're going to have more in that county of a particular characteristic. Hence, they used rates in an attempt to make it dimensionalist so it is comparable. Is the rate higher in one county or another regardless of the population size.
Q. But I guess my question is, you know, the unit of analysis here is the county --
A. Yes.
Q. -- but now you're looking at the distribution of counties in the supreme court districts and making what I understand to be a statement about the population diversity in the supreme court districts; right?
A. That would be correct. But in this sense what you're looking at are the dimensionalist rates that represent those populations. So if you look at it from the standpoint of where are needs the highest and the performance the lowest, and you center correlated again with socioeconomic status and race, that's what you're looking at with maps.
Q. And I guess what I'm trying to understand is, looking at the existing plan, you see about half of the counties you identified as high need and low performance in district 3, but if they're all very small counties;
and meanwhile district 1 , you have a smaller percentage of those counties, but Hinds County's in district 1. It may be that there's more health and hunger need in district 1?
A. Well there's always going to be a higher need in a county that has a higher population. That's not what I looked at.
Q. But the supreme count districts have not equal but similar populations?
A. I hear what you're saying. And what this does is look at it from a similar perspective. When you're looking at the rates across there, okay, what -regardless of what population size is, what do the rates look like at a county level?
Q. Well, couldn't you aggregate the counties and actually look at the rates among the population as a whole?
A. Let's see. Why would I do that?
Q. So that you can compare the populations of the different districts. If I want to look at teen pregnancy or obesity rates or SNAP rates, I could aggregate the information for each county up to the district level, and I could see which of these districts has higher rate of SNAP use.
A. Now I see what you're getting at. Okay. So
yeah, if I had the data. And I didn't have the raw data to be able to do that with the data are and the report are given rates by county. So without knowing what all the numbers are in there, I'd have to go reconstruct and put them up at the district level. That's what you're asking --
Q. Yes.
A. -- and I didn't do that.
Q. And you didn't do that?
A. That's correct.
Q. So -- and without doing that, you can't speak to the similarity or difference of the districts in terms of those different metrics?

MR. WALLACE: Objection. Same objection as before and objection as to vagueness, can't speak to the differences, did you say? I'm -- I lost your meaning.
A. I think I follow your meaning. But the point is, I looked at counties.
Q. So --
A. And if you reaggregate the lines by county, you're starting to see from the county perspective what the numbers are by that is you can tell.
Q. And looking at page 55, we're looking at illustrative plan 1, same bar chart. And you say that under this illustrative plan 1: "The majority of the
high need, low performance counties are now in district 1 under Cooper's illustrative plan 1."
A. Yes.
Q. And that -- again, that makes sense because as we've discussed, illustrative district 1 includes all the Mississippi Delta, all the counties north, south along the Mississippi River, and a lot of the high need, low performance counties, some of which are very small in population, are in that area.
A. So as you asked before, it means it's correlated with race and socioeconomic status, an indicator of that.
Q. And the result -- I mean, your analysis shows that what -- one of the things that Mr. Cooper's map does is that more of these counties with that high level of need and low level of resources are being grouped together in district 1?
A. Correct.
Q. So Mr. Cooper's illustrative plan 1 is grouping together counties with similar socioeconomic needs and interests?
A. And making it less diverse.
Q. But you agree he's grouping together counties with similar socioeconomic needs and interests?
A. I just said that.

MR. WALLACE: Well, I'm -- go ahead. Let me let you finish your question. I thought you had, and then you kept going so pardon me.
Q. What do you think is more in line with the districting principles we discussed earlier, grouping together areas that share common needs and interests or grouping areas together in a way that maximizes the diversity and spread of those interests among different defenses?
A. To answer that question --

BUELL REALTIME REPORTING, LLC 206.287.9066 । 800.846.6989

MR. WALLACE: Let me get my objection in. He's asking for -- first of all, he's vague; second of all, he's asking for legal opinions; and third of all, it's outside the scope of court's order. And having said that, you may continue your answer.
A. As you said earlier, it -- there's a lot of tradeoffs when you're looking at different metrics and measurements in doing this. And that might be one of the tradeoffs you're looking at.
Q. And having looked at some of those districting principles and offered opinions about them in your expert report in this case, what do you think is more consistent with the principles that are reflected in the Congressional Research Service Report, Redistricting Manual, National Conference of State Legislatures?

MR. WALLACE: Same objection.
A. They emphasize more of the issues I think you're getting at as opposed to the diversity issue.
Q. They emphasis grouping together areas with common interests and needs?

MR. WALLACE: Same objection. He may
answer.
A. Yeah. And I would again go -- aren't all those groupings -- again, I use them as a guideline, but aren't they generally for congressional districts; is
that the case?
Q. The National Conference of State Legislatures report that you cited related to considerations for state legislative and other districts as well, didn't it?
A. That -- I mean, when I say congressional, that's what I meant, state and federal. I don't think there's anything in there about a supreme court district.
Q. Right. And the Redistricting Manual from Morrison and Bryan, is that similarly applicable?
A. Well again, I -- how many -- I didn't see things specifically on supreme court cases in those materials, so that's why I used them as a guideline.
Q. And is there something about supreme court districts that makes this diversity metric that you're discussing more relevant than the legislature district?
A. Well, you read it yourself --

MR. WALLACE: Same objection. He may answer.
A. You heard from the IHL, said their -- one of the goals is to be more diverse.
Q. I mean, did anything in the IHL statement describe diversity in the way that you are discussing it now? Page 193
A. One of -- the lead-in statement before it listed the four points talked about cultural diversity. And so cultural diversity covers a lot of ground.
Q. Other than the IHL policies and bylaws that we discussed, is there any other reason why this diversity metric?
A. Well there's --

MR. WALLACE: Same objection. You may
answer.
A. There was the court case that I saw too on it.
Q. The court case that used the word "diversity"?
A. Yes.
Q. And you don't know as you sit here whether that court case was using the word "diversity" in the way that you mean the word "diversity"?
A. I do not know.
Q. Anything else?
A. Not that I can think of at this time.
Q. So let's talk about your analysis of polling places, and turning to the paragraph 81 of your report. Starting at paragraph 81, you have a voting age population polling place spacial analysis?
A. Correct.
Q. And in paragraph 81 you ask: "What are the differences in proximity, the differences in distance,
and the distance of black voting age population to current polling stations compared to all voting age population, and in a particular, white non Hispanic voting age population." Is that right?
A. Correct.
Q. And you say: "My hypothesis for this question was that if the black voting age population were being systematically disenfranchised by the State of Mississippi, a symptomatic indicator of that would be seeing fewer of them close to polling places and more of them of a greater distance from polling places."
A. Correct.
Q. How did you form that hypothesis?
A. Just in general knowing what propensity, close to things, mean.
Q. Can you say more about that?
A. Yeah. So for example, I've done studies of where graduates from high school go to college in the State of Washington, and propensity is a big indicator of it. So many of the freshman or transfer students who go to Western Washington here in Bellingham, Washington are from Western Washington, they're not from Southeast Washington. Many of the students who --

MR. WALLACE: Did you mean "propensity" or
"proximity"? I'm looking at your --
A. Yeah, proximity. I'm sorry. Thank you. So that's what I mean. So, you know, if you're close to something, you're probably more likely to be able to do it or go there. And there's not -- I can't cite all the literature off the top of my head, but there's a lot of literature, probably in marketing and a lot of other fields it's that. That's one of the reasons why does Target site stores in certain places.
Q. Would you agree the decision to leave your family for the first time and go to college somewhere close to home rather than far away when you're away four years is a little different than whether or not you're going to go vote on a Tuesday; right?
A. But it's a little different than deciding whether you're going to go buy gasoline or clothes too, but as I said, there's -- without being able to speak to it all in my head, there's a lot of literature on how relatively close you are to things that triggers whether or not you're taking advantage or doing it. That's the point. So yeah, there is a lot of variation of why people are doing it, but you're close to something is a determinant of whether or not you do it.
Q. When you put up a Target store, there's a big Target logo and a big sign that says Target on it; right?
A. As far as I know there is, yeah.
Q. But there isn't one on a polling place, is
there?
A. No. And I just said there's a lot of differences in all these things, but the -- is the word propinquity? That might be it. How close you are to things is one of the determinants of whether or not you take advantage or use them or don't. It's not the only thing, but it's one of them.
Q. But you would have to know where something is in order to -- in order for that logic to apply?
A. Well I guess you could stumble across it if you're doing a random search.
Q. On a polling location, you'd have to stumble upon it on a Tuesday in November; right?
A. Do they move around all the time?
Q. Well, that's my next question. Do you know who decides polling locations in Mississippi?
A. No, I don't.
Q. So when you say that --
A. It's probably at the county level, but I'm, you know, just saying I don't know.
Q. So when you say that polling place proximity could be evidence of systematic disenfranchisement, that's despite the fact that locations of polling places
is decided, you would think, at a local level?
A. Yes.
Q. And do you know whether there are racial
disparities in access to vehicles in Mississippi that might affect the ability of Mississippians to get to the polls on election day?

MR. WALLACE: Same objection. You may
answer.
A. There might be, but people are people, so there may be different ways to overcome some of those disparities.
Q. Well -- and just looking at Mr. Cooper's responsive declaration, Exhibit 10, paragraph 34 --
A. In exhibit?
Q. It's Exhibit 10, but it's paragraph 34 of the responsive declaration. I just want to make sure you're looking at the responsive declaration.
A. That's Exhibit 9. This is 12.
Q. We want Exhibit 10.

MR. WALLACE: This one?
MR. SAVITZKY: You've got it.
BY MR. SAVITZKY:
Q. And looking at paragraph 34 --
A. Yes.
Q. -- Mr. Cooper says: "Statewide, 10 percent of
black households do not have a car versus 4.3 percent of white households."
A. I see it.
Q. Do you have any reason to dispute that?
A. No.
Q. He says: "The racial disparity expands to

12 percent versus 4.5 percent in the Delta region." Any reason to dispute that?
A. No.
Q. Do you know if there are racial disparities between who has the type of job where they can get off work and vote on a Tuesday in Mississippi?
A. I do not know.
Q. Based on the discussion we've had about socioeconomic indicators, is it likely that black Mississippians are less likely to be able to take off work and vote on a Tuesday?
A. I'd look at it as a research question.
Q. Do you know whether there are racial
disparities in Mississippi in terms of single-parent households that might affect the ability to get to the polls and vote on a Tuesday in light of work and childcare obligations?
A. Differentially than other population racial groups? Is that what you're asking me?
Q. Correct. Are there more black single-parent households than white single-parent households in Mississippi?
A. I don't know exactly if that's the case or not.
Q. And just looking at that exhibit that we just -- looking at Mr. Cooper's responsive report in paragraph 33, he says: "Other voters may have responsibilities that make it impossible to walk. 51.4 percent of the black female head of households with children live in poverty compared to 37.4 percent of their white counterparts." Any reason to dispute that?
A. Does he give a source? Again, I don't have any reason to dispute it, but I just wonder what the sources are and how consistent they are, that's all.
Q. I can represent to you that it's all ACS data.
A. Okay. And then the question is, again, you know, the sample sizes and whether or not they're statistically different. So if you just pull things off the ACS and start comparing them, depending on where you're at and depending what the census bureau does, I would prefer not to answer that until I actually saw the size of the sample, what the margins of errors are on it, because it may be the case in some of these comparisons that there's no statistically different -significant difference. Do you follow me? So I don't
know in advance, just asked -- if you're asking about the state as a whole and that's what he's arguing, for the state as a whole, then it may be the case there is one.
Q. And by the way did you do a test of significance, a T-test or something else to look at your analysis of polling place proximity?
A. No.
Q. By the way, do you know if there are racial disparities in Mississippi in terms of how long people have to wait to vote at the polls in Mississippi?
A. I don't know.

MR. SAVITZKY: And we can mark right now -it's a little out of order, but this is just where it is. This is Dr. Burch's rebuttal report, marking it as Exhibit 18. There should be a copy for you, Mike, but I'm not seeing it. Give you mine.

BY MR. SAVITZKY:
Q. And looking at pages 12 to 13 of Dr. Burch's rebuttal report -- let me know when you're there.
A. I see it.
Q. Looking at the bottom, she says: "Further analysis of the CES which I report shows that among validated Mississippi voters, 18.9 percent of white voters report they waited for more than 30 minutes to
vote compared to 40.7 percent of black voters." Any reason to despite that?
A. Yeah, there is.
Q. Any reason other than the criticisms of the CES that we'll talk about presently?
A. That I don't know. But definitely I'd start with CES.
Q. All right. And we'll get to that. And hang on to -- you can put Dr. Burch's rebuttal aside, but don't get let it get too far.

So you can't say whether the various racial disparities we talked about including the ones that are reflected in ACS might negate any theoretical advantage in terms of polling place proximity for black Mississippians?
A. If you're asking me right off the top of my head, my answers were, I think, pretty consistent saying for the most part, some of them are research questions, so they have to be looked into in order to answer the full question.
Q. And looking at paragraph 82 of your report, you say: "While each of Mr. Cooper's illustrative and least change plan increases the percent of the black population in district 1, I want to know if the increases he achieved came at the expense of black voter
proximity to the polls." What do you mean by that?
MR. WALLACE: Same objection as to outside the scope of the court's order, but he may answer.
A. Yeah, it looks on average if you change the counties around and you're moving black populations around, what does it look like in terms of proximity to the polls.
Q. Well, why would putting different counties into supreme court districts change the proximity to the polling places which are intra county?
A. Yeah. Well, it's a question I asked.
Q. Well, I guess my question is: How could it possibly change the proximity of people to polling places to put them in one supreme court district or another if all the supreme court districts are made up of whole counties?
A. It's a question that I asked. So -- and again, I stress that I don't know exactly where the -- how they were placed initially.
Q. Would you agree that whether a county is in one supreme court district or another doesn't have any bearing on where your polling place is?
A. That I don't know.
Q. You say: "If Mr. Cooper's plans increase the number and proportion of blacks but he moved close poll
proximity blacks out of district 1 and moved distant poll proximity blacks into district 1 , one could argue that the actual impact of such plans would be to increase black voter disenfranchisement and risk fewer blacks actually turning out to vote."
A. Yes.
Q. What is the basis -- what is your basis for suggesting that changing the supreme court lines to draw a black majority district would increase black voter disenfranchisement and risk fewer blacks actually turning out to vote?
A. Well maybe that the average citizen's in a county, not in supreme court district 1 , is different than a county that is in supreme court district 1 that has moved out of it. So for example, what -- pick a county. In every county in every state are the polling distances for any given population exactly the same, they probably vary. So urban areas are probably in a closer proximity, correct, would you agree, than you would be in rural areas. So that's one example of how they might change. So even there it's at county level, it may be the case that by moving them around, you've now put people that were on average farther away from a voting poll into this new district.
Q. Did you do any analysis to demonstrate that
so-called close poll proximity blacks are more likely to
vote than so-called distant poll proximity blacks?
A. No.
Q. Now in your report, did you ever go back and answer the question that you posed and offer an opinion or a conclusion about whether the actual impact of Mr. Cooper's illustrative plans would be to increase black voter disenfranchisement and risk fewer blacks actually turning out to vote?
A. I'd have to look in the report again, so I don't recall off the top of my head if I did.
Q. It's not that many paragraphs, if you want to just take a quick look.
A. Sure, I'll look here.
Q. It's the section between paragraphs 81 --
A. Or even in the executive summary.
Q. -- or 89 .
A. Yeah. I'm looking at the executive summary.

Paragraph, what was it, 9?
Q. 81 through 89 is your discussion of this issue.
A. Thank you.
(Witness reviewing exhibit.)
A. So no, I didn't look at it by district, I
looked it on average for the state as a whole.
Q. So you didn't go back and look at what you
called "the question" of whether the increases Cooper achieved came at the expense of black voter proximity to the polls?
A. That's correct, I did not. Thank you.
Q. Now let's talk about the analysis that you did. How did you go about calculating the voting age population living within a half mile of their polling place?
A. Let's see how it's described here. This is done using the geospacial stuff that Tom Bryan has access to, and I asked him to give me ideas about how far people were from polling places. So when he got the list of where they were located, then he could do the GIS magic with VAPs and VAP by race within certain distances of those places. So that's how they're done.
Q. So Bryan GeoDemographics did this analysis?
A. Oh, absolutely. Yeah.
Q. What parameters did you give them?
A. Just what I told you. I said that I'd like to see what the distances are to polling places and, you know, if it's -- do you want to do categories on it that make sense or if you want just give me average distances, and we discussed it a bit, and I said, yeah, those look good in terms of what percent might be within a quarter mile, half mile, up to a mile or so. And that
was done in conjunction with the data that were available, how hard it was to assemble it and do it.
Q. And did you count the population of any census block that contains a polling place as living within a half mile of the polling place?
A. I can't remember the exact details and how it was done. When you're looking at census blocks, that's the lowest geography you get and there are ways that I know in GIS you split those using different algorithms. And that's likely what he did to do it, but I don't recall the details.
Q. And the census block can be larger than a mile around; right?
A. It can, depending what the population of where it's at, what makes up natural boundaries for one.
Q. So if you count on the population of the census block containing polling places, living within a half mile of that polling place, some of the people in that census block might actually live more than a half mile away from the polling place?
A. But again, I stress that there are algorithms I know GIS people use that will try and accommodate that so you're not just doing something that gross. Do you follow me? And what they do exactly, I don't know.
Q. And you don't know what Bryan GeoDemographics
did in this case?
A. I don't.
Q. You don't know whether he used an algorithm to make that distinction between people in the census block that are actually within the half mile and people who are actually outside the half mile?
A. I don't.
Q. And let's just look at Mr. Cooper's responsive report. Again, it's Exhibit 10. You should have it?
A. On report 9 or 10?
Q. 10 .
A. Thank you.
Q. I'm a little concerned that your Exhibit 10 has gone missing here.

MR. WALLACE: I have a 10 if you need it.

THE WITNESS: Thank you.
MR. SAVITZKY: Do you have it?
MR. WALLACE: Yeah. Tell me what paragraph you want.

MR. SAVITZKY: I'm looking at page 12. BY MR. SAVITZKY:
Q. And what Mr. Cooper does here in Figure 4 is, shows the census blocks which are in blue and then the half mile radii which are the circles there. So you can see there's significant amounts of those census blocks
that are outside the half mile radius of the polling place; right?
A. Correct. I can see that.
Q. Okay. And did you review Mr. Cooper's analysis in his report of this polling place proximity analysis that you did?
A. I remember reading through this and putting it aside.
Q. All right. And just starting at paragraph 24 on page 11 of Mr. Cooper's responsive report, Mr. Cooper used geospacial analysis to calculate that actually 26.3 percent of black voters live within a half mile of their polling place; right?
A. That's what it says here in paragraph 24.
Q. And do you dispute his analysis?
A. I've got no reason to dispute or not dispute it.
Q. And Mr. Cooper conducted -- after conducting this analysis said that the Bryan GeoDemographics analysis erroneously does count the entire VAP living in a given census block as being half mile from a polling place?

MR. WALLACE: Where does he say that?
Q. Paragraph 25.

MR. WALLACE: It's in 25?
A. Yeah, I saw it.
Q. Okay.
A. That's what he says.
Q. And you don't have any reason to dispute that?
A. Not at this time.
Q. All right. So just a few questions about socioeconomic analysis performed by Mr. Cooper and Dr. Burch. Looking at Exhibit 9, Mr. Cooper's October report and beginning on page $36, \mathrm{Mr}$. Cooper analyzes the socioeconomic profiles of the State of Mississippi using five year ACS data. Let me know when you're there.
A. I'm there.
Q. You don't dispute any of his analysis with respect to the ACS data there?
A. Let me read through this. So it appears it's from the 2021 ACS data, singular data for the State of Mississippi. Okay. No, I have no reason to dispute that those are numbers he took from the single year 2021 ACS data.
Q. Thank you. And by the way, just because it came up earlier, looking at the top of page 37, it does like seem you get SNAP participation rates with the ACS?
A. It looks like it, yes.
Q. And in paragraph 64 of his report on page 36, Mr. Cooper says: "In Mississippi, African Americans
trail non Hispanic whites across most key indicators of socioeconomic wellbeing." Do you dispute that?
A. Based on what's in the ACS, no.
Q. And in paragraph 66 and 67 of Mr. Cooper's report, there's the last two paragraphs, he explains that he reviewed and prepared charts of the same ACS data for counties and municipalities and that socioeconomic disparities by race also exist at the county and municipal levels throughout Mississippi. Do you dispute that?
A. Well, that's one where because it's at the county level and because of the sizes, I'd want to look at what the margins of error are before I made those statements. I trust it at the state level that the margins of error are sufficiently small, it's not an issue, but you see it down some of the counties, it could be.
Q. You dispute that the ACS data reflects those disparities?
A. That I don't dispute, it's just a matter of how you interpret it and if -- if the margins of error, if they're 90 percent margin of error overlap the mean of the other group, then there's no statistically significant difference. So you can't make the statement. Do you follow me?
Q. Understood. And setting aside whether or not -- setting aside any issues with respect to the sub sample size for counties or municipalities, with respect to ACS data for Mississippi, you don't dispute that that is what the ACS data is --
A. No, I don't have any reason to believe Mr. Cooper put down other data in there other than what he took out of it.
Q. And let's now mark -- we did it a little out of order because her rebuttal is already marked, but the -mark Dr. Burch's report now as Exhibit 19.
A. I've got this piece of paper handed to me with nothing on it. I don't know what it is.
Q. That's Dr. Burch's rebuttal report.
A. Okay.

MR. WALLACE: Have we got one marked?
MR. SAVITZKY: Should be 18. Here's 19.
THE WITNESS: Here's 18

MR. SAVITZKY: Okay.
THE WITNESS: That was just some other piece of paper, same thing, I guess. Okay. That's.

MR. WALLACE: We do have 19 for me? I've got 18

MR. SAVITZKY: 19 for you, 19 for me. All right. We all have 18 and 19 which we'll be looking at
more presently.
BY MR. SAVITZKY:
Q. But just for now looking at what's been marked as Exhibit 19, on pages 3 through 10 of this report, Dr. Burch analyzes educational markers like student test scores and school district segregation, education attainment by race. You don't dispute her analysis of racial disparities in education in Mississippi on that front?

MR. WALLACE: Objection to being outside the scope of the court's order, but he may respond if he can.
A. In general, no. I'd have to look at some of the details on where she got the data and what she's pulling off to make a definitive statement. But in general, no.
Q. And looking at pages 10 to 13 of this report, starting at page 10, Dr. Burch analyzes racial disparities with respect to income, poverty and wealth looking at, for example, household income, access to a car, poverty, unemployment.
A. I mean, again, I --

MR. WALLACE: He didn't ask a question yet.
Q. You don't dispute her analysis of those racial disparities with respect to income and poverty?
. WALLACE: Same objection. He may answer.
A. Well, I don't -- I haven't -- I'm not looking at her analysis in depth, but I don't dispute the data she got from the American Community Survey as being reasonably accurate. The same from the Current Population Survey for the state as a whole.
Q. Or for example, I'm just drilling down on page 16, the last sentence, last two sentences in her report, she says: "The 2019 report by the Mississippi Home Corporation, a state entity, found that black people in Mississippi were denied mortgage loans more
frequently and faced discrimination in rental markets." MR. WALLACE: Where is that?

MR. SAVITZKY: This is the second to the
last sentence in the second to the last paragraph on page 16 of Exhibit 19, Dr. Burch's October report.

MR. WALLACE: All right. Same objection. He may answer.
A. No. I've got no reason to dispute it.
Q. And she goes on, she says: "Other studies have also shown that black Mississippi applicants faced discrimination in home lending, discriminatory practices affect ability of black renters to find rental housing in Mississippi." And that's from the National Fair Housing Compliance, DOJ?

MR. WALLACE: Same objection. He may answer.
A. My answer is the same as the last time.
Q. No dispute?
A. No dispute.
Q. Okay. And looking at pages 16 through 18 of Dr. Burch's report, she discusses racial disparities with respect to health, for example, in heart disease, access to healthcare, access to a primary doctor, health insurance. You don't dispute her analysis of racial disparities with respect to health in Mississippi?

MR. WALLACE: Same objection. He may answer.
A. If she's summarizing the data that is shown in the tables given the sources that they're from, I have no reason to dispute it.
Q. And looking at pages 18 to 20 of her report, Dr. Burch analyzes racial disparities with respect to criminal justice. And like you, she looks at the racial makeup of the correctional facility populations and, just looking at her chart here on page 19, looks like she got a very similar result to you in terms of 60 percent of the prison population being black?

MR. WALLACE: Same objection. He may answer.
A. And again, based on the fact that her analysis are really descriptive, verbal descriptions of what's in the tables, I have no reason to dispute it.
Q. You don't dispute the political science literature discussed in Dr. Burch's report that voting participation is generally correlated with socioeconomic wellbeing?

MR. WALLACE: Same objection, and perhaps outside the range of a demographer's expertise, but he may answer.
A. Given my knowledge of it, I don't dispute it.

```
                                    Page 216
                            Q. You don't dispute that this letter -- this
literature shows generally that when a person has more
education, more income, more health, they're more likely
to vote and participate in politics?
    A. In general, I think that's -- I agree with
that.
    Q. And in light of that general rule, it would be
a reasonable hypothesis that if there was racial
minority group in a jurisdiction that had less
socioeconomic wellbeing, less education, less income,
less health, they would have lower levels of voting and
participation?
                    MR. WALLACE: Same objection. But he may
answer.
    A. And my answer to that again is that it depends
on what racial group and what part of country and when
and where you're looking at it. It's a research
question.
    Q. In light of -- let me ask it differently, then.
    It would be a reasonable hypothesis in light
of that general rule that the correlation between
socioeconomic wellbeing and voting and political
participation, that black voters in Mississippi who have
less socioeconomic wellbeing, less income, less
education, less health, less access to housing would
```

have lower levels of voting and political participation? MR. WALLACE: Same objection. He may answer.
A. Again, it's -- it's not an easy question to answer from the standpoint of it's still pretty general. So it may be that certain areas of the state, people who are in exactly the same condition vote at a much higher rate than people very similar, exact same characteristics elsewhere.
Q. Well my question is: Given all of this information that we just discussed that you don't dispute from the ACS, from other reputable sources showing the racial disparities across many different indicators and given the political science literature that you don't dispute that socioeconomic wellbeing and voting are correlated, it would be a reasonable hypothesis that black voters in Mississippi vote less and participate less than white voters in Mississippi?

MR. WALLACE: Same objection, and he may answer.
A. And that's a reasonable hypothesis.
Q. So let's now -- well first of all, I think we're done talking about Mr. Cooper's reports at this point, so we can move those to the side if that'll make things a little easier for you before we start our next
set of questions. And these ones can go to the side as
well, actually. And do you have Exhibit 10? Are we
still --
MR. WALLACE: I've got 10 if he doesn't.
MR. SAVITZKY: We'll re-mark it if we have
to.
MR. WALLACE: Is Cooper No. 10?
MR. SAVITZKY: Yes.
MR. WALLACE: Yeah, I've got it. You don't
have it over there, is your problem; right? She doesn't
have it.
MR. SAVITZKY: Yeah, we'll --
it's floating around here somewhere.
MR. WALLACE: We'll check it later.
BY MR. SAVITZKY:
Q. So with that, I want to talk about the voter
turnout piece of this in your analysis of voter turnout
in Mississippi starting with the current population
survey.
A. And is that from the initial report or from
another report? Are you talking about the report that
we've been talking about here that you've given me, this
one? That's what we're talking about?
Q. I'm actually going to -- I'm talking about your
surrebuttal -- we'll eventually talk about your
surrebuttal.
A. Okay.

MR. SAVITZKY: In fact, this is a great time to mark your surrebuttal report. Hold on. All right.

So I'm now going to mark as Exhibit 20, I believe.
MS. JONES: Yes.
MR. SAVITZKY: Your -- oh, this isn't your
surrebuttal report. I'm sorry. Bear with me.
(Pause in the proceedings.)
MR. SAVITZKY: Well --

MR. WALLACE: Tell you what, I have to go check out of the hotel. You can keep digging while I'm checking out of the hotel. I'll be back in, you know, ten minutes, and maybe you will have found it by then.

MR. SAVITZKY: Thanks. Let's go off the record.
(A break was taken from 2:31 to 2:55 p.m.)
MR. SAVITZKY: Back on the record. So we
were marking Exhibit 20 which is your surrebuttal report. That's marked for you here. Mr. Wallace, a copy. And I have that here. Okay. BY MR. SAVITZKY:
Q. Now, before we sort of get into numbers and dig into the details, let's start with the CPS. What is the CPS?
A. The Current Population Survey?
Q. Yeah.
A. It's a regular survey that's done by the census
bureau. It's large scale survey, it has supplements in
it, so one of the supplements is a demographic
supplement.
Q. Is it done by the census bureau?
A. It's -- it's probably done for other agencies, but the census bureau is the one that does a lot of survey research, so the CPS is technically done, I think, by the census bureau.
Q. And the CPS includes a voting and registration supplement?
A. That's one of the supplements.
Q. And that includes questions about whether the respondent's registered and voted?
A. Yes.
Q. And no one goes back and asks the respondents -- or sorry, strike that.

No one goes back and checks whether the respondents actually are registered to vote.
A. As far as I know, they don't.
Q. No one goes back and checks if the respondents actually voted?
A. Just like everything else that's in there, they
don't go back and check are you really this age? Are you really this ethnicity? Yeah, so as far as I know, it's -- they pretty much take the respondents' words as given.
Q. It's purely a survey, there's no sort of external validation process?
A. You mean in the sense of the answers --
Q. Correct.
A. -- they've given?
Q. The veracity of the answers are not externally validated?
A. That's what I understand the case to be, correct.
Q. And then looking at your January report still and a page 70, you have a table, Table IV.A. 2 where you looked at Mississippi voting by race and ethnicity using CPS data; is that right?
A. Yes.
Q. And based on the data, you conclude that black turnout in Mississippi in 2020 was 72.9 percent and white turnout was 69.8 percent?
A. Correct.
Q. And this CPS data is the primary basis for your conclusion that blacks vote at higher rates than whites in Mississippi as a whole?
A. It is.
Q. And looking at this table, you conclude overall that the -- that 70 percent of Mississippians voted, 70.3 percent, I suppose, of Mississippians voted in the 2023 election?
A. Yes.
Q. And you agree, as you set out in your table in that total voted column, that 70.3 percent turnout would mean that 1.531 million people voted in Mississippi in 2020?
A. Yes.
Q. And just looking at Dr. Burch's rebuttal report which was previously marked as Exhibit 18, and turning to page 2 of that report --
A. So we're on 18 again --
Q. Yeah.
A. -- or 20 .
Q. 18. Right here. You have it right here.

And looking just at page 2, second full paragraph Dr. Burch says: "The official vote count certified by the Mississippi Secretary of State show that only 1,313,759 votes were cast or present, highest participation rate in Mississippi in the November 2020 election." Do you dispute that?
A. No.
Q. So the CPS overstates the level of turnout in Mississippi by about 200,000 people, 1.531 million versus 1.313 million?
A. Given the years where this is done and the fact it's Mississippi, that appears to be the case.
Q. I'm sorry, I just want to make sure, is that answer qualified somehow?
A. Well it's qualified with the data that are used to do it. In that sense, are the CPS data exactly for the same year that the turnout data are for and things like that.
Q. Right. And so --
A. That's all the qualifications I'm making.
Q. So with respect to the 2020 election --
A. Yes.
Q. -- and comparing that number from the official vote count by the Mississippi Secretary of State, and the CPS estimate you derived from the 2020 general election turnout, the CPS overstates the level of turnout by about 200,000 ?
A. Yes.
Q. And you agree, and you stated this at paragraph 149 of your report, page 83, that there is a "likelihood of overreporting on the CPS voting and registration supplement."
he didn't hear a question, and I don't think I did either.
Q. You agree that there's a likelihood of overreporting on the $C P S$ voting and registration supplement?
A. I do.
Q. And that -- meaning that when the respondents get the survey questions to the CPS, when they overreport, we mean they tend to say they registered or they voted even when they aren't registered or didn't vote?
A. That's how I'd interpret overreporting.
Q. And looking at paragraph 148 of your report on page 83, you would agree that this issue of overreporting of political participation is present with any survey data related to voting?

MR. WALLACE: This is in his original
report?
MR. SAVITZKY: Correct.
MR. WALLACE: Here it is.
A. It could be. I don't know enough about every survey that's ever done to say whether or not they do it, so of the ones I'm familiar with like the CPS, it's looks like they overreport.
Q. Right. And you say this caveat -- this is the last sentence -- last sentence of this paragraph: "This caveat would not only apply to the SSRC survey data but also the CPS, the APS, any other survey in the United States that includes questions on voter registration" --
A. And I stress it's a caveat. But again, we don't know exactly what's going on, but I'd be careful if I was looking at voter registration survey information and voting information.
Q. And you wouldn't dispute that the CPS itself says that respondent misreporting is a source of error in the CPS estimates?
A. Absolutely I would not dispute that.
Q. And looking at paragraph 148 that we've been looking at of your January report, you say with some citations to the literature that: "While both blacks and whites tend to overreport voter registration, blacks may do so at higher rates -- at a higher rate that white as is also the case with voting."
A. Correct.
Q. And in the bibliography of your report, you cite some literature going into detail on this, a 2021 piece called: Vote Overreporting While Black: Identifying the Mechanism Behind Black Survey Respondents Vote Overreporting. And let's just grab
that and mark it as Exhibit 21. Copy, copy. This is the piece that was in your bibliography mark it as Exhibit 21.

You reviewed this article in putting your
report together?
A. I did.
Q. And looking at page 3, I think right at the top -- just let me know when you're there.
A. That's the paragraph that starts:
"Overreporting among African Americans"?
Q. Correct. And the next sentence is: "Perhaps one of the most consistently documented aspect of overreporting is that African Americans overreport at higher rates than whites."
A. That's correct.
Q. Do you agree with that assessment?
A. Yes. Based on the evidence I've seen.
Q. And in her rebuttal report, Dr. Burch also pointed to another 2022 article by Ansolabehere and Fraga and Shaffner in American -- I think it's in American Politics Research specifically about overreporting on the CPS. Do you recall that?
A. No. I have to look at it, but it sounds familiar, so --

MR. WALLACE: It's in here, 18.

THE WITNESS: Thank you. And where is it? What page was it?

MR. SAVITZKY: Well I was going to mark the actual article, but I can -- I can refer you to the -so it's cited on page 3, Footnote 6 of her report. She says: "New research shows not only does the CPS overestimate turnover for all groups, it does so differentially by race such that it consistently overestimates black turnout even more than white turnout."
A. Yes.
Q. And she cites in an article that I'm now going to mark as Exhibit 22 entitled The Current Population Survey Voting and Registration Supplement Overstates Minority Turnout.

MR. WALLACE: Where is this cited?
MR. SAVITZKY: This is cited in Footnote 6 of Dr. Burch's rebuttal report.

BY MR. SAVITZKY:
Q. Do you agree that this is a paper by a reputable political scientist in an academic journal for the discipline?
A. Well I don't know them personally, so if you want me to attest to their reputations, I'm assuming they're reputable, but yes, I agree that this is a --
this is an article by academics that's published in an academic peer-reviewed journal.
Q. I'm just looking at the summary text on page 1 there, it says: "We compare CPS estimates to official voter turnout records from 2008 to 2018 , document consistent significant discrepancies that call into question the reliability of CPS turnout statistics." Do you see that?
A. I do.
Q. And it states: "Specifically, the CPS overestimates black and Hispanic turnout relative to non Hispanic whites whether relying on turnout rates as a shared, eligible citizens or the racial ethnic composition of the voting population." Do I have that right?
A. You do.
Q. And they say: "Sampling error in commonly used adjustments to CPS estimates do not account for or correct the bias."
A. All of it, correct.
Q. And just looking at their conclusion in the last page -- or excuse me, on page, I think, 4 -- oh, no, it's on page 5, excuse me, of the document, yeah, conclusion, states: "The author suggests that CPS should conduct a voter validation study akin to those
undertaken by other surveys." Do you see that?
A. I do.
Q. You agree with that?
A. I do.
Q. And they say: "In the meantime, we suggest that analysts uses caution when making inferences about variation and turnout rates by racial or ethnic groups." Right?
A. They do.
Q. Do you agree with their assessment?
A. I think for the research at this point in time, I think their assessment is well taken.
Q. So given the fact that the top line CPS estimate of voting in Mississippi shows overreporting by about 200,000 -- I think it's 12 percent overage -- it would be a reasonable hypothesis that this overreporting would in particular overstate black turnout?
A. That would be a reasonable hypothesis.
Q. So let's go back to your conclusion. You conclude based on the CPS that blacks vote at higher rates than whites in Mississippi as a whole?
A. That's correct.
Q. As we discussed, setting aside the issue of overreporting, just assuming the CPS is reliable for the moment, your analysis of the CPS data for 2020 shows a

3 point difference between black and white turnout rates, 72.9 versus 69.8; right?
A. Correct.
Q. So even a modest racial differential in
overreporting on the CPS would mean that black turnout would, in fact, be lower than white turnout?

MR. WALLACE: Object to vagueness of
"modest," but you may answer.
A. It could be.
Q. Particularly given of the fact that you have overreporting at the level of 200,000 voters?
A. It could be.
Q. And you didn't run any type of t-test on those two numbers $72.9,69.8$ to determine whether there's a significant difference between them, did you?
A. That's correct. I did not.
Q. And actually looking at that table we looked at before on page 70 of your report?
A. This is my original report?
Q. Yeah, your January report. Thank you. Table IV.A. 2?
A. Yes.
Q. You report a margin of error for some of these numbers --
A. Yes.
Q. -- 4.1 for white non Hispanic turnout and 4.8 for black turnout; right?
A. That's correct.
Q. And what does the margin of error mean in this context?
A. The margin of error means that the percentage points can go up and down over the mean, the percentage which is the type of mean on that. So as I recall, the -- unlike the ACS, I think the CPS does 95 percent confidence intervals, I believe. I could be wrong, but -- so what this is stating, then, is saying that we're 95 percent certain that the true amount is within plus or minus 4.8 percent of 72.9 .
Q. So fair to say that, again, just setting aside the overreporting issue for the moment, assuming, you know, the veracity of the responses, the real number for self reported black turnout in Mississippi on the CPS could be as low as 68.1 percent?
A. It could be if you're looking at the -- if you want to look at a 95 percent confidence interval. So if you look at it that way, there's a range of numbers and we say we're 95 percent certain that it -- it's a range estimate rather than a point estimate.
Q. And what the CPS is telling us is that the confidence interval is between 68.1 percent and 77.7?

```
                                    Page 232
    A. Give or take, yeah, that's what it's telling
us. And I believe it is a 95 percent confidence
interval.
Q. And then looking at the white turnout number of 69.8 percent, margin of error there is 4.1 ; meaning that, again, setting aside overreporting, assuming the veracity of the responses, the real white turnout number could be as high as 73.9 percent, and that would be within the confidence interval for the survey?
A. Yes.
Q. So 68.1, the lower bound of the confidence interval for black turnout is lower than 69.8, the mean white turnout number?
A. Yes.
Q. And 73.9, the high bound of that confidence interval for white turnout is higher than 72.9, the mean level of estimation of black turnout?
A. Absolutely.
Q. So these confidence intervals for black turnout and white turnout in the CPS substantially overlap?
A. Yes, they overlap. The upper end of one extends across the mean of the other one and vice versa. In that sense, they overlap.
Q. I mean, they don't overlap by just a little bit, the mean of one is within the confidence interval
```

of the other?
A. That's what I just said, I thought.
Q. But not just over -- in other words, they don't just -- it's not simply that the upper bound of one and the lower bound of other cross a little bit, the mean are within the confidence interval?
A. That's the important part. It's not the confidence interval themselves that overlap, it's do they cross over the mean of the other independent sample.
Q. And when the confidence intervals of the two means overlap, that can indicate that the difference between the two numbers is not statistically significant?
A. It's indistinguishable, that's correct.
Q. And would you say that these numbers are not statistically --
A. From a statistical standpoint, that's correct.
Q. So -- but your conclusion wasn't that black voters and white voters vote at statistically similar rates based on the CVS?
A. That's correct.
Q. Your conclusion was that blacks vote at higher rates?
A. Yes.
Q. But the CPS only supports the conclusion that blacks and whites vote at statistically similar rates?
A. Yeah. If you take that into account, and in this case I took the point estimates at face value because it's a relatively large sample, even though the confidence intervals, one end overlap the mean. But that's correct, you're absolutely correct.
Q. So let's talk about the CES. You would agree that Dr. Burch in her rebuttal report analyzes turnout using alternate data sources other than CPS, they're not purely survey based?
A. Yes.
Q. And one of those is the CES, the Cooperative Election Survey?
A. Correct.
Q. Actually, it's -- excuse me. It's Cooperative Election Study?
A. Study, I think that's correct.
Q. As you say in paragraph 11 of your surrebuttal report which has been marked as Exhibit 20, you agree the CES "has been available and has been used by experts in the field for many years."
A. That's paragraph 11?
Q. Correct.
A. Yeah, I'm pretty sure I said that in paragraph
11. Yes, I did.
Q. And you agree with that still?
A. Yes.
Q. And you would agree that one aspect of the CES is that political participation by voters who respond to the CES is independently validated?
A. Yes.
Q. So I want to discuss how the CES works to make sure we're on the same page. And let's mark at this point the technical documentation that you refer to in your surrebuttal report, and we'll need one more sticky, if you don't mind. Are we at 23?

MS. JONES: Yes.
MR. SAVITZKY: I'm marking as Exhibit 23
Guide to the 2020 Cooperative Election Study. And this
is the guide that you were looking at and referencing in your surrebuttal report?
A. It is.
Q. Now you agree that with the CES, the first step is that there's a preelection survey of adults that includes demographic questions; right?
A. Yes.
Q. And in Mississippi, 462 adults responded to that survey?
A. Yes.
Q. And in a 95 percent confidence level with a 5 percent margin of error, a sample size of 384 is going to be representative of population of -- the population of Mississippi?
A. In general I would say that, but you've got another -- it's another set of qualifications that goes with it just like they would go with the CPS and particularly the CES. And that's involves the weighting
Q. So setting aside weighting and talking only about whether or not the sample size is sufficient to be representative, a sample size of over 384 will be sufficiently large to be representative?
A. It depends on the purpose when you say that. So I'll go slightly into lecture mode here, if that's okay. So it depends on what's going to be important in terms of confidence intervals and how willing you are to live with error. So a sample size of 25 , because it's under what's called large sample theory might be sufficient to answer questions for something and, you know, they can deal with the confidence interval as they come. When you generally get up to a sample size of around 400, the rule of thumb is that with that, you can say you're 95 percent certain you're within plus or minus 5 percentage points of what the true number is
excluding all sources of other issues. But in general, that's the case.

So when you say it's representative, a sample, any sample, as long as it's taken scientifically is designed to be representative of the population it's taken from. That, I think, you clearly understand. So the sample size simply makes your ability to refine where the point estimates are and in general as long as there's no change in variation, standard deviations, you can then start to reduce the confidence intervals so you're more certain where the actual true number lies in the population when you're trying to infer to it.

So in that sense, every scientific sample should be representative, I mean, that's the whole goal. And what in particularly is important when it's representative is the variation. What you want is not so much the mean in the sample to be the same as the population mean, what you want out of the sample ideally is that the variation of the sample if not exactly the same, is very similar to what you get in the variation of the population.
Q. And that's why you use weighting; once you have a sufficient sample size, you also need to do weighting to make sure that the sample accurately reflects all the different attributes of the population?
A. Yeah, I would not probably not describe it as exactly that, but what you're trying to do is say, look, we know we don't have enough people in this particular category, you know, race, socioeconomic, age, whatever it might be category, and so we know -- and they may be differentially representative in the sample, so we're going to say here's something that we think is a population that would fit to it. So it's post ratification that's -- again, I'll go into slight lecturing mode.

So you may have a sample survey and
60 percent of -- in a telephone survey, 60 percent of the respondents say yes to a question. It turns out that 60 percent of the population's female, 40 percent is male, and all 60 percent of the -- 60 of the females would say yes and all males would say no. So you've got to readjust it -- do you follow me -- so that you've got the right estimate of what you think the population estimates are, because when you do that, then it looks like it's going to be 50:50. And that's what weighting attempts to do.
Q. And we'll talk a little bit more about weighting, but I want to -- in terms of sample size -and I believe it's the Krejcie and Morgan, you know, formula originally, but we agree that once you get up
above 400, you should have a sufficient number of respondents?
A. But again, what I stress in that regard is that what you're doing is, you're -- you can make a statement such as I'm 95 percent certain that I'm within plus or minus 5 percentage points of what might be the case. If you get up to 800, you can say I'm 99 percent certain. So what it does is, it reduces the uncertainty around the point estimate that you've gotten and the range estimate.
Q. And I think we're totally on the same page, let me restate the question just for clarity.

For purposes of being able to speak to something with 95 percent confidence and with a 5 percent margin of error, once you get to 400 or more respondents on a survey, you will have a sufficient number of respondents to speak to the question at that level of confidence?
A. Given that the survey was done on a scientific, you know, random selection basis, given that you don't have a whole lot of bias in the survey, given that people -- there's not a lot of differential nonreporting at the personal level, etcetera, etcetera, etcetera, all else being equal, yes.
Q. Okay. And just looking briefly at Dr. Burch's
surrebuttal report which I think is -- oh, her rebuttal report, excuse me, which is Exhibit 18, and looking at page 4, Footnote 12 --

MR. WALLACE: Page 4, Footnote 12.
MR. SAVITZKY: Yep.

BY MR. SAVITZKY:
Q. Let me know when your there.
A. I'm there.
Q. You would agree that 462 respondents sample for Mississippi is above the minimum sample size to detect small effects, co D equals . 2 with a standard level of statistical power pointing -- in a significance level of . 05 ?
A. I agree, as I just said, when it's above that number, then you've got a 95 percent chance of your confidence -- your confidence intervals as stated, I'm 95 percent certain that the estimate that we're getting is plus or minus 5 percent of what the true number of the population is.
Q. And you wouldn't dispute Dr. Burch's characterization that this number, that 462 is above the minimum sample size to attack small effect at that level of statistical power and significance?
A. Yeah, I would dispute that because there may be small effects that that sample is not going to pick up
that large. Do you follow me? There could be really minimal differences that are important in a certain situation where a sample size of 400 is not large enough to detect that it's a statistically significant difference. So in that sense, it depends on the context. And if you're asking about the context in which we're talking about voting survey, then it probably is adequate. I think that's a question you wanted to ask me.
Q. Yes. And specifically in the context of analyzing voting by race in Mississippi?
A. Yes. And I would qualify my answer again, everything else being equal, it should be.
Q. So getting back to how the CES is done, we talked about the first round of questions. Then there's a second postelection wave of questions that are asked of the same respondents in a postelection second set of questions; right?
A. Yes.
Q. And the postelection wave, post wave of questions includes questions about whether or not the person voted?
A. Yes.
Q. Not every voter responds to the second wave?
A. That's correct.
Q. Most of them do.
A. (Nods head.)
Q. And then in addition to the data from these two waves of survey questions, there's also vote validation information that is added to the dataset --
A. Correct.
Q. -- for all the respondents; right?
A. I believe that's correct, for all the respondents.
Q. And the validation is done using state voter history databases to check whether voters are registered and whether according to their vote history they actually voted?
A. Yes.
Q. And we can look at the CES documentation which was marked as Exhibit 23?
A. Yes, it's over here. I've got it.
Q. Looking at page 19 at the vote validation variables, we can see -- so one of the variables is CL voter status which reflects whether the voter is registered; and if that's missing, then there was no match on their registration record. Does that sound right?
A. I think so.
Q. And then if you have CL 2020 GVM which is
whether the respondent voted in the 2020 general election; right?
A. And how they voted.
Q. And their method of voting?
A. Yes.
Q. And if there's no data for that variable, then they were not validated as having voted?
A. It's unknown, I believe, is what they put in there.
Q. They say: "If missing, respondent did not have a report of voting."
A. Yes.
Q. Okay. And you would agree with the statement on page -- the next page, page 20 of the documentation, if a person has any nonmissing value for CL 2020 and GVM, they have a validated vote record for that election?
A. Correct.
Q. And you would agree that this validation procedure was performed for every survey respondent whether or not they responded to the second wave questions?
A. That's what the study states.
Q. You would agree that the validation was performed whether or not they say they voted?
A. That's what they state, so I have no reason to disagree with what they state they did.
Q. And so you'd expect in the data, there are some respondents who did not answer the second wave of the survey but can be and were validated as being registered and having voted in the 2020 election?
A. Yes, that could happen.

MR. SAVITZKY: And just for completeness, why don't we now mark two more exhibits. I didn't end up marking Krejcie and Morgan, but I could. So what I'm going to mark here, first with Exhibit 24, I'm going to mark -- so I'm going to mark Exhibit 24, and you can just look at that. That is the raw data, not every variable, the selection variables, otherwise, the raw data for the Mississippi CES. BY MR. SAVITZKY:
Q. Can you just check that, see if you have any reason to dispute that, and you can also confirm that it has 462 rows.
A. I confirm that.
Q. Okay. And I'm also marking as Exhibit 25 same exact data but this one just for ease of use, we have re-coded the raw data with the equivalent textual information so it's legible to work with.
A. Okay.

```
                                    Page 245
                            Q. Okay. And we can see in these columns there's
a variable that says: "Took post," do you see that?
    A. Yes.
    Q. Which means that they took the post wave
    survey?
    A. Yes.
    Q. And then for those who didn't -- who have a no
for took post, they also have an N/A for their weight in
the common post weight weighting; right?
    A. I see that.
    Q. And we can see the CL voter status and CL 2020
GVM information is there as well?
    A. I do.
    Q. Okay. And take my copy out too.
            And just to confirm what we were talking
    about earlier, looking at row 60, which is on the second
    page --
    A. Of Exhibit 25, right.
    Q. -- of Exhibit 25, we can see this row 60 is a
    respondent who did not take the postelection survey;
    right?
    A. Yes.
    Q. And they're not weighted in the post weight
weighting metrics; right?
    A. That's correct.
```

Q. But if we look at whether they're registered and whether they voted, they're active and they had a validated vote; right?
A. Yes.
Q. And if we look at row 108 on the next page, another example, took post N/A, not weighted, if we look at common post weight and VV weight?

MR. WALLACE: What number are we on now?
THE WITNESS: 108.
MR. WALLACE: 108. Okay.
Q. Right, took post N/A, no weighting in common post weight and VV weight; right?
A. Correct.
Q. But active with a registration record, and their vote was validated?
A. Correct.
Q. I could actually go through a bunch of these, but if I represented to you there are 29 such records overall of voters who didn't take the post wave survey but whose votes were validated, would you dispute that?
A. I believe you.
Q. All right. So we may -- we my use these again, we'll just set them aside for now.

So the last part of the CES I want to make
sure we're square on is the weighting system, and we
started talking about this a little already. Generally speaking, you would agree that weighting is used to make statistics computed from the data more representative of the population.
A. That's the idea, yes.
Q. And you would agree that using weights is more or less ubiquitous in survey-based research?
A. It is.
Q. ACS is weighted? CPS is weighted.
A. (Nods head.)
Q. You would agree that if the sample is not self weighted, it's a good idea to use weights as often as possible?
A. I don't know if I can say that about any case, but if you want to -- if you know the -- or have reason to believe the sample is not representative of the population in the sense you're talking about and that it is a scientifically drawn random, even if it's a complex random sample, then in general the idea would be you'd want to use weights but you want to make sure the weights represented the population in question too.
Q. And as you explain in your report: "The basic idea of weighting in a survey is, you're assigning weights to each of the responses in order to have the attributes of the sample population more actively mirror
the attributes of the overall population."
A. Correct.
Q. And for the CES -- and we can look at page 16 of that technical documentation that I believe was marked as Exhibit 23 -- you would agree the CES samples were weighted to match the distributions of the 2019 ACS on gender, age, race, Hispanic origin, and education level?
A. And where's this?
Q. This is on page 16.
A. Thank you.

MR. WALLACE: 16? Okay. I thought you said 19.

MR. SAVITZKY: 16.
BY MR. SAVITZKY:
Q. Last sentence of the first paragraph: "The CES sample was weighted to match the distributions in the 2019 ACS on gender, age, race, Hispanic origin, and education level."
A. Yes.
Q. All right. And that is the set of weights that are used for the common weight and common post weight --
A. Yes.
Q. -- systems. And then there's another set of weights that was created, the VV weight and VV weight
post that's only for respondents for whom there was a validated voter registration number; right?
A. Yes.
Q. And those were matched to the demographic attributes of registered voters according to the 2020 CPS?
A. Yes.
Q. Now staying on page 16 of this technical documentation that we're looking at and looking down the page, we can see the four weighting variables that we talked about earlier; right?
A. We can.
Q. Common weight, common post weight, VV weight, VV weight post?
A. Yes.
Q. And the idea is that because we have common and VV weights that represent the whole population of adults versus with the VV weights, only those with a validated registration record, and then we have post versions that should be used when talking about the second wave questions?
A. Correct.
Q. Because the population that answer the second wave is slightly different, so you need to use different weights to true them up to either the ACS in the face of
common most weight or the CPS in the case of VV wave post?
A. Correct.
Q. And just continuing to refer to this discussion of weighting in the technical documentation, you would agree that the common weights are meant to ensure that the sample is representative of all adults in Mississippi in this case?
A. Yes.
Q. And the VV weights are meant to ensure the samples are representative of all adult registered voters?
A. Yes.
Q. And you would agree, as I think they say in the technical documentation, common weight should be used when you're characterizing the behavior of all adults?
A. Yes.
Q. And you would agree that common post weight should be used when characterizing the behavior of all adults but referring to variables from the second postelection wave of questions?
A. That would be the ones who actually voted or -right? They responded to the second wave, that's a better way to say it, and reported whether they voted or not.

```
Page 251
Q. So you should use common post weight when referring to all adults but looking at responses to the second wave questions?
A. Yes.
Q. And you would agree that VV weight should be used when characterizing the behavior only of registered voters in Mississippi?
A. Yes.
Q. And you'd agree that VV weight post should be used for characterizing the behavior of only registered adults and also looking through results of those second wave, post wave questions?
A. Yes.
Q. And just sticking with the VV weights for a moment, you would agree that by definition, the VV weights exclude people who were not independently validated as being registered to vote?
A. I believe that's the case, yes.
Q. Meaning that those responses were given a weight of zero, so when you apply the VV weight variable, they're not counted?
A. I believe that's correct.
Q. So if someone reported on the second wave of questions that they had voted but in fact they weren't even registered, that would be an instance of
```

overreporting; right?
A. Yes.
Q. But that instance of overreporting wouldn't show up if you used a VV post, it would be excluded from the sample?
A. It could be, yes.
Q. Well --
A. Yes. Well, if that's the weight you're using, giving the weight of zero, that's what you're saying.
Q. Yes.
A. Yes.
Q. So if you applied VV weight post, you would exclude that instance of overreporting?
A. Yes.
Q. And that's because VV weight post only includes people who were independently validated as registered?
A. Yes.
Q. And so if there are racial disparities in who was validated is registered in the first instance, those would all be masked when you use VV weight as well?
A. They could well be masked, yes, depending on how many people were not carried forward into survey, but they could be, yes.
Q. Well when you use VV weight or VV wait post, you're only looking at voters who have a validated
registration?
A. I understand that. But the issue is how many of the initial sample were not followed up in that part of the survey. Do you follow me? So if it's a pretty high number, then you would be having some problems; if it's not so high a number, you may not be.
Q. I guess my question is: If there are racial disparities in who is registered to vote and you use VV weight such that people who aren't registered to vote with a validated registration are taken out, you're not going to pick up those disparities?
A. Right. On a visual basis, yes.
Q. And another item on the CES generally, in looking at page 17 of this technical documentation, there's a sort of discussion under the heading Accuracy of the CES Sample with some discussion about validating the sampling done in the CES by comparing survey results to actual election results. Do you see that?
A. I do.
Q. And the authors say: "In the large sample, the CES allows us to validate sampling by comparing the state level samples within the survey with the actual election results."
A. I do.
Q. You dispute that?

NO .
Q. And the authors conclude that: "Overall the results from these analyses demonstrate the CES is a reliable source of data on voting at both the national and state level." Do you dispute that?
A. That's their conclusion. I don't dispute it.
Q. So let's look at your surrebuttal report, which we marked as Exhibit 20? Is that right?

MS. JONES: Yes.
Q. And looking at paragraph 11 of your report, you say: "Generally speaking, when a survey sample is being used to analyze extremely small populations, the largest sample possible is most beneficial." Right?
A. Correct.
Q. Do you contend that Dr. Burch analyzed an extremely small population in looking at black voter turnout and white voter turnout in Mississippi?
A. When you look at the black voters, they're in the 462 sample set, it starts to look small, yes.
Q. Do you know how many black respondents there are of that 462?
A. I'd have to go back and look.
Q. If I represented to you that it's 160 respondents who were black?
A. That's sounds correct, yeah.
Q. And is that an extremely small sample size?
A. Well it depends again on the context of what you're trying to do and what you need for confidence intervals and margins of error and all that. So it's hard, again, in general to say this is an extremely small sample size or not. So in the context of this, it may be the fact, and as I looked at it, that it could be that it's a small sample.
Q. Well just to be clear, you don't see it's a small sample, you say: "When a survey sample is being used to analyze extremely small populations." Do you contend that black voters in Mississippi are an extremely small population?
A. No. The statement there is general. But what goes on with the -- when you're using this, if you start to get -- for example, if you're looking at Dr. Burch's analysis, so let's look at somebody who might be, let's say, black of a certain age, they're eligible to vote, what their educational attainment is, you're starting to drop the sample size down. So from the 462, you're starting to go get down to small numbers.
Q. And did Dr. Burch analyze behavior by black voters in a particular subregion with particular educational and socioeconomic characteristics?
A. Well for the sake of Mississippi, she did.

A. So Case 320. The common weight is 7.2 , the common post weight is 14.298, the VV weight is 7.8, and the VV weight post is 6.6. Those are really high weights, and they're indications to me of exactly what I was saying about if you've got weights that high, you get down to subcategories of people that are so small, you're weighting them up really highly. And that's what's going on here.
Q. And I guess my question is: What are the subcategories that you contend that Dr. Burch analyzed?
A. Well if she analyzed anything with these people in it, then they have these weights on it. If she analyzed Case No. 320, and I didn't see anything that said she excluded it, that has a weight of 7.2 .
Q. But you agreed previously that we use weights in order to make the surveys more accurate and to true it up to the characteristics of the population?
A. I understand that. But the -- as we said earlier too, there's a lot of tradeoffs in this. And so what you get is, if you've only got one person that fits in certain categories and you have to weight that person by a factor of 7 just on the common weight, it means you're putting a lot of burden on that person. What you've got is an inverted pyramid. So you've got one person representing a whole set of people. And that's
what I mean. Whatever the categories were that they took in detail that they decided they only needed to -that they need to put a weight that big on the common weight is really representative of the fact that there's a lot of -- and this goes on and on throughout this entire survey. You can see it. I mean, carry this one over, you get into the common post weights for this person, it's 14. This person's representing 14 people. And when you look at the diagnostics on Dr. Burch's logistic regressions, you can start to see that the diagnostics and the differences in the DF betas, they're all indicating that you've got outliers scattered throughout this dataset that if you took one of them out, your results change. And that's what that says, and that's what the meaning of my statement is.
Q. And we'll just get into this, but just to be clear, when you talk about the diagnostics, those are diagnostics that you ran using the VV weight?
A. Or any other weights. But you can see them on here, I just ran the VV weights. But using any other weights, it's going to be very similar. I can tell from experience and looking at weights and running regression, all those diagnostic things are not exclusively logistic regression, they're used throughout all kinds of regression analyses, and I've used them.

You start seeing the matrix Ds, the Cook distances, the DFFITS, the DFBETAs -- I'm sorry for all the acronyms -you start looking at those things, and you start to see how many of them are fairly large and you go, my goodness, you take -- so here's the simple example. Picture a diagonal -- you know, a 45-degree angle line like this, all right? So you have a regression line, all the data points on it, the R-squared on that's going to be 1, you know, the X variable perfectly predicts the Y variable. You could have an outlier up here in one, okay. And so the regression line, the R-squared is not going to be 1, it's going to be something else. You took that one point out of there, and all of a sudden it's 1. That's what these are indicating to you. So there's a lot of -- because the case sizes and whatever the categories are that the CES uses are so small, however they did it, age, education, whatever they all are that they weighted up to, whether it's ACS or the CPS, you're looking at these weights like this, my goodness, this -- you're putting a lot of burden -- as I said, it's like an inverse triangle on different people, such that if you took a few of these cases out, you might get a totally different answer. That is major problem I see with using the CES. Whether it's exclusively to Mississippi, I don't know. So all
the arguments about the sample size being sufficient, 462, yes, in general you get what I said, 95 percent confidence plus or minus 5 percent. But you start getting down to these weights -- and it crosses them. Doesn't matter if you use common weights, common post weights, the VV weight, the VV weight post, you're starting to look at things and go, my goodness, what this starts to indicate to me, not only do you get differences in how the FITS are, but how the parameters are. The models can change dramatically, dramatically. Sorry for the lecture mode. That's one of the big issues I see with it.
Q. So -- and by the way, you referenced the CPS and ACS. Those are also weighted?
A. Yeah, they're weighted themselves.
Q. And --
A. And then you're weighting to, you know -- so it's becomes complex. And however all the process was done to get to the point -- and I think the people who put this study together did the best job they could and I don't have any reason -- they weren't trying to bias anything, they're trying to make a good survey that people can use. But the point is, you get to things -if all the weights were something like . 094 and 2 and 1, things like that across the board on all these, that
might be something different.
But my goodness, when you start to see weights like I just noted 7, there's another one. So No. -- I think it's No. 35, 7.39 common weight, 10 on the common post weight, then it's 8 on the VV weight, and it drops way down to 1 on this. I mean, you get all kind of variations in this. And that really affects the models and what you can do with it.
Q. So I understand your opinion that the weights are high.
A. Well, it's not -- the weights are high. It's not my opinion. When you run the diagnostics on the logistic regression analysis, you can see it in the diagnostic information. As I said, what are called the DFBETAs, the differential change in the coefficients in the model, the DFFITS, DFFITS is what it's called, the differential changes in the FITS. In the Cook's distance, how far are you moving away from something. And they all apply, which indicates you've got a lot of instability in the model.
Q. So this is -- you're anticipating my next question. I had one other to ask, I'll go back and ask you, but you run a Cook's distance test?
A. They're all -- all that stuff is in the output that I put on the appendix in my report. It's all
there. I put up -- Dr. Burch did not put any of those diagnostics in her report. All those diagnostics are in my report.
Q. And you ran tests to measure the influence of particular respondents on the survey?
A. They show it. That's what these lines are back here.

MR. WALLACE: What page you're looking?
A. Well, pick one. Pick page 85. You know, I -let me pick something that's -- let's go to page 77. Are you ready?
Q. Uh-huh.
A. Page 77, top part, look at Case No. 460. So remember, Burch dropped 2 out of her test, right, so she ended up with 460 .
Q. Correct. Because those are non citizens.
A. Right. So look across here, it says Cook's distance C and Cook's distance C bar --
Q. Uh-huh.
A. -- do you see those? Look at the numbers on these. And these are not the only ones. These start to indicate to me that with these kinds of distances -- and C means it's specific to. If you take this out, what kind of change do you get -- and the Cook's distance, C bar is an aggregate of it, you're going to start
getting big changes in what the parameters are. And the parameters would be -- let me go to the front where you actually get logistic regression models. Bear with me while I go through page changes here. So where it says here regression coefficients --

MR. WALLACE: Which page?
A. Okay. I'm sorry, page 21.

MR. WALLACE: OKAY.
A. So when you start -- these are the --
basically, this is her model that I replicated. You know, I'd have to look at this in detail. But what I'm talking about is in general, those numbers. And that's what generates the estimates. Is this going to be in category 1, the validated voter or not a validated voter? Those numbers can change dramatically.

And so I -- she didn't provide any of this kind of residual analysis in her report -- let me finish -- and when I ran them, it looked to me like there's a lot of instability in the dataset itself and it probably has to do a lot with the weights. You know, that's just my hypothesis at this point. Such that if you pull certain people out or if something changed smally (sic), you can get a big change on what the model looks like including the parameters, whether or not it's statistically significant, all sorts of issues like
that.
And I didn't see anything in the literature about any of these issues. So when I looked at it myself having had the experience with exactly doing this with every form of regression analysis I run, you start going, my goodness, this -- there's a lot of instability in the dataset itself.
Q. And just looking at page 21 here, what is it here that you were relying on for the statement that if you changed a few of the respondents, you'd get a different result?
A. What I'm saying is, see -- page 21 , see where it says odds ratios? Where it says, independent variables, see where it says intercept, black and other race? Those are the variables she used in her model. Then move over, see where the column that says had reduction coefficient, see where it says B and then in parenthesis i, B1, B2, B3. The intercept value is .25, the black coefficient is minus 0.354, the other rates is minus 1.24. These are the ones that generate whether -this is what generates are you going to be placed in the category of the validated voter or a nonvalidated voter; right? But if you start getting the .25 because you pull out of the real influential places on there, that could change -- I'm just hypothetically making this up
to show you -- that could change to . 3 from . 25 , could change to .4. The minus 5.4 could change -- the point I'm trying to make is, you could get number changes from this that then put something in a different category.

That's what I mean by the dataset looks to me with those kinds of weights -- and when I looked at the residual analysis, that is diagnostics from all the standpoints I know how to look at it from given that you had a multidimensional problem, you've got an issue. Here's another issue. This is called a ROC curve --

MR. WALLACE: Which page?
A. I'm sorry. Page 37. Receiver operating characteristics. Do you follow me where it says rock curves, combined and separate. That diagonal line is if there's no explanation in something as you're going on. What the ROC curve shows you is as you start to get up to certain probabilities of predicting correctly not having a -- what's the term they use, a type 2 error, there's another term they use in the medical profession, but it's a probability -- it's mislabeled. So you're correctly predicting it's going to be head and it turns out to be head. But if you're correctly predicting a head and it turns out to be tails, you've made an error. Do you follow me?

So what you ideally want to see in a ROC

BUELL REALTIME REPORTING, LLC 206.287.9066 | 800.846.6989
curve relative to this diagonal line is a line that's almost vertical going up from zero here as high as it goes and then goes across like this. What that means is, hey, I can get up to a real high probability of being correct with still maintaining a low probability of it going into the wrong category. And what these ROC curves show to me is that her model is not much different than the diagonal, it's not doing that. At every level, she's getting probability of predicting incorrectly, and she has probabilities of correctly
predicting. That to me is not --
Q. Well it's not equal, it's the same. I think in your report you say --
A. If it would be equal, the same, but it is almost the same. You go back to the one point in my report where I said her classification system only gets something like 54, 50 percent.
Q. You said 57 percent.
A. Yeah. That's not very good.
Q. With one variable getting a --
A. Well, her model --
Q. -- heads or tails?
A. -- right -- right there, just her model in
general, 57 percent. I could flip a coin and say every time I'm going to flip it, I'm going to get heads. I'm
right 50 percent of the time. And if you look at people who recommend using logistic regression, if you're down to 50.57 your model does correctly, you look at the ROC curves and everything else, it's suggests to me that the model is not very good. And I think it's not that she's necessarily flawed on trying to run logistic regression -- I don't know the answer to that -- but I think it reflects a lot of problems in the stability of the dataset. Does that help?
Q. You don't think that there's any reason why the weighting that was applied by the CES is not accurate in terms of trueing up this sample to the ACS or CPS?
A. Again, I stress the fact when you get down to categories of people. What's their age? What's their race? What's their educational attained? Whatever else they've collected in that survey, that's what they're trying to match back to, all those characteristics in either the CPS or the ACS. And you start getting to also, okay. You have 462 people. How many are black? 167. How many have an educational attainment of -okay, now you're down to 90. How many have this, you're down to 80. How many have that, you're down to 50, you're down the 40, you're down to 30. You're down to small numbers. And you go, okay, to get it up correctly so we have the right distribution of people relative to
what we see in the ACS or the CPS, we've got to assign a weight. In some cases, they're pretty low, they're not much; but in some cases, in quite a few of them, you've got some tremendous weights when you start looking at them. One person's representing 7 people? And I think one of them that I found when I looked through this earlier had a weight of 14.
Q. But again -- I just want to be clear on this -you're not saying that weighting is inaccurate in terms of doing what it is supposed to do and conforming the characteristics of the sample to the characteristics of the general --
A. I'm not saying that. The tradeoff in doing that is, you get an unstable model when you're -because of those weights that -- and I think -- I can't attest to exactly that's the whole problem with it, but when I looked at the diagnostics that I ran and saw what I saw, I'm telling you there's a problem with the model. And my guess is, it reflects the facts that you've got what I would call influential outliers. And those influential outliers are the people with really large weights.
Q. Well, I mean you say that there are indictions of instability in the model, but you also agreed that the CES, I believe we said, is a reliable source of data
on voting at both the national and state level?
A. Did -- when they designed the CES, did they design it necessarily to run with logistic regression? No. What they designed those samples for is, they want to be representative of the population. Researchers are out looking for datasets to use. So when they go out looking for datasets to use, they may not be expressly designed for the datasets we're using. Can I finish? You look like you're yawning because I'm lecturing, or else --
Q. No, no, no.
A. I couldn't tell.
Q. I was opening my mouth. Go ahead.
A. Thank you. So the datasets initially are not designed for that, they're designed to say it's descriptive, here's what we think is going in on the United States or this state or some place at this point in time. The researchers have got to pull those datasets out to use them. And so again, I go back to the point you've got tradeoffs. Yes, we made it so it represents a population and if you look at it just as it is, we think it did a pretty good job. We can say we're 95 percent certain within plus or minus 5 percentage points. Then you go and start to do for a research question or a model building session, and all of a
sudden you realize, I've got weights in here that are 1 person's equal to 14 or 7 . Well, that may or may not be a problem until I run something I'm trying to do, and then I'm looking at the diagnostics, as I've shown the examples of, and the diagnostics I ran indicate to me they're -- you've got a lot of instability, and I think it comes -- stems from the weights that are on these relative to the sample size. And it's because you're not using a sample that was designed to be -- all the samples are designed to be somewhat representative of the populations, but they're not necessarily designed for people to run models on.
Q. You talk about running models. You would agree that Dr. Burch did not only conduct a logistic regression analysis but also arithmetically reported the percentage of validated voters based on race in Mississippi?
A. I agree.
Q. And her numbers reporting those arithmetically are the same as the numbers that she obtained through the regression analysis?
A. They -- when you look at the -- when you look at, like, the percent voters on the same, look at it that way, how I would characterize that is, you didn't have to go through the regression analysis to aggregate
back up. She had the data to start with in the beginning. She had it. Just run a simple t-test on it. Do you follow me? You have the ability -- it'd be like saying, okay, I've got household level data, income level, all right, and I also have the income levels of everybody in the household, six people. I'm going to build a model now that accurately estimates what their incomes are, and I'm going to add that up to get the household level data. Why would you go through the individual people if you already got the top. And she could have just done a t-test at the beginning, and I believe had she done so, the results would have said, yes, it looks like there's a higher percentage of white voters than there are black voters that actually went out to vote and all that. But the results are statistically not significant. You can't tell the difference on them because the margins of errors or so wide.
Q. And you didn't run that t-test?
A. I did.
Q. You didn't run t-test on top line numbers --
A. Yes, I did.
Q. -- that she obtained.
A. I didn't put it in my report. If you're asking me if I ran one, I ran one at one point in time and said
to myself why did she run a regression analysis to get
back up to this point? Why didn't she just do a t-test?
Q. And you did run a t-est.
A. Yes.
Q. You didn't include it in your?
A. I didn't.
Q. Why not?
A. I just didn't think about it at the time, that
it was important.
Q. Can you provide it?
A. I can, yeah.
Q. Okay. And just while we're on the subject, you
talk about those four respondents that you identified
with those high weights?
A. Well and there's more, I just picked them out just glancing through the set.
Q. And you say they form a potentially influential set of cases in this small sub sample Dr. Burch's used in her analysis?
A. In the entire sample for State of Mississippi, somebody with a weight of 14 or 7 , the residual analysis, that is, how good is the model analysis I performed on her logistics model and looking at the logistics model I ran indicate to me that in however you want to look at it, this dataset is such that with those
high weights, you can really create some instability. It's instable, the models you're getting.
Q. And when you say "unstable" or "instability," what do you mean?
A. I mean by this. Again, I'll -- I have to visualize this. So you've got an X by Y grid. So the X values are down here in this dimension that you're using to predict something. This is standard just two variable regression analysis. If you've got a diagonal line this like and all the dots on your observations fit it, you've perfectly predicted Y from X. If one of those dots, though, is non on line, it's up here, it's going to pull the regression line up. It's influential. Everything is along this line and that's way up here, that's an influential observation such that it may say, okay, now you're R-squared, your coefficient of determination is, say, . 87 let's say .85, whatever it might -- you pull that observation out, and it's a 1. And the coefficients will change dramatically. I can't visualize that because when you use two variables or three, all of a sudden you're, you know, three space -two space or three spaces or four space, so you can't see it.

But what I'm saying is, all these diagnostics in there, Cook's distance, DFBETAs,

DIFFITTs, different FITTs, there's saying there's a lot of observations in here that if you take them out, all of a sudden you're going to get some big changes in both the model parameters and how well the data fit according to the model which indicates to me there's a lot of stability in the models. If she decided or someone else decided the people that were pulled out that were not citizens, if for some reason one other thing -- one other person was pulled out that had a high weight, the model would look completely different.

So that's what I mean about I think the dataset itself for Mississippi looks to me that it's not really the best dataset to use to try and develop models.
Q. And understanding -- well, strike that.

Did you take out these four voters you identified or some other respondents and sort --
A. No. Once --
Q. -- of see what the effect would be?
A. No. Once -- well, I can see the effect, see it already in here. It's telling you what the effects are. In general, it's the summary of what you're going to see. You're going to get dramatic changes in them. And I didn't pull them out and do that. Once I looked at the diagnostics, I could see, yes, this is -- these are
not good signs for building a model.
Q. But you're not able to say what the precise effect would be or if you used different weighting, whether you --
A. Well, you could say what the effects are going to be in terms of the diagnostic measures, they're telling you. That's what they indicate. But if I pull them out, then that would be the next step. So I can go ahead and pull them out, but --
Q. You didn't do that?
A. No, I didn't do that. There's a lot of them that would end up pulling out because of the weights in them to start looking at them. And I could use this as a guide to see which ones and see how much they change, but I didn't do that. But the indications are, I'll stress, that you've -- and people read -- talk to somebody else who knows something about regression analysis, if you look at it, they're going to yes, the potential is there that this model could really change in parameters and/or the FITTS, the model estimates of the data or both. And that's not a good sign for a model.
Q. And again, you're referencing model. When you say "model," what you're talking about is using this data in some type of regression?
wike the two logistic regression analyses.
Q. But again, Dr. Burch conducted other analyses that were -- with the CS data that were not --
A. Well, then --
Q. -- logistic regression analysis?
A. -- they -- whether or not that affects it, I don't know enough about King's ecological inference model, if that's what you're going to go to next. But that could be the case too. I just don't know enough about that model to diagnose it.
Q. And I wasn't talking about that all -- we'll get into it --
A. Okay.
Q. -- I again mean just sort of her arithmetically calculating voter turnout by race, using the survey responses in the weighting without --
A. As opposed to what she did in her first report wherein she included the population under 18 in her numbers.
Q. Yeah. I mean --
A. She's not made that kind of mistake here in that regard other than the fact she put one county into district 1 that shouldn't have been there and another one out of it. But yeah, it looks to me like she pulled the dataset correctly. And it's not her fault there, it
looks to me it's just a condition of the dataset.
Q. When you say Dr. Burch concluded ignoring the warning found at the CES study guide. "We advise caution when analyzing very small subsamples as random measurement error may lead to faulty inferences about analyzing very small subpopulations."
A. Yeah. And I may not have expressed that in the best way, but what I'm getting at is the fact that what I just said, there's -- some of these categories of people of white, male, age 18 who has a less than a high school education X, Y, Z, and you have the bond (phonetic) to it, all of a sudden you're not at whatever the white count was of voters, you're down to a really small number. And then they're trying to match that either or both to the American Community Survey or the Current Population Survey, and suddenly you've got a really small number -- a sub sample that gets a tremendous weight.
Q. And so if you were analyzing that very small subpopulation like a white, you know, person of a particular age, education, you know, geographic location, etcetera, that's where that warning that you reference would come in?
A. Yeah. And then what happens is, in general when you're modeling, you have those kinds of conditions
because weights are set on those small categories, the subcategories, and you start seeing, okay, I can see it. Whatever the categories were for that person, the fact that you've got a weight of 14 or 7 or 9 , says you're dealing now with really small sub samples that are part of your larger sample, and it's going to affect what you're going to do because they've got these weights on them.
Q. But that isn't what this warning from the study guide is talking about; right? They're talking about when you analyze the very small subpopulation, when you break it out of the survey, not the mere fact that that subpopulation is included among the larger population that you're looking at?
A. Well, you know, it's hard to say. These people run models, don't they, they built the study, you just cited one of them in a study you showed me. They're building models. So maybe they understand those issues and maybe the way they worded it was not so great, and what they're talking about is, you need to be careful because of these issues, and that's their way of saying that. I can't speak to them. You'd have to ask them.
Q. So you don't know whether their meaning was the one that you're interpreting?
A. Right. Or both. You know, the way you're
interpreting or both, yeah, I don't know.
Q. And just looking at the page that you're
referencing there when you look at that, this is on page 23 of the study guide.
A. Of their study guide.
Q. Of their study guide --
A. Right.
Q. -- right.
A. Where they say be careful of the
subcategories --
Q. Correct.
A. -- that's what I'm referencing.
Q. And they then say: "Follow the link for more information about this issue," and they cite an article. Did you look at that article?
A. Yeah, I can't remember if I did or not, no.

MR. SAVITZKY: Well, let's mark it. Getting down to the end here.

MR. WALLACE: On that subject, we started before 9:00, we took out a little less than an hour for lunch, and about ten minutes for me to check out. So giving you those breaks, I think we're done by 5:00. If you count it differently, let me know.

MR. SAVITZKY: You tell me.
MS. JONES: One hour and 11 minutes. So

BUELL REALTIME REPORTING, LLC
almost one hour, ten minutes.
THE WITNESS: That's 5:00.

MS. JONES: And that's a rough.
MR. SAVITZKY: Yeah, so probably closer to
5:20-something but --
MR. WALLACE: No. We started before 9:00, but, you know, if you get there and we've got one question left, that's one thing. If you're starting a new subject, we're going home.

MS. JONES: So we -- can we go off the record to talk about time?

MR. SAVITZKY: Let's go off the record for one second.
(Discussion held off the record.)
MR. SAVITZKY: Back on the record. And I'll
mark as Exhibit 26 the article that's linked there in the study guide.
A. Yeah.
Q. And you looked at this article?
A. Let me refresh my memory. I did.
(Witness reviewing exhibit.)
A. And in general, this article, again, goes to, I think, the definition of small sample sizes, subsamples that you were describing. But the fact that these people also built models in the same vein as logistic
models would suggest to me that they might even be saying in there even though it's not stated that precisely that you need to be careful using some of these data because of the weights. I mean, I found it amazing, and I can't say I read every page exactly, but I don't recall seeing a super warning anywhere in this dataset about the fact you may run into high rates, really large weights, and then being careful to use it. Did I miss something?
Q. No. They represented it or they say they trimmed the weights at 7 for the common and 14 for the post, I think?
A. Yeah, that might be it. That's about it. But those are some big weights in a survey, in my opinion, in my experience as with surveys.
Q. But you're not saying that they're inaccurate based on what they're trying to attribute --
A. No.
Q. -- to the population?
A. No, no.
Q. And just looking at the article that we just marked as Exhibit 26, you would agree that what the authors there talking about and what the warning that you reference in your report is talking about is analyzing the behavior of relatively rare individuals in
a population; in other words, if you were looking at black voters of a certain age, etcetera, etcetera, and looking at that and looking at the behavior of that subpopulation, not the mere presence of the subpopulation in the sample?
A. But -- well that gets to my point. If they're warning about looking at people like that that are really a small sample and that's in your dataset and they have a large weight, they could affect what you're doing to build a model. That goes back to the point I'm making. So maybe that's what they meant. They didn't state it precisely, so I can't speak to what they thought they were saying. But after running the analysis and looking at all this, it sure indicates to me that they've got weights in there that are so large and they're so many people with such large weights that you get a lot of instability in the models you're trying to construct from if you're trying to do regression type models.
Q. If you're trying to do regression-type models?
A. Yes.
Q. But if you're not doing the regression-type models, this instability is less of a concern?
A. I don't know. It depends on the context of what you're trying to do with it. It might be a
concern. For example, if you're doing a t-test and if one of the persons was pulled out of the sample, that makes a difference in the test score, it could make a big difference.
Q. Now turning to Dr. Burch analysis of the CES in her rebuttal report which was marked as 18, Exhibit 18, and looking at page 5, she reports the $C S$ team was able to validate that 53 percent of the respondents voted in the 2020 general election.
A. I don't have it in the front of me, but I believe you if that's what she said.

MR. WALLACE: Which page?
MR. SAVITZKY: Page 5, last paragraph.
Q. And you don't dispute that using the common weight weighting, that's accurate?
A. No, I don't.
Q. And you don't dispute that that's fairly close to the 58.7 percent turnout reported by the secretary of state in the official totals?
A. That's correct. I don't dispute that.
Q. And on page 6 of her rebuttal report, Dr. Burch reports that breaking this -- and this is the first sentence on the top of that page: "Breaking the CES data down further by race, 60 percent of white respondents and 46 percent of black respondents voted in

Mississippi in the 2020 election." Again, you don't dispute that using the common weight weighting, that's accurate?
A. That's correct.
Q. And Dr. Burch reports that she conducted a logit regression analysis, she said: "My regression analysis validated turnout by race, and the CES confirms these percentages finding the same large statistically significant gap between black and white Mississippi voters."
A. That's right. Brings into play all the criticism I have of the dataset when using logistic regression.
Q. But you don't dispute that that is the result of the logit regression analysis run on the data?
A. No, I don't despite that.
Q. And you don't dispute that that matches up with what simply arithmetically calculating the validated voting for black and white voters in the --
A. I don't dispute that.
Q. Okay. And looking at paragraph 29 of your surrebuttal report, you say Dr. Burch does not describe the fit of her model to the data and whether or not any of the assumptions underlying logistic regression, it would suggest the regression model was violated?
rect.
Q. And you don't cite any support for the
suggestion that a goodness-of-fit test is required for a
binary login analysis?
A. Well it's my oversight, but I assume that anybody who runs a model understands that it should have a good fit if you're going to use it. So that was my mistake in not citing a whole bunch of references saying that you should use it, because my understanding with every researcher, the idea is, you have a model and you should report what it looks like. I just thought that would be common knowledge, so my error.
Q. Would you agree that model diagnostics can create as many problems as they solve?
A. Well depends on --

MR. WALLACE: I guess I'll object to the
form, but he my answer.
A. I guess it depends on what the problem is. So if you're trying to build a model to argue something and the diagnostics suggest you don't have a good model, that would be a problem, if you follow what I'm saying. And if you're trying to build a model that's exclusively designed to do something and the model says this is not very good at doing that, it's a problem, if it -- if it means that. You look at the diagnostics and it's going
to create other problems, more generally I would see the problem that's being created and it's telling you you should probably not use this model or look for other variables or use some other different approach.
Q. Would you agree that there's no distributional assumption for a binary logistic model?
A. I can't remember what the distributional assumptions are on binary logistics models, if there are ones or not, I just can't recall if it's assuming some sort of distributional function. And there may be different algorithms through different approaches to logistic regression that do assume them and some that don't.
Q. Would you agree --
A. I don't know the answer to that off the top of my head.
Q. Would you agree that in a model where there's no distributional assumption, it would make less sense to use a goodness-of-fit diagnostic?
A. No, I wouldn't agree to that. I mean, any kind of model would -- this is semi lecture mode. So in any model, you've got -- two out -- you're doing one of two things, really. You're trying to predict something or you're trying to have a causal explanation as best you can with the model what the determinants are on
something. And it -- it looks like she's doing both in some of these models. But basically, it's -- the overall focus is on prediction. And if you're going to predict something, that is, you're going to classify people into one group or another group, then you need to be very careful about how well your model fits. It may be less important if you're focus is on you're trying to explain things. It may be that you've got a really low explanatory power in your model but it's sufficient to say I think this variable, whether or not you've completed high school, has a fairly large effect on what your future income's going to be at age 50. That's a different story. But if you're trying to put -classify and correctly put things, you better have a model that fits well; otherwise, you get things like where it said right in here where I said classification system's only . 57, it's not better than just, you know, randomly tossing a coin and saying every time I'm going to say heads and I'm going to be right 50 percent of the time. And that part is definitely in the literature about saying if you are not well over that, you don't have a very good model. And that's consistent with all the diagnostic things I looked at, that the model is not particularly good.

THE REPORTER: I think we lost everybody on

Zoom.
MR. WALLACE: Hold on.
MR. SAVITZKY: Let's go off for a second.
(Discussion held off the record.)
MR. SAVITZKY: Back on the record.
BY MR. SAVITZKY:
Q. And did you run those model diagnostics yourself?
A. Yes.
Q. That's what you were talking about earlier?
A. Yes. The examples I pointed to are all models I ran. I replicated her model first and then said here, if I put these different weights in, here's what you get.
Q. In your surrebuttal report, you say that Dr. Burch's analysis was wrong because she should have used the -- she should not have used the common weight weighting?
A. Yes, that's what I said.
Q. Do you still agree with that?
A. I -- I might revise that. I think it's still better to have used the weights that I ended up using in the suggesting.
Q. And you said in your report -- and again, if you want to revise that and back off that statement, we
don't have to get into it, but --
A. Yeah. And I just said yes, I think she's not as incorrect as I thought she was initially when I read it.

MR. WALLACE: Let's get what paragraph we're talking about so we know what you're revising.
Q. Let's talk about paragraph 37 in your rebuttal report. You say --
A. Yes.
Q. -- "Because Dr. Burch uses the validation variable in her logistic model, she should have used the common post weight weighting because she's reaching across to the postelection wave with a validation of I voted takes place." Right?
A. Correct.
Q. But as we discussed, the validation is done independently of the postelection wave questioning?
A. That's correct.
Q. There are numerous validated voters, as we went through, who did not answer the postelection wave and who are omitted from common post weight; right?
A. Correct.
Q. So Dr. Burch was not reaching across to the postelection wave, she was analyzing a variable validated voting that applies to the entire sample?
A. That's correct.
Q. And because she was looking at the entire set of 462 or 460 minus the non-citizens respondents, common weight which is used for all adults where none of the variables from the postelection wave of questions being studied was the correct weight to use?
A. That is correct.
Q. And that is what I was referring to which should be corrected.

And turning back to Dr. Burch's rebuttal report on page 6, she then discusses another analysis where she looks into overreporting. And we can --
A. That's Exhibit 18 again?
Q. Correct. So Dr. Burch first looks at -- she concludes that 60 percent of white respondents and 46 percent of black respondents voted in the city based on the CES data, and then she also said: "It's worth noting the CES allows us to examine overreporting of voting." Right? So she looks at what is turnout by race, and she also looks at overreporting; right?
A. I believe that's correct. So we're on page 6; right?
Q. Page 6, the paragraph at the bottom under the chart.
A. Yes, yes.
Q. Right? So she's -- having looked at sort of what are the CES numbers show from (inaudible) she then says we can use this data to examine overreporting of voting by black voters and white voters; right?
A. She states that, yes.
Q. And she says the CES -- excuse me. The CES allows us to examine overreporting of voting by comparing self reported voter turnout to validated voter turnout; right?
A. Correct.
Q. Conceptually that makes sense; right?
A. Yes.
Q. So what she's doing, she's looking at respondents who reported voting in the second wave of questions, and she's seeing how many of those folks were actually independently validated as having voted; right?
A. That's, I believe, what she was doing, yes.
Q. And because this time she's looking at a variable from the postelection wave of questions, she uses the common post weight weighting as she notes in Footnote 22; right?
A. Yes.
Q. Okay. And Dr. Burch reports that 74 percent of white Mississippi respondents who said that they voted in the second wave actually did so according to the
independent validation; right?
A. I believe that's correct, yes.
Q. And you don't dispute that?
A. No.
Q. And she says that by contrast, 57 percent of the black Mississippi respondents who said they voted on the second wave were actually validated?
A. That's correct.
Q. You don't dispute her numbers on that?
A. No.
Q. And you replicated them, actually?
A. Yes.
Q. And you agree that using a common post weight weighting, they're accurate?
A. Yes.
Q. Now, at pages 8 and 9 of your report, your surrebuttal report, you say that: "Rather than using common post weight for this analysis comparing reported voting to validated voting, Dr. Burch should have used VV weighted post." Do you also want to revise that assertion?
A. Yeah, I think she still should have used it, but I think you're correct, that's a mistake I made. MR. WALLACE: It's on page what? THE WITNESS: 8 and 9.

MR. WALLACE: Of yours.
THE WITNESS: Correct.
BY MR. SAVITZKY:
Q. Right. And we discussed the VV weights only include people who were independently validated as being registered?
A. Correct.
Q. And that would mean excluding people who were reported -- who reported that they voted on the second wave of survey question but, in fact, weren't registered and didn't vote?
A. Correct.
Q. And if you're trying to detect overreporting, you're going to exclude potentially a lot of overreporting that way?
A. Correct.
Q. And by the way, do you know if there were respondents like that in the sample who reported voting but in fact were not registered and were excluded from the --
A. I believe there were. I would have to go back and look, but I believe there were instances like that.
Q. And we actually -- I mean, can look at them.
A. We can.
Q. Just briefly, we can pull back out what's

Exhibit 25. And just starting with row 29. Tell me when you're ready?
A. I'm ready.
Q. And this is a person who on CC2401, the question whether they voted, they said I definitely voted; right?
A. Yes.
Q. Voter status N/A, no validated vote and the VV weight given the zero weight --
A. Yes.
Q. -- and they are excluded?
A. Yes.
Q. 47 is another one on this page, right, I definitely voted.
A. Yes.
Q. No validated vote, no registration, no weight in the VV weights?
A. That's correct.
Q. And we could go through those. Would you dispute it if I told you there are 45 respondents in the Mississippi sample who said that they voted but whose registration was not independently validated?
A. No, I believe you. I believe that that -MR. WALLACE: Registration or voting was not validated?

MR. SAVITZKY: Well, neither.
A. Neither, yeah.
Q. You wouldn't dispute that it's 45?
A. No.
Q. And there were 15 instances that you found of overreporting by respondents whose registration was validated?
A. I believe that's correct.
Q. And you discuss in your report how with only I think it was six white voters who over -- registered who overreport and only 9 black voters who overreported, that's a example of the small samples?
A. Exactly.
Q. But in fact, the total numbers of respondents who overreported is not 15, it's 60?
A. But even when you have the denominators in there, I think I -- didn't I perform a t-test there?
Q. Well, you performed a t-test on looking at that six versus 9.
A. Right. But there's not -- there's a denominator in there, that that's the key point. That's the 6 versus 9, so the sample is still small, and it's indistinguishable. It's not just the fact that it's 6 to 9 -- what's the paragraph number? And I can be more accurate on that.
Q. I believe it's paragraph 25.
A. Yes. So the test is not 6 versus 9, it's 6 out of 140 and 9 over 61. That's the test. That's what gives you the percent, that's the mean. And that -when you ran that test with those numbers, 6 over 140 and 9 over 67 and run a t-test on it, are the means the same, yields the result, you know, with a alpha level of . 05 that you cannot distinguish statistically between the two groups.
Q. But as we've established, the numerator and the denominator are all based on the VV weight -- or rather, the enumerator is based on the VV weight, and the denominator is too.
A. Yeah, I think it's consistent in this. I'd have to look at the details of it, but I ran it consistently, I believe. And so when you look at it that way, it just says they're =not statistically significant.
Q. Right. And my point is that you ran that t-test using the weighting that excluded most of the voters who overreported?
A. I'd have to go back and look at it to -- but you may be right.
Q. Well, we just discussed that you used the VV weight?

Inat correct
Q. And that we just discussed the VV weight would exclude 45 of the 60 respondents who overreported voting?
A. Yes.
Q. So you ran your t-test on data that excluded most of the people who overreported?
A. And to answer the question -- to answer the question you're asking, I -- we could run it again with the different denominator and see what happens. It may be a different result or the same.
Q. Well, let's answer the question I did ask. You ran your t-test on data that excluded most of the people who overreported voting; right?
A. That could be the case, yes.
Q. I think a yes or no would be proper --
A. Okay. Yes.
Q. -- to be objective. Yes; right?
A. I'll say yes.
Q. Thank you. And you didn't run a t-test on the data using the common weight which would have included most of the overreporting in the sample; right?
A. That's correct.
Q. So you don't know whether the level of overreporting that Dr. Burch reports using the correct
weighting is statistically significant?
A. I don't know.
Q. Almost done with the CES, couple other points.
First, you say in paragraph 28 of your
surrebuttal report: "In her use of CES data because it
has validated voters, Dr. Burch analysis is again tied
to the CPS." Right?
A. Yes.
Q. Dr. Burch didn't use the VV weights in her
analysis in the --
A. Then that's incorrect. So it's just tied to
the ACS.
Q. So this statement that Dr. Burch's analysis is
tied to the CPS is not correct?
A. That's correct.
Q. And turning to pages 7 and 9 of Dr. Burch's
rebuttal report. Dr. Burch uses CES data to analyze
eduction in voting; right?
A. Where are we?
Q. Starting at page 7 of Dr. Burch's rebuttal
report, which I believe is Exhibit 18.
A. Okay.
Q. Are you there?
A. I am.
Q. Okay. And you don't discuss this analysis of
educational -- education voting in your surrebuttal report, do you?
A. But you -- one of her models in the logistic modeling that she did is with this dataset, correct, her model 2?
Q. That's correct.
A. So that I did analyze.
Q. You don't dispute her analysis on page 7, Figure 2 of page 8 that there's a small, not statistically significant gap between black and white validated voter turnout at each educational level?
A. You're talking about what she's got in Figure 2 and Figure 3. No, I'm not disputing that. The only qualification I make to it, again, is even with doing some descriptive statistics, she may run into issues with the weighting if you looked at it. But no, I don't dispute it.
Q. But you don't dispute that her analysis indicates that education is the significant explanatory variable in explaining the difference in turnout between black and white voters?
A. I think she's making a leap of faith in that. Causal analysis is really hard to determine through correlations. They're correlated, but to say it's specifically the causal effect is difficult. And that's
one of the things you run into with regression analysis of any type or even descriptive analysis.
Q. I'm looking at page 16 of her report. I mean, she reports that the P value on education is significant at the . 001 level for voting?
A. But even that -- all that does it say the model fits well, doesn't say that that's a consolation.
Q. Understanding, I mean, all we can do in statistics is what we can do here which is to show that there is an extremely good fit between education and voting in Mississippi. You would agree with that?
A. That I agree, that it's a -- it's a parameter that helps fit the data -- the model to the data. So in the statistical sense, when you look at it, if you look at the partial R-squareds and look at the standardized coefficients, which she did not report, then you can see what the effects were. But she failed to report the standardized coefficients.
Q. But you don't dispute that result that she arrives at?
A. Not in that sense, no, I don't dispute it.
Q. And you don't dispute the ACS data which is reflected in the chart here on page 9, educational attainment by race in Mississippi showing a large gap in attainment of bachelor's degree or higher?
A. That's correct. I don't dispute that.
Q. And you don't dispute Dr, Burch's conclusion that: "While black and white people with similar educational backgrounds vote similarly, people with lower educational attainment vote at lower rates overall than people with higher educational attainment"?
A. I don't dispute that.
Q. And you don't dispute her conclusion that: "Black Mississippians are more likely to have lower educational attainment and thus lower voter turnout than white Mississippians"?
A. I don't dispute that.
Q. And --

MR. WALLACE: Objection to the form of
"thus," but otherwise he may answer.
Q. And we can go now to the ecological inference analysis in Dr. Burch's report. I think it starts on page 9 , so we can just stay where we are for the moment. Looking at page 9 of Dr. Burch's rebuttal report, she explains that she conducted this ecological inference analysis using of the voter file -- the Mississippi voter file as a dataset to estimate voter turnout by race; right?
A. That's what she says, yes.
Q. You don't disagree with that?

No
Q. So this is not the CES, this is the actual voter history of voters in Mississippi?
A. Yes.
Q. And she aggregated turnout data from the voter file up to the block group level and then married the block group level turnout data with block group level racial demographic data on non Hispanic white population, nonwhite population, and then ran the EI analysis; right?
A. I think her definition of nonwhite included Hispanics who were white among others and Indians. So as she puts in her report, it's nonwhite, so it's not a comparison between white and black. Is that correct?
Q. We can get into it, but yes, she runs the EI between non Hispanic white and other groups --
A. Correct.
Q. -- as a binary; right? And she does that by aggregating up the turnout data and the race data, marrying them together into a dataset that can be used for EI; right?
A. That's correct. And I -- again, I think under the other or nonwhite category, however she described it, she has, for example, people who might -- who say my ethnicity is Hispanic but I'm white racially, and then
she includes every other race, whether they're Choctaw or Chinese or Vietnamese, etcetera, in that group, yes.
Q. And by the way, just looking at page 11, Footnote 31 -- do you see Footnote 31 there?
A. I do.
Q. -- Dr. Burch says: "Performing the analysis with non Hispanic, black alone or a combination and nonblack as reference categories also produces estimates of lower black turnout relevant to nonblack residents both statewide and in the central district." Do you see that?
A. Yes, but it wasn't in her original report, was it?
Q. I mean, it's in the surrebuttal report along with the rest of her EI analysis; right?
A. But that's in the surrebuttal report, that's not the report that I was commenting on. Did she have it in her original report that I comment on, that's what question I'm asking.
Q. She had it in the rebuttal report that you commented on in your surrebuttal report --
A. Yeah.
Q. -- right?
A. Yeah.
Q. Okay. All right. And by the -- well, we'll
get back to it in one second. But going back to the EI analysis. Looking at pages 10 to 11 of Dr. Burch's rebuttal report, she finds a significant racial turnout gap both statewide and in supreme court district 1. Do you agree with that?
A. And that's where?
Q. Page 10, last paragraph: "The estimates obtained using the ecological inference show that there's a statistically significant racial gap in turnout in Mississippi." Right?
A. And where's the results of the statistical test?
Q. I don't -- I'm asking you if that's what she found.
A. Well that's what she says, but where's the result of the statistical test, is my question.
Q. Did you run a statistical test to confirm whether those results are significant?
A. I didn't.
Q. Okay. You had no basis to dispute --
A. Well I can't answer whether or not -- what test she did and how she ran it, so I don't -- I'm not in a position to give an opinion on it right now.
Q. You don't give an opinion on it?
A. That's correct. I don't know whether or not
it's -- I can't agree with it, but I don't have an opinion on it because I didn't run an independent statistical test, and she doesn't show one here, she just says she did.
Q. She reports that her statewide EI analysis shows that the white turnout was 58 percent, nonwhite turnout was 42 percent, 16 point gap?
A. She says that.
Q. And in the central district turnout -- black turnout is 44 percent white turnout 62 percent?
A. She said that.
Q. And by the way, when she runs well -- strike that.

And Dr. Burch says in the next sentence at the top of the page 11: "The statewide and central district estimates for each racial group produced using EI and the CES are realistic given what we know about the actual voter participation statewide in the central district, in other words, they match up with the benchmark reported by the secretary of state." Do you dispute that?
A. Well, I didn't run an EI analysis myself to look at what she did, so I'm not in a position to dispute or not dispute it.
Q. You don't claim that Dr. Burch didn't
accurately report the results of her analysis?
A. No, I'm not claiming that.
Q. With respect to the EI analysis for district 1, you say -- turning to paragraph 43 of your surrebuttal
report. You say: "Dr. Burch included Adams County rather than Bolivar County in district 1"?
A. That's correct.
Q. Now assuming that's the case, do you have any reason to think that the inclusion of Adams versus Bolivar would have a material effect on the estimation of turnout by race on a districtwide basis?
A. I don't know the answer to that until I've looked at what the results would be.
Q. You didn't look at the results?
A. I didn't.
Q. Do you know the populations of those two counties are nearly identical 28,000 versus $30,000 ?$
A. No, I didn't.
Q. Did you know they're both black majority counties?
A. No, I didn't.
Q. Would it stand to reason that in a district of 750,000 by voting age population including one similarly-sized majority black county versus another is not going to make a difference in terms of measuring the
districtwide turnout gap using EI?
A. No, I'm not going to agree to that because I don't know what she did in the EI, and I don't know what other factors may have come into play.
Q. But you didn't run an analysis yourself to check?
A. Yes, I didn't.
Q. Have you received any further information about whether or not Dr. Burch conducted -- looked at it with Bolivar instead of Adams?
A. I think she did and sent it on to the attorneys, but Mike and I haven't looked at it.
Q. Do you know what the overall result that she obtained was?
A. No, I don't.
Q. If I told you the result was so similar that we didn't have to change anything in the report, would you dispute that?
A. No, I wouldn't dispute it other than the fact that someone had the wrong county in there.
Q. Right. But you wouldn't dispute that the results don't actually change if I represented that to you?
A. No, I wouldn't.
Q. You also say that because Dr. Burch coded
racial demographic information as white and nonwhite, more specifically not Hispanic white versus non -- non Hispanic white, she is expressing an opinion about white voters relative to nonwhite voters, not an opinion about white voters relative to black voters?
A. Correct.
Q. All right. But you would agree that in Mississippi, the vast majority of nonwhite voters are black?
A. I would.
Q. You would agree that black and white Mississippians together form 96.5 percent of the population of Mississippi?
A. I'd have to look at it, but that sounds about right to me.
Q. Do you contend that the existence of a small number of nonwhite, nonblack Mississippians means that it's not possible to draw inferences about black Mississippians' voting behavior based on the actions of nonwhite Mississippians?
A. The issue I have with it is more why not stay with the black population? Why change the racial definitions for this part of the analysis? That's the problem I have with it.
Q. But given that 4 percent of the state's CVAP is
nonblack or nonwhite or thereabouts, doesn't matter if the turnout in that group is 0 percent or 100 percent?
A. It's a question I can't answer without looking at that data. It might be just as with the cases of some of these observations that are in the CES file where they have large weights, there could be effects that are like that. So offhand, I'm not able to answer that question without looking at the data.
Q. I mean, even if the turnout among that small number of nonblack potential voters who are included in the nonwhite category for purposes of the EI analysis was 0 percent, the implied black turnout rate would go up by 4 percent?
A. Again, it's a question that -- you can ask it as many different ways as you can. My point goes back to: Why didn't she look at black voters in the first place? And to answer the question that you're trying to ask me, it could be that among those 4 percent are cases that are -- that are going to be significant as found in the CES file. So I don't know, so I can't answer the question.
Q. And again, this isn't a survey, this is based on the voter file itself, that's the dataset here.
A. Yeah, and I'm not saying it's from a survey, I'm saying again there's, you know, why switch the
definition? And I can't answer the question without knowing more of it or if I started looking deeper in the analysis, which I haven't done.
Q. And as we discussed, looking again at Footnote 31 of Dr. Burch's report, she actually did look at black versus nonblack turnout, and she found looking again at that footnote that black turnout was estimated to be

42 percent while nonblack turnout was estimated to be 57 percent. Any reason to dispute that?
A. Yeah, and then there's -- again, why is it black versus nonblack, is the question. Why isn't it black versus white?
Q. Right. So the question is: Do you dispute that that's the result that she obtained?
A. I believe that -- I believe whatever the results she's pointing at, I think she's doing as accurately as she can. The issue is white versus black and suddenly we're in white and nonwhite, and then we're in black and nonblack.
Q. Well, having estimated black turnout at 42 percent and having estimated white turnout at 58 percent, can you not look at both the EI analysis and then say she did look at white turnout and black turnout?
A. My question is: Why didn't she do it? You don't have to ask me that question, ask her why she didn't stick with the same categories. I don't know the answer to that.
Q. Right. And --
A. All I can say is that I'm looking at something that says you're looking at these two categories and now suddenly the categories are switched. So it's difficult for me to answer those questions.
Q. Right. My question --
A. Regardless of what the numbers are or anything else, it's why -- why change?
Q. Well, I mean, I understand. But my question is: It seems like she did do that, that looking at the data, she ran the analysis both white versus nonwhite and black Versus nonblack, and so she does provide that information that you're looking for in her report.
A. But it's not direct, it's not white versus black. And that's a problem because that's what most of her analysis and that's what it seems everything in this is based on.
Q. Well, it's the same --
A. No matter how many times you ask me this, that's going to be my same answer. I can tell you right now.
Q. Well, why can you not look --
A. Because it's -- the problem is, why did someone change the categories they're doing an analysis from white to black to now it's nonblack and -- or nonwhite?

To me, I don't understand the reasons for the change. And you have to wonder why it was done. And could the categories in the definitions by race in the voter file be different than they are elsewhere? Is that the reason? I don't know. And it could be that -- you know, it could be that there's lots of other issues there, and I'm going on the voter file about race and ethnic definitions that are not brought to the surface here. I don't know the answer to that.
Q. Well again, the dataset for the EI analysis we also discussed, the racial data comes from the census, right, block group level census data on race; right?
A. Yes.
Q. That's the source of the data?
A. Yes.
Q. Okay. So let's --
A. But the source of the data is -- it's the

PL94171 data file.
Q. Yes.
A. Yes. Okay.
Q. So understanding that we're using census data,
that it's the same dataset --
A. I understand. But in looking at that, another issue that comes into play that she doesn't mention is, what's the effected differential privacy when you get down to that smaller end, the differential privacy protections that the census bureau has placed on small area data, which I believe are even in the public 94 -the PL94171 data.
Q. Do you have any reason to think that differential privacy has an effect on the statewide or central districtwide EI analysis of voter turnout by race?
A. When you're aggregating up to smaller levels, up to some point they might. The census bureau will claim that's when you get to the state level or even lower levels that the differences wash out, but I'm not inclined to believe that that's necessarily the case, and they certainly appear at smaller levels of geography.
Q. This isn't something you mention in your report?
A. No.
Q. Is it something you're just thinking about right now?
A. It's -- it is something that I think can have
an effect on it when you start using different datasets like that and go down to small areas, yes.
Q. And setting aside the punitive effect of differential privacy, you would agree that using a single dataset based on Mississippi voter data from the secretary of state and race data from the U.S. census, Dr. Burch measured using EI white turnout and black turnout, and we can compare them?
A. I don't agree with that statement at all, because I don't know what the definitions are in the Mississippi voter dataset, how they might vary, what kind of matches you get between the two. So the -again, I can go back and answer you why switch from white versus black to white, nonwhite and then black, nonblack. I just don't understand the basis for that.
Q. What do you mean by definition in the Mississippi voter data?
A. Whatever -- how are people defined? Is it self reporting? When -- what are the definitions of race that are in the Mississippi voter data file?
Q. The voter --
A. It's not in there, is it?
Q. I will tell you the voter data --
A. Yeah.
Q. -- In Mississippi does not --
Q. Which is why --

THE REPORTER: Gentleman, one at a time,
please.
A. That's the point I'm bringing up. So that's not there. So what you're relying on -- totally on the census bureau data for race.
Q. Right.
A. And again, if you've got the sentence data for race, you've got black, you've got white, you've got all the other race categories, why not use them?
Q. We talked about how you used an EI type analysis in the early nineties; right?
A. That's current.
Q. You haven't run an EI analysis since then?
A. No.
Q. Do you have much familiarity with the type of EI analysis that Dr. Burch ran in this case?
A. I can see Beijing type analysis. I looked through what's on the websites and some of the documentation for the -- both the hard version, the easy version of Brinnon (phonetic), and that's what I know. And for example, one of the points I made in my report about it, she didn't report any priors on what the distributions are and assumptions. And that's usually
common in a Beijing analysis.
Q. And --
A. But that still doesn't get to my question.

Why, if you've got the data for white and black and why switch the racial categories? I don't understand why she would do that.
Q. Are there reasons why if you're doing an analysis like this, you would not want to include a third group as a very small population?
A. I don't know the answer to that. I just -- my question still is: Why not look at black versus white if you've got the data for it?
Q. How would you go about looking at black versus white?
A. Well, she had it. She's using the ACS; correct? They use those same racial categories, correct, in her EI analysis. That's in there; correct? Where did she get the data for race if it's not from the ACS ?
Q. From the U.S. census, from the PL --
A. The PL9R, yeah. My mistake. So from that dataset, they're in there too, white, black, any part black, all those issues. So why switch?
Q. So you're suggesting that the EI analysis could also have been run with many different racial categories
estimating the voter turnout not only of black voters and white voters but also of American Indian voters and, you know, Hispanic voters, understanding --
A. That's not what I'm suggesting. What I'm suggesting is -- and I'm asking the question -- why didn't she run that analysis? Why did she switch the categories from what she did elsewhere in her report where it's white and black? That's what's I don't understand.
Q. Right. And I guess I'm asking: How would you run an EI analysis on more than two variables --
A. It's not running more than two.
Q. -- reference categories?
A. How did she run it -- it's the same thing. Here's white, nonwhite. She ran that; correct?
Q. Correct.
A. Why didn't she run white, black?
Q. Right. And I'm asking the questions, I'm not going to answer them. But you don't -- you don't know -- I think the answer is clearly you don't, but you don't know of reasons why you would want to consolidate voters into two reference groups in order to, for example, not have part of your analysis be on very small numbers of members of a particular racial group that's not white and not black because the effects would be
less accurate?
A. I didn't say she needed to run it on, say, the Cherokee population. I'm saying why didn't she just run white versus black? She didn't do that. She ran white versus, you know, non Hispanic white versus everybody else.
Q. Do you know whether it's possible to do the thing you're suggesting using EI analysis?
A. Why didn't she do it? That's a question I'm asking. I can't answer that question. I don't know what's possible in the EI analysis. My question is: Why didn't she run white versus black? Because everything in the reports up to this point are -- uses those two categories. It's not nonwhite, did you report to me something about, well, here's the nonwhite VAP in a certain county, and they outnumber the white VAP. No. It was all white versus black. So why is it suddenly changing in the EI analysis to a new category of race? That's my question.
Q. And Dr. Burch found that white turnout was 58 percent statewide and 62 percent in district 1 ?
A. Using the definition of white that she used in the EI analysis?
Q. Non Hispanic white as defined by the census?
A. Yes.
Q. And she found that non Hispanic black alone or in combination turnout was 42 percent statewide and 43 percent in district $1 ?$
A. That's on -- where is that found again?
Q. Footnote 31.
A. That's what she says. But again, why didn't she just put that in her report? And again, down here, it says again it's -- it's black turnout is estimated this while nonblack turnout was this. Why didn't she have black versus white even in this footnote? That's what I don't understand. She has white, nonwhite, and then down here she has black, nonblack. And why the switch? To me, that's mystifying.
Q. But you don't run an EI analysis, so you wouldn't be able to say whether there's an understandable reason to construct your analysis that way?
A. Well, no matter what analysis, I would be running ones I was familiar with or not. The question I would ask is: Why did someone switch these categories in this way? To me, that's -- it's not a good sign. And whether or not it's -- it's okay that the numbers are really small and everything turned out to be the same; if that's the case, why not run it that way instead of do this?
Q. It's not a good sign because you don't understand why she did it?
A. Yes. She doesn't give any explanation. So reading the reports that she does, white, black, white, black, white, black. So when we get to this point, it's white, nonwhite, and even down here in the footnote it's black, nonblack.
Q. Because this is a different analysis, the EI analysis?
A. I understand. But the whole function of the report wasn't to suggest that it's black voters that are turning out at a lower rate than white voters. Isn't that the intent of the entire exercise here? I'm asking you. So all of a sudden, we have black and nonblack and then white and nonwhite.
Q. So it could be that she did it this way to ensure the accuracy of her results?
A. But if that's the case, why would that be more accurate than saying white and black and black and white? I don't know the answer. I can't answer what she did in the analysis. All I can do is read what she said. And what she says is not consistent with things she said elsewhere up to this point in the report she's done.
Q. She constructed a different analysis
differently?
A. That's what it appears to be. That's my question, is, you know, why? Doesn't seem to be the topic.
Q. So just zooming out and talking about your surrebuttal report, how much time did you spend putting that surrebuttal report together?
A. It's quite a bit of time, especially starting to look into the EI analysis which I was not familiar with. So I spent a fair amount of time doing that thinking I don't want to have to learn R to do this, you know, it looks painful. I mean, I started down the path to do it, but then when I started reading the report again and said well, I see Dr. Burch now switched categories, and I -- that to me is a problem right there, I think I'll stop at that point.
Q. And how much time do you think it was total?
A. I'd have to look. It's a lot of hours.
Q. More than 40?
A. I don't know. Maybe. Again I'd have to look.

Once I send the hours in, I don't keep track of it.
Q. You sent them in?
A. I have them -- I've got them posted. If you want to look at them, I've got an Excel spreadsheet.
Q. You kept records --
A. Yes.
Q. -- contemporaneous of your hours?
A. Oh, yes. Sure.
Q. Did you do any analyses that you left out of your surrebuttal report? You mentioned a t-test.
A. No. Other than that I did subsequently, as I said, I don't think so.
Q. You did the t-test subsequent to --
A. Well, when I was doing the original analysis, I just didn't put it in the report.
Q. Okay. And you can provide that to us?
A. I can.
Q. And --

MR. WALLACE: We will take that under consideration, and we'll let you know. You've also asked for a piece paper from the other expert and we're in the process, we'll get back to you soon.

MR. SAVITZKY: Thank you.
BY MR. SAVITZKY:
Q. And any -- other than that t-test, any other analysis that you sort of ran but didn't include in the report?
A. No.
Q. How about for your initial report?

MR. WALLACE: Same objection as to being out
of time. He may answer if he remembers.
A. I can't recall running different analysis that
are not in the report.

MR. SAVITZKY: Just one second. Can we take
three minutes, just go off. Thank you.
MR. WALLACE: Thank you.
(Short recess from 4:55 to 5:08 p.m.)
MR. SAVITZKY: Back on the record.
That concludes my questioning for
Dr. Swanson at this point, so --
MR. WALLACE: I have one statement I need to
make in response to your question about correcting
things at the front end, and if you want me to ask him
to swear to it, I will. He has not testified in court
in the voting rights case. That was his testimony. It
was true, but in an abundance of caution, he has given a
deposition in the voting rights case in Louisiana. And
I wanted to make sure you knew that -- I suspect you
already do, but I wanted to clarify it on the record.
MR. SAVITZKY: And just -- that's in the
Ardoin case?
MR. WALLACE: It is Ardoin, isn't it?
THE WITNESS: It is.
MR. SAVITZKY: Congressional redistricting
case?

BUELL REALTIME REPORTING, LLC 206.287.9066 | 800.846.6989

Creem/Midrean

STATE OF WASHINGTON
COUNTY OF WHATCOM

I, Evelyn M. Adrean, RPR, a Certified Shorthand Reporter in and for the State of Washington, do hereby certify that the foregoing transcript of the deposition of DAVID ARTHUR SWANSON, Ph.D., having been duly sworn on OCTOBER 5, 2023, is true and accurate to the best of my knowledge, skill, and ability. Reading and signing was requested pursuant to FRCP Rule $30(e)$.

IN WITNESS WHEREOF, I have hereunto set my hand and seal this 20th day of October 2023.

EVELYN M. ADREAN, RPR, CCR-WA

Expert Report of David A Swanson, Ph.D.

Expert in Demography for the Defendants.

White et al. v. Mississippi State Board of Election Commissioners et al.

5 January 2023

TABLE OF CONTENTS

EXPERT QUALIFICATIONS 5
I. EXECUTIVE SUMMARY 9
II. ASSIGNMENT 13
III. CHARACTERISTICS OF MISSISSIPPI SUPREME COURT DISTRICTS 14
A. Decennial Census 14
B. Mississippi Population Characteristics 14
C. Mississippi Supreme Court Geography 15
D. Mississippi Supreme Court Census Population 16
Table III.D. 12020 Census Voting Age Population for Existing SCOMS Districts 17
Table III.D. 22020 Census Voting Age Population for Cooper Illustrative Plan 1 Districts 19
Table III.D. 32020 Census Voting Age Population for Cooper Illustrative Plan 2 Districts 19
Table III.D. 42020 Census Voting Age Population for Cooper Least Change Plan 1 Districts 20
Table III.D. 52020 Census Voting Age Population for Cooper Least Change Plan 2 Districts 20
E. ACS Citizen Voting Age Population Characteristics of Mississippi 21
Exhibit III.E. 1 American Community Survey DOJ VRA Race and Ethnicity Reporting Classifications 22
Table III.E. 1 Mississippi Prisoner Analysis by Race and Ethnicity, March 2022 by Facility 25
Table III.E. 22020 Census Voting Age Population for Existing SCOMS Districts 26
Table III.E. 32020 Census Voting Age Population for Cooper Illustrative Plan 1 Districts 26
Table III.E. 42020 Census Voting Age Population for Cooper Illustrative Plan 2 Districts 27
Table III.E. 52020 Census Voting Age Population for Cooper Least Change Plan 1 Districts 27
Table III.E. 62020 Census Voting Age Population for Cooper Least Change Plan 2 Districts 28
Table III.E. 7 CVAP analysis over time: District 1 \% APB CVAP under Current Plan compared to Cooper's Plans for 2014-2018, 2015-2019 and 2016-2020 28
F. Performance of Mississippi Districts Using Traditional Redistricting Principles 29
Table III.F. 1 Core Retention of Illustrative Plan 1 33
Table III.F. 2 Core Retention of Illustrative Plan 2 34
Table III.F. 3 Core Retention of Least Change Plan 1. 35
Table III.F. 4 Core Retention of Least Change Plan 2. 36
Table III.F. 5 Core Retention Analysis of SCOMS by Plaintiff Plan. 37
Table III.F.6a Compactness Scores of Existing SCOMS Districts 40
Table III.F.6b Compactness Rankings of Existing SCOMS Districts 40
Table III.F.7a Compactness Scores of Cooper Illustrative 1 Districts 40
Table III.F.7b Compactness Ranking of Cooper Illustrative 1 Districts 41
Table III.F.8a Compactness Scores of Cooper Illustrative 2 Districts 41
Table III.F.8b Compactness Ranking of Cooper Illustrative Plan 2 Districts 41
Table III.F.9a Compactness Scores of Cooper Least Change 1 Districts 42
Table III.F.9b Compactness Ranking of Cooper Least Change 1 Districts 42
Table III.F.10a Compactness Scores of Cooper Least Change 2 Districts 42
Table III.F.10b Compactness Ranking of Cooper Least Change 2 Districts 42
G. Voting Age Population Polling Place Spatial Analysis 43
Table III.G. 1 Distance of Population to Polling Places by Race Definition. 45
H. Diversity Evaluation of the Supreme Court Districts 46
Exhibit III.H. 1 Health and Hunger Needs Atlas Needs and Performance Variables 48
Exhibit III.H. 2 Cluster Map Based on Mississippi Needs and Performance Indicators 50
Exhibit III.H.3.a Cluster Map for Existing SCOMS Plan. 51
Exhibit III.H.3.b Cluster Analysis Table: Existing SCOMS Plan 52
Exhibit III.H.3.c Cluster Analysis Chart: Existing SCOMS Plan 52
Exhibit III.H.4.a Cluster Map for Cooper Illustrative Plan 1 54
Exhibit III.H.4.b Cluster Analysis Table: Cooper Illustrative Plan 1 55
Exhibit III.H.4.c Cluster Analysis Chart: Cooper Illustrative Plan 1 55
Exhibit III.H.5.a Cluster Map for Cooper Illustrative Plan 2 57
Exhibit III.H.5.b Cluster Analysis Table: Cooper Illustrative Plan 2 58
Exhibit III.H.5.c Cluster Analysis Chart: Cooper Illustrative Plan 2 58
Exhibit III.H.6.a Cluster Map for Cooper Least Change Plan 1 60
Exhibit III.H.6.b Cluster Analysis Table: Cooper Least Change Plan 1 61
Exhibit III.H.6.c Cluster Analysis Chart: Cooper Least Change Plan 1 61
Figure III.H.7.a Cluster Map for Cooper Least Change Plan 2 63
Exhibit III.H.7.b Cluster Analysis Table: Cooper Least Change Plan 2 65
Exhibit III.H.7.c Cluster Analysis Chart: Cooper Least Change Plan 2 65
IV. MISSISSIPPI VOTER REGISTRATION AND TURNOUT 67
A. Voter Registration and Turnout by Race and Ethnicity in Mississippi. 67
Table IV.A. 12020 Mississippi Voter Registration by Race and Ethnicity 68
Table IV.A. 22020 Mississippi Voting by Race and Ethnicity 70
Exhibit IV.A. 1 Mississippi Voter Registration by Race and Ethnicity History 72
Exhibit IV.A. 2 Mississippi Voter Turnout by Race and Ethnicity History 73
Exhibit IV.A. 3 Racial Differences in Voter Turnout and by Education Level 74
Exhibit IV.A. 4 Racial Differences in Voter Turnout and by Education Level 75
Exhibit IV.A. 5 Racial Differences in Voter Turnout and by Education Level, Based to Citizens of Voting Age in 2020 78
Table IV.A. 32020 MS Voter Estimates Citizens, Age 18+ by Race and Ethnicity Census Bureau Definition. 79
Table IV.A. 42020 MS Voter Estimates Citizens, All Ages by Race and Ethnicity: Dr. Burch Definition Replication Attempt 81
B. Voter Registration by Race 83
CONCLUSIONS 84
REFERENCES. 87
APPENDICES 91

I, David A. Swanson, affirm the conclusions I express in this report are provided to a reasonable degree of professional certainty.

EXPERT QUALIFICATIONS

1. I am an expert in demography with more than 50 years of experience. I have been retained on behalf of the State Board of Election Commissioners, Tate Reeves, in his official capacity as Governor of Mississippi, Lynn Fitch, in her official capacity as Attorney General of Mississippi, and Michael Watson, in his official capacity as Secretary of State of Mississippi, (hereinafter collectively "the Defendants") as an expert to provide analysis related to State Supreme Court redistricting litigation in the matter of DYAMONE WHITE; DERRICK SIMMONS; TY PINKINS; CONSTANCE OLIVIA SLAUGHTER HARVEY-BURWELL, v. STATE BOARD OF ELECTION COMMISSIONERS; TATE REEVES in his official capacity as Governor of Mississippi; LYNN FITCH in her official capacity as Attorney General of Mississippi; MICHAEL WATSON in his official capacity as Secretary of State of Mississippi.
2. I graduated with a Bachelor of Science in Sociology (with a minor in mathematics) from Western Washington University in 1972. I earned a graduate diploma in social sciences from the University of Stockholm in 1974, an M.A. in Sociology/Population Studies from the University of Hawai'i Mãnoa in 1976 and a Ph.D. in Sociology/Population Studies from the University of Hawai'i Mãnoa in 1985.
3. I have served in a number of professional association roles, including: general editor for Springer's Applied Demography series; member of the mortality expert panel of the Society of Actuaries Research Institute; Secretary-Treasurer (1995-7 and 2003-7) of the Southern Demographic association; and editor of Population Research and Policy Review (2004-7). More recently, I have been on the program committee for the 2022 annual meeting of the Population Association of America and also the program committees for the 2019 Conference on Population and Public Policy and both the 2020 and 2017 annual meetings of the Population Association of America. I have produced 115 refereed sole- and co-authored journal articles, and nine books. I also have edited or co-edited four additional books, with another on the COVID-19 pandemic forthcoming. Google Scholar shows more than 6,000 citations to my work (https://scholar.google.com/citations?user=t7P6qoYAAAAJ\&hl=en\&oi=ao).
4. My first demographic consulting job was in the spring and summer of 1972 with KVOS TV in Bellingham, Washington. While a graduate student at the Mãnoa campus of the University of Hawai'i, I was employed as a staff researcher with the East-West Population Institute, a unit of the Congressionally funded East-West Center, which adjoins the Mãnoa campus. In late 1976, I accepted a position with the Population,

Economic, and Enrollment Studies Division of the Washington State Office of Financial Management in Olympia, Washington (The Governor's Budget Office), and in 1981, I became the first State Demographer of Alaska. This was followed by private sector, government, and academic positions, to include serving as the State Demographer of Arkansas, Senior Scientist at Science Applications International Corporation, Dean at the Helsinki School of Economics and Business Administration (now part of Aalto University), and Professor \& Chair of the Sociology/Anthropology Department at the University of Mississippi. I retired as Emeritus Professor of Sociology at the University of California Riverside in 2018 and was recognized as a "Dickson Professor Emeritus" in 2020-21. I have received a number of awards for my work, including two Fulbrights, and the 2022 "Terrie Award" for presenting the best paper (co-authored with two colleagues) on state and local demography at the annual meeting of the Southern Demographic Association (an award I also won in 1999 and 2016). I also have testified before Congress and State Legislatures and served on the U.S. Census Bureau's Scientific Advisory Committee, 2004-10, chairing it for two years. In November of 2022, I was nominated as one of the candidates to stand for election as the President of the Southern Demographic Association. I am currently a Research Associate (. 25 FTE) with the Population Research Center, Portland State University.
5. Not only have I lived and worked in Mississippi, but my 115 refereed journal articles include studies dealing with demography, race, socio-economic status, and mortality in Mississippi (see, e.g., Swanson, 2008; Swanson and Cossman, 2020; Swanson and McGehee, 2009; Swanson and Sanford, 2012; Swanson and Verdugo, 2019). I also gave a recent paper describing the effect on the 2020 census of Mississippi of the Census Bureau's new Disclosure Avoidance System, "Differential Privacy" (Swanson and Cossman, 2021) and was a co-principal investigator on a 2005-6 grant funded by the National Science Foundation to study "Perceptions of Disaster Relief and Recovery: Analyzing the Importance of Social and Kinship Networks Among Hurricane Katrina Refugees on the Mississippi Gulf Coast," which led to a number of refereed journal articles (see, e.g., Chapel et al., 2007; Forgette et al., 2009; Henderson, et al., 2009; Swanson, 2008; Swanson, et al., 2007). I am a lifetime member of the Mississippi Academy of Sciences.
6. I have worked on redistricting cases (see paragraph 9 in this report for a list of these cases) as well as on revising school (K-12) attendance zones, an activity, which while lacking the legal underpinnings of legislative redistricting, shares similarities with the latter in terms of public consequences, analytical methods, GIS mapping, and variables such as age, race and socio-economic status as criteria of interest (Swanson et al., 1997; Swanson et al., 1998). Furthermore, as indicated in the dedication and
acknowledgments, respectively (Morrison and Bryan, 2019: viii, xi), I also played an active role in the development of Redistricting: A Manual for Practitioners, Analysts, and Citizens.
7. I been involved in the following court cases as a testifying and/or deposed expert witness:

- Deposed Expert Witness (testimony expected to be given in April, 2023). 2022. Case No. CV 6417-300, Superior Court of Arizona in and for the County of Apache, General Adjudication of All Rights in the Little Colorado River System and Source, Phoenix, AZ (On behalf of the Hopi Tribe, Review of Population Forecasts done by a Demographer hired by the Navajo Nation). Osborne Maledon, P.A., Phoenix, AZ;
- Deposed and Testifying Expert Witness. 2022. Case A-17-762364-C. Estate of Joseph P. Schrage Jr \& Kristina. D. Schrage v. Allan Stahl. Eighth Judicial Court, Clark County, Las Vegas, Nevada (life expectancy, working life expectancy and present value of lost earnings and benefits). O'Reilly Law Group, Las Vegas, NV;
- Deposed and Testifying Expert Witness. 2021. Case No. CV 6417-203, Superior Court of Arizona in and for the County of Apache, General Adjudication of All Rights in the Little Colorado River System and Source, Phoenix, AZ (Forecast of Hopi Tribal Population). Osborne Maledon, P.A., Phoenix, AZ;
- Deposed and Testifying Expert Witness. 2012. Board of Education, Shelby County, Tennessee et al. v. Memphis City Board of Education et al. / Board of County Commissioners, Shelby County, Tennessee (third party plaintiff) v. Robert E. Cooper et al (third party defendant)." (Constitutionality of a Tennessee state law). (School District Enrollment Forecasts). Baker, Donelson, Bearman, Caldwell and Berkowitz, PC. Memphis, TN;
- Deposed Expert Witness. 2009. "Quest Medical Services v. FMIC." (Demographic Effects of Hurricane Katrina on New Orleans in a case involving a Medical Service Provider). Podvey, Meanor, Catenacci, Hildner, Cocoziello, and Chattman, P.C., Newark, NJ;
- Deposed and Testifying Expert Witness. 2007. "Spring Hill Hospital, Inc. v. Williamson Medical Center and Maury Regional Hospital." (Evaluation of population forecasts in a case involving a proposed hospital). Miller and Martin, PLLC, Nashville;
- Deposed and Testifying Expert Witness. 1994. Arkansas Supreme Court. (Statistical evaluation of the accuracy of the number of qualified signatures on a public referendum as determined by a sample); and
- Deposed Expert Witness. 1983. "Anchorage, et al., vs. J. Hammond et al." (Lawsuit brought by local governments against the state of Alaska on how populations are determined for purposes of state revenue sharing to local governments).

8. I produced the following expert reports as a consultant/potential expert witness in other court cases:

- Expert Report, Estimated Life Expectancy and Present Value of Household Costs, Z. Kirkson._O'Reilly Law Group, Las Vegas, Nevada. (2019);

Expert Report, The Potential Number of Claimants in regard to the 2010 Gulf of Mexico Oils Spill and its Sequellae. Watts Guerra, LLC. San Antonio, TX. (2016);

- Expert Report in the matter of Conseil scolaire francophone de la Colombie-Britannique, Fédération des parents francophones de Colombie-Britannique, et al. v. Her Majesty the Queen in Right of the Province of British Columbia, and the Minister of Education of the Province of British Columbia, Vancouver Registry S103975 in the Supreme Court of British Columbia. Prepared for the Office of the Attorney General, Ministry of Justice, Province of British Columbia, Canada (2014);
- Expert Report re Title Insurance Loss Model, First American Title Insurance Company, Miller and Martin PLLC, Nashville, TN (2008);
- Expert Report re Patient Population in the matter of Ochsner Clinical Foundation versus Continental Casualty Company. Fisher and Kanaris PC, Chicago, IL (2008); and
- Expert Report re Hurricane Katrina: Its Impacts on the Population and Candidates for Endovascular Surgery in the Primary and Secondary Service Areas of Garden Park Hospital as Defined by Hospital Corporation of America. Salloum and Brawley LLP, Nashville, TN (2007).

9. I have served as a consultant to BryanGeoDemographics (BGD) in regard to the following redistricting cases:

- Singleton v. Morrill, Case 2:21-CV-01291-SGC;
- Robinson v. Ardoin, Civil Action Nos. 22-211-SDD-SDJ, 22-214-SDD-SDJ;
- McConchie v. State Board of Elections, No. 1:21-CV-03091; and
- Caster v. Merrill, Case No. 2:21-CV-1535-AMM.

10. Because of its expertise and experience, I have used the services of Bryan Geodemographics, which under my direction has assembled data, maps and other work products.
11. My full Curriculum Vitae, including my 50 years of demography experience, is attached as Appendix 6.
12. I am being compensated at a rate of $\$ 400 /$ hour.

I. EXECUTIVE SUMMARY

13. The White et al. case has been brought with the support of numerous expert reports. One of these reports was authored by Mr. William Cooper, whose report included a demographic analysis of the existing SCOMS districts, plus four new proposed alternative districts (including analysis of their characteristics). I will be referring to Mr. Cooper's report throughout my paper. Mr. Cooper's report relies on the use of 2020 voting age population (VAP) - a measure which he uses to argue that MS SCOMS District 1 is a minority Black district at 49.3% (see Cooper report at p.19). The appropriate measure would actually be the citizen voting age population (or CVAP). That is, the population actually eligible to vote. In regard to the existing Supreme Court of Mississippi (SCOMS) Districts, as shown in Table III.E. 22020 Census Voting Age Population for Existing SCOMS Districts District 1 already has a Black (Citizens of Voting age Population) CVAP majority at 51.0% APB, a fact Mr. Cooper fails to note in his report. Cooper's Illustrative Plan 1 would increase the Black (Any Part Black, "APB") CVAP majority in District 1 to 57.0%, while Illustrative Plan 2 would raise the CVAP \%APB to 55.4%, Least Change Plan 1 would raise the CVAP \%APB to 54.4%, and Least Change Plan 2 would raise the CVAP \%APB to 53.8%. Each of Cooper's plans yield a similar result: an already Black CVAP APB majority in District 1 is increased to a higher level.
14. When compared to the existing Supreme Court Districts, all four of Cooper's alternative plans serve to lessen the diversity of both the White non-Hispanic (WNH) and the APB CVAP populations across the three districts relative to the distribution of the Citizens of Voting Age Population (CVAP) as a whole. As such, the existing Supreme Court districts provide more diversity than do any of Cooper's plans.
15. Cooper does not analyze the existing SCOMS districts or his own alternative districts by traditional redistricting criteria. However, I use two of them to analyze the existing districts and those proposed by Cooper: core retention and compactness. Briefly, core retention is the principle that the core (population) of prior districts be maintained in a redistricting plan and Compactness is the principle that the distance between all parts of a district is minimized (Gallagher, Kreye and Duros, 2020: 14). Core retention is a critical measure in assessing alternate redistricting plans, because it reveals the gross changes in each population that was made to achieve the net change of the plan. In the cased of Cooper's illustrative plans, I find that significant gross amounts of population are moved around the state in order to achieve the minimal increase in \% Black he proposes in his two new illustrative District 1 scenarios. Core retention of the APB CVAP population in Cooper's two illustrative plans is low, only 72.0% overall and 76.9% of APB VAP in District 1 are retained in his Illustrative Plan I and 65.7% overall and 68.6% of APB VAP are retained in his Illustrative Plan II. These core retention
statistics differ from those of the WNH population and the population as a whole. This finding is consistent with my finding that Cooper's plans serve to decrease diversity across the Supreme Court districts. Cooper's two "least change" plans provide higher levels of retention: 89.2% overall and 91.7% in District 1 of APB VAP in his Least Change Plan 1; and 93.6% overall and 97.0% of District 1 in his Least Change Plan II.
16. Concurrent with the requirement to use counties to build districts for legislative districts, Mississippi law also requires legislative districts to be compact (See Paragraph 60 in this report). Cooper implicitly acknowledges the importance of compactness by asserting that his proposed plans meet compactness criteria. His plans are compact because he asserts they are. However, he fails to calculate and show any compactness measures supporting this assertion. Using the Reock, Polsby-Popper, Schwartzberg and Convex Hull measures, I calculated the compactness of each district under the existing plan and each of Cooper's four plans. At an aggregate level, the existing SCOMS plan is the most compact among the five plans analyzed. SCOMS existing District 1 is the most compact District 1 configuration. Cooper's Least Change Plan 1 District 2 yields the most compact District 2 configuration, and Cooper's Least Change Plan 2 District 3 is the most compact District 3 configuration. While there are individual districts that are more compact in Cooper's plans by different compactness measures, each of the alternate plans suggested by Cooper range from somewhat less compact to substantially less compact overall than is offered by the existing SCOMS plan.
17. The boundaries of the existing SCOMS districts not only serve as the geographic basis for elections to the state's Supreme Court, they serve as the geographic basis for elections to the State Transportation Commission and the Public Service Commission. They also serve as the geographic basis for appointments to both the Mississippi Board of Bar Admissions and the Board of Trustees for the State Institutions of Higher Learning (IHL), as well as a number of other boards, to include, per a list provided by the State Attorney General's Office: ABLE Board of Directors (MISS. CODE ANN. § 43-28-7); State Board of Banking Review (MISS. CODE ANN. § 81-3-12); Charter School Authorizer Board (MISS. CODE ANN. § 37-28-7); Board of Cosmetology (MISS. CODE ANN. § 73-7-1); Board of Education (MISS. CODE ANN. § 37-1-1); Electronic Protection Licensing Advisory Board (MISS. CODE ANN. § 73-69-21); Board of Licensure for Professional Engineers and Surveyors (MISS. CODE ANN. § 73-13-5); State Board of Funeral Service (MISS. CODE ANN. § 73-11-43); Mississippi Home Corporation (MISS. CODE ANN. § 43-33-704); Hospital Equipment and Facilities Authority (MISS. CODE ANN. § 41-73-7); Land, Water and Timber Resources Board (MISS. CODE ANN. § 69-46-3); State Board of Medical Licensure (MISS. CODE ANN. § 73-43-3); Board of Nursing Home Administrators
(MISS. CODE ANN. § 73-17-7); Oil and Gas Board (MISS. CODE ANN. § 53-1-5); MS State Personnel Board (MISS. CODE ANN. § 25-9-109); State Board of Veterinary Medicine (MISS. CODE ANN. § 73-39-55. The IHL has a policy that acknowledges the value of diversity for Mississippi, as does an opinion written by Judge William Barbour in the "Magnolia Bar" case and, in addition, a statement by the ACLU in regard to this case. Using indices from the Mississippi Health and Hunger Atlas, I find that the existing Supreme Court Districts provide more population diversity than do any of Cooper's four alternative plans and that Cooper's plans serve to decrease population diversity across the Supreme Court districts.
18. In the Plaintiffs' expert report by Dr. Traci Burch, it is asserted that Mississippi’s Black voters are currently disenfranchised. A general assertion in Dr. Burch's report (Figure 4 and accompanying text in her report and Exhibit IV.A. 4 Racial Differences in Voter Turnout and by Education Level herein) is that White Mississippians turned out to vote in the 2020 election at a higher rate than Black Mississippians, 56.1% to 53.0%, respectively. Dr. Burch's finding is the result of a flawed analysis in which she employed the incorrect "universe" as the denominator in her calculations (the entire population, which includes those under age 18) rather than the correct "universe," the population eligible to vote ("Citizens of Voting Age Population" - CVAP). In referencing the officially published US Census Bureau tables published from the same source she cites (the 2020 Current Population Survey, November Voting supplement found in Table IV.A. 22020 Mississippi Voting by Race and Ethnicity), I find that that when the correct universe, CVAP, is used as the denominator, APB Mississippians turned out at a higher rate in the 2020 election than WNH Mississippians: 72.9% to 69.8%. Additionally, I find her estimate of 53.0% "Black Alone or in Combination, non-Hispanic" to be incorrectly calculated.
19. As shown by data from past November Voting Supplements in the Current Population Survey (taken in the even numbered years when federal elections are held, starting in 1964), my finding is consistent with the trend of voting seen in Mississippi since 2004. Except in 2010, both the percent of Black CVAP registered and the percent of Black CVAP voting have been higher in every survey year than the percent of WNH CVAP registration and voting, respectively (see Figures IV.A. 1 and IV.A. 2 in this report). In conjunction with this $21^{\text {st }}$ century trend, my finding in regard to the 2020 election also reveals that Dr. James T. Campbell's implication (p. 51 of his report) that Black Mississippians currently register and vote at lower rates than White Mississippians also is mistaken:
[^0]Mississippians are not afforded an equal opportunity to elect candidates of their choice in Supreme Court elections."
20. The Voting Supplements of the Current Population Survey (CPS) from 2004 to 2020 do not support Dr. Campbell's opinion. Moreover, the voter registration data in the Voting Supplements of the CPS are consistent with voting registration data collected for Mississippi in sample surveys conducted annually from 2015 to 2021 by the Survey Research Laboratory, Social Science Research Center, Mississippi State University (SSRC). These sample surveys show that for each year, 2015 to 2021, the percent of Black Mississippians age 18 and over who are registered to vote is higher than the percent of White Mississippians age 18 and over who are registered to vote. In addition, the SSRC sample surveys show that for each year, 2015 to 2021, the percent of Black Mississippians aged 18 and over who report "Always Vote" is higher than the percent of White Mississippians age 18 and over who report "Always Vote." Both the CPS and the SSRC data are consistent with a finding reported for the first time in this report: Statewide, a higher share of the Black population of potential and actual voters is within a quarter mile of a polling place than is the case for the White population of potential and actual voters, an indicator of opportunity for actual and potential Black voters. Moreover, the CPS shows that Black Voter turnout is higher than that of White Voters, a finding consistent with SSRC data.

II. ASSIGNMENT

21. On behalf of the Defendants, I have been asked to independently review and assess the features and characteristics of Mississippi's Supreme Court voting district plan along with plans and reports submitted by White et al. (Plaintiffs), as appropriate to my training, experience and background.
22. In Section III, I analyze Supreme Court Districts as well as the state as a whole in terms of population and voting data. I provide an assessment of: First, compliance of the Mississippi Supreme Court plan with redistricting requirements; then, second, core retention, and compactness as outcomes. I also assess the population diversity of the districts using health and hunger indices developed by the University of Mississippi for the state's counties. These indices are themselves correlated with socio-economic status and race.
23. In Section IV, I provide an in-depth analysis of Mississippi voter registration and voter turnout statistics and trends using:

- November Voting Supplement of the U.S. Census Bureau's Current Population Survey;
- Mississippi county-specific voter registration and voting frequency data by race from annual statewide surveys conducted from 2015 to 2021 by the Survey Research Laboratory of the Social Science Research Center (SSRC) at Mississippi State University.

24. In Section V, I provide Appendices.
25. In forming my opinions, I have considered all materials cited in this report and the appendices. I have also considered some pleadings and other filings in this matter; materials, to include, P. Morrison \& T. Bryan, Redistricting: A Manual for Analysts, Practitioners, \& Citizens (Springer 2019); and U.S. DOJ, Guidance under Section 2 of the Voting Rights Act, 52 U.S.C. 1301, for redistricting and methods of electing government bodies (Sept. 1, 2021). The population, voter registration, and voter turnout, data I use in this report are from standard sources used by demographers, to include census and survey data from the U.S. Census Bureau, as well as survey data from the Social Science Research Center, Mississippi State University. In using these data, I engaged the services of Bryan Geodemographics, an organization experienced in the assembly, summarization, and visualization of demographic and related data, which performed these activities under my direction.
26. I reserve the right to further supplement my report and opinions.

III. CHARACTERISTICS OF MISSISSIPPI SUPREME COURT DISTRICTS

A. Decennial Census

27. The Decennial Census counts people in the United States on a De Jure basis (Wilmoth, 2004: 65) and the U.S. Census Bureau attempts to count everybody once, only once, and in the right place (Cork and Voss, 2006). It is mandated by the Constitution to occur every 10 years, in years ending in zero, to provide the numbers needed to reapportion the House of Representatives, which also results in a reapportionment of the Electoral College. The decennial census numbers also are used by state governments to redraw legislative districts, and the federal government uses the numbers in various funding formulas to distribute some $\$ 1.504$ trillion in funding for highways, hospitals, schools, and many other purposes (Sullivan, 2020: 1).
28. In order for states to redraw legislative and other districts, the U.S. Census Bureau issues the "PL 94-171 "redistricting data" file in conjunction with the decennial census. ${ }^{1}$ Because the decennial census itself does not ask a "citizenship" question and also does not include questions about voting activities, other sources of data produced by the U.S. Census Bureau for itself or for other federal agencies are often used in redistricting activities, to include the PL 94-171 redistricting file, the American Community Survey and the Current Population Survey (Morrison and Bryan, 2019). It is not always the case that the counts or percentages of the same conceptual variables across these different sources will match exactly (Swanson and Van Patten, 1987; U.S. Census Bureau, 2020b: 17-19).

B. Mississippi Population Characteristics

29. Compared to the U.S. as a whole, Mississippi is not as diverse in terms of race and ethnicity. According to the U.S. Census Bureau ${ }^{2}$, Mississippi has a 2020 population of 2,961,279 of which: $1,084,481$ are Black Alone (36\%); 1,658,893 are White Alone (56\%); 32,701 are Asian (1\%); 16,450 are American Indian or Alaskan Native (0.5%); and 56,860 are "Other" (1.9%). In the 2020 Census, 110,732 Mississippians reported being "two or more races" (3.7\%) and 105,220 reported being Hispanic or Latino (3.6\%). For the U.S. as a whole: approximately 12.4% of its 2020 population of $331,449,281$ is "Black Alone;" 62% is "White Alone;" 5.9% is Asian; 1.1% is American Indian or Alaskan Native; and 8.4% is "other." In the 2020 Census, 33,898,993 Americans reported being "two or more races" 10.2%) and $62,080,044$ reported being Hispanic or Latino (18.7\%). In Mississippi, 92% of its 2020 population

[^1]is either "Black Alone" or "White Alone," while in the U.S, 74% of its 2020 population is either "Black Alone" or "White Alone," making Mississippi less racially diverse than the U.S. as a whole. With only 3.6% of its population identifying themselves as Hispanic or Latino, Mississippi is less ethnically diverse than the U.S. as a whole, where 18.7% identify themselves as Hispanic or Latino.

C. Mississippi Supreme Court Geography

30. Mississippi's three Supreme Court election districts are designated along county boundaries, with 22 counties in Supreme Court District 1, 27 counties in District 2, and 33 counties in Supreme Court District 3 - as shown in Appendix 4 Map A. There are 82 counties in Mississippi. Each county is of varying population, ranging from a high of 222,679 in Hinds County, to a low of 1,280 in Issaquena County. ${ }^{3}$ All counties in Mississippi are functioning governmental entities, each governed by a board of supervisors and 10 of them have two county seats. ${ }^{4}$ Counties appear to have been foundational in the development and maintenance of MS Supreme Court Districts since their inception. ${ }^{5}$ Three justices are elected for eight year terms in staggered fashion from each of the three Supreme Court Judicial Districts. ${ }^{6}$ An inventory of county assignments to districts from different plans and the cluster analysis herein may be found in Appendix 1A.
31. Appendix 4 Map A shows the current SCOMS District boundaries. These districts serve more than one purpose. They not only form the geographic basis for elections to the Mississippi State Supreme Court, but also for elections regarding the Transportation Commission and the Public Service Commission (Campbell, 2022): In addition they serve as the geographic basis for (1) appointments to the Board of Bar Admissions ${ }^{7}$; (2) the Board of Trustees for the State Institutions of Higher Learning (IHL); and (3) boards identified in paragraph 17. In regard to IHL, four of the 12 Member Board of Trustees for the State Institutions of Higher Learning are appointed by the Governor from each of the three Supreme Court districts. ${ }^{8}$ The IHL Board Office is responsible for policy and financial oversight of the eight public institutions of higher learning in
[^2]Mississippi. ${ }^{9}$ The Board's policy statement 102.06 acknowledges the value of diversity for Mississippi. ${ }^{10}$ Given that Mississippi is less racially and ethnically diverse than the U.S. as a whole, this is an important policy statement for the state, one not only in line with a statement by the ACLU (2022) in regard to this case but also the 1992 "Magnolia Bar" case concerning the SCOMS districts, in which Judge William Barbour's decision acknowledged the defendants claim that the existing SCOMS districts foster political and socio-economic diversity (Barbour, 1992: line 1417). Any changes that impact the SCOMS districts would have implications not only for the elections regarding the Supreme Court, but also elections for the Transportation Commission and Public Service Commission. In addition, they will impact appointments to the Board of Bar Admissions and the Board of Trustees for the State Institutions of Higher Learning.

D. Mississippi Supreme Court Census Population

32. Using the 2020 Census, there are three important population definitions I use to characterize each of the districts. I start with the voting age population (VAP), within which is the White, non-Hispanic population (WNH) and then the any part Black population (APB). Other minority populations such as Asian, Native Hawaiian and Pacific Islander, American Indian Alaskan Native and "Other" are relatively small in Mississippi and, therefore, not central to this report. ${ }^{11}$ The Hispanic population is relevant only insofar as they own a disproportionately large share of non-citizen population, and therefore largely explain the differences between VAP and CVAP estimates. As part of its demographic reporting, the US Census Bureau provides numerous statistics for each race alone and in combination, and also by ethnicity (whether an individual is of Hispanic origin or not). Therefore, an individual could be Black Alone, Black and White or any number of other combinations with other races and ethnicity. For the purpose of this examination, I am using the "Any Part Black" (the "APB" definition). The APB population is used in the plaintiffs' analysis and is outlined by the Department of Justice in their guidance for defining populations in VRA cases. ${ }^{12}$ The DOJ Guidance on Federal Statutes Regarding Redistricting and Methods for Electing Public Officials states:
"The Department of Justice will follow both aggregation methods defined in Part II of the Bulletin. The Department's initial review will be based upon allocating any response that includes White and one of the five other race categories identified in the response. Thus, the total numbers for "Black/African American,"

[^3]"Asian," "American Indian/Alaska Native," "Native Hawaiian or Other Pacific Islander," and "Some other race" reflect the total of the single-race responses and the multiple responses in which an individual selected a minority race and White race."

The Department will then move to the second step in its application of the census data by reviewing the other multiple-race category, which is comprised of all multiple-race responses consisting of more than one minority race. Where there are significant numbers of such responses, the Department will, as required by both the OMB guidance and judicial opinions, allocate these responses on an iterative basis to each of the component single-race categories for analysis. Georgia v. Ashcroft, 539 U.S. 461, 473, n. 1 (2003)" ${ }^{13}$
33. In Table III.D. 1 (below) one can see that Mississippi’s 2020 Voting Age Population (VAP) was 2,277,599 per the $2020 \mathrm{Pl} 94-171$ redistricting file and when divided into the three SCOMS districts shows 716,402 in District 1 (31% of the total VAP), 796,767 in District 2 (35% of the total VAP), and 764,430 in District 3 (34% of the total VAP), a fairly equitable distribution. As can be seen in this table, approximately 45% of the VAP in District 1 is made up of WNH total and 49.3% of APB total. It is this number, 49.3%, that the Plaintiffs are relying on to characterize D1 as being minority Black. In District 2, approximately 65% of VAP is made up of WNH total while 28% is made up of APB total. In District 3, 62% of the VAP is made up of WNH total with 33% made up of APB total. Clearly, District 1 has the highest percent of APB total of the three while Districts 2 and 3 are clearly majority WNH total.

Table III.D. 12020 Census Voting Age Population for Existing SCOMS Districts ${ }^{14}$

Existing Districts	VAP	WNH Total	APB Total	\% WNH	\% APB
1	716,402	324,908	353,091	45.4%	49.3%
2	796,767	517,385	220,412	64.9%	27.7%
3	764,430	473,158	249,577	61.9%	32.6%
Total	$\mathbf{2 , 2 7 7 , 5 9 9}$	$\mathbf{1 , 3 1 5 , 4 5 1}$	$\mathbf{8 2 3 , 0 8 0}$	$\mathbf{5 7 . 8 \%}$	$\mathbf{3 6 . 1 \%}$

Source: 2020 Census PL94-171; calculations by Bryan GeoDemographics for author.

[^4]34. A useful way to look at the distribution of WNH total and APB total across the three districts is to use the coefficient of variation (CV). Because the $C V$ is a dimensionless number, it can be used to make comparisons across populations with different means (Swanson, 2012: 86). To get to this measure, one starts by computing the mean VAP and its standard deviation across the three districts, which yields $759,199.67$ (where $759,199.67=2,277,599 / 3$) and a standard deviation of $33,016.67$. If each of the three districts had the same number of VAP (approximately 759,200), the standard deviation would be essentially zero. The actual population standard deviation is $33,016.67$. When the standard deviation is divided by the mean, one obtains the coefficient of variation $(C V)$, which shows the extent of variation relative to the mean. In this case, the $C V$ is approximately 0.04 (where $0.04=33,016.6 / 759,199.67$). In this regard, I compare the $C V$ s for VAP (0.04), WNH total (0.19), and APB total (0.21). The WNH total is about four times higher than that seen for VAP and the APB total is approximately five times higher than that that seen for VAP, which serves to confirm that WNH total and APB total population are less equally distributed across the three districts than the total VAP, irrespective of their means.
35. The plaintiffs put forth four potential alternative plans, ${ }^{15}$ each with different features. Using the same procedure I applied to the existing plan (Table III.D.l above), I summarize the demographic characteristics of each of these four alternative plans. As shown in Table III.D. 2 (below) for Cooper's Illustrative Plan 1, one can see that Mississippi's 2020 Voting Age Population (VAP) is 2,277,599 per the 2020 Pl 94-171 redistricting file (consistent with the VAP reported in Table III.D. 1 above) . The new District 1 has 40.9% WNH and 55.3 \% of APB. This represents an increase of +6.0 percentage points ($55.3 \%-49.3 \%$) APB in this district over the existing plan. In District $2,68.3 \%$ of VAP is made up of WNH while 23.5% is made up of APB. In District 3, 63.4% of the VAP is made up of WNH with 30.3% made up of APB. Clearly, District 1 has the highest percent of APB of the three while Districts 2 and 3 are clearly majority WNH.

[^5]- Figures 10 and 11: Illustrative Plan 1 on P. 27
- Figures 13 and 14: Illustrative Plan 2 on P. 30
- Figures 15 and 16: Least Change Plan 1 on P. 33 and P. 34
- Figures 17 and 18: Least Change Plan 2 on P. 35

Table III.D. 22020 Census Voting Age Population for Cooper Illustrative Plan 1 Districts

Illustrative 1	VAP	WNH Total	APB Total	\% WNH	\% APB
1	737,689	301,664	407,999	40.9%	55.3%
2	757,569	517,762	178,124		68.3%
3	782,341	496,025	236,957	63.4%	30.3%
Total	$\mathbf{2 , 2 7 7 , 5 9 9}$	$\mathbf{1 , 3 1 5 , 4 5 1}$	$\mathbf{8 2 3 , 0 8 0}$	$\mathbf{5 7 . 8 \%}$	$\mathbf{3 6 . 1 \%}$

Source: 2020 Census PL94-171; calculations by Bryan GeoDemographics for author.
36. As shown in Table III.D. 3 (below) for Cooper's Illustrative Plan 2, one can see that the new District 1 has $41.4 \% \mathrm{WNH}$ and 54.2% of APB. This represents an increase of +4.9 percentage points ($54.2 \%-49.3 \%$) APB in this district over the existing plan. In District $2,65.9 \%$ of VAP is made up of WNH while 26.4% is made up of APB. In District $3,65.5 \%$ of the VAP is made up of WNH, with 28.3% made up of APB. Again, District 1 has the highest percent of APB of the three while Districts 2 and 3 are clearly majority WNH.

Table III.D. 32020 Census Voting Age Population for Cooper Illustrative Plan 2 Districts

Illustrative 2	VAP	WNH Total	APB Total	\% WNH	\% APB
1	746,385	309,225	404,440	41.4%	54.2%
2	760,360	500,934	200,715	65.9%	26.4%
3	770,854	505,292	217,925	65.5%	$\mathbf{2 8 . 3 \%}$
Total	$\mathbf{2 , 2 7 7 , 5 9 9}$	$\mathbf{1 , 3 1 5 , 4 5 1}$	$\mathbf{8 2 3 , 0 8 0}$	$\mathbf{5 7 . 8 \%}$	$\mathbf{3 6 . 1 \%}$

Source: 2020 Census PL94-171; calculations by Bryan GeoDemographics for author.
37. As shown in Table III.D. 4 (below) for Cooper's Least Change Plan 1, one can see the new District 1 has $42.1 \% \mathrm{WNH}$ and 53.0% of APB. This represents an increase of +3.7 percentage points $(53.0 \%-49.3 \%)$ APB in this district over the existing plan. In District 2, 66.0% of VAP is made up of WNH while 26.5% is made up of APB. In District $3,64.1 \%$ of the VAP is made up of WNH with 30.1% made up of APB. Again, District 1 has the highest percent of APB of the three while Districts 2 and 3 are clearly majority WNH.

Table III.D. 42020 Census Voting Age Population for Cooper Least Change Plan 1 Districts

Least Change 1	VAP	WNH Total	APB Total	\% WNH	\% APB
1	722,892	304,436	383,099	42.1%	53.0%
2	766,360	505,954	202,788	66.0%	26.5%
3	788,347	505,061	237,193	64.1%	30.1%
Total	$\mathbf{2 , 2 7 7 , 5 9 9}$	$\mathbf{1 , 3 1 5 , 4 5 1}$	$\mathbf{8 2 3 , 0 8 0}$	$\mathbf{5 7 . 8 \%}$	$\mathbf{3 6 . 1 \%}$

Source: 2020 Census PL94-171; calculations by Bryan GeoDemographics for author.
38. As shown in Table III.D. 5 (below) for Cooper's Least Change Plan 2, one can see the new District 1 has $43.3 \% \mathrm{WNH}$ and 52.0% of APB. This represents an increase of +2.7 percentage points $(52.0 \%-49.3 \%)$ APB in this district over the existing plan. In District $2,64.9 \%$ of VAP is made up of WNH while 27.7% is made up of APB. In District $3,64.5 \%$ of the VAP is made up of WNH with 29.5% made up of APB. Again, District 1 has the highest percent of APB of the three while Districts 2 and 3 are clearly majority WNH.

Table III.D. 52020 Census Voting Age Population for Cooper Least Change Plan 2 Districts

Least Change 2	VAP	WNH Total	APB Total	\% WNH	\% APB
1	738,384	319,492	383,997	43.3%	52.0%
2	796,767	517,385	220,412	64.9%	27.7%
3	742,448	478,574	218,671	64.5%	29.5%
Total	$\mathbf{2 , 2 7 7 , 5 9}$	$\mathbf{1 , 3 1 5 , 4 5 1}$	$\mathbf{8 2 3 , 0 8 0}$	$\mathbf{5 7 . 8 \%}$	$\mathbf{3 6 . 1 \%}$

Source: 2020 Census PL94-171; calculations by Bryan GeoDemographics for author.

E. ACS Citizen Voting Age Population Characteristics of Mississippi

39. Each of the plans put forth by the plaintiffs are as remarkable for their features and what they say about them, as what they do not. Conventionally, when a Gingles 1 analysis is done, it includes an analysis not just of the VAP, but of the Citizen VAP (or, "CVAP") as well. Conceptually, the CVAP is a refined measure, withdrawing those who may be of voting age - but by virtue of not being citizens are ineligible to vote. In recent cases, Mr. Cooper includes this important measure. ${ }^{16}$ In this case, however, Mr. Cooper does not. Why, one must ask is this the case? As noted in the executive summary, the APB Black CVAP is already a majority at 51.0%. This fact that District 1 is an existing "majority-minority district is contrary to plaintiffs' claim that the SCOMS District 1 is a minority district in need of remediation.
40. The American Community Survey (ACS) is the source of record for CVAP data. The survey is a set of "rolling" sample surveys conducted by the U.S. Census Bureau (Morrison and Bryan, 2019; US Census Bureau, 2020a). It is distinct and different from the Decennial Census and the Current Population Survey, which also are conducted by the U.S. Census Bureau. The ACS provides data that the US Department of Justice commissions and relies on for adjudicating VRA cases. ${ }^{17}$ For the purposes of cases just like these, the US Census Bureau began tabulating CVAP data starting back in 2002, and currently produces a new specially tabulated CVAP dataset each year at the request of the US DOJ. ${ }^{18}$ The output of this file is composed of estimates of the CVAP by race and ethnicity for different levels of Census geography, as follows: ${ }^{19}$
> "This is a special tabulation of the citizen voting age population and other data from the 2016-2020 5-year American Community Survey (ACS). This is the twelfth release of this special tabulation of ACS data. The first release used the 2005-2009 5-year ACS data, and the data are re-released every year using each subsequent year's 5 -year ACS data. These special tabulations provide citizenship voting age data to assist the redistricting process. Data from this and all previous releases are available through the Voting Rights link on the Census Bureau's Redistricting Data Office web site, www.census.gov/rdo."

[^6]41. The US Census Bureau reports a variety of CVAP statistics as part of this special tabulation, including data in total as well as by select racial and ethnic groupings - as seen in Exhibit III.E. 1 (below).

Exhibit III.E. 1 American Community Survey DOJ VRA Race and Ethnicity Reporting Classifications

1	Total CVAP
2	Not Hispanic or Latino (NH)
3	American Indian or Alaska Native Alone (NH)
4	Asian Alone (NH)
5	Black or African American Alone (NH)
6	Native Hawaiian or Other Pacific Islander Alone (NH)
7	White Alone (NH)
8	American Indian or Alaska Native and White (NH)
9	Asian and White (NH)
10	Black or African American and White (NH)
11	American Indian or Alaska Native and Black or African American (NH)
12	Remainder of Two or More Race Responses (NH)
13	Hispanic or Latino

Source:https://www2.census.gov/programs-surveys/decennial/rdo/technical-documentation/special-tabulation/CVAP_2016-2020_ACS_documentation_v3.pdf.
42. As discussed in the Mississippi Supreme Court Census Population section above, the DOJ directs that two levels of minority population be produced. In order to create the first-level required DOJ estimate of the Black or African American population, group 5 Black or African American Alone (NH) and group 10 Black or African American and White (NH) are aggregated. In recent cases, this level has proven just to be a demographic exercise. Plaintiffs in cases such as these are commonly going straight to the second-level definition, as follows.
43. In order to create the second-level required DOJ estimate of the any-part Black or African American population, the following are aggregated, group 5 Black or African American Alone (NH) and group 10 Black or African American and White (NH) and group 11 American Indian or Alaska Native and Black or African American (NH). The American Indian or Alaska native combination is the only other Black or African American combination reported.
44. The DOJ does not outline which one of numerous demographic methods they recommend to "allocate these (multi-race) responses on an iterative basis" nor do they
provide the multi-race granularity of reporting afforded by the Decennial Census. While there are more Black or African American population in the ACS in the "Remainder of Two or More Race Responses" category - there is no way to estimate this from the data that the DOJ requests from the Census Bureau to fulfill their own definitions. In this regard, one can think of the estimates provided by Black or African American Alone (NH) and Black or African American and White (NH) and American Indian or Alaska Native and Black or African American as a lower bound of the actual any-part Black CVAP being reported.
45. Again, we have two sources of population data: (1) the Decennial Census from 2020 (Total and Voting Age Population, or "VAP"); and (2) the most recent ACS from 20162020 (Citizen Voting Age Population, or "CVAP"). Plaintiffs claim the existing District 1 is a minority district based on 2020 Census VAP data - at 49.3%. Plaintiffs do not present the measure used by their own expert in other cases to measure actual voting strength: CVAP. Cooper's analysis only reports results from the 2020 Decennial Census, which shows a 49.3% VAP bare minority share in existing Supreme Court District 1. When you remove the non-Citizens then examine APB as a share of CVAP the conclusion is different - Supreme Court District 1 is an APB CVAP majority at 51.0% as shown in Table III.E. 2 (below).
46. As long as I am focusing on the population eligible to vote, I need to acknowledge and address the prison populations in Mississippi, where many of the residents are ineligible to vote. It is important to note that the ACS Citizen Voting Age Population, or "CVAP" includes group quarters (e.g. prisons) populations, some of whom are ineligible to vote. The state of Mississippi has three large correctional facilities, which house overwhelmingly Black populations. The Mississippi State Penitentiary, "Parchman" (MSP in Sunflower County), Central Mississippi Correctional Facility (CMCF in Rankin County); and the Southern Mississippi Correctional Institution (SMCI in Greene County) - as shown in Appendix 4 Map B. It is my opinion that because of the size of these facilities, and the share of them that are Black, any analysis is at risk of the misrepresenting CVAP members who are actually eligible to vote. In order to give the Plaintiffs every benefit of the doubt using the CVAP measure - my analysis excludes the estimated Black prisoner population of each of these three facilities - and the districts in which they respectively reside. This exclusion serves to reduce the APB CVAP statistic to an estimate of the size of this population that is actually eligible to vote. Retaining and including these three large populations would run the risk of artificially inflating the Black CVAP who are eligible to vote in Mississippi in particular. While it is widely recognized that Mississippi has numerous felons ineligible to vote who are not currently incarcerated, there is no practical way to measure or locate these demographically by district in a meaningful way.
47. For the purpose of demographic measurement of prisoners, it is important to note two things. First, the decennial census often reports estimates of "GQ_Corr" or Group Quarters - Correctional populations that are different from the current actual prisoner populations. For the Mississippi State Penitentiary (MSP), for example, the Decennial Census reported 304 prisoners in Census Block 281339501005056 (with 88 WNH and 212 APB), and 2,790 prisoners in adjacent Census Block 281339501005057 (1,179 WNH and 1,416 APB). This totals 3,094, with 1,267 (41\%) WNH and 1,628 (52.6\%) APB. For the Census Block Group (BG) 281339501005 containing MSP reported by the ACS CVAP file for the DOJ, there are a reported 4,585 CVAP $-3,165$ of which are reported as Black CVAP. Neither the 2020 Decennial Census nor the ACS statistics for the Black population here are consistent with official MS DOC reports. At the time of the writing of this paper, Mississippi Department of Corrections (MS DOC) had published prisoner statistics through March of 2022 - and is on these numbers our analysis relies. As shown in Table III.E. 1 (below) MS DOC reported 1,283 Black prisoners, 665 White prisoners and 20 "other" prisoners at MSP. I use the MS DOC numbers in the analysis - removing them from our CVAP in order to estimate an accurate voter-eligible population. MS DOC reported 1,435 Black prisoners and 1,301 White and 43 other prisoners at the Central Mississippi Correctional Facility (CMCF). MS DOC reported 1,476 Black prisoners, 751 White and 29 other prisoners at the South Mississippi Correctional Institution (SMCI). My analysis includes these three facilities but does not include smaller facilities such as county or youthful offender facilities, private prisons or regional correctional facilities both because of their size and the fact the MS DOC does not break out the prisoners in each of those facilities individually.

Table III.E. 1 Mississippi Prisoner Analysis by Race and Ethnicity, March 2022 by Facility

LOCATION	Black		White		Hispanic		Native American		Asian		Data Unavailabl		TOTAL
	Male	Female											
MSP	1,283	0	665	0	11	0	1	0	7	0	1	0	1,968
CMCF	1.098	337	763	538	17	7	8	5	4	2	0	0	2,779
SMCl	1.476	0	751	0	24	0	4	0	1	0	0	0	2,256
County Jals (approved)	402	2	448	26	10	1	1	0	2	0	4	0	896
County Jalls (unapproved)	444	14	416	26	10	1	0	0	4	0	4	1	920
Youthu Olfender Facilly	11	0	3	0	1	0	0	0	1	0	0	0	16
Private Prisons	2,102	0	851	0	20	0	8	0	4	0	1	0	2,996
Regional Correctional Facilies	2.518	40	1.350	55	69	2	6	1	9	0	0	0	4,050
Cammunty Work Centers	167	16	106	81	2	1	1	1	0	1	0	0	376
Communty Trusties	0	0	0	0	0	0	0	0	0	0	0	0	0
TVC	46	0	30	0	0	0	0	0	0	0	0	0	76
Transifional Housing	8.	1	4	4	0	0	0	0	0	0	0	0	17
Pending File Review	100	5	52	12	1	0	0	0	1	0	0	0	171
RRP	7	0	15	5	0	0	0	0	0	0	0	0	27
Contempl	0	0	0	1	0	0	0	0	0	0	0	0	1
Court Order	86	0	57	8	0	0	0	0	1	0	0	0	152
TOTAL	10,788	527	6,182	929	207	13	33	7	44	3	13	1	18,747
\% of total offenders	57.55\%	2.81\%	32.98\%	4.96\%	1.10\%	.07\%	.18\%	. 04%	.23\%	.02\%	.07\%	.01\%	100.00\%

Source: Mississippi Department of Corrections https://www.mdoc.ms.gov/Admin-Finance/MonthlyFacts/03-01-2022.1.pdf
48. The statistics in Table III.E. 1 show there are both large absolute numbers of Black prisoners in these facilities, and that there is also a higher proportionate number of Black prisoners in the three major prisons in Mississippi than White prisoners overall and by gender. While not all of these prisoners are ineligible to vote, for purposes of this analysis, I assume that they are. I use the MS DOC numbers in my estimates of those eligible to vote by race and ethnicity - removing Black prisoners from APB CVAP in the counties where they are located in order to place a lower boundary on the voter-eligible Black population.
49. Table III.E. 2 (below) shows the CVAP analysis with these prisoners excluded for the existing Supreme Court Districts. In the first row, for District 1, one can see that the CVAP is 705,555 . The WNH population is 324,204 and the APB population is 360,356 . The percent Black CVAP is shown in the last two columns. The "\%APB" column reports the \% APB CVAP without adjustment for Black prisoners. The "\%APB - "Prison Adjusted" column reports the \% APB CVAP with adjustment for Black prisoners. The numbers shaded in green are higher \% Black, and the numbers shaded in red are lower \%Black.
50. The \% APB CVAP for District 1 (shown in the \% APB column) is 51.1\%. District 1 in the existing plan contains both MSP and CMCF (combined for 2,718 Black prisoners and 2,029 other prisoners). District 2 contains SMCI (with 1,476 Black prisoners and 780 other prisoners). The \% APB CVAP Prison Adjusted for District 1 (shown in the $\%$ APB - Prison Adj. column) is 51.0\%. That is - under the assumption that all of the prisoners are ineligible to vote, the adjustment for Black prisoners reduces the \% Black CVAP eligible to vote by approximately 0.1%. It is clear from this analysis that
regardless of whether you include Black prisoners or not - the APB CVAP in District 1 in the existing plan is currently a "majority minority" population. Further investigation revealed that even if I used the most conservative, restrictive definition of Black (Black Alone, non-Hispanic) of which there are 358,072 in District 1 - one would still find a majority of 50.8%.

Table III.E. 22020 Census Voting Age Population for Existing SCOMS Districts

Existing Districts	CVAP	WNH	APB	Black Prisoners	Other Prisoners	\% APB	\%APB - Prison Adj.
1	705,555	324,204	360,256	2,718	2,029	51.1%	51.0%
2	781,300	527,524	218,180	1,476	780	27.9%	27.8%
3	751,245	479,855	250,322			33.3%	33.3%
Grand Total	$\mathbf{2 , 2 3 8 , 1 0 0}$	$\mathbf{1 , 3 3 1 , 5 8 3}$	$\mathbf{8 2 8 , 7 5 8}$	$\mathbf{4 , 1 9 4}$	$\mathbf{2 , 8 0 9}$	$\mathbf{3 7 . 0 \%}$	$\mathbf{3 7 . 0 \%}$

Source: Calculations for author by Bryan GeoDemographics using 2016-2020 ACS DOJ CVAP and MS DOC Reported Prisoner Populations.
51. Table III.E. 3 (below) shows the \% APB CVAP under Cooper's Illustrative Plan 1. The \% APB CVAP for District 1 (shown in the \% APB column) is an overwhelming majority of 57.1%. District 1 in this plan contains MSP (with 1,283 Black prisoners and 685 other prisoners). District 2 contains SMCI and CMCF (with 2,911 Black prisoners and 2,124 other prisoners). The \% APB CVAP Prison Adjusted for District 1 (shown in the "\% APB - Prison Adj." column) is 57.0%. That is, the adjustment for prisoners reduces the \% Black CVAP eligible to vote by approximately 0.1%. In this table, it is also interesting to note that the D1 APB population of 414,130 is exactly half of the total APB population of 828,758 .

Table III.E. 32020 Census Voting Age Population for Cooper Illustrative Plan 1 Districts

| Illustrative 1 | CVAP | WNH | APB | Black Prisoners | Other Prisoners | \% APB | \%APB - Prison Adj. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 725,645 | 295,443 | 414,130 | 1,283 | 685 | 57.1% | 57.0% |
| 2 | 740,350 | 529,260 | 175,711 | 2,911 | 2,124 | 23.7% | 23.5% |
| 3 | 772,105 | 506,880 | 238,917 | | | 30.9% | 30.9% |
| Grand Total | $\mathbf{2 , 2 3 8 , 1 0 0}$ | $\mathbf{1 , 3 3 1 , 5 8 3}$ | $\mathbf{8 2 8 , 7 5 8}$ | $\mathbf{4 , 1 9 4}$ | $\mathbf{2 , 8 0 9}$ | $\mathbf{3 7 . 0 \%}$ | $\mathbf{3 7 . 0 \%}$ |

Source: Calculations for author by Bryan Geodemographics using 2016-2020 ACS DOJ CVAP and MS DOC Reported Prisoner Populations.
52. Table III.E. 4 (below) shows the \% APB CVAP under Cooper's Illustrative Plan 2. The \% APB CVAP for District 1 (shown in the \% APB column) is again an overwhelming majority of 55.4%. District 1 in this plan contains MSP (with 1,283 Black prisoners and 685 other prisoners). District 2 contains SMCI (with 1,476 Black prisoners and 780 other prisoners). District 3 contains CMCF (with 1,435 Black prisoners and 1,344
other prisoners). The \% APB CVAP Prison Adjusted for District 1 (shown in the \% APB - Prison Adj. column) is 55.4%. That is - the adjustment for prisoners reduces the \% Black CVAP eligible to vote is negligible.

Table III.E. 42020 Census Voting Age Population for Cooper Illustrative Plan 2 Districts

Illustrative 2	CVAP	WNH	APB	Black Prisoners	Other Prisoners	\% APB	\%APB - Prison Adj.
1	734,095	308,563	406,542	1,283	685	55.4%	55.4%
2	747,610	513,335	199,460	1,476	780	26.7%	26.6%
3	756,395	509,685	222,756	1,435	1,344	29.4%	29.4%
Grand Total	$\mathbf{2 , 2 3 8 , 1 0 0}$	$\mathbf{1 , 3 3 1 , 5 8 3}$	$\mathbf{8 2 8 , 7 5 8}$	$\mathbf{4 , 1 9 4}$	$\mathbf{2 , 8 0 9}$	$\mathbf{3 7 . 0 \%}$	$\mathbf{3 7 . 0 \%}$

Source: Calculations by Bryan GeoDemographics for author using 2016-2020 ACS DOJ CVAP and MS DOC Reported Prisoner Populations.
53. Table III.E. 5 (below) shows the \% APB CVAP under Cooper's Least Change Plan 1. The \% APB CVAP for District 1 (shown in the \% APB column) is still an overwhelming majority of 54.4%. District 1 in this plan contains both MSP and CMCF (combined for 2,718 Black prisoners and 2,029 other prisoners). District 2 contains SMCI (with 1,476 Black prisoners and 780 other prisoners). The \% APB CVAP Prison Adjusted for District 1 (shown in the $\%$ APB - Prison Adj. column) is 54.4%. That is - the adjustment for prisoners reduces the \% Black CVAP eligible to vote is negligible.

Table III.E. 52020 Census Voting Age Population for Cooper Least Change Plan 1 Districts

Least Change 1	CVAP	WNH	APB	Black Prisoners	Other Prisoners	\% APB	\%APB - Prison Adj.
1	718,485	305,683	390,711	2,718	2,029	54.4%	54.4%
2	751,875	516,885	201,241	1,476	780	26.8%	26.6%
3	767,740	509,015	236,806			30.8%	30.8%
Grand Total	$\mathbf{2 , 2 3 8}, 100$	$\mathbf{1 , 3 3 1 , 5 8 3}$	$\mathbf{8 2 8 , 7 5 8}$	$\mathbf{4 , 1 9 4}$	$\mathbf{2 , 8 0 9}$	$\mathbf{3 7 . 0 \%}$	$\mathbf{3 7 . 0 \%}$

Source: Calculations by Bryan GeoDemographics for author using 2016-2020 ACS DOJ CVAP and MS DOC Reported Prisoner Populations.
54. Table III.E. 6 (below) shows the \% APB CVAP under Cooper's Least Change Plan 2. The \% APB CVAP for District 1 (shown in the \% APB column) is still a majority of 53.8%. District 1 in this plan contains both MSP and CMCF (combined for 2,718 Black prisoners and 2,029 other prisoners). District 2 contains SMCI (with 1,476 Black prisoners and 780 other prisoners). The \% APB CVAP Prison Adjusted for District 1 (shown in the \% APB - Prison Adj. column) is 53.8%. That is - the adjustment for prisoners reduces the \% Black CVAP eligible to vote is negligible.

Table III.E. 62020 Census Voting Age Population for Cooper Least Change Plan 2 Districts

Least Change 2	CVAP	WNH	APB	Black Prisoners	Other Prisoners	\% APB	\%APB - Prison Adj.
1	728,555	318,494	392,118	2,718	2,029	53.8%	53.8%
2	781,300	527,524	218,180	1,476	780	27.9%	27.8%
3	728,245	485,565	218,460			30.0%	30.0%
Grand Total	$\mathbf{2 , 2 3 8 , 1 0 0}$	$\mathbf{1 , 3 3 1 , 5 8 3}$	$\mathbf{8 2 8 , 7 5 8}$	$\mathbf{4 , 1 9 4}$	$\mathbf{2 , 8 0 9}$	37.0%	37.0%

Source: Calculations by Bryan GeoDemographics for author using 2016-2020 AVS DOJ CVAP and MS DOC Reported Prisoner Populations.
55. Table III.E. 7 (below) shows the percent APB CVAP over time as estimated from the American Community Survey over three segments of time. First from the 2014-2018 5-year ACS DOJ dataset, then from the 2015-2019 5-year ACS DOJ dataset, then from the most recent 2016-2020 5-year ACS DOJ dataset. One can see in the first row of this table that the \%APB CVAP population in the current plan was already a majority in the 2014-2018 dataset - and has since grown to 51% in the most recent 2016-2020 ACS DOJ dataset. As expected, in each of Cooper's alternative plans - the \%APB CVAP population in the current plan were all already significant majorities in the 20142018 ACS DOJ dataset - and has since grown even more significant majorities in the most recent 2016-2020 ACS DOJ dataset. Under each of Cooper's alternative plans, the \%APB CVAP grows from an existing majority to a larger majority.

Table III.E. 7 CVAP analysis over time: District 1 \% APB CVAP under Current Plan compared to Cooper's Plans for 2014-2018, 2015-2019 and 2016-2020

	$\underline{\mathbf{2 0 1 4 - 2 0 1 8}}$	$\underline{\mathbf{2 0 1 5 - 2 0 1 9}}$	$\underline{\mathbf{2 0 1 6 - 2 0 2 0}}$
Current Plan	50.8%	51.0%	51.0%
Illustrative 1	56.8%	57.1%	57.0%
Illustrative 2	54.9%	55.3%	55.4%
Least Change 1	54.1%	54.4%	54.4%
Least Change 2	53.4%	53.7%	53.8%

Source: ACS, as described and discussed in the text; calculations by BryanGeoDemographics for author.

F. Performance of Mississippi Districts Using Traditional Redistricting Principles

56. The state of Mississippi does not have legally required periodic updates to their Supreme Court Districts. As such, Mississippi does not have laws or rules to direct how its Supreme Court districts should be drawn other than what is found in Sec 9-3-1 of the State Code. If plans are put forward to re-draw the SCOMS districts, however, it would be appropriate to follow traditional redistricting principles in general as well as redistricting laws found in Mississippi in evaluating them, as was the situation in the "Magnolia Bar" case (Barbour, 1992).
57. Different states consider and implement different criteria. For example, in some states, including Texas, state constitutions require the use of counties to draw certain legislative boundaries, while others just require them to be considered. The Congressional Research Service explains:
"Many of the 'rules' or criteria for drawing congressional boundaries are meant to enhance fairness and minimize the impact of gerrymandering. These rules, standards, or criteria include assuring population equality among districts within the same state; protecting racial and language minorities from vote dilution while at the same time not promoting racial segregation; promoting geographic compactness and contiguity when drawing districts; minimizing the number of split political subdivisions and 'communities of interest' within congressional districts; and preserving historical stability in the cores of previous congressional districts." ${ }^{20}$

Following the general path found in Cooper's report, I continue under the assumption that these same principles apply to redistricting of the state's Supreme Court districts.
58. The National Conference of State Legislatures (NCSL) is widely recognized as the nation's independent, objective, and bipartisan authority on redistricting matters. ${ }^{21}$ The NCSL has published a series of principles that reflect traditional districting principles (or criteria) have been both informed by and adopted by many states. This guidance

[^7]from the NCSL is the basis of any assessment I make as an expert of individual states or organization's criteria and redistricting plans.
59. These traditional districting principles (or criteria) have been adopted by many states:

- Compactness: Having the minimum distance between all the parts of a constituency (a circle, square or a hexagon is the most compact district).
- Contiguity: All parts of a district being connected at some point with the rest of the district.
- Preservation of counties and other political subdivisions: This refers to not crossing county, city, or town, boundaries when drawing districts.
- Preservation of communities of interest: Geographical areas, such as neighborhoods of a city or regions of a state, where the residents have common political interests that do not necessarily coincide with the boundaries of a political subdivision, such as a city or county.
- Preservation of cores of prior districts: This refers to maintaining districts as previously drawn, to the extent possible. This leads to continuity of representation.
- Avoiding pairing incumbents: This refers to avoiding districts that would create contests between incumbents.

60. Mississippi specifically has codified many of these principles into law for redistricting their legislature and congressional districts. For legislative districts, Mississippi requires districts to be compact, contiguous and to preserve political subdivisions. ${ }^{22}$ Mississippi Code § 5-3-101 states:

In accomplishing the apportionment, the committee shall follow such constitutional standards as may apply at the time of the apportionment and shall observe the following guidelines unless such guidelines are inconsistent with constitutional standards at the time of the apportionment, in which event the constitutional standards shall control:
(a) Every district shall be compact and composed of contiguous territory and the boundary shall cross governmental or political boundaries the least number of times possible; and
(b) Districts shall be structured, as far as possible and within constitutional standards, along county lines; if county lines are fractured, then election district lines shall be followed as nearly as possible. ${ }^{23}$

[^8]For congressional districts, Mississippi requires districts to be to be compact, contiguous, to preserve political subdivisions and to preserve communities of interest. ${ }^{24}$
61. For the purpose of drawing alternate SCOMS districts, plaintiffs' expert Mr. William Cooper has applied the law and principles selectively. He has followed the precedent of SCOMS districting and legislative law using entire counties as the building blocks for SCOMS districts (see Mississippi Code § 5-3-101 part (b), "Districts shall be structured, as far as possible and within constitutional standards, along county lines."). He also has used Mississippi's established Planning and Development Districts ("PDDs" as shown in Appendix 4 Map C) as communities of interest to organize and report demographic features of the state (but does not use these in a meaningful way to actually inform the design of his districts). ${ }^{25}$ In fact, Mr. Cooper does not even attempt to analyze the SCOMS districts using the traditional redistricting principles of core retention and compactness. I, however, analyze the existing districts and each of his proposed four plans using these principles.

Core Retention

62. Courts have recognized the need to preserve the core of a prior established district as a legitimate redistricting criterion, ${ }^{26}$ as well as the avoidance of contests between incumbents. ${ }^{27}$ Core retention fosters the continuity of political representation. A Core Retention Analysis (CRA) also known as a constituency report is simply a demographic accounting of the addition and subtraction of persons that would be brought about by a proposed realignment of a district's existing boundaries, a process consistent with determining core retention (see paragraph 15). A CRA is a way of quantifying precisely how a proposed realignment would affect the continuity of representation among a district's current residents and eligible voters.
63. Core Retention Analysis has usually considered only the total populations of districts in comparisons across plans. Here, I have also broadened this standard demographic model, using standard methodology to present comparisons to alternative redistricting plans, and by also analyzing the core retention of protected group. I refer to this as "differential" CRA. The "differential" being the findings it generates by district between the total population and the Black population. In the matters of voting rights and redistricting - another population besides total can and does frequently yield

[^9]significant differences in CRA findings: race and ethnicity. While race cannot be the prevailing factor in drawing a district - in the state of Mississippi and beyond the impact of redistricting on race and ethnic groups is still of significant legal concern. Are there differential impacts to the total population and by race and ethnicity?
64. In each of the following tables, I show the population from each of the original SCOMS districts distributed into each of Cooper's alternative plan districts. In each column, I show the total population impact, the White, non-Hispanic (WNH) impact, and the any part Black (APB) impact. Below the table, I show core retention diagnostics for District 1 (D1) and then the plan as a whole.

DISTRICT 1 (D1) Core Retention Metrics

- The first row (Existing D1 VAP) shows the VAP in D1 of the existing SCOMS plan.
- The second row (Pop Retained in D1) shows the size of the population that was unperturbed by the new plan. As I move forward, this is the population that I will refer to as "retained".
- The third row (Pop Sent Out of D1) is the size of the population that was originally in D1 but was moved to either D2 or D3.
- The fourth row (Pop Added to D1) is the size of the population that was originally in D2 or D3 but was moved in to D1.
- The fifth row (Net Change to D1) is the net of the population sent out of and added to D1. This is the change in population that drives the change in population behind Mr. Cooper's new alternate district estimates.
- The sixth row (D1 core retention) is the percent of the population from the original D1 plan who are retained in the new plan's D1.

Total Plan Core Retention Metrics

- The seventh row (Pop Retained in Original Districts) is the sum of the population left unperturbed in all 3 districts by the new plan.
- The eighth row (Pop Changing Districts) is the sum of the population moved in all 3 districts by the new plan.
- The ninth row (Plan Core Retention) is the percent of the population from the original plan who are retained in the same district under the new plan.
- In Table III.F. 1 (below) one can see the core retention results for Cooper's Illustrative Plan 1. In District 1 (D1), 63.1\% of the total population is retained in District 1, but
the drivers of this differ significantly by race and ethnicity. Only half (49.7\%) of the WNH population from D1 is retained, while 76.9% of the APB population is retained. Across the entire plan, 74.3% of Mississippi's total population is retained in their original district. 75.2% of WNH and 72.0% of APB are retained in their original districts. 585,817 Mississippians, 325,945 WNH and 230,591 APB are moved. While there is no established threshold for core retention, I argue a move of 25.7% of the population $(585,817)$ to a different judiciary in order to change the APB population in D1 by 54,908 is substantial.

Table III.F. 1 Core Retention of Illustrative Plan 1

Row	Original SCOMS	III Plan 1	2020 VAP	2020 WNH VAP	2020 APB VAP
A	$\boxminus 1$	1	452,017	161,498	271,547
B		2	120,310	87,901	24,869
C		3	144,075	75,509	56,675
D	1 Total		716,402	324,908	353,091
E	$\boxminus 2$	1	123,748	65,155	54,562
F		2	637,259	429,861	153,255
G		3	35,760	22,369	12,595
H	2 Total		796,767	517,385	220,412
1	$\oplus 3$	1	161,924	75,011	81,890
J		3	602,506	398,147	167,687
K	3 Total		764,430	473,158	249,577
L	Grand Total		2,277,599	1,315,451	823,080
Existing D1 VAP (D)			716,402	324,908	353,091
Pop Retained in D1 (A):			452,017	161,498	271,547
Pop Sent Out of D1 $(B+C)$:			264,385	163,410	81,544
Pop Added to D1 $(\mathrm{E}+\mathrm{I})$:			285,672	140,166	136,452
Net Change to D1 (sent out + added):			21,287	-23,244	54,908
New D1 VAP:			737,689	301,664	407,999
D1 Core Retention:			63.1\%	49.7\%	76.9\%
Pop Retained in Original Districts ($A+F+J$)			1,691,782	989,506	592,489
Pop Changing Districts ($\mathrm{B}+\mathrm{C}+\mathrm{E}+\mathrm{G}+\mathrm{I}$):			585,817	325,945	230,591
Plan Core Retention (Pop Retained / Total Pop):			74.3\%	75.2\%	72.0\%

65. In Table III.F. 2 (below) one can see the core retention results for Cooper's Illustrative Plan 2. The results are even more significant than in Illustrative Plan 1. In D1, 51.5\% of the total population is retained in D1, but the drivers of this again differ significantly by race and ethnicity. One-thirds (35.1%) of the WNH population from D1 is retained, while only 68.6% of the APB population is retained. Across the entire plan, 66.8% of Mississippi's total population is retained in their original district. 67.5% of WNH and 65.7% of APB are retained in their original districts. In this plan, 755,429

Mississippians, 426,938 WNH and 281,962 APB are moved. Again while there is no established threshold for core retention, I argue a move of 33.2% of the population $(755,429)$ to a different judiciary in order to change the APB population in D1 by only 51,349 is substantial.

Table III.F. 2 Core Retention of Illustrative Plan 2

Row	Original SCOMS	III Plan 2	2020 VAP	2020 WNH VAP	2020 APB VAP
A	$\square 1$	1	369,056	114,033	242,268
B		2	71,738	39,631	28,703
C		3	275,608	171,244	82,120
D	1 Total		716,402	324,908	353,091
E	$\boxminus 2$	1	77,391	35,211	39,433
F		2	688,622	461,303	172,012
G		3	30,754	20,871	8,967
H	2 Total		796,767	517,385	220,412
1	$\boxminus 3$	1	299,938	159,981	122,739
J		3	464,492	313,177	126,838
K	3 Total		764,430	473,158	249,577
L	Grand Total		2,277,599	1,315,451	823,080
Existing D1 VAP (D)			716,402	324,908	353,091
Pop Retained in D1 (A):			369,056	114,033	242,268
Pop Sent Out of D1 $(B+C)$:			347,346	210,875	110,823
Pop Added to D1 ($\mathrm{E}+\mathrm{l}$):			377,329	195,192	162,172
Net Change to D1 (sent out + added):			29,983	-15,683	51,349
New D1 VAP:			746,385	309,225	404,440
D1 Core Retention:			51.5\%	35.1\%	68.6\%
Pop Retained in Original Districts ($\mathrm{A}+\mathrm{F}+\mathrm{J}$)			1,522,170	888,513	541,118
Pop Changing Districts ($\mathrm{B}+\mathrm{C}+\mathrm{E}+\mathrm{G}+\mathrm{I}$):			755,429	426,938	281,962
Plan Core Retention (Pop Retained / Total Pop):			66.8\%	67.5\%	65.7\%

66. In Table III.F. 3 (below) one can see the core retention results for Cooper's Least Change Plan 1. The core retention results here are much better than in Illustrative Plans 1 and 2. In D1, 88.4% of the total population is retained. 85.4% of WNH and 91.7% of APB are retained. Across the entire plan, 92.4% of Mississippi’s total population is retained in their original district. 94.3% of WNH and 89.2% of APB are retained in their original districts. In this plan, 172,412 Mississippians, $74,458 \mathrm{WNH}$ and 88,566 APB are moved. I would characterize these changes as minimal and not substantially differentiated by race and ethnicity.

Table III.F. 3 Core Retention of Least Change Plan 1

Row	Original SCOMS	LC Plan 1	2020 VAP	2020 WNH VAP	2020 APB VAP
A	$\boxminus 1$	1	633,441	277,443	323,812
B		3	82,961	47,465	29,279
C	1 Total		716,402	324,908	353,091
D	$\square 2$	1	30,407	11,431	17,624
E		2	766,360	505,954	202,788
F	2 Total		796,767	517,385	220,412
G	$\bullet 3$	1	59,044	15,562	41,663
H		3	705,386	457,596	207,914
I	3 Total		764,430	473,158	249,577
J	Grand Total		2,277,599	1,315,451	823,080
Existing D1 VAP (C)			716,402	324,908	353,091
Pop Retained in D1 (A):			633,441	277,443	323,812
Pop Sent Out of D1 (B):			82,961	47,465	29,279
Pop Added to D1 ($\mathrm{D}+\mathrm{G}$):			89,451	26,993	59,287
Net Change to D1 (sent out + added):			6,490	-20,472	30,008
New D1 VAP:			722,892	304,436	383,099
D1 Core Retention:			88.4\%	85.4\%	91.7\%
Pop Retained in Original Districts ($A+E+H$)			2,105,187	1,240,993	734,514
Pop Changing Districts ($\mathrm{B}+\mathrm{D}+\mathrm{G}$):			172,412	74,458	88,566
Plan Core Retention (Pop Retained / Total Pop):			92.4\%	94.3\%	89.2\%

Source: data discussed in text; calculations by Bryan GeoDemographics for author.
67. Table III.F. 4 (below) one can see the core retention results for Cooper's Least Change Plan 2. The core retention results here are again much better than in Illustrative Plans 1 and 2. In D1, 94.8% of the total population is retained. 93.5% of WNH and 97.0% of APB are retained. Across the entire plan, 95.8% of Mississippi's total population is retained in their original district. 97.2% of WNH and 93.6% of APB are retained in their original districts. In this plan, 96,106 Mississippians, $36,540 \mathrm{WNH}$ and 52,420 APB are moved. I would characterize these changes as minimal and not substantially differentiated by race and ethnicity.

Table III.F. 4 Core Retention of Least Change Plan 2

Row	Original SCOMS	LC Plan 2	2020 VAP	2020 WNH VAP	2020 APB VAP
A	$\square 1$	1	679,340	303,930	342,334
B		3	37,062	20,978	10,757
C	1 Total		716,402	324,908	353,091
D	$\square 2$	2	796,767	517,385	220,412
E	2 Total		796,767	517,385	220,412
F	$\square 3$	1	59,044	15,562	41,663
G		3	705,386	457,596	207,914
H	3 Total		764,430	473,158	249,577
1	Grand Total		2,277,599	1,315,451	823,080
Existing D1 VAP (C)			716,402	324,908	353,091
Pop Retained in D1 (A):			679,340	303,930	342,334
Pop Sent Out of D1 (B):			37,062	20,978	10,757
Pop Added to D1 ($\mathrm{C}+\mathrm{G}$):			59,044	15,562	41,663
Net Change to D1 (sent out + added):			21,982	-5,416	30,906
New D1 VAP:			738,384	319,492	383,997
D1 Core Retention:			94.8\%	93.5\%	97.0\%
Pop Retained in Original Districts ($A+E+H$)			2,181,493	1,278,911	770,660
Pop Changing Districts ($\mathrm{B}+\mathrm{D}+\mathrm{G}$):			96,106	36,540	52,420
Plan Core Retention (Pop Retained / Total Pop):			95.8\%	97.2\%	93.6\%

Source: Data discussed in text; calculations by Bryan GeoDemographics for author.
68. In Table III.F. 5 (below) one sees a comparison of the core retention in total and by race, WNH and APB. There are many communities of interest in Mississippi and differential core retention analysis enables one to demographically quantify the impact of potential changes on one of interest, which in this case would be the existing judicial districts. The CRA shows that Illustrative Plans 1 and 2 are significantly disruptive to large numbers of Mississippians across the state in order to achieve small increases in the percent APB in District 1. The differential CRA shows that the Least Change Plans 1 and 2 are minimally disruptive and do not displace large numbers of Mississippians. Least Change Plan 1 has a minimal amount of differential core retention by race (that is, 94.3% CRA for WNH and 89.2% CRA for APB is minimally different from 92.4% overall), while Least Change Plan 2 has virtually no differential core retention by race (that is, 97.2% CRA for WNH and 93.6% CRA for APB is minimally different from 95.8\% overall).

Table III.F. 5 Core Retention Analysis of SCOMS by Plaintiff Plan

Population		III Plan 1	III Plan 2	LC Plan 1	LC Plan 2
Total	District 1	63.1%	51.5%	88.4%	94.8%
	Total	74.3%	66.8%	92.4%	95.8%
WNH	District 1	49.7%	35.1%	85.4%	93.5%
	Total	75.2%	67.5%	94.3%	97.2%
APB	District 1	76.9%	68.6%	91.7%	97.0%
	Total	72.0%	65.7%	89.2%	93.6%

Source: 2020 Census Population analyzed with CRA by SCOMS and alternate plaintiff plans. Calculations by Bryan GeoDemographics for author.

Compactness

69. The second traditional redistricting principle I address is the compactness of districts (See paragraph 15). In addition to noting that compactness was a criteria used in the "Magnolia Bar" case (Barbour, 1992), I once again turn to Mississippi Code § 5-3-101 which states for the purpose of legislative redistricting:
"In accomplishing the apportionment, the committee shall follow such constitutional standards as may apply at the time of the apportionment and shall observe the following guidelines unless such guidelines are inconsistent with constitutional standards at the time of the apportionment, in which event the constitutional standards shall control."
(a) Every district shall be compact
70. Within Mr. Cooper's report on Page 4 (P. 4), Mr. Cooper states that he was "asked by the attorneys for the Plaintiffs in this case [have asked me] to determine whether the Black population in Mississippi is "sufficiently large and geographically compact" to allow for one of the three at-large districts for the Mississippi Supreme Court to be drawn with a majority Black voting age population, consistent with traditional districting principles." Mr. Cooper goes on to mention the word "compact" six more times in his report as follows:
71. On P.5, Mr. Cooper states at C. Summary of Expert Conclusions 11. "I have reached the following conclusions: - Based on the 2020 Census, Black Mississippians are sufficiently numerous and geographically compact to allow for one majority-Black VAP district".
72. On P.6, Mr. Cooper also states at C. Summary of Expert Conclusions 11 "• In addition, Black Mississippians have been sufficiently numerous and geographically compact to allow for one majority-Black VAP district as part of a three-district plan for the Mississippi Supreme Court based on the prior decennial Census numbers from 1990, 2000, and 2010."
73. On P.24, Mr. Cooper states at A. Illustrative Plans and Traditional Redistricting Principles 46. "The two illustrative plans that I have developed contain three districts- each with one
majority-Black district. Both illustrative plans comply with traditional redistricting principles, including compactness".
74. On P.24, Mr. Cooper states at A. Illustrative Plans and Traditional Redistricting Principles 47. "The illustrative plans meet the first Gingles precondition, i.e., they demonstrate that the Black population in Mississippi is sufficiently numerous and geographically compact to allow for the creation of at least one 3-member majority Black district."
75. On P.24, Mr. Cooper states at A. Illustrative Plans and Traditional Redistricting Principles 48. "There is no question that Mississippi's Black population is "geographically compact." For example, and by way of reference, the nine-single member district plan shown in Exhibit G contains three contiguous majority-Black VAP districts (Districts 4, 5, and 6)—demonstrating beyond a shadow of doubt that the Black population is compactly distributed north-to-south in and around the Delta."
76. Mr. Cooper makes statements in his report that he is certain that the alternate districts as he has configured them are defensibly compact. In fact, on P.24, Mr. Cooper uses language such as "there is no question" and "beyond a shadow of a doubt." Yet the only evidence he offers are his own personal observations and strongly stated beliefs. Mr. Cooper does not appear to have gone through the exercise of actually calculating and measuring the compactness of each district in each plan - an exercise that he has done in other cases. ${ }^{28}$ At this point, I turn my attention to performing and discussing just such an analysis.
77. Compactness is a tool that can be used in redistricting to compare the relative compactness of existing districts against new districts to determine whether the new districts entail minimal or large-scale changes from the existing districts. There are numerous measures of "compactness" - each using different math and concepts. But what compactness measure does an expert use? The law offers few precise definitions of compactness other than "you know it when you see it," which effectively implies a common understanding of the concept. In contrast, academics have shown that compactness has multiple dimensions and have generated many conflicting measures. ${ }^{29}$
78. There is no professional consensus on a "right" measure, and every widely used measure works differently. A district that is "most compact" by one measure can easily

[^10]and frequently be less compact by another. Four of the most common measures (Polsby-Popper, Schwartzberg, Reock and Convex Hull) each have unique features ${ }^{30}$ so I use each to facilitate a comprehensive analysis of each plan. The analysis includes two tables per plan. The first is the actual scores, by district and by measure including a plan average by measure. The second is a ranking by district and by plan. That is for each district and each measure, how did each score rank (1 being the best score and 5 being the worst)? Last, the tables are thematically shaded based on their performance. Cells in green are the best performing districts, cells in red are poorer performing districts.

Table III.F. $6 a$ (below) shows the compactness scores for the existing SCOMS districts, by compactness measure, and Table III.F. $6 b$ (below) shows the ranks of those scores relative to the other plans. One can compare the average scores and sum these ranks as a means of evaluating the compactness of each plan. For example, using Table III.F.6b. For District 1, using the Polsby-Popper Score, the SCOMS plan ranks first, that is, that district, by that measure, out of the five plans (original SCOMS and each of Cooper's alternative plans) is the most compact.

[^11]Table III.F. 6 a Compactness Scores of Existing SCOMS Districts

	More is Better			Less is Better
District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
1	0.15	0.42	0.65	2.55
2	0.31	0.44	0.77	1.79
3	0.40	0.66	0.88	1.58
Average	0.29	0.51	0.77	1.97

Source: See text. Calculations by Bryan GeoDemographics for author.

Table III.F.6b Compactness Rankings of Existing SCOMS Districts

District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	1	1	3	1
$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	4	3
$\mathbf{3}$	2	1	1	2
Average	2.0	1.7	2.7	2.0

Source: See text. Calculations by Bryan GeoDemographics for author
74. In Table III.F. $6 b$ one can see that the existing SCOMS districts perform the best or nearly the best for each district, by each measure compared to the other proposed plans. The exception is the Convex Hull measure, which ranks District $13^{\text {rd }}$ and District $24^{\text {th }}$ out of the five plans. The sum of the ranks for the existing SCOMS plan is 25 .
75. Table III.F. 7 a (below) shows the compactness scores for the Cooper Illustrative 1 Plan districts, by compactness measure, and Table III.F. $7 b$ shows the ranks of those scores relative to the other plans.

Table III.F.7a Compactness Scores of Cooper Illustrative 1 Districts

	More is Better			Less is Better
District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	0.15	0.32	0.74	2.61
$\mathbf{2}$	0.31	0.39	0.80	1.80
$\mathbf{3}$	0.37	0.38	0.79	1.65
Average	0.27	0.36	0.78	2.02

Source: See text. Calculations by Bryan GeoDemographics for author

Table III.F.7b Compactness Ranking of Cooper Illustrative 1 Districts

District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	2	3	1	2
$\mathbf{2}$	5	4	2	4
$\mathbf{3}$	3	4	2	3
Average	3.3	3.7	1.7	3.0

Source: See text. Calculations by Bryan GeoDemographics for author
76. In Table III.F. $7 b$ one can see that the Cooper Illustrative 1 Plan districts perform more poorly than the existing SCOMS plan. That is, the plan is less compact. The Convex Hull measure ranks District 1 as $1^{\text {st }}$ with District 2 and District 3 tied for $2^{\text {nd }}$. The sum of the ranks for the Cooper Illustrative 1 Plan is 35 .

Table III.F.8a Compactness Scores of Cooper Illustrative 2 Districts

	More is Better Less is Better			
District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	0.12	0.27	0.71	2.85
$\mathbf{2}$	0.38	0.48	0.78	1.62
$\mathbf{3}$	0.29	0.33	0.72	1.85
Average	0.27	0.36	0.74	2.11

Source: See text. Calculations by Bryan GeoDemographics for author

Table III.F.8b Compactness Ranking of Cooper Illustrative Plan 2 Districts

District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	3	5	2	3
$\mathbf{2}$	2	2	3	2
$\mathbf{3}$	5	5	4	5
Average	3.3	4.0	3.0	3.3

Source: See text. Calculations by Bryan GeoDemographics for author
77. In Table III.F. $8 b$ one can see that the Cooper Illustrative Plan 2 districts performs even more poorly than the existing SCOMS plan. That is, the plan is less compact. The District 2 configuration generally performs well across the different measures. The sum of the ranks for the Cooper Illustrative Plan 2 is 41.

Table III.F.9a Compactness Scores of Cooper Least Change 1 Districts

	More is Better			
District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg is Better
$\mathbf{1}$	0.09	0.29	0.55	3.39
$\mathbf{2}$	0.39	0.50	0.83	1.60
$\mathbf{3}$	0.33	0.41	0.79	1.74
Average	0.27	0.40	0.72	2.24

Source: See text. Calculations by Bryan GeoDemographics for author

Table III.F.9b Compactness Ranking of Cooper Least Change 1 Districts

District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	5	4	5	5
$\mathbf{2}$	1	1	1	1
$\mathbf{3}$	4	3	3	4

Source: See text. Calculations by Bryan GeoDemographics for author
78. In Table III.F.9b one can see that the Cooper Least Change 1 Plan Districts 1 and 3 perform more poorly and the plan overall performs more poorly than the existing SCOMS plan. That is, the plan is less compact overall. The movement of Madison County from District 1 to District 3 significantly distorts the boundaries of District 1 and impairs the compactness of District 3. The sum of the ranks for the Cooper Least Change Plan 1 is 37 .

Table III.F.10a Compactness Scores of Cooper Least Change 2 Districts

	More is Better		Less is Better	
District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	0.12	0.35	0.59	2.95
$\mathbf{2}$	0.31	0.44	0.77	1.79
$\mathbf{3}$	0.46	0.54	0.88	1.48
Average	0.30	0.44	0.75	2.07

Source: See text. Calculations by Bryan GeoDemographics for author.

Table III.F.10b Compactness Ranking of Cooper Least Change 2 Districts

District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	4	2	4	4
$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{3}$
$\mathbf{3}$	1	2	1	1
Average	2.7	2.3	3.0	2.7

Source: See text. Calculations by Bryan GeoDemographics for author
79. In Table III.F. $10 b$ one can see that the Cooper Least Change Plan 2 Districts 1 performs more poorly and the plan overall performs more poorly than the existing SCOMS plan. That is, the plan is less compact. Note that District 2 in this plan is unchanged from the original SCOMS plan. The sum of the ranks for the Cooper Least Change Plan 2 is 32 .
80. In summary, the alternate plans suggested by Cooper range from somewhat less compact to substantially less compact when compared to the existing SCOMS plan.

G. Voting Age Population Polling Place Spatial Analysis

81. There is a long history of Black voter suppression in Mississippi. In recent years, much has been written about the impact of Black voter disenfranchisement, driven both by social and legal forms of suppression. ${ }^{31}$ In this report, I attempt to measure two elements of Black voter suppression. The first is causal and is what I discuss here. "What are the differences in proximity, the differences in the distance (proximity) of Black voting age population to current polling stations compared to all voting age population - and, in particular, the WNH voting age population. My hypothesis for this question was that if the Black voting age population were being systematically disenfranchised by the state of Mississippi, a symptomatic indicator of that would be seeing fewer of them close to polling places, and more of them a great distance from polling places. The second measure I discuss is evidentiary (discussed later in Section IV): Does one sees actual evidence of Black voter suppression at the polls today? That is: does one see a difference in Black voter registration and Black voter turnout, which one would expect as an outcome of Black voter disenfranchisement?

[^12]82. The Statewide Election Management System (or "SEMS") is the election information management system - for which data is provided by local officials. This system supports a wide variety of responsibilities related to elections and based on information from SEMS and by working with assorted county election officials, reporters at the Mississippi Free Press (MFP) produced an inventory of polling places for the November 8, 2020 election. ${ }^{32}$ Using that inventory, BryanGeoDemographics performed for me an in-depth spatial analysis of the location of those polling places and their proximity to the voting age population in total and by race and ethnicity. This analysis was conducted for the population as a whole and by race and ethnicity for the entire state of Mississippi. This analysis was then conducted for each individual county. This sub-state analysis allows one to aggregate and assign the proximity of total VAP, WNH VAP and Any Part Black VAP to polling places within each existing district in the current SCOMS configuration, as well in each illustrative and least change configuration proposed by Mr. Cooper in his expert report. While each of Mr. Cooper's illustrative and least change plans increases the percent of the Black population in District 1, I wanted to know if the increases he achieved came at the expense of Black voter proximity to the polls. That is, while he increased the number and proportion of Blacks - did he increase (or decrease) the number of Blacks who happen to have close proximal access to the polls. If Mr. Cooper's plans increased the number and proportion of Blacks, but he moved close-poll proximity Blacks out of District 1 and moved distant-poll proximity Blacks into District 1, one could argue that the actual impact of such plans would be to increase Black voter disenfranchisement and risk fewer Blacks actually turning out to vote.
83. I was not selective and did not discriminately select a vintage of polling locations that I expected would have been any more or less favorable to the outcome I was researching.

[^13]Table III.G. 1 Distance of Population to Polling Places by Race Definition

Source: data discussed in text; calculations by Bryan GeoDemographics for author.
84. Table III.G. 1 shows the VAP (at A), the WNH VAP (at B), and the APB VAP (at C) with the sum of the population who are different distances from a polling place. In the first row (at 1) I show the population who are within a quarter mile of a polling place. This number is shown as both a percent of the population that is within that distance (WNH / VAP and APB / VAP), as well as the share of that population of their share within the state (WNH VAP within $1 / 4$ mile / WNH VAP and APB VAP within $1 / 4$ mile / APB VAP for example). In the second row (at 2) I show the population within $1 / 2$ a mile. In the third row (at 3) I show the population within 1 a mile. And in the fourth row (at 4) I show the population more than a mile distant from a polling place. At 5 I show that the $1,315,451$ WNH VAP are 57.8% of the total Mississippi VAP (MS VAP), and 823,080 APB VAP are 36.1% of MS VAP.
85. Starting with my analysis at $1 / 4$ mile. While WNH VAP make up 57.8% of MS VAP, they only make up 51.6% of VAP within $1 / 4$ mile of a polling place. Conversely, while APB VAP make up 36.1% of MS VAP, they make up 43.1% of VAP within $1 / 4$ mile of a polling place. While 21.4% of WNH VAP live within $1 / 4$ mile of a polling place, 28.6% of APB VAP live within $1 / 4$ mile of a polling place. By both measures, WNH VAP are under-represented and APB VAP are over-represented at our measure of closest distance ($1 / 4$ mile) to MS polling places.
86. Starting with my analysis at $1 / 2$ mile. While WNH VAP make up 57.8% of MS VAP, they only make up 50.2% of VAP within $1 / 2$ mile of a polling place. Conversely, while APB VAP make up 36.1% of MS VAP, they make up 44.0% of VAP within $1 / 2$ mile of a polling place. While 37.1% of WNH VAP live within $1 / 2$ mile of a polling place,
52.0% of APB VAP live within $1 / 2$ mile of a polling place. By both measures, again, WNH VAP are under-represented and APB VAP are over-represented at our next proximal measure ($1 / 2$ mile) to MS polling places.
87. Starting with my analysis at < 1 mile. While WNH VAP make up 57.8% of MS VAP, they only make up 52.7% of VAP within 1 mile of a polling place. Conversely, while APB VAP make up 36.1% of MS VAP, they make up 41.2% of VAP within 1 mile of a polling place. While 59.7% of WNH VAP live within 1 mile of a polling place, 74.5% of APB VAP live within 1 mile of a polling place. By both measures, again, WNH VAP are under-represented and APB VAP are over-represented at our next proximal measure (1 mile) to MS polling places.
88. Now, looking at VAP more than one mile from a polling place. While the WNH VAP makes up 57.8% of MS VAP, it makes up 67.2% of VAP more than a mile from a polling place. Conversely, while the APB VAP makes up 36.1% of MS VAP, it makes up 26.6% of VAP more than a mile from a polling place. While 40.3% of the WNH VAP live more than a mile from a polling place, only 25.5% of the APB VAP live more than a mile from a polling place. By both measures, the WNH VAP is over-represented and the APB VAP is under-represented at our measure of greatest distance (>1 mile) to MS polling places.
89. These results suggest that in terms of proximity distance to a polling place, Black voters have more of an opportunity to vote than White voters in Mississippi.

H. Diversity Evaluation of the Supreme Court Districts

90. In conjunction with the lawsuit that led to this report, the ACLU (2022) states "It's far past time that the Supreme Court districts that Mississippi uses to elect its Supreme Court reflect the diversity of the state's population, rather than diminishing the voice of Black voters." Given this statement and the recognition of the importance of political and socio-economic diversity by Judge William Barbour in the "Magnolia Bar" case, which involved SCOMS districting (Barbour, 1992), it is worthwhile here to evaluate the issue of population diversity in conjunction with this case involving SCOMS districts.
91. The ACLU and Judge Barbour are not the only entities to recognize the importance of diversity in Mississippi. Another entity is the Board of Trustees of the State Institutions of Higher Learning, whose members are appointed by The Governor on the basis of the State's Supreme Court Districts. Among the Board's policies and bylaws, as
amended through September $29^{\text {th }}, 2022,{ }^{33}$ one finds Policy 102.06 (p. 14), a statement on diversity:
"One of the strengths of Mississippi is the diversity of its people. This diversity enriches higher education and contributes to the capacity that our students develop for living in a multicultural and interdependent world. Our system of government, rooted in respect for all people and respect for each individual, is based on understanding. Embracing diversity of thought, cultural background, experience, and identity helps to foster inclusive and intellectually enriched campus communities that maximize opportunities for success among all students and employees."
92. Given this statement, the one by the ACLU, and the opinion by Judge Barbour, I conducted an examination of the diversity of the Supreme Court Districts themselves using a demographic "cluster analysis" which is set of tools and algorithms used to classify different objects into groups in such a way that the similarity between two objects is maximal if they belong to the same group and minimal otherwise (Gallesty, 2020). It is the process of grouping individuals or entities with similar characteristics or similar variables (NCSS, 2022). In the case of the entities of interest here Mississippi counties - one can then examine how these groups are represented in the existing and proposed district plans. The Mississippi Health and Hunger Atlas (Haggard, Cafer, and Green, 2017) provides the data for this process, which allows one to construct groups of counties through its indices of health and well-being (See paragraph 96 for a description of these indices). In turn, these groups can be used to assess diversity based on the indices. For example, if the cluster analysis reveals that all of the state's 82 counties can be formed into " k " groups, and each of these " k " groups had the same percent of its counties within a given district, the district in question would be maximally diverse; if all of the counties within a given Supreme Court District were members of the same group, there would be no population diversity within the district.
93. The authors of the Mississippi Health and Hunger Atlas note that health and hunger are correlated with socio-economic status (Haggard, Cafer, and Green, 2017:1), which in turn is correlated with race (Massey, 2007). This correlation comes back full circle to health and well-being, via the correlation of race and socio-economic status with one another and to mortality (McGehee, 1994; Stockwell, Swanson, and Wicks, 1988; Swanson and McGehee, 1996; Swanson and Sanford, 2012; Swanson and Tedrow, 2018; Waldron, 2002). These correlations support the argument that the health and hunger indices also serve as indices of race and socio-economic status.

[^14]94. As can be seen in Exhibit III.H.1, there are nine variables used to indicate health need and seven to indicate hunger need. As described in the Atlas, these variables are combined and summarized to create a single "needs" index for each county in Mississippi, as described in paragraph 96. Five health variables are combined and summarized with five hunger variables to create a single "performance" index for each county. These two indices formed the input for the cluster analysis. I performed what is known as a NCSS K-Means procedure (NCSS, 2022), the results of which are shown in Appendix 2.
95. The performance levels are based on quintiles (Haggard, Cafer, and Green, 2017:4), which are arranged from very low to very high: "Counties with a very low ranking are in the lowest 20 percent for need or performance. Being in the lowest 20 percent or first quintile means counties either have low need or low performance, depending on the indicator. Counties with a very high ranking are in the highest 20 percent counties for need or performance. For example, a very high ranking for percent of food insecure individuals means that county is in the highest 20 percent, or fifth quintile. This denotes the highest need group for percentages of food insecure people in that county." The health indices were scored similarly.

Exhibit III.H. 1 Health and Hunger Needs Atlas Needs and Performance Variables

Need Indicators

Health

Teen Pregnancy Rate per 1,000 Live Births
Low Birth Weight per 100 Live Births
Pre-Term Birth Rate per 100 Live Births
Adult Obesity Rate
Adult Diabetes Rate
Adult Hypertension per 100,000 Deaths
Uninsured Adults
Uninsured Under 18
Avg. Miles to Closest Primary Care Provider
Hunger
Food Insecure Individuals
Children Food Insecure
Food Insecure with Hunger
Population Income Eligible for SNAP
Children Income Eligible for SNAP
Food Affordability
Low Food Access Index

Performance Indicators

Health

Primary Care Physicians per 100,000
Other Primary Care Providers per 100,000
Medicaid Enrollees per Primary Care Provider
Population Enrolled in Medicaid
Under 18 Enrolled in Medicaid

Hunger

SNAP Enrollment (\% Total Population)
SNAP Enrollment (\% Eligible)
SNAP Enrollment: Children (\% Eligible)
Local Sustainability Resilience Index
Overall Performance Rank

Source: Mississippi Health and Hunger Atlas, 2017 (indicators are shown and discussed in pp 2 to 22).
96. The cluster analysis enables us to understand the geographic distribution of population diversity beyond the raw\% APB for each county. Using the existing SCOMS districts as a reference (see Appendix 4 Map D), it can be seen that large numbers of high \%APB VAP population are generally distributed north and south along the Mississippi river, but there are other concentrations around the state at the county level. District 1 was originally drawn such that it captures much of its APB population along the Mississippi river, but it also extends eastward to capture, among other concentrations, two high APB counties on the eastern edge of Mississippi, Kemper and Noxubee. As will be shown, the current districts each have a given level of population diversity. The cluster analysis enables us to determine if the alternative plans proposed by plaintiffs maintain the level of population diversity found in each of the current districts, increase it, or reduce it.
97. My analysis yielded three clusters as follows: 12 counties in cluster 1 (high need/high performance); 41 counties in cluster 2 (medium need/medium performance); and 29 counties in cluster 3 (high need/low performance). In the remainder of this section, I compare the numbers and types of clusters for the existing SCOMS plans and for each of the plans proposed the Plaintiffs' expert, Mr. Cooper.
98. The overall results can be seen in the map shown as Exhibit III.H.2, where 12 counties are clustered into Group 1 (shown in teal), "low need/high performance;" 41 counties are clustered into Group 2 (shown in lime green), "medium "need/medium performance" group; and 29 counties are clustered into Group 3 (shown in purple), "high need/low performance."
99. The counties in each of the three cluster groups would be spread proportionately across the three Supreme Court Districts if diversity was at a maximum. However, unlike group 1, which can be divided by three with no remainder, groups 2 and 3 have fractional remainders. Given this; districts 1,2 and 3 would have each 4 of the 12 counties in Group 1; districts 1, 2, and 3 would each have 13 of the 41 counties in Group 2, with the remaining two counties placed, respectively, into two of the three districts; and districts 1, 2, and 3 would each have 9 of the 29 counties in Group 3, with the remaining two counties placed, respectively, into two of the three districts. These distributions match the arithmetic means that correspond to the arithmetic means (expressed as percentages) shown in the "b" series of exhibits in this section (see below for a description of the exhibits).

Exhibit III.H. 2 Cluster Map Based on Mississippi Needs and Performance Indicators

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis \& calculations by author; map by Bryan GeoDemographics for author.
100. Next, I present the cluster analysis results for the existing SCOMS districts, and for each of the four alternate plans presented by Mr. Cooper. The remaining series of fifteen exhibits are presented by each of the five plans, with a map, a table and a chart for each, which is in accordance with the following general layout:

- Exhibit III.H.\#.a is the map showing the arrangement of counties for the plan
- Exhibit III.H.\#.b is a chart with the statistics of the cluster analysis for the plan
- Exhibit III.H.\#.c is a chart of the cluster analysis for the plan

Exhibit III.H.3.a Cluster Map for Existing SCOMS Plan

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis \& calculations by author; map by Bryan GeoDemographics for author.
101.Exhibit III.H.3.a (above) shows the distribution of counties by cluster group across the three existing Supreme Court Districts. Under the existing plan: District 1 has three of the 12 Group 1 counties (shown in teal), 11 of the 41 Group 2 counties (shown in lime green), and eight of the 29 Group 3 counties (shown in purple); District 2 has five of the 12 Group 1 counties (teal), 15 of the 41 Group 2 counties (lime green), and seven of the 29 Group 3 counties (purple); District 3 has four of the 12 Group 1 counties (teal), 15 of the 41 Group 2 counties (lime green), and 14 of the 29 Group 3 counties (purple). Exhibit III.H.3.b and Exhibit III.H.3.c (below) shows the percent of each cluster in tabular and graphical (labeled "Series" in the graph) form with each of the three existing districts.

Exhibit III.H.3.b Cluster Analysis Table: Existing SCOMS Plan

Cluster (Series)	District 1	District 2	District 3	Total
1	25.0%	41.7%	33.3%	100.0%
2	26.8%	36.6%	36.6%	100.0%
3	27.6%	24.1%	48.3%	100.0%
mean	26.5%	34.1%	39.4%	
sd	0.01	0.07	0.06	
cv	0.04	0.22	0.16	

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculation, table and graph by author.

Exhibit III.H.3.c Cluster Analysis Chart: Existing SCOMS Plan

[^15]102. In Exhibit III.H.3.b and Exhibit III.H.3.c, (above) one can see the relative distribution of the cluster groups (labeled as "Series" in the Graph) within each of the three existing Supreme Court Districts numerically and graphically (teal $=$ cluster group 1 ; lime green = cluster group 2, and Purple = cluster group 3). If all three groups were proportionately distributed equally within each district, the tops of the colored bars would all be at the same height within a given district (which is the arithmetic average of the three groups, as shown approximately by the horizontal bar within each of the three districts). In the case of the Existing Districts, the three groups are nearly distributed equally within existing district 1 , Cluster Group 1 (teal bar at 25\%), cluster group 2 (lime green at 26.83\%) and Cluster group 3 (purple at 27.59\%). In existing district 2, the horizontal line shows that cluster groups 1 (teal bar at 41.67%) and 2 (lime green bar at 36.59%) are both higher and closer to one another than either is to group 3 (purple bar at 24.14\%), while in existing district 3, groups 1 (teal bar at 33.33\%) and 2 (lime green bar at 36.49%) are both lower and closer to one another than either is to group 3 (purple bar at 48.28%). As a way to summarize these results, recall the discussion of the arithmetic mean, standard deviation and coefficient of variation (CV) in line item \#33, where it is noted that the latter which shows the extent of variation relative to the mean. In District 1, the $C V$ is 0.04 , in District 2, it is 0.22 , and in District 3 , it is 0.16 . These $C V$ s can be interpreted as a measure of the diversity in that the lower they are, the more diversity is equitably distributed. I will compare these $C V$ values under the existing set of Supreme Court Districts to those proposed by Cooper, with a focus on District 1.

Exhibit III.H.4.a Cluster Map for Cooper Illustrative Plan 1

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis \& calculations by author; map by Bryan GeoDemographics for author.
103. Exhibit III.H.4.a (above) shows the distribution of counties by cluster group across the three Supreme Court Districts proposed under Cooper's Illustrative Plan I: District 1 has two of the 12 Group 1 counties (shown in teal), 11 of the 41 Group 2 counties (shown in lime green), and 21 of the 29 Group 3 counties (shown in purple); District 2 has three of the 12 Group 1 counties (teal), 12 of the 41 Group 2 counties (lime green), and two of the 29 Group 3 counties (purple); District 3 has seven of the 12 Group 1 counties (teal), 18 of the 41 Group 2 counties (lime green), and six of the 29 Group 3 counties (purples). Exhibit III.H.4.b and Exhibit III.H.4.c (below) shows the percent of each cluster in tabular and graphical (labeled "Series" in the graph) form with each of the three districts proposed in Cooper's Illustrative Plan 1.

Exhibit III.H.4.b Cluster Analysis Table: Cooper Illustrative Plan 1

Cluster (Series)	District 1	District 2	District 3	Total
1	16.7%	25.0%	58.3%	100.0%
2	26.8%	29.3%	43.9%	100.0%
3	72.4%	6.9%	20.7%	100.0%
mean	38.6%	20.4%	41.0%	
sd	0.24	0.10	0.16	
cv	0.63	0.48	0.38	

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.

Exhibit III.H.4.c Cluster Analysis Chart: Cooper Illustrative Plan 1

[^16]104. In Exhibit III.H.4.b and Exhibit III.H.4.c, (above) one can see the relative distribution of the cluster groups (labeled as "Series" in the Graph) under Cooper's Illustrative Plan 1, across the three Supreme Court Districts numerically and graphically (teal = cluster group 1 ; lime green = cluster group 2 , and purple $=$ cluster group 3). If all three groups were proportionately distributed equally within each district, the tops of the colored bars would all be at the same height within a given district (which is the arithmetic average of the three groups, as shown by the horizontal bar within each of the three districts). In the case of the districts proposed in Cooper's Illustrative Plan 1, the three groups are highly unequally distributed within District 1 , with cluster group 3 (purple bar at 72.4%) counties substantially higher than cluster group 1 (teal bar at 16.7%) and group 2 counties (lime green bar at 26.8%) combined. In proposed District 2, the bars show that cluster groups 1 (teal bar at 25.0%) and 2 (lime green bar at 29.3%) are both substantially higher and closer to one another than either is to group 3 (purple bar at 6.9\%), while in Cooper's proposed district 3, groups 1 (teal bar at 58.3%) and 2 (lime green bar at 43.9%) are both substantially higher and closer to one another than either is to group 3 (purple bar at 20.7\%). Recall that for the existing districts that the $C V \mathrm{~s}$, are as follows: In District 1, the $C V$ is 0.04 ; in District 2, it is 0.22 ; and in District 3, it is 0.16 . Under Cooper's Illustrative Plan 1 , the $C V$ s are 0.63 in District 1, 0.48 in District 2, and 0.38 in District 3, all of which are higher than the corresponding $C V$ s found for the existing districts. Notably, the $C V$ for District 1 under Cooper's Illustrative Plan 1 is 15.75 times higher than the $C V$ for District 1 under the existing plan: It decreases diversity by a factor of 15.75.

Exhibit III.H.5.a Cluster Map for Cooper Illustrative Plan 2

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis \& calculations by author; map by Bryan GeoDemographics for author.
105. Exhibit III.H.5.a (above) shows the distribution of counties by cluster group across the three districts proposed under Cooper's Illustrative Plan II. Under this plan: District 1 has two of the 12 Group 1 counties (shown in teal), nine of the 41 Group 2 counties (shown in lime green), and 20 of the 29 Group 3 counties (shown in lime green); District 2 has four of the 12 Group 1 counties (teal), 15 of the 41 Group 2 counties (lime green), and six of the 29 Group 3 counties (purple); District 3 has six of the 12 Group 1 counties (teal), 17 of the 41 Group 2 counties (lime green), and two of the 29 Group 3 counties (purple). Exhibit III.H.5.b and Exhibit III.H.5.c (below) shows the percent of each cluster in tabular and graphical (labeled "Series" in the graph) form with each of the three districts proposed in Cooper's Illustrative Plan 2.

Exhibit III.H.5.b Cluster Analysis Table: Cooper Illustrative Plan 2

Cluster (Series)	District 1	District 2	District 3	Total
1	16.7%	33.3%	50.0%	100.0%
2	22.0%	36.6%	41.5%	100.0%
3	69.0%	10.3%	20.7%	100.0%
mean	35.9%	26.8%	37.4%	
sd	0.24	0.12	0.12	
cv	0.66	0.44	0.33	
cd				

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.

Exhibit III.H.5.c Cluster Analysis Chart: Cooper Illustrative Plan 2

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.
106. In Exhibit III.H.5.b and Exhibit III.H.5.c, (above), one can see the relative distribution of the cluster groups (Labeled "Series" in the Graph) under Cooper's Illustrative Plan 2, within each of the three Supreme Court Districts numerically and graphically (teal = cluster group 1 ; lime green = cluster group 2 , and purple $=$ cluster group 3). If all three groups were proportionately distributed equally within each district, the tops of the colored bars would all be at the same height within a given district (which is the arithmetic average of the three groups, as approximately shown by the horizontal bar within each of the three districts). In the case of these proposed districts, the three groups are unequally distributed within proposed district 1 , with cluster group 3 (purple bar at 69.0\%) counties substantially higher than both cluster group 1 (teal bar at 16.7%) and cluster group 2 (lime green bar at 22.0%) counties. In proposed district 2, cluster groups 1 (teal bar at 33.3%) and 2 (lime green bar at 36.6\%) are both higher and closer to one another than either is to group 3 (purple bar at 10.3\%), while in Cooper's proposed district 3, Cluster group 1 (teal bar at 50%) is higher than group 2 (lime green bar at 41.5\%), which, in turn, is substantially higher than cluster group 3 (purple bar at 20.7\%). Again, recall that for the existing districts that the $C V \mathrm{~s}$, are as follows: In District 1 , the $C V$ is 0.04 ; in District 2, it is 0.22 ; and in District 3, it is 0.16 . Under Cooper's Illustrative Plan 2, the $C V$ s are 0.66 in District 1, 0.44 in District 2, and 0.33 in District 3, all of which are higher than the corresponding $C V \mathrm{~s}$ found for the existing districts. Notably, the $C V$ for District 1 under Cooper's Illustrative Plan 1 is 16.5 times higher than the $C V$ for District 1 under the existing plan: It decreases diversity by a factor of 16.5 .

Exhibit III.H.6.a Cluster Map for Cooper Least Change Plan 1

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis \& calculations by author; map by Bryan GeoDemographics for author.
107. Exhibit III.H.6.a (above) shows the distribution of counties by cluster group across the three districts proposed under Cooper's Least Change Plan 1. Under this plan: District 1 has four of the 12 Group 1 counties (shown in teal), 10 of the 41 Group 2 counties (shown in lime green), and 14 of the 29 Group 3 counties (shown in purple); District 2 has five of the 12 Group 1 counties (teal), 15 of the 41 Group 2 counties (lime green), and five of the 29 Group 3 counties (purple); District 3 has three of the 12 Group 1 counties (teal), 16 of the 41 Group 2 counties (Lime green), and ten of the 29 Group 3 counties (purple). Exhibit III.H.6.b and Exhibit III.H.6.c (below) shows the percent of each cluster in tabular and graphical (labeled "Series" in the graph) form with each of the three districts proposed in Cooper's Least Change Plan 1.

Exhibit III.H.6.b Cluster Analysis Table: Cooper Least Change Plan 1

Cluster (Series)	District 1	District 2	District 3	Total
1	33.3%	41.7%	25.0%	100.0%
2	24.4%	36.6%	39.0%	100.0%
3	48.3%	17.2%	34.5%	100.0%
mean	35.3%	31.8%	32.8%	
sd	0.10	0.11	0.06	
cv	0.28	0.33	0.18	
cd				

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.

Exhibit III.H.6.c Cluster Analysis Chart: Cooper Least Change Plan 1

[^17]108. In Exhibit III.H.6.b and Exhibit III.H.6.c, (above), one can see the relative distribution of the cluster groups (Labeled "Series" in the Graph) within each of the three Supreme Court Districts proposed in Cooper's Least Change Plan 1 numerically and graphically (teal $=$ cluster group 1 ; lime green $=$ cluster group 2 , and purple $=$ cluster group 3). If all three cluster groups were proportionately distributed equally within each district, the tops of the colored bars would all be at the same height within each of the three districts proposed under Cooper's Least Change Plan I (which is the arithmetic average of the three groups, as shown by the horizontal bar within each of the three districts). The three groups are not distributed equally within Cooper's proposed District 1, where the graph shows that Cluster groups 1 (teal bar at 33.3\%) and 2 (lime green bar at 24.4%) are both lower and closer to one another than either is to Cluster group 3 (purple bar at 48.3\%). In proposed District 2, Cluster groups 1 (teal bar at 41.6% and 2 (lime green bar at 36.6%) are substantially higher and closer to one another than either is to Group 3 (purple bar at 17.2\%). In Cooper's proposed District 3, Cluster group 1 (teal bar at 25%) is lower than that found for Cluster groups 2 (lime green bar at 39.0%) and 3 (purple bar at 34.5%) which are both closer to one another than either is to Cluster Group 1. Once again, recall that for the existing districts that the $C V \mathrm{~s}$, are as follows: In District 1, the $C V$ is 0.04 ; in District 2, it is 0.22 ; and in District 3, it is 0.16 . Under Cooper's Least Change Plan 1, the $C V$ s are 0.28 in District $1,0.33$ in District 2, and 0.18 in District 3, all of which are higher than the corresponding $C V$ s found for the existing districts. Notably, the $C V$ for District 1 under Cooper's Illustrative Plan 1 is seven times higher than the $C V$ for District 1 under the existing plan: It decreases diversity by a factor of seven.

Figure III.H.7.a Cluster Map for Cooper Least Change Plan 2

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis \& calculations by author; map by Bryan GeoDemographics for author.
109. Exhibit III.H.7.a (above) shows the distribution of counties by cluster group across the three districts proposed under Cooper's Least Change Plan II. Under this plan: District 1 has four of the 12 Group 1 counties (shown in teal), nine of the 41 Group 2 counties (shown in lime green), and 12 of the 29 Group 3 counties (shown in purple); District 2 has five of the 12 Group 1 counties (teal), 15 of the 41 Group 2 counties (lime green), and 10 of the 29 Group 3 counties (purple); District 3 has three of the 12 Group 1 counties (teal), 17 of the 41 Group 2 counties (lime green), and six of the 29 Group 3 counties (purple). Exhibit III.H.7.b and Exhibit III.H.7.c (below) shows the percent of each cluster in tabular and graphical (labeled "Series" in the graph) form with each of the three districts proposed in Cooper's Least Change Plan 2.

Exhibit III.H.7.b Cluster Analysis Table: Cooper Least Change Plan 2

Cluster (Series)	District 1	District 2	District 3	Total
1	33.3%	41.7%	25.0%	100.0%
2	22.0%	36.6%	41.5%	100.0%
3	41.4%	24.1%	34.5%	100.0%
mean	32.2%	34.1%	33.6%	
sd	0.08	0.07	0.07	
cv	0.25	0.22	0.20	

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.

Exhibit III.H.7.c Cluster Analysis Chart: Cooper Least Change Plan 2

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.
110. In Exhibit III.H.7.b and Exhibit III.H.7.c, (above), one can see the relative distribution of the cluster groups (Labeled "Series" in the Graph) within each of the three Supreme Court Districts proposed in Cooper's Least Change Plan 2 numerically and graphically (teal $=$ cluster group 1 ; lime green $=$ cluster group 2 , and purple $=$ cluster group 3). If all three cluster groups were proportionately distributed equally within each district, the tops of the colored bars would all be at the same height within each of the three districts proposed under Cooper's Least Change Plan 2 (which is the arithmetic average of the three groups, as shown by the horizontal bar within each of the three districts). The three groups are not distributed equally within Cooper's proposed District 1, where the graph shows that Cluster groups 1 (teal bar at 33.3\%) and 2 (lime green bar at 22.0%) are both substantially lower and closer to one another
than either is to Cluster group 3 (purple bar at 41.4\%). In proposed District 2, Cluster groups 1 (teal bar at 41.7% and 2 (lime green bar at 36.6%) are both substantially higher and closer to one another than either is to Group 3 (purple bar at 24.1\%). In Cooper's proposed District 3, Cluster group 1 (teal bar at 25.0%) is lower than that found for Cluster groups 2 (lime green bar at 41.5%) and 3 (purple bar at 34.5%) which are both closer to one another than either is to Cluster Group 1. Recall, again that for the existing districts that the $C V \mathrm{~s}$, are as follows: In District 1 , the $C V$ is 0.04 ; in District 2, it is 0.22 ; and in District 3, it is 0.16 . Under Cooper's Least Change Plan 2, the $C V$ s are 0.25 in District 1, 0.22 in District 2, and 0.20 in District 3, none of which is lower than the corresponding $C V$ s found for the existing districts. Notably, the $C V$ for District 1 under Cooper's Illustrative Plan 1 is 6.25 times higher than the $C V$ for District 1 under the existing plan: It decreases diversity by a factor of 6.25 .
111. In summary, each of the four plans proposed by Cooper reduce the level of diversity found in all of the existing three districts and notably do so in regard to District 1.

IV. MISSISSIPPI VOTER REGISTRATION AND TURNOUT

A. Voter Registration and Turnout by Race and Ethnicity in Mississippi

112. A core tenet of the plaintiffs in this case is that Black voters are currently disenfranchised and do not have the same access to voting and do not exercise their right to vote in the same way the Whites in Mississippi do. Here, I examine expert reports written on behalf of the plaintiffs and offer my opinion on current Black voter registration and voting behavior.
113. Measuring voter registration and actual voting in Mississippi by race is a challenge. The state of Mississippi does not record registered voters by race. Given this, the US Census Bureau's Current Population Survey (or "CPS") is used to understand recent voter registration and turnout in Mississippi. Because these data are only available at the whole-state level, I subsequently turn to sample survey data collected by the Survey Research Laboratory, Social Science Research Center, Mississippi State University, to examine sub-state patterns.
114. As part of its regular, on-going Current Population Survey (CPS), the Census Bureau adds periodic supplements asking questions on topics ranging from school enrollment to tobacco use. ${ }^{34}$ One such supplement is the "voting and registration" supplement, which is added in November of national voting years. ${ }^{35}$ In 2020, the CPS collected information from 134,122 respondents with dozens of detailed questions on voting behavior. ${ }^{36}$ The sample is collected for the US as a whole and by state.
115. The US Census Bureau produces two work products from the "voting and registration" supplement. It tabulates and reports the results of the most important questions such as "Did (you/name) vote in the election held on Tuesday, November 3, 2020?" by state and by the most common demographic variables such as age, race, sex and educational attainment. The sample results are then adjusted to estimated population numbers and the results given in 1,000s of persons with 90% margins of error. These tabulations are formal and the resulting reports are viewed as official work products of the Federal Government. ${ }^{37}$ When possible, an expert would always start their analysis of registration and voting behavior with a reference to these reports. In addition to these official statistics, the Census Bureau also publishes a "raw data" or "Public Use Microdata Sample" (or "PUMS" file) with data from individual

[^18]respondents, with each weighted to represent the population in the United States they represent. I will discuss the PUMS data in more detail shortly.
116. In the course of examining voter turnout and registration, the first stop was to look at the official tables published by the Census Bureau to see if the statistics desired by race and ethnicity were available for Mississippi. They are in Table 4B, available as an excel file, provides the official statistics on the number and percent registered and voted by race and ethnicity in Mississippi in 2020. ${ }^{38}$
117. Table IV.A. 1 (registration by race and ethnicity) and Table IV.A. 2 (actual voting by race and ethnicity) both present a "Total Population" as well as a "Total Citizen Population" - and show statistics under these categories for several race and ethnicity combinations, such as "White Alone," "Black Alone," "White non-Hispanic," and "Black Alone or in combination". In the online source for these two tables, which is the Census Bureau's Table 4B, ${ }^{39}$ it is not clearly stated that the "Total Population" in Table 4B is actually the voting age population ("VAP") and that "Total Citizen Population" is actually the total Citizen Voting Age Population (CVAP). Keep this in mind in reading these two tables and also that the numbers are given in $1,000 \mathrm{~s}$.

Table IV.A. 12020 Mississippi Voter Registration by Race and Ethnicity

Sex, Race, and Hispanic-Origin	Total "VAP" Population	Total citizen population	Total registered	Percent registered (Citizen)	Margin of error 1
Total	2,212	2,177	1,749	80.4	2.7
Male	1,029	1,015	792	78.0	4.2
Female	1,182	1,162	957	82.4	3.6
White alone	1,350	1,337	1,054	78.8	3.6
White non-Hispanic alone	1,300	1,295	1,026	79.2	3.6
Black alone	792	787	654	83.1	4.1
Asian alone	37	20	9	B	B
Hispanic (of any race)	67	53	34	B	B
White alone or in combination	1,375	1,363	1,079	79.2	3.5
Black alone or in combination	805	799	666	83.4	4.1
Asian alone or in combination	41	24	13	B	B

Source: Table 4B, US Census Bureau (https://www2.census.gov/programs-surveys/cps/tables/p20/585/table04b.xlsx). Numbers do not always add to totals due to sampling and rounding error.

[^19]118. First, I examined voting registration. Table IV.A. 1 row 1 (highlighted in yellow) reading left to right shows the VAP population $(2,212)$, then the total CVAP population $(2,177)$ then the total CVAP registered to vote $(1,749)$, then the percent CVAP who are registered, $(80.4 \%$, where $80.4 \approx(1,749 / 2,177) * 100) .{ }^{40}$
119. Table IV.A. 1 row 5 (highlighted in yellow) shows voter registration results for White non-Hispanic alone population (in 1,000s). Again, reading left to right and starting in the first column, one can see that the White non-Hispanic alone VAP number is 1,300 and that the White non-Hispanic alone CVAP number is 1,295 , of which 1,026 were registered to vote, yielding the results that 79.2% of the White non-Hispanic alone CVAP were registered to vote, where $79.2 \% \approx(1,026 / 1,295) * 100$.
120. Table IV.A.I row 10 (highlighted in yellow) shows voter registration results for Black Alone and in combination (in 1,000 s). In this row, one sees 799 Black Alone or in combination CVAP, of whom 666 who were registered to vote, yielding the result that 83.4% of the Black Alone or in combination CVAP were registered to vote, where $83.4 \% \approx(666 / 799) * 100$.
121. Next, I examined actual voting. Table IV.A. 2 shows in the first row, reading from right to left, the VAP population $(2,212)$, then the total CVAP population $(2,177)$ then the CVAP who voted $(1,521)$, then the percent CVAP who voted $(70.3 \%$, where 70.3 $\approx(1,521 / 2,177) * 100)$.

[^20]Table IV.A. 22020 Mississippi Voting by Race and Ethnicity

	Total "VAP" Population	Total citizen population	Total voted	Percent voted (Citizen)	Margin of error 1
Total	2,212	2,177	1,531	70.3	3.2
Male	1,029	1,015	680	67.0	4.8
Female	1,182	1,162	850	73.2	4.2
White alone	1,350	1,337	921	68.9	4.1
White non-Hispanic alone	1,300	1,295	904	69.8	4.1
Black alone	792	787	573	72.8	4.9
Asian alone	37	20	8	B	B
Hispanic (of any race)	67	53	23	B	B
White alone or in combination	1,375	1,363	942	69.1	4.0
Black alone or in combination	805	799	582	72.9	4.8
Asian alone or in combination	41	24	11	B	B

Source: Table 4B, US Census Bureau (https://www2.census.gov/programs-surveys/cps/tables/p20/585/table04b.xlsx). Numbers do not always add to totals due to sampling and rounding error.

Table IV.A. 2 row 5 (highlighted in yellow) shows voting results for White non-Hispanic alone population (in $1,000 \mathrm{~s}$). Reading right to left and starting in the first column, one can again see that the White non-Hispanic alone VAP number is 1,300 and that the White nonHispanic alone CVAP number is 1,295 , of which 904 voted, yielding the result that 69.8% of the White non-Hispanic CVAP voted, where $69.8 \% \approx(904 / 1,295)^{*} 100$.
122. Table IV.A. 2 row 10 (highlighted in yellow) shows voting results for Black Alone and in combination (in $1,000 \mathrm{~s}$). In this row, one sees 799 Black Alone or in Combination CVAP, of whom 582 voted, yielding the result that 72.9% of the Black Alone or in Combination CVAP voted, where $72.9 \% \approx(582 / 799) * 100$.
123. In examining the CPS results for the White non-Hispanic and the Black Alone or in combination population in Mississippi for the 2020 election, I am left with a decisive conclusion. In 2020 the Black Alone or in Combination population out-registered and out-voted the White non-Hispanic population. It is clear can see that Black Alone or in Combination were registered at a higher level (83.4\%) than the White non-Hispanic (79.2\%). And in looking at who voted in the 2020 election, Black Alone or in Combination voted at a higher level (72.9\%) than the White non-Hispanic (69.8\%).
124. Because the registration and voting data are from a sample survey, there are "Margins of Error" (MOEs) provided with them, which provide an estimate of the statistical uncertainty in the sample-based estimates. In the case of the 2020 CPS data, the MOEs are given at a 95% level of confidence. In regard to the 79.2% of the White

Non-Hispanic CVAP registered to vote, the estimated MOE is 3.6 , which is interpreted to mean that one can be 95% certain that the actual percent who registered is between 75.6% and 82.8% (79.2 ± 3.6); similarly, in regard to the 83.4% of the Black Alone or in Combination CVAP registered to vote, the estimated MOE is 4.1, which is interpreted to mean that one can be 95% certain that the actual percent who registered is between 79.3% and 87.5% (83.4 ± 4.1). Because the upper end (82.8%) of the 95% MOE of White Non-Hispanic CVAP percent registered does not overlap the 83.4\% estimated in the sample survey of the Black Alone or in combination CVAP registered to vote, one can be 95% certain that the actual percent of Black Alone or in Combination CVAP registered to vote in the 2020 Mississippi election is higher than the actual percent of White non-Hispanic CVAP (Swanson, 2012: 13-157). This finding is supported by the fact that the lower end (79.3\%) of the 95% MOE of Black Alone or in Combination CVAP does not overlap the 79.2% of the White non-Hispanic CVAP registered to vote (Swanson, 2012: 153-157).
125. In regard to the 69.8% of the White Non-Hispanic CVAP who voted, the estimated MOE is 4.1 , which is interpreted to mean that one can be 95% certain that the actual percent who voted is between 65.7% and 73.9% (69.8 ± 4.1); similarly, in regard to the 72.9% of the Black Alone or in Combination CVAP who voted, the estimated MOE is 4.8, which is interpreted to mean that one can be 95% certain that the actual percent who voted is between 68.1% and $77.7 \% ~(72.9 \pm 4.1)$. Because the upper end (73.9\%) of the 95% MOE of White Non-Hispanic CVAP percent voted overlaps the 72.9% estimated in the sample survey of the Black Alone or in Combination CVAP who voted, one cannot be 95% certain that the actual percent of Black Alone or in combination CVAP who voted in the 2020 Mississippi election is higher than the actual percent of White non-Hispanic CVAP who voted in the 2020 election (Swanson, 2012: 153-157). Using the numbers underlying the 95% level MOEs along with a knowledge of basis inferential statistics, however, one can be 66% certain that the actual percent of Black Alone or in Combination who voted in the 2020 Mississippi election is higher than the actual percent of White non-Hispanic CVAP who did (at a 66% level of confidence, z ≈ 1.00 and with an estimated standard error of .0209 , the MOE for this group is 1.21 , resulting in the upper 66% MOE bound of 71.0%, where $71.0=69.8+1.21$) (Swanson, 2012: 147-150).
126. It is natural to ask if the voter registration and turnout for the 2020 election is an anomaly. In order to investigate this, I examined the historic US Census Bureau's CPS November Supplement the official reports for biannual federal election years. While the Census Bureau has collected voting and registration data since 1964, the CPS has gathered and reported citizenship data consistently only since 1998. Since the 2020 data are based on CVAP, I begin my historic analysis in 1998 to ensure data consistency
and comparability with my 2020 analysis to the degree possible (removing noncitizens decreases the voting-age population base, resulting in higher rates for any given election (https://www.census.gov/topics/public-sector/voting/about/faqs.html).
127. In Exhibit IV.A. 1 below, one can see that from each election year from 1998 to 2006, the difference in the percent of registration between White non-Hispanic (WNH) citizens of voting age and any part Black (APB) citizens of voting age was small, being slightly higher or lower based on the election. However, starting in 2008 with Obama's presidential campaign, the percent Black voter registration noticeably exceeded the percent White voter registration. In 2010 (not a presidential election year), the percent Black voter registration declined, and was virtually equal to percent White voter registration. Then in 2012, percent Black voter registration surged again with Obama's second campaign. For every election year since 2012, percent Black voter registration has remained higher than percent White voter registration.

Exhibit IV.A. 1 Mississippi Voter Registration by Race and Ethnicity History

Source: U.S. Census Bureau, Current Population Survey, November Voting Supplement (biannual by federal election year).

Exhibit IV.A. 2 Mississippi Voter Turnout by Race and Ethnicity History
Mississippi Voter Turnout Percentage by Race (1998-2020)

Source: U.S. Census Bureau, Current Population Survey, November Voting Supplement (biannual by federal election year).
128. In Exhibit IV.A. 2 (above), one sees that from 1998 to 2002, the percent voter turnout between White non-Hispanic (WNH) and any part Black (APB) were quite close to each other, each being slightly higher or lower based on the election. But then, starting in 2004, White voter turnout lagged Black voter turnout until 2010. In 2010 (not a presidential election year) the turnout declined to be equal to Whites. Then in 2012 they APB turnout surged even higher for President Obama's second campaign. For every year since, Black voter turnout has been somewhat to much higher than Whites.
129. Now having reported the official US Census Bureau statistics on voter registration and voting turnout by race by year, I turn my attention to the analysis of this subject by the plaintiffs' expert, Dr. Traci Burch ${ }^{41}$. Here I focus on the analysis and interpretations on pages $9-10$ of her report. This analysis examines educational attainment by race and ethnicity in Mississippi, then relates these two population characteristics to voter registration and turnout. In Exhibit 3, "Educational Attainment by Race in Mississippi Age 25 and Older" (shown below in Exhibit IV.A.3), Dr. Burch accurately reports the percent of Whites and Blacks by educational attainment level from the 2019 American Community Survey (ACS). My analysis of more recent ACS data corroborates her finding that the White population in Mississippi generally enjoys higher educational attainment levels than Blacks do. Her exhibit does not state the definition of "White"

[^21]and "Black" however. My research shows that this exhibit reports White Alone, nonHispanic and Black Alone, which is discussed subsequently at length. As in all research, consistency in demographic terms is critical across different analyses. The population put forth in the complaint and then analyzed in the demographer's report (Cooper) is the any part Black, or "APB" population. The Black educational attainment data presented by Dr. Burch are straight from the standard ACS reporting template which only includes this inconsistent Black definition. Additional work is generally necessary to get the exact race definitions to agree across analyses and would have been necessary here to know educational attainment for APB. I agree with Dr. Burch that any analysis of educational attainment should be based to the population by age who has largely completed whatever the highest level of educational attainment they hope to achieve. Conventionally, that base population is age 25+, and is the definition Dr. Burch reports here from the US Census Bureau's own standard.

Exhibit IV.A. 3 Racial Differences in Voter Turnout and by Education Level

SOURCE: 2019 AMERICAN COMMUNITY SURVEY
Source: Exhibit 3 (p. 9) in Report by Dr. Tracie. Burch
130. Next, on page 10 of her report, Dr. Burch provides Figure 4 "Racial Differences in Voter Turnout and by Education level" (shown below in Exhibit IV.A.4). The statistics in this table are key in supporting Dr. Burch's statement that:
"Examining voter turnout in Mississippi by race and educational attainment in Figure 4 shows the clear impact of Mississippi’s history of educational attainment on voting."

Exhibit IV.A. 4 Racial Differences in Voter Turnout and by Education Level

Figure 4: Racial Differences in Voter Turnout Overall and by Education Level in Mississippi. Source: 2020 Current Population Survey Voting and Registration Supplement

Racial Differences in Voter Turnout Overall and By Education Level in Mississippi

Source: Figure 4 (p. 10) in Report by Dr. Traci Burch
131. Here, Dr. Burch is vague about the source of the information she presents in the preceding exhibit and does not describe the steps she undertook to produce it. Since these statistics of voting by education level by state are not readily available in official published tables, I conclude that these estimates were produced with the use of the CPS PUMS (or "raw data") files. In addition to the official statistics reported by the Census Bureau (above in Tables IV.A.1 and IV.A.2), the Census Bureau also publishes a "raw data" or "Public Use Microdata Sample" (or "PUMS" file) with data from individual respondents, with each weighted to represent the population in the United States they represent. These files enable more detailed analysis than provided by the topline reports described above. These files are technically difficult and require both statistical software and expertise in sampling and survey research, demography and statistics. When experts seek more information and details on statistics beyond the high-level tables provided by the Census Bureau, they turn to these files.
132. Because Dr. Burch provides neither a clear definition of the source of her data (was it the tabulated results from the CPS or the PUMS file generated from the CPS?) nor the steps that resulted in the numbers she provides (as replicated here in Exhibit IV.A.4), an investigation of the CPS PUMS data is warranted, as is an attempt to replicate her findings. Whatever her method and whatever her definitions: our assumption is that her findings were based on an analysis and interpretation of the CPS "raw data" (or CPS "PUMS") data alluded to earlier. It is there that the investigation turns next.
133. Bryan GeoDemographics has expertise in this area and both downloaded the national 2020 CPS dataset and data dictionary at my request ${ }^{42}$ and processed the data in both Excel and SAS to ensure accuracy and reliability. According to the CPS PUMS data dictionary, the variables necessary to generate state-level registration and voting statistics by race are as follows:

- GESTFIPS: Federal Information Processing Standards (FIPS) State Code
- PES 1: Did (you/name) vote in the election held on Tuesday, November 3, 2020.
- PES 2: Were you/Was name) registered to vote in the November 3, 2020 election? (If NOT voted)
- PEEDUCA: Educational Attainment
- PRPERTYP: Type of respondent (child, adult civilian or adult armed forces)
- PTDTRACE: Race
- PEHSPNON: Hispanic Origin
- PRCITSHP: Citizenship Status
- PRTAGE: Respondent Age
- PWSSWGT: Population weight (note: there are numerous weights included in this file. The data dictionary instructs: "There is no supplement weight associated with the November 2020 Voting and Registration supplement. Use the basic CPS weight, PWSSWGT (located in positions 613-622), for tallying the supplement items.)

134. In the CPS PUMS data dictionary, it instructs users specifically that the universe for calculating education statistics is PRPERTYP $=2$ or 3 . That is, the base for educational statistics and their analysis is adults (either civilian or armed forces). In my analysis of the CPS PUMS data, I found the population definitions that appear to be used by Dr. Burch for her education analysis and began my analysis of her voting turnout estimates. I find that Dr. Burch's CPS-based education estimates are based on

[^22]the citizen, non-Hispanic population of all ages (not adults as she reported earlier with her American Community Survey analysis). "White" is White Alone, and "Black" is APB. Using this definition, I can replicate her \% voted statistics by education level precisely. While this is irrelevant for the Bachelor's Degree or Higher population (since anyone with those accomplishments would be an adult anyways), this definition impacts the High School Grad statistics slightly and the "LT high school" statistics significantly. By including all ages here, Dr. Burch is effectively measuring what percent of children voted. Not only would that definition be illogical - but it is specifically instructed by the CPS documentation not to do so.
135. The correct population base for the Figure 4 that Dr. Burch presents would be the citizen, age $18+$ population. That is, the percent of those who are actually eligible to vote. Exhibit IV.A. 5 shows what the percent voter turnout by race and educational level would have been using that correct definition. There are several important observations here. First, when you remove children ineligible to vote from the base, the $\%$ voted goes up, as expected. For White, non-Hispanic, less than high school, rises +14.2 percentage points, from 26.1% in Dr. Burch's report to 40.3% here. For APB, less than high school, rises even more +16.8 pp from 40.8% in Dr. Burch's report to 57.6% here. Not only is there a significant difference in how each much each group increases, but the interpretation of the outcome changes as well. The percent difference between less than high school and high school graduate is significant only for White, non-Hispanic. In examining these results, if one were to argue that one group's voter turnout appears to be suffering more so from a disparity in educational attainment - it would be the White non-Hispanics. Not Blacks. In examining the "Bachelor Degree or Higher" category, one sees that the "Black Alone or in Combination" population out-votes their White non-Hispanic peers there as well.

Exhibit IV.A. 5 Racial Differences in Voter Turnout and by Education Level, Based to Citizens of Voting Age in 2020

Source" CPS 2020, November Voting Supplement (U.S. Census Bureau). Graph assembled by Bryan GeoDemographics for author.
136. Next, in examining Dr. Burch's estimate of total voter turnout by race (the last columns in her Figure 4). Dr. Burch's ${ }^{43}$ report states (page 10) that:
"overall, White Mississippians have higher voter turnout than Black Mississippians: 56.1% of White Mississippi citizens voted in the 2020 general election, compared with 53.0% of Black Mississippi citizens."
137. These numbers provided by Dr. Burch contradict the statistics published by the Census Bureau, reported in Table IV.A. 22020 Mississippi Voting by Race and Ethnicity above - and here I seek to understand why. As with the analysis of voting by educational level - the official CPS PUMS data dictionary is employed, where it instructs users specifically that the universe for calculating voting registration and voting statistics is PRTAGE $>=18$ and PRCITSHP $=1,2,3$, or 4 . That is, respondent must be voting age (18+) and citizens (code 1, 2, 3 and 4) to be included - otherwise they will be assigned "Not in Universe" and not included in the analysis.

Table IV.A. 32020 MS Voter Estimates Citizens, Age 18+ by Race and Ethnicity Census Bureau Definition

	No Response	Refused	DK	Not in Unvierse	Voted	Not Voted	Total	\% Voted
Total	172,860	7,148	26,039	0	1,530,528	440,304	2,176,877	70.3\%
WNH	107,149	4,527	16,586	0	904,127	262,726	1,295,115	69.8\%
Black Including Hispanic Combinations								
BA (inc. Hisp)	61,542	2,621	7,554	0	573,046	141,975	786,738	72.8\%
BA and B-W (inc. Hisp)	61,542	2,621	7,554	0	581,038	145,022	797,777	72.8\%
BA and W-B-Al (inc. Hisp)	61,542	2,621	7,554	0	574,373	141,975	788,065	72.9\%
APB (inc. Hisp)	61,542	2,621	7,554	0	582,365	145,022	799,104	72.9\%
Black Non-Hispanic Combinations								
BA NH	61,542	2,621	7,554	0	571,130	140,112	782,959	72.9\%
BA and B-W NH	61,542	2,621	7,554	0	575,115	143,158	789,991	72.8\%
BA and W-B-AI NH	61,542	2,621	7,554	0	572,457	140,112	784,285	73.0\%
APB NH	61,542	2,621	7,554	0	576,442	143,158	791,318	72.8\%

Source: 2020 CPS November Voter Supplement PUMS file. Table assembled by Bryan GeoDemographics for author.
138. To begin, my initial analysis of the CPS PUMS data was aimed at replicating the officially published statistics published by the Census Bureau, using these definitions. Using the variables and definitions above, I was able to replicate the published results precisely using the CPS raw (PUMS) data file in Table IV.A. 2 (above). The official statistics published by the Census Bureau match their own internal dataset. Exactly. In Table IV.A. 3 (above) I show the PWSSWGT weights by racial and ethnic category, by response to PES 1: Did (you/name) vote in the election held on Tuesday, November 3, 2020? A complete inventory of variables and weights is shown in Appendix 3.
139. Next, my analysis was aimed at replicating the CPS results published by Dr. Burch. Since she does not present the exact populations or definitions used to calculate her percentages, one must carefully focus on her words:
" 56.1% of White Mississippi citizens voted in the 2020 general election, compared with 53.0% of Black Mississippi citizens."
140. I explored the CPS raw (PUMS) data file using a variety of variables, definitions and filters. Because Dr. Burch's statistics are a level-shift different than ours, our conjecture is that (as with the education statistics reported above) she included the total all-age citizen population as the base of her analysis, rather than using the citizen
voting-age population. ${ }^{44}$ In analyzing the CPS PUMS data, this would be easy to do. The population weight "PWSSWGT" in the CPS PUMS file is the person weight for the total population. An expert would need to filter any results of the PES1 (Did you vote?) variable to those eligible to vote (18+ VAP citizens) separately using the PRTAGE (age) and PRCITSHP (citizenship) variables to get the correct results. Knowing this, I seek to uncover how Dr. Burch arrived at her estimates and conclusions.
141. In Table IV.A. 4 (below), I report different percent voted statistics under a variety of race definitions, assuming Dr. Burch used citizens of all-ages as her universe. All of the following statistics will be misleading because they include children who are ineligible to vote. That population is highlighted in Table IV.A. 4 as "Not in Universe".
142. In the second row, "WNH" (White, non-Hispanic) I calculate an all-age \% voted as 56.1%. I believe this "White Not Hispanic" citizen all-age population is the one used in her report since the number matches exactly.
143. Next, I turn to replicating the 53.0% "Black Alone or in Combination, not Hispanic" voting statistic Dr. Burch reports. ${ }^{45}$ Referencing Table IV.A.4: In the third row, I show APB NH (Any Part Black, non-Hispanic). This is our best guess at Dr. Burch's Black definition, since she uses the words "Black Alone or in Combination, not Hispanic. That definition results in a theoretical \% voted statistic of 52.6\%. Very close, but not exactly the 53.0% Dr. Burch reports. This exploration continues by looking at various other Black Alone or in combination population definitions. For example:

- The \% voted for the BA NH (Black Alone, non-Hispanic) population. That results in a $\%$ voted statistic of 53.1%.
- The \% voted for the BA and B-W NH (Black Alone and Black-White, non-Hispanic) population. That results in a $\%$ voted statistic of 52.6%.
- The \% voted for the BA and W-B-AI NH (Black Alone and Black-White, American Indian non-Hispanic) population. That results in a $\%$ voted statistic of 53.1\%.

144. Having exhausted all permutations of "Black Alone or in Combination," one has a variety of possible estimates from 52.6% to 53.1%. I conclude that Dr. Burch used the citizen, all-ages definition and one of the "Black Alone or in Combination" definitions
[^23]I have tested, and the small difference is attributable to either a small mathematical error or rounding.

Table IV.A. 42020 MS Voter Estimates Citizens, All Ages by Race and Ethnicity: Dr. Burch Definition Replication Attempt

	No Response	Refused	DK	Not in Unvierse	Voted	Not Voted	Total	\% Voted
Total	172,860	7,148	26,039	687,921	1,530,528	440,304	2,864,799	53.4\%
WNH	107,149	4,527	16,586	315,946	904,127	262,726	1,611,060	56.1\%
Black Including Hispanic Combinations								
BA (inc. Hisp)	61,542	2,621	7,554	297,536	573,046	141,975	1,084,274	52.9\%
BA and B-W (inc. Hisp)	61,542	2,621	7,554	310,215	581,038	145,022	1,107,992	52.4\%
BA and W-B-AI (inc. Hisp)	61,542	2,621	7,554	297,536	574,373	141,975	1,085,601	52.9\%
APB (inc. Hisp)	61,542	2,621	7,554	310,215	582,365	145,022	1,109,319	52.5\%
Black Non-Hispanic Combinations								
BA NH	61,542	2,621	7,554	292,827	571,130	140,112	1,075,785	53.1\%
BA and B-W NH	61,542	2,621	7,554	303,549	575,115	143,158	1,093,540	52.6\%
BA and W-B-AI NH	61,542	2,621	7,554	292,827	572,457	140,112	1,077,112	53.1\%
APB NH	61,542	2,621	7,554	303,549	576,442	143,158	1,094,867	52.6\%

Source" CPS 2020, November Voting Supplement (U.S. Census Bureau). Table assembled by Bryan GeoDemographics for author.
145. It appears that Dr. Burch fails to acknowledge she used a population base with a minimum age inappropriate for analyzing educational attainment, let alone, eligible to vote. That is, the universe Dr. Burch uses is the entire population. In the case of educational attainment, which includes post-secondary attainment, the minimum age used by the US Census Bureau is 25 . For voter registration and voting turnout, not only is the minimum age 18 , but, in addition, the appropriate denominator is the population eligible to vote, namely CVAP with the exclusion of felons. Dr. Burch's findings also present a troubling inconsistency. Not only are her reported overall turnout statistics substantively different than those officially reported by the US Census Bureau (hers are replicated here in Exhibit IV.A.4, which I compare to my calculations as found in at Table IV.A. 2 above) - but her interpretation presents the opposite conclusion of what I arrived at. That is: Blacks register at a lower rate and vote at a lower rate than Whites. The evidence I have found leads me to conclude differently: Blacks neither register nor vote at lower rates than Whites; instead the data show that Blacks register and vote at higher rates than Whites.
146. In sum, I believe Dr. Burch used the CPS PUMS data for her voting analysis. Dr. Burch appears to have applied the citizenship filter properly, the race definitions somewhat properly, but neglected to add an age filter to include only adults. The significant consequences of this decision alone are voter registration and turnout statistics and conclusions that are the opposite of actual reported, therefore with an opposite conclusion reached. The official CPS results showing Black voters outperforming White voters contradict the findings, the conclusions and general arguments of Dr. Burch.
147. There is a fundamental, demographic observation that supports this conclusion. In many states (Mississippi included) minority populations such as Black and Hispanic tend to be younger (Schaeffer, 2019). That is, they make up a larger share of the underage population ineligible to vote. This is the case in Mississippi, where the 2020 total population is $2,961,279$, the White Alone population is $1,658,893(56 \%)$ while the Any Part Black population found by summing all combinations of black and other races is $\quad 1,123,108$ (38\%) (https://data.census.gov/table?q=any+part+black,+mississippi\&tid=DECENNIALPL2020.P1). As shown in Table III.D. 1 of this report, the 2020 VAP total in Mississippi is $2,277,599$ while the White Alone VAP is $1,315,451$ (58% of the VAP total)) and the Any Part Black (APB) population is 823,080 (36% of the VAP total). Whites are over-represented and Blacks are under-represented among VAP relative to their respective total populations. The "under 18, not eligible to vote "population total in Mississippi is 683,680 (where $683,680=2,961,279-2,277,599)$. The White Alone population under 18, not eligible to vote is 343,442 (where $343,442=1,658,893-1,315,451$), which is 21% of the total White Alone population. The APB population under 18, not eligible to vote is 300,028 (where $300,028=1,123,108-823,080$, which is 27% of the APB population. Thus, according to the 2020 census of Mississippi, the APB population has a higher percent (27\%) that is under 18, not eligible to vote than the White Alone population (21%). If an analyst were to include this under voting-age population in a calculation of voting turnout for Whites - it would artificially and incorrectly inflate a voter turnout estimate for them. If an analyst were to include this under voting-age population in a calculation of voting turnout for Blacks - it would artificially and incorrectly decrease a voter turnout estimate for them. In the end, Dr. Burch's exact estimates and how she arrived at them are irrelevant. The conclusion that Whites have higher voter turnout than Blacks is incorrect for the 2020 election and would be incorrect based on Exhibit IV.A. 2 and have been since at least 2004.

B. Voter Registration by Race

148. The Survey Research laboratory of the Social Science Research Center (SSRC) at Mississippi State University (https://srl.ssrc.msstate.edu/) provided me with voter registration and voting frequency data by race as found in annual statewide surveys it has conducted from 2015 to 2021. The data were provided in a SAS file, which I exported into the NCSS statistical analysis package I use. An overview of the data was provided by Dr. John Edwards, the Director of the SSRC Survey Research Laboratory, which also documents the coding in this file. This is found in Appendix 5. As can be seen in Appendix 5, the sample size in each of these seven years is at least 1,500 and across all seven years, approximately 61% of respondents are White and 36%, Black. While the survey asks respondents if they are registered to vote in its annual surveys, it does not ask if they voted in a given election year. Instead it asks respondents a series of questions about the frequency of voting (always vote, nearly always vote, vote part of the time, seldom vote, never vote, with responses "Don't Know" and "refused" classified as missing). Because of the nature of the voting question, it is not directly comparable to the turnout data found in the CPS. However, the results by race within the SSRC data are directly comparable. At this point it should be noted in regard to the voter registration data that I do discuss here that it is the case that while both Blacks and Whites tend to over-report voter registration (Cuevas-Molinas, 2017), Blacks may do so at a higher rate than Whites (Fullerton et al., 2007) as is also the case with voting (Jenkins et al., 2012). This caveat would not only apply to the SSRC survey data but also to the CPS, the ACS, and any other survey in the United States that includes questions on voter registration, voting and race.
149. Given this caveat, I used the NCSS "Contingency Tables" procedure ${ }^{46}$ to examine race by voter registration by year (See Appendix 5b for the NCSS output of each of these seven runs). I find that in each year, 2015 to 2021, SSRC reports that the percent of Black voter registration exceeds that of White voter registration in Mississippi: In 2015 , it is 90.4% for Whites and 93.3% for Blacks; in 2016, it is 91.9% for Whites and 92.8% for Blacks; in 2017, it is 92% for Whites; and 94.2% for Blacks; in 2018, it is 91.2% for Whites and 93.7% for Blacks; in 2019, it is 91.9% for Whites and 94.3% for Blacks; in 2020, it is 91.4% for Whites and 94.5% for Blacks; and in 2021, it is 90.9% for Whites and $94,2 \%$ for Blacks. While it may be the case that Blacks over-report voting and voter registration at a higher rate than Whites, the closer proximity to polling places that Blacks have (as discussed in the preceding section) may offset to some degree the likelihood of over-reporting.

[^24]150. Again using the NCSS "Contingency Tables" procedure, ${ }^{47}$ I now turn to an examination of race by voting frequency by year using the SSRC voting frequency data (See Appendix 5c for the NCSS output of each of these seven runs). I find that in each year, 2015 to 2021, SSRC reports that the percent of Black Mississippians 18 years of age and over who report "Always Vote" exceeds that of White Mississippians age 18 and over who report "Always Vote:" In 2015, it is 61.0\% for Whites and 67.3\% for Blacks; in 2016, it is 60.1% for Whites and 66.4% for Blacks; in 2017, it is 59.3% for Whites and 64.5% for Blacks; in 2018, it is 54.5% for Whites and 62.5% for Blacks; in 2019, it is 60.3% for Whites and 65.5% for Blacks; in 2020, it is 68.22% for Whites and 72.1% for Blacks; and in 2021, it is 56.8% for Whites and 66.7% for Blacks. Again, while it may be the case that Blacks over-report voting and voter registration at a higher rate than Whites, the closer proximity to polling places that Blacks have (as discussed in the preceding section) may offset to some degree the likelihood of over-reporting.
151. Given my findings based on the SSRC data and my findings in regard to the CPS, which are based on estimates controlled to the universe of those who are eligible to vote (the definition directed by the Census Bureau and the definition my expertise would lead me to recommend), I disagree with Dr. Burch's claim:
"...that the overall gap in turnout between Black and White Mississippians exists because the gap in educational opportunities between Black and White Mississippians. Black Mississippians have less access to quality education and therefore have lower educational attainment for the reasons discussed in this section; this lower educational attainment leads to lower voter turnout."

CONCLUSIONS

152. For the reasons stated in this report and illustrated in the appendices, I conclude that Supreme Court District 1 already has a Black (Any Part Black) CVAP majority of 51.1% without a prison adjustment, and 51.0% with a prison adjustment. Mr. Cooper's Illustrative Plan 1 would increase the Black (Any Part Black) CVAP majority in District 1 to approximately 57% Black. Cooper's other illustrative plan and his two "least Change" plans yield a similar result: An already Black CVAP majority in District 1 is increased to a higher level.
153. Core retention of the Black (Any Part Black) VAP population in Cooper's two illustrative plans is low, only 76.9% of the original Black VAP retained in his Illustrative Plan I and 68.7% in his Illustrative Plan II. Cooper's two "least change"

[^25]plans provide the highest level of retention of the original Black VAP at 91.7% and 97.0\%, respectively.
154. In regard to Compactness, each of the alternate plans suggested by Cooper range from somewhat less compact to substantially less compact than is offered by the existing SCOMS plan.
155. The Supreme Court Districts serve as the geographic basis for elections to the state Transportation Commission and the Public Service Commission. In addition, they serve as the geographic basis for appointments to the Mississippi Board of Bar Admissions and the Board of Trustees for the State Institutions of Higher Learning (IHL) and a number of other boards (see Paragraph 17 for the list of the other boards). The IHL has a policy that acknowledges the value of diversity for Mississippi, as does a statement by the ACLU and a court decision by Judge William Barbour in the 1992 "Magnolia Bar" case involving the SCOMS districts. Using indices from the Mississippi Health and Hunger Atlas, I find that the existing Supreme Court Districts provide more population diversity than do any of Cooper's four alternative plans and that Cooper's plans serve to decrease diversity across the Supreme Court districts. These findings are consistent with my finding that core retention found in Cooper's plans is low.
156. One of the findings in Dr. Traci Burch's expert report (Figure 4 and accompanying text in her report) is that White Mississippians turned out to vote in the 2020 election at a higher rate than Black Mississippians, 56.1% to 53.0%, respectively. Dr. Burch's finding is the result of a flawed analysis that employed the incorrect "universe" as the denominator in her calculations (the entire population, including non-citizens, those under age 18) rather than the population eligible to vote ("Citizens of Voting Age Population" - CVAP). Evidence from the same source she cites (the 2020 Current Population Survey, November Voting supplement) shows that when the correct universe, CVAP, is used as the denominator, Black Mississippians turned out at a higher rate in the 2020 election than White Mississippians: 72.9% to 69.8%. As shown by data from past Voting Supplements in the Current Population Survey (taken in the even numbered years when federal elections are held, starting in 1964), my finding is consistent with the trend of voting seen in Mississippi since 2004: Both the percent of Black CVAP registration and the percent of Black CVAP voting have generally been higher than the percent of White non-Hispanic CVAP registration and voting, respectively (see Figures IV.A. 1 and IV.A. 2 in this report). In conjunction with this $21^{\text {st }}$ century trend, my finding in regard to the 2020 election also reveals that Dr. James T. Campbell's implication (p. 51 of his report) that Black Mississippians currently register and vote at lower rates than White Mississippians also is mistaken:

> "Under the circumstances prevailing in Mississippi today, and in light of the history from which those circumstances originate, it is my opinion that Black Mississippians are not afforded an equal opportunity to elect candidates of their choice in Supreme Court elections."
157. The Voting Supplements of the Current Population Survey from 2004 to 2020 do not support Dr. Campbell's opinion. Moreover, the voter registration data in the Voting Supplements of the Current Population Survey are consistent with annual voting registration data collected for Mississippi in sample surveys from 2015 to 2021 conducted by the Survey Research Laboratory at the Social Science Research Center, Mississippi State University. These sample surveys show that for each year, 2015 to 2021, the percent of Black Mississippians age 18 and over who are registered to vote is higher than the percent of White Mississippians age 18 and over who are registered to vote. In addition, the SSRC sample surveys show that for each year, 2015 to 2021, the percent of Black Mississippians aged 18 and over who report "Always Vote" is higher than the percent of White Mississippians age 18 and over who report "Always Vote." Both the CPS and the SSRC data are consistent with a finding reported for the first time in this report: Statewide, a higher share of the Black population of potential and actual voters is within a quarter mile of a polling place than found for the White population of potential and actual voters.

Submitted: 5 January 2023
Dand A. Swans on

David A. Swanson

REFERENCES

ACLU (2022). Mississippi Voters Are Fighting for Fair Representation on the State’s Highest Court. (https://www.aclu.org/news/voting-rights/mississippi-voters-are-fighting-for-fair-representation-on-the-states-highest-court)

Barbour, W. H. (1992). Magnolia Bar Ass'n, Inc. v. Lee. 793 F.Supp. 1386 (1992). 793 F.Supp. 1386, United States District Court, S. D. Mississippi, Jackson Division.

Campbell, J.T. (2022). Report of Professor Campbell. 4:22-CV-0062-SA-JMV.
Chappell, W., R. Forgette, D.A. Swanson, and M. Van Boening. (2007). Determinants of Government Aid to Katrina Survivors: Evidence from Survey Data. Southern Economic Journal 74 (2): 344-362.

Cork, D. and P. Voss (eds.). (2006). Once, Only Once, and in the Right Place: Residence Rules in the Decennial Census. National Academies Press. Washington, D.C.

Cueveas-Molina, I. 2017. Voter Turnout Overreports: Measurement, Modeling and Deception. Unpublished Ph.D. Dissertation, University of Massachusetts Amherst (https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=2034\&context=dissertations 2).

Forgette, R., B, Dettry, M. Van Boening, and D.A. Swanson (2009). Before, Now, and After: Assessing Hurricane Katrina Relief. Population Research and Policy Review. 28: 31-42.

Fullerton, A., J. Dixon, and C. Borch (2007). Bringing registration into models of overreporting. The Public Opinion Quarterly 71 (4): 649-660.

Gallagher, M., J. Kreye and S. Duros, (2020). Redistricting in Wisconsin 2020: The LRB Guidebook. Wisconsin Legislative Bureau, Madison, WI.
(file:///C:/Users/David\%20Swanson/Documents/CONSULTING/MS\%20SUPREME\%20COURT\%20REDIS TRICTING\%202022/REPORT/020\%20-\%20Redistricting\%20Wisconsin\%202020\%201.2.pdf).

Gallestey, J. (2020). Cluster analysis. Encyclopedia Britannica (https://www.britannica.com/topic/cluster-analysis).

Haggard, R., A. Cafer, and J. Green (2017). Mississippi Health and Hunger Atlas 2017 (Center for Population Studies, University of Mississippi).

Henderson, T., M. Sirois, A. Chia-Chen Chen, C. Airriess, D.A. Swanson, and D. Banks. (2009). After a Disaster: Lessons in Survey Methodology from Hurricane Katrina. Population Research and Policy Review 28: 67-92.

Jenkins, C., I. White, N. Hanmer, and A. Banks. (2021). Vote overreporting while Black: Identifying the mechanism behind Black survey respondents' vote overreporting. American Politics Research 49 (5): 439-451

Massey, D. (2007). Categorically unequal: The American social stratification system. New York, NY: The Russell Sage Foundation.

McGehee, M. (1994). Black/White Life Expectancy Differences and Socio-Demographics: Arkansas and the U. S. Journal of the Arkansas Medical Society 91 (6): 177-180.

Morrison, P. and T. Bryan (2019). Redistricting: A Manual for Analysts, Practitioners, and Citizens. Springer. Cham, Switzerland

NCSS (2022). K-Means Clustering (https://www.ncss.com/software/ncss/clustering-inncss/\#KMeans) NCSS Statistical Software, Kaysville, UT.

Schaeffer, S. (2019). The most common age among Whites in U.S. is 58 - more than double that of racial and ethnic minorities. Pew Research Center (https://www.pewresearch.org/fact-tank/2019/07/30/most-common-age-among-us-racial-ethnic-groups/).

Schwartzberg, Joseph E. (1966) Reapportionment, Gerrymanders, and the Notion of Compactness. Minnesota Law Review.

Schlottmann, A., R. Schmidt, E. Feser, and D.A. Swanson. (2006). Southern Nevada Regional Economic Study. Theodore Roosevelt Institute. Irvine, CA and Las Vegas, NV.

Stockwell, G., D.A. Swanson, and J. Wicks. (1988). Economic Status Differences in Infant Mortality by Cause of Death. Public Health Reports 103 (March-April):135-142.

Sullivan, T. (2020) Census 2020: Understanding the Issues. Springer. Cham, Switzerland.
Swanson, D.A. (1980). Discriminant Analysis Results for Criterion Variables Used to Select States for the Department of Personnel Out-of-State Salary Survey. Special Report No. 29. Washington State Office of Financial Management, Olympia, WA.

Swanson, D.A. (2008). The Demographic Effects of Hurricane Katrina on the Mississippi Gulf Coast: An Analysis by Zipcode. Journal of the Mississippi Academy of Sciences 53 (4): 213231.

Swanson, D.A. (2012). Learning Statistics: A Manual for Sociology Students. Cognella Academic Publishing/University Readers. San Diego, CA.)

Swanson, D.A., and R. Cossman (2020). Estimating the Underlying Infant Mortality Rates for Small Populations, Even Those Reporting Zero Infant Deaths: A Case Study of 42 Counties in Mississippi. Journal of the Mississippi Academy of Sciences 65 (2): 183-197.

Swanson, D.A., and R. Cossman (2021). The Effect of the Differential Privacy Disclosure Avoidance System Proposed by the Census Bureau on 2020 Census Products: Four Case Studies of Census Blocks in Mississippi. Presented at the Annual Conference of the American Statistical Association, Seattle, WA, August 11.

Swanson, D.A. and M. McGehee (1996). Socioeconomic Status, Race and Life Expectancy in Arkansas, 1970-1990. Journal of the Arkansas Medical Society 93 (9): 445-447.

Swanson, D.A., and M. McGehee (2009). Socio-economic Status and Life Expectancy in Mississippi, 1970-1990. Journal of the Mississippi Academy of Sciences 54 (3-4): 190-195

Swanson, D.A., and A. Sanford. (2012). Socio-Economic Status and Life Expectancy in the United States, 1990-2010: Are We Reaching the Limits of Human Longevity? Population Review 51 (2): 16-41.

Swanson, D.A., and L. Tedrow. (2018). A Bio-demographic Perspective on Inequality and Life Expectancy: An Analysis of 159 Countries for the Periods 1970-90 and 1990-2010. pp. 577613 in C.R. Rao and A. Rao (eds.), Handbook of Statistics Vol. 38. Elsevier Press.

Swanson, D. A., and J. Van Patten (1987). Judging the Accuracy of the 1980 Census for Small Towns: An Analysis of Survey and Related Data from the Long Form. Small Town (JulyAugust) 4-11.

Swanson, D. A. and R. Verdugo (2019). The Civil War's Demographic Impact on White Males in the 11 Confederate States: An Analysis by State and Selected Age Groups. Journal of Political and Military Sociology 46 (1): 1-26.

Swanson, D.A., D. Randall, and L. Weisser (1977). An Evaluation of the 1977 Round of Municipal Vacancy Estimates for 1 and 2 Unit Structures. Staff Document No. 42. Washington State Office of Financial Management. Olympia, WA

Swanson, D.A., R. Forgette, M. Van Boening, C. Holley, and A. Kinnell. (2007). Assessing Katrina's Demographic and Social Impacts on the Mississippi Gulf Coast. Journal of the Mississippi Academy of Sciences 54 (2): 228-242.

Swanson, D.A., I. Sharkova, R. Lycan, and G. Hough (1997). Forecasting For School Attendance Zone Changes and Capital Needs: Merging GIS and Demographic Methods With Local Expert Judgment. Market and Demography 3 (6): 23-31. (https://scholar.google.com/citations?view_op=view citation\&hl=en\&user=taynUaAAAAAJ \&citation for view=taynUaAAAAAJ:ULOm3 A8WrAC).
Swanson, D.A., G. Hough, D. Lycan, C. Clemans, and J. Rodriquez. (1998). Merging Methods and Judgment for K-12 Enrollment Forecasting. Educational Research Service: Spectrum 16 (Fall): 24-31.
U.S. Census Bureau (2020a). Understanding and using American Community Survey Data: What all data users need to know.
(https://www.census.gov/content/dam/Census/library/publications/2020/acs/acs_general han dbook_2020.pdf).
U.S. Census Bureau (2020b). Understanding and using American Community Survey Data: What all data users need to know.
(https://www.census.gov/content/dam/Census/library/publications/2020/acs/acs general han dbook_2020.pdf).

Waldron, H. (2002). Mortality differentials by race. ORES Working Paper no. 99. Office of Research, Evaluation, and Statistics, Office of Policy, U.S. Social Security Administration (https://www.ssa.gov/policy/docs/workingpapers/wp99.html).

Wilmoth, J. (2004) "Population Size" pp. 65 - 80 in J. Siegel and D. Swanson (eds.) The Methods and Materials of Demography, $2^{\text {nd }}$ Edition. Elsevier Academic Press. San Diego, CA.

APPENDICES

Appendix 1. County Assignments

Generated by author and by Bryan Geodemographics for author
A. Mississippi County Assignments by

- my Needs and Performance Cluster,
- the existing 1987 SCOMS Plan, and
- the Cooper Illustrative Plans 1 and 2 and Least Change Plans 1 and 2
A. Mississippi County Assignments by Needs and Performance Cluster, the existing 1987 SCOMS Plan, and Cooper Illustrative Plans 1 and 2 and Least Change Plans 1 and 2

STCTY	Name	Cluster	SCP_1987	ILL_Plan1	ILL_Plan2	LCP_1	LCP_2
28001	Adams	3	2	1	1	1	2
28003	Alcorn	2	3	3	3	3	3
28005	Amite	3	2	1	1	2	2
28007	Attala	2	3	1	,	3	3
28009	Benton	2	3	3	3	3	3
28011	Bolivar	2	1	1	1	1	1
28013	Calhoun	1	3	3	3	3	3
28015	Carroll	2	3	1	1	3	3
28017	Chickasaw	3	3	3	3	3	3
28019	Choctaw	2	3	3	3	3	3
28021	Claiborne	3	1	1	1	1	1
28023	Clarke	2	2	3	2	2	2
28025	Clay	3	3	3	3	3	3
28027	Coahoma	3	3	1	1	1	1
28029	Copiah	2	1	1	1	1	1
28031	Covington	2	2	2	2	2	2
28033	DeSoto	2	3	3	1	3	3
28035	Forrest	2	2	2	2	2	2
28037	Franklin	2	2	1	1	2	2
28039	George	2	2	2	2	2	2
28041	Greene	1	2	2	2	2	2
28043	Grenada	3	3	1	1	3	3
28045	Hancock	2	2	2	2	2	2
28047	Harrison	2	2	2	2	2	2
28049	Hinds	3	1	1	1	1	1
28051	Holmes	3	1	1	1	1	1
28053	Humphreys	3	1	1	1	1	1
28055	Issaquena	2	1	1	1	1	1
28057	Itawamba	2	3	3	3	3	3
28059	Jackson	3	2	2	2	2	2
28061	Jasper	1	2	3	2	2	2
28063	Jefferson	3	1	1	1	1	1
28065	Jefferson Davis	1	2	2	2	2	2
28067	Jones	2	2	2	2	2	2
28069	Kemper	1	1	3	3	1	1
28071	Lafayette	2	3	3	3	3	3
28073	Lamar	2	2	2	2	2	2
28075	Lauderdale	2	1	3	2	1	1
28077	Lawrence	2	2	1	2	2	2
28079	Leake	2	1	3	3	1	3
28081	Lee	2	3	3	3	3	3
28083	Leflore	3	3	1	1	1	1
28085	Lincoln	2	2	1	2	2	2
28087	Lowndes	3	3	3	3	3	3
28089	Madison	2	1	1	3	3	1
28091	Marion	2	2	2	2	2	2
28093	Marshall	1	3	3	3	3	3
28095	Monroe	3	3	3	3	3	3
28097	Montgomery	3	3	1	1	3	3
28099	Neshoba	2	1	3	3	1	3
28101	Newton	2	1	3	2	1	1
28103	Noxubee	1	1	3	3	1	1
28105	Oktibbeha	2	3	3	3	3	3
28107	Panola	3	3	1	1	3	3
28109	Pearl River	2	2	2	2	2	2
28111	Perry	1	2	2	2	2	2
28113	Pike	3	2	1	1	2	2
28115	Pontotoc	2	3	3	3	3	3
28117	Prentiss	2	3	3	3	3	3
28119	Quitman	1	3	1	1	1	1
28121	Rankin	2	1	2	3	1	1
28123	Scott	1	1	3	3	1	1
28125	Sharkey	2	1	1	1	1	1
28127	Simpson	2	2	2	3	2	2
28129	Smith	1	2	3	3	2	2
28131	Stone	2	2	2	2	2	2
28133	Sunflower	3	1	1	1	1	1
28135	Tallahatchie	3	3	1	1	1	1
28137	Tate	3	3	1	1	3	3
28139	Tippah	2	3	3	3	3	3
28141	Tishomingo	2	3	3	3	3	3
28143	Tunica	3	3	1	1	1	1
28145	Union	3	3	3	3	3	3
28147	Walthall	3	2	1	2	2	2
28149	Warren	2	1	1	1	1	1
28151	Washington	3	1	1	1	1	1
28153	Wayne	3	2	2	2	2	2
28155	Webster	3	3	3	3	3	3
28157	Wilkinson	3	2	1	1	1	2
28159	Winston	2	3	3	3	3	3
28161	Yalobusha	1	3	1	1	3	3
28163	Yazoo	3	1	1	1	1	1

Appendix 2. Cluster Analysis Methodology and Findings

I (David A. Swanson, author) used the NCSS K-Means Procedures to generate the clusters (https://www.ncss.com/software/ncss/clustering-in-ncss/\#KMeans) because, I was looking for a small number of clusters (Ideally three) and as stated at this site:

The k-means algorithm was developed by J.A. Hartigan and M.A. Wong of Yale University as a partitioning technique. It is most useful for forming a small number of clusters from a large number of observations. It requires variables that are continuous with no outliers.

The objective of this technique is to divide N observations with P dimensions (variables) into K clusters so that the within-cluster sum of squares is minimized. Since the number of possible arrangements is enormous, it is not practical to expect the single best solution. Rather, this algorithm finds a "local" optimum. This is a solution in which no movement of an observation from one cluster to another will reduce the within-cluster sum of squares. The algorithm may be repeated several times with different starting configurations. The optimum of these cluster solutions is then selected.

I first used Discriminant Analysis (an analytic method related to cluster analysis whereby the clusters are a priori known and a model is constructed such that it can be used to determine into which clusters new cases would be placed) in 1980 (Swanson, 1980). I have used cluster analysis: (1) in work I did with Bryan GeoDemographics in regard to Texas redistricting (2021); (2) to identify value-chain clusters for the Southern Nevada Economic Study (Schlottman, et al., 2006); and (3) as a means of developing cost-effective ways to use the housing unit method to generate municipal population estimates in Washington (Swanson, Randall, and Weisser, 1977).

As the hyperlinked citation above indicates, I used the NCSS statistical package in this analysis (https://www.ncss.com/software/ncss/). I have used this statistical package since the early 1980s.

Minimum Iteration Section

Iteration	No. of No.	Percent of Clusters	Bariation Bar Chart
2	2	65.50	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$

Iteration Section Iteration No. of	No. Clusters	Percent of Variation	Bar Chart of Percent
1	2	71.16	$\|\mid$

Cluster Means			
			Cluster1
Variables	3336.219	2843.865	4209.005
NEED	35336.63	12430.18	14721.96
PERFORMANCE	12	41	29

Cluster Standard Deviations

Variables	Cluster1	Cluster2	Cluster3
NEED	313.4394	441.6815	596.8018
PERFORMANCE	10136.39	4359.49	5035.884
Count	12	41	29

F-Ratio Section			Between	Within		Prob
	DF1	DF2	Mean Square	Mean Square	F-Ratio	Level
Variables	2	79	$1.585478 \mathrm{E}+07$	238693.8	66.42	0.000000
NEED	2	74	$2.138707 E+09$	$3.150861 \mathrm{E}+07$	67.88	0.000000

K-Means Cluster Analysis Report (Continued)

Dataset ...IMS COUNTY NEED-PERFORM.NCSS

Distance Section

Row	Cluster	Dist1	Dist2	Dist3
1	3	2.8206	1.1286	0.8646
2	2	3.0464	1.0160	2.7609
3	3	2.0752	1.5413	0.4177
4	2	2.7059	0.4426	2.1869
5	2	0.8837	0.0024	2.4459
6	2	2.2237	0.8380	0.9249
7	1	0.3147	2.2720	2.1611
8	2	1.5612	1.1072	1.2575
9	3	2.7743	1.1912	0.7629
10	2	2.3504	0.4048	2.0125
11	3	2.1922	0.9788	0.7930
12	2	2.4071	0.5780	1.1685
13	3	2.7123	0.9931	0.9013
14	3	2.6813	2.3417	0.5978
15	2	2.3223	0.6454	1.1021
16	2	2.6049	0.4574	1.3497
17	2	3.2453	0.7843	2.4045
18	2	2.5744	0.6066	1.1897
19	2	2.4434	0.4513	2.1151
20	2	2.8640	0.3475	1.9939
21	1	0.4092	1.2905	1.1530
22	3	2.5539	1.2770	0.5196
23	2	3.0582	0.7489	2.4730
24	2	2.8530	0.3209	1.8558
25	3	2.7058	1.0091	0.8807
26	3	2.3578	1.7794	0.1338
27	3	2.4098	2.7226	1.0991
28	2	0.5489	0.3324	2.1111
29	2	2.2431	1.0477	2.5456
30	3	3.2902	2.0881	0.8219
31	1	1.2517	1.4719	1.3304
32	3	2.8899	2.2071	0.5217
33	1	1.0461	1.4971	1.7226
34	2	2.5802	0.1541	1.6266
35	1	0.7766	3.2534	3.2262
36	2	3.2234	0.7173	1.9343
37	2	3.8070	1.5434	3.2150
38	2	3.3681	1.2108	2.9404
39	2	2.0833	0.4834	1.7840
40	2	1.5814	1.0566	1.2988
41	2	2.8715	0.4552	1.6208

K-Means Cluster Analysis Report (Continued)

Dataset
...IMS COUNTY NEED-PERFORM.NCSS

Distance Section (Continued)

Row	Cluster	Dist1	Dist2	Dist3
42	3	4.7564	4.6645	2.9515
43	2	2.6852	0.4494	1.4139
44	3	3.1130	2.0872	0.6438
45	2	3.2244	0.9437	1.5539
46	2	2.3320	0.6374	2.2239
47	1	0.2459	2.5631	2.3324
48	3	2.8570	1.2211	0.8141
49	3	2.8826	1.7057	0.4681
50	2	2.5834	0.5767	1.2230
51	2	2.3610	0.1736	1.6971
52	1	0.0118	0.8931	1.5504
53	2	3.0202	0.5853	1.6904
54	3	2.2810	2.6380	1.0615
55	2	2.6110	0.2274	1.5768
56	1	0.9444	1.6360	1.6793
57	3	3.0493	2.5098	0.8030
58	2	1.5906	0.9557	1.5213
59	2	2.3548	0.1859	1.6403
60	1	1.4677	3.9958	3.6302
61	2	3.5285	1.1583	2.8047
62	1	1.1138	1.5040	1.5209
63	2	2.3090	0.7957	0.9515
64	2	2.5441	0.2239	1.9542
65	1	1.8838	4.0112	4.3408
66	2	2.3282	0.3242	1.9065
67	3	1.6263	1.8967	0.8862
68	3	1.7922	2.5670	1.2726
69	3	2.1011	1.6175	0.3739
70	2	1.7971	0.9708	2.1459
71	2	2.4805	0.4117	2.0976
72	3	1.7167	2.5979	0.1545
73	3	2.7703	1.3313	0.6297
74	3	2.7941	1.6776	0.3830
75	2	2.8289	0.9618	1.0320
76	3	2.1291	0.9984	0.7997
77	3	2.1572	1.4056	0.4253
78	3	2.2807	1.4125	0.3535
79	3	1.9465	1.3303	0.6407
80	2	2.4135	0.2938	1.4527
81	1	1.0111	3.5231	3.4057
82	3	1.9179	2.4254	1.0452

K-Means Cluster Analysis Report (Continued)

Dataset ... M MS COUNTY NEED-PERFORM.NCSS
Plots

Procedure Input Settings

Autosave Inactive

Variables Tab
-- Variables
Cluster Variables: NEED, PERFORMANCE
Label Variable:
<Empty>
-- Cluster Options
Minimum Clusters: 2
Maximum Clusters: 5
Reported Clusters: 3
-- Other Options
Random Starts:
3
Max Iterations: 25
Percent Missing: 50
Reports Tab
-- Select Reports
Minimum Iteration Report
Checked
Iteration Report
Checked
K-Means Cluster Analysis Report (Continued)
Cluster Means Report Checked
Cluster Standard Deviations Report Checked
F-Ratio Report
Checked
Distance Report
Distance by Cluster Report Unchecked
-- Report Options
Precision:
Single

Procedure Input Settings (Continued)

Plots Tab
-- Bivariate Plot Format
Bivariate Plots Checked
Show Row Numbers
Checked
Show Row Labels Checked

Storage Tab
-- Storage Variable
Store Cluster ID in Variable: C21

Appendix 3. Current Population Survey Calculations

These tables were constructed by Bryan GeoDemographics for the author.
A. CPS 2020 Voter Supplement PUMS Data Pivot Table, Matching Dr. Burch's Any-Age Voter Turnout by Education Analysis. PES 1 Vote Responses for MS Filtered to Race Any Part Black Non-Hispanic, Any Age and Citizenship Weighted by PWSSWGT. 40.8% LT HS, 66.5% HS Grad, 85.7% Bachelor's Degree or Higher, 52.6% Overall Calculations - attempting to match 53.0% overall reported.
B. CPS 2020 Voter Supplement PUMS Data Pivot Table, Voter Turnout by Education Analysis. PES 1 Vote Responses for MS Filtered to Race Any Part Black (including Hispanics) Age 18+ and Citizenship Weighted by PWSSWGT. 26.1\% LT HS, 58.1\% HS Grad, 84.5% Bachelor's Degree or Higher, 56.1% Overall Calculations - attempting to match 56.1% overall reported.
C. CPS 2020 Voter Supplement PUMS Data Pivot Table, CVAP Voter Turnout by Education Analysis. PES 1 Vote Responses for MS Filtered to Race Any Part Black (inc. Hispanic), Age 18+ and Citizenship Weighted by PWSSWGT
D. D. CPS 2020 Voter Supplement PUMS Data Pivot Table, CVAP Voter Turnout by Education Analysis. PES 1 Vote Responses for MS Filtered to Race White Alone, non-Hispanic, Age 18+ and Citizenship Weighted by PWSSWGT
E. CPS 2020 Voter Supplement PUMS Data Pivot Table, Matching Dr. Burch's Voter Turnout by Race Analysis. PES 1 Vote Responses for MS Including Any Age and Filtered to Citizenship (1, 2, 3 or 4)
F. CPS 2020 Voter Supplement PUMS Data Pivot Table, Matching Reported Voter Turnout by Race Analysis. PES 1 Vote Responses for MS Filtered to Age (18+) and Citizenship (1, 2, 3 or 4)
A. CPS 2020 Voter Supplement PUMS

Data Pivot Table, Matching Dr. Burch's Figure 4 Black Alone or in Combo nonHispanic Any-Age Voter Turnout by Education Analysis. PES 1 Vote Responses for MS Filtered to Race Any Part Black Non-Hispanic, Any Age and Citizenship Weighted by PWSSWGT.

B. CPS 2020 Voter Supplement PUMS Data Pivot Table, Matching Dr. Burch's Figure 4 White non-Hispanic Any-Age Citizen Voter Turnout by Education Analysis. PES 1 Vote Responses for MS Filtered to Race Any Part Black Non-Hispanic, Any Age and Citizenship Weighted by PWSSWGT.

C. CPS 2020 Voter Supplement PUMS Data

 Pivot Table, matching Dr. Burch's Figure 4 Black Alone or in Combo nonHispanic Any-Age Voter Turnout by Education Analysis - except filtered to voting age 18+. PES 1 Vote Responses for MS Filtered to Race Any Part Black Non-Hispanic, 18+ and Citizenship Weighted by PWSSWGT.| | 28 | T * State FIPS Filter to MS | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (Multiple Items) | I * Race: Any Part Black | | | | | | | |
| | (All) | - Ethnicity: All | | | | | | | |
| | (Multiple Items) | - * Age: 18+ | | | | | | | |
| | (Multiple Items) | $\square *$ Citizenship 1, 2, 3 and | "Citizens" | | | | | | |
| | No Response | Refused | DK | Not in Unvierse | Voted | Not Voted | Total | Educational Attainment | \% Voted |
| <1 st | | | | | | 15,296,850 | 15,296,850 | | |
| 7,8 | 10,782,157 | | | | 52,529,661 | 25,300,522 | 88,612,340 | | |
| 9 | | | | | 83,953,971 | 37,500,389 | 121,454,360 | | |
| 10 | | 12,757,284 | | | 168,866,749 | 98,706,301 | 280,330,334 | LTHS | 57.6\% |
| 11 | 56,518,701 | | | | 251,103,093 | 192,016,036 | 499,637,830 | | |
| 12 | 44,419,439 | | | | 222,816,797 | 79,293,300 | 346,529,536 | | |
| Grad | 257,780,196 | | 59,388,128 | 0 | 2,066,482,470 | 721,410,147 | 3,105,060,941 | HS GRAD | 66.6\% |
| Sc | 103,147,028 | | | 0 | 1,259,191,478 | 113,048,327 | 1,475,386,833 | | |
| Associates | 14,249,330 | | | | 231,224,652 | 33,159,822 | 278,633,804 | Some College | 83.3\% |
| Associates Academic | 25,966,225 | | 16,153,604 | | 328,004,087 | 60,076,536 | 430,200,452 | | |
| Bachelor | 46,728,268 | | | | 751,449,754 | 60,052,797 | 858,230,819 | | |
| Masters | 55,829,070 | | | | 332,399,660 | 14,357,337 | 402,586,067 | Braterst | |
| Professional | | | | | 11,185,702 | | 11,185,702 | Bachelorst | 85.9\% |
| PhD | | 13,451,673 | | | 64,442,420 | | 77,894,093 | | |
| | 615,420,414 | 26,208,957 | 75,541,732 | 0 | 5,823,650,494 | 1,450,218,364 | 7,991,039,961 | Overall | 72.9\% |

D. CPS 2020 Voter Supplement PUMS Data Pivot Table, matching Dr. Burch's Figure 4 White non-Hispanic Any-Age Voter Turnout by Education Analysis - except filtered to age 18+. PES 1 Vote Responses for MS Filtered to Race White nonHispanic, 18+ and Citizenship Weighted by PWSSWGT.

E. CPS 2020 Voter

Supplement PUMS Data Pivot Table, Matching
Dr. Burch's Voter
Turnout by Race
Analysis. PES 1 Vote
Responses for MS
Including Any Age and Filtered to Citizenship (1,

F. CPS 2020 Voter

 Supplement PUMS Data Pivot Table, Matching Reported Voter Turnout by Race Analysis. PES 1 VoteResponses for MS
Filtered to Age (18+) and Citizenship (1, 2, 3 or 4)

Appendix 4. Mississippi Maps

These maps were produced by Bryan Geodemographics for the author.
A. Existing MS Supreme Court Districts
B. Existing MS Supreme Court Districts with Major Prisons
C. Existing MS Supreme Court Districts with Planning and Development Districts
D. Existing MS Supreme Court Districts and Percent VAP APB by County
A. Existing Mississippi Supreme Court Districts

Map compiled for author by Bryan GeoDemographics using data described in text.
B. Existing MS Supreme Court Districts with Major Prisons

Map compiled for author by Bryan GeoDemographics using data described in text.

Case: 4:22-cv-00062-SA-JMV Doc \#: 164-2 Filed: 10/27/23 110 of 202 PageID \#: 2412
C. Existing MS Supreme Court Districts with Planning and Development Districts

Map compiled for author by Bryan GeoDemographics using data described in text.

Case: 4:22-cv-00062-SA-JMV Doc \#: 164-2 Filed: 10/27/23 111 of 202 PageID \#: 2413
D. Existing MS Supreme Court Districts and Percent VAP APB by County

Map compiled for author by Bryan GeoDemographics using data described in text.

Appendix 5a. SSRC Survey Overview with Codes

Provided to author by Dr. John Edwards, Director, Survey Research Lab, SSRC, Mississippi State University Mississippi Voter Registration Status 2015-2021

DataYear

				Cumulative Percent	
Valid	2015	1578	14.8	14.8	14.8
	2016	1524	14.3	14.3	29.1
	2017	1515	14.2	14.2	43.3
	2018	1500	14.1	14.1	57.3
2019	1527	14.3	14.3	71.7	
2020	1505	14.1	14.1	85.8	
	1518	14.2	14.2	100.0	

RegVote

				Cumulative Percent	
Valid	1 Registered to vote	9787	91.8	92.5	92.5
	2 Not Registered to vote	793	7.4	7.5	100.0
	Total	10580	99.2	100.0	
Missing	3 Don't Know	42	.4		
	4 Refused	45	.4		
	Total	87	.8		
Total		10667	100.0		

FreqVote

				Cumulative Percent	
Valid	1 Always votes	6216	58.3	62.5	62.5
	2 Nearly always votes	2046	19.2	20.6	83.0
	3 Votes part of the time	831	7.8	8.4	91.4
	4 Seldom votes	414	3.9	4.2	95.5
	5 Never votes	445	4.2	4.5	100.0
	Total	9952	93.3	100.0	
	6 Don't know	38	.4		
	7 Refused	38	.4		
	System	639	6.0		
Total	715	6.7			

County

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 Adams County	117	1.1	1.1	1.1
	2 Alcorn County	122	1.1	1.1	2.2
	3 Amite County	52	. 5	. 5	2.7
	4 Attala County	102	1.0	1.0	3.7
	5 Benton County	39	. 4	. 4	4.1
	6 Bolivar County	119	1.1	1.1	5.2
	7 Calhoun County	64	. 6	. 6	5.8
	8 Carroll County	45	. 4	. 4	6.2
	9 Chickasaw County	77	. 7	. 7	6.9
	10 Choctaw County	40	. 4	. 4	7.3
	11 Claiborne County	39	. 4	. 4	7.7
	12 Clarke County	56	. 5	. 5	8.2
	13 Clay County	104	1.0	1.0	9.2
	14 Coahoma County	68	. 6	. 6	9.8
	15 Copiah County	102	1.0	1.0	10.8
	16 Covington County	65	. 6	. 6	11.4
	17 DeSoto County	261	2.4	2.5	13.9
	18 Forrest County	252	2.4	2.4	16.2
	19 Franklin County	28	. 3	. 3	16.5
	20 George County	75	. 7	. 7	17.2
	21 Greene County	41	. 4	. 4	17.6
	22 Grenada County	79	. 7	. 7	18.3
	23 Hancock County	155	1.5	1.5	19.8
	24 Harrison County	684	6.4	6.4	26.2
	25 Hinds County	965	9.0	9.1	35.3
	26 Holmes County	83	. 8	. 8	36.1
	27 Humphreys County	14	. 1	. 1	36.2
	28 Issaquena County	2	. 0	. 0	36.2
	29 Itawamba County	80	. 7	. 8	37.0
	30 Jackson County	468	4.4	4.4	41.4
	31 Jasper County	62	. 6	. 6	42.0
	32 Jefferson County	36	. 3	. 3	42.3
	33 Jefferson Davis County	40	. 4	. 4	42.7
	34 Jones County	213	2.0	2.0	44.7
	35 Kemper County	40	. 4	. 4	45.1
	36 Lafayette County	176	1.6	1.7	46.7
	37 Lamar County	207	1.9	1.9	48.7
	38 Lauderdale County	274	2.6	2.6	51.2
	39 Lawrence County	46	. 4	. 4	51.7

County

	Frequency	Percent	Valid Percent	Cumulative Percent
40 Leake County	83	. 8	. 8	52.5
41 Lee County	351	3.3	3.3	55.8
42 Leflore County	105	1.0	1.0	56.7
43 Lincoln County	138	1.3	1.3	58.0
44 Lowndes County	292	2.7	2.7	60.8
45 Madison County	456	4.3	4.3	65.1
46 Marion County	80	. 7	. 8	65.8
47 Marshall County	78	. 7	. 7	66.6
48 Monroe County	169	1.6	1.6	68.2
49 Montgomery County	55	. 5	. 5	68.7
50 Neshoba County	102	1.0	1.0	69.6
51 Newton County	82	. 8	. 8	70.4
52 Noxubee County	46	. 4	. 4	70.8
53 Oktibbeha County	346	3.2	3.3	74.1
54 Panola County	86	. 8	. 8	74.9
55 Pearl River County	171	1.6	1.6	76.5
56 Perry County	35	. 3	. 3	76.8
57 Pike County	140	1.3	1.3	78.2
58 Pontotoc County	124	1.2	1.2	79.3
59 Prentiss County	85	. 8	. 8	80.1
60 Quitman County	23	. 2	. 2	80.3
61 Rankin County	606	5.7	5.7	86.0
62 Scott County	102	1.0	1.0	87.0
63 Sharkey County	16	. 1	. 2	87.2
64 Simpson County	87	. 8	. 8	88.0
65 Smith County	50	. 5	. 5	88.4
66 Stone County	46	. 4	. 4	88.9
67 Sunflower County	86	. 8	. 8	89.7
68 Tallahatchie County	40	. 4	. 4	90.1
69 Tate County	75	. 7	. 7	90.8
70 Tippah County	68	. 6	. 6	91.4
71 Tishomingo County	71	. 7	. 7	92.1
72 Tunica County	27	. 3	. 3	92.3
73 Union County	101	. 9	1.0	93.3
74 Walthall County	41	. 4	. 4	93.7
75 Warren County	188	1.8	1.8	95.4
76 Washington County	166	1.6	1.6	97.0
77 Wayne County	65	. 6	. 6	97.6
78 Webster County	62	. 6	. 6	98.2

County

	Frequency	Percent	Valid Percent	Cumulative Percent	
	79 Wilkinson County	20	.2	.2	98.4
	80 Winston County	65	.6	.6	99.0
	81 Yalobusha County	42	.4	.4	99.4
	82 Yazoo County	65	.6	.6	100.0
	Total	10628	99.6	100.0	
Missing	84 Refused	39	.4		
Total		10667	100.0		

Ethnicity

Race

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 White	6350	59.5	60.5	60.5
	2 Black	3766	35.3	35.9	96.4
	3 American Indian/Alaska Native	80	. 7	. 8	97.2
	4 Asian or Pacific Islander	62	. 6	. 6	97.8
	5 Multi-racial	178	1.7	1.7	99.5
	6 Other	56	. 5	. 5	100.0
	Total	10492	98.4	100.0	
Missing	7 Not Sure	4	. 0		
	8 Refused	171	1.6		
	Total	175	1.6		
Total		10667	100.0		

Gender

				Cumulative Percent	
Valid	Frequency	Percent	Valid Percent	1 Man	4651
43.6	43.8	43.8			
	2 Woman	5963	55.9	56.2	100.0
	Total	10614	99.5	100.0	
Missing	4 Refused	53	.5		
Total		10667	100.0		

Education

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 Never attended school or only Kindergarten	4	. 0	. 0	. 0
	2 Grades 1-8 (Elementary)	164	1.5	1.5	1.6
	3 Grades 9-11 (Some High School)	693	6.5	6.5	8.1
	4 Completed High School or GED equivalent	2695	25.3	25.4	33.5
	5 Some college or vocational program	2338	21.9	22.0	55.6
	6 Completed Associate degree (2-year program)	1400	13.1	13.2	68.8
	7 Completed Bachelors degree (4-year program)	1996	18.7	18.8	87.6
	8 Completed Masters degree	973	9.1	9.2	96.8
	9 Beyond Masters degree	343	3.2	3.2	100.0
	Total	10606	99.4	100.0	
Missing	10 Not Sure	24	. 2		
	11 Refused	37	. 3		
	Total	61	. 6		
Total		10667	100.0		

		Age			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	18	115	1.1	1.1	1.1
	19	180	1.7	1.7	2.9
	20	173	1.6	1.7	4.5
	21	171	1.6	1.7	6.2
	22	154	1.4	1.5	7.7
	23	167	1.6	1.6	9.3
	24	148	1.4	1.4	10.7
	25	135	1.3	1.3	12.0
	26	153	1.4	1.5	13.5
	27	129	1.2	1.3	14.8
	28	143	1.3	1.4	16.2
	29	120	1.1	1.2	17.3
	30	156	1.5	1.5	18.8
	31	131	1.2	1.3	20.1
	32	146	1.4	1.4	21.5
	33	128	1.2	1.2	22.8
	34	152	1.4	1.5	24.2
	35	132	1.2	1.3	25.5
	36	162	1.5	1.6	27.1
	37	156	1.5	1.5	28.6
	38	168	1.6	1.6	30.2
	39	138	1.3	1.3	31.6
	40	144	1.3	1.4	33.0
	41	168	1.6	1.6	34.6
	42	139	1.3	1.3	35.9
	43	139	1.3	1.3	37.3
	44	146	1.4	1.4	38.7
	45	154	1.4	1.5	40.2
	46	177	1.7	1.7	41.9
	47	160	1.5	1.6	43.5
	48	173	1.6	1.7	45.1
	49	167	1.6	1.6	46.8
	50	196	1.8	1.9	48.7
	51	181	1.7	1.8	50.4
	52	192	1.8	1.9	52.3
	53	194	1.8	1.9	54.2
	54	185	1.7	1.8	55.9
	55	205	1.9	2.0	57.9
	56	210	2.0	2.0	60.0

	Age					
	Frequency	Percent	Valid Percent	Cumulative Percent		
	96	2	.0	.0	100.0	
	97	2	.0	.0	100.0	
	Total	10317	96.7	100.0		
Missing	-99 Refused	350	3.3			
Total		10667	100.0			

Income

Party

				Cumulative Percent	
Valid	1 Republican	3615	33.9	39.6	39.6
	2 Democrat	2999	28.1	32.9	72.5
	3 Independent	2512	23.5	27.5	100.0
	Total	9126	85.6	100.0	
	4 Not sure	811	7.6		
	5 Refused	730	6.8		
	Total	1541	14.4		
Total		10667	100.0		

Party Lean					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 Independent leaning democratic	671	6.3	45.0	45.0
	2 Independent leaning republican	819	7.7	55.0	100.0
	Total	1490	14.0	100.0	
Missing	3 Not sure	799	7.5		
	4 Refused	223	2.1		
	System	8155	76.5		
	Total	9177	86.0		
Total		10667	100.0		

Appendix 5b. NCSS Contingency Table output by year, 2105-2021, SSRC Survey Data on Voter Registration

Analysis based on SSRC data with calculations by author using the NCSS statistical package.
Race Code: 1 = White; 2 = Black
Registered to Vote Code: 1 = Yes; 2 = No; 3 = Don't Know; 4 = Refused.

NCSS 12.0.4
11/15/2022 6:11:39 PM

Cross Tabulation Report

Dataset C:I...ISSRC SURVEY DATA BY COUNTYSSRC SURVEY DATA V1.NCSS

Filter
Row Variable
Column Variable
(Race <> 3,4,5,6,7,8) AND (DataYear = 2015) RegVote Race

Counts Table

Race			
RegVote			
1	$\mathbf{1}$	$\mathbf{2}$	Total
$\mathbf{1}$	847	547	1394
$\mathbf{3}$	82	35	117
$\mathbf{4}$	5	1	6
	3	3	6
Total	937	586	1523
Column Percentages Table			

	Race			
RegVote				
	$\mathbf{1}$	$\mathbf{2}$	Total	
$\mathbf{1}$		90.39%	93.34%	91.53%
$\mathbf{2}$	8.75%	5.97%	7.68%	
$\mathbf{3}$	0.53%	0.17%	0.39%	
$\mathbf{4}$	0.32%	0.51%	0.39%	
Total	100.00%	100.00%	100.00%	

Expected Counts Assuming Independence Table

RegVote	Race		
	1	2	Total
1	857.6	536.4	1394.0
2	72.0	45.0	117.0
3	3.7	2.3	6.0
4	3.7	2.3	6.0
Total	937.0	586.0	1523.0

Cross Tabulation Report

Dataset	C: $\ . .$. ISSRC SURVEY DATA BY COUNTYYSSRC SURVEY DATA V1.NCSS
Filter	(DataYear=2016) AND (Race $<>3,4,5,6,7,8)$ AND (DataYear $=2016$)
Row Variable	RegVote
Column Variable	Race

Counts Table

Race			
RegVote			
	$\mathbf{1}$	$\mathbf{2}$	Total
$\mathbf{1}$	856	488	1344
$\mathbf{2}$	70	36	106
$\mathbf{3}$	2	1	3
$\mathbf{4}$	4	1	5
Total	932	526	1458
Column Percentages Table			

RegVote	Race		
	1	2	Total
1	91.85\%	92.78\%	92.18\%
2	7.51\%	6.84\%	7.27\%
3	0.21\%	0.19\%	0.21\%
4	0.43\%	0.19\%	0.34\%
Total	100.00\%	100.00\%	100.00\%

Expected Counts Assuming Independence Table

RegVote	Race		
	1	2	Total
1	859.1	484.9	1344.0
2	67.8	38.2	106.0
3	1.9	1.1	3.0
4	3.2	1.8	5.0
Total	932.0	526.0	1458.0

Cross Tabulation Report

Dataset	C:I....ISSRC SURVEY DATA BY COUNTYISSRC SURVEY DATA V1.NCSS
Filter	(Race <> 3,4,5,6,7,8) AND (DataYear = 2017)
Row Variable	RegVote
Column Variable	Race
Counts Table	

			Race	
RegVote				
	$\mathbf{1}$	$\mathbf{2}$	Total	
$\mathbf{1}$	828	507	1335	
$\mathbf{2}$	64	29	93	
$\mathbf{3}$	3	2	5	
$\mathbf{4}$	5	0	5	
Total	900	538	1438	

Column Percentages Table

Race			
RegVote			
	1	2	Total
1	92.00\%	94.24\%	92.84\%
2	7.11\%	5.39\%	6.47\%
3	0.33\%	0.37\%	0.35\%
4	0.56\%	0.00\%	0.35\%
Total	100.00\%	100.00\%	100.00\%
Expected Counts Assuming Independence Table			
Race			
RegVote			
	1	2	Total
1	835.5	499.5	1335.0
2	58.2	34.8	93.0
3	3.1	1.9	5.0
4	3.1	1.9	5.0
Total	900.0	538.0	1438.0

Cross Tabulation Report

Dataset	C:I....ISSRC SURVEY DATA BY COUNTYISSRC SURVEY DATA V1.NCSS
Filter	(Race <> 3,4,5,6,7,8) AND (DataYear = 2018)
Row Variable	RegVote
Column Variable	Race
Counts Table	

RegVote	Race		
	1	2	Total
1	809	509	1318
2	72	32	104
3	5	1	6
4	1	1	2
Total	887	543	1430

Column Percentages Table

RegVote	Race		
	1	2	Total
1	91.21\%	93.74\%	92.17\%
2	8.12\%	5.89\%	7.27\%
3	0.56\%	0.18\%	0.42\%
4	0.11\%	0.18\%	0.14\%
Total	100.00\%	100.00\%	100.00\%

Expected Counts Assuming Independence Table

	Race			
RegVote				
	$\mathbf{1}$	$\mathbf{2}$	Total	
$\mathbf{1}$	817.5	500.5	1318.0	
$\mathbf{2}$	64.5	39.5	104.0	
$\mathbf{3}$	3.7	2.3	6.0	
$\mathbf{4}$	1.2	0.8	2.0	
Total	887.0	543.0	1430.0	

Cross Tabulation Report

Dataset	C:I...ISSRC SURVEY DATA BY COUNTYISSRC SURVEY DATA V1.NCSS
Filter	(Race <> 3,4,5,6,7,8) AND (DataYear = 2019)
Row Variable	RegVote
Column Variable	Race
Counts Table	

			Race		
RegVote	$\mathbf{1}$	$\mathbf{2}$	Total		
$\mathbf{1}$	808	528	1336		
$\mathbf{2}$	69	27	96		
$\mathbf{3}$	1	2	3		
$\mathbf{4}$	1	3	4		
Total	879	560	1439		

Column Percentages Table

Race			
RegVote			
	1	2	Total
1	91.92\%	94.29\%	92.84\%
2	7.85\%	4.82\%	6.67\%
3	0.11\%	0.36\%	0.21\%
4	0.11\%	0.54\%	0.28\%
Total	100.00\%	100.00\%	100.00\%
Expected Counts Assuming Independence Table			
Race			
RegVote			
	1	2	Total
1	816.1	519.9	1336.0
2	58.6	37.4	96.0
3	1.8	1.2	3.0
4	2.4	1.6	4.0
Total	879.0	560.0	1439.0

Cross Tabulation Report

Dataset C:I...ISSRC SURVEY DATA BY COUNTYSSRC SURVEY DATA V1.NCSS

Filter
Row Variable
Column Variable
(Race <> 3,4,5,6,7,8) AND (DataYear = 2020)
RegVote
Race

Counts Table

	Race			
RegVote				
	$\mathbf{1}$	$\mathbf{2}$	Total	
$\mathbf{1}$	837	466	1303	
$\mathbf{2}$	72	25	97	
$\mathbf{3}$	3	2	5	
$\mathbf{4}$		4	0	4
Total	916	493	1409	

Column Percentages Table

	Race		
RegVote			
	$\mathbf{1}$	$\mathbf{2}$	Total
$\mathbf{1}$		91.38%	94.52%
$\mathbf{2}$	7.86%	5.07%	92.48%
$\mathbf{3}$	0.33%	0.41%	0.88%
$\mathbf{4}$	0.44%	0.00%	0.28%
Total	100.00%	100.00%	100.00%

Expected Counts Assuming Independence Table

	Race			
RegVote				
	$\mathbf{1}$	$\mathbf{2}$	Total	
$\mathbf{1}$	847.1	455.9	1303.0	
$\mathbf{2}$	63.1	33.9	97.0	
$\mathbf{3}$	3.3	1.7	5.0	
$\mathbf{4}$	2.6	1.4	4.0	
Total	916.0	493.0	1409.0	

Cross Tabulation Report

Dataset	C:I....ISSRC SURVEY DATA BY COUNTYISSRC SURVEY DATA V1.NCSS
Filter	(Race <> 3,4,5,6,7,8) AND (DataYear = 2021)
Row Variable	RegVote
Column Variable	Race
Counts Table	

RegVote	Race		
	$\mathbf{1}$	$\mathbf{2}$	Total
$\mathbf{1}$	817	490	1307
$\mathbf{2}$	66	28	94
$\mathbf{3}$	12	1	13
$\mathbf{4}$	4	1	5
Total	899	520	1419

Column Percentages Table

	Race		
RegVote	$\mathbf{1}$	$\mathbf{2}$	Total
		90.88%	94.23%
$\mathbf{1}$	7.34%	5.38%	92.11%
$\mathbf{3}$	1.33%	0.19%	0.62%
$\mathbf{4}$	0.44%	0.19%	0.35%
Total	100.00%	100.00%	100.00%

Expected Counts Assuming Independence Table

	Race		
RegVote			
	$\mathbf{1}$	$\mathbf{2}$	Total
$\mathbf{1}$	828.0	479.0	1307.0
$\mathbf{3}$	59.6	34.4	94.0
$\mathbf{4}$	8.2	4.8	13.0
	3.2	1.8	5.0
Total	899.0	520.0	1419.0

Appendix 5c. NCSS Contingency Table output by year, 2105-2021, SSRC Survey Data on Voting Frequency

Analysis based on SSRC data with calculations by author using the NCSS statistical package

Race Code:
1 = White
2 = Black
3 = AIAN (American Indian, Alaskan Native)
4 = API (Asian, Pacific Islander)
$5=$ Multiracial
6 = other
7 = not sure
$8=$ refused

Voting Frequency:
1 = Always Votes
2 = Nearly Always Votes
3 = Votes Part of the Time
4 = Seldom Votes
5 = Never Vote
6 = Don't Know
7 = Refused

	Cross Tabulation Report
Dataset	C:I...ISSRC SURVEY DATA BY COUNTYISSRC SURVEY DATA V1.NCSS
Filter	DataYear $=2015$
Row Variable	Race
Column Variable	FreqVote
Counts Table	

Race	FreqVote							
	1	2	3	4	5	6	7	Total
1	517	203	71	31	18	4	3	847
2	368	90	47	25	17	0	0	547
3	5	0	0	0	0	0	0	5
4	1	1	2	1	0	0	0	5
5	10	3	0	0	2	0	0	15
6	1	0	0	0	1	0	0	2
8	12	3	2	1	2	0	0	20
Total	914	300	122	58	40	4	3	1441

The number of rows with at least one missing value is 137

Row Percentages Table

Race	FreqVote							
	1	2	3	4	5	6	7	Total
1	61.04\%	23.97\%	8.38\%	3.66\%	2.13\%	0.47\%	0.35\%	100.00\%
2	67.28\%	16.45\%	8.59\%	4.57\%	3.11\%	0.00\%	0.00\%	100.00\%
3	100.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	100.00\%
4	20.00\%	20.00\%	40.00\%	20.00\%	0.00\%	0.00\%	0.00\%	100.00\%
5	66.67\%	20.00\%	0.00\%	0.00\%	13.33\%	0.00\%	0.00\%	100.00\%
6	50.00\%	0.00\%	0.00\%	0.00\%	50.00\%	0.00\%	0.00\%	100.00\%
8	60.00\%	15.00\%	10.00\%	5.00\%	10.00\%	0.00\%	0.00\%	100.00\%
Total	63.43\%	20.82\%	8.47\%	4.02\%	2.78\%	0.28\%	0.21\%	100.00\%

The number of rows with at least one missing value is 137

	Cross Tabulation Report
Dataset	C:I....ISSRC SURVEY DATA BY COUNTYSSRC SURVEY DATA V1.NCSS
Filter	DataYear $=2016$
Row Variable	Race
Column Variable	FreqVote
Counts Table	

FreqVote

Race								
	1	2	3	4	5	6	7	Total
1	560	198	59	34	73	3	5	932
2	349	78	33	17	45	2	2	526
3	4	2	4	1	2	0	0	13
4	1	1	0	1	4	0	0	7
5	13	0	2	2	3	1	0	21
8	17	1	1	2	1	0	3	25
Total	944	280	99	57	128	6	10	1524

Row Percentages Table

			FreqVote						
Race	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total	
$\mathbf{1}$	60.09%	21.24%	6.33%	3.65%	7.83%	0.32%	0.54%	100.00%	
$\mathbf{2}$	66.35%	14.83%	6.27%	3.23%	8.56%	0.38%	0.38%	100.00%	
$\mathbf{3}$	30.77%	15.38%	30.77%	7.69%	15.38%	0.00%	0.00%	100.00%	
$\mathbf{4}$	14.29%	14.29%	0.00%	14.29%	57.14%	0.00%	0.00%	100.00%	
$\mathbf{5}$	61.90%	0.00%	9.52%	9.52%	14.29%	4.76%	0.00%	100.00%	
$\mathbf{8}$	68.00%	4.00%	4.00%	8.00%	4.00%	0.00%	12.00%	100.00%	
Total	61.94%	18.37%	6.50%	3.74%	8.40%	0.39%	0.66%	100.00%	

Cross Tabulation Report

Dataset C:I...ISSRC SURVEY DATA BY COUNTYSSRC SURVEY DATA V1.NCSS
Filter \quad DataYear $=2017$

Row Variable Race
Column Variable FreqVote
Counts Table

Race	FreqVote							
R	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
$\mathbf{1}$	534	185	65	34	73	3	6	900
$\mathbf{2}$	347	73	52	21	37	6	2	538
$\mathbf{3}$	6	2	1	1	1	1	0	12
$\mathbf{4}$	1	2	0	0	2	0	0	5
$\mathbf{5}$	12	4	3	1	4	0	1	25
$\mathbf{6}$	3	2	2	2	4	0	0	13
$\mathbf{8}$	17	2	0	3	0	0	0	22
Total	920	270	123	62	121	10	9	1515

Row Percentages Table

		FreqVote Race						
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
$\mathbf{1}$	59.33%	20.56%	7.22%	3.78%	8.11%	0.33%	0.67%	100.00%
$\mathbf{2}$	64.50%	13.57%	9.67%	3.90%	6.88%	1.12%	0.37%	100.00%
$\mathbf{3}$	50.00%	16.67%	8.33%	8.33%	8.33%	8.33%	0.00%	100.00%
$\mathbf{4}$	20.00%	40.00%	0.00%	0.00%	40.00%	0.00%	0.00%	100.00%
$\mathbf{5}$	48.00%	16.00%	12.00%	4.00%	16.00%	0.00%	4.00%	100.00%
$\mathbf{6}$	23.08%	15.38%	15.38%	15.38%	30.77%	0.00%	0.00%	100.00%
$\mathbf{8}$	77.27%	9.09%	0.00%	13.64%	0.00%	0.00%	0.00%	100.00%
Total	60.73%	17.82%	8.12%	4.09%	7.99%	0.66%	0.59%	100.00%

Cross Tabulation Report

Dataset	C:I....ISSRC SURVEY DATA BY COUNTYSSRRC SURVEY DATA V1.NCSS
Filter	DataYear $=2018$
Row Variable	Race
Column Variable	FreqVote

Counts Table

Race	FreqVote							
	1	2	3	4	5	6	7	Total
1	441	238	69	35	22	2	2	809
2	318	105	52	13	18	3	0	509
3	1	2	1	0	2	0	0	6
4	1	0	1	0	0	0	0	2
5	11	7	2	2	2	1	0	25
6	4	1	0	4	1	0	0	10
7	1	0	0	1	0	0	0	2
8	9	3	0	0	0	0	0	12
Total	786	356	125	55	45	6	2	1375

The number of rows with at least one missing value is 125

Row Percentages Table

	FreqVote							
Race	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
$\mathbf{1}$	54.51%	29.42%	8.53%	4.33%	2.72%	0.25%	0.25%	100.00%
$\mathbf{2}$	62.48%	20.63%	10.22%	2.55%	3.54%	0.59%	0.00%	100.00%
$\mathbf{3}$	16.67%	33.33%	16.67%	0.00%	33.33%	0.00%	0.00%	100.00%
$\mathbf{4}$	50.00%	0.00%	50.00%	0.00%	0.00%	0.00%	0.00%	100.00%
$\mathbf{5}$	44.00%	28.00%	8.00%	8.00%	8.00%	4.00%	0.00%	100.00%
$\mathbf{6}$	40.00%	10.00%	0.00%	40.00%	10.00%	0.00%	0.00%	100.00%
$\mathbf{7}$	50.00%	0.00%	0.00%	50.00%	0.00%	0.00%	0.00%	100.00%
$\mathbf{8}$	75.00%	25.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%
Total	57.16%	25.89%	9.09%	4.00%	3.27%	0.44%	0.15%	100.00%

The number of rows with at least one missing value is 125

Cross Tabulation Report

Dataset	C: $\backslash \ldots$...ISSRC SURVEY DATA BY COUNTYYSSRC SURVEY DATA V1.NCSS
Filter	DataYear $=2019$
Row Variable	Race
Column Variable	FreqVote

Counts Table

Race	FreqVote							
	1	2	3	4	5	6	7	Total
1	487	203	67	36	10	3	2	808
2	346	83	60	16	20	1	2	528
3	7	2	1	0	2	0	0	12
4	2	0	1	1	1	0	0	5
5	14	6	3	1	1	0	0	25
6	5	2	1	1	0	0	0	9
8	11	1	3	1	1	0	1	18
Total	872	297	136	56	35	4	5	1405

The number of rows with at least one missing value is 122

Row Percentages Table

FreqVote

Race

$\mathbf{n n n n n n n}$		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	60.27%	25.12%	8.29%	4.46%	1.24%	0.37%	0.25%	100.00%
$\mathbf{2}$	65.53%	15.72%	11.36%	3.03%	3.79%	0.19%	0.38%	100.00%
$\mathbf{3}$	58.33%	16.67%	8.33%	0.00%	16.67%	0.00%	0.00%	100.00%
$\mathbf{4}$	40.00%	0.00%	20.00%	20.00%	20.00%	0.00%	0.00%	100.00%
$\mathbf{5}$	56.00%	24.00%	12.00%	4.00%	4.00%	0.00%	0.00%	100.00%
$\mathbf{6}$	55.56%	22.22%	11.11%	11.11%	0.00%	0.00%	0.00%	100.00%
$\mathbf{8}$	61.11%	5.56%	16.67%	5.56%	5.56%	0.00%	5.56%	100.00%
Total	62.06%	21.14%	9.68%	3.99%	2.49%	0.28%	0.36%	100.00%

The number of rows with at least one missing value is 122

Cross Tabulation Report

Dataset	C:I...ISSRC SURVEY DATA BY COUNTYISSRC SURVEY DATA V1.NCSS
Filter	DataYear $=2020$
Row Variable	Race
Column Variable	FreqVote

Counts Table

Race	FreqVote							
	1	2	3	4	5		7	Total
1	571	159	45	41	18	0	3	837
2	336	62	41	12	7	4	4	466
3	4	1	2	2	0	0	0	9
4	5	1	0	2	1	0	0	9
5	5	11	3	5	3	0	0	27
6	0	0	2	0	0	0	0	2
7	2	0	0	0	0	0	0	2
8	20	4	3	2	0	0	1	30
Total	943	238	96	64	29	4	8	1382

The number of rows with at least one missing value is 123

Row Percentages Table

Race	FreqVote							
	1	2	3	4	5	6	7	Total
1	68.22\%	19.00\%	5.38\%	4.90\%	2.15\%	0.00\%	0.36\%	100.00\%
2	72.10\%	13.30\%	8.80\%	2.58\%	1.50\%	0.86\%	0.86\%	100.00\%
3	44.44\%	11.11\%	22.22\%	22.22\%	0.00\%	0.00\%	0.00\%	100.00\%
4	55.56\%	11.11\%	0.00\%	22.22\%	11.11\%	0.00\%	0.00\%	100.00\%
5	18.52\%	40.74\%	11.11\%	18.52\%	11.11\%	0.00\%	0.00\%	100.00\%
6	0.00\%	0.00\%	100.00\%	0.00\%	0.00\%	0.00\%	0.00\%	100.00\%
7	100.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	100.00\%
8	66.67\%	13.33\%	10.00\%	6.67\%	0.00\%	0.00\%	3.33\%	100.00\%
Total	68.23\%	17.22\%	6.95\%	4.63\%	2.10\%	0.29\%	0.58\%	100.00\%

The number of rows with at least one missing value is 123

Cross Tabulation Report

Dataset	C:I....ISSRC SURVEY DATA BY COUNTYSSRRC SURVEY DATA V1.NCSS
Filter	DataYear $=2021$
Row Variable	Race
Column Variable	FreqVote

Counts Table

	FreqVote							
Race	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
$\mathbf{1}$	464	213	79	34	24	2	1	817
$\mathbf{2}$	327	82	40	23	16	2	0	490
$\mathbf{3}$	8	1	1	1	1	0	0	12
$\mathbf{4}$	5	2	3	2	0	0	0	12
$\mathbf{5}$	8	4	2	2	3	0	0	19
$\mathbf{6}$	2	1	1	0	1	0	0	5
$\mathbf{8}$	23	2	4	0	2	0	0	31
Total	837	305	130	62	47	4	1	1386

The number of rows with at least one missing value is 132

Row Percentages Table

FreqVote

Race

		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	56.79%	26.07%	9.67%	4.16%	2.94%	0.24%	0.12%	100.00%
$\mathbf{2}$	66.73%	16.73%	8.16%	4.69%	3.27%	0.41%	0.00%	100.00%
$\mathbf{3}$	66.67%	8.33%	8.33%	8.33%	8.33%	0.00%	0.00%	100.00%
$\mathbf{4}$	41.67%	16.67%	25.00%	16.67%	0.00%	0.00%	0.00%	100.00%
$\mathbf{5}$	42.11%	21.05%	10.53%	10.53%	15.79%	0.00%	0.00%	100.00%
$\mathbf{6}$	40.00%	20.00%	20.00%	0.00%	20.00%	0.00%	0.00%	100.00%
$\mathbf{8}$	74.19%	6.45%	12.90%	0.00%	6.45%	0.00%	0.00%	100.00%
Total	60.39%	22.01%	9.38%	4.47%	3.39%	0.29%	0.07%	100.00%

The number of rows with at least one missing value is 132

Appendix 6. David A. Swanson CV (2022 V17)

Curriculum Vitae
David A. Swanson
1 Lake Louise Drive \#19
Bellingham, Washington 98229
\&
8924 Evening Star Drive
Las Vegas, NV 89134
email: david.swanson@ucr.edu
Webpage : https://profiles.ucr.edu/app/home/profile/dswanson

I. Education

Ph.D.	1985	Sociology/Population Studies	University of Hawaï i
M.A.	1976	Sociology/Population Studies	University of Hawaii i
Graduate Studies Diploma	1974	Social Science/Swedish	University of Stockholm
B.Sc.	1972	Sociology/Mathematics	Western Washington
			State College

(Credit courses also completed at the University of Puget Sound (9 semester hours) and Columbia Basin College (30 quarter hours)
G.
H. II. Academic and Related Positions
A. Primary Appointments

Center for Population Research Portland State University	$2022-2023$	Research Associate
Aoyama Gakuin University, Tokyo, Japan	October 27 to November 11 2018	Visiting Professor

Pacific Lutheran University, Department of Sociology	1987 to 1992	Associate Professor (Tenure Awarded)
Bowling Green State University, Department of Sociology	1985 to 1987	
Alaska Department of Labor	1984 to 1985	Assistant Professor Visiting Instructor
1981-1983	State Demographer	

B. Conjoint and Miscellaneous Appointments

M.P.S in Applied Demography Dept. of Sociology \& Criminology Penn State University	2019	Lecturer (On-line) Appdem 804 Business Demography Appdem 805 Demog \& Public Policy
Center for Studies in Demography \& Ecology, University of Washington	2017 -	Faculty Affiliate

Mikkeli Polytechnic College, International Business Program

Portland State University Center for Population and Census

University of Arkansas at Little Rock, Institute for Economic Advancement

University of Arkansas for Medical
Sciences, National Center for Rural Mental Healthcare Research

Pacific Lutheran University, Center for Social Research And Public Policy

Pacific Lutheran University, Department of Sociology

Bowling Green State University,
Population and Society
Research Center
University of Alaska, Juneau
School of Business Administration
National Science Foundation
"Research For Undergraduates"
Demographic Research Laboratory Western Washington University

ICPSR Summer Program in
Quantitative Methods,
University of Michigan

Argonne National Laboratory,

Spring, 2001
Spring, 2000
1995-1997

1992-1995

1992-1995

1987-1992

1990-1991

1984-1987

1983

Summer, 1994
Summer, 1991
Summer, 1989
Summer, 1988
July, 1989
July, 1988
July, 1987
July, 1986
Summer, 1987

Guest Lecturer in
Statistics
Guest Lecturer in Statistics
Director

Director, Demographic
Research Unit

Research Scientist

Director

Acting Chair

Assistant Director for Population Research

Lecturer

Workshop Instructor
Workshop Instructor Workshop Instructor Workshop Instructor

Guest Lecturer Workshop Instructor Workshop Instructor Workshop Instructor

Faculty Research
Participant

III. Teaching Experience

A. Credit Courses

1. Undergraduate Courses

Sociology Courses

Introductory Sociology
Population, Poverty, and Hunger
Introductory Statistics
Research Methods
Urban Sociology
Population Studies/Demography Courses
Introduction to Population Studies
Introduction to Applied Demography
Demographic Analysis and International Business
Market Demographics
Population Analysis
Population Forecasting
The Baby Boom
World Population Issues
i. Business Administration Courses

Introductory Statistics for Business Administration
Business Mathematics
Demographic Methods and International Business
Quantitative Methods in Business
Business Forecasting
Market Demographics
Introduction to SPSS

2. Graduate Courses

Sociology Courses

Research Methods
Multivariate Analysis
Population Studies/Demography Courses
Business Demographics
Demographic Methods
Advanced Market Demographics
Applied Demography
Population Forecasting
Population Estimation Methods
Business Administration Courses
Business Forecasting
Refresher Mathematics for MBA Students
Quantitative Methods

I. B. Non-Credit and Continuing Education Courses and Topics

Census and Survey Administration Census and Survey Methods Interviewer Training

Population Estimation Population Forecasting Enrollment Forecasting

IV. Thesis Supervision

A. Committees chaired

2014. Overcrowding as a Determinant of Violence in California State Prisons. B. A. Honors Thesis by John Maldonado. Department of Sociology. University of California Riverside.

2011 Demographic Analysis and the U.S. Hispanic Population. Ph.D. Dissertation by Matt Kaneshiro, Department of Sociology, University of California Riverside.
2007. A Comparison of Housing Unit Estimates to the American Community Survey Master Address File. Sociology M.A. Thesis completed by A. J. Reese. Department of Sociology and Anthropology, University of Mississippi.

2004 Towards International Standardisation of Accounting: IAS and the Accounting Practises in Finland and Russia. Senior (BScBA) Thesis completed by O. Nieminen, Mikkeli Business Campus, Helsinki School of Economics and Business Administration

2003 The Impact of International Mergers and Acquisitions on Brand Strategies. Senior (BScBA) Thesis completed by N. Yli-Pirilä, Mikkeli Business Campus, Helsinki School of Economics and Business Administration.

2003 International Franchising and Investment. Senior (BScBA) Thesis completed by M. Wainwright, Mikkeli Business Campus, Helsinki School of Economics and Business Administration

2002 Mobile Commerce: Hype or Reality? Senior (BScBA.) Thesis completed by P. Louko, Mikkeli Business Campus, Helsinki School of Economics and Business Administration.

2002 Transport Perspectives within the European Union. Senior (BScBA.) Thesis completed by O. Martychtchenko, Mikkeli Business Campus, Helsinki School of Economics and Business Administration.

2001 Investing in African Economies: Inhibitions and Prospects - A General Overview. Senior (BBA.) Thesis completed by P. Kalubi, Mikkeli Business Campus, Helsinki School of Economics and Business Administration.

1996 Population Estimation Techniques Using the Housing Unit Method. Master of Urban Science (M.U.S.) Research Paper completed by Tom Bryan, Department of Urban Studies, Portland State University (Co-chaired with George Hough).

1987 Measuring Propensity: The Association between Socioeconomic Variables and Differential Migration for Ohio, 1975-1980. M.A. Thesis completed by K. A. Wright, Department of Sociology, Bowling Green State University.

1986 Estimation of Net Migration among Major regions in Iraq, 1957-1977, M.A. Thesis completed by A. Al-Jiboury, Department of Sociology, Bowling Green State University.

An Interpretation of the Ratio-Correlation Method of Population Estimation. M.A. Thesis completed by R. Prevost, Department of Sociology, Bowling Green State University.

B. Committees of which a member

A Descriptive Profile of the Multiracial Asian Population in the United States. Ph.D. Dissertation completed by Sooji Han, Department of Sociology, University of California Riverside

2014 A Spatial Examination of Residency Restriction Legislation: The Impact of Social Disorganization and Social Services. Ph.D. Dissertation completed by Erin Wolbeck, Department of Sociology, University of California Riverside
2012. Exploring the Decision-Making Process in Relation to Legitimacy Assignment. Ph.D. Dissertation completed by Adam Sanford, Department of Sociology, University of California Riverside.

2005 Unique Competencies of International Non-Governmental Organizations (INGOs): Empirical Explorations from India. Ph.D. Dissertation completed by Pranaya Kumar Swain, Department of Sociology, Indian Institute of Technology-Kanpur, Kanpur, Utter Pradesh, India (External Examiner).

1991 The Influence of Parents on the Drinking Patterns of Their Teenage Children. M.A. Thesis completed by R. D. Jacobsen, Division of Social Sciences, Pacific Lutheran University.

1990 Austrian National Identity and the Dokumentationsarchis des Osterreichischen Widerstandes. M.A. Thesis completed by F. Hornquist, Division of Social Science, Pacific Lutheran University.
1989 A Model for Fertility Change. Ph.D. Dissertation completed by N. Sugathan, Department of Demography, University of Kerala, (External Examiner).
1989 The Spruce Program: A Profile of the Participants. M.A. Thesis completed by K. Roe, Division of Social Science, Pacific Lutheran University.
1986 A Content Analysis of Music Videos. M.A. Thesis completed by L. Olsen, Department of Radio, Television, and Film, Bowling Green State University.
1986 Projection of Flexible Age-specific Migration Rates: An Examination of Pittenger's Simplified Techniques. M.A. completed by B. Bennett, Department of Sociology, Bowling Green State University.
1986. Alienation Correlates of Marital Dissolution: A Longitudinal Study. Ph.D. Dissertation completed by Yvonne Woods, Department of Sociology, Bowling Green State University.

V. Professional Development

Participant in (and Successful completion of) Records Management Training, ALCS, June, 2016

Participant in (and Successful completion of) Information Security Training, ALCS, June, 2016.

Participant, Population Projections Workshop, Association for Latin American Population Studies, 16 November 2010.

Participant, U.S. Census Bureau Workshop, "The American Community Survey," 22 September 2010.

Participant, U.S. Census Bureau Webinar, "The American Community Survey: Tracking How We Change with Multi-Year Estimates," 18 November 2009.

Participant, Nielsen Claritas Webinar, "Small Area Population Estimates," 10 November 2009.
Special Sworn Status. US Census Bureau. 2007 (renewed, 2008).
Participant, "Title 13 Training, Confidentiality and Privacy." US Census Bureau, Completed, March, 2007 and renewed November 2008.

Participant, "The Basic Course in the Protection of Human Research Subjects," University of Mississippi, Completed, October, 2005.

Participant, RAND Summer Institute on Aging. RAND, Santa Monica, California. July, 2004.

Participant, Fulbright German Studies Seminar. Berlin, Rostock, and Bonn, Germany. June, 2003.

Participant in (and successful completion of), "Finnish for Foreigners II," Kuopio University, Kuopio, Finland, July-August, 2001

Participant in (and successful completion of), "Finnish for Foreigners I," Mikkeli Polytechnic College, Mikkeli, Finland, July, 2000

Participant in (and successful completion of), "Ethics in Business," Science Applications International Corporation, 1998, 1999

Participant in (and successful completion of), Regulatory and Licensing Training Program, U.S. Department of Energy, Yucca Mountain Project, Las Vegas, Nevada, November, 1998

Participant, "The American Community Survey," American Statistical Association, Los Angeles, California, August, 1997

Participant, "Marketing and Census 2000," Seattle, Washington, August, 1996
Participant in and successful completion of), "Refresher Swedish," Portland State University, Portland, Oregon, Fall, 1995.

Participant in (and successful completion of), "Introductory Finnish," Portland State University, Portland, Oregon, Fall, 1995

Participant, "Census 2000 Content and Access," Cincinnati, Ohio, April, 1993.
Participant, "Arkansas State Census Data Center Annual Meeting," Little Rock, Arkansas, October, 1992.

Participant, "The Strategic Planning Process," Pacific Lutheran University, January, 1992.
Participant, "1990 Census Content," U.S. Bureau of the Census (Seattle Regional Office), Pacific Lutheran University, November, 1990.

Participant, "Programs and Products of the U.S. Bureau of the Census," U.S. Bureau of the Census (Detroit Regional Office) Bowling Green State University, April, 1987.
Participant, "Proposal Writing and Research Administration," College of Education, Bowling Green State University, Spring Semester, 1987.

Participant, "An Introduction to the Bootstrap," Continuing Education Session, American Statistical Association, Chicago, Illinois, August, 1986.
Participant, First Annual Research Conference, U.S. Bureau of the Census, April, 1985.
Participant in (and successful completion of),, "Performance Evaluation for Supervisory Personnel," Alaska Department of Labor, September, 1983.

Participant, "Planning for the 1990 Census," Continuing Education Session, American Statistical Association, Toronto, Ontario, Canada, August, 1983.
Participant, (and successful completion of), "Successful Project Management," Alaska Department of Personnel, Juneau, Alaska, October, 1981.
Participant in (and successful completion of), "MARK-IV Programming," Informatics, Inc., Olympia, Washington, 1980.

Participant in (and successful completion of), "IBM OS JCL" and "WYLBUR," Washington State University, Olympia, Washington, 1979.
Participant (and successful completion of), "Zero-Based Budgeting," Washington Office of Financial Management, Olympia, Washington, 1978.
Participant, "Funding Public Higher Education," Washington Office of Financial Management-Washington Higher education Coordinating Board, Olympia, Washington, 1977.

Participant, "Didactic Seminar on Causal Modeling," American Sociological Association, San Francisco, California, August, 1976.
Participant in (and successful completion of), "Swedish I," "Swedish II," and "Swedish III," Stockholm University, Stockholm, Sweden, 1973-74.

Participant, "1970 Census Products and Their Use," Hawaii Department of Administration, Honolulu, Hawaii, May, 1973.

Participant in (and successful completion of), "Introduction to Basic Assembly Language (BAL) Programming," University of Hawaii, Honolulu, Hawaii, Spring, 1973.

VI. Research Projects and Grants

J. A. Research Grants and Contracts Let and Administered

"Survey of Food Consumption and Lifestyles," Nye and Lincoln counties, Nevada, ($\$ 100,000$). 1996-97, University of Nevada Las Vegas
"1984 Residential Energy Survey" (\$250,000). 1983-84, Walker Information, Inc.
"Cooperative Publication on Alaskan Native Demography" (\$4,000). 1984, Alaska Department of Labor.
"Chloropleth Computer Mapping" ($\$ 3,500$). 1983, Alaska Department of Labor.
"Public Opinion Survey", Washington State Board for Community College Education, $(\$ 25,000)$. 1981Gilmore Research Group.
"Revision to the Higher Education Enrollment Projection System (HEEPS)," (\$5,000), 1980, Washington State Office of Financial Management.
"Population Forecasting System" ($\$ 30,000$), 1980, Washington State Office of Financial Management.

K. B. Research Contracts Awarded

Population Health Impact of Reduced Risk Tobacco Products (\$320,000). ALCS, Inc. (Principal Investigator) 2013-2018.

Hopi Tribal Population Dynamics and Forecast (\$70,000). Hopi Tribe. 2017-2019.
Population Forecasting System Evaluation $(\$ 20,000)$ Washington State Office of Financial Management (Co-Principal Investigator with J. Tayman), 2015-2016

Accuracy Study (\$228,000). ESRI (Co-Principal Investigator, Cropper GIS), 2011-2012.
Population Projections for Native Hawaiians. (\$16,078). Policy Analysis and System Evaluation, Kamehameha Schools, Honolulu, Hawaii. March, 2008 (Principal Investigator, McKibben Demographic Research).

Evaluation of methods used to estimate vacancy rates and average persons for households ($\$ 25,000$), U. S. Bureau of the Census, Summer 2007- Fall 2008. Multi-Year Estimates, American Community Survey, $(\$ 5,500)$. U. S. Bureau of the Census, Summer, 2007.

Evaluation of Methods used to Estimate the Size and Composition of the Foreign-Born Population ($\$ 27,000$). U.S. Bureau of the Census, September, 2006 (through Sabre Systems, Inc.), Spring 2007 - Fall 2007.

Enrollment Forecasting and Attendance Boundary Study. (\$12,000). Harrison County School District, Biloxi, MS., Fall, 2006. (Principal Investigator, J. McKibben).

Small Area Labor Force and Population Projections. $(\$ 7,500)$. Southern Nevada Regional Planning Commission (Subcontract with Theodore Roosevelt Institute, Las Vegas, NV), Summer, 2006

Population Projections of the Chinese Population by Age and Sex for 22 Selected Counties. $(\$ 1,500)$. Third Wave Research, Inc. Madison, Wisconsin. November 2004.

Population Projections for Native Hawaiians. (\$9,871.24). Policy Analysis and System Evaluation, Kamehameha Schools, Honolulu, Hawaii. May 2004.

Forecasting Headcount Enrollment at the Southaven Satellite Campus, ($\$ 2,000$). Office of Outreach and Continuing Education, University of Mississippi. December 2003.

Estimation and Forecasting of U.S. Lifestyle Segments, 2002 to 2012 ($\$ 6,500$), Third Wave Research, Inc., Madison, Wisconsin. October, 2002.

Review and Revision of Demographic Forecasts for Jubail, Saudi Arabia (\$20,000), Parsons Brinckerhoff, Inc., Jubail, Saudi Arabia, July, 1999.

Demographic Mentoring and Instruction $(\$ 3,000)$, Western Washington University, Bellingham, Washington, 1999.

Washoe County Population Estimation System Development (\$24,900), Washoe County Nevada. 1999.

Redesign of the Nevada State Population Forecasting Model (\$12,000), Nevada Consulting Alliance/Nevada State Demographer's Office. 1998-99.

Census Enumerator, Crew Leader, and Supervisor Training, Neighborhood Census Project ($\$ 2,500$), Portland Multnomah Progress Board (funded by a grant from the Anne E. Casey Foundation), Portland, Oregon. 1997.

Evaluating Response Rates for the American Community Survey, Portland Test Site, $(\$ 2,000)$ U.S. Bureau of the Census. 1997.

Estimating Household Income from Incomplete Data (\$25,000), Metromail, Inc. 1997.
Liberal Education Profile, Portland State University (\$70,000), Portland State University. 1997 (with D. Atkinson).

Forecasting Enrollment and Attendance Zone Changes for the Hillsboro 1J District (\$77,000), Hillsboro1J School District, Oregon, 1995-1996 (with D. Lycan, G. Hough, and I. Sharkova).

Forecasting Enrollment for the Newberg School District (\$5,000), Newberg School District, Oregon, 1996.

Estimating and Forecasting U.S. Lifestyle Segments, 1990 to 2010 (\$5,000), Third Wave Research, Inc. (with T. Bryan and G. Hough)

Omnibus Contract for Income Surveys, Community Development Block Grants ($\$ 18,000$), Oregon Department of Economic Development, 1996.
Tribal Membership Forecast $(\$ 1,400)$. The Confederated Tribes of the Grand Ronde Community of Oregon, 1995.
"Demographic Services" for Study included in ADAMNA Grant No. P50 MH48197-03, entitled "Center For Rural Mental Health Care Research" (\$7,198). University of Arkansas for Medical Sciences, 199293.
"Kitsap County Open Space Poll." Consultation and Training of a Volunteer Organization to conduct Polling in support of a proposed open-space Bond Issue, Kitsap County, Washington $(\$ 3,000)$. Kitsap Citizens for Open Space, 1992.
"Pierce County Private Industry Council, Evaluation of Programs." (\$25,000). Pierce County Private Industry Council. 1991. (with J. Schiller and K. McDade).
Pierce County Solid Waste Management Survey: (\$12,000). Jacobsen Ray McLaughlin and Fillips, Inc., 1991.
"1991 Tacoma-Pierce County Quality of Life Survey." Module on Mental Health Issues (\$3,000). Greater Lakes Mental Health Foundation, 1991.
"Implementation of the REMI Socioeconomic Forecasting Model in support of the SAIC/YMPO socioeconomic monitoring program and SCA model development." ($\$ 29,000$). Science Applications International Corporation, Yucca Mountain Project Office. U.S. Department of Energy, 1991.
"1990 Tacoma-Pierce County Quality of Life Survey." Module on health Issues (\$6,000). Tacoma-Pierce County Health Department,.
1990."Implementation of the REMI Socioeconomic Forecasting Model, in support of the SAIC/YMPO socioeconomic monitoring program and SCA model development." (\$38,000). Science Applications International Corporation, Yucca Mountain Project Office. U.S. Department of Energy, 1990.
"Review and Analysis of the Demographic Module of the EDFS-S REMI Module." (\$6,380). Science Applications International Corporation, Yucca, Mountain Project Office, U.S. Department of Energy, 1989-90.
"Small Area Model Development for the High Level Radioactive Waste Repository." (\$10,000). Battelle Human Affairs Research Centers, 1989.
"1989 Tacoma-Pierce County Solid Waste Management Survey." module on hazardous and other household wastes ($\$ 6,000$). Pierce County Waste Management Division, Pierce County, Washington, 1989.
"Pierce County Solid Waste Management Survey." (\$17,000). Pierce County, Washington (CoInvestigator with J. Schiller), 1988.
1988 "Tacoma Area Quality of Life Survey," module on racial issues (\$2,000). Tacoma Urban League (Co-Investigator with J. Schiller), 1988.
"Evaluation of the Demographic Component of the HARC/REMI Economic Demographic Model ($\$ 3,000$). Battelle Human Affairs Research Centers, 1988.
‘Survey of Applied Demographers." (\$1,500). Population Association of America, 1986-87.
"Life Tables By Sex, 1980 and 1970 and Net Migration By Age and Sex, 1970-80 and 1960-70 For Ohio." (\$750). Final Report submitted to the Ohio Data User's Center, Department of Development, December, 1984.
"Technical Data Services." (\$2,500). Alaska Reapportionment Board, 1981. 1980 Census Computer Tape Acquisition and Evaluation" (\$3,000). Washington State Redistricting Board, 1979.

C. Research Grants Awarded

"Measuring Health Status for Populations with Incomplete Census \& Vital Statistics Information: Estimating Life expectancy at Birth." ($\$ 9,861$). COR Fellowship. University of California Riverside. 2017.
"Socio-Economic Status, Race, and Life Expectancy in Los Angeles County, 1970-1990:
A Proof of Concept Proposal for $\$ 20,100$ in Funds under Strategic Goal 1. $(\$ 20,100)$ College of Humanities, Arts, and Social Sciences, University of California (Principal Investigator). 20112012.
"Virtual Co-laboratory for Policy Analysis in Greater Los Angeles" (\$2,300,000). UC Multicampus Research Program and Initiatives, University of California. (Co-Investigator with Richard Arnott et al.). 2010-2014.
"Perceptions of Disaster Relief and Recovery: Analyzing the Importance of Social and Kinship Networks Among Hurricane Katrina Refugees on the Mississippi Gulf Coast." (\$96,212). National Science Foundation (Co-Principal Investigator with F. Forgette and M. Van Boening), 2005-6.
"Interdisciplinary Working Group to Develop a Strategy for the Development of an NICHD Population and Health Research center in Mississippi." ($\$ 9,400$). Office of Research and Sponsored Programs, University of Mississippi (Principal Investigator, with Co-Investigators, Fazlay Faruque and Peggy Hewlett). 2005-6.
"Applied Demographic Research in Migration" (\$40,000). National Science Foundation (Co-Director with L.M. Tedrow), 1991.
"Applied Demographic Research in Migration" ($\$ 40,000$). National Science Foundation (Co-Director with L.M. Tedrow), 1989.
"Applied Demographic Research in Migration" (\$40,000). National Science Foundation (Co-Director with L.M. Tedrow), 1988.
"VCR Survey" (\$1,500). Kaltenborn Foundation (with B. Klopfenstein), 1987.
VCR Survey" (\$5,000). National Association of Broadcasters (with B. Klopfenstein), 1987.
"Pilot Survey of VCR Use" (\$1,500). Kaltenborn Foundation, 1986.
"Pilot Survey of VCR Use" (\$2,730). Bowling Green State University, 1986.
"Socioeconomic Correlates of Infant Mortality: Ohio, 1980" (\$90,000). U.S. Department of Health and Human Services. (Co-principal Investigator with E.G. Stockwell and J. Wicks), 1985-86.

D. Program Grants Awarded

"Transition Funding for the BScBA Degree Conversion, Phase II ($€ 100,000$), European Union Objective 1 Program (with V-P. Heiskanan). 2002
"Transition funding for the BScBA Degree Conversion, Phase I ($€ 200,000$), European Union Objective 1 Program (with V-P. Heiskanen), 2001
"BBA Program Development" ($(200,000)$ European Union Objective 1 Program (with J. Masalin), 2000.
"Academic Challenge: Developing an Applied Demography Program, Bowling Green State University" ($\$ 121,336$). Ohio Board of Regents (with M. Pugh et al.), 1986.

VII. Publications

A. Books and Monographs

Socio-demographic Perspectives on the COVID-19 Pandemic. (Forthcoming) Co-editor with Richard Verdugo. Information Age Publishing, Charlotte, NC.

Global Populations in Transition (2018). Co-author with Jo Martins and Fei Guo. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Cohort Change Ratios and Their Applications. (2017). Co-author with Jack Baker, Jeff Tayman, and Lucky Tedrow. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

The Frontiers of Applied Demography. (2016) Editor. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

The Washington State Census Board and Its Demographic Legacy. (2016). Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Methods of Demographic Analysis. (2014). Co-author with Farhat Yusuf and Jo Martins. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

A Practitioner's Guide to State and Local Population Projections. (2013). Co-author with Stanley K. Smith and Jeff Tayman. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Subnational Population Estimates. (2012). Co-author with Jeff Tayman. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Opportunities and Challenges for Applied Demography in the 21st Century. (2012). Co-Editor with Nazrul Hoque. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Learning Statistics: A Manual for Sociology Students.(2012). Cognella Academic Publishing/University Readers. San Diego, CA.

An Introduction to Consumer Demographics and Behaviour: Markets are People. (2011). Co-author with Farhat Yusuf and Jo Martins. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Estimating Characteristics of the Foreign-Born by Legal Status: An Evaluation of Data and Methods (2011). Co-author with Dean Judson. Springer Briefs in Population Studies, Volume 2, Springer, B.V. Press. Dordrecht, Heidelberg, London, and New York.

CEMAF as a Census Method: A Proposal for a Re-Designed Census and an Independent Census Bureau. (2011). Co-author with Paula Walashek. Springer Briefs in Population Studies, Volume 1, Springer, B.V. Press. Dordrecht, Heidelberg, London, and New York

Applied Demography in the $21^{\text {st }}$ Century. (2008). Co-Editor with Steve Murdock. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Southern Nevada Regional Economic Study (2006). Co-author with Alan Schlottmann, Robert Schmidt, and Edward Feser. Theodore Roosevelt Institute. Irvine, CA and Las Vegas, NV.

The Methods and Materials of Demography, 2 ${ }^{\text {nd }}$ Edition.. (2004). Co-Editor with Jacob Siegel. Academic/Elsevier Press: Los Angeles.

Population Projections for States and Local Areas: Methodology and Analysis. (2001). Co-author with Stanley K. Smith and Jeff Tayman. Kluwer Academic /Plenum Press: New York.

Issues In Applied Demography: Proceedings of the 1986 National Conference (1987) Co-Editor with Jerry Wicks. PSRC Press: Bowling Green, Ohio.

Socioeconomic Correlates of Infant Mortality-Ohio, 1980. Final Report for the Maternal and Child Health and Crippled Service Program, Grant MCJ-390520-01 (1986) Co-author with Edward G. Stockwell and Jerry Wicks.

Alaska Population Overview: 1982. Alaska Department of Labor (1983). Editor.
Alaska Population Overview: 1981. Alaska Department of Labor (1982). Editor.

B. Book and Monograph Chapters

Swanson, D. R. Sewell and T. Bryan (2021). The Effect of the Differential Privacy Disclosure Avoidance System Proposed by the Census Bureau on 2020 Census Products: Four Case Studies of Census Blocks in Alaska. pp. 2058-2062 in JSM 2021: Statistics, Data, and the Stories They Tell. American Statistical Association, Alexandria, VA.
"Estimating the underlying infant mortality rates for small populations: A case study of counties in Estonia." (2021), pp. 3-21 in R. Verdugo (Ed). The Demographic Crisis in Europe: Selected Essays. Information Age Publishing. Charlotte, NC.
"Constructing Life Tables from the Kaiser Permanente Smoking Study and Applying the Results to the Population of the United States." (2020) pp.115-152 in B. Jivetti and M. N. Hoque (eds.). Population Change and Public Policy. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with S. Chow and T. Bryan).
"The Number of Native Hawaiians and Part-Hawaiians in Hawaíi, 1778 to 1900: Demographic Estimates by Age." (2020) pp. 345-356 in B. Jivetti and M. N. Hoque (eds.). Population Change and Public Policy. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.
"A Bio-demographic Perspective on Inequality and Life Expectancy: An Analysis of 159 Countries for the Periods 1970-90 and 1990-2010." (2018) pp. 577-613 in C.R. Rao and A. Rao (eds.), Handbook of Statistics, Vol. 38. Elsevier Press (with L. Tedrow).
"Foreword." (2016). pp. v-vi in T. Wilson, E. Charles-Edwards, and T. Bell (eds.) Demography for Planning and Policy: Australian Case Studies. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.
"Demographics and Market Segmentation: China and India." (2016). pp. 3-19 in D. Swanson (ed.) The Frontiers of Applied Demography. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with J. Martins, F. Yusuf, and G. Brooks).
"Census Costs: Rationale for Re-designing Traditional Census Data Collection Methodology with the Census-Enhanced Master Address File" (2016). pp. 287-301 in D. Swanson (ed.) The Frontiers of Applied Demography. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with A. Yacyshyn).
"A Long Term Test of the Accuracy of the Hamilton-Perry Method for Forecasting State Populations by Age."(2016). pp, 491-513 in D. Swanson (ed.) The Frontiers of Applied Demography. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with J. Tayman).
"Exploring Stable Population Concepts from the Perspective of Cohort Change Ratios: Estimating the Time to Stability and Intrinsic r from Initial Information and Components of Change." (2016) pp. 227-258 in R. Schoen (ed.). Dynamic Demographic Analysis. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with L. Tedrow and J. Baker).
"An Exploratory Examination of Population and Stability in Afghanistan." (2015). pp. 305-322 in R. Sáenz, N. Rodríguez, and D. Embrick (eds.). The International Handbook of the Demography of Race and Ethnicity. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with S. El-Badry).
"Applied Demography" (2015). pp. 839-844 in: James D. Wright (editor-in-chief). International Encyclopedia of the Social \& Behavioral Sciences, 2nd edition, Vol 1. Oxford: Elsevier.
"On the Ratio-correlation Method of Population Estimation and Its Variants." (2014). pp. 93-118 in N. Hoque and L. Potter (eds.). Emerging Techniques in Applied Demography. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with J. Tayman).
"A Loss Function Approach to Examining ACS Estimates: A Case Study of 2010 "Person per Household" Estimates for California Counties" (2012). pp. 98-100 in (D. Cork, Ed.) Case Studies/Agenda Book, Workshop on the Benefits (and Burdens) of the American Community Survey. National Research Council, National Academy of Sciences, Washington, DC. (with George Hough).
http://sites.nationalacademies.org/cs/groups/dbassesite/documents/webpage/dbasse 073124.pdf
"DOMICILE 1.0: An Agent-Based Simulation Model for Population Estimates at the Domicile Level." (2012). pp. 345-370 in N. Hoque and D. A. Swanson (eds.) Opportunities and Challenges for Applied

Demography in the $21^{\text {st }}$ Century. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with C. Griffith, M. Knight, and B. Long).
"Introduction." (2012) pp. 1-3 in N. Hoque and D. A. Swanson (eds.) Opportunities and Challenges for Applied Demography in the $21^{\text {st }}$ Century. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York (with N. Hoque).
"Disappearing Hispanics? The Case of Los Angeles County, California: 1990-2000." (2011) pp. 95-122 in R. Verdugo (ed.). The Demography of the Hispanic Population: Selected Essays. Charlotte, NC: Information Age Publishing. Charlotte, NC. (with M. Kaneshiro and A. Martinez).
"Applied Demography: Its Business and Public Sector Components." (2008) in Yi Zeng (ed.) The Encyclopedia of Life Support Systems, Demography Volume. UNESCO-EOLSS Publishers. Oxford, England. (with L. Pol).(Online at http://www.eolss.net/).
"Applied Demography at the Beginning of the $21^{\text {st }}$ Century." (2008) pp. 3-12 in S. Murdock and D. Swanson (eds.). Applied Demography in the $21^{\text {st }}$ Century. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with S. Murdock).
"Measuring Uncertainty in Population Data Generated by the Cohort-Component Method: A Report on Research in Progress." (2008) pp. 165-189 in S. Murdock and D. Swanson (eds.). Applied Demography in the $21^{\text {st }}$ Century. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.
"Opportunities and Challenges for Applied Demography in the 21 ${ }^{\text {st }}$ Century" (2008). pp. 361-368 in S. Murdock and D. Swanson (eds.). Applied Demography in the $21^{\text {st }}$ Century. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.. (with S. Murdock).
"Introduction." pp. 1-8 in J. Siegel and D. Swanson (eds.) The Methods and Materials of Demography, Condensed Edition, Revised. (2004). Academic/Elsevier Press: Los Angeles. (with J. Siegel).
"Internal and Short Distance Migration." pp. 493-522 in J. Siegel and D. Swanson (eds.) The Methods and Materials of Demography, Condensed Edition, Revised. (2004). Academic/Elsevier Press: Los Angeles. (with T. Bryan and P. Morrison).
"Population Projections." pp. 561-601 in J. Siegel and D. Swanson (eds.) The Methods and Materials of Demography, Condensed Edition, Revised. (2004).Academic/Elsevier Press: Los Angeles. (with M.V. George, S. Smith, and J. Tayman).
"Glossary and Demography Timeline" pp. 751-786 in J. Siegel and D. Swanson (eds.) The Methods and Materials of Demography, Condensed Edition, Revised. (2004). Academic/Elsevier Press: Los Angeles. (with G.E. Stephan).
"Regional Survey." pp. 3-151 to 3-155 in Viability Assessment for A Repository at Yucca Mountain, Nevada. 1998. U.S. Department of Energy: Washington, D.C.
"Evaluation Approach for the Arkansas Pilot Rural Enterprise Center." pp. 114-119 in P. Shapira and J. Youtie (eds.) Evaluating Industrial Modernization Programs: Practices, Methods, and Results. 1995. Georgia Institute of Technology: Atlanta, GA. (with J. Opitz, C. Franklin, S. Miller, and F. Fenix).
"Confidence Intervals for Net Migration that Incorporate Measurement Errors in Census Counts." pp. 121-140 In K. V. Rao and J. Wicks (eds.) Issues in Applied Demography: Proceedings of the International Conference on Applied Demography. 1994. PSRC Press: Bowling Green, Ohio (with H. Kintner).
"Estimating Vital Rates from Corporate Databases: How Long Will General Motors' Salaried Retirees Live?" pp. 265-297 in H. Kintner, T. Merrick, P. Morrison, and P. Voss (eds.) Demographics: A Casebook For Business and Government. 1994. Westview Press: Boulder, Colorado (with H. Kintner).
"Overview of Demography and Management Issues in Business." pp. 92-93 In J. Wicks and D. Swanson (eds.) Issues in Applied Demography: Proceedings of the 1986 National Conference, 1986. PSRC Press: Bowling Green, Ohio.
1987.
"Public Opinion," Chapter II in A Report to the Governor and the Legislature: The Community College System in Washington. Washington State Board for Community College Education: Olympia, WA 1980. (with R. Bell).

C. Refereed Journal Articles

2022 Global Under-reporting of COVID-19 cases from January 1, 2020 to May 6, 2022." Current Science (https://www.currentscience.ac.in/Volumes/123/06/0741.pdf) (with S. Krantz and A Rao).

2022 Using Taylor's Law to Estimate Variance in Annual Unemployment by State." Review of Economics and Finance (https://refpress.org/ref-vol20-a18/) (with J. Tayman).

2022 "Two New Mathematical Equalities in the Life Table." Canadian Studies in Population (https://doi.org/10.1007/s42650-022-00065-3) (with L.M. Tedrow).

2022 "Forecasting a Tribal Population using the Cohort-Component Method: A Case Study of the Hopi." Population Research and Policy Review (https://doi.org/10.1007/s11113-022-09715-5).

2022 "Taylor's Law and the Relationship between Life Expectancy at Birth and Variance in Age at Death in a Period Life Table. Population Review 61 (1): 31-42. (with L. Tedrow).

2021 "An Example of Converting Clinical Study Mortality Data into a Life Table: The U.S. Population with Sickle Cell Disease." Open Journal of Public Health. 3 (1): 1-5.
2021. "On Mathematical Equalities and Inequalities in the Life Table: Something Old and Something New." Canadian Studies in Population 48 (June): 225-237 https://link.springer.com/article/10.1007/s42650-021-00044-0 (with L. Tedrow).

2021 "Using Synthetic Adjustments and Controlling to Improve County Population Forecasts from the Hamilton-Perry Method." Population Research and Policy Review https://doi.org/10.1007/s11113-021-09646-7 (with J. Tayman and J. Baker).

2021 "The Accuracy of Hamilton-Perry Population Projections for Census Tracts in the United States." Population Research and Policy Review. https://doi.org/10.1007/s11113-020-09601-y (with J. Baker and J. Tayman).

2020 "How Relevant is the Basic Reproductive Number Computed during COVID-19, Especially during Lockdowns?" Infection Control and Hospital Epidemiology Dec 14;1-7. doi: 10.1017/ice.2020.1376. Online ahead of print. (with A. Rao, S. Krantz, M. Bonsall, T. Kurien S. N. Byrareddy, R. Bhat and S. Kurapati).
2020. "Estimating the underlying death rate of a small population: A case study of counties in Kansas, Nebraska, North Dakota, and South Dakota." Transactions of the Kansas Academy of Science 123 (3-4): 353-369 (with J. Baker and A. Kposowa).

2020 "Estimating the Underlying Infant Mortality Rates for Small Populations, Even Those Reporting Zero Infant Deaths: A Case Study of 42 Counties in Mississippi." Journal of the Mississippi Academy of Sciences 65 (2): 183-197 (with R. Cossman).
2019. "A New Estimate of the Hawaiian Population for 1778, the Year of First European Contact." Hülili 11 (2): 203-222.
2019. "Estimating the stochastic uncertainty in sample-based estimates of infant mortality in Ghana." Journal of Economic and Social Measurement 44: 161-175. (with J. Baker and A. Kposowa).
2019. "Estimating the underlying infant mortality rates for small populations, even those reporting zero infant deaths: A case study of 66 local health areas in British Columbia." Canadian Studies in Population 46 (2): 173-187
2019. The Civil War's Demographic Impact on White Males in the 11 Confederate States: An Analysis by State and Selected Age Groups." Journal of Political and Military Sociology 46 (1): 1-26 (with R. Verdugo).
2019. "Estimating the underlying infant mortality rates for small populations: An historical study of US counties in 1970." Journal of Population Research 36 (3): 233-244 (with Jack Baker).

2019 Estimating the underlying infant mortality rates for small populations, including those reporting zero infant deaths: A case study of counties in California." Population Review 58 (2): 1-22 (with J. Baker and A. Kposowa).
2018. "A Note on rescaling the arithmetic mean for right-skewed positive distributions. Review of Economics and Finance. 14 (4):17-24 DOI Article ID: 1923-7529-2018-04-17-08 (with Jeff Tayman and Tom Bryan).
2017. "Using Modified Cohort Change and Child Woman Ratios in the Hamilton-Perry Forecasting Method." Journal of Population Research 34 (3): 209-231. (with J. Tayman).
2017. "The Civil War's Demographic Impact on White Males in Mississippi." Journal of the Mississippi Academy of Sciences 62 (3). (with R. Verdugo).
2016. "New Insights on the Impact of Coefficient Instability on Ratio-Correlation Population Estimates." Journal of Economic and Social Measurement 41: 121-143 (with J. Tayman).
2015. "On the Relationship among Values of the same Summary Measure of Error when it is used across Multiple Characteristics at the same point in time: An Examination of MALPE and MAPE." Review of Economics and Finance 5 (1): 1-14.
2013. "Consumer Demographics: Welcome to the Dark Side of Statistics." Radical Statistics 108: 38-46.
2012. "Socio-Economic Status and Life Expectancy in the United States, 1990-2010: Are We Reaching the Limits of Human Longevity?". Population Review 51 (2): 16-41 (with A. Sanford).
2012. "Population, the Status of Women, and Stability in Afghanistan." The Southern Africa Journal of Demography 13 (1): 5-36 (with S. El-Baldry).
2012. "Using Cohort Change Ratios to Estimate Life Expectancy in Populations with Negligible Migration: A New Approach." Canadian Studies in Population 39: 83-90. (with L. Tedrow).
2012. "An Evaluation of Persons per Household (PPH) Data Generated by the American Community Survey: A Demographic Perspective." Population Research and Policy Review 31: 235-266. (with G. Hough).
2011. "On Estimating a De Facto Population and Its Components." Review of Economics and Finance 5:17-31 (with J. Tayman).
2011. "MAPE-R: A Rescaled Measure of Accuracy for Cross-Sectional, Sub-national Forecasts." Journal of Population Research 28: 225-243 (with T. Bryan and J. Tayman).
2011. "Immigration and its Effect on Demographic Change in Spain." The Open Demography Journal 4:22-33 (with R. Verdugo).
2010. "New Directions in the Development of Population Estimates in the United States?". Population Research and Policy Review 29 (6): 797-818 (with J. McKibben).
2010. "Socio-economic Status and Life Expectancy in Indiana, 1970-1990." The Open Demography Journal 3:1-7. (with N. Hoque).

2010 "Business Demography in the 21st Century." Population Research and Policy Review. 29 (1): 1-3 (with F. Yusuf).

2010 "Forecasting the Population of Census Tracts by Age and Sex: An Example of the Hamilton-Perry Method in Action." Population Research and Policy Review 29 (1): 47-63 (with A. Schlottmann and R. Schmidt).
2010. "Teaching Business Demography Using Case Studies". Population Research and Policy Review. 29 (1): 93-104 (With P. Morrison).

2010 "Towards a Comprehensive Quality Assurance System for Degree Programs in Higher Education." The Montana Professor 20(1): 13-20.

2009 "Socio-Economic Status and Life Expectancy in the United States, 1970-1990." Population Review 48 (1): 39-63 (with Mary McGehee and Nazrul Hoque)
(Reprinted in the Special $60^{\text {th }}$ Anniversary Issue of Population Review, 2021)
2009 "The Socio-Demographic and Environmental Effects of Katrina: An Impact Analysis Perspective". The Open Demography Journal. 2 (11): 36-46. (with R. Forgette, J. McKibben, M. Van Boening, and L. Wombold).

2009 "Socio-economic Status and Life Expectancy in Florida, 1970 to 1990." The Florida Scientist 72 (3): 242-248. (with M. McGehee).

2009 "Socio-economic Status and Life Expectancy in Mississippi, 1970-1990. Journal of the Mississippi Academy of Sciences 54 (3-4): 190-195 (with M. McGehee).

2009 "Hurricane Katrina: A Case Study of Its Impacts on Medical Service Providers and Their Client Populations." The Open Demography Journal 2: 8-17.

2009 "A Model Growth Curve for Juvenile Age Estimation using Diaphyseal Long Bone Lengths among Ancient Maya Populations." Latin American Antiquity 20 (1): 3-14 (with M. Danforth, G. Wrobel, and C. Armstrong).

2009 "After a Disaster: Lessons in Survey Methodology from Hurricane Katrina." Population Research and Policy Review 28: 67-92 (with T. Henderson, M. Sirois, A. Chia-Chen Chen, C. Airriess, and D. Banks).

2009 "Before, Now, and After: Assessing Hurricane Katrina Relief." Population Research and Policy Review 28: 31-42 (with R. Forgette, B. Dettrey, and M. Van Boening).

2008 "The Demographic Effects of Hurricane Katrina on the Mississippi Gulf Coast: An Analysis by Zipcode." Journal of the Mississippi Academy of Sciences. 53 (4): 213-231.

2008 "Psychologists and Hurricane Katrina: Natural Disaster Response through Training, Public Education, and Research." Training and Education in Professional Psychology 2: 83-88 (with S. Schulenberg, K. Dellinger, A. Koestler, A. Kinnell, R. Forgette, and M. Van Boening).

2008 "Applied Demography in Action: A Case Study of Population Identification." Canadian Studies in Population 35 (1): 133-158.

2007 "On MAPE-R as a Measure of Cross-sectional estimation and forecast accuracy." Journal of Economic and Social Measurement 32 (4): 219-233 (with C. Coleman).

2007 "Assessing Katrina's Demographic and Social Impacts on the Mississippi Gulf Coast." Journal of the Mississippi Academy of Sciences 54 (2): 228-242 (with R. Forgette, M. Van Boening, C. Holley, and A. Kinnell).

2007 "Determinants of Government Aid to Katrina Survivors: Evidence from Survey Data." Southern Economic Journal 74 (2): 344-362. (with W. Chappell, R. Forgette, and M. Van Boening).

2007 "Providing Census Tabulations to Government Security Agencies in the United States: The Case of Arab-Americans." Government Information Quarterly 24(2): 470-487. (with S. El-Badlry).

2006 "The United States Census at the Dawn of the $21^{\text {st }}$ Century." Journal of Economic and Social Measurement. 31(3-4): 139-149. (with Charles G. Renfro).

2006 "The Roots of Conflict over U.S. Census Counts in the Late $20^{\text {th }}$ Century and Prospects for the $21^{\text {st }}$ Century." Journal of Economic and Social Measurement 31 (3-4): 185-205 (with P. Walashek).

2006 "An Evaluation of the American Community Survey: Results from the Oregon Test Site." Population Research and Policy Review 25(3): 257-273. (with G. Hough).

2006 "A Comparison of in-class and Online Student Evaluations" Delta Education Journal 3(2): 37-47.
2005 "Deep Structure Learning and Statistical Literacy." Delta Education Journal 3(1): 41-52.
2004 "Contemporary Developments in Applied Demography within the United States." Journal of Applied Social Science 21 (2): 26-56 (with L. Pol).

2004 "Advancing Methodological Knowledge within State and Local Demography: A Case Study." Population Research and Policy Review 23 (August): 379-398.

2000 "A Note on the Measurement of Accuracy for Subnational Demographic Estimates." Demography 37 (May): 193-201 (with J. Tayman and C. Barr).

1999 "In Search of the Ideal Measure of Accuracy for Subnational Demographic Forecasts." Population Research and Policy Review 18: 387-409 (with J. Tayman and C. Barr).

1998 "Merging Methods and Judgment for K-12 Enrollment Forecasting." Educational Research Service Spectrum 16 (Fall): 24-31 (with G. Hough, R. Lycan, C. Clemans, and J. Rodriguez).

1999 "On the Validity of MAPE as a Measure of Population Forecast Accuracy." Population Research and Policy Review 18: 299-322 (with J. Tayman).

1998 "Toward an Assessment of Continuous Measurement: A Comparison of Returns with 1990 Census Returns for the Portland Test Site." Journal of Economic and Social Measurement. 24: 295-308 (with G. Hough).

1998 "In Defense of the Net Migrant." Journal of Economic and Social Measurement. 24: 155-170 (with S. Smith).
1997 "On Teaching Statistics." Voprosy Statistiki 7: 77-80. (with J. McKibben, in Russian)
1997 "Forecasting For School Attendance Zone Changes: Merging GIS and Demographic Methods With Local Expert Judgment." Market and Demographic Analysis 3(6): 23-31(with G. Hough, D. Lycan, and I. Sharkova, in Chinese).

1997 "Linking Substance and Practice: A Case Study of the Relationship Between Socio-Economic Structure and Population Estimation." Journal of Economic and Social Measurement 24: 135-147. (with J. McKibben).

1997 "Socioeconomic Impacts of the Proposed Federal Gaming Tax." International Journal of Public Administration 20: 1675-1698 (with R. Schmidt and C. Barr).

1996 "Socioeconomic Status, Race and Life Expectancy In Arkansas, 1970-1990." Journal of The Arkansas Medical Society 93 (9): 445-447. (with M. McGehee).

1996 "On the Utility of Population Forecasts." Demography (33 (4): 523-528. (with J. Tayman).
1996 "Ties That Bind: A Case Study of The Link Between Employers, Families and Health Benefits." Population Research and Policy Review 15(5-6): 509-523 (with H. Kintner).

1996 "What Is Applied Demography?" Population Research and Policy Review 15 (5-6): 403-418 (with T. Burch and L. Tedrow).

1995 "Between a Rock and a Hard Place: The Evaluation of Demographic Forecasts." Population Research and Policy Review 14:233-249 (with J. Tayman).
1995 "Estimating the Population of Rural Communities By Age and Gender: A Case Study of the Local Expert Procedure." Small Town (May-June):14-21 (with J. Carlson, L. Roe, and C. Williams).
1995 "Mean Square Error Confidence Intervals For Measuring Uncertainly in Intercensal Net Migration Estimates: A Case Study of Arkansas, 1980-1990." Journal of Economic and Social Measurement 21:85-126 (with H. Kintner and M. McGehee).

1995 "On the Utility of Lagged Ratio-Correlation as a Short-term County Population Estimation Method: A Case Study of Washington State." Journal of Economic and Social Measurement 21:1-16 (with D. Beck and J. Tayman).

1994 "A New Short-term County Population Projection Method." Journal of Economic and Social Measurement 20: 25-50 (with D. Beck).

1993 "Toward Measuring Uncertainty in Estimates of Intercensal Net Migration." Canadian Studies In Population 20 (2):153-191 (with H. Kintner).

1993 "Measurement Errors in Census Counts and Estimates of Intercensal Net Migration." Journal of Economic and Social Measurement 19 (2):97-120 (with H. Kintner).

1992 "A Variation of the Housing Unit Method for Estimating the Population of Small, Rural Areas: A Case Study of the Local Expert Procedure." Survey Methodology 18(1):155-163 (with J. Carlson and L. Roe).

1992 "The Relationship Between Life Expectancy and Socioeconomic Status in Arkansas, 1970 and 1990." The Journal of the Arkansas Medical Society 89 (December):333-335.

1989 "Confidence Intervals for Postcensal Population Estimates: A Case Study for Local Areas." Survey Methodology 15 (2): 271-280.

1989 "The Impact of Census Error Adjustments on State Population Projections: The Case of Ohio. "Ohio Journal of Science 89 (1):12-18 (with Bennett, R. Prevost, K. Vaidya and R. Yehya).

1989 A State-Based Regression Model for Estimating Substate Life Expectancy." Demography 26 (February):161-170.

1988 "Intercensal Net Migration Among the Three Major Regions of Iraq: 1957-1977." Janasamkhya 6 (December):93-126 (with A. Al-Jiboury).
1988 "Temporal Variations in the Relationship Between Infant Mortality and Economic Status." Social Indicators Research 20:217-227 (with E.G. Stockwell, and J. Wicks).
1988 "Are Geographic Effects On Life Expectancy In Ohio Spurious Because of Race? " Ohio Journal of Science 88 (June):135-142 (with E.G. Stockwell).

1988 "Economic Status Differences in Infant Mortality by Cause of Death." Public Health Reports 103 (March-April):135-142 (with E.G. Stockwell and J. Wicks).
1987 "Judging the Accuracy of the 1980 Census for Small Towns: An Analysis of Survey and Related Data From the Long Form." Small Town (July-August) 4-11 (with J. Van Patten).

1987 "The Age-Cause Proxy Relationship in Infant Mortality." Social Biology 34:249-253 (with E.G. Stockwell and J. Wicks).

1987 "Trends In the Relationship Between Infant Mortality and Socioeconomic Status." Sociological Focus 20 (October):319-327 (with E.G. Stockwell and J. Wicks).

1987 "Public Policy and the Socioeconomic Mortality Differential In Infancy." Population Research and Policy Review 6 (Fall):105-121 (with E.G. Stockwell, M. Bedard, and J. Wicks).

1986 "How Accurate was the Census of Small Towns?" Small Town (January-February): 27-31 (with J. Van Patten).

1986 "Timing the Second Birth: Fecundability Models For Selected Race and Age Groups in Hawaii." Janasamkhya 4 (December):82-113.

1986 "Geographic Variation of Longevity In Ohio, 1930 and 1980." The Ohio Journal of Science 86 (September):144-149 (with E.G. Stockwell).

1986 "Missing Survey Data in End-Use Energy Models: An Overlooked Problem." The Energy Journal 7 (July):149-157.
1986 "Age at First Birth and the Length of the Second Birth Interval: Is a Positive Relationship Universal in Modern Populations?" Janasamkhya 4 (June):57-64.

1985 "Ohio's Population in the Year 2000." Ohio Cities and Villages (August): 9-11 (with J. McKibben, L. Mortezo, R. Prevost and K. Wright).

1984 "Improving the Measurement of Temporal Change in Regression Models Used For County Population Estimates." Demography 20(August): 373-382 (with L. M. Tedrow).
1984 "SUREX: Testing Survival Data for Exponentiality on the VIC-20 Microcomputer." The American Statistician 38 (February):69-70.

1981 "Allocation Accuracy in Population Estimates: An Overlooked Criterion with Fiscal Implications." pp. 13-21 in Small Area Population Estimates, Methods and Their Accuracy and New Metropolitan Areas Definitions and Their Impact on the Private and Public Sector, Series GE-41 No.7, U.S. Bureau of the Census.

1980 "Improving Accuracy in Multiple Regression Estimates of County Populations Using Principles from Causal Modeling. Demography 17 (November):413-427.

1978 "An Evaluation of Ratio and Difference Regression Methods for Estimating Small, Highly Concentrated Populations: The Case of Ethnic Groups." Review of Public Data Use 6 (July):18-27.

1977 "Two Parameter Regression Estimates of Current Life Expectancy at Birth: Part II." Asian \& Pacific Census Forum 5 (May): 5-10 (with J. A. Palmore Jr. and C. Sundaram).
1977 "An Alternative Geometric Representation of the Correlation Coefficient." The American Statistician 31 (February): 52.
1976 "Two Parameter Regression Estimates of Current Life Expectancy at Birth: Part I." Asian \& Pacific Census Forum 3 (November): 5-10 (with J. A. Palmore Jr.).

1976 "A Sampling Distribution and Significance Test For Differences in Qualitative Variation." Social Forces 55:182-184.

1976 "On the Equivalence of Categorical Level Variation and a Ratio Level Concept of Variance." Western Sociological Review 7 (Summer):57-66.

1975 "The Division of Labor: Further Exploration in the Analysis of an Ecological Concept." Western Sociological Review 6 (Summer):72-82.

1973 "A Comment on the Clemente and Gibbs-Martin Measures of the Division of Labor: Their Relation to Amemiya's Index of Economic Differentiation." Pacific Sociological Review 16 (July):401-405.

D. Proceedings

"Working Life Expectancy of Major League Pitchers and Forecasting the Number of them: Tasks made easy by using the Cohort Change Ratio Method. pp. 93-102 in 2018 Proceedings of the Social Statistics Section, American Statistical Association, Alexandria, VA (with J. Baker, J. Tayman, and L. Tedrow).
"Measuring Uncertainty in Population Forecasts: A New Approach." pp. 203-215 in Marco Marsili and Giorgia Capacci (eds.) Proceedings of the $6^{\text {th }}$ EUROSTAT/UNECE Work Session on Demographic Projections. (2014) National Institute of Statistics, Rome, Italy (with J. Tayman).
"Using Cohort Change Ratios to Estimate Life Expectancy in Populations Closed to Migration: A New Approach." Actuarial Research Conference Proceedings 2011.1 (available online athttp://www.soa.org/library/proceedings/arch/2011/arch-2011-iss1.aspx). (with L. Tedrow).
"CEMAF as a Census Method: A Proposal for a Re-Designed Census and a Re-Designed Census Bureau." pp. 229-232 in 2010 Proceedings of the Social Statistics Section, American Statistical Association, Alexandria, VA. 2010 (with P. Walashek).
"Using Cases in the Teaching of Statistics." pp. 21-30 in H. E. Klein (Ed.) Interactive Innovative Teaching and Training: Case Method and Other Techniques. World Association for Case Method Research and Application. Needham, MA, 2003. (with R. Patten).
"New Directions in Population Forecasting." pp. 634-643 in I. Zelinka, P. Chalupa, P. Hustak, and M. Dlapa (Eds.) Proceedings of the $4^{\text {th }}$ International Conference on Prediction and Non-Linear Dynamics (CD-ROM). Institute of Information Technologies, Faculty of Technology, Tomas Bata University, Zlin, Czech Republic, 2001 (with S. Smith and J. Tayman).
"On Measuring Accuracy in Subnational Demographic Forecasts." Proceedings of the 52nd Session of the International Statistical Institute, International Statistical Institute, Voorburg, Netherlands, 1999. located on-line at http://www.stat.fi/isi99/proceedings.html. 1999. (with C. Barr and J. Tayman).
"Teaching Statistics to Non-Specialists: A Course Aimed at Increasing Both Learning and Retention." pp. 159166 in L. Pereira-Mondoza, L. Kea, T. Kee, and W. Wong (Eds.) Statistical Education - Expanding the Network: Proceedings of the Fifth International Conference on Teaching Statistics. International Association for Statistical Education, International Statistical Institute, Voorburg, Netherlands. 1999. (with J. McKibben).
"Estimating the Population of Rural Communities By Age and Gender: A Case Study of the Local Expert Procedure." Proceedings of the 1993 Public Health Conference on Records and Statistics. National Center for Health Statistics, DHHS Publication No. [PHS] 94-1214. Hyattsville, Maryland, 1994 (with L. Roe Carlson and C. Williams).
"A Variation of the Housing Unit Method for Estimating the Age and Gender Distribution of Small Rural Areas. pp.1918-1923 in " High Level Radioactive Waste Management: Proceedings of the 1993 International Conference. American Nuclear Society and American Society of Civil Engineers, New York, New York, 1993. (with J. Carlson, L. Roe, and C. Williams).
"The Development of Small Area Socioeconomic Data to be Utilized for Impact Analysis: Rural Southern Nevada." pp.985-990 in High Level Radioactive Waste Management: Proceedings of the 1990 International Conference, American Nuclear Society and American Society of Civil Engineers, New York, New York, 1990. (with J. Carlson and C. Williams).
"Technical Skills and Training Needs of Applied Demographers." in 1987 Proceedings of the Statistical Education Section, American Statistical Association, American Statistical Association, Alexandria, VA. 1987 (with L. Rosen and H. Kintner).
"Estimating Life Expectancy For Health Service Areas: A Test Using 1980 Data for Indiana." in 1986 Proceedings of the Social Statistics, American Statistical Association, American Statistical Association, Alexandria, VA, 1986.
"Missing Survey Data in End-Use Energy Models: An Overlooked Problem." in 1985 Proceedings of The Business Statistics Section, American Statistical Association, American Statistical Association, Alexandria, VA, 1985.
"Issues in End-Use Survey Research." in Proceedings from The Panel on Improving Methods of Program Evaluation, American Council for an Energy-Efficient Economy, Volume K, ACEEE 1984 Summer Study on Energy Efficiency in Buildings, American Council for an Energy-Efficient Economy, Washington, DC, 1985, (with S. Buller, R. Canter, L. Guliasi, and R. Wong).
"Improving the Measurement of Temporal Change in Regression Models Used for County Population Estimates." in 1983 Proceedings of the Social Statistics Section, American Statistical Association, American Statistical Association Alexandria, VA, 1983 (with L. M. Tedrow).
"Getting at the Factors Underlying Enrollment Trends Using Statistical Decomposition Techniques." in 1983 Proceedings of the College and University Systems Exchange College and University Systems Exchange, Boulder Colorado, 1983 (with S. Story).
"Current State Population Forecasts." in Proceedings of the Washington State Resources Council Symposium: Rapid Community Growth- Is it Manageable? Washington State Resources Council; and the Cooperative Extension Services, Washington State University, Pullman, Washington 1979.
"A Method of Estimating Annual Age-Standardized Mortality Rates for Counties: Results of a Test Using Washington State Data. in 1979 Proceedings of the Social Statistics Section, American Statistical Association, American Statistical Association, Alexandria, VA, 1979 (with L. L. Swanson).

E. Non-refereed Articles

2022 "America's Post-Pandemic Future: A Demographic Perspective." PAA Affairs (https://www.populationassociation.org/blogs/david-swanson/2022/01/04/americas-post-pandemic-future-a-demographic-perspe?CommunityKey=a7bf5d77-d09b-4907-9e17468af4bdf4a6) (with Peter Morrison, Dudley Poston, Steven Krantz, and Arni Rao).

2022 "Been vaccinated?" Northwest Citizen, February 24 ${ }^{\text {th }}$ (https://nwcitizen.com/entry/been-vaccinated).

2022 "Income Inequality in Whatcom County." Northwest Citizen, February $8^{\text {th }}$ (https://nwcitizen.com/entry/income-inequality-in-whatcom-county/writer/3493).

2021 "The Cost of Trying to Help." Northwest Citizen, December 12 ${ }^{\text {th }}$
(https://nwcitizen.com/entry/the-cost-of-trying-to-help/writer/3493).
2021 "Broadband Access During a Pandemic: 2020 Census Results for the Hopi and Lummi Reservations. PAA Affairs. 11-29-2021 https://www.populationassociation.org/blogs/david-swanson/2021/11/29/broadband-access-during-a-pandemic-2020-census?CommunityKey=a7bf5d77-d09b-4907-9e17468af4bdf4a6

2021 "Broadband Access during a Pandemic: 2020 Census Results for the Hopi and Lummi Reservations." Northwest Citizen, October $11^{\text {th }}$ (https://nwcitizen.com/entry/the-lack-of-broadband-during-a-pandemic-2020-census-results-for-the-hopi-and-lummi-reservations/writer/3493).

2021 "The Census: Protecting Privacy versus Creating Useless Data." Northwest Citizen. May $18^{\text {th }}$ (https://nwcitizen.com/entry/the-census-protecting-privacy-versus-creating-uselessdata).

2021 "The Effect of the Differential Privacy Disclosure Avoidance System Proposed by the Census Bureau on 2020 Census Products: Four Case Studies of Census Blocks in Alaska" PAA Affairs (https://www.populationassociation.org/blogs/paa-web1/2021/03/30/the-effect-of-the-differential-privacy-disclosure?CommunityKey=a7bf5d77-d09b-4907-9e17-468af4bdf4a6) (with T. Bryan and R. Sewell).

2021 "Life Expectancy in the U.S. for the Population with Sickle Cell Disease. PAA Affairs (https://www.populationassociation.org/blogs/emily-merchant1/2021/01/31/life- expectancy-sickle-cell?CommunityKey=a7bf5d77-d09b-4907-9e17-468af4bdf4a6).
2020. "RE: Time varying basic reproductive number computed during COVID-19, especially during lockdowns, could be questionable." Science 23 October 23, 2020 (https://science.sciencemag.org/content/early/2020/09/29/science.abd7672/tab-e-letters) (with A. Rao, S. Krantz, M. Bonsall, T. Kurien, S. Byrareddy, R. Bhat, and S. Kurapati).
2020. "A Simple Method for Estimating the Number of Unconfirmed COVID-19 Cases in a Local Area that Includes a Confidence Interval: A Case Study of Whatcom County, Washington MedRxIIV. doi: https://doi.org/10.1101/2020.04.30.20086181. (with R. Cossman)
2020. "Estimating Working Life Expectancy from Cohort Change Ratios: An Example using Major League Pitchers." Casualty Actuarial Society E-Forum. Summer (https://www.casact.org/pubs/forum/20sumforum/09 R Swanson-et-al.pdf) (with J. Baker, J. Tayman, and L. Tedrow).

2020 "The Thanksgiving Surge: How Fared Whatcom County?" Northwest Citizen. December $12^{\text {th }}$ (https://nwcitizen.com/entry/the-thanksgiving-surge-how-fared-whatcom-county/writer/3493.)

2020 "Drilling Deeper into Whatcom County: Covid-19 \& Political Orientation." Northwest Citizen Nov. 19th (https://nwcitizen.com/entry/drilling-deeper-into-whatcom-county-covid-19-political-orientation/writer/3493 (with E. Tyberg)

2020 "Did Trump Help Democrats take the 2020 election in Washington?" Northwest Citizen. November $15^{\text {th }}$ (https://nwcitizen.com/entry/did-trump-help-democrats-take-the-2020-election-in-washington/category/ (with E. Tyberg)

2020 "Did Trump Help Democrats take the election?" Northwest Citizen. November 7 $7^{\text {th }}$ (https://nwcitizen.com/entry/did-trump-help-democrats-take-the-election/writer/3493) (with E. Tyberg).
2020. "The Last Stand." Northwest Citizen. October 17 th (https://nwcitizen.com/writer/3493/David\ A.\ Swanson.) (with E. Tyberg).
2020. "Covid-19 Deaths in Whatcom County. Northwest Citizen. July $26^{\text {th }}$ (https://nwcitizen.com/entry/covid-19-deaths-in-whatcom-county/writer/3493).
2020. "Republican leaning States take the Lead. Northwest Citizen. July $21^{\text {st }}$ (https://nwcitizen.com/entry/republican-leaning-states-are-now-in-the-lead/writer/3493) (With E. Tyberg).
2020. "Update on the Covid-19 Warning System for San Juan County. Northwest Citizen. July $18^{\text {tg }}$ (https://nwcitizen.com/entry/republican-leaning-states-are-now-in-the-lead/writer/3493) (with Peter Morrison).
2020. "Is Being Republican a Risk to One's Health and the Health of Others? Northwest Citizen. July $3^{\text {rd }}$ (https://nwcitizen.com/entry/is-being-republican-a-risk-to-ones-health-and-the-health-of-others/writer/3493 (with E. Tyberg and P. Morrison).
2020. "Revisiting the Estimation of Unconfirmed Cases of Covid-19 in Whatcom County." Northwest Citizen. June 27 ${ }^{\text {th }}$ (https://nwcitizen.com/entry/Revisting-the-Estimation-of-Unconfirmed-Cases-of-COVID-19-in-Whatcom-County/writer/3493 (with R, Cossman)
2020. "A Tale of 30 Counties: Re-opening Washington and Political Orientation." Northwest Citizen June $21^{\text {st }}$ (https://nwcitizen.com/entry/a-tale-of-39-counties-re-opening-washington-and-politicalorientation/writer/3493 (with E. Tyberg).
2020. "A Tale of Two Counties: The Re-opening of Skagit and Whatcom." Northwest Citizen. June $16^{\text {th }}$ (https://nwcitizen.com/entry/a-tale-of-two-counties-re-opening-skagit-and-whatcom/writer/3493 (with E. Tyberg).
2020. "Early Warning System for San Juan County and other Seasonal Resort Communities." Northwest Citizen. June $2^{\text {nd }}$ (https://nwcitizen.com/entry/an-early-warning-covid-19-alert-and-response-protocol-for-san-juan-county-and-other-seasonal-resort-communities/writer/3493) (with P. Morrison).
2020. "Forecasting Covid-19 in Whatcom County, Washington." PAA Affairs_(Spring) 4:5.
2020. "The Lack of Containment Measures: Does it Constitute Senicide?" Northwest Citizen_ May $7^{\text {th }}$ (https://nwcitizen.com/en Conoboy)try/the-lack-of-containment-measures-does-it-constitutesenicide). (Assisted by R. Conoboy).
2020. "Monitoring the Covid-19 Pandemic in Benton County: The Good, the Bad, and the Ugly." Northwest Citizen. May $4^{\text {th }}$ (https://nwcitizen.com/entry/monitoring-the-covid-19-pandemic-in-benton-county-the-good-the-bad-and-the-ugly).
2020. "Whatcom County Covid-19: The Final Report." Northwest Citizen. May $1^{\text {st }}$ (https://nwcitizen.com/entry/whatcom-county-the-final-report
2020. "Modeling and the Covid-19 Pandemic: A Local Area Perspective." Northwest Citizen. April $23{ }^{\text {rd }}$ (https://nwcitizen.com/entry/modeling-and-the-covid-19-pandemic-a-local-areaperspective).
2020. "Monitoring the Covid-19 Surge Peak in Benton County - Update Possible?" Northwest Citizen. April $20^{\text {th }}$ (https://nwcitizen.com/entry/monitoring-the-covid-19-surge-peak-in-benton-county-update-possible).
2020. "Monitoring the Covid-19 Surge Peak in Whatcom County - Update 3." Northwest Citizen. April 17 ${ }^{\text {th }}$ (https://nwcitizen.com/entry/monitoring-the-covid-19-surge-peak-in-whatcom-county-update-3).
2020. "How Many Unconfirmed Cases of Covid-19 are there in Whatcom County?" Northwest Citizen. April 14 $4^{\text {th }}$ (https://nwcitizen.com/entry/how-many-unconfirmed-cases-of-covid-19-are-in-whatcom-county). (With R. Cossman).
2020. "Monitoring the Covid-19 Surge Peak in Whatcom County - Update 2.

Northwest Citizen. April $10^{\text {th }}$ (https://nwcitizen.com/entry/monitoring-the-covid-19-surge-peak-in-whatcom-county-update-2).
2020. "Monitoring the Covid-19 Surge Peak in Benton County." Northwest Citizen. April $7^{\text {th }}$. (https://nwcitizen.com/entry/monitoring-the-covid-19-surge-peak-in-benton-county)
2020. "Covid-19 Hospitalizations in Whatcom County." Northwest Citizen. April $5^{\text {th }}$ (https://nwcitizen.com/entry/how-many-unconfirmed-cases-of-covid-19-are-in-whatcom-county).
2020. "Monitoring the Covid-19 Surge Peak in Whatcom County - Update 1." Northwest Citizen. April $3^{\text {rd }}$. (https://nwcitizen.com/entry/monitoring-the-covid-19-surge-peak-in-whatcom-county-update-i).
2020. "Forecasting the Covid-19 Surge Peak in Whatcom County." Northwest Citizen March $30^{\text {th }}$. (https://nwcitizen.com/entry/forecasting-the-covid-19-surge-peak-in-whatcom-county).

2020 " 23,000 Payday Loan Centers and an Average Credit Card Debt of $\$ 10,300$: Welcome to Low Income America where Average Expenditures on Basics Exceed Average Income by 340%." PAA Affairs (Winter): 6.

2019 "The end of the Census." PAA Affairs (Fall): 6-7 (with P. Walashek).

2019 "Sanctuary Cities get a Census Bonus." Opinion/Commentary Wall Street Journal. 16 July 2019. (with P. Morrison).
2018. "The decision to add a citizenship question in Census 2020 is a non-starter." PAA Affairs (Summer): 8-9.
2016. "On Equalities and Inequalities in Stationary Populations." Casualty Actuarial Society EForum (http://www.casact.org/pubs/forum/16fforum/03-SwansonTedrow.pdf). A copy of this paper is also published by the Actuarial Research Clearing House, Vol. 17.1, https://www.soa.org/Library/Proceedings/Arch/2017/arch-2017-iss1.aspx (with L. Tedrow).
2016. "Life Chances: Income and Expenditure in Australia." PAA Affairs (Summer): 6. (with J. Martins).
2012. "A Loss Function Approach to Examining ACS Estimates: A Case Study of 2010 "Persons Per Household" Estimates for California Counties." pp 98-100 in (D. Cork, ed.) Case Studies and User Profiles, Workshop on the Benefits (and Burdens) of the American Community Survey. National Academies of Science, Committee on National Statistics.
2010. "Kundalini Demography." Journal of Irreproducible Results 51(December): 24-25. .
2008. "Population Aging and the Measurement of Dependency: The Case of Germany." Applied Demography 21 (April): 8-10.

2002 "Meeting Local Information Needs: A Case Study in Team Applied Demography." Applied Demography 14 (Spring): 1-3. (with P. Morrison, C. Popoff, I. Sharkova, and J. Tayman).

1998 "The State of Liberal Education, Part III: Academic Thinking and Institutional Development." Liberal Education 84 (4): 40-47. (with D. Atkinson and M. Reardon).

1998 "The Tragedy of the Census." Applied Demography 14 (Summer): 1-3.
1998 "The State of Liberal Education, Part II: Assessing Institutional Perspectives." Liberal Education 84 (2): 26-31. (with D. Atkinson and M. Reardon).
1994. "Robert C. Schmitt and His Contributions." Applied Demography 9 (Spring): 1-2.

1994 "Ratio-Correlation: An Important Tool in a Sparsely Stocked Box." Applied Demography 9 (Spring): 7-9. (with T. J. Lowe).

1990 "Population Estimation Bibliography" pp. 41-52 in State And Local Agencies Preparing Population and Housing Estimates, Current Population Reports, Series P-25, No. 1063, U.S. Bureau of The Census, Washington, D.C. (with L. M. Tedrow).

1987 "How to Forecast VCR Penetration." American Demographics (December):44-45 (with B. Klopfenstein).

1987 "Profiles of Academic, Government and Private Sector Demographers." Population Today 15 (July): 6-8 (with H. Kintner).

1986 "Evaluating Population Estimates and Short-Term Forecasts." Applied Demography 2 (November): 5-6.

1986 "The Graduate Program in Applied Demography at Bowling Green." Applied Demography 2 (August): 3-5.

1985 "A New Technique for Assessing Error in Ratio-Correlation Estimates of Population: A Preliminary Note." Applied Demography 1 (November): 1-4 (with R. Prevost).

1985 "New Academic Program in Applied Demography.' Applied Demography 1 (September): 9.
1983 "Special Census Results for Oil-Related Worksites in the North Slope Borough." Alaska Economic Trends 3 (March):104.

1982 "North Slope Population Up 68.6 Percent." Alaska Journal of Commerce and Pacific Rim Reporter (March 1): 22.

1979 "Decomposing Change in Population Based Economic Indicators: The Female Labor Force Participation Rate, 1960-1970." Economic Forecast for Washington State: 1979-81, Third Quarter Report: 12-18.

1979 "Trends in the Number of Households." Economic Forecast for Washington State: 1979-81, Second Quarter Report: 7-11.

1979 "Trends in the Age-Related Components of Starter Housing Demand." Economic Forecast_for Washington State: 1979-81, First Quarter Report: 8-11.

1978 "Changes in the Working-Age Population." Economic Forecast for Washington State: 1978-80, Fourth Quarter Report: 13-16.

F. Reports (Published)

Vision 2007: A Plan for Integrating University Units in Mikkeli (Fall, 2002). Report Jointly prepared by Mikkeli Elements of Helsinki University and the Helsinki School of Economics and Business Administration (with P. Mustalampi and P. Siiskonen).

Self-Evaluation Report on Regional Impact (September, 2002) Mikkeli Business Campus, Helsinki School of Economics and Business Administration, Mikkeli Finland (with S. Lampinen, and P. Mustalampi).

HSE-Mikkeli BScBA Degree Program Course Schedule for 2002-2003 (April, 2002). Mikkeli Business Campus, Helsinki School of Economics, Mikkeli, Finland (with M. Syväoja et al.).

BScBA Student Handbook. (April, 2002). Mikkeli Business Campus, Helsinki School of Economics, Mikkeli Finland (with D. Atkinson).

BScBA Course Catalog, 2002-2003. (April, 2002) Mikkeli Business Campus, Helsinki School of Economics, Mikkeli Finland (with D. Atkinson, M. Syvaoja, and S. Pynnönen).

BScBA Faculty Handbook. (April, 2002). Mikkeli Business Campus, Helsinki School of Economics, Mikkeli, Finland. (with D. Atkinson).

The BScBA Quality Assurance System: Developing a Workable Faculty, Course, and Student Evaluation Program. (March, 2002). Mikkeli Business Campus, Helsinki School of Economics, Mikkeli Finland.

BScBA Course Catalog, 2001-2002. (July, 2001) Mikkeli Business Campus, Helsinki School of Economics, Mikkeli Finland (with V-P. Heiskanen, P. Reponen and S. Pynnönen).

BBA. Course Catalog, 2000-2001. (May, 2000) Mikkeli Business Campus, Helsinki School of Economics, Mikkeli Finland (with J. Masalin).

Technical Documentation and Summary Findings of the 1997 Survey in Lincoln County, Nevada. U.S. Department of Energy, Office of Civilian radioactive Waste Management (DE-AC0191RW00134). (May, 1998) U.S. Department of Energy, Yucca Mountain Project, Las Vegas, Nevada.

The 1997 'Biosphere’ Food Consumption Survey: Summary Findings and Technical Documentation. U.S. Department of Energy, Office of Civilian radioactive Waste Management (DE-AC01-91RW00134). (November, 1997) U.S. Department of Energy, Yucca Mountain Project, Las Vegas, Nevada.

A Changing Arkansas: As Reflected by Population and Related Data. (1997). Institute For Economic Advancement, University of Arkansas at Little Rock (with M. McGehee and C. FarrOnuora).

Conditions at Mid-Decade: Economic, Demographic, and Attitudinal Conditions in Arkansas. (1995). Arkansas Institute of Government, College of Professional Studies, University of Arkansas at Little Rock. (with J. Shelnutt, M. McGehee, and R. Hy).

Why Do Group Health Benefit Populations Change Size? Case Study of General Motors Salaried Population, 1983-1990. General Motors North American Operations Research and Development Center Report R \& D-B104 (December, 1993). General Motors Corporation, Warren, Michigan (with H. Kintner).

Projections of The Population of Arkansas By County, Age, Gender, and Race: 1990 to 2010. (September, 1993) Arkansas Institute For Economic Advancement, University of Arkansas at Little Rock (with M. McGehee).

Arkansas Net Migration By Age, Gender, Race, and County: 1980-1990 (August, 1993). Arkansas Institute for Economic Advancement, University of Arkansas at Little Rock (with M. McGehee).

Enrollment Projections For The University of Arkansas at Little Rock, Fall Term, 1991 to Fall Term, 2001 (March, 1993). Arkansas Institute for Economic Advancement, University of Arkansas at Little Rock (with G. Chamberlin).

An Overview of Trends in Saline County and An Analysis of Potential Uses of The ALCOA Property (February, 1993). Arkansas Institute For Economic Advancement, University of Arkansas at Little Rock (with S. Breshears et al.).

The Impact of Downsizing and Demographic Processes on the size of GM's Salaried Health
Benefits Population, 1983-1990. General Motors Research Laboratories Report OS-238. (March, 1993). General Motors Research Laboratories, Warren, Michigan (with H. Kintner).

Abridged Life Tables By Race and Sex, Arkansas, 1970, 1980, and 1990 (December, 1992) Arkansas Institute For Economic Advancement, University of Arkansas at Little Rock (with M. McGehee).

Estimating Demographic Rates from Employer Administrative Databases (July, 1992). General Motors Research Laboratories Report OS 30-75. General Motors Research Laboratories, Warren, Michigan (with H. Kintner).

Measurement Errors in Census Counts and Estimates of Intercensal Net Migration (June, 1992). GM Research Laboratories Report OS 30-73. General Motors Laboratories, Warren, Michigan (with H. Kintner).

Tacoma-Pierce County Employment and Training Consortium Job Retention Research Project (March, 1992). Center for Social Research \& Public Policy, Pacific Lutheran University (with J. Schiller et al.).

Demographic Analysis of the Lummi Indian Reservation (September, 1991) Demographic Research Laboratory, Western Washington University. (with L. M. Tedrow).

1991 Tacoma Area Quality of Life Survey I: Summary Findings and Technical Documentation. Center for Social Research \& Public Policy, Pacific Lutheran University (December, 1991).

1991 Pierce County Recycling and Solid Waste Management Survey I: Summary Findings and
Technical Documentation. Center for Social Research \& Public Policy, Pacific Lutheran University (October, 1991).

1990 Tacoma Area Quality of Life Survey I: Summary Findings and a Technical Documentation. Center for Social Research \& Public Policy, Pacific Lutheran University. (March, 1991).

Perspectives on Change in GM's Salaried Health Benefits Population, Part II: Changes by Age and Gender (February, 1991). GM Research Laboratories Report OS-181. General Motors Research Laboratories, Warren, Michigan (with H. Kintner).

Perspectives on change in the GM Salaried Benefits Population, Part I: Trends in Enrollees, Dependents, and Members (January, 1991). GM Research Laboratories Report OS-181. General Motors Research Laboratories, Warren, Michigan (with H. Kintner).

The Development of Confidence Intervals For Estimates of Intercensal Net Migration. (October, 1990). GM Research Laboratories Report OS-170. General Motors Research Laboratories Report OS-170. GM Motor Research Laboratories, Warren, Michigan (with H. Kintner).

Confidence Intervals For the Populations: A Case Study of General Motors' Salaried Retirees. (August, 1990) GM Research Laboratories Report GMR-7124. General Motors Research Laboratories, Warren, Michigan (with H. Kintner).

Confidence Intervals for Forecasting Health Care Costs For GM's Retirees, Part I: An Evaluation of Three Alternative Survivorship Functions for Current Salaried Retirees. (February, 1990) General Motors Research Laboratories Report OS-154. GM Research Laboratories, Warren, Michigan (with H. Kintner).

Toward A Method of Forecasting Health Care Costs for GM's Retirees, Part I: An Evaluation of Three Alternative Survivorship Functions for Current Salaried Retirees. (February, 1990) General Motors Research Laboratories Report OS-136. GM Research Laboratories, Warren, Michigan (with H. Kintner).

1989 Tacoma Area Quality of Life Survey, I. Summary Findings and Technical Documentation. Center for Social Research \& Public Policy, Pacific Lutheran University (March, 1990).

1989 Prince of Peace Community Survey. Summary Findings and Technical Documentation. Center for Social Research \& Public Policy, Pacific Lutheran University (February, 1990) (with D. Rosenauer et al.).

1988 Tacoma Area Quality of Life Survey, III. The Status of Whites. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (March, 1989).

1988 Tacoma Area Quality of Life Survey, II. The Status of Blacks. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (February, 1989) (with G. Winston).

Pierce County Recycling and Waste Management Survey, III. Estimates of Solid Waste Disposal and Recycling Practices For 1988 and Baseline Projections for 2000. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (January, 1989).

Pierce County Recycling and Waste Management Survey, II. Penetration Analysis and Segment Identification. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (December, 1988) (with J. Schiller).

Pierce County Recycling and Waste Management Survey, I. Summary Findings and Technical Documentation. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (December, 1988).

1988 Tacoma Area Quality of Life Survey, I. Summary Findings and Technical Documentation. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (December, 1987).

A Critique of DEMPRO, The Population Forecasting Subsystem of SEAM. Population and Society Research Center, Bowling Green State University (August, 1987).

The Potential Market For Hospital Training Programs: Results From A Fourteen-State Survey. Population and Society Research Center, Bowling Green State University (January, 1985).
"Survey Findings." pp. 15-26 in Community Gap: Report of a Public Hearing on the Levels and Types of Public Affairs Programming Desired by Citizens of Commercial Television, Choosing Our Future, Inc.: Menlo Park, California (June, 1984).

The People Speak: Is Television Serving the Public Interest. Choosing Our Future, Inc.: Menlo Park, California (May, 1984) (with E. Babbie, M. Bedard, S. Buller, D. Elgin, L. Guliasi, and A. Niehaus).
"A Population Forecasting System for 1982 to 2002 " in Alaska Population Overview: 1982 (1983).
"Population Determination: Technical Documentation" in Alaska Population Overview: 1982(1983).
"Municipal Population Estimation: Conceptual and Practical Features of the Housing Unit Method." in Alaska Population Overview: 1982 (1983) (with B. Baker and J. Van Patten).
"Municipal Census Results and Costs for 1981." in Alaska Population Overview: 1981 (1982)."State Population Estimates for Alaska During the 1970's" in Alaska Population Overview: 1981 (1982).
"Change in Average Household Size: 1970-80." in Alaska Population Overview: 1981 (1982)."1981 Population Determinations, Technical Documentation." in Alaska Population Overview: 1981 (1982).
"Changes in Household Size, 1970-79." in State of Washington Population Trends, 1979, Washington State Office of Financial Management (1980) (with T. Lowe).
"Current Activities of the Population, Enrollment and Economic Studies Division" in State of Washington Population Trends, 1978. Washington State Office of Financial Management (1978).
"Comparative Mortality Levels for Washington State Counties in 1975." in State of Washington Population Trends, 1977. Washington State Office of Financial Management (1977).

G. Reports (Unpublished)

Estimated Life Expectancy and Present Value of Household Costs, Z. Kirkson. O'Reilly Law Group, Las Vegas, Nevada. 6 November 2019.

Estimated Present Value of Lost Earnings and Benefits, J. Schrage. O'Reilly Law Group, Las Vegas, Nevada. 4 November, 2019

Forecast of Hopi Tribal Members (2019). Hopi Tribe Office of Financial Management. Kykotsmovi, Arizona. Consulting Contract 18-029.

State of Washington Population Projection Model Evaluation: Long-Range Assumptions and Ranges for Mortality, Fertility, and Net Migration. (March, 2015). OFM Contract Nos. K1634 and K1644.Washington State Office of Financial Management, Olympia, Washington (with J. Tayman).

Expert Witness Report in the matter of Conseil scolaire francophone de la Colombie-Britannique, Fédération des parents francophones de Colombie-Britannique, et al v. Her Majesty the Queen in Right of the Province of British Columbia, and the Minister of Education of the Province of British Columbia, Vancouver Registry S103975
in the Supreme Court of British Columbia. Prepared for the Office of the Attorney General, Ministry of Justice, Province of British Columbia, Canada (September, 2014).

Population Estimation: An Annotated Bibliography and Glossary. Working Paper No. 08-01, Blakely Center for Sustainable Suburban Development, University of California Riverside. (2012) (Available online at http://cssd.ucr.edu/Papers/PDFs/1-Population\ Estimation.pdf.)

A Blind Ex Post Facto Evaluation of Total Population and Total Household Forecasts made by Five Vendors for 2010: Results by Geography and Error Criteria. ESRI, Redlands, CA (September, 2011) (with M. Cropper, J. McKibben, and J. Tayman).

An Evaluation of the Accuracy of Population Estimates used by Arbitron for Clark County, Nevada: The Case of Black Males Aged 18-34. Kemp Communications, Las Vegas, Nevada (January, 2011).

Disappearing Hispanics? The Case of Los Angeles County, California, 1990-2000. Working Paper No. 10-01, Blakely Center for Sustainable Suburban Development, University of California Riverside. (February 2010) (with M. Kaneshiro and A. Martinez).

The Methods and Materials used to Generate Two Key Elements of the Housing Unit Method of Population Estimation: Vacancy Rates (VR) and Persons Per Household (PPH). U.S Census Bureau (March, 2009).

Expert Witness Report.in the matter of Quest Diagnostics versus Factory Mutual Insurance Company. Podvey, Meanor, Catenacci, Hildner, Cocoziello \& Chattman, P.C. (February, 2009).

Estimating the Foreign-Born: An Evaluation of Methods and Data. Sabre Systems (November, 2008).

Expert Witness Report in the matter of Ochsner Clinical Foundation versus Continental Casualty Company. Fisher and Kanaris, PC (August, 2008).

Hurricane Katrina: Its Impacts on the Population and Candidates for Endovascular Surgery in the Primary and Secondary Service Areas of Garden Park Hospital as Defined by Hospital Corporation of America. Salloum and Brawley LLP (October 2007).

Expert Witness Report: The Future Population in the Service Area of a Hospital in Spring Hill, Tennessee Proposed by the Hospital Corporation of America. Miller and Martin LLP (April, 2007).

A Description and Evaluation of the Belize Valley Archaeological Research Field School. Office of Outreach and Continuing Studies, University of Mississippi. (December, 2006).

The Needs of Researchers in Regard to Population Estimates. Center for Population Studies, University of Mississippi. (July 2006).

Five Year Plan for the Center for Population Studies, University of Mississippi (January 2005)
Five Year Plan for the Department of Sociology and Anthropology, University of Mississippi (January 2005)

The 1999-2001 American Community Survey and the 2000 Census: Data Quality and Data Comparisons, Multnomah County, Oregon. (September 2004) (U.S. Bureau of the Census (requisition/Reference No. 03-32183-0-0), Order No. YA1323-03-SE-0319). March, 2004) (with G. Hough).

Forecasting Headcount at the Desoto Center. Office of Outreach and Continuing Studies, University of Mississippi. (January 2004). (With C. Holley).

The Size of Twelve Age-Related and Six Income-Related lifestyle Segments in the U. S., 2002 through 2012. Third Wave Research, Inc., Madison, WI (October, 2002)

Results of the HSE-Mikkeli Alumni Survey. Mikkeli Business Campus, Helsinki School of Economics, Mikkeli, Finland. (July, 2002).

Visiting Faculty Guide. Mikkeli Business Campus, Helsinki School of Economics, Mikkeli, Finland. (June, 2001).

The BScBA Admission Index. Mikkeli Business Campus, Helsinki School of Economics, Mikkeli, Finland. (April, 2001).

Consumption of Locally Produced Food and Tap Water. Data Tracking Number MO9908COLPRFTW.000. Automated Technical Data Tracking System, Technical Library, Yucca Mountain Site Characterization Project Reference, (http://www.ymp.gov). (August 5, 1999).

Four National Geodetic Survey (NGS) High Accuracy Reference Network (HARN) Control Points in Southern Nevada and The Goldstone Continuously Operating Reference Station (CORS) in Southern California. Data Tracking Number MO9901NGSHARNC.000. Automated Technical Data Tracking System, Technical Library, Yucca Mountain Site Characterization Project Reference, (http://www.ymp.gov). (January 6, 1999).

Yucca Mountain Site Characterization Project: Summary of Socioeconomic Data Analyses Conducted in Support of the Radiological Monitoring Program: April 1997 to April 1998. TRW Environmental Safety Systems, Inc. Las Vegas, Nevada. (June, 1998).

Summary Results of the MetroMail Household Income Estimation Project. Third Wave Research, Inc. Madison, Wisconsin. (April, 1998).

Yucca Mountain Site Characterization Project: Summary of Socioeconomic Data Analyses Conducted in Support of the Radiological Monitoring Program: April 1996 to April 1997. TRW Environmental Safety Systems, Inc., Las Vegas, Nevada. (June , 1997).

The Size of Selected Lifestyle Segments: 1990 to 2010. Third Wave Research, Madison, WI. (with T. Bryan and G. Hough) (March, 1996).

Summary of Work Elements Proposed for the REMI Modifications. SAIC, Inc. (with Y. Zhao) (March, 1994).

Summary of Work Accomplished Under the 1993 Contract for Demographic Services, SAIC, Inc., (September, 1993).

Analysis of Las Vegas Gaming Revenues and Tourism: Clark County. Report prepared for the U.S. Department of Energy (contact DE-ACO8-87NV105760: Science Applications International Corporation) (with J. Carlson et al.) (October, 1988).

An Evaluation of 'Cohort' with Recommendations for Improvement. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (May, 1988).

Technical Documentation of the Toledo Area VCR Survey, Population and Society Research Center, Bowling Green State University (July, 1986).

Sex-Specific 1980 Life Tables For the Black and White Populations of Cleveland, Ohio. Population and Society Research Center, Bowling Green State University (with D. K. Knowlton) (April, 1986).

Life Tables, by Sex, 1980 and 1970 and Net Migration by Age and Sex, 1970-80 and 1960-70 for Ohio. Population and Society Research Center, Bowling Green State University (December, 1984).

Energy Consumption Patterns for New Dwellings. Unpublished Report, Economics and Statistics Department, Pacific Gas and Electric Company (May, 1984).

Forecasted Enrollment Demand by the Alaska Commission on Post-Secondary Education: An Evaluation. Final Report, Alaska House of Representatives Research Agency, (September, 1983).

Forecasts of the State and County Populations by Age and Sex: 1985-2000. Special Report No. 30, Washington State Office of Financial Management (January, 1980).

Discriminant Analysis Results for Criterion Variables Used to Select States for the Department of Personnel Out-of-State Salary Survey. Special Report No. 29, Washington State Office of Financial Management (1980).
"Using the SPSS 'Write Cases' Task and a Subsequent 'Add Cases / Add Subfiles' Task with Raw Data in Binary Format." Technical Document No. 2 Washington State Office of Financial Management (1978).
"An Evaluation of the 1977 Round of Municipal Vacancy Estimates for 1 and 2 Unit Structures." Staff Document No. 42. Olympia, WA: Washington State Office of Financial Management (1977). (with D Randall and L. Weisser).
"Ridge Regression Procedure Documentation." Technical Document No. 1 Washington State Office Financial Management (1977).
"An Evaluation of the 1977 Round of Municipal Vacancy Estimates for One and Two Unit Structures." Staff Document No. 42. Washington State Office of Financial Management (1977).

Population Characteristics of the KVOS-TV Viewing Area, Final Report for KVOS-TV, Inc. Bellingham, Washington, (August, 1974).

Jewish Population Trends, Final Report for American Friends of Hebrew University of Jerusalem, Inc., New York, (August, 1973).

Population Characteristics of the KVOS-TV Viewing Area, Final Report for KVOS-TV, Inc., Bellingham, Washington, (August, 1972).

H. Training Manuals

Trend Extrapolation Forecasting Methods. 2001. Mikkeli Business Campus, Helsinki School of Economics.

VAX/VMS User Guide for Statistics 231. 1988. Department of Sociology, Pacific Lutheran University (Adapted from the VAX/VMS Users Guide, University Computer Services, Bowling Green State University.

Alaska Census Administrator's Manual. 1981. Alaska Department of Labor (Adapted from the Washington State Census Administrator's Manual).

Alaska Census Enumerator's Manual. 1981. Alaska Department of Labor (Adapted from the Washington State Census Enumerator's Manual).

The Housing Unit Method: A Manual for Municipal Personnel Responsible for Making Annual Population Estimates. Alaska Department of Labor. 1981. (Extensively revised and expanded form of a manual with the same title written by T. J. Lowe, D. B. Pittenger, D. A. Swanson, and J. R. Walker).

I. Book Reviews

Model-based Demography: Essays on Integrating Data, Technique and Theory. Springer Research Monographs, 2018, by Thomas K. Burch. Invited Review, Canadian Studies in Population 45(3-4): 144-145.

Changes in Censuses from Imperialist to Welfare States: How Societies and States Count. Palgrave Macmillan Press, 2016, by Rebecca J. Emigh, Dylan Riley, and Patricia Ahmed. Invited review Contemporary Sociology 46 (Spring): 179-180.

Applied Multiregional Demography: Migration and Population Redistribution. Springer BV Press, 2016, by Andrei Rogers. Invited Review, Canadian Studies in Population 43 (3-4): 289-290.

Multistate Analysis of Life Histories with R. Springer BV Press, 2015, by Frans Willekens. Invited Review, Canadian Studies in Population 42 (3-4): 80-81.

Demographic Forecasting. Princeton University Press, 2009, by Frederico Girosi and Gary King. Invited review published by Contemporary Sociology 38 (July): 369-370.

VIII. Papers Read at Professional Conferences

A. Contributed Refereed Papers

"Boosted Regression Trees for Small-Area Population Forecasting." Presented at the 2022 Conference of the Southern Demographic Association, Knoxville, TN (with J. Baker and J. Tayman).
"Expert Judgment \& Standard Small Area Projection Methods: Population Forecasting for Water District Needs." Presented at the 2022 Conference of the Southern Demographic Association, Knoxville, TN (with T, Bryan, M. Hattendorf, K. Comstock, L. Starosta, and R. Schmidt).
"Repurposing record matching algorithms to identify blocks and block groups affected by Differential Privacy: Progress Report on a Pilot Project." Presented at the 2022 Small Area Estimation Conference, Session on Challenging Problems from SAE and Modern Data Science, May 26 (with T. Bryan).
"Producing Summary Statistics of COVID-19 cases and deaths over time: The case for using geometric measures, not arithmetic ones. Presented at the 2022 Conference of the Canadian Population Association, Session on Covid-19 and Mortality, May 10 (with R. Verdugo, A. Rao, and S. Krantz).
"Boosted Regression Trees for Small-Area Population Forecasting." Presented at the Annual Meeting of the Population Association of America, Session on Challenges Facing Small Area Forecasting and Estimation. Atlanta, GA. February $1^{\text {st }}$, 2022. (with J. Baker and J. Tayman).
"Taylor's Law and the Relationship between Life Expectancy at Birth and Variance in Age at Death in a Period Life Table." Presented at the Annual Meeting of the Population Association of America, Session on Mathematical Demography. Atlanta, GA. April 9th, 2022. (with L. M. Tedrow).
"Forecasting a Tribal Population using the Cohort-Component Method: A Case Study of the Hopi." Presented at the Annual Meeting of the Population Association of America, Session on Old Wine in New Bottles: Tools for Applied Demographers, Atlanta, GA, April 8th, 2022.
"Boosted Regression Trees for Small-Area Population Forecasting." Presented at the 2022 Applied Demography Conference, February $1^{\text {st. }}$. (with J. Baker)
"The American Community Survey: Would keeping the Long Form in conjunction with a MidDecade Census have been a better choice?" Presented at the 2022 Applied Demography Conference, February $1^{\text {st }}$.
"Broadband Access during a Pandemic: 2020 Census Results for the Hopi and Lummi Reservations. Presented at the 2022 Applied Demography Conference, February $2^{\text {nd }}$.
"The Effect of the Differential Privacy Disclosure Avoidance System Proposed by the Census Bureau on 2020 Census Products: Four Case Studies of Census Blocks in Mississippi.." Presented at the Annual Conference of the American Statistical Association, Seattle, WA, August 11, 2021. (with R. Cossman).
"The Effect of the Differential Privacy Disclosure Avoidance System Proposed by the Census Bureau on 2020 Census Products: Four Case Studies of Census Blocks in Alaska." Presented at the Symposium on Data Sciences and Statistics, June 4 ${ }^{\text {th }}, 2021$ (with T. Bryan and R. Sewell).
"Taylor's Law and the Relationship between Life Expectancy at Birth and Variance in Age at Death in a Period Life Table." Presented at the 2021 Conference of the Canadian Population Society, May 18-19.

A Simple Method for Estimating the Number of Unconfirmed COVID-19 Cases in a Local Area that Includes a Confidence Interval: A Case Study of Whatcom County, Washington. Presented at the 2021 Conference of the Canadian Population Society, May 18-19, (with R. Cossman).
"An Example of Converting Clinical Study Data into a Life Table: A Life Table for the U.S. Population with Sickle Cell Disease." Presented at the 2021 Applied Demography Conference, February 1-4 (https://www.populationassociation.org/events-publications/adc-2021).

Modeling and the COVID - 19 Pandemic: A Local Area Perspective David Swanson. Presented at the 2021 Applied Demography Conference, February 1-4 (https://www.populationassociation.org/events-publications/adc-2021).
"The End of the Census." Presented at the Annual Meeting of the American Statistical Association, Philadelphia, PA 1-6 August, 2020 (with P. Walashek).
"Estimating the underlying infant mortality rates for small populations: A case study of counties in Estonia." Presented at the Annual Meeting of the Population Association of America, Austin, Texas, 10-13 April, 2019
"Constructing Life Tables from the Kaiser Permanente Smoking Study and Applying the Results to Models Designed to assess the Population Health Impact of Reduced Risk Tobacco Products." Presented at the Population \& Public Policy Conference, Albuquerque, NM, 8-10 February, 2019 (with L. Wei, T. Hannel, R. Muhammad-Kah, T. Bryan and S. Chow).
"On Mathematical Equalities and Inequalities in the Life Table: Something Old and Something New." Presented at the Family and Population Conference of the International Sociological Association, Singapore, 17-19 May, 2018 (with L. Tedrow).
"Sources for publications and records of the Washington State Census Board and Its successor Agencies. Presented at the Conference of the Pacific Northwest Historians Guild, Seattle, Washington, March 2-3, 2018.
"Forecasting using Spatial Dependencies." Presented at the International Conference of Population Geographies, Seattle, Washington, June 29- July 1, 2017. (with J. Baker, J. Tayman, and L. Tedrow).
"Use of Demography in Public Sector Decision-Making." Presented at the 2017 Conference of the Population Association of America, Chicago, II.
"The Number of Native and Part-Hawaiians in Hawaíi, 1778 to 1900: Demographic Estimates by Age, with Discussion." Presented at the 2016 Conference of the British Society for Population Studies." University of Winchester, Winchester, England.
"A New Estimate of the Hawaiian Population for 1778, the Year of First European Contact." Presented at the 2016 meeting of the American Sociological Association, Seattle, WA.
"Equality and Inequality in Stationary Populations." Presented at the 51st (2016) Actuarial Research Conference, Minneapolis, MN (with L. M. Tedrow).
"Forecasting with Modified Cohort Change Ratios and Child Woman Ratios." Presented at the 2016 Council of Governments/Metropolitan Planning Organizations Socio-economic Modeling Conference, San Diego, CA (with J. Tayman).
"Language in America: Diversity, Dominance, and Cultural Maintenance, 1910-2010." presented at the 2016 Conference of the Western Social Science Association, Reno, NV. (with R. Verdugo).
"The Top Ten Reasons to use the Cohort Change Ratio Method." Presented at the 2016 Conference of the Population Association of America, Washington, D.C. (with L. M. Tedrow).
"Exploring Stable Population Concepts from the Perspective of Cohort Change Ratios: Estimating Time to Stability and Intrinsic r." Presented at the 2014 Conference of the Population Association of America, Boston, MA (with L. M. Tedrow).
"Exploring Stable Population Concepts from the Perspective of Cohort Change Ratios." Presented at the 2013 Conference of the Canadian Population Society, Victoria, BC, Canada (with L. M. Tedrow).
"An Alternative Way to Estimate Life Expectancy from Census Survival Ratios: Examples and Comparisons for Native Hawaiians in the Early 20th Century." Presented at the 2012 Conference of the Social Science History Association, Vancouver, BC, Canada (with L. M. Tedrow).
"Socio-Economic Status and Life Expectancy in the United States, 1990-2010: Are We Reaching the Limits of Life Expectancy? Presented at the 2012 Conference of the American Statistical Association, San Diego, CA (with A. Sanford).
"A "Blind" Ex Post Facto Evaluation of Total Population and Total Household Forecast for Small Areas Made by Five Vendors for 2010: Results by Geography and Error Criteria." Presented at the 2012 Conference of the Canadian Population Society, Waterloo, Ontario, Canada. (with M. Cropper, J. McKibben, and J. Tayman).
"MAPE-R: An Empirical Assessment." Presented at the 2011 Conference of the Population Association of American, Washington, D.C. (with J. Tayman and T. Bryan).
"Urban-Suburban Migration Patterns in the United States, 2004-2008: The Beginning of the End for Suburbanization?" Presented at the 2010 European Population Conference, 1-4 September, Vienna, Austria. (with J. McKibben).
"Disappearing Hispanics? The Case of Los Angeles County, California 1990-2000." Presented at the 2010 Conference of the American Statistical Association, 31 July - 5 August, Vancouver, BC, Canada (with M. Kaneshiro and A. Martinez).
"Using Cohort Change Ratios to Estimate Life Expectancy in Populations Closed to Migration." Presented at the $45^{\text {th }}$ (2010) Actuarial Research Conference, Burnaby, British Columbia, July 2628. (with L. M. Tedrow).
"MAPE-R: A Refined Measure of Accuracy for Ex Post Evaluation of Estimates and Forecasts." Presented at the 2010 International Symposium of Forecasting, 20-23 June, San Diego, California (with J. Tayman and T. Bryan).
"The American Community Survey from a User's Perspective." Presented at the 2010 Council of Governments/Metropolitan Planning Organizations Socio-economic Modeling Conference, San Diego, CA (with J. Tayman).
"The Methods and Materials used to Generate Two Key Elements of the Housing Unit Method of Population Estimation" Vacancy Rates (VR) and Persons per Household (PPH)." Presented at the 2010 Conference of the Population Association of America, 15-17 April, Dallas, Texas.
"DOMICLE 1.0: An Agent-Based Simulation Model for Population Estimates at the Domicile Level." Presented at the 2010 Applied Demography Conference, 10-12 January, San Antonio, Texas (with Cameron Griffith, Bryon Long, and Mike Knight).
"Developing Annual Population Data in the United States: New Possibilities for the 21st Century." Presented at the 2009 Conference of the International Union for the Scientific Study of Population, 27 September - 2 October, Marrakech, Morocco (with J. McKibben).
"A Demographic Approach to Forecasting Groups Covered by Employer Health Insurance." Presented at the $44^{\text {th }}$ Annual Actuarial Research Conference, 30 July - 1 August, 2009, Madison, Wisconsin. (with H. Kintner).
"Socio-Economic Status and Life Expectancy in Mississippi, 1970 to 1990." Presented at the 2009 Conference of the Canadian Population Society, 27-29 May, Ottawa, Ontario, Canada (with M. McGehee).
"An Evaluation of Data Generated By the American Community Survey." Presented at the 2008 Conference of the European Association for Population Studies, 9-12 July, Barcelona, Spain (with G. Hough).
"An Evaluation of Persons Per Household (PPH) Data Generated By the American Community Survey: A Demographic Perspective." Presented at the 2008 Conference of the Canadian Population Society, 4-6 June, Vancouver, British Columbia, Canada (with G. Hough).
"Assessing Katrina's Impact on the Mississippi Gulf Coast: A Report on Completed Research." Presented at the 2008 Conference of the Population Association of America, 17-19 April, New Orleans, LA (with R. Forgette and M. Van Boening).
"The Demographic Effects of Hurricane Katrina on the Mississippi Gulf Coast: An Analysis by Zipcode." Presented at the 2008 Conference of the Mississippi Academy of Sciences, 20-22 February, Olive Branch, Mississippi.
"Teaching Business Demography Using Case Studies with Demographic Cases." Presented at the 2007 special seminar on Business Demography, International Union for the Scientific Study of Population, 8-9 October, Sydney, Australia (with P. Morrison).
"New Directions in the Development of Population Estimates and Projections." Presented at the 2007 Conference of the International Statistical Institute, Satellite Conference on Small Area Statistics, Pisa, Italy. 3-5 September. (with J. McKibben).
"Assessing Katrina's Demographic and Social Impacts on the Mississippi Gulf Coast: Preliminary Results ." Presented at the 2007 Conference of the American Statistical Association, 29 July - 3 August, Salt Lake City, UT (with M. Van Boening and R. Forgette).
"Assessing Katrina's Impact on the Mississippi Gulf Coast: Social Network Effects." Presented at the 2007 Applied Demography Conference, 7-9 January, San Antonio, Texas (with R. Forgette, M. Van Boening, and B. Dettrey).
"Forecasting the Population of Census Tracts by Age and Sex: An Example of the Hamilton-Perry Method in Action." Presented at the 2007 Applied Demography Conference, 7-9 January, San Antonio, Texas (with A. Schlottmann and R. Schmidt).
"Measuring Uncertainty in Population Data Generated by the Cohort-Component Method: A Report on Research in Progress." Presented at the 2007 Applied Demography Conference, 7-9 January, San Antonio, Texas.
"Toward Measuring Uncertainty in Population Data Generated by the Cohort-Component Method." Presented at the 2006 Annual Meeting of the British Society for Population Studies, 1921 September, Southampton, England.
"Population Ageing and the Measurement of Dependency: The Case of Germany." Presented at the 2006 Meeting of the European Association for Population Studies. 20-24 June, Liverpool, England.
"Research on the Impacts of Hurricane Katrina on the Mississippi Gulf Coast." Presented at the Annual Meeting of the Southern Demographic Association, 3-5 November, 2005. Oxford, Mississippi.
"Contemporary Developments in Applied Demography within the United States." Presented at the 2005 Conference of the International Union for the Scientific Study of Population, 18-23 July, 2005. Tours, France. (with L. Pol).
"Controversy over Providing Special Census Tabulations to Government Security Agencies: the Case of Arab-Americans." Presented at the 2005 Conference of the International Union for the Scientific Study of Population, 18-23 July, 2005. Tours, France. (with S. El-Baldry).
"A Comparison of In-Class and On-line Student Evaluations." Presented at the Annual Meeting of the Mississippi Academy of Sciences, 16-18 February, 2005. Oxford, Mississippi.
"On MAPE-R as a Measure of Estimation and Forecast Accuracy." Presented at the Annual Meeting of the Southern Demographic Association. 14-16 October, 2004. Hilton Head. SC. (with C. Coleman).
" $19^{\text {th }}$ Century Roots of Contentious Litigation over Census Counts in the late $20^{\text {th }}$ Century." Presented at the Hawaii International Conference on the Social Sciences, 16-19 June, 2004. Honolulu, HI (with P. Walashek).
"An Evaluation of the American Community Survey: Preliminary Results from a County Level Analysis of the Oregon Test Site." Presented at the Annual Meeting of the Mississippi Academy of Sciences, February $18^{\text {th }}$ to $20^{\text {th }}, 2004$, Biloxi, Mississippi (with G. Hough).
"Advancing Methodological Knowledge within State and Local Demography: A Case Study." Presented at the Annual Meeting of the Southern Demographic Association, October $23^{\text {rd }}$ to $25^{\text {th }}$, 2003, Alexandria, Virginia.
"Contemporary Developments in Applied Demography in the U.S." presented at the European Population Conference, Warsaw, Poland, August 23-26, 2003 (with L. Pol).
"Using Cases in the Teaching of Statistics." presented at the annual meeting of the World Association for Case Method Research and Application, Bordeaux, France, June $29^{\text {th }}$ to July $2^{\text {nd }}$, 2003 (with R. Patten).
"MAPE-R: Its Features and Results from a National Block-Group Test." Presented at the Annual Meeting of the American Statistical Association, New York City, New York, August 13, 2002. (with T. Bryan, J. Tayman, and C. Barr).
"Applied Demography in Action: A Case Study of 'Population Identification'." Presented at the Annual Meeting of the Population Association of America, Atlanta, Georgia, May 10, 2002.
"New Directions in Population Forecasting." Presented at the $4^{\text {th }}$ International Conference on Prediction and Non-Linear Dynamics, Tomas Bata University, Zlin, Czech Republic, September 25-26, 2001 (with S. Smith and J. Tayman).
"Leveraging Extant Data to Meet Local Information Needs: A Case Study in Team Applied Demography." Presented at the Annual Meeting of the Population Association of America, March, 2000, Los Angeles, California (with P. Morrison, C. Popoff, I. Sharkova, and J. Tayman).
" We are What We Measure: Toward A New Approach for Assessing Population Forecast Accuracy." Presented at the Annual Meeting of the Southern Demographic Association, October $29^{\text {th }}, 1999$, San Antonio, Texas. (with J. Tayman and C. Barr).
"On Measuring Accuracy in Subnational Demographic Forecasts." Presented at the 52nd Congress of the International Statistical Institute, Helsinki, Finland, August 18, 1999 (with J. Tayman and C. Barr).
"Population Estimates from Remotely Sensed Data: A Discussion of Recent Technological Developments and Future Research Plans." Presented at the Annual Meeting of the Canadian Population Society, Lennoxville, Quebec, Canada, June, 1999 (with J. Wicks, R. Vincent, and J. Luiz Pereira De Almeida.
"Teaching Statistics to Non-Specialists in an Intercultural Setting: Addressing Issues of Understanding and Retention in a Modern Learning Environment." Presented at the Mid-Term Conference of the Sociology of Education Research Committee, International Sociological Association, Joensuu, Finland, June, 1997. (with J. McKibben).
"A Computer-Based Curriculum For Service Courses In Statistics." Presented at the International Conference On Problems of Statistical Education, St. Petersburg, Russia, July, 1996 (with J. McKibben).
"In Defense of The Net Migrant." Presented at the 1996 Annual Meeting of the Population Association of America, New Orleans, Louisiana (with S. Smith).
"What Is Applied Demography?" Presented at the 1996 Annual Meeting of the Population Association of America, New Orleans, Louisiana (with T. Burch and L. Tedrow).
"Alternative Measures For Evaluating Population Forecasts: A Comparison of State, County, and Sub-county Geographic Areas." Presented at the 1995 Annual Meeting of the Population Association of America, San Francisco, California (with J. Tayman).
"Changes in Factories, Changes in Accuracies: On the Relationship Between Economic Structure and the Ratio-Correlation Method of Population Estimation." Presented at the 1994 Annual Meeting of the Southern Demographic Association, Atlanta, Georgia (with J. McKibben).
"Forecasting Health Benefits Populations." Presented at the XIVth International Symposium on Forecasting, Stockholm, Sweden (with H. Kintner).
"Between A Rock and A Hard Place: The Evaluation of Demographic Forecasts." Presented at the XIVth International Symposium on Forecasting, Stockholm, Sweden (with J. Tayman).
"Construction of Confidence Intervals for Population Forecasts Generated by the CohortComponent Method." Presented at the 1994 Annual Meeting of The Population Association of America, Miami, Florida (with D. Arnold, J. Carlson, H. Kintner, and C. Williams).
"Ties that Bind: Families, Organizational Demography, and Health Benefits." Presented at the 1994 Annual Meeting of The Population of America, Miami, Florida (with H. Kintner).
"Measuring the Utility of Population Projections." Presented at the 1994 Annual Meeting of The Ohio Academy of Science. Toledo, Ohio (with J. Tayman).
"Mean Square Error Confidence Intervals for Intercensal Net Migration Estimates: A Case Study of Arkansas 1980-1990." Presented at the 1993 Annual Meeting of the Southern Demographic Association, New Orleans, Louisiana (with H. Kintner and M. McGehee).
"Estimating Demographic Rates From Employer Administrative Database." Presented at the 1993 Annual Meeting of the International Union for the Scientific Study of Population, Montreal, Quebec (with H. Kintner).
"Evaluation of Ratio-Correlation and Difference-Correlation Methods for Estimating County Populations: The Case of Post-Industrial Indiana." Presented at the 1993 Annual Meeting of the American Statistical Association, San Francisco, California (with J. McKibben).
"Ratio-Correlation: A Short-Term County Population Projection Method." Presented at the 1993 International Symposium on Forecasting. Pittsburgh, Pennsylvania (with D. Beck).
"The Relationship Between Life Expectancy and Socioeconomic Status In Arkansas, 1970 and 1990." Presented at the 1993 Annual Meeting of the Population Association of America, Cincinnati, Ohio.
"Measurement Errors in Census Counts and Estimates of Intercensal Net Migration." Presented at the 1993 Annual Meeting of the Population Association of the America, Cincinnati, Ohio (with H. Kintner).
"Ratio-Correlation as a Short-Term County Population Projection Method: A Case Study for Washington State." Presented at the 1992 Annual Meeting of the Southern Demographic Association , Charleston, South Carolina (with D. Beck).
"Adult Transfer Students: Predicting Who Will Finish and Who Will Drop Out." Presented at the 1992 Annual Meeting of the Pacific Northwest Association of Institutional Researchers and Planners, Bellingham, Washington (with S. Hedman and L. Nelson).
"Measurement Errors in Census Counts and Estimates of Intercensal Net Migration." Presented at the 1992 Annual Meeting of the American Statistical Association, Boston, Massachusetts (with H. Kintner).
"The Disposal of Household Hazardous Waste: Results From a Survey of Pierce County, Washington." Presented at the 1992 Annual Meeting of the Northwest Scientific Association, Bellingham, Washington.
"A Variation of the Housing Unit Method For Estimating the Population of Small, Rural Areas: A Case Study of the Local Expert Procedure." Presented at the 1992 Annual Meeting of the Population Association of America, Denver, Colorado (with J. Carlson and L. Roe).
"A System for Placing Confidence Intervals Around Estimated the Population of Small, Rural Areas: A Case Study of the Local Expert Procedure." Presented at the 1992 Annual Meeting of the Population Association of America, Denver, Colorado (with J. Carlson and L. Roe).
"Perspectives on Change in Employer Health Benefits Populations." Presented at the 1991 Annual Meeting of the Population Association of America, Washington, D.C. (with H. Kintner).
"Evaluating Socioeconomic Impact Models: An Adoption of Winter's Method to the Yucca Mountain Project." Presented at the 1990 Annual Meeting of the American Statistical Association, Anaheim, California (with J. Carlson, J. Hollingsworth, and C. Williams).
"The Development of Small Area Socioeconomic Data to be Utilized for Impact Analysis: Rural Southern Nevada." Presented at the 1990 International High Level Radioactive Waste Management Conference, Las Vegas, Nevada (with J. Carlson and C. Williams).
"Identifying Factors Associated with the Subjective Feelings of One's Quality of Health." Presented at the 1990 U.S. Uniformed Services Conference of Family Physicians, Richmond, Virginia (with W. F. Miser).
"Demographic Issues for Washington State." Session on Regional Demography, 1989 Annual Meeting of the Rural Sociological Society, Seattle, Washington.
"Intercensal Net Migration Among the Three Major Regions of Iraq, 1957-1977." Presented at the 1989 Annual Meeting of the Population Association of America, Baltimore, Maryland (with A. AlJiboury).
"VCR Households: A Comparison of Early and Recent Adopters." Presented at the 1988 Annual Meeting of the Broadcast Education Association, Las Vegas, Nevada (with B. Klopfenstein).
"Technical Skills and Training Needs of Applied Demography." Presented at the 1987 Annual Meeting for the American Statistical Association, San Francisco, California (with L. S. Rosen and H. J. Kintner).
"Causes of Death in Infancy and the Proposed Redefinition of the Neonatal Period." Presented at the 1987 Annual Meeting of the North Central Sociological Association, Cincinnati, Ohio (with E. G. Stockwell and J. Wicks).
"The Impact of Census Error Adjustments on Ohio Population Projections." Presented at the 1987 Annual Meeting of the North Central Sociological Association, Cincinnati, Ohio (with K. Vaidya, R. Yehya, B. Bennett and R. Prevost).
"Projecting Household VCR Penetration: A Demographic Approach." Presented at the 1987 Annual Meeting of the Population Association of America, Chicago, lllinois (with B. Klopfenstein).
"A State Based Regression Model For Estimating Substate Life Expectancy: Tests Using 1980 Data." Presented at the 1987 Annual Meeting of the American Statistical Association, San Francisco, California.
"An Analysis of VCR Adopter Characteristics and Behavior." Presented at the 1987 Annual Meeting of the International Communication Association, Montreal, Quebec, Canada (with B. Klopfenstein).
"Estimating Life Expectancy For Health Service Areas: A Test Using 1980 Data For Indiana." Presented at the 1986 Annual Meeting of the American Statistical Association, Chicago, Illinois.
"Converging Trends in the Relationship Between Infant Mortality and Socioeconomic Status." Presented at the 1986 Annual Meeting of the North Central Sociological Association, Toledo, Ohio (with E. Stockwell and J. Wicks).
"Geographic Variation of Longevity in Ohio, 1930 and 1980." Presented at the 1986 Annual Meeting of the North Central Sociological Association, Toledo, Ohio (with E. Stockwell).
"Identifying Extreme Errors in Ratio-Correlation Estimates of Population." Presented at the 1986 Annual Meeting of the Population Association of America, San Francisco, California (with R. Prevost).
"Missing Survey Data in End-Use Energy Models: An Overlooked Problem." Presented at the 1985 Annual Meeting of the American Statistical Association, Las Vegas, Nevada.
"Fecundability Among Ethnic Groups in Hawaii." Presented at the 1985 Annual Meeting of the North Central Sociological Association, Louisville, Kentucky.
"Issues in Energy End-Use Survey Research." Presented at the 1985 Conference of the American Council for an Energy Efficient Society, San Cruz, California (with S. M. Buller, R. J. Canter, L. Guliasi, and R. M. Wong).
"Improving the Measurement of Temporal Change in Regression Models Used for County Population Estimates." Presented at the 1983 Annual Meeting of the Population Association of America, Pittsburgh, Pennsylvania (with B. Baker and J. Van Patten).
"Municipal Population Estimation: Practical and Conceptual Features of the Housing Unit Method." Presented at the 1983 Annual Meeting of the Population Association of America, Pittsburgh, Pennsylvania (with B. Baker and J. Van Patten).
"Getting at the Factors Underlying Trends Using Statistical Decomposition Techniques." Presented at the 1980 Annual Meeting of The College and University Systems Exchange, Phoenix, Arizona.
"Allocation Accuracy in Population in Estimates: An Overlooked Criterion with Fiscal Implications." Presented at the 1980 Annual Meeting of The American Statistical Association, Houston, Texas.
"Graphic Display of Demographic Data." Presented at the 1979 Annual Meeting of The Population Association of America, Philadelphia, Pennsylvania (with L. M. Tedrow).
"A Method of Estimating Annual Age-Standardized Mortality Rates for Counties: Results of a Test Using Washington State Data." Presented at the 1978 Annual Meeting of The American Statistical Association, San Diego, California.
"Preliminary Results of an Evaluation of the Utility of Ridge Regression for Making County Population Estimates." Presented at the 1978 Annual Meeting of the Pacific Sociological Association.

B. Contributed Non-Refereed Papers

"Why Do Group Health Benefit Populations Change Size? A Case Study of General Motors Salaried Population, 1983-1990." Presented at the 1994 Applied Demography Conference, Bowling Green, Ohio (with H. Kintner).
"An Evaluation of the Demographic Components of a Proprietary Economic Forecasting and Simulation System: The REMI Model as used by SAIC, Inc. for the Yucca Mountain Project in Nevada." Presented at the 1994 Applied Demography Conference, Bowling Green, Ohio (with Y. Zhao and J. Carlson).
"On the Utility of Lagged Ratio-Correlation as a Short-Term County Population Projection Method: A Case Study of Washington State." Presented at the 1994 Applied Demography Conference, Bowling Green, Ohio (with J. Tayman and D. Beck).
"The Producers Perspective." Presented at the 1994 Annual Meeting of Federal-State Cooperative Program for Population Projections, Session on The Utility of Population Projections, Miami, Florida.
"Confidence Intervals for Net Migration Estimates that Incorporate Measurement Errors in Census Counts." Presented at the 1992 Applied Demography Conference, Bowling Green, Ohio (with H. Kintner).
"Baseline Projections of Household Solid Waste Generation: A Case Study of Pierce County, Washington." Presented at the 1990 Applied Demography Conference, Bowling Green, Ohio.
"Conference Intervals for Estimates of Intercensal Net Migration." Presented at the 1990 Applied Demography Conference, Bowling Green, Ohio (with H. Kintner).
"Estimating Migration in a Sparsely-Populated Specialized Economic Area: The Yucca Mountain High-Level Nuclear Waste Repository." Presented at the 1990 Applied Demography Conference, Bowling Green, Ohio (with J. Carlson).
"Development of Demographic Data Utilizing Key Informants in Rural Incorporated Places." Presented at the 1990 Applied Demography Conference, Bowling Green, Ohio (with L. K. Roe and J. Carlson).
"Poverty and Infant Mortality." Presented at the June, 1989 Meeting of the Washington State Child Health Research and Policy Group, Seattle, Washington.
"Some Results of the 1988 'Research Experience for Undergraduates' Program in Demography." Poster Session at the 1988 Applied Demography Conference, Bowling Green, Ohio (with L. Tedrow).
"Overview of the Survey of Applied Demographers." Presented at the 1987 Annual Meeting of the Population of Association of America, Chicago, Illinois (with H. Kintner).
"Applied Demography." Presented to the Department of Sociology, Western Washington University, October, 1986.
"Preliminary Results From the 1986 Survey Demographers." Presented at the 1986 Annual Meeting of the Population Association of America, San Francisco, CA (with H. Kintner et al.).
"Survey Findings." Presented at the Public Hearing on Public Affairs Programming and Commercial Television, June, 1984 San Francisco, California.
"Comparative Analysis of Change in Average Household Size With Reference to IRS Data on Average Exemptions Per Return: Census Results From Selected Municipalities in Washington, 1970, 1977, and 1978." Presented at the October, 1979 meeting of The Task Force on SubCounty Population Estimates Federal-State Cooperative Program for Population Estimates, Washington, D. C. (with T. J. Lowe).
"Recent Trends in Household Size for Rural, Predominantly White, Non-Hispanic Communities: Special Census Results From Three Towns in Washington, 1976 and 1979." Presented at the October, 1979 meeting of The Task Force on Sub-County Population Estimates, Federal-State Cooperative Program for Population Estimates, Washington, D. C. (with T. J. Lowe).

IX. Invited Presentations

"Modeling and the Covid-19 Pandemic: A Local Area Perspective." Presented at the Annual Meeting of the Federal-State Cooperative Program for Population Projections (Virtual), May 1314, 2021.
"Using a Simple Population Forecasting Method to Assess Economic and Health Characteristics of a Population of Interest." Presented at the Department of Public and Regional Economics, Aoyama Gakuin University, Tokyo, Japan, 7 November 2018
"Using a Population Forecasting Method to Assess the Demographic Impact of Natural and Manmade Disasters." Presented at the Department of Sociology, Kyoto University, Kyoto, Japan, 5 November 2018
"Cohort Change Ratios and Their Applications." Presented as part of the Open Seminar, Foreign Scholar Lecture Series, National Institute for Population and Social Security Research, Tokyo, Japan, 31 October 2018 (http://www.ipss.go.jp/int-sem/e/lec2.html)
"On Equality and Inequality in Stationary Populations." Presented at the $4^{\text {th }}$ International Symposium on the Human Mortality Database, Berlin, Germany, May 23, 2017 (with Lucky Tedrow).
"Use of Demography in the Public Sector." presented in an invited session on demography and policy at the 2017 Conference of the Population Association of American, Chicago, IL.
"The Washington State Census Board and Its Demographic Legacy." Presented at the Center for Studies in Demography and Ecology, University of Washington. Seattle, Washington, January 8, 2016.
"Aging in the Western Hemisphere, 2015-2035." Presented at the analytic exchange on Demographic Change and Mobility in Aging Regions to 2035. Co-sponsored by the U.S. National Intelligence Council and the Bureau of Intelligence and Research, U.S. State Department. Arlington, VA. July 17. 2015.
"The Current Status of Applied Demography: A Four-Field View with an Eye toward the Future." Plenary Presentation. $8^{\text {th }}$ International Conference on Population Geographies, University of Queensland, Brisbane, Australia. July 1-3, 2015.
"A New Estimate of the Hawaiian Population for 1778, the Year of First European Contact." Presented as part of the Colloquium Series, Department of Sociology, University of Hawai'i. February $13^{\text {th }}, 2015$.
"Measuring Uncertainty in Population Forecasts: A New Approach Employing the Hamilton-Perry Method." Presented at the Population Institute Methods Workshop, Penn State University, June $24^{\text {th }}, 2014$. State College, PA (with Jeff Tayman).
"Measuring Uncertainty in Population Forecasts: A New Approach Employing the Hamilton-Perry Method." Presented at the Annual Conference of the Federal-State Cooperative Program for Population Projections, Boston, MA, April 30th, 2014. (with Jeff Tayman).
"Measuring Uncertainty in Population Forecasts: A New Approach." Presented at the Joint Eurostat/UNECE Work Session on Demographic Projections, October 29-31, 2013. Rome, Italy (with Jeff Tayman).
"People of the Inland Empire: Changes in Ethnicity, Age and Race, Presented at the "Practically Speaking" Development Series, Center for Sustainable Suburban Development, University of California Riverside, June 11 ${ }^{\text {th }}, 2013$. Riverside, CA.
"A Loss Function Approach to Examining ACS Estimates: A Case Study of 2010 "Persons Per Household" Estimates for California Counties." Presented at the Workshop on "The Benefits (and Burdens) of the American Community Survey" sponsored by the Committee on National Statistics, National Academies of Science. June 14-15, 2012, Washington, DC (with George Hough).
"Practical Demography." Keynote address presented at the Warren Kalbach Conference, March 18-19, 2011, Edmonton Society of Demographers, University of Alberta, Edmonton, Alberta, Canada.
"Developing Small Area Population Estimates for Use in Health Information Systems." Presented in the Introductory Plenary Session at the 19th International Conference of the Forum for Interdisciplinary Mathematics,18-20 December 2010, Patna University, Patna, India. (with J. McKibben and K. Faust).
"Perspectives on the American Community Survey." Presented at the 2010 Conference of the Latin American Association for Population Studies, 15-19 November, Havana, Cuba.
"New Directions for the Decennial Census?" Presented in the Invited Session, What if the 2020 Census Was the First Census: What Would We do?, 2010 Conference of the American Statistical Association, 31 July - 5 August, Vancouver, British Columbia, Canada.
"Demographics and Housing." Presented at the Randall Lewis Seminar, Blakely Center for Sustainable Suburban Development, Riverside, California, 17 June 2010.
"The Possibilities for using the Housing Unit method." Presented at Statistics Canada, Ottawa, Ontario, 28 May, 2009.
"The Future of Suburbs." Presented at Pitney Bowles Business Decisions. Toronto, Ontario, 27 May 09.
"Socio-economic Status and Life Expectancy in the United States: 1970 to 1990." Presented at the School of Public Policy, University of Texas- San Antonio, San Antonio, TX. 21 April 2009.
"Small Area Estimation and Health Information Systems" Presented at the Small Area Measurement Consultation Conference, Institute for Health Metrics and Evaluation, University of Washington. Seattle, WA, 10 April 2009.
"Aging and other Population Trends and their Implications for Suburbs." Presented as part of the 'Leadership Lenexa' Seminar Series, Lenexa Chamber of Commerce. Lenexa, KS. 27 June 2008.
"How the Changing U.S. Census will Affect Decision-Making." Presented at the Randall Lewis Seminar, Blakely Center for Sustainable Suburban Development, Riverside, California, 15 May 2008.
"An Evaluation of Persons Per Household (PPH) Data Generated By the American Community Survey: A Demographic Perspective." Presented at the American Community Survey, Multi-Year Estimates Meeting, 15 November 2006, U.S. Census Bureau, Suitland, Maryland.
"Counting the Gulf Coast: A Demographer Gauges Katrina's Impact in Mississippi." Department of Sociology, University of California Irvine, 23 October 207, Irvine, CA.
"Assessing Katrina's Impact on the Mississippi Gulf Coast: A Report on Completed Research." Poster presented at the 2007 Post-Katrina Forum Gulf States Alliance: Network Science and Recovery, 19-21 August, Biloxi, MS (with R. Forgette, M. Van Boening).
"The Needs of Researchers in Regard to Population Estimates." Conference on U.S. Census Bureau Population Estimates: Meeting User Needs." Sponsored by Council of Professional Associations on Federal Statistics. 19 July 2006. Alexandria, VA.

The Impact of Hurricane Katrina on the Mississippi Gulf Coast." Annual Exhibition of the Coalition for National Science Funding, 7 June 2006. Washington, DC.
"The Impact of Hurricane Katrina on the Mississippi Gulf Coast." Annual CLARITAS Client Conference, 30-29 April, 2006, San Diego, CA.
"The Impact of Hurricane Katrina on the Mississippi Gulf Coast. Annual Meeting of the Population Association of America, Session of the Committee on Population Statistics. 30 March 2006. Los Angeles, CA.
"Demographic Changes Affecting Undergraduate Enrollment in Mississippi." College of Liberal Arts Faculty Forum, 22 March 2005. University of Mississippi.
"The Changing Demography of the CSGS Region." Plenary Keynote Address, Annual Meeting of the Conference of Southern Graduate Schools, 26 February 2005. Biloxi, MS.
"An Evaluation of the American Community Survey: Results from the Oregon Test Site."
Presented at the Annual Meeting of the American Statistical Association, August 8 $8^{\text {th }}$ to $10^{\text {th }}, 2004$. Toronto, Ontario, Canada (with G. Hough).
"Evidence From Oregon." Presented at the Annual Meeting of the Population Association of America, April $1^{\text {st }}$ to $3^{\text {rd }}, 2004$. Boston, Massachusetts (with G. Hough).
"The Impact of Demographic Factors on Business: Selected Examples." Presented to Faculty of the H.E.L.P. Institute, Kuala Lumpur, Malaysia, 25 April 2003
"Results of the BScBA Program Self-Evaluation Study." Presented at the External Accreditation Peer Review Team's On-Site Visit, Finnish Ministry of Education, Valamo, Finland, October 8-9, 2002.
"Demographic Constraints on Regional Development." Presented at the Technology and Economic Development in the Periphery (TEDIP) Dissemination Seminar, Joensuu University, Savonlinna, Finland, June 13 ${ }^{\text {th }}, 2002$.
"International Education in Finland: Issues and Challenges." Presented to the Rural Studies Workshop, Institute for Rural Research Studies, Helsinki University, Mikkeli, Finland, February 1st, 2002
"The International BBA Program of the Helsinki School of Economics and Business Administration." Presented to the President of Finland, Mikkeli, Finland, May 15 th, 2001.
"Providing International Education: A Finnish Example of the European Experience." Presented at the $4^{\text {th }}$ Strategy Seminar on Strategic Alliances and Partnerships in International Education, Kuala Lumpur, Malaysia, April 7th, 2001.
"On Measuring Accuracy in Subnational Demographic Estimates." Presented at the National Conference on Population Estimates Methods, Sponsored by the Population Estimates Branch, U.S. Bureau of the Census, June $8^{\text {th }}$, 1999. Suitland, Maryland (with J. Tayman and C. Barr).
"Census Errors and Census 2000: The Role of Local Government." Presented at the Public Stakeholders Meeting of the Southern Nevada Census 2000 Committee, March 23rd ${ }^{\text {ra }}$, 1999, Las Vegas, Nevada.
"The Food Consumption Survey." Presented at the Total System Performance Assessment Technical Exchange, U.S. Department of Energy/ U.S. Nuclear Regulatory Commission. Las Vegas, Nevada, November 6 ${ }^{\text {th }}$, 1997.
"Amargosa Valley Population Survey." Presented to the U.S. National Advisory Committee on Nuclear Waste, U.S. Nuclear Regulatory Commission. 94 ${ }^{\text {th }}$ Meeting, Las Vegas, Nevada, September 23rd, 1997.
"An ACS Performance Assessment." Presented in the session "The American Community Survey - Uses and Issues." Annual Meeting of the American Statistical Association, Anaheim, California, August $13^{\text {th }}, 1997$.
"The Region's Changing Demographics." Presented at the International Council of Shopping Centers' 1996 Meeting, Skamania Lodge, Skamania, Washington, August, 1996.
"Local Population Trends." Presented at the Chamber of Commerce Leadership Program." West Linn, Oregon, March, 1996.
"Oregon's Population Trends." Presented at the Strategic Budget Conference of Oregon State Agency Directors, Salem, Oregon , March, 1996.
"Evaluation Plan for the Arkansas Network Based Technology Deployment Program." Presented at the Workshop on Manufacturing Modernization: Evaluation Practices, Methods and Results. National Institute of Standards and Technology, Atlanta, Georgia, September 18-20, 1994.
"Estimates of the Current Cost of Health Care in Arkansas." Presented to the Governor's Task Force on Health Care Reform. Little Rock, Arkansas, April 13, 1994.
"An Overview of Impact Analysis." Presented at the Local Development Association Meeting, Heber Springs, Arkansas 1993.
"Applied Demography for Urban Studies." Two-day workshop presented at Loyola University, Chicago, Illinois, 1993.
"Confidence Intervals for Net Migration Estimates that Incorporate Measurement Errors in Census." Presented at the Central Arkansas Chapter of the American Statistical Association, November, 1992 (with H. Kintner).
"Demographic Aspects of Labor Force Trends in Arkansas." Presented at the March 5th, 1993 Arkansas Business Leaders Symposium, Arkansas College, Batesville, Arkansas.
"Decennial Census Products and Their Use in Research." Presented in the Research Conference Series, Center for Mental Health Research, University of Arkansas for Medical Sciences, November 18th, 1992.
"Factor Analysis and Related Analytical Techniques." Presented to the Uniformed Services Physicians' Fellowship Program, Madigan Army Medical Center, April 17th, 1992.
"A Variation of the Housing Unit Method for Estimating the Age and Gender Distribution of Small, Rural Areas: A Case Study of the Local Expert Procedure." Presented at the Invited Paper Session Methods of Small Area Population Estimation. Annual Meeting of the American Statistical Association, San Francisco, California, August, 1993 (with J. Carlson, L. Rowe and C. Williams).
"A First Bite in a Seven Course Meal: Results from the 1990 Census." Presented to the City Club of Tacoma, June, 1991 (with W. Opitz).
"A New Method for Projecting Small Area Populations." Presented to the Center for Business and Economic Research, College of Business, University of Nevada, Las Vegas, March, 1991.
"Socio-Economic Impact Analysis for the Yucca Mountain Nuclear Waste Project: Insights from Demography." Presented to the Department of Sociology, Michigan State University, February, 1991.
"Ratio-Correlation as a Short-Term, Subnational Population Forecasting Method: A Case Study Using Washington State Data." Presented to the Demography Division, Statistics Canada, Ottawa, Ontario, February 11, 1991.
"Demographics! Demographics! Demographics!" Presented to members of the Private Industry Council, Pierce County, Washington, March, 1990.
"Marx vs. Malthus: An Empirical Approach to Examining Orthodoxy." Presented in the Colloquium Series "Living In A Fragile Environment," Valparaiso University, January, 1990.
"Small Area Socio-Economic Forecasting," Presented to the Faculty Club, Valparaiso University, January,1990.
"Local, National, and International Demographic Trends." Presented to the Washington Agriculture and Forestry Leadership Program, Pacific Lutheran University, January, 1990.
"Some Problems in Small Area Forecasting." Presented at the ICPSR Summer Program in Quantitative Methods, University of Michigan, July, 1989.
"Washington State Population Issues." Presented at the Washington State Public School Social Studies Educators Retreat, Pilgrim Firs, Washington, October, 1987.
"Why are American Babies Dying Before Their First Birthday?' Presented at the October, 1987 Interdepartmental Colloquium, Pacific Lutheran University.
"Subnational Population Estimation and Its Relation to Emerging Legal Challenges in the United States." Presented at the November, 1986 Brown-bag session of The Population Studies Center, University of Michigan.
"Population Trends in North Central Ohio." Presented at the November, 1986 meeting of The Social Science Club, Firelands College.
"The Multiple Regression Approach to Deriving Local Area Population Estimates." Presented at the April, 1985 meeting of the Northwest Ohio Chapter of The American Statistical Association, Bowling Green, Ohio.
"Population and Enrollment Forecasting." Presented at the March, 1983 meeting of the Anchorage Demographic Group, Anchorage, Alaska.
"Trends in Washington's Population." Presented at the November, 1979 meeting of the Seattle Economists' Club, Seattle, Washington.

X. Testimony

A. Legislative and Regulatory

Oral and written Testimony, "Why 2+2 Should Never Equal 3: Getting Intercensal Population Estimates Right the First Time," House Government Reform Subcommittee on Federalism and the Census oversight hearing Washington, DC. September 6, 2006.

Oral and written Testimony, Nuclear Regulatory Commission, Advisory Committee On Nuclear Waste, September 25, 1997, Las Vegas, Nevada.

Oral Testimony on Oregon's Population Trends. Presented to the Interim Committee On Growth Management, Oregon House of Representatives, February, 1996.

Written Testimony on "The Proposed Options For Incorporating Information From The PostEnumeration Survey into The Intercensal Population Estimates produced By the Bureau of the Census." Public Hearing Docket (No. 920895-2195) U.S. Bureau of the Census. August 31, 1992.
"Results From the 1988 Recycling Survey." Presented to the Subcommittee on Solid Waste Management, Pierce County Council, January, 1989.

Written Testimony on "Plans for Conducting the 1990 Census in Alaska." Subcommittee on Census and Population, Hearing Conducted in Anchorage, Alaska, August 19, 1987.

Written Testimony on "Federal Statistics and National Data Needs." Subcommittee on Energy, Nuclear Proliferation and Government Processes of the Committee on Government Affairs, United States Senate, 98th Congress, 1st Session. Committee Print (S. Print 98-191) Washington: 1984.

Oral and Written Testimony, Labor Committee, Alaska House of Representatives, 1981, 1982, 1983.

Oral and Written Testimony, Finance Committee, Alaska House of Representatives, 1981, 1982, 1983.

Oral and Written Testimony, Finance Committee, Washington State Senate, 1979.
Oral and Written Testimony, Finance Committee, Hawaii State House of Representatives, 1974.

B. Judicial

Deposed and Testifying Expert Witness. 2022. Case A-17-762364-C. Estate of Joseph P. Schrage Jr \& Kristina. D. Schrage v. Allan Stahl. Eighth Judicial Court, Clark County, Las Vegas, Nevada.

Deposed and Testifying Witness. 2021. Civil No. CV 6417-203, State of Arizona, General Adjudication of All Rights in the Little Colorado River System and Source, Phoenix, AZ

Deposed and Testifying Expert Witness. 2012. Board of Education, Shelby County, Tennessee et al. v. Memphis City Board of Education et al. / Board of County Commissioners, Shelby County, Tennessee (third party plaintiff) v. Robert E. Cooper et al (third party defendant)." (Constitutionality of a Tennessee state law). Baker, Donelson, Bearman, Caldwell and Berkowitz, PC. Memphis, TN.

Deposed Expert Witness. 2009. "Quest Medical Services v. FMIC." (Demographic Effects of Hurricane Katrina on New Orleans in a case involving a Medical Service Provider). . Podvey, Meanor, Catenacci, Hildner, Cocoziello, and Chattman, P.C., Newark, NJ.

Deposed and Testifying Expert Witness. 2007. "Spring Hill Hospital, Inc. v. Williamson Medical Center and Maury Regional Hospital." (Evaluation of population forecasts in a case involving a proposed hospital). Miller and Martin, PLLC, Nashville.

Deposed and Testifying Expert Witness. 1994. Arkansas Supreme Court. (Statistical evaluation of the accuracy of the number of qualified signatures on a public referendum as determined by a sample).
Deposed Expert Witness. 1983. "Anchorage, et al., vs. J. Hammond et al." (Lawsuit brought by local governments against the state of Alaska on how populations are determined for purposes of state revenue sharing to local governments).

XI. Service

A. Professional

Co-editor, Special Issue on Population Forecasting, Population Research and Policy Review (2023) (with J. Baker, I. Grossman, and T. Wilson).

Mortality Expert Panel, Society of Actuaries Research Institute, February, 2022 -
Interview, "Census Bureau's use of Synthetic Data worries Researchers." A story that appears in Associate Press News. May 27, 2021
https://apnews.com/article/census-2020-technology-data-privacy-businessbe938fa5db887a0ae6858dff0be217ef

External Advisory Board, Geo-Spatial and Population Studies Research Center, University of New Mexico, April 2019 -

Chair, Estimates and Projections Session I, 2022 Applied Demography Conference February $1^{\text {st }}$.
Interview: "Information for Real Estate Agents." Wallethub, April 24th, 2019.
https://wallethub.com/edu/best-worst-cities-to-be-a-real-estate-agent/18713/\#expert=david-aswanson

Interview: "Demographic Formula Reveals Surprisingly Short Careers for MLB Pitchers." A story that appears in UPl's Science News, August 3rd, 2018 (https://www.upi.com/Demographic-formula-reveals-surprisingly-short-careers-for-MLB-pitchers/3841533304869/).

Editorial Board, Population Research and Policy Review, 2014-2021
Advisory Board, Online Program in Applied Demography, Pennsylvania State University, 20172021

Advisory Board, Nantucket Data Platform Project, Nantucket, Massachusetts, 2017-2020
Reviewer, Proposals for a special issue of Population Research and Policy Review, 2017.
Co-organizer, Conference on Applied Demography and Public Policy, University of Houston, Houston, TX, January, 2017.

Chair, Applied Demography Track Committee, 2017 Program Committee, Population Association of America. 2016-17.

2017 Program Committee, Population Association of America. 2016-2017.
Invited Commentary, "Compare Hawai'i and Mississippi," on the question, "Is Hawai'i a racial paradise?" Zocalo Public Square, September 15 ${ }^{\text {th }}, 2015$ (http://www.zocalopublicsquare.org/2015/09/15/is-hawaii-a-racial-paradise/ideas/up-fordiscussion/\#David+A.+Swanson).

Poster Session Judge, "8 $8^{\text {th }}$ International Conference on Population Geographies, Brisbane, Australia, June $30^{\text {th }}$ to July $3^{\text {rd }}, 2015$.

Discussant, Session 1130, "Demographic and Statistical Approaches to Small Area Estimation." Population Association of American, April $30^{\text {th }}$ to May $1^{\text {st }}$, 2014. Boston, MA.

Session Chair, "Mortality and Later Life Health." Social Science History Association, 1-4 November 2012, Vancouver, BC, Canada.

Grant Proposal Reviewer. "FR/38/2-220/11 - Defining the Demographic Prospects of Georgia and Providing their Software," Shosta Rustaveli National Science Foundation of Georgia, Republic of Georgia (December, 2011).

Session Organizer and Chair, "Population Projections," Applied Demography Conference, 8-10 January 2012, San Antonio, Texas.

Interview: "Experts Predict Bright Future." A story that appears in The Telegraph. (Calcutta, India) December 21, 2010.

Interview: "Census Bureau releases detailed statistics on smaller Inland areas." A story written by David Olson that appears in the Press-Enterprise, December 14, 2010

Interview: "Inland area lags behind state, nation in returning census forms." A story written by David OIson that appears in The Press-Enterprise, March 31, 2010

Interview: "Government 'a Counting: Does the U.S. Census Need a 21st-Century
Makeover?." A story written by Katie Moisse that appears in Scientific American, March 25, 2010
Interview: "Some Hispanics puzzle over race question on census form." A story written by Randy Cordova that appears in the Arizona Republic, March 23, 2010.

Interview: "The census inspires a sense of civic duty, distrust and fear." A story written by Robert L. Smith that appears in The Cleveland Plain Dealer, March 16, 2010

Interview: "Campaign counts on snowbird surveys in Palm Springs." A story
written by Kate McGinty that appears in The Desert Sun, March 13, 2010
Interview: "Census Bureau reaching out in Inland area to communities least likely to be counted." A story written by David OIson that appears in The Press-Enterprise, January 28, 2010

Interview: "Countdown to the Count-up." A story written by Bettye Miller that appears in UCR: The Magazine of UC Riverside Winter, 2010, pp. 22-23.

Session Chair, "The 2010 Census." Applied Demography Conference, 10-12 January 2010, San Antonio, Texas.

Session Organizer and Chair, "Expert Witness Work and the Applied Demographer," Applied Demography Conference, 10-12 January 2010, San Antonio, Texas.

Co-Program Organizer (with Nazrul Hoque and Lloyd Potter), Applied Demography Conference, 10-12 January 2010, San Antonio, Texas.

Discussant, Session 1704, "Using Demography in the Business and Public Sectors." 2009 Conference of the International Union for the Scientific Study of Population, Marrakech, Morocco, 27 September - 2 October 2009.

Associate Editor, Open Demography Journal, 2009-2010
Facilitator, Census Advisory Committee of Professional Associations, U.S. Census Bureau, 200910

Chair, Committee representing the Population Association of America, Census Advisory Committee of Professional Associations, U.S. Census Bureau. 2008-2009

Census Advisory Committee of Professional Associations, U.S. Census Bureau. 2004-2010
Member, Development Committee, Population Association of America, 2008-2013.

Chair and Conference Organizer, Psychology and Social Sciences Section, Mississippi Academy of Sciences, 2007-8.

Chair, Session on "Fertility: Social Issues and Reproduction." Annual Meeting of the Southern Demographic Association, 13 October 2007, Birmingham, Al.

Presenter and Discussant, "Symposium for School Districts that will be affected by the Toyota Assembly Plant near Tupelo. Mississippi." School of Education, University of Mississippi, 30 March 2007.

Organizer, Symposium: "the Psychological and Social Impacts of Hurricane Katrina." 2007 Conference of the Mississippi Academy of Sciences 22 February. Starkville, Mississippi.

Program Organizer, Applied Demography Conference, 9-11 January 2007, San Antonio, TX.
Chair and Conference Organizer, Psychology and Social Sciences Section, Mississippi Academy of Sciences, 2006-7.

Reviewer, Using the American Community Survey: Benefits and Challenges, Committee on Functionality and Usability of Data from the American Community Survey, Committee on National Statistics, National Research Council. Washington, DC: National Academy of Sciences Press. 2007.

Chair, Session on "Anxiety, Ambiguity, and Multiculturalism in Statistical Education," Annual Meeting of the American Statistical Association, 10 August 2006, Seattle, WA

Vice-Chair, Psychology and Social Sciences Section, Mississippi Academy of Sciences, 2005-6.
Local Arrangements Coordinator, Annual Meeting of the Southern Demographic Association University of Mississippi, October, 2005.

Editor, Population Research and Policy Review, Official Journal of the Southern Demographic Association, July $1^{\text {stt }}, 2004$ - July $1^{\text {st }}, 2007$.

Member, Advisory Board, Fulbright Academy of Science and Technology, 2003-2008.
Participant, Users Perspective Meeting, Panel on the Functionality and Usability of Data from the American Community Survey, Committee on National Statistics of the National Academies, April 2005, Washington, DC.

Technical Review Panel Member, Small Business Innovative Initiative Grants, National Institutes of Health, 2002.

Chair, National Committee on Applied Demography, Population Association of America, 2001-2.
Publications Officer, Government Statistics Section, American Statistical Association, 2001-2.
Member, National Committee on Applied Demography, Population Association of America, 1999 to 2003 .

Organizer and Moderator, "Population Controls for the American Community Survey,"
Annual Meeting of the Southern Demographic Association, University of Mississippi, Oxford, Mississippi, November, 2005.

Organizer and Chair, "New Directions in Local Area Estimation and Forecasting,"

Annual Meeting of the Population Association of America, New York, New York. March, 1999
Technical Review Panel Member, Small Business Innovative Initiative Grants, National Institutes of Health, 1997.

Organizer and Chair, Panel Discussion on "Surf's Up! Building, Accessing, and Linking Demography's Internet Sites," Annual Meeting of the Southern Demographic Association, Memphis, Tennessee, October, 1996.

Chair, Session on "Computer Support of Statistical Education," The International Conference On Statistical Education In The Modern World: Ideas, Orientations, Technologies, St. Petersburg, Russia, July, 1996.

Chair, Membership Committee, Population Association of America, 1996 to 1998.
Technical Advisory Committee, Oregon Survey Research Laboratory, University of Oregon, 199697.

Textbook Reviewer, Life in a Business Oriented Society (by Richard Caston), Allyn and Bacon Publishers, 1996.

Member, Editorial Board, Population Research and Policy Review, 1995 to 1997, 2007-current.
Organizer and Chair, Session on "Estimates and Projection," 1996 Annual Meeting of the Population Association of America.

Co-Organizer, Sessions and Papers on State and Local Demography, 1995 Annual Meeting of the Population Association of America.

Member, Committee on Applied Demography, Population Association of America, 1994 to 1997.
Chair, Session on "Population, Environment and Development," 1994 Annual Meeting of The Southern Demographic Association, Atlanta, Georgia.

Secretary-Treasurer, Southern Demographic Association, 1994-1997 and 2004-2007.
Chair, Session on "Demographics of School and College Enrollment." 1994 Applied Demography Conference, Bowling Green, Ohio.

Organizer, Session on "Should Projections be Privatized?" and Session on "The Utility of Population Projections." 1994 Annual Meeting of the Federal-State Cooperative Program on Population Projections, Miami, Florida.

Member, Delegation to visit U.S. Senators RE the FY 1994 Budget for the U.S. Bureau of the Census, sponsored by The Population Association of American, July, 1993.

Member, Senior Council, Ohio Academy of Science, 1993-95.
Roundtable Discussion Leader on "School District Demography" 1993 Annual Meeting of the Population Association of America, Cincinnati, Ohio.

Organizer, Session on "Methods of Forecasting and Estimating," 1993 Annual Workshop of the National Association for Welfare Research and Statistics, Scottsdale, Arizona.

Arkansas State Representative to the Federal-State Cooperative Program for Population Projections, 1992 to 1995.

Member, National Peer Review Committee, Socio-economic Studies, High Level Radioactive Waste Repository, 1992, Yucca Mountain, Nevada.

Organizer and Chair, Session on "Projection and Forecasting Special Populations," 1990 North American Conference on Applied Demography, Bowling Green, Ohio.

National Chairman, Federal -State Cooperative Program for Population Projections, 1993-94.
Discussant, Session on "Survey Research to Support Social Statistics," 1990 Annual Meeting of the American Statistical Association, Anaheim, California.

Panelist, "Applied Demography and the Population Association of America," given at the 1990 Annual Meeting of the Population Association of America, Toronto, Ontario. May, 1990.

External Examiner, "A Model for Fertility Change," Ph.D. Dissertation submitted by N. Sugathan, Department of Demography, University of Kerala, 1989.

Participant, National Resource Persons Network, Office of Minority Health Resource Center, U.S. Public Health Service, 1989.

Member, Washington State Child Health Research and Policy Group, 1989-1993.
Discussant, Session on "Is the Non-Metropolitan Population Turnaround Over?" 1989 Annual Meeting of the Rural Sociological Society, Seattle, Washington.

Organizer and Chair, Session on "Demographic Issues and The Law," 1988 National Conference on Applied Demography, Bowling Green, Ohio.

Chair, State and Local Demography Interest Group, Population Association of America, 1988-90.
Organizer and Chair, Session on Methodological Advances In State and Local Demography. 1988 Annual Meeting of the Population Association of America, New Orleans, Louisiana.

Member, Subcommittee on Academic Outreach, Business Demography Committee, Population Association of America, 1987-1988.

Roundtable Discussion Leader, "Marketing Your Organization's Demographic Expertise and Resources." 1987 Annual Meeting of The Population Association of America, Chicago, Illinois.

Judge, North Central Sociological Association Undergraduate Student Paper Competition, 1987. Co-Organizer, 1st Biennial Conference on Applied Demography, held at Bowling Green State University, September 26-27, 1986.

Member, State Advisory Committee on Population Forecasts, Ohio Data Users Center, Ohio Department of Development, 1986-1987.

Discussant, Session on Estimating and Forecasting Demographic Characteristics of Small Areas, 1986 Annual Meeting of the Population Association of America, San Francisco, California.

Discussant, Session on Estimates and Projections for State and Local Areas, 1985 Annual Meeting of the Population Association of America, Boston, Massachusetts.

Speaker, Panel on Careers in Applied Demography, 1985 Annual Meeting of the Population Association of America, Boston, Massachusetts.

Discussant, Session on Issues in State and Legal Demography, 1984 Annual Meeting of the Population Association of America, Minneapolis, Minnesota.

Alaska State Representative to the Federal State Cooperative Program for Population Projections, 1981-1983.

Discussant, Session on Forecasting Energy Demand, Northwest Utilities Conference, 1980 Annual Meeting, Portland, Oregon.

Discussant, Session on Mathematical Models in Sociology, 1978 Annual Meeting of the Pacific Sociological Association, Spokane, Washington.

Member, Editorial Board, Applied Demography, Population Association of America, 1985 to 1993.
External Examiner, "Unique Competencies of International Non-Governmental Organizations (INGOs): Empirical Explorations from India." Sociology Dissertation by Pranaya Kumar Swain, Ph.D. Candidate, Indian Institute of Technology-Kanpur, Kanpur, Utter Pradesh, India. 1995.

Editorial Referee, Demography, 2022 (1 paper)
Editorial Referee, Demographic Research 2021 (1 paper)
Editorial Referee, Population Research and Policy Review, 2021 (1 paper)
Editorial Referee, Spatial Demography, 2020 (1 paper)

Editorial Referee, Journal of Engineering and Applied Research, 2019 (1 paper)
Editorial Referee Spatial Demography, 2019 (1 paper),
Editorial Referee, Demography, 2018 (1 paper)
Editorial Referee, Canadian Studies in Population, 2018 (1 paper)
Editorial Referee, Journal of Mathematical Biology, 2018 (1 paper)
Editorial Referee, Demography, 2017 (1 paper)
Editorial Referee, Population, Space and Place, 2017 (1 paper)

Editorial Referee, Population Research \& Policy Review, 2017 (1 paper)
Editorial Referee, Demography, 2016 (1 paper).
Editorial Referee, Review of Economics and Finance, 2016 (1 paper)
Editorial Referee, Journal of Population Research, 2016 (1 paper)
Editorial Referee, Population Studies, 2015 (1 paper).
Editorial Referee, The American Statistician, 2914 (1 paper)
Editorial Referee, Journal of Population Research. 2014. (1 paper).

Editorial Referee, Journal of Population Research. 2013. (1 paper)
Editorial Referee, Open Demography Journal. 2012. (1 paper)
Editorial Referee, Disasters Journal. 2012 (1 paper)
Editorial Referee, Population Research and Policy Review, 2011 (2 papers)
Editorial Referee, Canadian Journal of Sociology, 2011 (1 paper).
Editorial Referee, Journal of Population Research, 2011 (1 paper).
Editorial Referee, Journal of Population Research, 2010 (1 paper).
Editorial Referee, Population Research and Policy Review, 2010 (1 paper).
Editorial Referee, American Sociological Review, 2010 (1 paper).
Editorial Referee, Demography. 2010 (1 paper).
Editorial Referee, Population Health Metrics. 2010 (1 paper).
Editorial Referee, Journal of Planning Education and Research, 2009 (1 paper).
Editorial Referee, Population Research and Policy Review, 2009 (1 paper).
Editorial Referee, Population Research and Policy Review, 2008 (2 papers).
Editorial Referee, Population Studies, 2008 (1 paper).
Editorial Referee, Journal of the Mississippi Academy of Sciences, 2008 (2 papers) .
Editorial Referee, Population Research and Policy Review, 2007 (1 paper).
Editorial Referee, Journal of Population Research, 2007 (2 papers).
Editorial Referee, City and Community, 2006 (1 paper).
Editorial Referee, Journal of Economic and Social Measurement, 2005 (1 paper).
Editorial Referee, International Journal of Forecasting, 2004 (1 paper).
Editorial Referee, Demography, 2001 (1 paper).
Editorial Referee, Population Research and Policy Review, 1999 (1 paper).
Editorial Referee, International Journal of Forecasting, 1997 (1 paper).
Editorial Referee, Population Research and Policy Review 1996 (1 paper).
Editorial Referee, Demography, 1993 (1 paper).
Editorial Referee, Demography, 1991 (1 paper).
Editorial Referee, Demography, 1987 (1 paper).

Editorial Referee, The Energy Journal, 1987 (1 paper).
Editorial Referee, Demography, 1986 (1 paper).
Editorial Referee, Human Biology, 1985 (1 paper).
Editorial Referee, Demography, 1984 (1 paper).
Editorial Referee, Demography, 1981 (1 paper).
Editorial Referee, Social Biology, 1981 (1 paper).
Editorial Referee, Demography, 1980, (1 paper).
Reviewer, Proceedings of the 1992 International Conference on Applied Demography (1 paper).

B. Academic

Reviewer, Long range demographic and Enrollment projections for California," as part of the "Framework for UC's Growth and Support" project, at the request of the UC Provost, Aimee Dorr, 2017.

Faculty Chair, Graduate Student Awards Committee, Department of Sociology, University of California Riverside, 2016-2017

Faculty Chair, Technology Committee, Department of Sociology, University of California Riverside, 2016-2017.

Faculty Member, Undergraduate Studies Committee, Department of Sociology, University of California Riverside, 2010-2015.

Faculty Chair, Undergraduate Program Review Committee, Department of Sociology, University of California Riverside, 2010-2011.

Interim Director, Blakely Center for Sustainable Suburban Development, University of California Riverside, 2008-2009.

Member, Leadership Institute Steering Committee, University of Mississippi, 2006-7.
Chair, Provost's Task Force on Undergraduate Education, University of Mississippi, 2004-5.
Member, Faculty Grant Review Committee, College of Liberal Arts, University of Mississippi, 2004-5.

Member, Ad Hoc Committee on Off-Campus Programs, College of Liberal Arts, University of Mississippi, 2003-4.

Member, Curriculum and Policy Committee, College of Liberal Arts, University of Mississippi, 2003-7.

BScBA Program Representative, Academic Council, Helsinki School of Economics, 2001-3. International Summer Term Governing Board, Mikkeli Polytechnic College, 2001-3.

Campus Council, Mikkeli Business Campus, Helsinki School of Economics, 1999-2003.
Member, Dean's Executive Council, School of Urban and Public Affairs, Portland State University, 1995-97.

Member, UALR 2000 Response Group, University of Arkansas at Little Rock, 1994-95.
Mentor in Demography, Arkansas Delta Research, Education and Development Foundation, West Memphis, Arkansas, 1992-93.

Member, Urban Demography Subcommittee, Masters of Social Science Committee, University of Arkansas at Little Rock, 1992-93.

Member, East Campus Facilities Usage Group, Pacific Lutheran University, 1991-92.
Member, Provost's Ad Hoc Committee for Faculty Research, Pacific Lutheran University, 1990-92.

Member, Center For Social Research Committee, Division of Social Sciences, Pacific Lutheran University, 1987-89.

Member, Graduate Studies Committee, Department of Sociology, Bowling Green State University, 1986-87.

Library Representative, Department of Sociology, Bowling Green State University, 1986-87.
Member, Search Committee for the Assistant Director of Research Services, the Graduate College, Bowling Green State University, 1985.

Representative, Washington Community College Computing Consortium, 1981.
President, Sociology Graduate Student Association, University of Hawaii, 1974-75
Member, Executive Committee, Department of Sociology, University of Hawaii, 1974-75 Member, Graduate Admission Committee, Department of Sociology, University of Hawaii, 197576.

B. Community

2022 Pro Bono Consulting, Department of City Planning (Kendra Taylor et al.), Atlanta, GA,

2018- Member, Public Advisory Board, Caring Nurses Home Health Service, Las Vegas, NV.

2016-2022 President, University of Hawai'i Alumni Association, Las Vegas, NV Chapter

2016-2017 Secretary, Board, "Kimo Leads the Way," a non-profit organization in Las Vegas with a mission to ease the suffering of child cancer patients and their Parents.

2015-2016 Vice-President, University of Hawai'i Alumni Association, Las Vegas Chapter

1987- As an annual donor and fund raiser, participate(d) in the endowment of the Demography Scholarship, Western Washington University Foundation, Bellingham, Washington.

2010 As a representative of the University of Hawai'i Alumni Association, represented the University of Hawai'i to prospective university students and their parents at the Laguna Beach High School Annual "College Round-up," 6 October, Laguna Beach, CA,

2008 As a donor, established the David L. Swanson Endowed Scholarship for first generation college students, Eastern Washington University Foundation, Cheney, Washington.

2003-2007 As a donor and fund raiser, helped establish the E. Walter Terrie Endowed Graduate Student Award for the Southern Demographic Association, Florida State University Foundation, Tallahassee, Florida.

2007 Donor, Schiller Scholarship and Jobes Scholarship, Department of Sociology, Pacific Lutheran University, Tacoma, Washington.

2006 Demographic Advisor, Town of Walls, Mississippi (Pro Bono Assistance)
2003-2005 Mississippi State Director, National Association of Medics and Corpsmen.
2001- As an annual donor and fund raiser, helped establish the Gary K. Sakihara Graduate Student Award, Department of Sociology, University of Hawai'i at Mānoa, University of Hawai'i Foundation, Honolulu, Hawai'i.

2003-2007 Annual donor, unrestricted funds for the Department of Sociology and Anthropology, University of Mississippi Foundation, Oxford, Mississippi

2001-2003 Representative, Savo Provincial Higher Education Council, Mikkeli, Finland
1999-2000 Member, Census 2000 Advisory Committee, City of Las Vegas, Las Vegas, Nevada
1996-1997 Member, Board of Directors, Mt. Hood Brewing Company, Portland, Oregon.
1994-1995 Member, Governor's Task Force on Hispanic Issues, State of Arkansas.
1994. Technical Demographic Advisor, Evangelical Lutheran Church in America, Research and Planning Office, National Headquarters, Chicago, Illinois (Pro Bono Assistance).

1992-1994. Technical Demographic Advisor, Catholic Church Diocese Officer, Little Rock, Arkansas (Pro Bono Assistance).
1993. Technical Coordinator, Governor's Task Force on Health Care Reform, State of Arkansas.

1988-1990. Survey and Research Consultant, Prince of Peace Lutheran Church, Des Moines, Washington (Pro Bono Assistance).

Life Member, $101^{\text {st }}$ Airborne Division Association.

Life Member, National Association of Corpsmen and Medics.
Life Member, Western Washington University Alumni Association

XII. Research and Professional Consulting

Demographic Consultant, Bryan GeoDemographics, 2021-
Wrongful Death Loss Consultant, O'Reilly Law Group, Las Vegas, Nevada. 2019-2022.
Demographic Consultant, "Forecast of Hopi Tribal Members et al." The Hopi Tribe, Kykotsmovi, AZ, 2017-2022.

Demographic and Statistical Consultant, ALCS LLC, Richmond, VA, 2016-2018
Course Development Consultant, Department of Sociology, Penn State University, 2016-2017
Demographic Consultant, Watts Guerra, LLC. San Antonio, TX. 2016.
Demographic Consultant. "Conseil Scolaire Francophone de la Columbia-Britannique et al. v. Her Majesty the Queen et al." SCBC, Vancouver registry, No. S103975. McCarthy Tetrault LLP. Vancouver, British Columbia, Canada. 2013-2014.

Demographic Consultant, Kemp Communications, Las Vegas, Nevada. 2011.
Demographic Consultant, "Population Projections." Miller and Martin, PLLC. Nashville, TN. 2010.
Demographic Consultant, Third Wave Research, Madison, WI. "Agent-Based Population
Projections. 2009-2010.
Demographic Consultant, Third Wave Research, Madison, WI. "Population Projections for the Nine Census Divisions, 2010-2020, by Single Years of Age and Sex. 2009.

Demographic Consultant, Kemp Communications, Las Vegas, Nevada. 2009.
Demographic Consultant, McKibben Demographics. "Planning a Charter School in the Lagniappe Area of New Orleans, Louisiana," Grant funded by the Smart Foundation. 2009.

Demographic Consultant, "Quest Diagnostics, Inc. v. FMIC." Podvey, Meanor, Catenacci, Hildner, Cocoziello, and Chattman, P.C., Newark, NJ. 2008-2009

Demographic Consultant, "Socio-Economic Economic Resilience and Dynamic Micro-Economic Analysis for a Large-Scale Catastrophe, Grant funded by The Southeast Regional Research Initiative (SERRI), with R. Forgette and M. Van Boening, University of Mississippi, Principal Investigators, 2009-2010

Demographic Consultant, "Ochsner Clinical Foundation v. Continental Casualty Company." Fisher Kanaris P. C., Chicago, IL, 2007.

Demographic and Statistical Consultant, Hurricane Katrina: Its Impact on the Population and Candidates for Endovascular Surgery in the Primary and Secondary Service Areas of Garden Park Hospital," Lemle and Kelleher, PLLC, Shreveport, LA. 2007.

Demographic Consultant, "Population Projections." Miller and Martin, PLLC. Nashville, TN. 20062007.

Demographic Consultant. "Evaluation of Methods for Estimating the Foreign Born Population." U.S. Census Bureau. 2006-2008.

Demographic Consultant, "Estimated Number of Employees with Health Insurance by Employee Type (Private Sector and Government), Size of Establishment, and City: Clark County, Nevada." 2004. Regulatory Economics, Inc. Henderson, NV.

Demographic Consultant, "Estimating and Forecasting the Size of U.S. Lifestyle Segments."
Third Wave Research, Inc. Madison, Wisconsin, 2003; 2002; 1996.
Demographic Consultant, Nevada Consulting Alliance, "Evaluation of Population and Related Projections of Nevada." 2002.

Demographic Consultant, Nevada Consulting Alliance, "Critique of the State Demographer's 2002 Population Estimate for Clark County." 2002.

Consulting Scientist to Consulting Senior Scientist, Science Applications International Corporation, 1988-2002.

Demographic Consultant, Senecio Software, Inc. "Remote Sensing Estimates of Population." 1999-2002.

Demographic Consultant and Consulting Team Leader, Washoe County, Nevada, "Development of a Small Area Population Estimation System. 1999.

Consultant/Resource Faculty, "Applied Demographic Research in Migration." National Science Foundation (with L. M. Tedrow, Director), 1999.
Demographic Consultant, Parsons Brinckerhoff and SaudConsult, "Review and Revision of the Population Forecast for Jubail, Saudi Arabia." 1999.

Demographic Consultant, Nevada Consulting Alliance, "Revision of the Nevada County-level Economic and Demographic Forecasting Model," Nevada State Demographer's Office, 1998-99

Demographic and Statistical Estimation Consultant, "MetroMail Household Income/Asset Estimation Project," Third Wave Research, Inc. Madison, Wisconsin, 1996-97.

Demographic Consultant and Census Enumerator/Crew Leader Training Instructor, "American Community Survey Evaluation Project," Multnomah Progress Board, Portland, Oregon, 1997.

Demographic Consultant, "Initial Evaluation of the American Community Survey Portland Test Site Results," U.S. Bureau of the Census, 1996-97.

Enrollment and Demographic Consultant, "Enrollment Forecasts and Attendance Zone Adjustments," Hillsboro 1J School District, Oregon, 1995-1996

Enrollment and Demographic Consultant, "Enrollment Forecasts," Newberg School District Newberg School District, Oregon, 1996.

Demographic Consultant, "Higher Education Trends," NORED, Inc., Olympia, Washington, 1995

Demographic and Enrollment Consultant, "Enrollment and Market Area Profiles," Portland Community College, Portland, Oregon, 1995.

Consultant/Resource Faculty, "Applied Demographic Research in Migration" National Science Foundation (with L. M. Tedrow, Director), 1994.
Demographic Consultant, General Motors Research and Development Labs, GM North America Operations Center Michigan, 1988 to 1994.

Demographic Consultant, "Tribal Membership Forecasts," Lummi Tribal Business Council, Whatcom County, Washington, 1991.

Statistical Consultant, Iceberg Seafoods, Anchorage, Alaska, 1991-92, 1997-99, 2000.
Demographic Consultant, State of Connecticut Department of Health, "Small Area Population Estimation System" (with D. Pittenger and E. Schroeder), 1990.

Survey Research Consultant, Policy Division, Washington State Office of Financial Management, Olympia, Washington, 1990.

Demographic Consultant, Battelle Pacific Northwest Laboratories, Richland, Washington.
"Hanford Environmental Dose Reconstruction Project," Subcontract No. 041581-A-K1. Richland, Washington, 1988-1990.

Survey Research Consultant, Choosing Our Future, Inc., Menlo Park, California, 1984.
Survey Research Consultant, "Household Characteristics and Residential Energy Use," Pacific Gas and Electric Company, San Francisco, California, 1983-1984.

Demographic Consultant, "Sub-county Estimation," U.S. Bureau of the Census, 1983.
Population and Enrollment Consultant, Anchorage Community College, 1983
Demographic Consultant, University of Phoenix, 1982.
Demographic Consultant, KVOS TV, Inc., Bellingham, WA., 1972, 1974.
Survey Research Consultant, Ewa Mental Health Clinic, Honolulu, Hawaii, 1975.

Information Systems Consultant, Hawaii Center for Environmental Education, Honolulu, HI. 1973.
Demographic Consultant, America Friends of Hebrew University of Jerusalem, Inc.,
New York, N. Y., 1973.

XIII. Memberships in Associations

Academic Central, Casualty Actuarial Society (2016 to present)
American Statistical Association (1975 to present)
Canadian Population Society (Life Member)
European Association for Population Studies. (1999 to 2018)

Fulbright Academy for Science and Technology (2003 to 2009)
Fulbright Association (1994-97, 2002 to 2010)
Population Association of America (1975 to present)
Mississippi Academy of Sciences (Life member)
Southern Demographic Association (1992 to present)
Western Social Science Association (2015 to 2017)

XIII. Selected Awards and Honors

2022 E. Walter Terrie Award for State and Local Demography, for ""Boosted Regression Trees for Small-Area Population Forecasting." Selected as the best paper on an applied topic at the 2022 Conference of the Southern Demographic Association, Knoxville, TN (with J. Baker and J. Tayman).

2020-21 Edward A. Dickson Emeritus Professor Award, University of California Riverside

2016 E. Walter Terrie Award for State and Local Demography, for "Using Modified Cohort Change and Child-Woman Ratios in the Hamilton-Perry Forecasting Method." Selected as the best paper on an applied topic at the 2016 Annual Meeting of the Southern Demographic Association, October 12 ${ }^{\text {th }}$, 2016, Athens, Georgia. (with J. Tayman).

Fulbright Specialist Roster (in Applied Demography, appointed March 2014 for a five year term).
Merit Increase to Professor VIII, University of California Riverside, (June) 2013.
Certificate of Appreciation, US Census Bureau (for service on behalf of Census 2010) (September) 2010.

Outstanding American Award 2006, National Association of Medics and Corpsmen (for service on behalf of Hurricane Katrina victims).

Research Fellow, Social Science Research Center, Mississippi State University (appointed, October 2005).

RAND "Research Summer Institute" Scholarship (July), 2004,
Fulbright "German Studies Seminar," (June), 2003,
1999 E. Walter Terrie Award for State and Local Demography, for " We are What We Measure: Toward A New Approach for Assessing Population Forecast Accuracy." Selected as the best paper on an applied topic at the 1999 Annual Meeting of the Southern Demographic Association, October 29 ${ }^{\text {th }}$, 1999, San Antonio, Texas. (with J. Tayman and C. Barr).

Hammer Award (as part of a research team evaluating the American Community Survey, U.S. Bureau of the Census), Vice-President of the United States of America, July, 1999,

Performance Award, Science Applications International Corporation, 1999.
Task Achievement Program Award, U.S. Department of Energy, Yucca Mountain Project, 1998.
Certificate of Appreciation, Community Based Leadership Institute, Minority Affairs Division, American Association of Retired Persons, 1992.

Fulbright Lecturing Award, 1990-91, Department of Demography, University of Kerala, Trivandrum, India.

Nominee, Outstanding Contributor to Graduate Education, 1985-86, Graduate Student Senate, Bowling Green State University, 1986.

East-West Center Fellowship, 1980. East-West Center, Honolulu, Hawai'I.
Graduate with honors (cum laude), Western Washington State College, 1972.
Alpha Kappa Delta, National Sociology Honorary Society
Phi Theta Kappa, National Community College Honorary Society, Kappa Epsilon Chapter

XIV. Languages

English (US): Native Language
Swedish: Reading and Speaking, Good; Writing, Fair.
Finnish: Reading and Speaking, Poor; Writing, Very Poor.

Expert Report of David A Swanson, Ph.D.

Expert in Demography for the Defendants.

White et al. v. Mississippi State Board of Election Commissioners et al.

5 January 2023

TABLE OF CONTENTS

EXPERT QUALIFICATIONS 5
I. EXECUTIVE SUMMARY 9
II. ASSIGNMENT 13
III. CHARACTERISTICS OF MISSISSIPPI SUPREME COURT DISTRICTS 14
A. Decennial Census 14
B. Mississippi Population Characteristics 14
C. Mississippi Supreme Court Geography 15
D. Mississippi Supreme Court Census Population 16
Table III.D. 12020 Census Voting Age Population for Existing SCOMS Districts 17
Table III.D. 22020 Census Voting Age Population for Cooper Illustrative Plan 1 Districts 19
Table III.D. 32020 Census Voting Age Population for Cooper Illustrative Plan 2 Districts 19
Table III.D. 42020 Census Voting Age Population for Cooper Least Change Plan 1 Districts 20
Table III.D. 52020 Census Voting Age Population for Cooper Least Change Plan 2 Districts 20
E. ACS Citizen Voting Age Population Characteristics of Mississippi 21
Exhibit III.E. 1 American Community Survey DOJ VRA Race and Ethnicity Reporting Classifications 22
Table III.E. 1 Mississippi Prisoner Analysis by Race and Ethnicity, March 2022 by Facility 25
Table III.E. 22020 Census Voting Age Population for Existing SCOMS Districts 26
Table III.E. 32020 Census Voting Age Population for Cooper Illustrative Plan 1 Districts 26
Table III.E. 42020 Census Voting Age Population for Cooper Illustrative Plan 2 Districts 27
Table III.E. 52020 Census Voting Age Population for Cooper Least Change Plan 1 Districts 27
Table III.E. 62020 Census Voting Age Population for Cooper Least Change Plan 2 Districts 28
Table III.E. 7 CVAP analysis over time: District 1 \% APB CVAP under Current Plan compared to Cooper's Plans for 2014-2018, 2015-2019 and 2016-2020 28
F. Performance of Mississippi Districts Using Traditional Redistricting Principles 29
Table III.F. 1 Core Retention of Illustrative Plan 1 33
Table III.F. 2 Core Retention of Illustrative Plan 2 34
Table III.F. 3 Core Retention of Least Change Plan 1. 35
Table III.F. 4 Core Retention of Least Change Plan 2. 36
Table III.F. 5 Core Retention Analysis of SCOMS by Plaintiff Plan. 37
Table III.F.6a Compactness Scores of Existing SCOMS Districts 40
Table III.F.6b Compactness Rankings of Existing SCOMS Districts 40
Table III.F.7a Compactness Scores of Cooper Illustrative 1 Districts 40
Table III.F.7b Compactness Ranking of Cooper Illustrative 1 Districts 41
Table III.F.8a Compactness Scores of Cooper Illustrative 2 Districts 41
Table III.F.8b Compactness Ranking of Cooper Illustrative Plan 2 Districts 41
Table III.F.9a Compactness Scores of Cooper Least Change 1 Districts 42
Table III.F.9b Compactness Ranking of Cooper Least Change 1 Districts 42
Table III.F.10a Compactness Scores of Cooper Least Change 2 Districts 42
Table III.F.10b Compactness Ranking of Cooper Least Change 2 Districts 42
G. Voting Age Population Polling Place Spatial Analysis 43
Table III.G. 1 Distance of Population to Polling Places by Race Definition. 45
H. Diversity Evaluation of the Supreme Court Districts 46
Exhibit III.H. 1 Health and Hunger Needs Atlas Needs and Performance Variables 48
Exhibit III.H. 2 Cluster Map Based on Mississippi Needs and Performance Indicators 50
Exhibit III.H.3.a Cluster Map for Existing SCOMS Plan. 51
Exhibit III.H.3.b Cluster Analysis Table: Existing SCOMS Plan 52
Exhibit III.H.3.c Cluster Analysis Chart: Existing SCOMS Plan 52
Exhibit III.H.4.a Cluster Map for Cooper Illustrative Plan 1 54
Exhibit III.H.4.b Cluster Analysis Table: Cooper Illustrative Plan 1 55
Exhibit III.H.4.c Cluster Analysis Chart: Cooper Illustrative Plan 1 55
Exhibit III.H.5.a Cluster Map for Cooper Illustrative Plan 2 57
Exhibit III.H.5.b Cluster Analysis Table: Cooper Illustrative Plan 2 58
Exhibit III.H.5.c Cluster Analysis Chart: Cooper Illustrative Plan 2 58
Exhibit III.H.6.a Cluster Map for Cooper Least Change Plan 1 60
Exhibit III.H.6.b Cluster Analysis Table: Cooper Least Change Plan 1 61
Exhibit III.H.6.c Cluster Analysis Chart: Cooper Least Change Plan 1 61
Figure III.H.7.a Cluster Map for Cooper Least Change Plan 2 63
Exhibit III.H.7.b Cluster Analysis Table: Cooper Least Change Plan 2 65
Exhibit III.H.7.c Cluster Analysis Chart: Cooper Least Change Plan 2 65
IV. MISSISSIPPI VOTER REGISTRATION AND TURNOUT 67
A. Voter Registration and Turnout by Race and Ethnicity in Mississippi. 67
Table IV.A. 12020 Mississippi Voter Registration by Race and Ethnicity 68
Table IV.A. 22020 Mississippi Voting by Race and Ethnicity 70
Exhibit IV.A. 1 Mississippi Voter Registration by Race and Ethnicity History 72
Exhibit IV.A. 2 Mississippi Voter Turnout by Race and Ethnicity History 73
Exhibit IV.A. 3 Racial Differences in Voter Turnout and by Education Level 74
Exhibit IV.A. 4 Racial Differences in Voter Turnout and by Education Level 75
Exhibit IV.A. 5 Racial Differences in Voter Turnout and by Education Level, Based to Citizens of Voting Age in 2020 78
Table IV.A. 32020 MS Voter Estimates Citizens, Age 18+ by Race and Ethnicity Census Bureau Definition. 79
Table IV.A. 42020 MS Voter Estimates Citizens, All Ages by Race and Ethnicity: Dr. Burch Definition Replication Attempt 81
B. Voter Registration by Race 83
CONCLUSIONS 84
REFERENCES. 87
APPENDICES 91

I, David A. Swanson, affirm the conclusions I express in this report are provided to a reasonable degree of professional certainty.

EXPERT QUALIFICATIONS

1. I am an expert in demography with more than 50 years of experience. I have been retained on behalf of the State Board of Election Commissioners, Tate Reeves, in his official capacity as Governor of Mississippi, Lynn Fitch, in her official capacity as Attorney General of Mississippi, and Michael Watson, in his official capacity as Secretary of State of Mississippi, (hereinafter collectively "the Defendants") as an expert to provide analysis related to State Supreme Court redistricting litigation in the matter of DYAMONE WHITE; DERRICK SIMMONS; TY PINKINS; CONSTANCE OLIVIA SLAUGHTER HARVEY-BURWELL, v. STATE BOARD OF ELECTION COMMISSIONERS; TATE REEVES in his official capacity as Governor of Mississippi; LYNN FITCH in her official capacity as Attorney General of Mississippi; MICHAEL WATSON in his official capacity as Secretary of State of Mississippi.
2. I graduated with a Bachelor of Science in Sociology (with a minor in mathematics) from Western Washington University in 1972. I earned a graduate diploma in social sciences from the University of Stockholm in 1974, an M.A. in Sociology/Population Studies from the University of Hawai'i Mãnoa in 1976 and a Ph.D. in Sociology/Population Studies from the University of Hawai'i Mãnoa in 1985.
3. I have served in a number of professional association roles, including: general editor for Springer's Applied Demography series; member of the mortality expert panel of the Society of Actuaries Research Institute; Secretary-Treasurer (1995-7 and 2003-7) of the Southern Demographic association; and editor of Population Research and Policy Review (2004-7). More recently, I have been on the program committee for the 2022 annual meeting of the Population Association of America and also the program committees for the 2019 Conference on Population and Public Policy and both the 2020 and 2017 annual meetings of the Population Association of America. I have produced 115 refereed sole- and co-authored journal articles, and nine books. I also have edited or co-edited four additional books, with another on the COVID-19 pandemic forthcoming. Google Scholar shows more than 6,000 citations to my work (https://scholar.google.com/citations?user=t7P6qoYAAAAJ\&hl=en\&oi=ao).
4. My first demographic consulting job was in the spring and summer of 1972 with KVOS TV in Bellingham, Washington. While a graduate student at the Mãnoa campus of the University of Hawai'i, I was employed as a staff researcher with the East-West Population Institute, a unit of the Congressionally funded East-West Center, which adjoins the Mãnoa campus. In late 1976, I accepted a position with the Population,

Economic, and Enrollment Studies Division of the Washington State Office of Financial Management in Olympia, Washington (The Governor's Budget Office), and in 1981, I became the first State Demographer of Alaska. This was followed by private sector, government, and academic positions, to include serving as the State Demographer of Arkansas, Senior Scientist at Science Applications International Corporation, Dean at the Helsinki School of Economics and Business Administration (now part of Aalto University), and Professor \& Chair of the Sociology/Anthropology Department at the University of Mississippi. I retired as Emeritus Professor of Sociology at the University of California Riverside in 2018 and was recognized as a "Dickson Professor Emeritus" in 2020-21. I have received a number of awards for my work, including two Fulbrights, and the 2022 "Terrie Award" for presenting the best paper (co-authored with two colleagues) on state and local demography at the annual meeting of the Southern Demographic Association (an award I also won in 1999 and 2016). I also have testified before Congress and State Legislatures and served on the U.S. Census Bureau's Scientific Advisory Committee, 2004-10, chairing it for two years. In November of 2022, I was nominated as one of the candidates to stand for election as the President of the Southern Demographic Association. I am currently a Research Associate (. 25 FTE) with the Population Research Center, Portland State University.
5. Not only have I lived and worked in Mississippi, but my 115 refereed journal articles include studies dealing with demography, race, socio-economic status, and mortality in Mississippi (see, e.g., Swanson, 2008; Swanson and Cossman, 2020; Swanson and McGehee, 2009; Swanson and Sanford, 2012; Swanson and Verdugo, 2019). I also gave a recent paper describing the effect on the 2020 census of Mississippi of the Census Bureau's new Disclosure Avoidance System, "Differential Privacy" (Swanson and Cossman, 2021) and was a co-principal investigator on a 2005-6 grant funded by the National Science Foundation to study "Perceptions of Disaster Relief and Recovery: Analyzing the Importance of Social and Kinship Networks Among Hurricane Katrina Refugees on the Mississippi Gulf Coast," which led to a number of refereed journal articles (see, e.g., Chapel et al., 2007; Forgette et al., 2009; Henderson, et al., 2009; Swanson, 2008; Swanson, et al., 2007). I am a lifetime member of the Mississippi Academy of Sciences.
6. I have worked on redistricting cases (see paragraph 9 in this report for a list of these cases) as well as on revising school (K-12) attendance zones, an activity, which while lacking the legal underpinnings of legislative redistricting, shares similarities with the latter in terms of public consequences, analytical methods, GIS mapping, and variables such as age, race and socio-economic status as criteria of interest (Swanson et al., 1997; Swanson et al., 1998). Furthermore, as indicated in the dedication and
acknowledgments, respectively (Morrison and Bryan, 2019: viii, xi), I also played an active role in the development of Redistricting: A Manual for Practitioners, Analysts, and Citizens.
7. I been involved in the following court cases as a testifying and/or deposed expert witness:

- Deposed Expert Witness (testimony expected to be given in April, 2023). 2022. Case No. CV 6417-300, Superior Court of Arizona in and for the County of Apache, General Adjudication of All Rights in the Little Colorado River System and Source, Phoenix, AZ (On behalf of the Hopi Tribe, Review of Population Forecasts done by a Demographer hired by the Navajo Nation). Osborne Maledon, P.A., Phoenix, AZ;
- Deposed and Testifying Expert Witness. 2022. Case A-17-762364-C. Estate of Joseph P. Schrage Jr \& Kristina. D. Schrage v. Allan Stahl. Eighth Judicial Court, Clark County, Las Vegas, Nevada (life expectancy, working life expectancy and present value of lost earnings and benefits). O'Reilly Law Group, Las Vegas, NV;
- Deposed and Testifying Expert Witness. 2021. Case No. CV 6417-203, Superior Court of Arizona in and for the County of Apache, General Adjudication of All Rights in the Little Colorado River System and Source, Phoenix, AZ (Forecast of Hopi Tribal Population). Osborne Maledon, P.A., Phoenix, AZ;
- Deposed and Testifying Expert Witness. 2012. Board of Education, Shelby County, Tennessee et al. v. Memphis City Board of Education et al. / Board of County Commissioners, Shelby County, Tennessee (third party plaintiff) v. Robert E. Cooper et al (third party defendant)." (Constitutionality of a Tennessee state law). (School District Enrollment Forecasts). Baker, Donelson, Bearman, Caldwell and Berkowitz, PC. Memphis, TN;
- Deposed Expert Witness. 2009. "Quest Medical Services v. FMIC." (Demographic Effects of Hurricane Katrina on New Orleans in a case involving a Medical Service Provider). Podvey, Meanor, Catenacci, Hildner, Cocoziello, and Chattman, P.C., Newark, NJ;
- Deposed and Testifying Expert Witness. 2007. "Spring Hill Hospital, Inc. v. Williamson Medical Center and Maury Regional Hospital." (Evaluation of population forecasts in a case involving a proposed hospital). Miller and Martin, PLLC, Nashville;
- Deposed and Testifying Expert Witness. 1994. Arkansas Supreme Court. (Statistical evaluation of the accuracy of the number of qualified signatures on a public referendum as determined by a sample); and
- Deposed Expert Witness. 1983. "Anchorage, et al., vs. J. Hammond et al." (Lawsuit brought by local governments against the state of Alaska on how populations are determined for purposes of state revenue sharing to local governments).

8. I produced the following expert reports as a consultant/potential expert witness in other court cases:

- Expert Report, Estimated Life Expectancy and Present Value of Household Costs, Z. Kirkson._O'Reilly Law Group, Las Vegas, Nevada. (2019);

Expert Report, The Potential Number of Claimants in regard to the 2010 Gulf of Mexico Oils Spill and its Sequellae. Watts Guerra, LLC. San Antonio, TX. (2016);

- Expert Report in the matter of Conseil scolaire francophone de la Colombie-Britannique, Fédération des parents francophones de Colombie-Britannique, et al. v. Her Majesty the Queen in Right of the Province of British Columbia, and the Minister of Education of the Province of British Columbia, Vancouver Registry S103975 in the Supreme Court of British Columbia. Prepared for the Office of the Attorney General, Ministry of Justice, Province of British Columbia, Canada (2014);
- Expert Report re Title Insurance Loss Model, First American Title Insurance Company, Miller and Martin PLLC, Nashville, TN (2008);
- Expert Report re Patient Population in the matter of Ochsner Clinical Foundation versus Continental Casualty Company. Fisher and Kanaris PC, Chicago, IL (2008); and
- Expert Report re Hurricane Katrina: Its Impacts on the Population and Candidates for Endovascular Surgery in the Primary and Secondary Service Areas of Garden Park Hospital as Defined by Hospital Corporation of America. Salloum and Brawley LLP, Nashville, TN (2007).

9. I have served as a consultant to BryanGeoDemographics (BGD) in regard to the following redistricting cases:

- Singleton v. Morrill, Case 2:21-CV-01291-SGC;
- Robinson v. Ardoin, Civil Action Nos. 22-211-SDD-SDJ, 22-214-SDD-SDJ;
- McConchie v. State Board of Elections, No. 1:21-CV-03091; and
- Caster v. Merrill, Case No. 2:21-CV-1535-AMM.

10. Because of its expertise and experience, I have used the services of Bryan Geodemographics, which under my direction has assembled data, maps and other work products.
11. My full Curriculum Vitae, including my 50 years of demography experience, is attached as Appendix 6.
12. I am being compensated at a rate of $\$ 400 /$ hour.

I. EXECUTIVE SUMMARY

13. The White et al. case has been brought with the support of numerous expert reports. One of these reports was authored by Mr. William Cooper, whose report included a demographic analysis of the existing SCOMS districts, plus four new proposed alternative districts (including analysis of their characteristics). I will be referring to Mr. Cooper's report throughout my paper. Mr. Cooper's report relies on the use of 2020 voting age population (VAP) - a measure which he uses to argue that MS SCOMS District 1 is a minority Black district at 49.3% (see Cooper report at p.19). The appropriate measure would actually be the citizen voting age population (or CVAP). That is, the population actually eligible to vote. In regard to the existing Supreme Court of Mississippi (SCOMS) Districts, as shown in Table III.E. 22020 Census Voting Age Population for Existing SCOMS Districts District 1 already has a Black (Citizens of Voting age Population) CVAP majority at 51.0% APB, a fact Mr. Cooper fails to note in his report. Cooper's Illustrative Plan 1 would increase the Black (Any Part Black, "APB") CVAP majority in District 1 to 57.0%, while Illustrative Plan 2 would raise the CVAP \%APB to 55.4%, Least Change Plan 1 would raise the CVAP \%APB to 54.4%, and Least Change Plan 2 would raise the CVAP \%APB to 53.8%. Each of Cooper's plans yield a similar result: an already Black CVAP APB majority in District 1 is increased to a higher level.
14. When compared to the existing Supreme Court Districts, all four of Cooper's alternative plans serve to lessen the diversity of both the White non-Hispanic (WNH) and the APB CVAP populations across the three districts relative to the distribution of the Citizens of Voting Age Population (CVAP) as a whole. As such, the existing Supreme Court districts provide more diversity than do any of Cooper's plans.
15. Cooper does not analyze the existing SCOMS districts or his own alternative districts by traditional redistricting criteria. However, I use two of them to analyze the existing districts and those proposed by Cooper: core retention and compactness. Briefly, core retention is the principle that the core (population) of prior districts be maintained in a redistricting plan and Compactness is the principle that the distance between all parts of a district is minimized (Gallagher, Kreye and Duros, 2020: 14). Core retention is a critical measure in assessing alternate redistricting plans, because it reveals the gross changes in each population that was made to achieve the net change of the plan. In the cased of Cooper's illustrative plans, I find that significant gross amounts of population are moved around the state in order to achieve the minimal increase in \% Black he proposes in his two new illustrative District 1 scenarios. Core retention of the APB CVAP population in Cooper's two illustrative plans is low, only 72.0% overall and 76.9% of APB VAP in District 1 are retained in his Illustrative Plan I and 65.7% overall and 68.6% of APB VAP are retained in his Illustrative Plan II. These core retention
statistics differ from those of the WNH population and the population as a whole. This finding is consistent with my finding that Cooper's plans serve to decrease diversity across the Supreme Court districts. Cooper's two "least change" plans provide higher levels of retention: 89.2% overall and 91.7% in District 1 of APB VAP in his Least Change Plan 1; and 93.6% overall and 97.0% of District 1 in his Least Change Plan II.
16. Concurrent with the requirement to use counties to build districts for legislative districts, Mississippi law also requires legislative districts to be compact (See Paragraph 60 in this report). Cooper implicitly acknowledges the importance of compactness by asserting that his proposed plans meet compactness criteria. His plans are compact because he asserts they are. However, he fails to calculate and show any compactness measures supporting this assertion. Using the Reock, Polsby-Popper, Schwartzberg and Convex Hull measures, I calculated the compactness of each district under the existing plan and each of Cooper's four plans. At an aggregate level, the existing SCOMS plan is the most compact among the five plans analyzed. SCOMS existing District 1 is the most compact District 1 configuration. Cooper's Least Change Plan 1 District 2 yields the most compact District 2 configuration, and Cooper's Least Change Plan 2 District 3 is the most compact District 3 configuration. While there are individual districts that are more compact in Cooper's plans by different compactness measures, each of the alternate plans suggested by Cooper range from somewhat less compact to substantially less compact overall than is offered by the existing SCOMS plan.
17. The boundaries of the existing SCOMS districts not only serve as the geographic basis for elections to the state's Supreme Court, they serve as the geographic basis for elections to the State Transportation Commission and the Public Service Commission. They also serve as the geographic basis for appointments to both the Mississippi Board of Bar Admissions and the Board of Trustees for the State Institutions of Higher Learning (IHL), as well as a number of other boards, to include, per a list provided by the State Attorney General's Office: ABLE Board of Directors (MISS. CODE ANN. § 43-28-7); State Board of Banking Review (MISS. CODE ANN. § 81-3-12); Charter School Authorizer Board (MISS. CODE ANN. § 37-28-7); Board of Cosmetology (MISS. CODE ANN. § 73-7-1); Board of Education (MISS. CODE ANN. § 37-1-1); Electronic Protection Licensing Advisory Board (MISS. CODE ANN. § 73-69-21); Board of Licensure for Professional Engineers and Surveyors (MISS. CODE ANN. § 73-13-5); State Board of Funeral Service (MISS. CODE ANN. § 73-11-43); Mississippi Home Corporation (MISS. CODE ANN. § 43-33-704); Hospital Equipment and Facilities Authority (MISS. CODE ANN. § 41-73-7); Land, Water and Timber Resources Board (MISS. CODE ANN. § 69-46-3); State Board of Medical Licensure (MISS. CODE ANN. § 73-43-3); Board of Nursing Home Administrators
(MISS. CODE ANN. § 73-17-7); Oil and Gas Board (MISS. CODE ANN. § 53-1-5); MS State Personnel Board (MISS. CODE ANN. § 25-9-109); State Board of Veterinary Medicine (MISS. CODE ANN. § 73-39-55. The IHL has a policy that acknowledges the value of diversity for Mississippi, as does an opinion written by Judge William Barbour in the "Magnolia Bar" case and, in addition, a statement by the ACLU in regard to this case. Using indices from the Mississippi Health and Hunger Atlas, I find that the existing Supreme Court Districts provide more population diversity than do any of Cooper's four alternative plans and that Cooper's plans serve to decrease population diversity across the Supreme Court districts.
18. In the Plaintiffs' expert report by Dr. Traci Burch, it is asserted that Mississippi’s Black voters are currently disenfranchised. A general assertion in Dr. Burch's report (Figure 4 and accompanying text in her report and Exhibit IV.A. 4 Racial Differences in Voter Turnout and by Education Level herein) is that White Mississippians turned out to vote in the 2020 election at a higher rate than Black Mississippians, 56.1% to 53.0%, respectively. Dr. Burch's finding is the result of a flawed analysis in which she employed the incorrect "universe" as the denominator in her calculations (the entire population, which includes those under age 18) rather than the correct "universe," the population eligible to vote ("Citizens of Voting Age Population" - CVAP). In referencing the officially published US Census Bureau tables published from the same source she cites (the 2020 Current Population Survey, November Voting supplement found in Table IV.A. 22020 Mississippi Voting by Race and Ethnicity), I find that that when the correct universe, CVAP, is used as the denominator, APB Mississippians turned out at a higher rate in the 2020 election than WNH Mississippians: 72.9% to 69.8%. Additionally, I find her estimate of 53.0% "Black Alone or in Combination, non-Hispanic" to be incorrectly calculated.
19. As shown by data from past November Voting Supplements in the Current Population Survey (taken in the even numbered years when federal elections are held, starting in 1964), my finding is consistent with the trend of voting seen in Mississippi since 2004. Except in 2010, both the percent of Black CVAP registered and the percent of Black CVAP voting have been higher in every survey year than the percent of WNH CVAP registration and voting, respectively (see Figures IV.A. 1 and IV.A. 2 in this report). In conjunction with this $21^{\text {st }}$ century trend, my finding in regard to the 2020 election also reveals that Dr. James T. Campbell's implication (p. 51 of his report) that Black Mississippians currently register and vote at lower rates than White Mississippians also is mistaken:
[^26]Mississippians are not afforded an equal opportunity to elect candidates of their choice in Supreme Court elections."
20. The Voting Supplements of the Current Population Survey (CPS) from 2004 to 2020 do not support Dr. Campbell's opinion. Moreover, the voter registration data in the Voting Supplements of the CPS are consistent with voting registration data collected for Mississippi in sample surveys conducted annually from 2015 to 2021 by the Survey Research Laboratory, Social Science Research Center, Mississippi State University (SSRC). These sample surveys show that for each year, 2015 to 2021, the percent of Black Mississippians age 18 and over who are registered to vote is higher than the percent of White Mississippians age 18 and over who are registered to vote. In addition, the SSRC sample surveys show that for each year, 2015 to 2021, the percent of Black Mississippians aged 18 and over who report "Always Vote" is higher than the percent of White Mississippians age 18 and over who report "Always Vote." Both the CPS and the SSRC data are consistent with a finding reported for the first time in this report: Statewide, a higher share of the Black population of potential and actual voters is within a quarter mile of a polling place than is the case for the White population of potential and actual voters, an indicator of opportunity for actual and potential Black voters. Moreover, the CPS shows that Black Voter turnout is higher than that of White Voters, a finding consistent with SSRC data.

II. ASSIGNMENT

21. On behalf of the Defendants, I have been asked to independently review and assess the features and characteristics of Mississippi's Supreme Court voting district plan along with plans and reports submitted by White et al. (Plaintiffs), as appropriate to my training, experience and background.
22. In Section III, I analyze Supreme Court Districts as well as the state as a whole in terms of population and voting data. I provide an assessment of: First, compliance of the Mississippi Supreme Court plan with redistricting requirements; then, second, core retention, and compactness as outcomes. I also assess the population diversity of the districts using health and hunger indices developed by the University of Mississippi for the state's counties. These indices are themselves correlated with socio-economic status and race.
23. In Section IV, I provide an in-depth analysis of Mississippi voter registration and voter turnout statistics and trends using:

- November Voting Supplement of the U.S. Census Bureau's Current Population Survey;
- Mississippi county-specific voter registration and voting frequency data by race from annual statewide surveys conducted from 2015 to 2021 by the Survey Research Laboratory of the Social Science Research Center (SSRC) at Mississippi State University.

24. In Section V, I provide Appendices.
25. In forming my opinions, I have considered all materials cited in this report and the appendices. I have also considered some pleadings and other filings in this matter; materials, to include, P. Morrison \& T. Bryan, Redistricting: A Manual for Analysts, Practitioners, \& Citizens (Springer 2019); and U.S. DOJ, Guidance under Section 2 of the Voting Rights Act, 52 U.S.C. 1301, for redistricting and methods of electing government bodies (Sept. 1, 2021). The population, voter registration, and voter turnout, data I use in this report are from standard sources used by demographers, to include census and survey data from the U.S. Census Bureau, as well as survey data from the Social Science Research Center, Mississippi State University. In using these data, I engaged the services of Bryan Geodemographics, an organization experienced in the assembly, summarization, and visualization of demographic and related data, which performed these activities under my direction.
26. I reserve the right to further supplement my report and opinions.

III. CHARACTERISTICS OF MISSISSIPPI SUPREME COURT DISTRICTS

A. Decennial Census

27. The Decennial Census counts people in the United States on a De Jure basis (Wilmoth, 2004: 65) and the U.S. Census Bureau attempts to count everybody once, only once, and in the right place (Cork and Voss, 2006). It is mandated by the Constitution to occur every 10 years, in years ending in zero, to provide the numbers needed to reapportion the House of Representatives, which also results in a reapportionment of the Electoral College. The decennial census numbers also are used by state governments to redraw legislative districts, and the federal government uses the numbers in various funding formulas to distribute some $\$ 1.504$ trillion in funding for highways, hospitals, schools, and many other purposes (Sullivan, 2020: 1).
28. In order for states to redraw legislative and other districts, the U.S. Census Bureau issues the "PL 94-171 "redistricting data" file in conjunction with the decennial census. ${ }^{1}$ Because the decennial census itself does not ask a "citizenship" question and also does not include questions about voting activities, other sources of data produced by the U.S. Census Bureau for itself or for other federal agencies are often used in redistricting activities, to include the PL 94-171 redistricting file, the American Community Survey and the Current Population Survey (Morrison and Bryan, 2019). It is not always the case that the counts or percentages of the same conceptual variables across these different sources will match exactly (Swanson and Van Patten, 1987; U.S. Census Bureau, 2020b: 17-19).

B. Mississippi Population Characteristics

29. Compared to the U.S. as a whole, Mississippi is not as diverse in terms of race and ethnicity. According to the U.S. Census Bureau ${ }^{2}$, Mississippi has a 2020 population of 2,961,279 of which: $1,084,481$ are Black Alone (36\%); 1,658,893 are White Alone (56\%); 32,701 are Asian (1\%); 16,450 are American Indian or Alaskan Native (0.5%); and 56,860 are "Other" (1.9%). In the 2020 Census, 110,732 Mississippians reported being "two or more races" (3.7\%) and 105,220 reported being Hispanic or Latino (3.6\%). For the U.S. as a whole: approximately 12.4% of its 2020 population of $331,449,281$ is "Black Alone;" 62% is "White Alone;" 5.9% is Asian; 1.1% is American Indian or Alaskan Native; and 8.4% is "other." In the 2020 Census, 33,898,993 Americans reported being "two or more races" 10.2%) and $62,080,044$ reported being Hispanic or Latino (18.7\%). In Mississippi, 92% of its 2020 population

[^27]is either "Black Alone" or "White Alone," while in the U.S, 74% of its 2020 population is either "Black Alone" or "White Alone," making Mississippi less racially diverse than the U.S. as a whole. With only 3.6% of its population identifying themselves as Hispanic or Latino, Mississippi is less ethnically diverse than the U.S. as a whole, where 18.7% identify themselves as Hispanic or Latino.

C. Mississippi Supreme Court Geography

30. Mississippi's three Supreme Court election districts are designated along county boundaries, with 22 counties in Supreme Court District 1, 27 counties in District 2, and 33 counties in Supreme Court District 3 - as shown in Appendix 4 Map A. There are 82 counties in Mississippi. Each county is of varying population, ranging from a high of 222,679 in Hinds County, to a low of 1,280 in Issaquena County. ${ }^{3}$ All counties in Mississippi are functioning governmental entities, each governed by a board of supervisors and 10 of them have two county seats. ${ }^{4}$ Counties appear to have been foundational in the development and maintenance of MS Supreme Court Districts since their inception. ${ }^{5}$ Three justices are elected for eight year terms in staggered fashion from each of the three Supreme Court Judicial Districts. ${ }^{6}$ An inventory of county assignments to districts from different plans and the cluster analysis herein may be found in Appendix 1A.
31. Appendix 4 Map A shows the current SCOMS District boundaries. These districts serve more than one purpose. They not only form the geographic basis for elections to the Mississippi State Supreme Court, but also for elections regarding the Transportation Commission and the Public Service Commission (Campbell, 2022): In addition they serve as the geographic basis for (1) appointments to the Board of Bar Admissions ${ }^{7}$; (2) the Board of Trustees for the State Institutions of Higher Learning (IHL); and (3) boards identified in paragraph 17. In regard to IHL, four of the 12 Member Board of Trustees for the State Institutions of Higher Learning are appointed by the Governor from each of the three Supreme Court districts. ${ }^{8}$ The IHL Board Office is responsible for policy and financial oversight of the eight public institutions of higher learning in
[^28]Mississippi. ${ }^{9}$ The Board's policy statement 102.06 acknowledges the value of diversity for Mississippi. ${ }^{10}$ Given that Mississippi is less racially and ethnically diverse than the U.S. as a whole, this is an important policy statement for the state, one not only in line with a statement by the ACLU (2022) in regard to this case but also the 1992 "Magnolia Bar" case concerning the SCOMS districts, in which Judge William Barbour's decision acknowledged the defendants claim that the existing SCOMS districts foster political and socio-economic diversity (Barbour, 1992: line 1417). Any changes that impact the SCOMS districts would have implications not only for the elections regarding the Supreme Court, but also elections for the Transportation Commission and Public Service Commission. In addition, they will impact appointments to the Board of Bar Admissions and the Board of Trustees for the State Institutions of Higher Learning.

D. Mississippi Supreme Court Census Population

32. Using the 2020 Census, there are three important population definitions I use to characterize each of the districts. I start with the voting age population (VAP), within which is the White, non-Hispanic population (WNH) and then the any part Black population (APB). Other minority populations such as Asian, Native Hawaiian and Pacific Islander, American Indian Alaskan Native and "Other" are relatively small in Mississippi and, therefore, not central to this report. ${ }^{11}$ The Hispanic population is relevant only insofar as they own a disproportionately large share of non-citizen population, and therefore largely explain the differences between VAP and CVAP estimates. As part of its demographic reporting, the US Census Bureau provides numerous statistics for each race alone and in combination, and also by ethnicity (whether an individual is of Hispanic origin or not). Therefore, an individual could be Black Alone, Black and White or any number of other combinations with other races and ethnicity. For the purpose of this examination, I am using the "Any Part Black" (the "APB" definition). The APB population is used in the plaintiffs' analysis and is outlined by the Department of Justice in their guidance for defining populations in VRA cases. ${ }^{12}$ The DOJ Guidance on Federal Statutes Regarding Redistricting and Methods for Electing Public Officials states:
"The Department of Justice will follow both aggregation methods defined in Part II of the Bulletin. The Department's initial review will be based upon allocating any response that includes White and one of the five other race categories identified in the response. Thus, the total numbers for "Black/African American,"

[^29]"Asian," "American Indian/Alaska Native," "Native Hawaiian or Other Pacific Islander," and "Some other race" reflect the total of the single-race responses and the multiple responses in which an individual selected a minority race and White race."

The Department will then move to the second step in its application of the census data by reviewing the other multiple-race category, which is comprised of all multiple-race responses consisting of more than one minority race. Where there are significant numbers of such responses, the Department will, as required by both the OMB guidance and judicial opinions, allocate these responses on an iterative basis to each of the component single-race categories for analysis. Georgia v. Ashcroft, 539 U.S. 461, 473, n. 1 (2003)" ${ }^{13}$
33. In Table III.D. 1 (below) one can see that Mississippi’s 2020 Voting Age Population (VAP) was 2,277,599 per the $2020 \mathrm{Pl} 94-171$ redistricting file and when divided into the three SCOMS districts shows 716,402 in District 1 (31% of the total VAP), 796,767 in District 2 (35% of the total VAP), and 764,430 in District 3 (34% of the total VAP), a fairly equitable distribution. As can be seen in this table, approximately 45% of the VAP in District 1 is made up of WNH total and 49.3% of APB total. It is this number, 49.3%, that the Plaintiffs are relying on to characterize D1 as being minority Black. In District 2, approximately 65% of VAP is made up of WNH total while 28% is made up of APB total. In District 3, 62% of the VAP is made up of WNH total with 33% made up of APB total. Clearly, District 1 has the highest percent of APB total of the three while Districts 2 and 3 are clearly majority WNH total.

Table III.D. 12020 Census Voting Age Population for Existing SCOMS Districts ${ }^{14}$

Existing Districts	VAP	WNH Total	APB Total	\% WNH	\% APB
1	716,402	324,908	353,091	45.4%	49.3%
2	796,767	517,385	220,412	64.9%	27.7%
3	764,430	473,158	249,577	61.9%	32.6%
Total	$\mathbf{2 , 2 7 7 , 5 9 9}$	$\mathbf{1 , 3 1 5 , 4 5 1}$	$\mathbf{8 2 3 , 0 8 0}$	$\mathbf{5 7 . 8 \%}$	$\mathbf{3 6 . 1 \%}$

Source: 2020 Census PL94-171; calculations by Bryan GeoDemographics for author.

[^30]34. A useful way to look at the distribution of WNH total and APB total across the three districts is to use the coefficient of variation (CV). Because the $C V$ is a dimensionless number, it can be used to make comparisons across populations with different means (Swanson, 2012: 86). To get to this measure, one starts by computing the mean VAP and its standard deviation across the three districts, which yields $759,199.67$ (where $759,199.67=2,277,599 / 3$) and a standard deviation of $33,016.67$. If each of the three districts had the same number of VAP (approximately 759,200), the standard deviation would be essentially zero. The actual population standard deviation is $33,016.67$. When the standard deviation is divided by the mean, one obtains the coefficient of variation $(C V)$, which shows the extent of variation relative to the mean. In this case, the $C V$ is approximately 0.04 (where $0.04=33,016.6 / 759,199.67$). In this regard, I compare the $C V$ s for VAP (0.04), WNH total (0.19), and APB total (0.21). The WNH total is about four times higher than that seen for VAP and the APB total is approximately five times higher than that that seen for VAP, which serves to confirm that WNH total and APB total population are less equally distributed across the three districts than the total VAP, irrespective of their means.
35. The plaintiffs put forth four potential alternative plans, ${ }^{15}$ each with different features. Using the same procedure I applied to the existing plan (Table III.D.l above), I summarize the demographic characteristics of each of these four alternative plans. As shown in Table III.D. 2 (below) for Cooper's Illustrative Plan 1, one can see that Mississippi's 2020 Voting Age Population (VAP) is 2,277,599 per the 2020 Pl 94-171 redistricting file (consistent with the VAP reported in Table III.D. 1 above) . The new District 1 has 40.9% WNH and 55.3 \% of APB. This represents an increase of +6.0 percentage points ($55.3 \%-49.3 \%$) APB in this district over the existing plan. In District $2,68.3 \%$ of VAP is made up of WNH while 23.5% is made up of APB. In District 3, 63.4% of the VAP is made up of WNH with 30.3% made up of APB. Clearly, District 1 has the highest percent of APB of the three while Districts 2 and 3 are clearly majority WNH.

[^31]- Figures 10 and 11: Illustrative Plan 1 on P. 27
- Figures 13 and 14: Illustrative Plan 2 on P. 30
- Figures 15 and 16: Least Change Plan 1 on P. 33 and P. 34
- Figures 17 and 18: Least Change Plan 2 on P. 35

Table III.D. 22020 Census Voting Age Population for Cooper Illustrative Plan 1 Districts

Illustrative 1	VAP	WNH Total	APB Total	\% WNH	\% APB
1	737,689	301,664	407,999	40.9%	55.3%
2	757,569	517,762	178,124		68.3%
3	782,341	496,025	236,957	63.4%	30.3%
Total	$\mathbf{2 , 2 7 7 , 5 9 9}$	$\mathbf{1 , 3 1 5 , 4 5 1}$	$\mathbf{8 2 3 , 0 8 0}$	$\mathbf{5 7 . 8 \%}$	$\mathbf{3 6 . 1 \%}$

Source: 2020 Census PL94-171; calculations by Bryan GeoDemographics for author.
36. As shown in Table III.D. 3 (below) for Cooper's Illustrative Plan 2, one can see that the new District 1 has $41.4 \% \mathrm{WNH}$ and 54.2% of APB. This represents an increase of +4.9 percentage points ($54.2 \%-49.3 \%$) APB in this district over the existing plan. In District $2,65.9 \%$ of VAP is made up of WNH while 26.4% is made up of APB. In District $3,65.5 \%$ of the VAP is made up of WNH, with 28.3% made up of APB. Again, District 1 has the highest percent of APB of the three while Districts 2 and 3 are clearly majority WNH.

Table III.D. 32020 Census Voting Age Population for Cooper Illustrative Plan 2 Districts

Illustrative 2	VAP	WNH Total	APB Total	\% WNH	\% APB
1	746,385	309,225	404,440	41.4%	54.2%
2	760,360	500,934	200,715	65.9%	26.4%
3	770,854	505,292	217,925	65.5%	$\mathbf{2 8 . 3 \%}$
Total	$\mathbf{2 , 2 7 7 , 5 9 9}$	$\mathbf{1 , 3 1 5 , 4 5 1}$	$\mathbf{8 2 3 , 0 8 0}$	$\mathbf{5 7 . 8 \%}$	$\mathbf{3 6 . 1 \%}$

Source: 2020 Census PL94-171; calculations by Bryan GeoDemographics for author.
37. As shown in Table III.D. 4 (below) for Cooper's Least Change Plan 1, one can see the new District 1 has $42.1 \% \mathrm{WNH}$ and 53.0% of APB. This represents an increase of +3.7 percentage points $(53.0 \%-49.3 \%)$ APB in this district over the existing plan. In District 2, 66.0% of VAP is made up of WNH while 26.5% is made up of APB. In District $3,64.1 \%$ of the VAP is made up of WNH with 30.1% made up of APB. Again, District 1 has the highest percent of APB of the three while Districts 2 and 3 are clearly majority WNH.

Table III.D. 42020 Census Voting Age Population for Cooper Least Change Plan 1 Districts

Least Change 1	VAP	WNH Total	APB Total	\% WNH	\% APB
1	722,892	304,436	383,099	42.1%	53.0%
2	766,360	505,954	202,788	66.0%	26.5%
3	788,347	505,061	237,193	64.1%	30.1%
Total	$\mathbf{2 , 2 7 7 , 5 9 9}$	$\mathbf{1 , 3 1 5 , 4 5 1}$	$\mathbf{8 2 3 , 0 8 0}$	$\mathbf{5 7 . 8 \%}$	$\mathbf{3 6 . 1 \%}$

Source: 2020 Census PL94-171; calculations by Bryan GeoDemographics for author.
38. As shown in Table III.D. 5 (below) for Cooper's Least Change Plan 2, one can see the new District 1 has $43.3 \% \mathrm{WNH}$ and 52.0% of APB. This represents an increase of +2.7 percentage points $(52.0 \%-49.3 \%)$ APB in this district over the existing plan. In District $2,64.9 \%$ of VAP is made up of WNH while 27.7% is made up of APB. In District $3,64.5 \%$ of the VAP is made up of WNH with 29.5% made up of APB. Again, District 1 has the highest percent of APB of the three while Districts 2 and 3 are clearly majority WNH.

Table III.D. 52020 Census Voting Age Population for Cooper Least Change Plan 2 Districts

Least Change 2	VAP	WNH Total	APB Total	\% WNH	\% APB
1	738,384	319,492	383,997	43.3%	52.0%
2	796,767	517,385	220,412	64.9%	27.7%
3	742,448	478,574	218,671	64.5%	29.5%
Total	$\mathbf{2 , 2 7 7 , 5 9}$	$\mathbf{1 , 3 1 5 , 4 5 1}$	$\mathbf{8 2 3 , 0 8 0}$	$\mathbf{5 7 . 8 \%}$	$\mathbf{3 6 . 1 \%}$

Source: 2020 Census PL94-171; calculations by Bryan GeoDemographics for author.

E. ACS Citizen Voting Age Population Characteristics of Mississippi

39. Each of the plans put forth by the plaintiffs are as remarkable for their features and what they say about them, as what they do not. Conventionally, when a Gingles 1 analysis is done, it includes an analysis not just of the VAP, but of the Citizen VAP (or, "CVAP") as well. Conceptually, the CVAP is a refined measure, withdrawing those who may be of voting age - but by virtue of not being citizens are ineligible to vote. In recent cases, Mr. Cooper includes this important measure. ${ }^{16}$ In this case, however, Mr. Cooper does not. Why, one must ask is this the case? As noted in the executive summary, the APB Black CVAP is already a majority at 51.0%. This fact that District 1 is an existing "majority-minority district is contrary to plaintiffs' claim that the SCOMS District 1 is a minority district in need of remediation.
40. The American Community Survey (ACS) is the source of record for CVAP data. The survey is a set of "rolling" sample surveys conducted by the U.S. Census Bureau (Morrison and Bryan, 2019; US Census Bureau, 2020a). It is distinct and different from the Decennial Census and the Current Population Survey, which also are conducted by the U.S. Census Bureau. The ACS provides data that the US Department of Justice commissions and relies on for adjudicating VRA cases. ${ }^{17}$ For the purposes of cases just like these, the US Census Bureau began tabulating CVAP data starting back in 2002, and currently produces a new specially tabulated CVAP dataset each year at the request of the US DOJ. ${ }^{18}$ The output of this file is composed of estimates of the CVAP by race and ethnicity for different levels of Census geography, as follows: ${ }^{19}$
> "This is a special tabulation of the citizen voting age population and other data from the 2016-2020 5-year American Community Survey (ACS). This is the twelfth release of this special tabulation of ACS data. The first release used the 2005-2009 5-year ACS data, and the data are re-released every year using each subsequent year's 5 -year ACS data. These special tabulations provide citizenship voting age data to assist the redistricting process. Data from this and all previous releases are available through the Voting Rights link on the Census Bureau's Redistricting Data Office web site, www.census.gov/rdo."

[^32]41. The US Census Bureau reports a variety of CVAP statistics as part of this special tabulation, including data in total as well as by select racial and ethnic groupings - as seen in Exhibit III.E. 1 (below).

Exhibit III.E. 1 American Community Survey DOJ VRA Race and Ethnicity Reporting Classifications

1	Total CVAP
2	Not Hispanic or Latino (NH)
3	American Indian or Alaska Native Alone (NH)
4	Asian Alone (NH)
5	Black or African American Alone (NH)
6	Native Hawaiian or Other Pacific Islander Alone (NH)
7	White Alone (NH)
8	American Indian or Alaska Native and White (NH)
9	Asian and White (NH)
10	Black or African American and White (NH)
11	American Indian or Alaska Native and Black or African American (NH)
12	Remainder of Two or More Race Responses (NH)
13	Hispanic or Latino

Source:https://www2.census.gov/programs-surveys/decennial/rdo/technical-documentation/special-tabulation/CVAP_2016-2020_ACS_documentation_v3.pdf.
42. As discussed in the Mississippi Supreme Court Census Population section above, the DOJ directs that two levels of minority population be produced. In order to create the first-level required DOJ estimate of the Black or African American population, group 5 Black or African American Alone (NH) and group 10 Black or African American and White (NH) are aggregated. In recent cases, this level has proven just to be a demographic exercise. Plaintiffs in cases such as these are commonly going straight to the second-level definition, as follows.
43. In order to create the second-level required DOJ estimate of the any-part Black or African American population, the following are aggregated, group 5 Black or African American Alone (NH) and group 10 Black or African American and White (NH) and group 11 American Indian or Alaska Native and Black or African American (NH). The American Indian or Alaska native combination is the only other Black or African American combination reported.
44. The DOJ does not outline which one of numerous demographic methods they recommend to "allocate these (multi-race) responses on an iterative basis" nor do they
provide the multi-race granularity of reporting afforded by the Decennial Census. While there are more Black or African American population in the ACS in the "Remainder of Two or More Race Responses" category - there is no way to estimate this from the data that the DOJ requests from the Census Bureau to fulfill their own definitions. In this regard, one can think of the estimates provided by Black or African American Alone (NH) and Black or African American and White (NH) and American Indian or Alaska Native and Black or African American as a lower bound of the actual any-part Black CVAP being reported.
45. Again, we have two sources of population data: (1) the Decennial Census from 2020 (Total and Voting Age Population, or "VAP"); and (2) the most recent ACS from 20162020 (Citizen Voting Age Population, or "CVAP"). Plaintiffs claim the existing District 1 is a minority district based on 2020 Census VAP data - at 49.3%. Plaintiffs do not present the measure used by their own expert in other cases to measure actual voting strength: CVAP. Cooper's analysis only reports results from the 2020 Decennial Census, which shows a 49.3% VAP bare minority share in existing Supreme Court District 1. When you remove the non-Citizens then examine APB as a share of CVAP the conclusion is different - Supreme Court District 1 is an APB CVAP majority at 51.0% as shown in Table III.E. 2 (below).
46. As long as I am focusing on the population eligible to vote, I need to acknowledge and address the prison populations in Mississippi, where many of the residents are ineligible to vote. It is important to note that the ACS Citizen Voting Age Population, or "CVAP" includes group quarters (e.g. prisons) populations, some of whom are ineligible to vote. The state of Mississippi has three large correctional facilities, which house overwhelmingly Black populations. The Mississippi State Penitentiary, "Parchman" (MSP in Sunflower County), Central Mississippi Correctional Facility (CMCF in Rankin County); and the Southern Mississippi Correctional Institution (SMCI in Greene County) - as shown in Appendix 4 Map B. It is my opinion that because of the size of these facilities, and the share of them that are Black, any analysis is at risk of the misrepresenting CVAP members who are actually eligible to vote. In order to give the Plaintiffs every benefit of the doubt using the CVAP measure - my analysis excludes the estimated Black prisoner population of each of these three facilities - and the districts in which they respectively reside. This exclusion serves to reduce the APB CVAP statistic to an estimate of the size of this population that is actually eligible to vote. Retaining and including these three large populations would run the risk of artificially inflating the Black CVAP who are eligible to vote in Mississippi in particular. While it is widely recognized that Mississippi has numerous felons ineligible to vote who are not currently incarcerated, there is no practical way to measure or locate these demographically by district in a meaningful way.
47. For the purpose of demographic measurement of prisoners, it is important to note two things. First, the decennial census often reports estimates of "GQ_Corr" or Group Quarters - Correctional populations that are different from the current actual prisoner populations. For the Mississippi State Penitentiary (MSP), for example, the Decennial Census reported 304 prisoners in Census Block 281339501005056 (with 88 WNH and 212 APB), and 2,790 prisoners in adjacent Census Block 281339501005057 (1,179 WNH and 1,416 APB). This totals 3,094, with 1,267 (41\%) WNH and 1,628 (52.6\%) APB. For the Census Block Group (BG) 281339501005 containing MSP reported by the ACS CVAP file for the DOJ, there are a reported 4,585 CVAP $-3,165$ of which are reported as Black CVAP. Neither the 2020 Decennial Census nor the ACS statistics for the Black population here are consistent with official MS DOC reports. At the time of the writing of this paper, Mississippi Department of Corrections (MS DOC) had published prisoner statistics through March of 2022 - and is on these numbers our analysis relies. As shown in Table III.E. 1 (below) MS DOC reported 1,283 Black prisoners, 665 White prisoners and 20 "other" prisoners at MSP. I use the MS DOC numbers in the analysis - removing them from our CVAP in order to estimate an accurate voter-eligible population. MS DOC reported 1,435 Black prisoners and 1,301 White and 43 other prisoners at the Central Mississippi Correctional Facility (CMCF). MS DOC reported 1,476 Black prisoners, 751 White and 29 other prisoners at the South Mississippi Correctional Institution (SMCI). My analysis includes these three facilities but does not include smaller facilities such as county or youthful offender facilities, private prisons or regional correctional facilities both because of their size and the fact the MS DOC does not break out the prisoners in each of those facilities individually.

Table III.E. 1 Mississippi Prisoner Analysis by Race and Ethnicity, March 2022 by Facility

LOCATION	Black		White		Hispanic		Native American		Asian		Data Unavailabl		TOTAL
	Male	Female											
MSP	1,283	0	665	0	11	0	1	0	7	0	1	0	1,968
CMCF	1.098	337	763	538	17	7	8	5	4	2	0	0	2,779
SMCl	1.476	0	751	0	24	0	4	0	1	0	0	0	2,256
County Jals (approved)	402	2	448	26	10	1	1	0	2	0	4	0	896
County Jalls (unapproved)	444	14	416	26	10	1	0	0	4	0	4	1	920
Youthu Olfender Facilly	11	0	3	0	1	0	0	0	1	0	0	0	16
Private Prisons	2,102	0	851	0	20	0	8	0	4	0	1	0	2,996
Regional Correctional Facilies	2.518	40	1.350	55	69	2	6	1	9	0	0	0	4,050
Cammunty Work Centers	167	16	106	81	2	1	1	1	0	1	0	0	376
Communty Trusties	0	0	0	0	0	0	0	0	0	0	0	0	0
TVC	46	0	30	0	0	0	0	0	0	0	0	0	76
Transifional Housing	8.	1	4	4	0	0	0	0	0	0	0	0	17
Pending File Review	100	5	52	12	1	0	0	0	1	0	0	0	171
RRP	7	0	15	5	0	0	0	0	0	0	0	0	27
Contempl	0	0	0	1	0	0	0	0	0	0	0	0	1
Court Order	86	0	57	8	0	0	0	0	1	0	0	0	152
TOTAL	10,788	527	6,182	929	207	13	33	7	44	3	13	1	18,747
\% of total offenders	57.55\%	2.81\%	32.98\%	4.96\%	1.10\%	.07\%	.18\%	. 04%	.23\%	.02\%	.07\%	.01\%	100.00\%

Source: Mississippi Department of Corrections https://www.mdoc.ms.gov/Admin-Finance/MonthlyFacts/03-01-2022.1.pdf
48. The statistics in Table III.E. 1 show there are both large absolute numbers of Black prisoners in these facilities, and that there is also a higher proportionate number of Black prisoners in the three major prisons in Mississippi than White prisoners overall and by gender. While not all of these prisoners are ineligible to vote, for purposes of this analysis, I assume that they are. I use the MS DOC numbers in my estimates of those eligible to vote by race and ethnicity - removing Black prisoners from APB CVAP in the counties where they are located in order to place a lower boundary on the voter-eligible Black population.
49. Table III.E. 2 (below) shows the CVAP analysis with these prisoners excluded for the existing Supreme Court Districts. In the first row, for District 1, one can see that the CVAP is 705,555 . The WNH population is 324,204 and the APB population is 360,356 . The percent Black CVAP is shown in the last two columns. The "\%APB" column reports the \% APB CVAP without adjustment for Black prisoners. The "\%APB - "Prison Adjusted" column reports the \% APB CVAP with adjustment for Black prisoners. The numbers shaded in green are higher \% Black, and the numbers shaded in red are lower \%Black.
50. The \% APB CVAP for District 1 (shown in the \% APB column) is 51.1\%. District 1 in the existing plan contains both MSP and CMCF (combined for 2,718 Black prisoners and 2,029 other prisoners). District 2 contains SMCI (with 1,476 Black prisoners and 780 other prisoners). The \% APB CVAP Prison Adjusted for District 1 (shown in the $\%$ APB - Prison Adj. column) is 51.0\%. That is - under the assumption that all of the prisoners are ineligible to vote, the adjustment for Black prisoners reduces the \% Black CVAP eligible to vote by approximately 0.1%. It is clear from this analysis that
regardless of whether you include Black prisoners or not - the APB CVAP in District 1 in the existing plan is currently a "majority minority" population. Further investigation revealed that even if I used the most conservative, restrictive definition of Black (Black Alone, non-Hispanic) of which there are 358,072 in District 1 - one would still find a majority of 50.8%.

Table III.E. 22020 Census Voting Age Population for Existing SCOMS Districts

Existing Districts	CVAP	WNH	APB	Black Prisoners	Other Prisoners	\% APB	\%APB - Prison Adj.
1	705,555	324,204	360,256	2,718	2,029	51.1%	51.0%
2	781,300	527,524	218,180	1,476	780	27.9%	27.8%
3	751,245	479,855	250,322			33.3%	33.3%
Grand Total	$\mathbf{2 , 2 3 8 , 1 0 0}$	$\mathbf{1 , 3 3 1 , 5 8 3}$	$\mathbf{8 2 8 , 7 5 8}$	$\mathbf{4 , 1 9 4}$	$\mathbf{2 , 8 0 9}$	$\mathbf{3 7 . 0 \%}$	$\mathbf{3 7 . 0 \%}$

Source: Calculations for author by Bryan GeoDemographics using 2016-2020 ACS DOJ CVAP and MS DOC Reported Prisoner Populations.
51. Table III.E. 3 (below) shows the \% APB CVAP under Cooper's Illustrative Plan 1. The \% APB CVAP for District 1 (shown in the \% APB column) is an overwhelming majority of 57.1%. District 1 in this plan contains MSP (with 1,283 Black prisoners and 685 other prisoners). District 2 contains SMCI and CMCF (with 2,911 Black prisoners and 2,124 other prisoners). The \% APB CVAP Prison Adjusted for District 1 (shown in the "\% APB - Prison Adj." column) is 57.0%. That is, the adjustment for prisoners reduces the \% Black CVAP eligible to vote by approximately 0.1%. In this table, it is also interesting to note that the D1 APB population of 414,130 is exactly half of the total APB population of 828,758 .

Table III.E. 32020 Census Voting Age Population for Cooper Illustrative Plan 1 Districts

| Illustrative 1 | CVAP | WNH | APB | Black Prisoners | Other Prisoners | \% APB | \%APB - Prison Adj. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 725,645 | 295,443 | 414,130 | 1,283 | 685 | 57.1% | 57.0% |
| 2 | 740,350 | 529,260 | 175,711 | 2,911 | 2,124 | 23.7% | 23.5% |
| 3 | 772,105 | 506,880 | 238,917 | | | 30.9% | 30.9% |
| Grand Total | $\mathbf{2 , 2 3 8 , 1 0 0}$ | $\mathbf{1 , 3 3 1 , 5 8 3}$ | $\mathbf{8 2 8 , 7 5 8}$ | $\mathbf{4 , 1 9 4}$ | $\mathbf{2 , 8 0 9}$ | $\mathbf{3 7 . 0 \%}$ | $\mathbf{3 7 . 0 \%}$ |

Source: Calculations for author by Bryan Geodemographics using 2016-2020 ACS DOJ CVAP and MS DOC Reported Prisoner Populations.
52. Table III.E. 4 (below) shows the \% APB CVAP under Cooper's Illustrative Plan 2. The \% APB CVAP for District 1 (shown in the \% APB column) is again an overwhelming majority of 55.4%. District 1 in this plan contains MSP (with 1,283 Black prisoners and 685 other prisoners). District 2 contains SMCI (with 1,476 Black prisoners and 780 other prisoners). District 3 contains CMCF (with 1,435 Black prisoners and 1,344
other prisoners). The \% APB CVAP Prison Adjusted for District 1 (shown in the \% APB - Prison Adj. column) is 55.4%. That is - the adjustment for prisoners reduces the \% Black CVAP eligible to vote is negligible.

Table III.E. 42020 Census Voting Age Population for Cooper Illustrative Plan 2 Districts

Illustrative 2	CVAP	WNH	APB	Black Prisoners	Other Prisoners	\% APB	\%APB - Prison Adj.
1	734,095	308,563	406,542	1,283	685	55.4%	55.4%
2	747,610	513,335	199,460	1,476	780	26.7%	26.6%
3	756,395	509,685	222,756	1,435	1,344	29.4%	29.4%
Grand Total	$\mathbf{2 , 2 3 8 , 1 0 0}$	$\mathbf{1 , 3 3 1 , 5 8 3}$	$\mathbf{8 2 8 , 7 5 8}$	$\mathbf{4 , 1 9 4}$	$\mathbf{2 , 8 0 9}$	$\mathbf{3 7 . 0 \%}$	$\mathbf{3 7 . 0 \%}$

Source: Calculations by Bryan GeoDemographics for author using 2016-2020 ACS DOJ CVAP and MS DOC Reported Prisoner Populations.
53. Table III.E. 5 (below) shows the \% APB CVAP under Cooper's Least Change Plan 1. The \% APB CVAP for District 1 (shown in the \% APB column) is still an overwhelming majority of 54.4%. District 1 in this plan contains both MSP and CMCF (combined for 2,718 Black prisoners and 2,029 other prisoners). District 2 contains SMCI (with 1,476 Black prisoners and 780 other prisoners). The \% APB CVAP Prison Adjusted for District 1 (shown in the $\%$ APB - Prison Adj. column) is 54.4%. That is - the adjustment for prisoners reduces the \% Black CVAP eligible to vote is negligible.

Table III.E. 52020 Census Voting Age Population for Cooper Least Change Plan 1 Districts

Least Change 1	CVAP	WNH	APB	Black Prisoners	Other Prisoners	\% APB	\%APB - Prison Adj.
1	718,485	305,683	390,711	2,718	2,029	54.4%	54.4%
2	751,875	516,885	201,241	1,476	780	26.8%	26.6%
3	767,740	509,015	236,806			30.8%	30.8%
Grand Total	$\mathbf{2 , 2 3 8}, 100$	$\mathbf{1 , 3 3 1 , 5 8 3}$	$\mathbf{8 2 8 , 7 5 8}$	$\mathbf{4 , 1 9 4}$	$\mathbf{2 , 8 0 9}$	$\mathbf{3 7 . 0 \%}$	$\mathbf{3 7 . 0 \%}$

Source: Calculations by Bryan GeoDemographics for author using 2016-2020 ACS DOJ CVAP and MS DOC Reported Prisoner Populations.
54. Table III.E. 6 (below) shows the \% APB CVAP under Cooper's Least Change Plan 2. The \% APB CVAP for District 1 (shown in the \% APB column) is still a majority of 53.8%. District 1 in this plan contains both MSP and CMCF (combined for 2,718 Black prisoners and 2,029 other prisoners). District 2 contains SMCI (with 1,476 Black prisoners and 780 other prisoners). The \% APB CVAP Prison Adjusted for District 1 (shown in the \% APB - Prison Adj. column) is 53.8%. That is - the adjustment for prisoners reduces the \% Black CVAP eligible to vote is negligible.

Table III.E. 62020 Census Voting Age Population for Cooper Least Change Plan 2 Districts

Least Change 2	CVAP	WNH	APB	Black Prisoners	Other Prisoners	\% APB	\%APB - Prison Adj.
1	728,555	318,494	392,118	2,718	2,029	53.8%	53.8%
2	781,300	527,524	218,180	1,476	780	27.9%	27.8%
3	728,245	485,565	218,460			30.0%	30.0%
Grand Total	$\mathbf{2 , 2 3 8 , 1 0 0}$	$\mathbf{1 , 3 3 1 , 5 8 3}$	$\mathbf{8 2 8 , 7 5 8}$	$\mathbf{4 , 1 9 4}$	$\mathbf{2 , 8 0 9}$	37.0%	37.0%

Source: Calculations by Bryan GeoDemographics for author using 2016-2020 AVS DOJ CVAP and MS DOC Reported Prisoner Populations.
55. Table III.E. 7 (below) shows the percent APB CVAP over time as estimated from the American Community Survey over three segments of time. First from the 2014-2018 5-year ACS DOJ dataset, then from the 2015-2019 5-year ACS DOJ dataset, then from the most recent 2016-2020 5-year ACS DOJ dataset. One can see in the first row of this table that the \%APB CVAP population in the current plan was already a majority in the 2014-2018 dataset - and has since grown to 51% in the most recent 2016-2020 ACS DOJ dataset. As expected, in each of Cooper's alternative plans - the \%APB CVAP population in the current plan were all already significant majorities in the 20142018 ACS DOJ dataset - and has since grown even more significant majorities in the most recent 2016-2020 ACS DOJ dataset. Under each of Cooper's alternative plans, the \%APB CVAP grows from an existing majority to a larger majority.

Table III.E. 7 CVAP analysis over time: District 1 \% APB CVAP under Current Plan compared to Cooper's Plans for 2014-2018, 2015-2019 and 2016-2020

	$\underline{\mathbf{2 0 1 4 - 2 0 1 8}}$	$\underline{\mathbf{2 0 1 5 - 2 0 1 9}}$	$\underline{\mathbf{2 0 1 6 - 2 0 2 0}}$
Current Plan	50.8%	51.0%	51.0%
Illustrative 1	56.8%	57.1%	57.0%
Illustrative 2	54.9%	55.3%	55.4%
Least Change 1	54.1%	54.4%	54.4%
Least Change 2	53.4%	53.7%	53.8%

Source: ACS, as described and discussed in the text; calculations by BryanGeoDemographics for author.

F. Performance of Mississippi Districts Using Traditional Redistricting Principles

56. The state of Mississippi does not have legally required periodic updates to their Supreme Court Districts. As such, Mississippi does not have laws or rules to direct how its Supreme Court districts should be drawn other than what is found in Sec 9-3-1 of the State Code. If plans are put forward to re-draw the SCOMS districts, however, it would be appropriate to follow traditional redistricting principles in general as well as redistricting laws found in Mississippi in evaluating them, as was the situation in the "Magnolia Bar" case (Barbour, 1992).
57. Different states consider and implement different criteria. For example, in some states, including Texas, state constitutions require the use of counties to draw certain legislative boundaries, while others just require them to be considered. The Congressional Research Service explains:
"Many of the 'rules' or criteria for drawing congressional boundaries are meant to enhance fairness and minimize the impact of gerrymandering. These rules, standards, or criteria include assuring population equality among districts within the same state; protecting racial and language minorities from vote dilution while at the same time not promoting racial segregation; promoting geographic compactness and contiguity when drawing districts; minimizing the number of split political subdivisions and 'communities of interest' within congressional districts; and preserving historical stability in the cores of previous congressional districts." ${ }^{20}$

Following the general path found in Cooper's report, I continue under the assumption that these same principles apply to redistricting of the state's Supreme Court districts.
58. The National Conference of State Legislatures (NCSL) is widely recognized as the nation's independent, objective, and bipartisan authority on redistricting matters. ${ }^{21}$ The NCSL has published a series of principles that reflect traditional districting principles (or criteria) have been both informed by and adopted by many states. This guidance

[^33]from the NCSL is the basis of any assessment I make as an expert of individual states or organization's criteria and redistricting plans.
59. These traditional districting principles (or criteria) have been adopted by many states:

- Compactness: Having the minimum distance between all the parts of a constituency (a circle, square or a hexagon is the most compact district).
- Contiguity: All parts of a district being connected at some point with the rest of the district.
- Preservation of counties and other political subdivisions: This refers to not crossing county, city, or town, boundaries when drawing districts.
- Preservation of communities of interest: Geographical areas, such as neighborhoods of a city or regions of a state, where the residents have common political interests that do not necessarily coincide with the boundaries of a political subdivision, such as a city or county.
- Preservation of cores of prior districts: This refers to maintaining districts as previously drawn, to the extent possible. This leads to continuity of representation.
- Avoiding pairing incumbents: This refers to avoiding districts that would create contests between incumbents.

60. Mississippi specifically has codified many of these principles into law for redistricting their legislature and congressional districts. For legislative districts, Mississippi requires districts to be compact, contiguous and to preserve political subdivisions. ${ }^{22}$ Mississippi Code § 5-3-101 states:

In accomplishing the apportionment, the committee shall follow such constitutional standards as may apply at the time of the apportionment and shall observe the following guidelines unless such guidelines are inconsistent with constitutional standards at the time of the apportionment, in which event the constitutional standards shall control:
(a) Every district shall be compact and composed of contiguous territory and the boundary shall cross governmental or political boundaries the least number of times possible; and
(b) Districts shall be structured, as far as possible and within constitutional standards, along county lines; if county lines are fractured, then election district lines shall be followed as nearly as possible. ${ }^{23}$

[^34]For congressional districts, Mississippi requires districts to be to be compact, contiguous, to preserve political subdivisions and to preserve communities of interest. ${ }^{24}$
61. For the purpose of drawing alternate SCOMS districts, plaintiffs' expert Mr. William Cooper has applied the law and principles selectively. He has followed the precedent of SCOMS districting and legislative law using entire counties as the building blocks for SCOMS districts (see Mississippi Code § 5-3-101 part (b), "Districts shall be structured, as far as possible and within constitutional standards, along county lines."). He also has used Mississippi's established Planning and Development Districts ("PDDs" as shown in Appendix 4 Map C) as communities of interest to organize and report demographic features of the state (but does not use these in a meaningful way to actually inform the design of his districts). ${ }^{25}$ In fact, Mr. Cooper does not even attempt to analyze the SCOMS districts using the traditional redistricting principles of core retention and compactness. I, however, analyze the existing districts and each of his proposed four plans using these principles.

Core Retention

62. Courts have recognized the need to preserve the core of a prior established district as a legitimate redistricting criterion, ${ }^{26}$ as well as the avoidance of contests between incumbents. ${ }^{27}$ Core retention fosters the continuity of political representation. A Core Retention Analysis (CRA) also known as a constituency report is simply a demographic accounting of the addition and subtraction of persons that would be brought about by a proposed realignment of a district's existing boundaries, a process consistent with determining core retention (see paragraph 15). A CRA is a way of quantifying precisely how a proposed realignment would affect the continuity of representation among a district's current residents and eligible voters.
63. Core Retention Analysis has usually considered only the total populations of districts in comparisons across plans. Here, I have also broadened this standard demographic model, using standard methodology to present comparisons to alternative redistricting plans, and by also analyzing the core retention of protected group. I refer to this as "differential" CRA. The "differential" being the findings it generates by district between the total population and the Black population. In the matters of voting rights and redistricting - another population besides total can and does frequently yield

[^35]significant differences in CRA findings: race and ethnicity. While race cannot be the prevailing factor in drawing a district - in the state of Mississippi and beyond the impact of redistricting on race and ethnic groups is still of significant legal concern. Are there differential impacts to the total population and by race and ethnicity?
64. In each of the following tables, I show the population from each of the original SCOMS districts distributed into each of Cooper's alternative plan districts. In each column, I show the total population impact, the White, non-Hispanic (WNH) impact, and the any part Black (APB) impact. Below the table, I show core retention diagnostics for District 1 (D1) and then the plan as a whole.

DISTRICT 1 (D1) Core Retention Metrics

- The first row (Existing D1 VAP) shows the VAP in D1 of the existing SCOMS plan.
- The second row (Pop Retained in D1) shows the size of the population that was unperturbed by the new plan. As I move forward, this is the population that I will refer to as "retained".
- The third row (Pop Sent Out of D1) is the size of the population that was originally in D1 but was moved to either D2 or D3.
- The fourth row (Pop Added to D1) is the size of the population that was originally in D2 or D3 but was moved in to D1.
- The fifth row (Net Change to D1) is the net of the population sent out of and added to D1. This is the change in population that drives the change in population behind Mr. Cooper's new alternate district estimates.
- The sixth row (D1 core retention) is the percent of the population from the original D1 plan who are retained in the new plan's D1.

Total Plan Core Retention Metrics

- The seventh row (Pop Retained in Original Districts) is the sum of the population left unperturbed in all 3 districts by the new plan.
- The eighth row (Pop Changing Districts) is the sum of the population moved in all 3 districts by the new plan.
- The ninth row (Plan Core Retention) is the percent of the population from the original plan who are retained in the same district under the new plan.
- In Table III.F. 1 (below) one can see the core retention results for Cooper's Illustrative Plan 1. In District 1 (D1), 63.1\% of the total population is retained in District 1, but
the drivers of this differ significantly by race and ethnicity. Only half (49.7\%) of the WNH population from D1 is retained, while 76.9% of the APB population is retained. Across the entire plan, 74.3% of Mississippi's total population is retained in their original district. 75.2% of WNH and 72.0% of APB are retained in their original districts. 585,817 Mississippians, 325,945 WNH and 230,591 APB are moved. While there is no established threshold for core retention, I argue a move of 25.7% of the population $(585,817)$ to a different judiciary in order to change the APB population in D1 by 54,908 is substantial.

Table III.F. 1 Core Retention of Illustrative Plan 1

Row	Original SCOMS	III Plan 1	2020 VAP	2020 WNH VAP	2020 APB VAP
A	$\boxminus 1$	1	452,017	161,498	271,547
B		2	120,310	87,901	24,869
C		3	144,075	75,509	56,675
D	1 Total		716,402	324,908	353,091
E	$\boxminus 2$	1	123,748	65,155	54,562
F		2	637,259	429,861	153,255
G		3	35,760	22,369	12,595
H	2 Total		796,767	517,385	220,412
1	$\oplus 3$	1	161,924	75,011	81,890
J		3	602,506	398,147	167,687
K	3 Total		764,430	473,158	249,577
L	Grand Total		2,277,599	1,315,451	823,080
Existing D1 VAP (D)			716,402	324,908	353,091
Pop Retained in D1 (A):			452,017	161,498	271,547
Pop Sent Out of D1 $(B+C)$:			264,385	163,410	81,544
Pop Added to D1 $(\mathrm{E}+\mathrm{I})$:			285,672	140,166	136,452
Net Change to D1 (sent out + added):			21,287	-23,244	54,908
New D1 VAP:			737,689	301,664	407,999
D1 Core Retention:			63.1\%	49.7\%	76.9\%
Pop Retained in Original Districts ($A+F+J$)			1,691,782	989,506	592,489
Pop Changing Districts ($\mathrm{B}+\mathrm{C}+\mathrm{E}+\mathrm{G}+\mathrm{I}$):			585,817	325,945	230,591
Plan Core Retention (Pop Retained / Total Pop):			74.3\%	75.2\%	72.0\%

65. In Table III.F. 2 (below) one can see the core retention results for Cooper's Illustrative Plan 2. The results are even more significant than in Illustrative Plan 1. In D1, 51.5\% of the total population is retained in D1, but the drivers of this again differ significantly by race and ethnicity. One-thirds (35.1%) of the WNH population from D1 is retained, while only 68.6% of the APB population is retained. Across the entire plan, 66.8% of Mississippi's total population is retained in their original district. 67.5% of WNH and 65.7% of APB are retained in their original districts. In this plan, 755,429

Mississippians, 426,938 WNH and 281,962 APB are moved. Again while there is no established threshold for core retention, I argue a move of 33.2% of the population $(755,429)$ to a different judiciary in order to change the APB population in D1 by only 51,349 is substantial.

Table III.F. 2 Core Retention of Illustrative Plan 2

Row	Original SCOMS	III Plan 2	2020 VAP	2020 WNH VAP	2020 APB VAP
A	$\square 1$	1	369,056	114,033	242,268
B		2	71,738	39,631	28,703
C		3	275,608	171,244	82,120
D	1 Total		716,402	324,908	353,091
E	$\boxminus 2$	1	77,391	35,211	39,433
F		2	688,622	461,303	172,012
G		3	30,754	20,871	8,967
H	2 Total		796,767	517,385	220,412
1	$\boxminus 3$	1	299,938	159,981	122,739
J		3	464,492	313,177	126,838
K	3 Total		764,430	473,158	249,577
L	Grand Total		2,277,599	1,315,451	823,080
Existing D1 VAP (D)			716,402	324,908	353,091
Pop Retained in D1 (A):			369,056	114,033	242,268
Pop Sent Out of D1 $(B+C)$:			347,346	210,875	110,823
Pop Added to D1 ($\mathrm{E}+\mathrm{l}$):			377,329	195,192	162,172
Net Change to D1 (sent out + added):			29,983	-15,683	51,349
New D1 VAP:			746,385	309,225	404,440
D1 Core Retention:			51.5\%	35.1\%	68.6\%
Pop Retained in Original Districts ($\mathrm{A}+\mathrm{F}+\mathrm{J}$)			1,522,170	888,513	541,118
Pop Changing Districts ($\mathrm{B}+\mathrm{C}+\mathrm{E}+\mathrm{G}+\mathrm{I}$):			755,429	426,938	281,962
Plan Core Retention (Pop Retained / Total Pop):			66.8\%	67.5\%	65.7\%

66. In Table III.F. 3 (below) one can see the core retention results for Cooper's Least Change Plan 1. The core retention results here are much better than in Illustrative Plans 1 and 2. In D1, 88.4% of the total population is retained. 85.4% of WNH and 91.7% of APB are retained. Across the entire plan, 92.4% of Mississippi’s total population is retained in their original district. 94.3% of WNH and 89.2% of APB are retained in their original districts. In this plan, 172,412 Mississippians, $74,458 \mathrm{WNH}$ and 88,566 APB are moved. I would characterize these changes as minimal and not substantially differentiated by race and ethnicity.

Table III.F. 3 Core Retention of Least Change Plan 1

Row	Original SCOMS	LC Plan 1	2020 VAP	2020 WNH VAP	2020 APB VAP
A	$\boxminus 1$	1	633,441	277,443	323,812
B		3	82,961	47,465	29,279
C	1 Total		716,402	324,908	353,091
D	$\square 2$	1	30,407	11,431	17,624
E		2	766,360	505,954	202,788
F	2 Total		796,767	517,385	220,412
G	$\bullet 3$	1	59,044	15,562	41,663
H		3	705,386	457,596	207,914
I	3 Total		764,430	473,158	249,577
J	Grand Total		2,277,599	1,315,451	823,080
Existing D1 VAP (C)			716,402	324,908	353,091
Pop Retained in D1 (A):			633,441	277,443	323,812
Pop Sent Out of D1 (B):			82,961	47,465	29,279
Pop Added to D1 ($\mathrm{D}+\mathrm{G}$):			89,451	26,993	59,287
Net Change to D1 (sent out + added):			6,490	-20,472	30,008
New D1 VAP:			722,892	304,436	383,099
D1 Core Retention:			88.4\%	85.4\%	91.7\%
Pop Retained in Original Districts ($A+E+H$)			2,105,187	1,240,993	734,514
Pop Changing Districts ($\mathrm{B}+\mathrm{D}+\mathrm{G}$):			172,412	74,458	88,566
Plan Core Retention (Pop Retained / Total Pop):			92.4\%	94.3\%	89.2\%

Source: data discussed in text; calculations by Bryan GeoDemographics for author.
67. Table III.F. 4 (below) one can see the core retention results for Cooper's Least Change Plan 2. The core retention results here are again much better than in Illustrative Plans 1 and 2. In D1, 94.8% of the total population is retained. 93.5% of WNH and 97.0% of APB are retained. Across the entire plan, 95.8% of Mississippi's total population is retained in their original district. 97.2% of WNH and 93.6% of APB are retained in their original districts. In this plan, 96,106 Mississippians, $36,540 \mathrm{WNH}$ and 52,420 APB are moved. I would characterize these changes as minimal and not substantially differentiated by race and ethnicity.

Table III.F. 4 Core Retention of Least Change Plan 2

Row	Original SCOMS	LC Plan 2	2020 VAP	2020 WNH VAP	2020 APB VAP
A	$\square 1$	1	679,340	303,930	342,334
B		3	37,062	20,978	10,757
C	1 Total		716,402	324,908	353,091
D	$\square 2$	2	796,767	517,385	220,412
E	2 Total		796,767	517,385	220,412
F	$\square 3$	1	59,044	15,562	41,663
G		3	705,386	457,596	207,914
H	3 Total		764,430	473,158	249,577
1	Grand Total		2,277,599	1,315,451	823,080
Existing D1 VAP (C)			716,402	324,908	353,091
Pop Retained in D1 (A):			679,340	303,930	342,334
Pop Sent Out of D1 (B):			37,062	20,978	10,757
Pop Added to D1 ($\mathrm{C}+\mathrm{G}$):			59,044	15,562	41,663
Net Change to D1 (sent out + added):			21,982	-5,416	30,906
New D1 VAP:			738,384	319,492	383,997
D1 Core Retention:			94.8\%	93.5\%	97.0\%
Pop Retained in Original Districts ($A+E+H$)			2,181,493	1,278,911	770,660
Pop Changing Districts ($\mathrm{B}+\mathrm{D}+\mathrm{G}$):			96,106	36,540	52,420
Plan Core Retention (Pop Retained / Total Pop):			95.8\%	97.2\%	93.6\%

Source: Data discussed in text; calculations by Bryan GeoDemographics for author.
68. In Table III.F. 5 (below) one sees a comparison of the core retention in total and by race, WNH and APB. There are many communities of interest in Mississippi and differential core retention analysis enables one to demographically quantify the impact of potential changes on one of interest, which in this case would be the existing judicial districts. The CRA shows that Illustrative Plans 1 and 2 are significantly disruptive to large numbers of Mississippians across the state in order to achieve small increases in the percent APB in District 1. The differential CRA shows that the Least Change Plans 1 and 2 are minimally disruptive and do not displace large numbers of Mississippians. Least Change Plan 1 has a minimal amount of differential core retention by race (that is, 94.3% CRA for WNH and 89.2% CRA for APB is minimally different from 92.4% overall), while Least Change Plan 2 has virtually no differential core retention by race (that is, 97.2% CRA for WNH and 93.6% CRA for APB is minimally different from 95.8\% overall).

Table III.F. 5 Core Retention Analysis of SCOMS by Plaintiff Plan

Population		III Plan 1	III Plan 2	LC Plan 1	LC Plan 2
Total	District 1	63.1%	51.5%	88.4%	94.8%
	Total	74.3%	66.8%	92.4%	95.8%
WNH	District 1	49.7%	35.1%	85.4%	93.5%
	Total	75.2%	67.5%	94.3%	97.2%
APB	District 1	76.9%	68.6%	91.7%	97.0%
	Total	72.0%	65.7%	89.2%	93.6%

Source: 2020 Census Population analyzed with CRA by SCOMS and alternate plaintiff plans. Calculations by Bryan GeoDemographics for author.

Compactness

69. The second traditional redistricting principle I address is the compactness of districts (See paragraph 15). In addition to noting that compactness was a criteria used in the "Magnolia Bar" case (Barbour, 1992), I once again turn to Mississippi Code § 5-3-101 which states for the purpose of legislative redistricting:
"In accomplishing the apportionment, the committee shall follow such constitutional standards as may apply at the time of the apportionment and shall observe the following guidelines unless such guidelines are inconsistent with constitutional standards at the time of the apportionment, in which event the constitutional standards shall control."
(a) Every district shall be compact
70. Within Mr. Cooper's report on Page 4 (P. 4), Mr. Cooper states that he was "asked by the attorneys for the Plaintiffs in this case [have asked me] to determine whether the Black population in Mississippi is "sufficiently large and geographically compact" to allow for one of the three at-large districts for the Mississippi Supreme Court to be drawn with a majority Black voting age population, consistent with traditional districting principles." Mr. Cooper goes on to mention the word "compact" six more times in his report as follows:
71. On P.5, Mr. Cooper states at C. Summary of Expert Conclusions 11. "I have reached the following conclusions: - Based on the 2020 Census, Black Mississippians are sufficiently numerous and geographically compact to allow for one majority-Black VAP district".
72. On P.6, Mr. Cooper also states at C. Summary of Expert Conclusions 11 "• In addition, Black Mississippians have been sufficiently numerous and geographically compact to allow for one majority-Black VAP district as part of a three-district plan for the Mississippi Supreme Court based on the prior decennial Census numbers from 1990, 2000, and 2010."
73. On P.24, Mr. Cooper states at A. Illustrative Plans and Traditional Redistricting Principles 46. "The two illustrative plans that I have developed contain three districts- each with one
majority-Black district. Both illustrative plans comply with traditional redistricting principles, including compactness".
74. On P.24, Mr. Cooper states at A. Illustrative Plans and Traditional Redistricting Principles 47. "The illustrative plans meet the first Gingles precondition, i.e., they demonstrate that the Black population in Mississippi is sufficiently numerous and geographically compact to allow for the creation of at least one 3-member majority Black district."
75. On P.24, Mr. Cooper states at A. Illustrative Plans and Traditional Redistricting Principles 48. "There is no question that Mississippi's Black population is "geographically compact." For example, and by way of reference, the nine-single member district plan shown in Exhibit G contains three contiguous majority-Black VAP districts (Districts 4, 5, and 6)—demonstrating beyond a shadow of doubt that the Black population is compactly distributed north-to-south in and around the Delta."
76. Mr. Cooper makes statements in his report that he is certain that the alternate districts as he has configured them are defensibly compact. In fact, on P.24, Mr. Cooper uses language such as "there is no question" and "beyond a shadow of a doubt." Yet the only evidence he offers are his own personal observations and strongly stated beliefs. Mr. Cooper does not appear to have gone through the exercise of actually calculating and measuring the compactness of each district in each plan - an exercise that he has done in other cases. ${ }^{28}$ At this point, I turn my attention to performing and discussing just such an analysis.
77. Compactness is a tool that can be used in redistricting to compare the relative compactness of existing districts against new districts to determine whether the new districts entail minimal or large-scale changes from the existing districts. There are numerous measures of "compactness" - each using different math and concepts. But what compactness measure does an expert use? The law offers few precise definitions of compactness other than "you know it when you see it," which effectively implies a common understanding of the concept. In contrast, academics have shown that compactness has multiple dimensions and have generated many conflicting measures. ${ }^{29}$
78. There is no professional consensus on a "right" measure, and every widely used measure works differently. A district that is "most compact" by one measure can easily

[^36]and frequently be less compact by another. Four of the most common measures (Polsby-Popper, Schwartzberg, Reock and Convex Hull) each have unique features ${ }^{30}$ so I use each to facilitate a comprehensive analysis of each plan. The analysis includes two tables per plan. The first is the actual scores, by district and by measure including a plan average by measure. The second is a ranking by district and by plan. That is for each district and each measure, how did each score rank (1 being the best score and 5 being the worst)? Last, the tables are thematically shaded based on their performance. Cells in green are the best performing districts, cells in red are poorer performing districts.

Table III.F. $6 a$ (below) shows the compactness scores for the existing SCOMS districts, by compactness measure, and Table III.F. $6 b$ (below) shows the ranks of those scores relative to the other plans. One can compare the average scores and sum these ranks as a means of evaluating the compactness of each plan. For example, using Table III.F.6b. For District 1, using the Polsby-Popper Score, the SCOMS plan ranks first, that is, that district, by that measure, out of the five plans (original SCOMS and each of Cooper's alternative plans) is the most compact.

[^37]Table III.F. 6 a Compactness Scores of Existing SCOMS Districts

	More is Better			Less is Better
District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
1	0.15	0.42	0.65	2.55
2	0.31	0.44	0.77	1.79
3	0.40	0.66	0.88	1.58
Average	0.29	0.51	0.77	1.97

Source: See text. Calculations by Bryan GeoDemographics for author.

Table III.F.6b Compactness Rankings of Existing SCOMS Districts

District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	1	1	3	1
$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	4	3
$\mathbf{3}$	2	1	1	2
Average	2.0	1.7	2.7	2.0

Source: See text. Calculations by Bryan GeoDemographics for author
74. In Table III.F. $6 b$ one can see that the existing SCOMS districts perform the best or nearly the best for each district, by each measure compared to the other proposed plans. The exception is the Convex Hull measure, which ranks District $13^{\text {rd }}$ and District $24^{\text {th }}$ out of the five plans. The sum of the ranks for the existing SCOMS plan is 25 .
75. Table III.F. 7 a (below) shows the compactness scores for the Cooper Illustrative 1 Plan districts, by compactness measure, and Table III.F. $7 b$ shows the ranks of those scores relative to the other plans.

Table III.F.7a Compactness Scores of Cooper Illustrative 1 Districts

	More is Better			Less is Better
District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	0.15	0.32	0.74	2.61
$\mathbf{2}$	0.31	0.39	0.80	1.80
$\mathbf{3}$	0.37	0.38	0.79	1.65
Average	0.27	0.36	0.78	2.02

Source: See text. Calculations by Bryan GeoDemographics for author

Table III.F.7b Compactness Ranking of Cooper Illustrative 1 Districts

District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	2	3	1	2
$\mathbf{2}$	5	4	2	4
$\mathbf{3}$	3	4	2	3
Average	3.3	3.7	1.7	3.0

Source: See text. Calculations by Bryan GeoDemographics for author
76. In Table III.F. $7 b$ one can see that the Cooper Illustrative 1 Plan districts perform more poorly than the existing SCOMS plan. That is, the plan is less compact. The Convex Hull measure ranks District 1 as $1^{\text {st }}$ with District 2 and District 3 tied for $2^{\text {nd }}$. The sum of the ranks for the Cooper Illustrative 1 Plan is 35 .

Table III.F.8a Compactness Scores of Cooper Illustrative 2 Districts

	More is Better Less is Better			
District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	0.12	0.27	0.71	2.85
$\mathbf{2}$	0.38	0.48	0.78	1.62
$\mathbf{3}$	0.29	0.33	0.72	1.85
Average	0.27	0.36	0.74	2.11

Source: See text. Calculations by Bryan GeoDemographics for author

Table III.F.8b Compactness Ranking of Cooper Illustrative Plan 2 Districts

District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	3	5	2	3
$\mathbf{2}$	2	2	3	2
$\mathbf{3}$	5	5	4	5
Average	3.3	4.0	3.0	3.3

Source: See text. Calculations by Bryan GeoDemographics for author
77. In Table III.F. $8 b$ one can see that the Cooper Illustrative Plan 2 districts performs even more poorly than the existing SCOMS plan. That is, the plan is less compact. The District 2 configuration generally performs well across the different measures. The sum of the ranks for the Cooper Illustrative Plan 2 is 41.

Table III.F.9a Compactness Scores of Cooper Least Change 1 Districts

	More is Better			
District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg is Better
$\mathbf{1}$	0.09	0.29	0.55	3.39
$\mathbf{2}$	0.39	0.50	0.83	1.60
$\mathbf{3}$	0.33	0.41	0.79	1.74
Average	0.27	0.40	0.72	2.24

Source: See text. Calculations by Bryan GeoDemographics for author

Table III.F.9b Compactness Ranking of Cooper Least Change 1 Districts

District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	5	4	5	5
$\mathbf{2}$	1	1	1	1
$\mathbf{3}$	4	3	3	4

Source: See text. Calculations by Bryan GeoDemographics for author
78. In Table III.F.9b one can see that the Cooper Least Change 1 Plan Districts 1 and 3 perform more poorly and the plan overall performs more poorly than the existing SCOMS plan. That is, the plan is less compact overall. The movement of Madison County from District 1 to District 3 significantly distorts the boundaries of District 1 and impairs the compactness of District 3. The sum of the ranks for the Cooper Least Change Plan 1 is 37 .

Table III.F.10a Compactness Scores of Cooper Least Change 2 Districts

	More is Better		Less is Better	
District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	0.12	0.35	0.59	2.95
$\mathbf{2}$	0.31	0.44	0.77	1.79
$\mathbf{3}$	0.46	0.54	0.88	1.48
Average	0.30	0.44	0.75	2.07

Source: See text. Calculations by Bryan GeoDemographics for author.

Table III.F.10b Compactness Ranking of Cooper Least Change 2 Districts

District	Polsby-Popper	Reock	Convex_Hull	Schwartzberg
$\mathbf{1}$	4	2	4	4
$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{3}$
$\mathbf{3}$	1	2	1	1
Average	2.7	2.3	3.0	2.7

Source: See text. Calculations by Bryan GeoDemographics for author
79. In Table III.F. $10 b$ one can see that the Cooper Least Change Plan 2 Districts 1 performs more poorly and the plan overall performs more poorly than the existing SCOMS plan. That is, the plan is less compact. Note that District 2 in this plan is unchanged from the original SCOMS plan. The sum of the ranks for the Cooper Least Change Plan 2 is 32 .
80. In summary, the alternate plans suggested by Cooper range from somewhat less compact to substantially less compact when compared to the existing SCOMS plan.

G. Voting Age Population Polling Place Spatial Analysis

81. There is a long history of Black voter suppression in Mississippi. In recent years, much has been written about the impact of Black voter disenfranchisement, driven both by social and legal forms of suppression. ${ }^{31}$ In this report, I attempt to measure two elements of Black voter suppression. The first is causal and is what I discuss here. "What are the differences in proximity, the differences in the distance (proximity) of Black voting age population to current polling stations compared to all voting age population - and, in particular, the WNH voting age population. My hypothesis for this question was that if the Black voting age population were being systematically disenfranchised by the state of Mississippi, a symptomatic indicator of that would be seeing fewer of them close to polling places, and more of them a great distance from polling places. The second measure I discuss is evidentiary (discussed later in Section IV): Does one sees actual evidence of Black voter suppression at the polls today? That is: does one see a difference in Black voter registration and Black voter turnout, which one would expect as an outcome of Black voter disenfranchisement?

[^38]82. The Statewide Election Management System (or "SEMS") is the election information management system - for which data is provided by local officials. This system supports a wide variety of responsibilities related to elections and based on information from SEMS and by working with assorted county election officials, reporters at the Mississippi Free Press (MFP) produced an inventory of polling places for the November 8, 2020 election. ${ }^{32}$ Using that inventory, BryanGeoDemographics performed for me an in-depth spatial analysis of the location of those polling places and their proximity to the voting age population in total and by race and ethnicity. This analysis was conducted for the population as a whole and by race and ethnicity for the entire state of Mississippi. This analysis was then conducted for each individual county. This sub-state analysis allows one to aggregate and assign the proximity of total VAP, WNH VAP and Any Part Black VAP to polling places within each existing district in the current SCOMS configuration, as well in each illustrative and least change configuration proposed by Mr. Cooper in his expert report. While each of Mr. Cooper's illustrative and least change plans increases the percent of the Black population in District 1, I wanted to know if the increases he achieved came at the expense of Black voter proximity to the polls. That is, while he increased the number and proportion of Blacks - did he increase (or decrease) the number of Blacks who happen to have close proximal access to the polls. If Mr. Cooper's plans increased the number and proportion of Blacks, but he moved close-poll proximity Blacks out of District 1 and moved distant-poll proximity Blacks into District 1, one could argue that the actual impact of such plans would be to increase Black voter disenfranchisement and risk fewer Blacks actually turning out to vote.
83. I was not selective and did not discriminately select a vintage of polling locations that I expected would have been any more or less favorable to the outcome I was researching.

[^39]Table III.G. 1 Distance of Population to Polling Places by Race Definition

Source: data discussed in text; calculations by Bryan GeoDemographics for author.
84. Table III.G. 1 shows the VAP (at A), the WNH VAP (at B), and the APB VAP (at C) with the sum of the population who are different distances from a polling place. In the first row (at 1) I show the population who are within a quarter mile of a polling place. This number is shown as both a percent of the population that is within that distance (WNH / VAP and APB / VAP), as well as the share of that population of their share within the state (WNH VAP within $1 / 4$ mile / WNH VAP and APB VAP within $1 / 4$ mile / APB VAP for example). In the second row (at 2) I show the population within $1 / 2$ a mile. In the third row (at 3) I show the population within 1 a mile. And in the fourth row (at 4) I show the population more than a mile distant from a polling place. At 5 I show that the $1,315,451$ WNH VAP are 57.8% of the total Mississippi VAP (MS VAP), and 823,080 APB VAP are 36.1% of MS VAP.
85. Starting with my analysis at $1 / 4$ mile. While WNH VAP make up 57.8% of MS VAP, they only make up 51.6% of VAP within $1 / 4$ mile of a polling place. Conversely, while APB VAP make up 36.1% of MS VAP, they make up 43.1% of VAP within $1 / 4$ mile of a polling place. While 21.4% of WNH VAP live within $1 / 4$ mile of a polling place, 28.6% of APB VAP live within $1 / 4$ mile of a polling place. By both measures, WNH VAP are under-represented and APB VAP are over-represented at our measure of closest distance ($1 / 4$ mile) to MS polling places.
86. Starting with my analysis at $1 / 2$ mile. While WNH VAP make up 57.8% of MS VAP, they only make up 50.2% of VAP within $1 / 2$ mile of a polling place. Conversely, while APB VAP make up 36.1% of MS VAP, they make up 44.0% of VAP within $1 / 2$ mile of a polling place. While 37.1% of WNH VAP live within $1 / 2$ mile of a polling place,
52.0% of APB VAP live within $1 / 2$ mile of a polling place. By both measures, again, WNH VAP are under-represented and APB VAP are over-represented at our next proximal measure ($1 / 2$ mile) to MS polling places.
87. Starting with my analysis at < 1 mile. While WNH VAP make up 57.8% of MS VAP, they only make up 52.7% of VAP within 1 mile of a polling place. Conversely, while APB VAP make up 36.1% of MS VAP, they make up 41.2% of VAP within 1 mile of a polling place. While 59.7% of WNH VAP live within 1 mile of a polling place, 74.5% of APB VAP live within 1 mile of a polling place. By both measures, again, WNH VAP are under-represented and APB VAP are over-represented at our next proximal measure (1 mile) to MS polling places.
88. Now, looking at VAP more than one mile from a polling place. While the WNH VAP makes up 57.8% of MS VAP, it makes up 67.2% of VAP more than a mile from a polling place. Conversely, while the APB VAP makes up 36.1% of MS VAP, it makes up 26.6% of VAP more than a mile from a polling place. While 40.3% of the WNH VAP live more than a mile from a polling place, only 25.5% of the APB VAP live more than a mile from a polling place. By both measures, the WNH VAP is over-represented and the APB VAP is under-represented at our measure of greatest distance (>1 mile) to MS polling places.
89. These results suggest that in terms of proximity distance to a polling place, Black voters have more of an opportunity to vote than White voters in Mississippi.

H. Diversity Evaluation of the Supreme Court Districts

90. In conjunction with the lawsuit that led to this report, the ACLU (2022) states "It's far past time that the Supreme Court districts that Mississippi uses to elect its Supreme Court reflect the diversity of the state's population, rather than diminishing the voice of Black voters." Given this statement and the recognition of the importance of political and socio-economic diversity by Judge William Barbour in the "Magnolia Bar" case, which involved SCOMS districting (Barbour, 1992), it is worthwhile here to evaluate the issue of population diversity in conjunction with this case involving SCOMS districts.
91. The ACLU and Judge Barbour are not the only entities to recognize the importance of diversity in Mississippi. Another entity is the Board of Trustees of the State Institutions of Higher Learning, whose members are appointed by The Governor on the basis of the State's Supreme Court Districts. Among the Board's policies and bylaws, as
amended through September $29^{\text {th }}, 2022,{ }^{33}$ one finds Policy 102.06 (p. 14), a statement on diversity:
"One of the strengths of Mississippi is the diversity of its people. This diversity enriches higher education and contributes to the capacity that our students develop for living in a multicultural and interdependent world. Our system of government, rooted in respect for all people and respect for each individual, is based on understanding. Embracing diversity of thought, cultural background, experience, and identity helps to foster inclusive and intellectually enriched campus communities that maximize opportunities for success among all students and employees."
92. Given this statement, the one by the ACLU, and the opinion by Judge Barbour, I conducted an examination of the diversity of the Supreme Court Districts themselves using a demographic "cluster analysis" which is set of tools and algorithms used to classify different objects into groups in such a way that the similarity between two objects is maximal if they belong to the same group and minimal otherwise (Gallesty, 2020). It is the process of grouping individuals or entities with similar characteristics or similar variables (NCSS, 2022). In the case of the entities of interest here Mississippi counties - one can then examine how these groups are represented in the existing and proposed district plans. The Mississippi Health and Hunger Atlas (Haggard, Cafer, and Green, 2017) provides the data for this process, which allows one to construct groups of counties through its indices of health and well-being (See paragraph 96 for a description of these indices). In turn, these groups can be used to assess diversity based on the indices. For example, if the cluster analysis reveals that all of the state's 82 counties can be formed into " k " groups, and each of these " k " groups had the same percent of its counties within a given district, the district in question would be maximally diverse; if all of the counties within a given Supreme Court District were members of the same group, there would be no population diversity within the district.
93. The authors of the Mississippi Health and Hunger Atlas note that health and hunger are correlated with socio-economic status (Haggard, Cafer, and Green, 2017:1), which in turn is correlated with race (Massey, 2007). This correlation comes back full circle to health and well-being, via the correlation of race and socio-economic status with one another and to mortality (McGehee, 1994; Stockwell, Swanson, and Wicks, 1988; Swanson and McGehee, 1996; Swanson and Sanford, 2012; Swanson and Tedrow, 2018; Waldron, 2002). These correlations support the argument that the health and hunger indices also serve as indices of race and socio-economic status.

[^40]94. As can be seen in Exhibit III.H.1, there are nine variables used to indicate health need and seven to indicate hunger need. As described in the Atlas, these variables are combined and summarized to create a single "needs" index for each county in Mississippi, as described in paragraph 96. Five health variables are combined and summarized with five hunger variables to create a single "performance" index for each county. These two indices formed the input for the cluster analysis. I performed what is known as a NCSS K-Means procedure (NCSS, 2022), the results of which are shown in Appendix 2.
95. The performance levels are based on quintiles (Haggard, Cafer, and Green, 2017:4), which are arranged from very low to very high: "Counties with a very low ranking are in the lowest 20 percent for need or performance. Being in the lowest 20 percent or first quintile means counties either have low need or low performance, depending on the indicator. Counties with a very high ranking are in the highest 20 percent counties for need or performance. For example, a very high ranking for percent of food insecure individuals means that county is in the highest 20 percent, or fifth quintile. This denotes the highest need group for percentages of food insecure people in that county." The health indices were scored similarly.

Exhibit III.H. 1 Health and Hunger Needs Atlas Needs and Performance Variables

Need Indicators

Health

Teen Pregnancy Rate per 1,000 Live Births
Low Birth Weight per 100 Live Births
Pre-Term Birth Rate per 100 Live Births
Adult Obesity Rate
Adult Diabetes Rate
Adult Hypertension per 100,000 Deaths
Uninsured Adults
Uninsured Under 18
Avg. Miles to Closest Primary Care Provider
Hunger
Food Insecure Individuals
Children Food Insecure
Food Insecure with Hunger
Population Income Eligible for SNAP
Children Income Eligible for SNAP
Food Affordability
Low Food Access Index

Performance Indicators

Health

Primary Care Physicians per 100,000
Other Primary Care Providers per 100,000
Medicaid Enrollees per Primary Care Provider
Population Enrolled in Medicaid
Under 18 Enrolled in Medicaid

Hunger

SNAP Enrollment (\% Total Population)
SNAP Enrollment (\% Eligible)
SNAP Enrollment: Children (\% Eligible)
Local Sustainability Resilience Index
Overall Performance Rank

Source: Mississippi Health and Hunger Atlas, 2017 (indicators are shown and discussed in pp 2 to 22).
96. The cluster analysis enables us to understand the geographic distribution of population diversity beyond the raw\% APB for each county. Using the existing SCOMS districts as a reference (see Appendix 4 Map D), it can be seen that large numbers of high \%APB VAP population are generally distributed north and south along the Mississippi river, but there are other concentrations around the state at the county level. District 1 was originally drawn such that it captures much of its APB population along the Mississippi river, but it also extends eastward to capture, among other concentrations, two high APB counties on the eastern edge of Mississippi, Kemper and Noxubee. As will be shown, the current districts each have a given level of population diversity. The cluster analysis enables us to determine if the alternative plans proposed by plaintiffs maintain the level of population diversity found in each of the current districts, increase it, or reduce it.
97. My analysis yielded three clusters as follows: 12 counties in cluster 1 (high need/high performance); 41 counties in cluster 2 (medium need/medium performance); and 29 counties in cluster 3 (high need/low performance). In the remainder of this section, I compare the numbers and types of clusters for the existing SCOMS plans and for each of the plans proposed the Plaintiffs' expert, Mr. Cooper.
98. The overall results can be seen in the map shown as Exhibit III.H.2, where 12 counties are clustered into Group 1 (shown in teal), "low need/high performance;" 41 counties are clustered into Group 2 (shown in lime green), "medium "need/medium performance" group; and 29 counties are clustered into Group 3 (shown in purple), "high need/low performance."
99. The counties in each of the three cluster groups would be spread proportionately across the three Supreme Court Districts if diversity was at a maximum. However, unlike group 1, which can be divided by three with no remainder, groups 2 and 3 have fractional remainders. Given this; districts 1,2 and 3 would have each 4 of the 12 counties in Group 1; districts 1, 2, and 3 would each have 13 of the 41 counties in Group 2, with the remaining two counties placed, respectively, into two of the three districts; and districts 1, 2, and 3 would each have 9 of the 29 counties in Group 3, with the remaining two counties placed, respectively, into two of the three districts. These distributions match the arithmetic means that correspond to the arithmetic means (expressed as percentages) shown in the "b" series of exhibits in this section (see below for a description of the exhibits).

Exhibit III.H. 2 Cluster Map Based on Mississippi Needs and Performance Indicators

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis \& calculations by author; map by Bryan GeoDemographics for author.
100. Next, I present the cluster analysis results for the existing SCOMS districts, and for each of the four alternate plans presented by Mr. Cooper. The remaining series of fifteen exhibits are presented by each of the five plans, with a map, a table and a chart for each, which is in accordance with the following general layout:

- Exhibit III.H.\#.a is the map showing the arrangement of counties for the plan
- Exhibit III.H.\#.b is a chart with the statistics of the cluster analysis for the plan
- Exhibit III.H.\#.c is a chart of the cluster analysis for the plan

Exhibit III.H.3.a Cluster Map for Existing SCOMS Plan

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis \& calculations by author; map by Bryan GeoDemographics for author.
101.Exhibit III.H.3.a (above) shows the distribution of counties by cluster group across the three existing Supreme Court Districts. Under the existing plan: District 1 has three of the 12 Group 1 counties (shown in teal), 11 of the 41 Group 2 counties (shown in lime green), and eight of the 29 Group 3 counties (shown in purple); District 2 has five of the 12 Group 1 counties (teal), 15 of the 41 Group 2 counties (lime green), and seven of the 29 Group 3 counties (purple); District 3 has four of the 12 Group 1 counties (teal), 15 of the 41 Group 2 counties (lime green), and 14 of the 29 Group 3 counties (purple). Exhibit III.H.3.b and Exhibit III.H.3.c (below) shows the percent of each cluster in tabular and graphical (labeled "Series" in the graph) form with each of the three existing districts.

Exhibit III.H.3.b Cluster Analysis Table: Existing SCOMS Plan

Cluster (Series)	District 1	District 2	District 3	Total
1	25.0%	41.7%	33.3%	100.0%
2	26.8%	36.6%	36.6%	100.0%
3	27.6%	24.1%	48.3%	100.0%
mean	26.5%	34.1%	39.4%	
sd	0.01	0.07	0.06	
cv	0.04	0.22	0.16	

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculation, table and graph by author.

Exhibit III.H.3.c Cluster Analysis Chart: Existing SCOMS Plan

[^41]102. In Exhibit III.H.3.b and Exhibit III.H.3.c, (above) one can see the relative distribution of the cluster groups (labeled as "Series" in the Graph) within each of the three existing Supreme Court Districts numerically and graphically (teal $=$ cluster group 1 ; lime green = cluster group 2, and Purple = cluster group 3). If all three groups were proportionately distributed equally within each district, the tops of the colored bars would all be at the same height within a given district (which is the arithmetic average of the three groups, as shown approximately by the horizontal bar within each of the three districts). In the case of the Existing Districts, the three groups are nearly distributed equally within existing district 1 , Cluster Group 1 (teal bar at 25\%), cluster group 2 (lime green at 26.83\%) and Cluster group 3 (purple at 27.59\%). In existing district 2, the horizontal line shows that cluster groups 1 (teal bar at 41.67%) and 2 (lime green bar at 36.59%) are both higher and closer to one another than either is to group 3 (purple bar at 24.14\%), while in existing district 3, groups 1 (teal bar at 33.33\%) and 2 (lime green bar at 36.49%) are both lower and closer to one another than either is to group 3 (purple bar at 48.28%). As a way to summarize these results, recall the discussion of the arithmetic mean, standard deviation and coefficient of variation (CV) in line item \#33, where it is noted that the latter which shows the extent of variation relative to the mean. In District 1, the $C V$ is 0.04 , in District 2, it is 0.22 , and in District 3 , it is 0.16 . These $C V$ s can be interpreted as a measure of the diversity in that the lower they are, the more diversity is equitably distributed. I will compare these $C V$ values under the existing set of Supreme Court Districts to those proposed by Cooper, with a focus on District 1.

Exhibit III.H.4.a Cluster Map for Cooper Illustrative Plan 1

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis \& calculations by author; map by Bryan GeoDemographics for author.
103. Exhibit III.H.4.a (above) shows the distribution of counties by cluster group across the three Supreme Court Districts proposed under Cooper's Illustrative Plan I: District 1 has two of the 12 Group 1 counties (shown in teal), 11 of the 41 Group 2 counties (shown in lime green), and 21 of the 29 Group 3 counties (shown in purple); District 2 has three of the 12 Group 1 counties (teal), 12 of the 41 Group 2 counties (lime green), and two of the 29 Group 3 counties (purple); District 3 has seven of the 12 Group 1 counties (teal), 18 of the 41 Group 2 counties (lime green), and six of the 29 Group 3 counties (purples). Exhibit III.H.4.b and Exhibit III.H.4.c (below) shows the percent of each cluster in tabular and graphical (labeled "Series" in the graph) form with each of the three districts proposed in Cooper's Illustrative Plan 1.

Exhibit III.H.4.b Cluster Analysis Table: Cooper Illustrative Plan 1

Cluster (Series)	District 1	District 2	District 3	Total
1	16.7%	25.0%	58.3%	100.0%
2	26.8%	29.3%	43.9%	100.0%
3	72.4%	6.9%	20.7%	100.0%
mean	38.6%	20.4%	41.0%	
sd	0.24	0.10	0.16	
cv	0.63	0.48	0.38	

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.

Exhibit III.H.4.c Cluster Analysis Chart: Cooper Illustrative Plan 1

[^42]104. In Exhibit III.H.4.b and Exhibit III.H.4.c, (above) one can see the relative distribution of the cluster groups (labeled as "Series" in the Graph) under Cooper's Illustrative Plan 1, across the three Supreme Court Districts numerically and graphically (teal = cluster group 1 ; lime green = cluster group 2 , and purple $=$ cluster group 3). If all three groups were proportionately distributed equally within each district, the tops of the colored bars would all be at the same height within a given district (which is the arithmetic average of the three groups, as shown by the horizontal bar within each of the three districts). In the case of the districts proposed in Cooper's Illustrative Plan 1, the three groups are highly unequally distributed within District 1 , with cluster group 3 (purple bar at 72.4%) counties substantially higher than cluster group 1 (teal bar at 16.7%) and group 2 counties (lime green bar at 26.8%) combined. In proposed District 2, the bars show that cluster groups 1 (teal bar at 25.0%) and 2 (lime green bar at 29.3%) are both substantially higher and closer to one another than either is to group 3 (purple bar at 6.9\%), while in Cooper's proposed district 3, groups 1 (teal bar at 58.3%) and 2 (lime green bar at 43.9%) are both substantially higher and closer to one another than either is to group 3 (purple bar at 20.7\%). Recall that for the existing districts that the $C V \mathrm{~s}$, are as follows: In District 1, the $C V$ is 0.04 ; in District 2, it is 0.22 ; and in District 3, it is 0.16 . Under Cooper's Illustrative Plan 1 , the $C V$ s are 0.63 in District 1, 0.48 in District 2, and 0.38 in District 3, all of which are higher than the corresponding $C V$ s found for the existing districts. Notably, the $C V$ for District 1 under Cooper's Illustrative Plan 1 is 15.75 times higher than the $C V$ for District 1 under the existing plan: It decreases diversity by a factor of 15.75.

Exhibit III.H.5.a Cluster Map for Cooper Illustrative Plan 2

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis \& calculations by author; map by Bryan GeoDemographics for author.
105. Exhibit III.H.5.a (above) shows the distribution of counties by cluster group across the three districts proposed under Cooper's Illustrative Plan II. Under this plan: District 1 has two of the 12 Group 1 counties (shown in teal), nine of the 41 Group 2 counties (shown in lime green), and 20 of the 29 Group 3 counties (shown in lime green); District 2 has four of the 12 Group 1 counties (teal), 15 of the 41 Group 2 counties (lime green), and six of the 29 Group 3 counties (purple); District 3 has six of the 12 Group 1 counties (teal), 17 of the 41 Group 2 counties (lime green), and two of the 29 Group 3 counties (purple). Exhibit III.H.5.b and Exhibit III.H.5.c (below) shows the percent of each cluster in tabular and graphical (labeled "Series" in the graph) form with each of the three districts proposed in Cooper's Illustrative Plan 2.

Exhibit III.H.5.b Cluster Analysis Table: Cooper Illustrative Plan 2

Cluster (Series)	District 1	District 2	District 3	Total
1	16.7%	33.3%	50.0%	100.0%
2	22.0%	36.6%	41.5%	100.0%
3	69.0%	10.3%	20.7%	100.0%
mean	35.9%	26.8%	37.4%	
sd	0.24	0.12	0.12	
cv	0.66	0.44	0.33	
cd				

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.

Exhibit III.H.5.c Cluster Analysis Chart: Cooper Illustrative Plan 2

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.
106. In Exhibit III.H.5.b and Exhibit III.H.5.c, (above), one can see the relative distribution of the cluster groups (Labeled "Series" in the Graph) under Cooper's Illustrative Plan 2, within each of the three Supreme Court Districts numerically and graphically (teal = cluster group 1 ; lime green = cluster group 2 , and purple $=$ cluster group 3). If all three groups were proportionately distributed equally within each district, the tops of the colored bars would all be at the same height within a given district (which is the arithmetic average of the three groups, as approximately shown by the horizontal bar within each of the three districts). In the case of these proposed districts, the three groups are unequally distributed within proposed district 1 , with cluster group 3 (purple bar at 69.0\%) counties substantially higher than both cluster group 1 (teal bar at 16.7%) and cluster group 2 (lime green bar at 22.0%) counties. In proposed district 2, cluster groups 1 (teal bar at 33.3%) and 2 (lime green bar at 36.6\%) are both higher and closer to one another than either is to group 3 (purple bar at 10.3\%), while in Cooper's proposed district 3, Cluster group 1 (teal bar at 50%) is higher than group 2 (lime green bar at 41.5\%), which, in turn, is substantially higher than cluster group 3 (purple bar at 20.7\%). Again, recall that for the existing districts that the $C V \mathrm{~s}$, are as follows: In District 1 , the $C V$ is 0.04 ; in District 2, it is 0.22 ; and in District 3, it is 0.16 . Under Cooper's Illustrative Plan 2, the $C V$ s are 0.66 in District 1, 0.44 in District 2, and 0.33 in District 3, all of which are higher than the corresponding $C V \mathrm{~s}$ found for the existing districts. Notably, the $C V$ for District 1 under Cooper's Illustrative Plan 1 is 16.5 times higher than the $C V$ for District 1 under the existing plan: It decreases diversity by a factor of 16.5 .

Exhibit III.H.6.a Cluster Map for Cooper Least Change Plan 1

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis \& calculations by author; map by Bryan GeoDemographics for author.
107. Exhibit III.H.6.a (above) shows the distribution of counties by cluster group across the three districts proposed under Cooper's Least Change Plan 1. Under this plan: District 1 has four of the 12 Group 1 counties (shown in teal), 10 of the 41 Group 2 counties (shown in lime green), and 14 of the 29 Group 3 counties (shown in purple); District 2 has five of the 12 Group 1 counties (teal), 15 of the 41 Group 2 counties (lime green), and five of the 29 Group 3 counties (purple); District 3 has three of the 12 Group 1 counties (teal), 16 of the 41 Group 2 counties (Lime green), and ten of the 29 Group 3 counties (purple). Exhibit III.H.6.b and Exhibit III.H.6.c (below) shows the percent of each cluster in tabular and graphical (labeled "Series" in the graph) form with each of the three districts proposed in Cooper's Least Change Plan 1.

Exhibit III.H.6.b Cluster Analysis Table: Cooper Least Change Plan 1

Cluster (Series)	District 1	District 2	District 3	Total
1	33.3%	41.7%	25.0%	100.0%
2	24.4%	36.6%	39.0%	100.0%
3	48.3%	17.2%	34.5%	100.0%
mean	35.3%	31.8%	32.8%	
sd	0.10	0.11	0.06	
cv	0.28	0.33	0.18	
cd				

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.

Exhibit III.H.6.c Cluster Analysis Chart: Cooper Least Change Plan 1

[^43]108. In Exhibit III.H.6.b and Exhibit III.H.6.c, (above), one can see the relative distribution of the cluster groups (Labeled "Series" in the Graph) within each of the three Supreme Court Districts proposed in Cooper's Least Change Plan 1 numerically and graphically (teal $=$ cluster group 1 ; lime green $=$ cluster group 2 , and purple $=$ cluster group 3). If all three cluster groups were proportionately distributed equally within each district, the tops of the colored bars would all be at the same height within each of the three districts proposed under Cooper's Least Change Plan I (which is the arithmetic average of the three groups, as shown by the horizontal bar within each of the three districts). The three groups are not distributed equally within Cooper's proposed District 1, where the graph shows that Cluster groups 1 (teal bar at 33.3\%) and 2 (lime green bar at 24.4%) are both lower and closer to one another than either is to Cluster group 3 (purple bar at 48.3\%). In proposed District 2, Cluster groups 1 (teal bar at 41.6% and 2 (lime green bar at 36.6%) are substantially higher and closer to one another than either is to Group 3 (purple bar at 17.2\%). In Cooper's proposed District 3, Cluster group 1 (teal bar at 25%) is lower than that found for Cluster groups 2 (lime green bar at 39.0%) and 3 (purple bar at 34.5%) which are both closer to one another than either is to Cluster Group 1. Once again, recall that for the existing districts that the $C V \mathrm{~s}$, are as follows: In District 1, the $C V$ is 0.04 ; in District 2, it is 0.22 ; and in District 3, it is 0.16 . Under Cooper's Least Change Plan 1, the $C V$ s are 0.28 in District $1,0.33$ in District 2, and 0.18 in District 3, all of which are higher than the corresponding $C V$ s found for the existing districts. Notably, the $C V$ for District 1 under Cooper's Illustrative Plan 1 is seven times higher than the $C V$ for District 1 under the existing plan: It decreases diversity by a factor of seven.

Figure III.H.7.a Cluster Map for Cooper Least Change Plan 2

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis \& calculations by author; map by Bryan GeoDemographics for author.
109. Exhibit III.H.7.a (above) shows the distribution of counties by cluster group across the three districts proposed under Cooper's Least Change Plan II. Under this plan: District 1 has four of the 12 Group 1 counties (shown in teal), nine of the 41 Group 2 counties (shown in lime green), and 12 of the 29 Group 3 counties (shown in purple); District 2 has five of the 12 Group 1 counties (teal), 15 of the 41 Group 2 counties (lime green), and 10 of the 29 Group 3 counties (purple); District 3 has three of the 12 Group 1 counties (teal), 17 of the 41 Group 2 counties (lime green), and six of the 29 Group 3 counties (purple). Exhibit III.H.7.b and Exhibit III.H.7.c (below) shows the percent of each cluster in tabular and graphical (labeled "Series" in the graph) form with each of the three districts proposed in Cooper's Least Change Plan 2.

Exhibit III.H.7.b Cluster Analysis Table: Cooper Least Change Plan 2

Cluster (Series)	District 1	District 2	District 3	Total
1	33.3%	41.7%	25.0%	100.0%
2	22.0%	36.6%	41.5%	100.0%
3	41.4%	24.1%	34.5%	100.0%
mean	32.2%	34.1%	33.6%	
sd	0.08	0.07	0.07	
cv	0.25	0.22	0.20	

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.

Exhibit III.H.7.c Cluster Analysis Chart: Cooper Least Change Plan 2

Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.
110. In Exhibit III.H.7.b and Exhibit III.H.7.c, (above), one can see the relative distribution of the cluster groups (Labeled "Series" in the Graph) within each of the three Supreme Court Districts proposed in Cooper's Least Change Plan 2 numerically and graphically (teal $=$ cluster group 1 ; lime green $=$ cluster group 2 , and purple $=$ cluster group 3). If all three cluster groups were proportionately distributed equally within each district, the tops of the colored bars would all be at the same height within each of the three districts proposed under Cooper's Least Change Plan 2 (which is the arithmetic average of the three groups, as shown by the horizontal bar within each of the three districts). The three groups are not distributed equally within Cooper's proposed District 1, where the graph shows that Cluster groups 1 (teal bar at 33.3\%) and 2 (lime green bar at 22.0%) are both substantially lower and closer to one another
than either is to Cluster group 3 (purple bar at 41.4\%). In proposed District 2, Cluster groups 1 (teal bar at 41.7% and 2 (lime green bar at 36.6%) are both substantially higher and closer to one another than either is to Group 3 (purple bar at 24.1\%). In Cooper's proposed District 3, Cluster group 1 (teal bar at 25.0%) is lower than that found for Cluster groups 2 (lime green bar at 41.5%) and 3 (purple bar at 34.5%) which are both closer to one another than either is to Cluster Group 1. Recall, again that for the existing districts that the $C V \mathrm{~s}$, are as follows: In District 1 , the $C V$ is 0.04 ; in District 2, it is 0.22 ; and in District 3, it is 0.16 . Under Cooper's Least Change Plan 2, the $C V$ s are 0.25 in District 1, 0.22 in District 2, and 0.20 in District 3, none of which is lower than the corresponding $C V$ s found for the existing districts. Notably, the $C V$ for District 1 under Cooper's Illustrative Plan 1 is 6.25 times higher than the $C V$ for District 1 under the existing plan: It decreases diversity by a factor of 6.25 .
111. In summary, each of the four plans proposed by Cooper reduce the level of diversity found in all of the existing three districts and notably do so in regard to District 1.

IV. MISSISSIPPI VOTER REGISTRATION AND TURNOUT

A. Voter Registration and Turnout by Race and Ethnicity in Mississippi

112. A core tenet of the plaintiffs in this case is that Black voters are currently disenfranchised and do not have the same access to voting and do not exercise their right to vote in the same way the Whites in Mississippi do. Here, I examine expert reports written on behalf of the plaintiffs and offer my opinion on current Black voter registration and voting behavior.
113. Measuring voter registration and actual voting in Mississippi by race is a challenge. The state of Mississippi does not record registered voters by race. Given this, the US Census Bureau's Current Population Survey (or "CPS") is used to understand recent voter registration and turnout in Mississippi. Because these data are only available at the whole-state level, I subsequently turn to sample survey data collected by the Survey Research Laboratory, Social Science Research Center, Mississippi State University, to examine sub-state patterns.
114. As part of its regular, on-going Current Population Survey (CPS), the Census Bureau adds periodic supplements asking questions on topics ranging from school enrollment to tobacco use. ${ }^{34}$ One such supplement is the "voting and registration" supplement, which is added in November of national voting years. ${ }^{35}$ In 2020, the CPS collected information from 134,122 respondents with dozens of detailed questions on voting behavior. ${ }^{36}$ The sample is collected for the US as a whole and by state.
115. The US Census Bureau produces two work products from the "voting and registration" supplement. It tabulates and reports the results of the most important questions such as "Did (you/name) vote in the election held on Tuesday, November 3, 2020?" by state and by the most common demographic variables such as age, race, sex and educational attainment. The sample results are then adjusted to estimated population numbers and the results given in 1,000s of persons with 90% margins of error. These tabulations are formal and the resulting reports are viewed as official work products of the Federal Government. ${ }^{37}$ When possible, an expert would always start their analysis of registration and voting behavior with a reference to these reports. In addition to these official statistics, the Census Bureau also publishes a "raw data" or "Public Use Microdata Sample" (or "PUMS" file) with data from individual

[^44]respondents, with each weighted to represent the population in the United States they represent. I will discuss the PUMS data in more detail shortly.
116. In the course of examining voter turnout and registration, the first stop was to look at the official tables published by the Census Bureau to see if the statistics desired by race and ethnicity were available for Mississippi. They are in Table 4B, available as an excel file, provides the official statistics on the number and percent registered and voted by race and ethnicity in Mississippi in 2020. ${ }^{38}$
117. Table IV.A. 1 (registration by race and ethnicity) and Table IV.A. 2 (actual voting by race and ethnicity) both present a "Total Population" as well as a "Total Citizen Population" - and show statistics under these categories for several race and ethnicity combinations, such as "White Alone," "Black Alone," "White non-Hispanic," and "Black Alone or in combination". In the online source for these two tables, which is the Census Bureau's Table 4B, ${ }^{39}$ it is not clearly stated that the "Total Population" in Table 4B is actually the voting age population ("VAP") and that "Total Citizen Population" is actually the total Citizen Voting Age Population (CVAP). Keep this in mind in reading these two tables and also that the numbers are given in $1,000 \mathrm{~s}$.

Table IV.A. 12020 Mississippi Voter Registration by Race and Ethnicity

Sex, Race, and Hispanic-Origin	Total "VAP" Population	Total citizen population	Total registered	Percent registered (Citizen)	Margin of error 1
Total	2,212	2,177	1,749	80.4	2.7
Male	1,029	1,015	792	78.0	4.2
Female	1,182	1,162	957	82.4	3.6
White alone	1,350	1,337	1,054	78.8	3.6
White non-Hispanic alone	1,300	1,295	1,026	79.2	3.6
Black alone	792	787	654	83.1	4.1
Asian alone	37	20	9	B	B
Hispanic (of any race)	67	53	34	B	B
White alone or in combination	1,375	1,363	1,079	79.2	3.5
Black alone or in combination	805	799	666	83.4	4.1
Asian alone or in combination	41	24	13	B	B

Source: Table 4B, US Census Bureau (https://www2.census.gov/programs-surveys/cps/tables/p20/585/table04b.xlsx). Numbers do not always add to totals due to sampling and rounding error.

[^45]118. First, I examined voting registration. Table IV.A. 1 row 1 (highlighted in yellow) reading left to right shows the VAP population $(2,212)$, then the total CVAP population $(2,177)$ then the total CVAP registered to vote $(1,749)$, then the percent CVAP who are registered, $(80.4 \%$, where $80.4 \approx(1,749 / 2,177) * 100) .{ }^{40}$
119. Table IV.A. 1 row 5 (highlighted in yellow) shows voter registration results for White non-Hispanic alone population (in 1,000s). Again, reading left to right and starting in the first column, one can see that the White non-Hispanic alone VAP number is 1,300 and that the White non-Hispanic alone CVAP number is 1,295 , of which 1,026 were registered to vote, yielding the results that 79.2% of the White non-Hispanic alone CVAP were registered to vote, where $79.2 \% \approx(1,026 / 1,295) * 100$.
120. Table IV.A.I row 10 (highlighted in yellow) shows voter registration results for Black Alone and in combination (in 1,000 s). In this row, one sees 799 Black Alone or in combination CVAP, of whom 666 who were registered to vote, yielding the result that 83.4% of the Black Alone or in combination CVAP were registered to vote, where $83.4 \% \approx(666 / 799) * 100$.
121. Next, I examined actual voting. Table IV.A. 2 shows in the first row, reading from right to left, the VAP population $(2,212)$, then the total CVAP population $(2,177)$ then the CVAP who voted $(1,521)$, then the percent CVAP who voted $(70.3 \%$, where 70.3 $\approx(1,521 / 2,177) * 100)$.

[^46]Table IV.A. 22020 Mississippi Voting by Race and Ethnicity

	Total "VAP" Population	Total citizen population	Total voted	Percent voted (Citizen)	Margin of error 1
Total	2,212	2,177	1,531	70.3	3.2
Male	1,029	1,015	680	67.0	4.8
Female	1,182	1,162	850	73.2	4.2
White alone	1,350	1,337	921	68.9	4.1
White non-Hispanic alone	1,300	1,295	904	69.8	4.1
Black alone	792	787	573	72.8	4.9
Asian alone	37	20	8	B	B
Hispanic (of any race)	67	53	23	B	B
White alone or in combination	1,375	1,363	942	69.1	4.0
Black alone or in combination	805	799	582	72.9	4.8
Asian alone or in combination	41	24	11	B	B

Source: Table 4B, US Census Bureau (https://www2.census.gov/programs-surveys/cps/tables/p20/585/table04b.xlsx). Numbers do not always add to totals due to sampling and rounding error.

Table IV.A. 2 row 5 (highlighted in yellow) shows voting results for White non-Hispanic alone population (in $1,000 \mathrm{~s}$). Reading right to left and starting in the first column, one can again see that the White non-Hispanic alone VAP number is 1,300 and that the White nonHispanic alone CVAP number is 1,295 , of which 904 voted, yielding the result that 69.8% of the White non-Hispanic CVAP voted, where $69.8 \% \approx(904 / 1,295)^{*} 100$.
122. Table IV.A. 2 row 10 (highlighted in yellow) shows voting results for Black Alone and in combination (in $1,000 \mathrm{~s}$). In this row, one sees 799 Black Alone or in Combination CVAP, of whom 582 voted, yielding the result that 72.9% of the Black Alone or in Combination CVAP voted, where $72.9 \% \approx(582 / 799) * 100$.
123. In examining the CPS results for the White non-Hispanic and the Black Alone or in combination population in Mississippi for the 2020 election, I am left with a decisive conclusion. In 2020 the Black Alone or in Combination population out-registered and out-voted the White non-Hispanic population. It is clear can see that Black Alone or in Combination were registered at a higher level (83.4\%) than the White non-Hispanic (79.2\%). And in looking at who voted in the 2020 election, Black Alone or in Combination voted at a higher level (72.9\%) than the White non-Hispanic (69.8\%).
124. Because the registration and voting data are from a sample survey, there are "Margins of Error" (MOEs) provided with them, which provide an estimate of the statistical uncertainty in the sample-based estimates. In the case of the 2020 CPS data, the MOEs are given at a 95% level of confidence. In regard to the 79.2% of the White

Non-Hispanic CVAP registered to vote, the estimated MOE is 3.6 , which is interpreted to mean that one can be 95% certain that the actual percent who registered is between 75.6% and 82.8% (79.2 ± 3.6); similarly, in regard to the 83.4% of the Black Alone or in Combination CVAP registered to vote, the estimated MOE is 4.1, which is interpreted to mean that one can be 95% certain that the actual percent who registered is between 79.3% and 87.5% (83.4 ± 4.1). Because the upper end (82.8%) of the 95% MOE of White Non-Hispanic CVAP percent registered does not overlap the 83.4\% estimated in the sample survey of the Black Alone or in combination CVAP registered to vote, one can be 95% certain that the actual percent of Black Alone or in Combination CVAP registered to vote in the 2020 Mississippi election is higher than the actual percent of White non-Hispanic CVAP (Swanson, 2012: 13-157). This finding is supported by the fact that the lower end (79.3\%) of the 95% MOE of Black Alone or in Combination CVAP does not overlap the 79.2% of the White non-Hispanic CVAP registered to vote (Swanson, 2012: 153-157).
125. In regard to the 69.8% of the White Non-Hispanic CVAP who voted, the estimated MOE is 4.1 , which is interpreted to mean that one can be 95% certain that the actual percent who voted is between 65.7% and 73.9% (69.8 ± 4.1); similarly, in regard to the 72.9% of the Black Alone or in Combination CVAP who voted, the estimated MOE is 4.8, which is interpreted to mean that one can be 95% certain that the actual percent who voted is between 68.1% and $77.7 \% ~(72.9 \pm 4.1)$. Because the upper end (73.9\%) of the 95% MOE of White Non-Hispanic CVAP percent voted overlaps the 72.9% estimated in the sample survey of the Black Alone or in Combination CVAP who voted, one cannot be 95% certain that the actual percent of Black Alone or in combination CVAP who voted in the 2020 Mississippi election is higher than the actual percent of White non-Hispanic CVAP who voted in the 2020 election (Swanson, 2012: 153-157). Using the numbers underlying the 95% level MOEs along with a knowledge of basis inferential statistics, however, one can be 66% certain that the actual percent of Black Alone or in Combination who voted in the 2020 Mississippi election is higher than the actual percent of White non-Hispanic CVAP who did (at a 66% level of confidence, z ≈ 1.00 and with an estimated standard error of .0209 , the MOE for this group is 1.21 , resulting in the upper 66% MOE bound of 71.0%, where $71.0=69.8+1.21$) (Swanson, 2012: 147-150).
126. It is natural to ask if the voter registration and turnout for the 2020 election is an anomaly. In order to investigate this, I examined the historic US Census Bureau's CPS November Supplement the official reports for biannual federal election years. While the Census Bureau has collected voting and registration data since 1964, the CPS has gathered and reported citizenship data consistently only since 1998. Since the 2020 data are based on CVAP, I begin my historic analysis in 1998 to ensure data consistency
and comparability with my 2020 analysis to the degree possible (removing noncitizens decreases the voting-age population base, resulting in higher rates for any given election (https://www.census.gov/topics/public-sector/voting/about/faqs.html).
127. In Exhibit IV.A. 1 below, one can see that from each election year from 1998 to 2006, the difference in the percent of registration between White non-Hispanic (WNH) citizens of voting age and any part Black (APB) citizens of voting age was small, being slightly higher or lower based on the election. However, starting in 2008 with Obama's presidential campaign, the percent Black voter registration noticeably exceeded the percent White voter registration. In 2010 (not a presidential election year), the percent Black voter registration declined, and was virtually equal to percent White voter registration. Then in 2012, percent Black voter registration surged again with Obama's second campaign. For every election year since 2012, percent Black voter registration has remained higher than percent White voter registration.

Exhibit IV.A. 1 Mississippi Voter Registration by Race and Ethnicity History

Source: U.S. Census Bureau, Current Population Survey, November Voting Supplement (biannual by federal election year).

Exhibit IV.A. 2 Mississippi Voter Turnout by Race and Ethnicity History
Mississippi Voter Turnout Percentage by Race (1998-2020)

Source: U.S. Census Bureau, Current Population Survey, November Voting Supplement (biannual by federal election year).
128. In Exhibit IV.A. 2 (above), one sees that from 1998 to 2002, the percent voter turnout between White non-Hispanic (WNH) and any part Black (APB) were quite close to each other, each being slightly higher or lower based on the election. But then, starting in 2004, White voter turnout lagged Black voter turnout until 2010. In 2010 (not a presidential election year) the turnout declined to be equal to Whites. Then in 2012 they APB turnout surged even higher for President Obama's second campaign. For every year since, Black voter turnout has been somewhat to much higher than Whites.
129. Now having reported the official US Census Bureau statistics on voter registration and voting turnout by race by year, I turn my attention to the analysis of this subject by the plaintiffs' expert, Dr. Traci Burch ${ }^{41}$. Here I focus on the analysis and interpretations on pages $9-10$ of her report. This analysis examines educational attainment by race and ethnicity in Mississippi, then relates these two population characteristics to voter registration and turnout. In Exhibit 3, "Educational Attainment by Race in Mississippi Age 25 and Older" (shown below in Exhibit IV.A.3), Dr. Burch accurately reports the percent of Whites and Blacks by educational attainment level from the 2019 American Community Survey (ACS). My analysis of more recent ACS data corroborates her finding that the White population in Mississippi generally enjoys higher educational attainment levels than Blacks do. Her exhibit does not state the definition of "White"

[^47]and "Black" however. My research shows that this exhibit reports White Alone, nonHispanic and Black Alone, which is discussed subsequently at length. As in all research, consistency in demographic terms is critical across different analyses. The population put forth in the complaint and then analyzed in the demographer's report (Cooper) is the any part Black, or "APB" population. The Black educational attainment data presented by Dr. Burch are straight from the standard ACS reporting template which only includes this inconsistent Black definition. Additional work is generally necessary to get the exact race definitions to agree across analyses and would have been necessary here to know educational attainment for APB. I agree with Dr. Burch that any analysis of educational attainment should be based to the population by age who has largely completed whatever the highest level of educational attainment they hope to achieve. Conventionally, that base population is age 25+, and is the definition Dr. Burch reports here from the US Census Bureau's own standard.

Exhibit IV.A. 3 Racial Differences in Voter Turnout and by Education Level

SOURCE: 2019 AMERICAN COMMUNITY SURVEY
Source: Exhibit 3 (p. 9) in Report by Dr. Tracie. Burch
130. Next, on page 10 of her report, Dr. Burch provides Figure 4 "Racial Differences in Voter Turnout and by Education level" (shown below in Exhibit IV.A.4). The statistics in this table are key in supporting Dr. Burch's statement that:
"Examining voter turnout in Mississippi by race and educational attainment in Figure 4 shows the clear impact of Mississippi’s history of educational attainment on voting."

Exhibit IV.A. 4 Racial Differences in Voter Turnout and by Education Level

Figure 4: Racial Differences in Voter Turnout Overall and by Education Level in Mississippi. Source: 2020 Current Population Survey Voting and Registration Supplement

Racial Differences in Voter Turnout Overall and By Education Level in Mississippi

Source: Figure 4 (p. 10) in Report by Dr. Traci Burch
131. Here, Dr. Burch is vague about the source of the information she presents in the preceding exhibit and does not describe the steps she undertook to produce it. Since these statistics of voting by education level by state are not readily available in official published tables, I conclude that these estimates were produced with the use of the CPS PUMS (or "raw data") files. In addition to the official statistics reported by the Census Bureau (above in Tables IV.A.1 and IV.A.2), the Census Bureau also publishes a "raw data" or "Public Use Microdata Sample" (or "PUMS" file) with data from individual respondents, with each weighted to represent the population in the United States they represent. These files enable more detailed analysis than provided by the topline reports described above. These files are technically difficult and require both statistical software and expertise in sampling and survey research, demography and statistics. When experts seek more information and details on statistics beyond the high-level tables provided by the Census Bureau, they turn to these files.
132. Because Dr. Burch provides neither a clear definition of the source of her data (was it the tabulated results from the CPS or the PUMS file generated from the CPS?) nor the steps that resulted in the numbers she provides (as replicated here in Exhibit IV.A.4), an investigation of the CPS PUMS data is warranted, as is an attempt to replicate her findings. Whatever her method and whatever her definitions: our assumption is that her findings were based on an analysis and interpretation of the CPS "raw data" (or CPS "PUMS") data alluded to earlier. It is there that the investigation turns next.
133. Bryan GeoDemographics has expertise in this area and both downloaded the national 2020 CPS dataset and data dictionary at my request ${ }^{42}$ and processed the data in both Excel and SAS to ensure accuracy and reliability. According to the CPS PUMS data dictionary, the variables necessary to generate state-level registration and voting statistics by race are as follows:

- GESTFIPS: Federal Information Processing Standards (FIPS) State Code
- PES 1: Did (you/name) vote in the election held on Tuesday, November 3, 2020.
- PES 2: Were you/Was name) registered to vote in the November 3, 2020 election? (If NOT voted)
- PEEDUCA: Educational Attainment
- PRPERTYP: Type of respondent (child, adult civilian or adult armed forces)
- PTDTRACE: Race
- PEHSPNON: Hispanic Origin
- PRCITSHP: Citizenship Status
- PRTAGE: Respondent Age
- PWSSWGT: Population weight (note: there are numerous weights included in this file. The data dictionary instructs: "There is no supplement weight associated with the November 2020 Voting and Registration supplement. Use the basic CPS weight, PWSSWGT (located in positions 613-622), for tallying the supplement items.)

134. In the CPS PUMS data dictionary, it instructs users specifically that the universe for calculating education statistics is PRPERTYP $=2$ or 3 . That is, the base for educational statistics and their analysis is adults (either civilian or armed forces). In my analysis of the CPS PUMS data, I found the population definitions that appear to be used by Dr. Burch for her education analysis and began my analysis of her voting turnout estimates. I find that Dr. Burch's CPS-based education estimates are based on

[^48]the citizen, non-Hispanic population of all ages (not adults as she reported earlier with her American Community Survey analysis). "White" is White Alone, and "Black" is APB. Using this definition, I can replicate her \% voted statistics by education level precisely. While this is irrelevant for the Bachelor's Degree or Higher population (since anyone with those accomplishments would be an adult anyways), this definition impacts the High School Grad statistics slightly and the "LT high school" statistics significantly. By including all ages here, Dr. Burch is effectively measuring what percent of children voted. Not only would that definition be illogical - but it is specifically instructed by the CPS documentation not to do so.
135. The correct population base for the Figure 4 that Dr. Burch presents would be the citizen, age $18+$ population. That is, the percent of those who are actually eligible to vote. Exhibit IV.A. 5 shows what the percent voter turnout by race and educational level would have been using that correct definition. There are several important observations here. First, when you remove children ineligible to vote from the base, the $\%$ voted goes up, as expected. For White, non-Hispanic, less than high school, rises +14.2 percentage points, from 26.1% in Dr. Burch's report to 40.3% here. For APB, less than high school, rises even more +16.8 pp from 40.8% in Dr. Burch's report to 57.6% here. Not only is there a significant difference in how each much each group increases, but the interpretation of the outcome changes as well. The percent difference between less than high school and high school graduate is significant only for White, non-Hispanic. In examining these results, if one were to argue that one group's voter turnout appears to be suffering more so from a disparity in educational attainment - it would be the White non-Hispanics. Not Blacks. In examining the "Bachelor Degree or Higher" category, one sees that the "Black Alone or in Combination" population out-votes their White non-Hispanic peers there as well.

Exhibit IV.A. 5 Racial Differences in Voter Turnout and by Education Level, Based to Citizens of Voting Age in 2020

Source" CPS 2020, November Voting Supplement (U.S. Census Bureau). Graph assembled by Bryan GeoDemographics for author.
136. Next, in examining Dr. Burch's estimate of total voter turnout by race (the last columns in her Figure 4). Dr. Burch's ${ }^{43}$ report states (page 10) that:
"overall, White Mississippians have higher voter turnout than Black Mississippians: 56.1% of White Mississippi citizens voted in the 2020 general election, compared with 53.0% of Black Mississippi citizens."
137. These numbers provided by Dr. Burch contradict the statistics published by the Census Bureau, reported in Table IV.A. 22020 Mississippi Voting by Race and Ethnicity above - and here I seek to understand why. As with the analysis of voting by educational level - the official CPS PUMS data dictionary is employed, where it instructs users specifically that the universe for calculating voting registration and voting statistics is PRTAGE $>=18$ and PRCITSHP $=1,2,3$, or 4 . That is, respondent must be voting age (18+) and citizens (code 1, 2, 3 and 4) to be included - otherwise they will be assigned "Not in Universe" and not included in the analysis.

Table IV.A. 32020 MS Voter Estimates Citizens, Age 18+ by Race and Ethnicity Census Bureau Definition

	No Response	Refused	DK	Not in Unvierse	Voted	Not Voted	Total	\% Voted
Total	172,860	7,148	26,039	0	1,530,528	440,304	2,176,877	70.3\%
WNH	107,149	4,527	16,586	0	904,127	262,726	1,295,115	69.8\%
Black Including Hispanic Combinations								
BA (inc. Hisp)	61,542	2,621	7,554	0	573,046	141,975	786,738	72.8\%
BA and B-W (inc. Hisp)	61,542	2,621	7,554	0	581,038	145,022	797,777	72.8\%
BA and W-B-Al (inc. Hisp)	61,542	2,621	7,554	0	574,373	141,975	788,065	72.9\%
APB (inc. Hisp)	61,542	2,621	7,554	0	582,365	145,022	799,104	72.9\%
Black Non-Hispanic Combinations								
BA NH	61,542	2,621	7,554	0	571,130	140,112	782,959	72.9\%
BA and B-W NH	61,542	2,621	7,554	0	575,115	143,158	789,991	72.8\%
BA and W-B-AI NH	61,542	2,621	7,554	0	572,457	140,112	784,285	73.0\%
APB NH	61,542	2,621	7,554	0	576,442	143,158	791,318	72.8\%

Source: 2020 CPS November Voter Supplement PUMS file. Table assembled by Bryan GeoDemographics for author.
138. To begin, my initial analysis of the CPS PUMS data was aimed at replicating the officially published statistics published by the Census Bureau, using these definitions. Using the variables and definitions above, I was able to replicate the published results precisely using the CPS raw (PUMS) data file in Table IV.A. 2 (above). The official statistics published by the Census Bureau match their own internal dataset. Exactly. In Table IV.A. 3 (above) I show the PWSSWGT weights by racial and ethnic category, by response to PES 1: Did (you/name) vote in the election held on Tuesday, November 3, 2020? A complete inventory of variables and weights is shown in Appendix 3.
139. Next, my analysis was aimed at replicating the CPS results published by Dr. Burch. Since she does not present the exact populations or definitions used to calculate her percentages, one must carefully focus on her words:
" 56.1% of White Mississippi citizens voted in the 2020 general election, compared with 53.0% of Black Mississippi citizens."
140. I explored the CPS raw (PUMS) data file using a variety of variables, definitions and filters. Because Dr. Burch's statistics are a level-shift different than ours, our conjecture is that (as with the education statistics reported above) she included the total all-age citizen population as the base of her analysis, rather than using the citizen
voting-age population. ${ }^{44}$ In analyzing the CPS PUMS data, this would be easy to do. The population weight "PWSSWGT" in the CPS PUMS file is the person weight for the total population. An expert would need to filter any results of the PES1 (Did you vote?) variable to those eligible to vote (18+ VAP citizens) separately using the PRTAGE (age) and PRCITSHP (citizenship) variables to get the correct results. Knowing this, I seek to uncover how Dr. Burch arrived at her estimates and conclusions.
141. In Table IV.A. 4 (below), I report different percent voted statistics under a variety of race definitions, assuming Dr. Burch used citizens of all-ages as her universe. All of the following statistics will be misleading because they include children who are ineligible to vote. That population is highlighted in Table IV.A. 4 as "Not in Universe".
142. In the second row, "WNH" (White, non-Hispanic) I calculate an all-age \% voted as 56.1%. I believe this "White Not Hispanic" citizen all-age population is the one used in her report since the number matches exactly.
143. Next, I turn to replicating the 53.0% "Black Alone or in Combination, not Hispanic" voting statistic Dr. Burch reports. ${ }^{45}$ Referencing Table IV.A.4: In the third row, I show APB NH (Any Part Black, non-Hispanic). This is our best guess at Dr. Burch's Black definition, since she uses the words "Black Alone or in Combination, not Hispanic. That definition results in a theoretical \% voted statistic of 52.6\%. Very close, but not exactly the 53.0% Dr. Burch reports. This exploration continues by looking at various other Black Alone or in combination population definitions. For example:

- The \% voted for the BA NH (Black Alone, non-Hispanic) population. That results in a $\%$ voted statistic of 53.1%.
- The \% voted for the BA and B-W NH (Black Alone and Black-White, non-Hispanic) population. That results in a $\%$ voted statistic of 52.6%.
- The \% voted for the BA and W-B-AI NH (Black Alone and Black-White, American Indian non-Hispanic) population. That results in a $\%$ voted statistic of 53.1\%.

144. Having exhausted all permutations of "Black Alone or in Combination," one has a variety of possible estimates from 52.6% to 53.1%. I conclude that Dr. Burch used the citizen, all-ages definition and one of the "Black Alone or in Combination" definitions
[^49]I have tested, and the small difference is attributable to either a small mathematical error or rounding.

Table IV.A. 42020 MS Voter Estimates Citizens, All Ages by Race and Ethnicity: Dr. Burch Definition Replication Attempt

	No Response	Refused	DK	Not in Unvierse	Voted	Not Voted	Total	\% Voted
Total	172,860	7,148	26,039	687,921	1,530,528	440,304	2,864,799	53.4\%
WNH	107,149	4,527	16,586	315,946	904,127	262,726	1,611,060	56.1\%
Black Including Hispanic Combinations								
BA (inc. Hisp)	61,542	2,621	7,554	297,536	573,046	141,975	1,084,274	52.9\%
BA and B-W (inc. Hisp)	61,542	2,621	7,554	310,215	581,038	145,022	1,107,992	52.4\%
BA and W-B-AI (inc. Hisp)	61,542	2,621	7,554	297,536	574,373	141,975	1,085,601	52.9\%
APB (inc. Hisp)	61,542	2,621	7,554	310,215	582,365	145,022	1,109,319	52.5\%
Black Non-Hispanic Combinations								
BA NH	61,542	2,621	7,554	292,827	571,130	140,112	1,075,785	53.1\%
BA and B-W NH	61,542	2,621	7,554	303,549	575,115	143,158	1,093,540	52.6\%
BA and W-B-AI NH	61,542	2,621	7,554	292,827	572,457	140,112	1,077,112	53.1\%
APB NH	61,542	2,621	7,554	303,549	576,442	143,158	1,094,867	52.6\%

Source" CPS 2020, November Voting Supplement (U.S. Census Bureau). Table assembled by Bryan GeoDemographics for author.
145. It appears that Dr. Burch fails to acknowledge she used a population base with a minimum age inappropriate for analyzing educational attainment, let alone, eligible to vote. That is, the universe Dr. Burch uses is the entire population. In the case of educational attainment, which includes post-secondary attainment, the minimum age used by the US Census Bureau is 25 . For voter registration and voting turnout, not only is the minimum age 18 , but, in addition, the appropriate denominator is the population eligible to vote, namely CVAP with the exclusion of felons. Dr. Burch's findings also present a troubling inconsistency. Not only are her reported overall turnout statistics substantively different than those officially reported by the US Census Bureau (hers are replicated here in Exhibit IV.A.4, which I compare to my calculations as found in at Table IV.A. 2 above) - but her interpretation presents the opposite conclusion of what I arrived at. That is: Blacks register at a lower rate and vote at a lower rate than Whites. The evidence I have found leads me to conclude differently: Blacks neither register nor vote at lower rates than Whites; instead the data show that Blacks register and vote at higher rates than Whites.
146. In sum, I believe Dr. Burch used the CPS PUMS data for her voting analysis. Dr. Burch appears to have applied the citizenship filter properly, the race definitions somewhat properly, but neglected to add an age filter to include only adults. The significant consequences of this decision alone are voter registration and turnout statistics and conclusions that are the opposite of actual reported, therefore with an opposite conclusion reached. The official CPS results showing Black voters outperforming White voters contradict the findings, the conclusions and general arguments of Dr. Burch.
147. There is a fundamental, demographic observation that supports this conclusion. In many states (Mississippi included) minority populations such as Black and Hispanic tend to be younger (Schaeffer, 2019). That is, they make up a larger share of the underage population ineligible to vote. This is the case in Mississippi, where the 2020 total population is $2,961,279$, the White Alone population is $1,658,893(56 \%)$ while the Any Part Black population found by summing all combinations of black and other races is $\quad 1,123,108$ (38\%) (https://data.census.gov/table?q=any+part+black,+mississippi\&tid=DECENNIALPL2020.P1). As shown in Table III.D. 1 of this report, the 2020 VAP total in Mississippi is $2,277,599$ while the White Alone VAP is $1,315,451$ (58% of the VAP total)) and the Any Part Black (APB) population is 823,080 (36% of the VAP total). Whites are over-represented and Blacks are under-represented among VAP relative to their respective total populations. The "under 18, not eligible to vote "population total in Mississippi is 683,680 (where $683,680=2,961,279-2,277,599)$. The White Alone population under 18, not eligible to vote is 343,442 (where $343,442=1,658,893-1,315,451$), which is 21% of the total White Alone population. The APB population under 18, not eligible to vote is 300,028 (where $300,028=1,123,108-823,080$, which is 27% of the APB population. Thus, according to the 2020 census of Mississippi, the APB population has a higher percent (27\%) that is under 18, not eligible to vote than the White Alone population (21%). If an analyst were to include this under voting-age population in a calculation of voting turnout for Whites - it would artificially and incorrectly inflate a voter turnout estimate for them. If an analyst were to include this under voting-age population in a calculation of voting turnout for Blacks - it would artificially and incorrectly decrease a voter turnout estimate for them. In the end, Dr. Burch's exact estimates and how she arrived at them are irrelevant. The conclusion that Whites have higher voter turnout than Blacks is incorrect for the 2020 election and would be incorrect based on Exhibit IV.A. 2 and have been since at least 2004.

B. Voter Registration by Race

148. The Survey Research laboratory of the Social Science Research Center (SSRC) at Mississippi State University (https://srl.ssrc.msstate.edu/) provided me with voter registration and voting frequency data by race as found in annual statewide surveys it has conducted from 2015 to 2021. The data were provided in a SAS file, which I exported into the NCSS statistical analysis package I use. An overview of the data was provided by Dr. John Edwards, the Director of the SSRC Survey Research Laboratory, which also documents the coding in this file. This is found in Appendix 5. As can be seen in Appendix 5, the sample size in each of these seven years is at least 1,500 and across all seven years, approximately 61% of respondents are White and 36%, Black. While the survey asks respondents if they are registered to vote in its annual surveys, it does not ask if they voted in a given election year. Instead it asks respondents a series of questions about the frequency of voting (always vote, nearly always vote, vote part of the time, seldom vote, never vote, with responses "Don't Know" and "refused" classified as missing). Because of the nature of the voting question, it is not directly comparable to the turnout data found in the CPS. However, the results by race within the SSRC data are directly comparable. At this point it should be noted in regard to the voter registration data that I do discuss here that it is the case that while both Blacks and Whites tend to over-report voter registration (Cuevas-Molinas, 2017), Blacks may do so at a higher rate than Whites (Fullerton et al., 2007) as is also the case with voting (Jenkins et al., 2012). This caveat would not only apply to the SSRC survey data but also to the CPS, the ACS, and any other survey in the United States that includes questions on voter registration, voting and race.
149. Given this caveat, I used the NCSS "Contingency Tables" procedure ${ }^{46}$ to examine race by voter registration by year (See Appendix 5b for the NCSS output of each of these seven runs). I find that in each year, 2015 to 2021, SSRC reports that the percent of Black voter registration exceeds that of White voter registration in Mississippi: In 2015 , it is 90.4% for Whites and 93.3% for Blacks; in 2016, it is 91.9% for Whites and 92.8% for Blacks; in 2017, it is 92% for Whites; and 94.2% for Blacks; in 2018, it is 91.2% for Whites and 93.7% for Blacks; in 2019, it is 91.9% for Whites and 94.3% for Blacks; in 2020, it is 91.4% for Whites and 94.5% for Blacks; and in 2021, it is 90.9% for Whites and $94,2 \%$ for Blacks. While it may be the case that Blacks over-report voting and voter registration at a higher rate than Whites, the closer proximity to polling places that Blacks have (as discussed in the preceding section) may offset to some degree the likelihood of over-reporting.

[^50]150. Again using the NCSS "Contingency Tables" procedure, ${ }^{47}$ I now turn to an examination of race by voting frequency by year using the SSRC voting frequency data (See Appendix 5c for the NCSS output of each of these seven runs). I find that in each year, 2015 to 2021, SSRC reports that the percent of Black Mississippians 18 years of age and over who report "Always Vote" exceeds that of White Mississippians age 18 and over who report "Always Vote:" In 2015, it is 61.0\% for Whites and 67.3\% for Blacks; in 2016, it is 60.1% for Whites and 66.4% for Blacks; in 2017, it is 59.3% for Whites and 64.5% for Blacks; in 2018, it is 54.5% for Whites and 62.5% for Blacks; in 2019, it is 60.3% for Whites and 65.5% for Blacks; in 2020, it is 68.22% for Whites and 72.1% for Blacks; and in 2021, it is 56.8% for Whites and 66.7% for Blacks. Again, while it may be the case that Blacks over-report voting and voter registration at a higher rate than Whites, the closer proximity to polling places that Blacks have (as discussed in the preceding section) may offset to some degree the likelihood of over-reporting.
151. Given my findings based on the SSRC data and my findings in regard to the CPS, which are based on estimates controlled to the universe of those who are eligible to vote (the definition directed by the Census Bureau and the definition my expertise would lead me to recommend), I disagree with Dr. Burch's claim:
"...that the overall gap in turnout between Black and White Mississippians exists because the gap in educational opportunities between Black and White Mississippians. Black Mississippians have less access to quality education and therefore have lower educational attainment for the reasons discussed in this section; this lower educational attainment leads to lower voter turnout."

CONCLUSIONS

152. For the reasons stated in this report and illustrated in the appendices, I conclude that Supreme Court District 1 already has a Black (Any Part Black) CVAP majority of 51.1% without a prison adjustment, and 51.0% with a prison adjustment. Mr. Cooper's Illustrative Plan 1 would increase the Black (Any Part Black) CVAP majority in District 1 to approximately 57% Black. Cooper's other illustrative plan and his two "least Change" plans yield a similar result: An already Black CVAP majority in District 1 is increased to a higher level.
153. Core retention of the Black (Any Part Black) VAP population in Cooper's two illustrative plans is low, only 76.9% of the original Black VAP retained in his Illustrative Plan I and 68.7% in his Illustrative Plan II. Cooper's two "least change"

[^51]plans provide the highest level of retention of the original Black VAP at 91.7% and 97.0\%, respectively.
154. In regard to Compactness, each of the alternate plans suggested by Cooper range from somewhat less compact to substantially less compact than is offered by the existing SCOMS plan.
155. The Supreme Court Districts serve as the geographic basis for elections to the state Transportation Commission and the Public Service Commission. In addition, they serve as the geographic basis for appointments to the Mississippi Board of Bar Admissions and the Board of Trustees for the State Institutions of Higher Learning (IHL) and a number of other boards (see Paragraph 17 for the list of the other boards). The IHL has a policy that acknowledges the value of diversity for Mississippi, as does a statement by the ACLU and a court decision by Judge William Barbour in the 1992 "Magnolia Bar" case involving the SCOMS districts. Using indices from the Mississippi Health and Hunger Atlas, I find that the existing Supreme Court Districts provide more population diversity than do any of Cooper's four alternative plans and that Cooper's plans serve to decrease diversity across the Supreme Court districts. These findings are consistent with my finding that core retention found in Cooper's plans is low.
156. One of the findings in Dr. Traci Burch's expert report (Figure 4 and accompanying text in her report) is that White Mississippians turned out to vote in the 2020 election at a higher rate than Black Mississippians, 56.1% to 53.0%, respectively. Dr. Burch's finding is the result of a flawed analysis that employed the incorrect "universe" as the denominator in her calculations (the entire population, including non-citizens, those under age 18) rather than the population eligible to vote ("Citizens of Voting Age Population" - CVAP). Evidence from the same source she cites (the 2020 Current Population Survey, November Voting supplement) shows that when the correct universe, CVAP, is used as the denominator, Black Mississippians turned out at a higher rate in the 2020 election than White Mississippians: 72.9% to 69.8%. As shown by data from past Voting Supplements in the Current Population Survey (taken in the even numbered years when federal elections are held, starting in 1964), my finding is consistent with the trend of voting seen in Mississippi since 2004: Both the percent of Black CVAP registration and the percent of Black CVAP voting have generally been higher than the percent of White non-Hispanic CVAP registration and voting, respectively (see Figures IV.A. 1 and IV.A. 2 in this report). In conjunction with this $21^{\text {st }}$ century trend, my finding in regard to the 2020 election also reveals that Dr. James T. Campbell's implication (p. 51 of his report) that Black Mississippians currently register and vote at lower rates than White Mississippians also is mistaken:

> "Under the circumstances prevailing in Mississippi today, and in light of the history from which those circumstances originate, it is my opinion that Black Mississippians are not afforded an equal opportunity to elect candidates of their choice in Supreme Court elections."
157. The Voting Supplements of the Current Population Survey from 2004 to 2020 do not support Dr. Campbell's opinion. Moreover, the voter registration data in the Voting Supplements of the Current Population Survey are consistent with annual voting registration data collected for Mississippi in sample surveys from 2015 to 2021 conducted by the Survey Research Laboratory at the Social Science Research Center, Mississippi State University. These sample surveys show that for each year, 2015 to 2021, the percent of Black Mississippians age 18 and over who are registered to vote is higher than the percent of White Mississippians age 18 and over who are registered to vote. In addition, the SSRC sample surveys show that for each year, 2015 to 2021, the percent of Black Mississippians aged 18 and over who report "Always Vote" is higher than the percent of White Mississippians age 18 and over who report "Always Vote." Both the CPS and the SSRC data are consistent with a finding reported for the first time in this report: Statewide, a higher share of the Black population of potential and actual voters is within a quarter mile of a polling place than found for the White population of potential and actual voters.

Submitted: 5 January 2023
Dand A. Swans on

David A. Swanson

REFERENCES

ACLU (2022). Mississippi Voters Are Fighting for Fair Representation on the State’s Highest Court. (https://www.aclu.org/news/voting-rights/mississippi-voters-are-fighting-for-fair-representation-on-the-states-highest-court)

Barbour, W. H. (1992). Magnolia Bar Ass'n, Inc. v. Lee. 793 F.Supp. 1386 (1992). 793 F.Supp. 1386, United States District Court, S. D. Mississippi, Jackson Division.

Campbell, J.T. (2022). Report of Professor Campbell. 4:22-CV-0062-SA-JMV.
Chappell, W., R. Forgette, D.A. Swanson, and M. Van Boening. (2007). Determinants of Government Aid to Katrina Survivors: Evidence from Survey Data. Southern Economic Journal 74 (2): 344-362.

Cork, D. and P. Voss (eds.). (2006). Once, Only Once, and in the Right Place: Residence Rules in the Decennial Census. National Academies Press. Washington, D.C.

Cueveas-Molina, I. 2017. Voter Turnout Overreports: Measurement, Modeling and Deception. Unpublished Ph.D. Dissertation, University of Massachusetts Amherst (https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=2034\&context=dissertations 2).

Forgette, R., B, Dettry, M. Van Boening, and D.A. Swanson (2009). Before, Now, and After: Assessing Hurricane Katrina Relief. Population Research and Policy Review. 28: 31-42.

Fullerton, A., J. Dixon, and C. Borch (2007). Bringing registration into models of overreporting. The Public Opinion Quarterly 71 (4): 649-660.

Gallagher, M., J. Kreye and S. Duros, (2020). Redistricting in Wisconsin 2020: The LRB Guidebook. Wisconsin Legislative Bureau, Madison, WI.
(file:///C:/Users/David\%20Swanson/Documents/CONSULTING/MS\%20SUPREME\%20COURT\%20REDIS TRICTING\%202022/REPORT/020\%20-\%20Redistricting\%20Wisconsin\%202020\%201.2.pdf).

Gallestey, J. (2020). Cluster analysis. Encyclopedia Britannica (https://www.britannica.com/topic/cluster-analysis).

Haggard, R., A. Cafer, and J. Green (2017). Mississippi Health and Hunger Atlas 2017 (Center for Population Studies, University of Mississippi).

Henderson, T., M. Sirois, A. Chia-Chen Chen, C. Airriess, D.A. Swanson, and D. Banks. (2009). After a Disaster: Lessons in Survey Methodology from Hurricane Katrina. Population Research and Policy Review 28: 67-92.

Jenkins, C., I. White, N. Hanmer, and A. Banks. (2021). Vote overreporting while Black: Identifying the mechanism behind Black survey respondents' vote overreporting. American Politics Research 49 (5): 439-451

Massey, D. (2007). Categorically unequal: The American social stratification system. New York, NY: The Russell Sage Foundation.

McGehee, M. (1994). Black/White Life Expectancy Differences and Socio-Demographics: Arkansas and the U. S. Journal of the Arkansas Medical Society 91 (6): 177-180.

Morrison, P. and T. Bryan (2019). Redistricting: A Manual for Analysts, Practitioners, and Citizens. Springer. Cham, Switzerland

NCSS (2022). K-Means Clustering (https://www.ncss.com/software/ncss/clustering-inncss/\#KMeans) NCSS Statistical Software, Kaysville, UT.

Schaeffer, S. (2019). The most common age among Whites in U.S. is 58 - more than double that of racial and ethnic minorities. Pew Research Center (https://www.pewresearch.org/fact-tank/2019/07/30/most-common-age-among-us-racial-ethnic-groups/).

Schwartzberg, Joseph E. (1966) Reapportionment, Gerrymanders, and the Notion of Compactness. Minnesota Law Review.

Schlottmann, A., R. Schmidt, E. Feser, and D.A. Swanson. (2006). Southern Nevada Regional Economic Study. Theodore Roosevelt Institute. Irvine, CA and Las Vegas, NV.

Stockwell, G., D.A. Swanson, and J. Wicks. (1988). Economic Status Differences in Infant Mortality by Cause of Death. Public Health Reports 103 (March-April):135-142.

Sullivan, T. (2020) Census 2020: Understanding the Issues. Springer. Cham, Switzerland.
Swanson, D.A. (1980). Discriminant Analysis Results for Criterion Variables Used to Select States for the Department of Personnel Out-of-State Salary Survey. Special Report No. 29. Washington State Office of Financial Management, Olympia, WA.

Swanson, D.A. (2008). The Demographic Effects of Hurricane Katrina on the Mississippi Gulf Coast: An Analysis by Zipcode. Journal of the Mississippi Academy of Sciences 53 (4): 213231.

Swanson, D.A. (2012). Learning Statistics: A Manual for Sociology Students. Cognella Academic Publishing/University Readers. San Diego, CA.)

Swanson, D.A., and R. Cossman (2020). Estimating the Underlying Infant Mortality Rates for Small Populations, Even Those Reporting Zero Infant Deaths: A Case Study of 42 Counties in Mississippi. Journal of the Mississippi Academy of Sciences 65 (2): 183-197.

Swanson, D.A., and R. Cossman (2021). The Effect of the Differential Privacy Disclosure Avoidance System Proposed by the Census Bureau on 2020 Census Products: Four Case Studies of Census Blocks in Mississippi. Presented at the Annual Conference of the American Statistical Association, Seattle, WA, August 11.

Swanson, D.A. and M. McGehee (1996). Socioeconomic Status, Race and Life Expectancy in Arkansas, 1970-1990. Journal of the Arkansas Medical Society 93 (9): 445-447.

Swanson, D.A., and M. McGehee (2009). Socio-economic Status and Life Expectancy in Mississippi, 1970-1990. Journal of the Mississippi Academy of Sciences 54 (3-4): 190-195

Swanson, D.A., and A. Sanford. (2012). Socio-Economic Status and Life Expectancy in the United States, 1990-2010: Are We Reaching the Limits of Human Longevity? Population Review 51 (2): 16-41.

Swanson, D.A., and L. Tedrow. (2018). A Bio-demographic Perspective on Inequality and Life Expectancy: An Analysis of 159 Countries for the Periods 1970-90 and 1990-2010. pp. 577613 in C.R. Rao and A. Rao (eds.), Handbook of Statistics Vol. 38. Elsevier Press.

Swanson, D. A., and J. Van Patten (1987). Judging the Accuracy of the 1980 Census for Small Towns: An Analysis of Survey and Related Data from the Long Form. Small Town (JulyAugust) 4-11.

Swanson, D. A. and R. Verdugo (2019). The Civil War's Demographic Impact on White Males in the 11 Confederate States: An Analysis by State and Selected Age Groups. Journal of Political and Military Sociology 46 (1): 1-26.

Swanson, D.A., D. Randall, and L. Weisser (1977). An Evaluation of the 1977 Round of Municipal Vacancy Estimates for 1 and 2 Unit Structures. Staff Document No. 42. Washington State Office of Financial Management. Olympia, WA

Swanson, D.A., R. Forgette, M. Van Boening, C. Holley, and A. Kinnell. (2007). Assessing Katrina's Demographic and Social Impacts on the Mississippi Gulf Coast. Journal of the Mississippi Academy of Sciences 54 (2): 228-242.

Swanson, D.A., I. Sharkova, R. Lycan, and G. Hough (1997). Forecasting For School Attendance Zone Changes and Capital Needs: Merging GIS and Demographic Methods With Local Expert Judgment. Market and Demography 3 (6): 23-31. (https://scholar.google.com/citations?view_op=view citation\&hl=en\&user=taynUaAAAAAJ \&citation for view=taynUaAAAAAJ:ULOm3 A8WrAC).
Swanson, D.A., G. Hough, D. Lycan, C. Clemans, and J. Rodriquez. (1998). Merging Methods and Judgment for K-12 Enrollment Forecasting. Educational Research Service: Spectrum 16 (Fall): 24-31.
U.S. Census Bureau (2020a). Understanding and using American Community Survey Data: What all data users need to know.
(https://www.census.gov/content/dam/Census/library/publications/2020/acs/acs_general han dbook_2020.pdf).
U.S. Census Bureau (2020b). Understanding and using American Community Survey Data: What all data users need to know.
(https://www.census.gov/content/dam/Census/library/publications/2020/acs/acs general han dbook_2020.pdf).

Waldron, H. (2002). Mortality differentials by race. ORES Working Paper no. 99. Office of Research, Evaluation, and Statistics, Office of Policy, U.S. Social Security Administration (https://www.ssa.gov/policy/docs/workingpapers/wp99.html).

Wilmoth, J. (2004) "Population Size" pp. 65 - 80 in J. Siegel and D. Swanson (eds.) The Methods and Materials of Demography, $2^{\text {nd }}$ Edition. Elsevier Academic Press. San Diego, CA.

APPENDICES

Appendix 1. County Assignments

Generated by author and by Bryan Geodemographics for author
A. Mississippi County Assignments by

- my Needs and Performance Cluster,
- the existing 1987 SCOMS Plan, and
- the Cooper Illustrative Plans 1 and 2 and Least Change Plans 1 and 2
A. Mississippi County Assignments by Needs and Performance Cluster, the existing 1987 SCOMS Plan, and Cooper Illustrative Plans 1 and 2 and Least Change Plans 1 and 2

STCTY	Name	Cluster	SCP_1987	ILL_Plan1	ILL_Plan2	LCP_1	LCP_2
28001	Adams	3	2	1	1	1	2
28003	Alcorn	2	3	3	3	3	3
28005	Amite	3	2	1	1	2	2
28007	Attala	2	3	1	,	3	3
28009	Benton	2	3	3	3	3	3
28011	Bolivar	2	1	1	1	1	1
28013	Calhoun	1	3	3	3	3	3
28015	Carroll	2	3	1	1	3	3
28017	Chickasaw	3	3	3	3	3	3
28019	Choctaw	2	3	3	3	3	3
28021	Claiborne	3	1	1	1	1	1
28023	Clarke	2	2	3	2	2	2
28025	Clay	3	3	3	3	3	3
28027	Coahoma	3	3	1	1	1	1
28029	Copiah	2	1	1	1	1	1
28031	Covington	2	2	2	2	2	2
28033	DeSoto	2	3	3	1	3	3
28035	Forrest	2	2	2	2	2	2
28037	Franklin	2	2	1	1	2	2
28039	George	2	2	2	2	2	2
28041	Greene	1	2	2	2	2	2
28043	Grenada	3	3	1	1	3	3
28045	Hancock	2	2	2	2	2	2
28047	Harrison	2	2	2	2	2	2
28049	Hinds	3	1	1	1	1	1
28051	Holmes	3	1	1	1	1	1
28053	Humphreys	3	1	1	1	1	1
28055	Issaquena	2	1	1	1	1	1
28057	Itawamba	2	3	3	3	3	3
28059	Jackson	3	2	2	2	2	2
28061	Jasper	1	2	3	2	2	2
28063	Jefferson	3	1	1	1	1	1
28065	Jefferson Davis	1	2	2	2	2	2
28067	Jones	2	2	2	2	2	2
28069	Kemper	1	1	3	3	1	1
28071	Lafayette	2	3	3	3	3	3
28073	Lamar	2	2	2	2	2	2
28075	Lauderdale	2	1	3	2	1	1
28077	Lawrence	2	2	1	2	2	2
28079	Leake	2	1	3	3	1	3
28081	Lee	2	3	3	3	3	3
28083	Leflore	3	3	1	1	1	1
28085	Lincoln	2	2	1	2	2	2
28087	Lowndes	3	3	3	3	3	3
28089	Madison	2	1	1	3	3	1
28091	Marion	2	2	2	2	2	2
28093	Marshall	1	3	3	3	3	3
28095	Monroe	3	3	3	3	3	3
28097	Montgomery	3	3	1	1	3	3
28099	Neshoba	2	1	3	3	1	3
28101	Newton	2	1	3	2	1	1
28103	Noxubee	1	1	3	3	1	1
28105	Oktibbeha	2	3	3	3	3	3
28107	Panola	3	3	1	1	3	3
28109	Pearl River	2	2	2	2	2	2
28111	Perry	1	2	2	2	2	2
28113	Pike	3	2	1	1	2	2
28115	Pontotoc	2	3	3	3	3	3
28117	Prentiss	2	3	3	3	3	3
28119	Quitman	1	3	1	1	1	1
28121	Rankin	2	1	2	3	1	1
28123	Scott	1	1	3	3	1	1
28125	Sharkey	2	1	1	1	1	1
28127	Simpson	2	2	2	3	2	2
28129	Smith	1	2	3	3	2	2
28131	Stone	2	2	2	2	2	2
28133	Sunflower	3	1	1	1	1	1
28135	Tallahatchie	3	3	1	1	1	1
28137	Tate	3	3	1	1	3	3
28139	Tippah	2	3	3	3	3	3
28141	Tishomingo	2	3	3	3	3	3
28143	Tunica	3	3	1	1	1	1
28145	Union	3	3	3	3	3	3
28147	Walthall	3	2	1	2	2	2
28149	Warren	2	1	1	1	1	1
28151	Washington	3	1	1	1	1	1
28153	Wayne	3	2	2	2	2	2
28155	Webster	3	3	3	3	3	3
28157	Wilkinson	3	2	1	1	1	2
28159	Winston	2	3	3	3	3	3
28161	Yalobusha	1	3	1	1	3	3
28163	Yazoo	3	1	1	1	1	1

Appendix 2. Cluster Analysis Methodology and Findings

I (David A. Swanson, author) used the NCSS K-Means Procedures to generate the clusters (https://www.ncss.com/software/ncss/clustering-in-ncss/\#KMeans) because, I was looking for a small number of clusters (Ideally three) and as stated at this site:

The k-means algorithm was developed by J.A. Hartigan and M.A. Wong of Yale University as a partitioning technique. It is most useful for forming a small number of clusters from a large number of observations. It requires variables that are continuous with no outliers.

The objective of this technique is to divide N observations with P dimensions (variables) into K clusters so that the within-cluster sum of squares is minimized. Since the number of possible arrangements is enormous, it is not practical to expect the single best solution. Rather, this algorithm finds a "local" optimum. This is a solution in which no movement of an observation from one cluster to another will reduce the within-cluster sum of squares. The algorithm may be repeated several times with different starting configurations. The optimum of these cluster solutions is then selected.

I first used Discriminant Analysis (an analytic method related to cluster analysis whereby the clusters are a priori known and a model is constructed such that it can be used to determine into which clusters new cases would be placed) in 1980 (Swanson, 1980). I have used cluster analysis: (1) in work I did with Bryan GeoDemographics in regard to Texas redistricting (2021); (2) to identify value-chain clusters for the Southern Nevada Economic Study (Schlottman, et al., 2006); and (3) as a means of developing cost-effective ways to use the housing unit method to generate municipal population estimates in Washington (Swanson, Randall, and Weisser, 1977).

As the hyperlinked citation above indicates, I used the NCSS statistical package in this analysis (https://www.ncss.com/software/ncss/). I have used this statistical package since the early 1980s.

Minimum Iteration Section

Iteration	No. of No.	Percent of Clusters	Bariation Bar Chart
2	2	65.50	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$

Iteration Section Iteration No. of	No. Clusters	Percent of Variation	Bar Chart of Percent
1	2	71.16	$\|\mid$

Cluster Means			
			Cluster1
Variables	3336.219	2843.865	4209.005
NEED	35336.63	12430.18	14721.96
PERFORMANCE	12	41	29

Cluster Standard Deviations

Variables	Cluster1	Cluster2	Cluster3
NEED	313.4394	441.6815	596.8018
PERFORMANCE	10136.39	4359.49	5035.884
Count	12	41	29

F-Ratio Section			Between	Within		Prob
	DF1	DF2	Mean Square	Mean Square	F-Ratio	Level
Variables	2	79	$1.585478 \mathrm{E}+07$	238693.8	66.42	0.000000
NEED	2	74	$2.138707 E+09$	$3.150861 \mathrm{E}+07$	67.88	0.000000

K-Means Cluster Analysis Report (Continued)

Dataset ...IMS COUNTY NEED-PERFORM.NCSS

Distance Section

Row	Cluster	Dist1	Dist2	Dist3
1	3	2.8206	1.1286	0.8646
2	2	3.0464	1.0160	2.7609
3	3	2.0752	1.5413	0.4177
4	2	2.7059	0.4426	2.1869
5	2	0.8837	0.0024	2.4459
6	2	2.2237	0.8380	0.9249
7	1	0.3147	2.2720	2.1611
8	2	1.5612	1.1072	1.2575
9	3	2.7743	1.1912	0.7629
10	2	2.3504	0.4048	2.0125
11	3	2.1922	0.9788	0.7930
12	2	2.4071	0.5780	1.1685
13	3	2.7123	0.9931	0.9013
14	3	2.6813	2.3417	0.5978
15	2	2.3223	0.6454	1.1021
16	2	2.6049	0.4574	1.3497
17	2	3.2453	0.7843	2.4045
18	2	2.5744	0.6066	1.1897
19	2	2.4434	0.4513	2.1151
20	2	2.8640	0.3475	1.9939
21	1	0.4092	1.2905	1.1530
22	3	2.5539	1.2770	0.5196
23	2	3.0582	0.7489	2.4730
24	2	2.8530	0.3209	1.8558
25	3	2.7058	1.0091	0.8807
26	3	2.3578	1.7794	0.1338
27	3	2.4098	2.7226	1.0991
28	2	0.5489	0.3324	2.1111
29	2	2.2431	1.0477	2.5456
30	3	3.2902	2.0881	0.8219
31	1	1.2517	1.4719	1.3304
32	3	2.8899	2.2071	0.5217
33	1	1.0461	1.4971	1.7226
34	2	2.5802	0.1541	1.6266
35	1	0.7766	3.2534	3.2262
36	2	3.2234	0.7173	1.9343
37	2	3.8070	1.5434	3.2150
38	2	3.3681	1.2108	2.9404
39	2	2.0833	0.4834	1.7840
40	2	1.5814	1.0566	1.2988
41	2	2.8715	0.4552	1.6208

K-Means Cluster Analysis Report (Continued)

Dataset
...IMS COUNTY NEED-PERFORM.NCSS

Distance Section (Continued)

Row	Cluster	Dist1	Dist2	Dist3
42	3	4.7564	4.6645	2.9515
43	2	2.6852	0.4494	1.4139
44	3	3.1130	2.0872	0.6438
45	2	3.2244	0.9437	1.5539
46	2	2.3320	0.6374	2.2239
47	1	0.2459	2.5631	2.3324
48	3	2.8570	1.2211	0.8141
49	3	2.8826	1.7057	0.4681
50	2	2.5834	0.5767	1.2230
51	2	2.3610	0.1736	1.6971
52	1	0.0118	0.8931	1.5504
53	2	3.0202	0.5853	1.6904
54	3	2.2810	2.6380	1.0615
55	2	2.6110	0.2274	1.5768
56	1	0.9444	1.6360	1.6793
57	3	3.0493	2.5098	0.8030
58	2	1.5906	0.9557	1.5213
59	2	2.3548	0.1859	1.6403
60	1	1.4677	3.9958	3.6302
61	2	3.5285	1.1583	2.8047
62	1	1.1138	1.5040	1.5209
63	2	2.3090	0.7957	0.9515
64	2	2.5441	0.2239	1.9542
65	1	1.8838	4.0112	4.3408
66	2	2.3282	0.3242	1.9065
67	3	1.6263	1.8967	0.8862
68	3	1.7922	2.5670	1.2726
69	3	2.1011	1.6175	0.3739
70	2	1.7971	0.9708	2.1459
71	2	2.4805	0.4117	2.0976
72	3	1.7167	2.5979	0.1545
73	3	2.7703	1.3313	0.6297
74	3	2.7941	1.6776	0.3830
75	2	2.8289	0.9618	1.0320
76	3	2.1291	0.9984	0.7997
77	3	2.1572	1.4056	0.4253
78	3	2.2807	1.4125	0.3535
79	3	1.9465	1.3303	0.6407
80	2	2.4135	0.2938	1.4527
81	1	1.0111	3.5231	3.4057
82	3	1.9179	2.4254	1.0452

K-Means Cluster Analysis Report (Continued)

Dataset ... M MS COUNTY NEED-PERFORM.NCSS
Plots

Procedure Input Settings

Autosave Inactive

Variables Tab
-- Variables
Cluster Variables: NEED, PERFORMANCE
Label Variable:
<Empty>
-- Cluster Options
Minimum Clusters: 2
Maximum Clusters: 5
Reported Clusters: 3
-- Other Options
Random Starts:
3
Max Iterations: 25
Percent Missing: 50
Reports Tab
-- Select Reports
Minimum Iteration Report
Checked
Iteration Report
Checked
K-Means Cluster Analysis Report (Continued)
Cluster Means Report Checked
Cluster Standard Deviations Report Checked
F-Ratio Report
Checked
Distance Report
Distance by Cluster Report Unchecked
-- Report Options
Precision:
Single

Procedure Input Settings (Continued)

Plots Tab
-- Bivariate Plot Format
Bivariate Plots Checked
Show Row Numbers
Checked
Show Row Labels Checked

Storage Tab
-- Storage Variable
Store Cluster ID in Variable: C21

Appendix 3. Current Population Survey Calculations

These tables were constructed by Bryan GeoDemographics for the author.
A. CPS 2020 Voter Supplement PUMS Data Pivot Table, Matching Dr. Burch's Any-Age Voter Turnout by Education Analysis. PES 1 Vote Responses for MS Filtered to Race Any Part Black Non-Hispanic, Any Age and Citizenship Weighted by PWSSWGT. 40.8% LT HS, 66.5% HS Grad, 85.7% Bachelor's Degree or Higher, 52.6% Overall Calculations - attempting to match 53.0% overall reported.
B. CPS 2020 Voter Supplement PUMS Data Pivot Table, Voter Turnout by Education Analysis. PES 1 Vote Responses for MS Filtered to Race Any Part Black (including Hispanics) Age 18+ and Citizenship Weighted by PWSSWGT. 26.1\% LT HS, 58.1\% HS Grad, 84.5% Bachelor's Degree or Higher, 56.1% Overall Calculations - attempting to match 56.1% overall reported.
C. CPS 2020 Voter Supplement PUMS Data Pivot Table, CVAP Voter Turnout by Education Analysis. PES 1 Vote Responses for MS Filtered to Race Any Part Black (inc. Hispanic), Age 18+ and Citizenship Weighted by PWSSWGT
D. D. CPS 2020 Voter Supplement PUMS Data Pivot Table, CVAP Voter Turnout by Education Analysis. PES 1 Vote Responses for MS Filtered to Race White Alone, non-Hispanic, Age 18+ and Citizenship Weighted by PWSSWGT
E. CPS 2020 Voter Supplement PUMS Data Pivot Table, Matching Dr. Burch's Voter Turnout by Race Analysis. PES 1 Vote Responses for MS Including Any Age and Filtered to Citizenship (1, 2, 3 or 4)
F. CPS 2020 Voter Supplement PUMS Data Pivot Table, Matching Reported Voter Turnout by Race Analysis. PES 1 Vote Responses for MS Filtered to Age (18+) and Citizenship (1, 2, 3 or 4)
A. CPS 2020 Voter Supplement PUMS

Data Pivot Table, Matching Dr. Burch's Figure 4 Black Alone or in Combo nonHispanic Any-Age Voter Turnout by Education Analysis. PES 1 Vote Responses for MS Filtered to Race Any Part Black Non-Hispanic, Any Age and Citizenship Weighted by PWSSWGT.

B. CPS 2020 Voter Supplement PUMS Data Pivot Table, Matching Dr. Burch's Figure 4 White non-Hispanic Any-Age Citizen Voter Turnout by Education Analysis. PES 1 Vote Responses for MS Filtered to Race Any Part Black Non-Hispanic, Any Age and Citizenship Weighted by PWSSWGT.

C. CPS 2020 Voter Supplement PUMS Data

 Pivot Table, matching Dr. Burch's Figure 4 Black Alone or in Combo nonHispanic Any-Age Voter Turnout by Education Analysis - except filtered to voting age 18+. PES 1 Vote Responses for MS Filtered to Race Any Part Black Non-Hispanic, 18+ and Citizenship Weighted by PWSSWGT.| | 28 | T * State FIPS Filter to MS | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (Multiple Items) | I * Race: Any Part Black | | | | | | | |
| | (All) | - Ethnicity: All | | | | | | | |
| | (Multiple Items) | - * Age: 18+ | | | | | | | |
| | (Multiple Items) | $\square *$ Citizenship 1, 2, 3 and | "Citizens" | | | | | | |
| | No Response | Refused | DK | Not in Unvierse | Voted | Not Voted | Total | Educational Attainment | \% Voted |
| <1 st | | | | | | 15,296,850 | 15,296,850 | | |
| 7,8 | 10,782,157 | | | | 52,529,661 | 25,300,522 | 88,612,340 | | |
| 9 | | | | | 83,953,971 | 37,500,389 | 121,454,360 | | |
| 10 | | 12,757,284 | | | 168,866,749 | 98,706,301 | 280,330,334 | LTHS | 57.6\% |
| 11 | 56,518,701 | | | | 251,103,093 | 192,016,036 | 499,637,830 | | |
| 12 | 44,419,439 | | | | 222,816,797 | 79,293,300 | 346,529,536 | | |
| Grad | 257,780,196 | | 59,388,128 | 0 | 2,066,482,470 | 721,410,147 | 3,105,060,941 | HS GRAD | 66.6\% |
| Sc | 103,147,028 | | | 0 | 1,259,191,478 | 113,048,327 | 1,475,386,833 | | |
| Associates | 14,249,330 | | | | 231,224,652 | 33,159,822 | 278,633,804 | Some College | 83.3\% |
| Associates Academic | 25,966,225 | | 16,153,604 | | 328,004,087 | 60,076,536 | 430,200,452 | | |
| Bachelor | 46,728,268 | | | | 751,449,754 | 60,052,797 | 858,230,819 | | |
| Masters | 55,829,070 | | | | 332,399,660 | 14,357,337 | 402,586,067 | Braterst | |
| Professional | | | | | 11,185,702 | | 11,185,702 | Bachelorst | 85.9\% |
| PhD | | 13,451,673 | | | 64,442,420 | | 77,894,093 | | |
| | 615,420,414 | 26,208,957 | 75,541,732 | 0 | 5,823,650,494 | 1,450,218,364 | 7,991,039,961 | Overall | 72.9\% |

D. CPS 2020 Voter Supplement PUMS Data Pivot Table, matching Dr. Burch's Figure 4 White non-Hispanic Any-Age Voter Turnout by Education Analysis - except filtered to age 18+. PES 1 Vote Responses for MS Filtered to Race White nonHispanic, 18+ and Citizenship Weighted by PWSSWGT.

E. CPS 2020 Voter

Supplement PUMS Data Pivot Table, Matching
Dr. Burch's Voter
Turnout by Race
Analysis. PES 1 Vote
Responses for MS
Including Any Age and Filtered to Citizenship (1,

F. CPS 2020 Voter

 Supplement PUMS Data Pivot Table, Matching Reported Voter Turnout by Race Analysis. PES 1 VoteResponses for MS
Filtered to Age (18+) and Citizenship (1, 2, 3 or 4)

Appendix 4. Mississippi Maps

These maps were produced by Bryan Geodemographics for the author.
A. Existing MS Supreme Court Districts
B. Existing MS Supreme Court Districts with Major Prisons
C. Existing MS Supreme Court Districts with Planning and Development Districts
D. Existing MS Supreme Court Districts and Percent VAP APB by County
A. Existing Mississippi Supreme Court Districts

Map compiled for author by Bryan GeoDemographics using data described in text.
B. Existing MS Supreme Court Districts with Major Prisons

Map compiled for author by Bryan GeoDemographics using data described in text.

Case: 4:22-cv-00062-SA-JMV Doc \#: 164-2 Filed: 10/27/23 110 of 202 PageID \#: 2412
C. Existing MS Supreme Court Districts with Planning and Development Districts

Map compiled for author by Bryan GeoDemographics using data described in text.

Case: 4:22-cv-00062-SA-JMV Doc \#: 164-2 Filed: 10/27/23 111 of 202 PageID \#: 2413
D. Existing MS Supreme Court Districts and Percent VAP APB by County

Map compiled for author by Bryan GeoDemographics using data described in text.

Appendix 5a. SSRC Survey Overview with Codes

Provided to author by Dr. John Edwards, Director, Survey Research Lab, SSRC, Mississippi State University Mississippi Voter Registration Status 2015-2021

DataYear

				Cumulative Percent	
Valid	2015	1578	14.8	14.8	14.8
	2016	1524	14.3	14.3	29.1
	2017	1515	14.2	14.2	43.3
	2018	1500	14.1	14.1	57.3
2019	1527	14.3	14.3	71.7	
2020	1505	14.1	14.1	85.8	
	1518	14.2	14.2	100.0	

RegVote

				Cumulative Percent	
Valid	1 Registered to vote	9787	91.8	92.5	92.5
	2 Not Registered to vote	793	7.4	7.5	100.0
	Total	10580	99.2	100.0	
Missing	3 Don't Know	42	.4		
	4 Refused	45	.4		
	Total	87	.8		
Total		10667	100.0		

FreqVote

				Cumulative Percent	
Valid	1 Always votes	6216	58.3	62.5	62.5
	2 Nearly always votes	2046	19.2	20.6	83.0
	3 Votes part of the time	831	7.8	8.4	91.4
	4 Seldom votes	414	3.9	4.2	95.5
	5 Never votes	445	4.2	4.5	100.0
	Total	9952	93.3	100.0	
	6 Don't know	38	.4		
	7 Refused	38	.4		
	System	639	6.0		
Total	715	6.7			

County

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 Adams County	117	1.1	1.1	1.1
	2 Alcorn County	122	1.1	1.1	2.2
	3 Amite County	52	. 5	. 5	2.7
	4 Attala County	102	1.0	1.0	3.7
	5 Benton County	39	. 4	. 4	4.1
	6 Bolivar County	119	1.1	1.1	5.2
	7 Calhoun County	64	. 6	. 6	5.8
	8 Carroll County	45	. 4	. 4	6.2
	9 Chickasaw County	77	. 7	. 7	6.9
	10 Choctaw County	40	. 4	. 4	7.3
	11 Claiborne County	39	. 4	. 4	7.7
	12 Clarke County	56	. 5	. 5	8.2
	13 Clay County	104	1.0	1.0	9.2
	14 Coahoma County	68	. 6	. 6	9.8
	15 Copiah County	102	1.0	1.0	10.8
	16 Covington County	65	. 6	. 6	11.4
	17 DeSoto County	261	2.4	2.5	13.9
	18 Forrest County	252	2.4	2.4	16.2
	19 Franklin County	28	. 3	. 3	16.5
	20 George County	75	. 7	. 7	17.2
	21 Greene County	41	. 4	. 4	17.6
	22 Grenada County	79	. 7	. 7	18.3
	23 Hancock County	155	1.5	1.5	19.8
	24 Harrison County	684	6.4	6.4	26.2
	25 Hinds County	965	9.0	9.1	35.3
	26 Holmes County	83	. 8	. 8	36.1
	27 Humphreys County	14	. 1	. 1	36.2
	28 Issaquena County	2	. 0	. 0	36.2
	29 Itawamba County	80	. 7	. 8	37.0
	30 Jackson County	468	4.4	4.4	41.4
	31 Jasper County	62	. 6	. 6	42.0
	32 Jefferson County	36	. 3	. 3	42.3
	33 Jefferson Davis County	40	. 4	. 4	42.7
	34 Jones County	213	2.0	2.0	44.7
	35 Kemper County	40	. 4	. 4	45.1
	36 Lafayette County	176	1.6	1.7	46.7
	37 Lamar County	207	1.9	1.9	48.7
	38 Lauderdale County	274	2.6	2.6	51.2
	39 Lawrence County	46	. 4	. 4	51.7

County

	Frequency	Percent	Valid Percent	Cumulative Percent
40 Leake County	83	. 8	. 8	52.5
41 Lee County	351	3.3	3.3	55.8
42 Leflore County	105	1.0	1.0	56.7
43 Lincoln County	138	1.3	1.3	58.0
44 Lowndes County	292	2.7	2.7	60.8
45 Madison County	456	4.3	4.3	65.1
46 Marion County	80	. 7	. 8	65.8
47 Marshall County	78	. 7	. 7	66.6
48 Monroe County	169	1.6	1.6	68.2
49 Montgomery County	55	. 5	. 5	68.7
50 Neshoba County	102	1.0	1.0	69.6
51 Newton County	82	. 8	. 8	70.4
52 Noxubee County	46	. 4	. 4	70.8
53 Oktibbeha County	346	3.2	3.3	74.1
54 Panola County	86	. 8	. 8	74.9
55 Pearl River County	171	1.6	1.6	76.5
56 Perry County	35	. 3	. 3	76.8
57 Pike County	140	1.3	1.3	78.2
58 Pontotoc County	124	1.2	1.2	79.3
59 Prentiss County	85	. 8	. 8	80.1
60 Quitman County	23	. 2	. 2	80.3
61 Rankin County	606	5.7	5.7	86.0
62 Scott County	102	1.0	1.0	87.0
63 Sharkey County	16	. 1	. 2	87.2
64 Simpson County	87	. 8	. 8	88.0
65 Smith County	50	. 5	. 5	88.4
66 Stone County	46	. 4	. 4	88.9
67 Sunflower County	86	. 8	. 8	89.7
68 Tallahatchie County	40	. 4	. 4	90.1
69 Tate County	75	. 7	. 7	90.8
70 Tippah County	68	. 6	. 6	91.4
71 Tishomingo County	71	. 7	. 7	92.1
72 Tunica County	27	. 3	. 3	92.3
73 Union County	101	. 9	1.0	93.3
74 Walthall County	41	. 4	. 4	93.7
75 Warren County	188	1.8	1.8	95.4
76 Washington County	166	1.6	1.6	97.0
77 Wayne County	65	. 6	. 6	97.6
78 Webster County	62	. 6	. 6	98.2

County

	Frequency	Percent	Valid Percent	Cumulative Percent	
	79 Wilkinson County	20	.2	.2	98.4
	80 Winston County	65	.6	.6	99.0
	81 Yalobusha County	42	.4	.4	99.4
	82 Yazoo County	65	.6	.6	100.0
	Total	10628	99.6	100.0	
Missing	84 Refused	39	.4		
Total		10667	100.0		

Ethnicity

Race

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 White	6350	59.5	60.5	60.5
	2 Black	3766	35.3	35.9	96.4
	3 American Indian/Alaska Native	80	. 7	. 8	97.2
	4 Asian or Pacific Islander	62	. 6	. 6	97.8
	5 Multi-racial	178	1.7	1.7	99.5
	6 Other	56	. 5	. 5	100.0
	Total	10492	98.4	100.0	
Missing	7 Not Sure	4	. 0		
	8 Refused	171	1.6		
	Total	175	1.6		
Total		10667	100.0		

Gender

				Cumulative Percent	
Valid	Frequency	Percent	Valid Percent	1 Man	4651
43.6	43.8	43.8			
	2 Woman	5963	55.9	56.2	100.0
	Total	10614	99.5	100.0	
Missing	4 Refused	53	.5		
Total		10667	100.0		

Education

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 Never attended school or only Kindergarten	4	. 0	. 0	. 0
	2 Grades 1-8 (Elementary)	164	1.5	1.5	1.6
	3 Grades 9-11 (Some High School)	693	6.5	6.5	8.1
	4 Completed High School or GED equivalent	2695	25.3	25.4	33.5
	5 Some college or vocational program	2338	21.9	22.0	55.6
	6 Completed Associate degree (2-year program)	1400	13.1	13.2	68.8
	7 Completed Bachelors degree (4-year program)	1996	18.7	18.8	87.6
	8 Completed Masters degree	973	9.1	9.2	96.8
	9 Beyond Masters degree	343	3.2	3.2	100.0
	Total	10606	99.4	100.0	
Missing	10 Not Sure	24	. 2		
	11 Refused	37	. 3		
	Total	61	. 6		
Total		10667	100.0		

		Age			
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	18	115	1.1	1.1	1.1
	19	180	1.7	1.7	2.9
	20	173	1.6	1.7	4.5
	21	171	1.6	1.7	6.2
	22	154	1.4	1.5	7.7
	23	167	1.6	1.6	9.3
	24	148	1.4	1.4	10.7
	25	135	1.3	1.3	12.0
	26	153	1.4	1.5	13.5
	27	129	1.2	1.3	14.8
	28	143	1.3	1.4	16.2
	29	120	1.1	1.2	17.3
	30	156	1.5	1.5	18.8
	31	131	1.2	1.3	20.1
	32	146	1.4	1.4	21.5
	33	128	1.2	1.2	22.8
	34	152	1.4	1.5	24.2
	35	132	1.2	1.3	25.5
	36	162	1.5	1.6	27.1
	37	156	1.5	1.5	28.6
	38	168	1.6	1.6	30.2
	39	138	1.3	1.3	31.6
	40	144	1.3	1.4	33.0
	41	168	1.6	1.6	34.6
	42	139	1.3	1.3	35.9
	43	139	1.3	1.3	37.3
	44	146	1.4	1.4	38.7
	45	154	1.4	1.5	40.2
	46	177	1.7	1.7	41.9
	47	160	1.5	1.6	43.5
	48	173	1.6	1.7	45.1
	49	167	1.6	1.6	46.8
	50	196	1.8	1.9	48.7
	51	181	1.7	1.8	50.4
	52	192	1.8	1.9	52.3
	53	194	1.8	1.9	54.2
	54	185	1.7	1.8	55.9
	55	205	1.9	2.0	57.9
	56	210	2.0	2.0	60.0

	Age					
	Frequency	Percent	Valid Percent	Cumulative Percent		
	96	2	.0	.0	100.0	
	97	2	.0	.0	100.0	
	Total	10317	96.7	100.0		
Missing	-99 Refused	350	3.3			
Total		10667	100.0			

Income

Party

				Cumulative Percent	
Valid	1 Republican	3615	33.9	39.6	39.6
	2 Democrat	2999	28.1	32.9	72.5
	3 Independent	2512	23.5	27.5	100.0
	Total	9126	85.6	100.0	
	4 Not sure	811	7.6		
	5 Refused	730	6.8		
	Total	1541	14.4		
Total		10667	100.0		

Party Lean					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1 Independent leaning democratic	671	6.3	45.0	45.0
	2 Independent leaning republican	819	7.7	55.0	100.0
	Total	1490	14.0	100.0	
Missing	3 Not sure	799	7.5		
	4 Refused	223	2.1		
	System	8155	76.5		
	Total	9177	86.0		
Total		10667	100.0		

Appendix 5b. NCSS Contingency Table output by year, 2105-2021, SSRC Survey Data on Voter Registration

Analysis based on SSRC data with calculations by author using the NCSS statistical package.
Race Code: 1 = White; 2 = Black
Registered to Vote Code: 1 = Yes; 2 = No; 3 = Don't Know; 4 = Refused.

NCSS 12.0.4
11/15/2022 6:11:39 PM

Cross Tabulation Report

Dataset C:I...ISSRC SURVEY DATA BY COUNTYSSRC SURVEY DATA V1.NCSS

Filter
Row Variable
Column Variable
(Race <> 3,4,5,6,7,8) AND (DataYear = 2015) RegVote Race

Counts Table

Race			
RegVote			
1	$\mathbf{1}$	$\mathbf{2}$	Total
$\mathbf{1}$	847	547	1394
$\mathbf{3}$	82	35	117
$\mathbf{4}$	5	1	6
	3	3	6
Total	937	586	1523
Column Percentages Table			

	Race			
RegVote				
	$\mathbf{1}$	$\mathbf{2}$	Total	
$\mathbf{1}$		90.39%	93.34%	91.53%
$\mathbf{2}$	8.75%	5.97%	7.68%	
$\mathbf{3}$	0.53%	0.17%	0.39%	
$\mathbf{4}$	0.32%	0.51%	0.39%	
Total	100.00%	100.00%	100.00%	

Expected Counts Assuming Independence Table

RegVote	Race		
	1	2	Total
1	857.6	536.4	1394.0
2	72.0	45.0	117.0
3	3.7	2.3	6.0
4	3.7	2.3	6.0
Total	937.0	586.0	1523.0

Cross Tabulation Report

Dataset	C: $\ . .$. ISSRC SURVEY DATA BY COUNTYYSSRC SURVEY DATA V1.NCSS
Filter	(DataYear=2016) AND (Race $<>3,4,5,6,7,8)$ AND (DataYear $=2016$)
Row Variable	RegVote
Column Variable	Race

Counts Table

Race			
RegVote			
	$\mathbf{1}$	$\mathbf{2}$	Total
$\mathbf{1}$	856	488	1344
$\mathbf{2}$	70	36	106
$\mathbf{3}$	2	1	3
$\mathbf{4}$	4	1	5
Total	932	526	1458
Column Percentages Table			

RegVote	Race		
	1	2	Total
1	91.85\%	92.78\%	92.18\%
2	7.51\%	6.84\%	7.27\%
3	0.21\%	0.19\%	0.21\%
4	0.43\%	0.19\%	0.34\%
Total	100.00\%	100.00\%	100.00\%

Expected Counts Assuming Independence Table

RegVote	Race		
	1	2	Total
1	859.1	484.9	1344.0
2	67.8	38.2	106.0
3	1.9	1.1	3.0
4	3.2	1.8	5.0
Total	932.0	526.0	1458.0

Cross Tabulation Report

Dataset	C:I....ISSRC SURVEY DATA BY COUNTYISSRC SURVEY DATA V1.NCSS
Filter	(Race <> 3,4,5,6,7,8) AND (DataYear = 2017)
Row Variable	RegVote
Column Variable	Race
Counts Table	

			Race	
RegVote				
	$\mathbf{1}$	$\mathbf{2}$	Total	
$\mathbf{1}$	828	507	1335	
$\mathbf{2}$	64	29	93	
$\mathbf{3}$	3	2	5	
$\mathbf{4}$	5	0	5	
Total	900	538	1438	

Column Percentages Table

Race			
RegVote			
	1	2	Total
1	92.00\%	94.24\%	92.84\%
2	7.11\%	5.39\%	6.47\%
3	0.33\%	0.37\%	0.35\%
4	0.56\%	0.00\%	0.35\%
Total	100.00\%	100.00\%	100.00\%
Expected Counts Assuming Independence Table			
Race			
RegVote			
	1	2	Total
1	835.5	499.5	1335.0
2	58.2	34.8	93.0
3	3.1	1.9	5.0
4	3.1	1.9	5.0
Total	900.0	538.0	1438.0

Cross Tabulation Report

Dataset	C:I....ISSRC SURVEY DATA BY COUNTYISSRC SURVEY DATA V1.NCSS
Filter	(Race <> 3,4,5,6,7,8) AND (DataYear = 2018)
Row Variable	RegVote
Column Variable	Race
Counts Table	

RegVote	Race		
	1	2	Total
1	809	509	1318
2	72	32	104
3	5	1	6
4	1	1	2
Total	887	543	1430

Column Percentages Table

RegVote	Race		
	1	2	Total
1	91.21\%	93.74\%	92.17\%
2	8.12\%	5.89\%	7.27\%
3	0.56\%	0.18\%	0.42\%
4	0.11\%	0.18\%	0.14\%
Total	100.00\%	100.00\%	100.00\%

Expected Counts Assuming Independence Table

	Race			
RegVote				
	$\mathbf{1}$	$\mathbf{2}$	Total	
$\mathbf{1}$	817.5	500.5	1318.0	
$\mathbf{2}$	64.5	39.5	104.0	
$\mathbf{3}$	3.7	2.3	6.0	
$\mathbf{4}$	1.2	0.8	2.0	
Total	887.0	543.0	1430.0	

Cross Tabulation Report

Dataset	C:I...ISSRC SURVEY DATA BY COUNTYISSRC SURVEY DATA V1.NCSS
Filter	(Race <> 3,4,5,6,7,8) AND (DataYear = 2019)
Row Variable	RegVote
Column Variable	Race
Counts Table	

			Race		
RegVote	$\mathbf{1}$	$\mathbf{2}$	Total		
$\mathbf{1}$	808	528	1336		
$\mathbf{2}$	69	27	96		
$\mathbf{3}$	1	2	3		
$\mathbf{4}$	1	3	4		
Total	879	560	1439		

Column Percentages Table

Race			
RegVote			
	1	2	Total
1	91.92\%	94.29\%	92.84\%
2	7.85\%	4.82\%	6.67\%
3	0.11\%	0.36\%	0.21\%
4	0.11\%	0.54\%	0.28\%
Total	100.00\%	100.00\%	100.00\%
Expected Counts Assuming Independence Table			
Race			
RegVote			
	1	2	Total
1	816.1	519.9	1336.0
2	58.6	37.4	96.0
3	1.8	1.2	3.0
4	2.4	1.6	4.0
Total	879.0	560.0	1439.0

Cross Tabulation Report

Dataset C:I...ISSRC SURVEY DATA BY COUNTYSSRC SURVEY DATA V1.NCSS

Filter
Row Variable
Column Variable
(Race <> 3,4,5,6,7,8) AND (DataYear = 2020)
RegVote
Race

Counts Table

	Race			
RegVote				
	$\mathbf{1}$	$\mathbf{2}$	Total	
$\mathbf{1}$	837	466	1303	
$\mathbf{2}$	72	25	97	
$\mathbf{3}$	3	2	5	
$\mathbf{4}$		4	0	4
Total	916	493	1409	

Column Percentages Table

	Race		
RegVote			
	$\mathbf{1}$	$\mathbf{2}$	Total
$\mathbf{1}$		91.38%	94.52%
$\mathbf{2}$	7.86%	5.07%	92.48%
$\mathbf{3}$	0.33%	0.41%	0.88%
$\mathbf{4}$	0.44%	0.00%	0.28%
Total	100.00%	100.00%	100.00%

Expected Counts Assuming Independence Table

	Race			
RegVote				
	$\mathbf{1}$	$\mathbf{2}$	Total	
$\mathbf{1}$	847.1	455.9	1303.0	
$\mathbf{2}$	63.1	33.9	97.0	
$\mathbf{3}$	3.3	1.7	5.0	
$\mathbf{4}$	2.6	1.4	4.0	
Total	916.0	493.0	1409.0	

Cross Tabulation Report

Dataset	C:I....ISSRC SURVEY DATA BY COUNTYISSRC SURVEY DATA V1.NCSS
Filter	(Race <> 3,4,5,6,7,8) AND (DataYear = 2021)
Row Variable	RegVote
Column Variable	Race
Counts Table	

RegVote	Race		
	$\mathbf{1}$	$\mathbf{2}$	Total
$\mathbf{1}$	817	490	1307
$\mathbf{2}$	66	28	94
$\mathbf{3}$	12	1	13
$\mathbf{4}$	4	1	5
Total	899	520	1419

Column Percentages Table

	Race		
RegVote	$\mathbf{1}$	$\mathbf{2}$	Total
		90.88%	94.23%
$\mathbf{1}$	7.34%	5.38%	92.11%
$\mathbf{3}$	1.33%	0.19%	0.62%
$\mathbf{4}$	0.44%	0.19%	0.35%
Total	100.00%	100.00%	100.00%

Expected Counts Assuming Independence Table

	Race		
RegVote			
	$\mathbf{1}$	$\mathbf{2}$	Total
$\mathbf{1}$	828.0	479.0	1307.0
$\mathbf{3}$	59.6	34.4	94.0
$\mathbf{4}$	8.2	4.8	13.0
	3.2	1.8	5.0
Total	899.0	520.0	1419.0

Appendix 5c. NCSS Contingency Table output by year, 2105-2021, SSRC Survey Data on Voting Frequency

Analysis based on SSRC data with calculations by author using the NCSS statistical package

Race Code:
1 = White
2 = Black
3 = AIAN (American Indian, Alaskan Native)
4 = API (Asian, Pacific Islander)
$5=$ Multiracial
6 = other
7 = not sure
$8=$ refused

Voting Frequency:
1 = Always Votes
2 = Nearly Always Votes
3 = Votes Part of the Time
4 = Seldom Votes
5 = Never Vote
6 = Don't Know
7 = Refused

	Cross Tabulation Report
Dataset	C:I...ISSRC SURVEY DATA BY COUNTYISSRC SURVEY DATA V1.NCSS
Filter	DataYear $=2015$
Row Variable	Race
Column Variable	FreqVote
Counts Table	

Race	FreqVote							
	1	2	3	4	5	6	7	Total
1	517	203	71	31	18	4	3	847
2	368	90	47	25	17	0	0	547
3	5	0	0	0	0	0	0	5
4	1	1	2	1	0	0	0	5
5	10	3	0	0	2	0	0	15
6	1	0	0	0	1	0	0	2
8	12	3	2	1	2	0	0	20
Total	914	300	122	58	40	4	3	1441

The number of rows with at least one missing value is 137

Row Percentages Table

Race	FreqVote							
	1	2	3	4	5	6	7	Total
1	61.04\%	23.97\%	8.38\%	3.66\%	2.13\%	0.47\%	0.35\%	100.00\%
2	67.28\%	16.45\%	8.59\%	4.57\%	3.11\%	0.00\%	0.00\%	100.00\%
3	100.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	100.00\%
4	20.00\%	20.00\%	40.00\%	20.00\%	0.00\%	0.00\%	0.00\%	100.00\%
5	66.67\%	20.00\%	0.00\%	0.00\%	13.33\%	0.00\%	0.00\%	100.00\%
6	50.00\%	0.00\%	0.00\%	0.00\%	50.00\%	0.00\%	0.00\%	100.00\%
8	60.00\%	15.00\%	10.00\%	5.00\%	10.00\%	0.00\%	0.00\%	100.00\%
Total	63.43\%	20.82\%	8.47\%	4.02\%	2.78\%	0.28\%	0.21\%	100.00\%

The number of rows with at least one missing value is 137

	Cross Tabulation Report
Dataset	C:I....ISSRC SURVEY DATA BY COUNTYSSRC SURVEY DATA V1.NCSS
Filter	DataYear $=2016$
Row Variable	Race
Column Variable	FreqVote
Counts Table	

FreqVote

Race								
	1	2	3	4	5	6	7	Total
1	560	198	59	34	73	3	5	932
2	349	78	33	17	45	2	2	526
3	4	2	4	1	2	0	0	13
4	1	1	0	1	4	0	0	7
5	13	0	2	2	3	1	0	21
8	17	1	1	2	1	0	3	25
Total	944	280	99	57	128	6	10	1524

Row Percentages Table

			FreqVote						
Race	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total	
$\mathbf{1}$	60.09%	21.24%	6.33%	3.65%	7.83%	0.32%	0.54%	100.00%	
$\mathbf{2}$	66.35%	14.83%	6.27%	3.23%	8.56%	0.38%	0.38%	100.00%	
$\mathbf{3}$	30.77%	15.38%	30.77%	7.69%	15.38%	0.00%	0.00%	100.00%	
$\mathbf{4}$	14.29%	14.29%	0.00%	14.29%	57.14%	0.00%	0.00%	100.00%	
$\mathbf{5}$	61.90%	0.00%	9.52%	9.52%	14.29%	4.76%	0.00%	100.00%	
$\mathbf{8}$	68.00%	4.00%	4.00%	8.00%	4.00%	0.00%	12.00%	100.00%	
Total	61.94%	18.37%	6.50%	3.74%	8.40%	0.39%	0.66%	100.00%	

Cross Tabulation Report

Dataset C:I...ISSRC SURVEY DATA BY COUNTYSSRC SURVEY DATA V1.NCSS
Filter \quad DataYear $=2017$

Row Variable Race
Column Variable FreqVote
Counts Table

Race	FreqVote							
R	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
$\mathbf{1}$	534	185	65	34	73	3	6	900
$\mathbf{2}$	347	73	52	21	37	6	2	538
$\mathbf{3}$	6	2	1	1	1	1	0	12
$\mathbf{4}$	1	2	0	0	2	0	0	5
$\mathbf{5}$	12	4	3	1	4	0	1	25
$\mathbf{6}$	3	2	2	2	4	0	0	13
$\mathbf{8}$	17	2	0	3	0	0	0	22
Total	920	270	123	62	121	10	9	1515

Row Percentages Table

		FreqVote Race						
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
$\mathbf{1}$	59.33%	20.56%	7.22%	3.78%	8.11%	0.33%	0.67%	100.00%
$\mathbf{2}$	64.50%	13.57%	9.67%	3.90%	6.88%	1.12%	0.37%	100.00%
$\mathbf{3}$	50.00%	16.67%	8.33%	8.33%	8.33%	8.33%	0.00%	100.00%
$\mathbf{4}$	20.00%	40.00%	0.00%	0.00%	40.00%	0.00%	0.00%	100.00%
$\mathbf{5}$	48.00%	16.00%	12.00%	4.00%	16.00%	0.00%	4.00%	100.00%
$\mathbf{6}$	23.08%	15.38%	15.38%	15.38%	30.77%	0.00%	0.00%	100.00%
$\mathbf{8}$	77.27%	9.09%	0.00%	13.64%	0.00%	0.00%	0.00%	100.00%
Total	60.73%	17.82%	8.12%	4.09%	7.99%	0.66%	0.59%	100.00%

Cross Tabulation Report

Dataset	C:I....ISSRC SURVEY DATA BY COUNTYSSRRC SURVEY DATA V1.NCSS
Filter	DataYear $=2018$
Row Variable	Race
Column Variable	FreqVote

Counts Table

Race	FreqVote							
	1	2	3	4	5	6	7	Total
1	441	238	69	35	22	2	2	809
2	318	105	52	13	18	3	0	509
3	1	2	1	0	2	0	0	6
4	1	0	1	0	0	0	0	2
5	11	7	2	2	2	1	0	25
6	4	1	0	4	1	0	0	10
7	1	0	0	1	0	0	0	2
8	9	3	0	0	0	0	0	12
Total	786	356	125	55	45	6	2	1375

The number of rows with at least one missing value is 125

Row Percentages Table

	FreqVote							
Race	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
$\mathbf{1}$	54.51%	29.42%	8.53%	4.33%	2.72%	0.25%	0.25%	100.00%
$\mathbf{2}$	62.48%	20.63%	10.22%	2.55%	3.54%	0.59%	0.00%	100.00%
$\mathbf{3}$	16.67%	33.33%	16.67%	0.00%	33.33%	0.00%	0.00%	100.00%
$\mathbf{4}$	50.00%	0.00%	50.00%	0.00%	0.00%	0.00%	0.00%	100.00%
$\mathbf{5}$	44.00%	28.00%	8.00%	8.00%	8.00%	4.00%	0.00%	100.00%
$\mathbf{6}$	40.00%	10.00%	0.00%	40.00%	10.00%	0.00%	0.00%	100.00%
$\mathbf{7}$	50.00%	0.00%	0.00%	50.00%	0.00%	0.00%	0.00%	100.00%
$\mathbf{8}$	75.00%	25.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%
Total	57.16%	25.89%	9.09%	4.00%	3.27%	0.44%	0.15%	100.00%

The number of rows with at least one missing value is 125

Cross Tabulation Report

Dataset	C: $\backslash \ldots$...ISSRC SURVEY DATA BY COUNTYYSSRC SURVEY DATA V1.NCSS
Filter	DataYear $=2019$
Row Variable	Race
Column Variable	FreqVote

Counts Table

Race	FreqVote							
	1	2	3	4	5	6	7	Total
1	487	203	67	36	10	3	2	808
2	346	83	60	16	20	1	2	528
3	7	2	1	0	2	0	0	12
4	2	0	1	1	1	0	0	5
5	14	6	3	1	1	0	0	25
6	5	2	1	1	0	0	0	9
8	11	1	3	1	1	0	1	18
Total	872	297	136	56	35	4	5	1405

The number of rows with at least one missing value is 122

Row Percentages Table

FreqVote

Race

$\mathbf{n n n n n n n}$		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	60.27%	25.12%	8.29%	4.46%	1.24%	0.37%	0.25%	100.00%
$\mathbf{2}$	65.53%	15.72%	11.36%	3.03%	3.79%	0.19%	0.38%	100.00%
$\mathbf{3}$	58.33%	16.67%	8.33%	0.00%	16.67%	0.00%	0.00%	100.00%
$\mathbf{4}$	40.00%	0.00%	20.00%	20.00%	20.00%	0.00%	0.00%	100.00%
$\mathbf{5}$	56.00%	24.00%	12.00%	4.00%	4.00%	0.00%	0.00%	100.00%
$\mathbf{6}$	55.56%	22.22%	11.11%	11.11%	0.00%	0.00%	0.00%	100.00%
$\mathbf{8}$	61.11%	5.56%	16.67%	5.56%	5.56%	0.00%	5.56%	100.00%
Total	62.06%	21.14%	9.68%	3.99%	2.49%	0.28%	0.36%	100.00%

The number of rows with at least one missing value is 122

Cross Tabulation Report

Dataset	C:I...ISSRC SURVEY DATA BY COUNTYISSRC SURVEY DATA V1.NCSS
Filter	DataYear $=2020$
Row Variable	Race
Column Variable	FreqVote

Counts Table

Race	FreqVote							
	1	2	3	4	5		7	Total
1	571	159	45	41	18	0	3	837
2	336	62	41	12	7	4	4	466
3	4	1	2	2	0	0	0	9
4	5	1	0	2	1	0	0	9
5	5	11	3	5	3	0	0	27
6	0	0	2	0	0	0	0	2
7	2	0	0	0	0	0	0	2
8	20	4	3	2	0	0	1	30
Total	943	238	96	64	29	4	8	1382

The number of rows with at least one missing value is 123

Row Percentages Table

Race	FreqVote							
	1	2	3	4	5	6	7	Total
1	68.22\%	19.00\%	5.38\%	4.90\%	2.15\%	0.00\%	0.36\%	100.00\%
2	72.10\%	13.30\%	8.80\%	2.58\%	1.50\%	0.86\%	0.86\%	100.00\%
3	44.44\%	11.11\%	22.22\%	22.22\%	0.00\%	0.00\%	0.00\%	100.00\%
4	55.56\%	11.11\%	0.00\%	22.22\%	11.11\%	0.00\%	0.00\%	100.00\%
5	18.52\%	40.74\%	11.11\%	18.52\%	11.11\%	0.00\%	0.00\%	100.00\%
6	0.00\%	0.00\%	100.00\%	0.00\%	0.00\%	0.00\%	0.00\%	100.00\%
7	100.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	100.00\%
8	66.67\%	13.33\%	10.00\%	6.67\%	0.00\%	0.00\%	3.33\%	100.00\%
Total	68.23\%	17.22\%	6.95\%	4.63\%	2.10\%	0.29\%	0.58\%	100.00\%

The number of rows with at least one missing value is 123

Cross Tabulation Report

Dataset	C:I....ISSRC SURVEY DATA BY COUNTYSSRRC SURVEY DATA V1.NCSS
Filter	DataYear $=2021$
Row Variable	Race
Column Variable	FreqVote

Counts Table

	FreqVote							
Race	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	Total
$\mathbf{1}$	464	213	79	34	24	2	1	817
$\mathbf{2}$	327	82	40	23	16	2	0	490
$\mathbf{3}$	8	1	1	1	1	0	0	12
$\mathbf{4}$	5	2	3	2	0	0	0	12
$\mathbf{5}$	8	4	2	2	3	0	0	19
$\mathbf{6}$	2	1	1	0	1	0	0	5
$\mathbf{8}$	23	2	4	0	2	0	0	31
Total	837	305	130	62	47	4	1	1386

The number of rows with at least one missing value is 132

Row Percentages Table

FreqVote

Race

		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	56.79%	26.07%	9.67%	4.16%	2.94%	0.24%	0.12%	100.00%
$\mathbf{2}$	66.73%	16.73%	8.16%	4.69%	3.27%	0.41%	0.00%	100.00%
$\mathbf{3}$	66.67%	8.33%	8.33%	8.33%	8.33%	0.00%	0.00%	100.00%
$\mathbf{4}$	41.67%	16.67%	25.00%	16.67%	0.00%	0.00%	0.00%	100.00%
$\mathbf{5}$	42.11%	21.05%	10.53%	10.53%	15.79%	0.00%	0.00%	100.00%
$\mathbf{6}$	40.00%	20.00%	20.00%	0.00%	20.00%	0.00%	0.00%	100.00%
$\mathbf{8}$	74.19%	6.45%	12.90%	0.00%	6.45%	0.00%	0.00%	100.00%
Total	60.39%	22.01%	9.38%	4.47%	3.39%	0.29%	0.07%	100.00%

The number of rows with at least one missing value is 132

Appendix 6. David A. Swanson CV (2022 V17)

Curriculum Vitae
David A. Swanson
1 Lake Louise Drive \#19
Bellingham, Washington 98229
\&
8924 Evening Star Drive
Las Vegas, NV 89134
email: david.swanson@ucr.edu
Webpage : https://profiles.ucr.edu/app/home/profile/dswanson

I. Education

Ph.D.	1985	Sociology/Population Studies	University of Hawaï i
M.A.	1976	Sociology/Population Studies	University of Hawaii i
Graduate Studies Diploma	1974	Social Science/Swedish	University of Stockholm
B.Sc.	1972	Sociology/Mathematics	Western Washington
			State College

(Credit courses also completed at the University of Puget Sound (9 semester hours) and Columbia Basin College (30 quarter hours)
G.
H. II. Academic and Related Positions
A. Primary Appointments

Center for Population Research Portland State University	$2022-2023$	Research Associate
Aoyama Gakuin University, Tokyo, Japan	October 27 to November 11 2018	Visiting Professor

Pacific Lutheran University, Department of Sociology	1987 to 1992	Associate Professor (Tenure Awarded)
Bowling Green State University, Department of Sociology	1985 to 1987	
Alaska Department of Labor	1984 to 1985	Assistant Professor Visiting Instructor
1981-1983	State Demographer	

B. Conjoint and Miscellaneous Appointments

M.P.S in Applied Demography Dept. of Sociology \& Criminology Penn State University	2019	Lecturer (On-line) Appdem 804 Business Demography Appdem 805 Demog \& Public Policy
Center for Studies in Demography \& Ecology, University of Washington	2017 -	Faculty Affiliate

Mikkeli Polytechnic College, International Business Program

Portland State University Center for Population and Census

University of Arkansas at Little Rock, Institute for Economic Advancement

University of Arkansas for Medical
Sciences, National Center for Rural Mental Healthcare Research

Pacific Lutheran University, Center for Social Research And Public Policy

Pacific Lutheran University, Department of Sociology

Bowling Green State University,
Population and Society
Research Center
University of Alaska, Juneau
School of Business Administration
National Science Foundation
"Research For Undergraduates"
Demographic Research Laboratory Western Washington University

ICPSR Summer Program in
Quantitative Methods,
University of Michigan

Argonne National Laboratory,

Spring, 2001
Spring, 2000
1995-1997

1992-1995

1992-1995

1987-1992

1990-1991

1984-1987

1983

Summer, 1994
Summer, 1991
Summer, 1989
Summer, 1988
July, 1989
July, 1988
July, 1987
July, 1986
Summer, 1987

Guest Lecturer in
Statistics
Guest Lecturer in Statistics
Director

Director, Demographic
Research Unit

Research Scientist

Director

Acting Chair

Assistant Director for Population Research

Lecturer

Workshop Instructor
Workshop Instructor Workshop Instructor Workshop Instructor

Guest Lecturer Workshop Instructor Workshop Instructor Workshop Instructor

Faculty Research
Participant

III. Teaching Experience

A. Credit Courses

1. Undergraduate Courses

Sociology Courses

Introductory Sociology
Population, Poverty, and Hunger
Introductory Statistics
Research Methods
Urban Sociology
Population Studies/Demography Courses
Introduction to Population Studies
Introduction to Applied Demography
Demographic Analysis and International Business
Market Demographics
Population Analysis
Population Forecasting
The Baby Boom
World Population Issues
i. Business Administration Courses

Introductory Statistics for Business Administration
Business Mathematics
Demographic Methods and International Business
Quantitative Methods in Business
Business Forecasting
Market Demographics
Introduction to SPSS

2. Graduate Courses

Sociology Courses

Research Methods
Multivariate Analysis
Population Studies/Demography Courses
Business Demographics
Demographic Methods
Advanced Market Demographics
Applied Demography
Population Forecasting
Population Estimation Methods
Business Administration Courses
Business Forecasting
Refresher Mathematics for MBA Students
Quantitative Methods

I. B. Non-Credit and Continuing Education Courses and Topics

Census and Survey Administration Census and Survey Methods Interviewer Training

Population Estimation Population Forecasting Enrollment Forecasting

IV. Thesis Supervision

A. Committees chaired

2014. Overcrowding as a Determinant of Violence in California State Prisons. B. A. Honors Thesis by John Maldonado. Department of Sociology. University of California Riverside.

2011 Demographic Analysis and the U.S. Hispanic Population. Ph.D. Dissertation by Matt Kaneshiro, Department of Sociology, University of California Riverside.
2007. A Comparison of Housing Unit Estimates to the American Community Survey Master Address File. Sociology M.A. Thesis completed by A. J. Reese. Department of Sociology and Anthropology, University of Mississippi.

2004 Towards International Standardisation of Accounting: IAS and the Accounting Practises in Finland and Russia. Senior (BScBA) Thesis completed by O. Nieminen, Mikkeli Business Campus, Helsinki School of Economics and Business Administration

2003 The Impact of International Mergers and Acquisitions on Brand Strategies. Senior (BScBA) Thesis completed by N. Yli-Pirilä, Mikkeli Business Campus, Helsinki School of Economics and Business Administration.

2003 International Franchising and Investment. Senior (BScBA) Thesis completed by M. Wainwright, Mikkeli Business Campus, Helsinki School of Economics and Business Administration

2002 Mobile Commerce: Hype or Reality? Senior (BScBA.) Thesis completed by P. Louko, Mikkeli Business Campus, Helsinki School of Economics and Business Administration.

2002 Transport Perspectives within the European Union. Senior (BScBA.) Thesis completed by O. Martychtchenko, Mikkeli Business Campus, Helsinki School of Economics and Business Administration.

2001 Investing in African Economies: Inhibitions and Prospects - A General Overview. Senior (BBA.) Thesis completed by P. Kalubi, Mikkeli Business Campus, Helsinki School of Economics and Business Administration.

1996 Population Estimation Techniques Using the Housing Unit Method. Master of Urban Science (M.U.S.) Research Paper completed by Tom Bryan, Department of Urban Studies, Portland State University (Co-chaired with George Hough).

1987 Measuring Propensity: The Association between Socioeconomic Variables and Differential Migration for Ohio, 1975-1980. M.A. Thesis completed by K. A. Wright, Department of Sociology, Bowling Green State University.

1986 Estimation of Net Migration among Major regions in Iraq, 1957-1977, M.A. Thesis completed by A. Al-Jiboury, Department of Sociology, Bowling Green State University.

An Interpretation of the Ratio-Correlation Method of Population Estimation. M.A. Thesis completed by R. Prevost, Department of Sociology, Bowling Green State University.

B. Committees of which a member

A Descriptive Profile of the Multiracial Asian Population in the United States. Ph.D. Dissertation completed by Sooji Han, Department of Sociology, University of California Riverside

2014 A Spatial Examination of Residency Restriction Legislation: The Impact of Social Disorganization and Social Services. Ph.D. Dissertation completed by Erin Wolbeck, Department of Sociology, University of California Riverside
2012. Exploring the Decision-Making Process in Relation to Legitimacy Assignment. Ph.D. Dissertation completed by Adam Sanford, Department of Sociology, University of California Riverside.

2005 Unique Competencies of International Non-Governmental Organizations (INGOs): Empirical Explorations from India. Ph.D. Dissertation completed by Pranaya Kumar Swain, Department of Sociology, Indian Institute of Technology-Kanpur, Kanpur, Utter Pradesh, India (External Examiner).

1991 The Influence of Parents on the Drinking Patterns of Their Teenage Children. M.A. Thesis completed by R. D. Jacobsen, Division of Social Sciences, Pacific Lutheran University.

1990 Austrian National Identity and the Dokumentationsarchis des Osterreichischen Widerstandes. M.A. Thesis completed by F. Hornquist, Division of Social Science, Pacific Lutheran University.
1989 A Model for Fertility Change. Ph.D. Dissertation completed by N. Sugathan, Department of Demography, University of Kerala, (External Examiner).
1989 The Spruce Program: A Profile of the Participants. M.A. Thesis completed by K. Roe, Division of Social Science, Pacific Lutheran University.
1986 A Content Analysis of Music Videos. M.A. Thesis completed by L. Olsen, Department of Radio, Television, and Film, Bowling Green State University.
1986 Projection of Flexible Age-specific Migration Rates: An Examination of Pittenger's Simplified Techniques. M.A. completed by B. Bennett, Department of Sociology, Bowling Green State University.
1986. Alienation Correlates of Marital Dissolution: A Longitudinal Study. Ph.D. Dissertation completed by Yvonne Woods, Department of Sociology, Bowling Green State University.

V. Professional Development

Participant in (and Successful completion of) Records Management Training, ALCS, June, 2016

Participant in (and Successful completion of) Information Security Training, ALCS, June, 2016.

Participant, Population Projections Workshop, Association for Latin American Population Studies, 16 November 2010.

Participant, U.S. Census Bureau Workshop, "The American Community Survey," 22 September 2010.

Participant, U.S. Census Bureau Webinar, "The American Community Survey: Tracking How We Change with Multi-Year Estimates," 18 November 2009.

Participant, Nielsen Claritas Webinar, "Small Area Population Estimates," 10 November 2009.
Special Sworn Status. US Census Bureau. 2007 (renewed, 2008).
Participant, "Title 13 Training, Confidentiality and Privacy." US Census Bureau, Completed, March, 2007 and renewed November 2008.

Participant, "The Basic Course in the Protection of Human Research Subjects," University of Mississippi, Completed, October, 2005.

Participant, RAND Summer Institute on Aging. RAND, Santa Monica, California. July, 2004.

Participant, Fulbright German Studies Seminar. Berlin, Rostock, and Bonn, Germany. June, 2003.

Participant in (and successful completion of), "Finnish for Foreigners II," Kuopio University, Kuopio, Finland, July-August, 2001

Participant in (and successful completion of), "Finnish for Foreigners I," Mikkeli Polytechnic College, Mikkeli, Finland, July, 2000

Participant in (and successful completion of), "Ethics in Business," Science Applications International Corporation, 1998, 1999

Participant in (and successful completion of), Regulatory and Licensing Training Program, U.S. Department of Energy, Yucca Mountain Project, Las Vegas, Nevada, November, 1998

Participant, "The American Community Survey," American Statistical Association, Los Angeles, California, August, 1997

Participant, "Marketing and Census 2000," Seattle, Washington, August, 1996
Participant in and successful completion of), "Refresher Swedish," Portland State University, Portland, Oregon, Fall, 1995.

Participant in (and successful completion of), "Introductory Finnish," Portland State University, Portland, Oregon, Fall, 1995

Participant, "Census 2000 Content and Access," Cincinnati, Ohio, April, 1993.
Participant, "Arkansas State Census Data Center Annual Meeting," Little Rock, Arkansas, October, 1992.

Participant, "The Strategic Planning Process," Pacific Lutheran University, January, 1992.
Participant, "1990 Census Content," U.S. Bureau of the Census (Seattle Regional Office), Pacific Lutheran University, November, 1990.

Participant, "Programs and Products of the U.S. Bureau of the Census," U.S. Bureau of the Census (Detroit Regional Office) Bowling Green State University, April, 1987.
Participant, "Proposal Writing and Research Administration," College of Education, Bowling Green State University, Spring Semester, 1987.

Participant, "An Introduction to the Bootstrap," Continuing Education Session, American Statistical Association, Chicago, Illinois, August, 1986.
Participant, First Annual Research Conference, U.S. Bureau of the Census, April, 1985.
Participant in (and successful completion of),, "Performance Evaluation for Supervisory Personnel," Alaska Department of Labor, September, 1983.

Participant, "Planning for the 1990 Census," Continuing Education Session, American Statistical Association, Toronto, Ontario, Canada, August, 1983.
Participant, (and successful completion of), "Successful Project Management," Alaska Department of Personnel, Juneau, Alaska, October, 1981.
Participant in (and successful completion of), "MARK-IV Programming," Informatics, Inc., Olympia, Washington, 1980.

Participant in (and successful completion of), "IBM OS JCL" and "WYLBUR," Washington State University, Olympia, Washington, 1979.
Participant (and successful completion of), "Zero-Based Budgeting," Washington Office of Financial Management, Olympia, Washington, 1978.
Participant, "Funding Public Higher Education," Washington Office of Financial Management-Washington Higher education Coordinating Board, Olympia, Washington, 1977.

Participant, "Didactic Seminar on Causal Modeling," American Sociological Association, San Francisco, California, August, 1976.
Participant in (and successful completion of), "Swedish I," "Swedish II," and "Swedish III," Stockholm University, Stockholm, Sweden, 1973-74.

Participant, "1970 Census Products and Their Use," Hawaii Department of Administration, Honolulu, Hawaii, May, 1973.

Participant in (and successful completion of), "Introduction to Basic Assembly Language (BAL) Programming," University of Hawaii, Honolulu, Hawaii, Spring, 1973.

VI. Research Projects and Grants

J. A. Research Grants and Contracts Let and Administered

"Survey of Food Consumption and Lifestyles," Nye and Lincoln counties, Nevada, ($\$ 100,000$). 1996-97, University of Nevada Las Vegas
"1984 Residential Energy Survey" (\$250,000). 1983-84, Walker Information, Inc.
"Cooperative Publication on Alaskan Native Demography" (\$4,000). 1984, Alaska Department of Labor.
"Chloropleth Computer Mapping" ($\$ 3,500$). 1983, Alaska Department of Labor.
"Public Opinion Survey", Washington State Board for Community College Education, $(\$ 25,000)$. 1981Gilmore Research Group.
"Revision to the Higher Education Enrollment Projection System (HEEPS)," (\$5,000), 1980, Washington State Office of Financial Management.
"Population Forecasting System" ($\$ 30,000$), 1980, Washington State Office of Financial Management.

K. B. Research Contracts Awarded

Population Health Impact of Reduced Risk Tobacco Products (\$320,000). ALCS, Inc. (Principal Investigator) 2013-2018.

Hopi Tribal Population Dynamics and Forecast (\$70,000). Hopi Tribe. 2017-2019.
Population Forecasting System Evaluation $(\$ 20,000)$ Washington State Office of Financial Management (Co-Principal Investigator with J. Tayman), 2015-2016

Accuracy Study (\$228,000). ESRI (Co-Principal Investigator, Cropper GIS), 2011-2012.
Population Projections for Native Hawaiians. (\$16,078). Policy Analysis and System Evaluation, Kamehameha Schools, Honolulu, Hawaii. March, 2008 (Principal Investigator, McKibben Demographic Research).

Evaluation of methods used to estimate vacancy rates and average persons for households ($\$ 25,000$), U. S. Bureau of the Census, Summer 2007- Fall 2008. Multi-Year Estimates, American Community Survey, $(\$ 5,500)$. U. S. Bureau of the Census, Summer, 2007.

Evaluation of Methods used to Estimate the Size and Composition of the Foreign-Born Population ($\$ 27,000$). U.S. Bureau of the Census, September, 2006 (through Sabre Systems, Inc.), Spring 2007 - Fall 2007.

Enrollment Forecasting and Attendance Boundary Study. (\$12,000). Harrison County School District, Biloxi, MS., Fall, 2006. (Principal Investigator, J. McKibben).

Small Area Labor Force and Population Projections. $(\$ 7,500)$. Southern Nevada Regional Planning Commission (Subcontract with Theodore Roosevelt Institute, Las Vegas, NV), Summer, 2006

Population Projections of the Chinese Population by Age and Sex for 22 Selected Counties. $(\$ 1,500)$. Third Wave Research, Inc. Madison, Wisconsin. November 2004.

Population Projections for Native Hawaiians. (\$9,871.24). Policy Analysis and System Evaluation, Kamehameha Schools, Honolulu, Hawaii. May 2004.

Forecasting Headcount Enrollment at the Southaven Satellite Campus, ($\$ 2,000$). Office of Outreach and Continuing Education, University of Mississippi. December 2003.

Estimation and Forecasting of U.S. Lifestyle Segments, 2002 to 2012 ($\$ 6,500$), Third Wave Research, Inc., Madison, Wisconsin. October, 2002.

Review and Revision of Demographic Forecasts for Jubail, Saudi Arabia (\$20,000), Parsons Brinckerhoff, Inc., Jubail, Saudi Arabia, July, 1999.

Demographic Mentoring and Instruction $(\$ 3,000)$, Western Washington University, Bellingham, Washington, 1999.

Washoe County Population Estimation System Development (\$24,900), Washoe County Nevada. 1999.

Redesign of the Nevada State Population Forecasting Model (\$12,000), Nevada Consulting Alliance/Nevada State Demographer's Office. 1998-99.

Census Enumerator, Crew Leader, and Supervisor Training, Neighborhood Census Project ($\$ 2,500$), Portland Multnomah Progress Board (funded by a grant from the Anne E. Casey Foundation), Portland, Oregon. 1997.

Evaluating Response Rates for the American Community Survey, Portland Test Site, $(\$ 2,000)$ U.S. Bureau of the Census. 1997.

Estimating Household Income from Incomplete Data (\$25,000), Metromail, Inc. 1997.
Liberal Education Profile, Portland State University (\$70,000), Portland State University. 1997 (with D. Atkinson).

Forecasting Enrollment and Attendance Zone Changes for the Hillsboro 1J District (\$77,000), Hillsboro1J School District, Oregon, 1995-1996 (with D. Lycan, G. Hough, and I. Sharkova).

Forecasting Enrollment for the Newberg School District (\$5,000), Newberg School District, Oregon, 1996.

Estimating and Forecasting U.S. Lifestyle Segments, 1990 to 2010 (\$5,000), Third Wave Research, Inc. (with T. Bryan and G. Hough)

Omnibus Contract for Income Surveys, Community Development Block Grants ($\$ 18,000$), Oregon Department of Economic Development, 1996.
Tribal Membership Forecast $(\$ 1,400)$. The Confederated Tribes of the Grand Ronde Community of Oregon, 1995.
"Demographic Services" for Study included in ADAMNA Grant No. P50 MH48197-03, entitled "Center For Rural Mental Health Care Research" (\$7,198). University of Arkansas for Medical Sciences, 199293.
"Kitsap County Open Space Poll." Consultation and Training of a Volunteer Organization to conduct Polling in support of a proposed open-space Bond Issue, Kitsap County, Washington $(\$ 3,000)$. Kitsap Citizens for Open Space, 1992.
"Pierce County Private Industry Council, Evaluation of Programs." (\$25,000). Pierce County Private Industry Council. 1991. (with J. Schiller and K. McDade).
Pierce County Solid Waste Management Survey: (\$12,000). Jacobsen Ray McLaughlin and Fillips, Inc., 1991.
"1991 Tacoma-Pierce County Quality of Life Survey." Module on Mental Health Issues (\$3,000). Greater Lakes Mental Health Foundation, 1991.
"Implementation of the REMI Socioeconomic Forecasting Model in support of the SAIC/YMPO socioeconomic monitoring program and SCA model development." ($\$ 29,000$). Science Applications International Corporation, Yucca Mountain Project Office. U.S. Department of Energy, 1991.
"1990 Tacoma-Pierce County Quality of Life Survey." Module on health Issues (\$6,000). Tacoma-Pierce County Health Department,.
1990."Implementation of the REMI Socioeconomic Forecasting Model, in support of the SAIC/YMPO socioeconomic monitoring program and SCA model development." (\$38,000). Science Applications International Corporation, Yucca Mountain Project Office. U.S. Department of Energy, 1990.
"Review and Analysis of the Demographic Module of the EDFS-S REMI Module." (\$6,380). Science Applications International Corporation, Yucca, Mountain Project Office, U.S. Department of Energy, 1989-90.
"Small Area Model Development for the High Level Radioactive Waste Repository." (\$10,000). Battelle Human Affairs Research Centers, 1989.
"1989 Tacoma-Pierce County Solid Waste Management Survey." module on hazardous and other household wastes ($\$ 6,000$). Pierce County Waste Management Division, Pierce County, Washington, 1989.
"Pierce County Solid Waste Management Survey." (\$17,000). Pierce County, Washington (CoInvestigator with J. Schiller), 1988.
1988 "Tacoma Area Quality of Life Survey," module on racial issues (\$2,000). Tacoma Urban League (Co-Investigator with J. Schiller), 1988.
"Evaluation of the Demographic Component of the HARC/REMI Economic Demographic Model ($\$ 3,000$). Battelle Human Affairs Research Centers, 1988.
‘Survey of Applied Demographers." (\$1,500). Population Association of America, 1986-87.
"Life Tables By Sex, 1980 and 1970 and Net Migration By Age and Sex, 1970-80 and 1960-70 For Ohio." (\$750). Final Report submitted to the Ohio Data User's Center, Department of Development, December, 1984.
"Technical Data Services." (\$2,500). Alaska Reapportionment Board, 1981. 1980 Census Computer Tape Acquisition and Evaluation" (\$3,000). Washington State Redistricting Board, 1979.

C. Research Grants Awarded

"Measuring Health Status for Populations with Incomplete Census \& Vital Statistics Information: Estimating Life expectancy at Birth." ($\$ 9,861$). COR Fellowship. University of California Riverside. 2017.
"Socio-Economic Status, Race, and Life Expectancy in Los Angeles County, 1970-1990:
A Proof of Concept Proposal for $\$ 20,100$ in Funds under Strategic Goal 1. $(\$ 20,100)$ College of Humanities, Arts, and Social Sciences, University of California (Principal Investigator). 20112012.
"Virtual Co-laboratory for Policy Analysis in Greater Los Angeles" (\$2,300,000). UC Multicampus Research Program and Initiatives, University of California. (Co-Investigator with Richard Arnott et al.). 2010-2014.
"Perceptions of Disaster Relief and Recovery: Analyzing the Importance of Social and Kinship Networks Among Hurricane Katrina Refugees on the Mississippi Gulf Coast." (\$96,212). National Science Foundation (Co-Principal Investigator with F. Forgette and M. Van Boening), 2005-6.
"Interdisciplinary Working Group to Develop a Strategy for the Development of an NICHD Population and Health Research center in Mississippi." ($\$ 9,400$). Office of Research and Sponsored Programs, University of Mississippi (Principal Investigator, with Co-Investigators, Fazlay Faruque and Peggy Hewlett). 2005-6.
"Applied Demographic Research in Migration" (\$40,000). National Science Foundation (Co-Director with L.M. Tedrow), 1991.
"Applied Demographic Research in Migration" ($\$ 40,000$). National Science Foundation (Co-Director with L.M. Tedrow), 1989.
"Applied Demographic Research in Migration" (\$40,000). National Science Foundation (Co-Director with L.M. Tedrow), 1988.
"VCR Survey" (\$1,500). Kaltenborn Foundation (with B. Klopfenstein), 1987.
VCR Survey" (\$5,000). National Association of Broadcasters (with B. Klopfenstein), 1987.
"Pilot Survey of VCR Use" (\$1,500). Kaltenborn Foundation, 1986.
"Pilot Survey of VCR Use" (\$2,730). Bowling Green State University, 1986.
"Socioeconomic Correlates of Infant Mortality: Ohio, 1980" (\$90,000). U.S. Department of Health and Human Services. (Co-principal Investigator with E.G. Stockwell and J. Wicks), 1985-86.

D. Program Grants Awarded

"Transition Funding for the BScBA Degree Conversion, Phase II ($€ 100,000$), European Union Objective 1 Program (with V-P. Heiskanan). 2002
"Transition funding for the BScBA Degree Conversion, Phase I ($€ 200,000$), European Union Objective 1 Program (with V-P. Heiskanen), 2001
"BBA Program Development" ($(200,000)$ European Union Objective 1 Program (with J. Masalin), 2000.
"Academic Challenge: Developing an Applied Demography Program, Bowling Green State University" ($\$ 121,336$). Ohio Board of Regents (with M. Pugh et al.), 1986.

VII. Publications

A. Books and Monographs

Socio-demographic Perspectives on the COVID-19 Pandemic. (Forthcoming) Co-editor with Richard Verdugo. Information Age Publishing, Charlotte, NC.

Global Populations in Transition (2018). Co-author with Jo Martins and Fei Guo. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Cohort Change Ratios and Their Applications. (2017). Co-author with Jack Baker, Jeff Tayman, and Lucky Tedrow. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

The Frontiers of Applied Demography. (2016) Editor. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

The Washington State Census Board and Its Demographic Legacy. (2016). Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Methods of Demographic Analysis. (2014). Co-author with Farhat Yusuf and Jo Martins. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

A Practitioner's Guide to State and Local Population Projections. (2013). Co-author with Stanley K. Smith and Jeff Tayman. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Subnational Population Estimates. (2012). Co-author with Jeff Tayman. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Opportunities and Challenges for Applied Demography in the 21st Century. (2012). Co-Editor with Nazrul Hoque. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Learning Statistics: A Manual for Sociology Students.(2012). Cognella Academic Publishing/University Readers. San Diego, CA.

An Introduction to Consumer Demographics and Behaviour: Markets are People. (2011). Co-author with Farhat Yusuf and Jo Martins. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Estimating Characteristics of the Foreign-Born by Legal Status: An Evaluation of Data and Methods (2011). Co-author with Dean Judson. Springer Briefs in Population Studies, Volume 2, Springer, B.V. Press. Dordrecht, Heidelberg, London, and New York.

CEMAF as a Census Method: A Proposal for a Re-Designed Census and an Independent Census Bureau. (2011). Co-author with Paula Walashek. Springer Briefs in Population Studies, Volume 1, Springer, B.V. Press. Dordrecht, Heidelberg, London, and New York

Applied Demography in the $21^{\text {st }}$ Century. (2008). Co-Editor with Steve Murdock. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.

Southern Nevada Regional Economic Study (2006). Co-author with Alan Schlottmann, Robert Schmidt, and Edward Feser. Theodore Roosevelt Institute. Irvine, CA and Las Vegas, NV.

The Methods and Materials of Demography, 2 ${ }^{\text {nd }}$ Edition.. (2004). Co-Editor with Jacob Siegel. Academic/Elsevier Press: Los Angeles.

Population Projections for States and Local Areas: Methodology and Analysis. (2001). Co-author with Stanley K. Smith and Jeff Tayman. Kluwer Academic /Plenum Press: New York.

Issues In Applied Demography: Proceedings of the 1986 National Conference (1987) Co-Editor with Jerry Wicks. PSRC Press: Bowling Green, Ohio.

Socioeconomic Correlates of Infant Mortality-Ohio, 1980. Final Report for the Maternal and Child Health and Crippled Service Program, Grant MCJ-390520-01 (1986) Co-author with Edward G. Stockwell and Jerry Wicks.

Alaska Population Overview: 1982. Alaska Department of Labor (1983). Editor.
Alaska Population Overview: 1981. Alaska Department of Labor (1982). Editor.

B. Book and Monograph Chapters

Swanson, D. R. Sewell and T. Bryan (2021). The Effect of the Differential Privacy Disclosure Avoidance System Proposed by the Census Bureau on 2020 Census Products: Four Case Studies of Census Blocks in Alaska. pp. 2058-2062 in JSM 2021: Statistics, Data, and the Stories They Tell. American Statistical Association, Alexandria, VA.
"Estimating the underlying infant mortality rates for small populations: A case study of counties in Estonia." (2021), pp. 3-21 in R. Verdugo (Ed). The Demographic Crisis in Europe: Selected Essays. Information Age Publishing. Charlotte, NC.
"Constructing Life Tables from the Kaiser Permanente Smoking Study and Applying the Results to the Population of the United States." (2020) pp.115-152 in B. Jivetti and M. N. Hoque (eds.). Population Change and Public Policy. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with S. Chow and T. Bryan).
"The Number of Native Hawaiians and Part-Hawaiians in Hawaíi, 1778 to 1900: Demographic Estimates by Age." (2020) pp. 345-356 in B. Jivetti and M. N. Hoque (eds.). Population Change and Public Policy. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.
"A Bio-demographic Perspective on Inequality and Life Expectancy: An Analysis of 159 Countries for the Periods 1970-90 and 1990-2010." (2018) pp. 577-613 in C.R. Rao and A. Rao (eds.), Handbook of Statistics, Vol. 38. Elsevier Press (with L. Tedrow).
"Foreword." (2016). pp. v-vi in T. Wilson, E. Charles-Edwards, and T. Bell (eds.) Demography for Planning and Policy: Australian Case Studies. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.
"Demographics and Market Segmentation: China and India." (2016). pp. 3-19 in D. Swanson (ed.) The Frontiers of Applied Demography. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with J. Martins, F. Yusuf, and G. Brooks).
"Census Costs: Rationale for Re-designing Traditional Census Data Collection Methodology with the Census-Enhanced Master Address File" (2016). pp. 287-301 in D. Swanson (ed.) The Frontiers of Applied Demography. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with A. Yacyshyn).
"A Long Term Test of the Accuracy of the Hamilton-Perry Method for Forecasting State Populations by Age."(2016). pp, 491-513 in D. Swanson (ed.) The Frontiers of Applied Demography. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with J. Tayman).
"Exploring Stable Population Concepts from the Perspective of Cohort Change Ratios: Estimating the Time to Stability and Intrinsic r from Initial Information and Components of Change." (2016) pp. 227-258 in R. Schoen (ed.). Dynamic Demographic Analysis. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with L. Tedrow and J. Baker).
"An Exploratory Examination of Population and Stability in Afghanistan." (2015). pp. 305-322 in R. Sáenz, N. Rodríguez, and D. Embrick (eds.). The International Handbook of the Demography of Race and Ethnicity. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with S. El-Badry).
"Applied Demography" (2015). pp. 839-844 in: James D. Wright (editor-in-chief). International Encyclopedia of the Social \& Behavioral Sciences, 2nd edition, Vol 1. Oxford: Elsevier.
"On the Ratio-correlation Method of Population Estimation and Its Variants." (2014). pp. 93-118 in N. Hoque and L. Potter (eds.). Emerging Techniques in Applied Demography. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with J. Tayman).
"A Loss Function Approach to Examining ACS Estimates: A Case Study of 2010 "Person per Household" Estimates for California Counties" (2012). pp. 98-100 in (D. Cork, Ed.) Case Studies/Agenda Book, Workshop on the Benefits (and Burdens) of the American Community Survey. National Research Council, National Academy of Sciences, Washington, DC. (with George Hough).
http://sites.nationalacademies.org/cs/groups/dbassesite/documents/webpage/dbasse 073124.pdf
"DOMICILE 1.0: An Agent-Based Simulation Model for Population Estimates at the Domicile Level." (2012). pp. 345-370 in N. Hoque and D. A. Swanson (eds.) Opportunities and Challenges for Applied

Demography in the $21^{\text {st }}$ Century. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with C. Griffith, M. Knight, and B. Long).
"Introduction." (2012) pp. 1-3 in N. Hoque and D. A. Swanson (eds.) Opportunities and Challenges for Applied Demography in the $21^{\text {st }}$ Century. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York (with N. Hoque).
"Disappearing Hispanics? The Case of Los Angeles County, California: 1990-2000." (2011) pp. 95-122 in R. Verdugo (ed.). The Demography of the Hispanic Population: Selected Essays. Charlotte, NC: Information Age Publishing. Charlotte, NC. (with M. Kaneshiro and A. Martinez).
"Applied Demography: Its Business and Public Sector Components." (2008) in Yi Zeng (ed.) The Encyclopedia of Life Support Systems, Demography Volume. UNESCO-EOLSS Publishers. Oxford, England. (with L. Pol).(Online at http://www.eolss.net/).
"Applied Demography at the Beginning of the $21^{\text {st }}$ Century." (2008) pp. 3-12 in S. Murdock and D. Swanson (eds.). Applied Demography in the $21^{\text {st }}$ Century. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York. (with S. Murdock).
"Measuring Uncertainty in Population Data Generated by the Cohort-Component Method: A Report on Research in Progress." (2008) pp. 165-189 in S. Murdock and D. Swanson (eds.). Applied Demography in the $21^{\text {st }}$ Century. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.
"Opportunities and Challenges for Applied Demography in the 21 ${ }^{\text {st }}$ Century" (2008). pp. 361-368 in S. Murdock and D. Swanson (eds.). Applied Demography in the $21^{\text {st }}$ Century. Springer B.V. Press. Dordrecht, Heidelberg, London, and New York.. (with S. Murdock).
"Introduction." pp. 1-8 in J. Siegel and D. Swanson (eds.) The Methods and Materials of Demography, Condensed Edition, Revised. (2004). Academic/Elsevier Press: Los Angeles. (with J. Siegel).
"Internal and Short Distance Migration." pp. 493-522 in J. Siegel and D. Swanson (eds.) The Methods and Materials of Demography, Condensed Edition, Revised. (2004). Academic/Elsevier Press: Los Angeles. (with T. Bryan and P. Morrison).
"Population Projections." pp. 561-601 in J. Siegel and D. Swanson (eds.) The Methods and Materials of Demography, Condensed Edition, Revised. (2004).Academic/Elsevier Press: Los Angeles. (with M.V. George, S. Smith, and J. Tayman).
"Glossary and Demography Timeline" pp. 751-786 in J. Siegel and D. Swanson (eds.) The Methods and Materials of Demography, Condensed Edition, Revised. (2004). Academic/Elsevier Press: Los Angeles. (with G.E. Stephan).
"Regional Survey." pp. 3-151 to 3-155 in Viability Assessment for A Repository at Yucca Mountain, Nevada. 1998. U.S. Department of Energy: Washington, D.C.
"Evaluation Approach for the Arkansas Pilot Rural Enterprise Center." pp. 114-119 in P. Shapira and J. Youtie (eds.) Evaluating Industrial Modernization Programs: Practices, Methods, and Results. 1995. Georgia Institute of Technology: Atlanta, GA. (with J. Opitz, C. Franklin, S. Miller, and F. Fenix).
"Confidence Intervals for Net Migration that Incorporate Measurement Errors in Census Counts." pp. 121-140 In K. V. Rao and J. Wicks (eds.) Issues in Applied Demography: Proceedings of the International Conference on Applied Demography. 1994. PSRC Press: Bowling Green, Ohio (with H. Kintner).
"Estimating Vital Rates from Corporate Databases: How Long Will General Motors' Salaried Retirees Live?" pp. 265-297 in H. Kintner, T. Merrick, P. Morrison, and P. Voss (eds.) Demographics: A Casebook For Business and Government. 1994. Westview Press: Boulder, Colorado (with H. Kintner).
"Overview of Demography and Management Issues in Business." pp. 92-93 In J. Wicks and D. Swanson (eds.) Issues in Applied Demography: Proceedings of the 1986 National Conference, 1986. PSRC Press: Bowling Green, Ohio.
1987.
"Public Opinion," Chapter II in A Report to the Governor and the Legislature: The Community College System in Washington. Washington State Board for Community College Education: Olympia, WA 1980. (with R. Bell).

C. Refereed Journal Articles

2022 Global Under-reporting of COVID-19 cases from January 1, 2020 to May 6, 2022." Current Science (https://www.currentscience.ac.in/Volumes/123/06/0741.pdf) (with S. Krantz and A Rao).

2022 Using Taylor's Law to Estimate Variance in Annual Unemployment by State." Review of Economics and Finance (https://refpress.org/ref-vol20-a18/) (with J. Tayman).

2022 "Two New Mathematical Equalities in the Life Table." Canadian Studies in Population (https://doi.org/10.1007/s42650-022-00065-3) (with L.M. Tedrow).

2022 "Forecasting a Tribal Population using the Cohort-Component Method: A Case Study of the Hopi." Population Research and Policy Review (https://doi.org/10.1007/s11113-022-09715-5).

2022 "Taylor's Law and the Relationship between Life Expectancy at Birth and Variance in Age at Death in a Period Life Table. Population Review 61 (1): 31-42. (with L. Tedrow).

2021 "An Example of Converting Clinical Study Mortality Data into a Life Table: The U.S. Population with Sickle Cell Disease." Open Journal of Public Health. 3 (1): 1-5.
2021. "On Mathematical Equalities and Inequalities in the Life Table: Something Old and Something New." Canadian Studies in Population 48 (June): 225-237 https://link.springer.com/article/10.1007/s42650-021-00044-0 (with L. Tedrow).

2021 "Using Synthetic Adjustments and Controlling to Improve County Population Forecasts from the Hamilton-Perry Method." Population Research and Policy Review https://doi.org/10.1007/s11113-021-09646-7 (with J. Tayman and J. Baker).

2021 "The Accuracy of Hamilton-Perry Population Projections for Census Tracts in the United States." Population Research and Policy Review. https://doi.org/10.1007/s11113-020-09601-y (with J. Baker and J. Tayman).

2020 "How Relevant is the Basic Reproductive Number Computed during COVID-19, Especially during Lockdowns?" Infection Control and Hospital Epidemiology Dec 14;1-7. doi: 10.1017/ice.2020.1376. Online ahead of print. (with A. Rao, S. Krantz, M. Bonsall, T. Kurien S. N. Byrareddy, R. Bhat and S. Kurapati).
2020. "Estimating the underlying death rate of a small population: A case study of counties in Kansas, Nebraska, North Dakota, and South Dakota." Transactions of the Kansas Academy of Science 123 (3-4): 353-369 (with J. Baker and A. Kposowa).

2020 "Estimating the Underlying Infant Mortality Rates for Small Populations, Even Those Reporting Zero Infant Deaths: A Case Study of 42 Counties in Mississippi." Journal of the Mississippi Academy of Sciences 65 (2): 183-197 (with R. Cossman).
2019. "A New Estimate of the Hawaiian Population for 1778, the Year of First European Contact." Hülili 11 (2): 203-222.
2019. "Estimating the stochastic uncertainty in sample-based estimates of infant mortality in Ghana." Journal of Economic and Social Measurement 44: 161-175. (with J. Baker and A. Kposowa).
2019. "Estimating the underlying infant mortality rates for small populations, even those reporting zero infant deaths: A case study of 66 local health areas in British Columbia." Canadian Studies in Population 46 (2): 173-187
2019. The Civil War's Demographic Impact on White Males in the 11 Confederate States: An Analysis by State and Selected Age Groups." Journal of Political and Military Sociology 46 (1): 1-26 (with R. Verdugo).
2019. "Estimating the underlying infant mortality rates for small populations: An historical study of US counties in 1970." Journal of Population Research 36 (3): 233-244 (with Jack Baker).

2019 Estimating the underlying infant mortality rates for small populations, including those reporting zero infant deaths: A case study of counties in California." Population Review 58 (2): 1-22 (with J. Baker and A. Kposowa).
2018. "A Note on rescaling the arithmetic mean for right-skewed positive distributions. Review of Economics and Finance. 14 (4):17-24 DOI Article ID: 1923-7529-2018-04-17-08 (with Jeff Tayman and Tom Bryan).
2017. "Using Modified Cohort Change and Child Woman Ratios in the Hamilton-Perry Forecasting Method." Journal of Population Research 34 (3): 209-231. (with J. Tayman).
2017. "The Civil War's Demographic Impact on White Males in Mississippi." Journal of the Mississippi Academy of Sciences 62 (3). (with R. Verdugo).
2016. "New Insights on the Impact of Coefficient Instability on Ratio-Correlation Population Estimates." Journal of Economic and Social Measurement 41: 121-143 (with J. Tayman).
2015. "On the Relationship among Values of the same Summary Measure of Error when it is used across Multiple Characteristics at the same point in time: An Examination of MALPE and MAPE." Review of Economics and Finance 5 (1): 1-14.
2013. "Consumer Demographics: Welcome to the Dark Side of Statistics." Radical Statistics 108: 38-46.
2012. "Socio-Economic Status and Life Expectancy in the United States, 1990-2010: Are We Reaching the Limits of Human Longevity?". Population Review 51 (2): 16-41 (with A. Sanford).
2012. "Population, the Status of Women, and Stability in Afghanistan." The Southern Africa Journal of Demography 13 (1): 5-36 (with S. El-Baldry).
2012. "Using Cohort Change Ratios to Estimate Life Expectancy in Populations with Negligible Migration: A New Approach." Canadian Studies in Population 39: 83-90. (with L. Tedrow).
2012. "An Evaluation of Persons per Household (PPH) Data Generated by the American Community Survey: A Demographic Perspective." Population Research and Policy Review 31: 235-266. (with G. Hough).
2011. "On Estimating a De Facto Population and Its Components." Review of Economics and Finance 5:17-31 (with J. Tayman).
2011. "MAPE-R: A Rescaled Measure of Accuracy for Cross-Sectional, Sub-national Forecasts." Journal of Population Research 28: 225-243 (with T. Bryan and J. Tayman).
2011. "Immigration and its Effect on Demographic Change in Spain." The Open Demography Journal 4:22-33 (with R. Verdugo).
2010. "New Directions in the Development of Population Estimates in the United States?". Population Research and Policy Review 29 (6): 797-818 (with J. McKibben).
2010. "Socio-economic Status and Life Expectancy in Indiana, 1970-1990." The Open Demography Journal 3:1-7. (with N. Hoque).

2010 "Business Demography in the 21st Century." Population Research and Policy Review. 29 (1): 1-3 (with F. Yusuf).

2010 "Forecasting the Population of Census Tracts by Age and Sex: An Example of the Hamilton-Perry Method in Action." Population Research and Policy Review 29 (1): 47-63 (with A. Schlottmann and R. Schmidt).
2010. "Teaching Business Demography Using Case Studies". Population Research and Policy Review. 29 (1): 93-104 (With P. Morrison).

2010 "Towards a Comprehensive Quality Assurance System for Degree Programs in Higher Education." The Montana Professor 20(1): 13-20.

2009 "Socio-Economic Status and Life Expectancy in the United States, 1970-1990." Population Review 48 (1): 39-63 (with Mary McGehee and Nazrul Hoque)
(Reprinted in the Special $60^{\text {th }}$ Anniversary Issue of Population Review, 2021)
2009 "The Socio-Demographic and Environmental Effects of Katrina: An Impact Analysis Perspective". The Open Demography Journal. 2 (11): 36-46. (with R. Forgette, J. McKibben, M. Van Boening, and L. Wombold).

2009 "Socio-economic Status and Life Expectancy in Florida, 1970 to 1990." The Florida Scientist 72 (3): 242-248. (with M. McGehee).

2009 "Socio-economic Status and Life Expectancy in Mississippi, 1970-1990. Journal of the Mississippi Academy of Sciences 54 (3-4): 190-195 (with M. McGehee).

2009 "Hurricane Katrina: A Case Study of Its Impacts on Medical Service Providers and Their Client Populations." The Open Demography Journal 2: 8-17.

2009 "A Model Growth Curve for Juvenile Age Estimation using Diaphyseal Long Bone Lengths among Ancient Maya Populations." Latin American Antiquity 20 (1): 3-14 (with M. Danforth, G. Wrobel, and C. Armstrong).

2009 "After a Disaster: Lessons in Survey Methodology from Hurricane Katrina." Population Research and Policy Review 28: 67-92 (with T. Henderson, M. Sirois, A. Chia-Chen Chen, C. Airriess, and D. Banks).

2009 "Before, Now, and After: Assessing Hurricane Katrina Relief." Population Research and Policy Review 28: 31-42 (with R. Forgette, B. Dettrey, and M. Van Boening).

2008 "The Demographic Effects of Hurricane Katrina on the Mississippi Gulf Coast: An Analysis by Zipcode." Journal of the Mississippi Academy of Sciences. 53 (4): 213-231.

2008 "Psychologists and Hurricane Katrina: Natural Disaster Response through Training, Public Education, and Research." Training and Education in Professional Psychology 2: 83-88 (with S. Schulenberg, K. Dellinger, A. Koestler, A. Kinnell, R. Forgette, and M. Van Boening).

2008 "Applied Demography in Action: A Case Study of Population Identification." Canadian Studies in Population 35 (1): 133-158.

2007 "On MAPE-R as a Measure of Cross-sectional estimation and forecast accuracy." Journal of Economic and Social Measurement 32 (4): 219-233 (with C. Coleman).

2007 "Assessing Katrina's Demographic and Social Impacts on the Mississippi Gulf Coast." Journal of the Mississippi Academy of Sciences 54 (2): 228-242 (with R. Forgette, M. Van Boening, C. Holley, and A. Kinnell).

2007 "Determinants of Government Aid to Katrina Survivors: Evidence from Survey Data." Southern Economic Journal 74 (2): 344-362. (with W. Chappell, R. Forgette, and M. Van Boening).

2007 "Providing Census Tabulations to Government Security Agencies in the United States: The Case of Arab-Americans." Government Information Quarterly 24(2): 470-487. (with S. El-Badlry).

2006 "The United States Census at the Dawn of the $21^{\text {st }}$ Century." Journal of Economic and Social Measurement. 31(3-4): 139-149. (with Charles G. Renfro).

2006 "The Roots of Conflict over U.S. Census Counts in the Late $20^{\text {th }}$ Century and Prospects for the $21^{\text {st }}$ Century." Journal of Economic and Social Measurement 31 (3-4): 185-205 (with P. Walashek).

2006 "An Evaluation of the American Community Survey: Results from the Oregon Test Site." Population Research and Policy Review 25(3): 257-273. (with G. Hough).

2006 "A Comparison of in-class and Online Student Evaluations" Delta Education Journal 3(2): 37-47.
2005 "Deep Structure Learning and Statistical Literacy." Delta Education Journal 3(1): 41-52.
2004 "Contemporary Developments in Applied Demography within the United States." Journal of Applied Social Science 21 (2): 26-56 (with L. Pol).

2004 "Advancing Methodological Knowledge within State and Local Demography: A Case Study." Population Research and Policy Review 23 (August): 379-398.

2000 "A Note on the Measurement of Accuracy for Subnational Demographic Estimates." Demography 37 (May): 193-201 (with J. Tayman and C. Barr).

1999 "In Search of the Ideal Measure of Accuracy for Subnational Demographic Forecasts." Population Research and Policy Review 18: 387-409 (with J. Tayman and C. Barr).

1998 "Merging Methods and Judgment for K-12 Enrollment Forecasting." Educational Research Service Spectrum 16 (Fall): 24-31 (with G. Hough, R. Lycan, C. Clemans, and J. Rodriguez).

1999 "On the Validity of MAPE as a Measure of Population Forecast Accuracy." Population Research and Policy Review 18: 299-322 (with J. Tayman).

1998 "Toward an Assessment of Continuous Measurement: A Comparison of Returns with 1990 Census Returns for the Portland Test Site." Journal of Economic and Social Measurement. 24: 295-308 (with G. Hough).

1998 "In Defense of the Net Migrant." Journal of Economic and Social Measurement. 24: 155-170 (with S. Smith).
1997 "On Teaching Statistics." Voprosy Statistiki 7: 77-80. (with J. McKibben, in Russian)
1997 "Forecasting For School Attendance Zone Changes: Merging GIS and Demographic Methods With Local Expert Judgment." Market and Demographic Analysis 3(6): 23-31(with G. Hough, D. Lycan, and I. Sharkova, in Chinese).

1997 "Linking Substance and Practice: A Case Study of the Relationship Between Socio-Economic Structure and Population Estimation." Journal of Economic and Social Measurement 24: 135-147. (with J. McKibben).

1997 "Socioeconomic Impacts of the Proposed Federal Gaming Tax." International Journal of Public Administration 20: 1675-1698 (with R. Schmidt and C. Barr).

1996 "Socioeconomic Status, Race and Life Expectancy In Arkansas, 1970-1990." Journal of The Arkansas Medical Society 93 (9): 445-447. (with M. McGehee).

1996 "On the Utility of Population Forecasts." Demography (33 (4): 523-528. (with J. Tayman).
1996 "Ties That Bind: A Case Study of The Link Between Employers, Families and Health Benefits." Population Research and Policy Review 15(5-6): 509-523 (with H. Kintner).

1996 "What Is Applied Demography?" Population Research and Policy Review 15 (5-6): 403-418 (with T. Burch and L. Tedrow).

1995 "Between a Rock and a Hard Place: The Evaluation of Demographic Forecasts." Population Research and Policy Review 14:233-249 (with J. Tayman).
1995 "Estimating the Population of Rural Communities By Age and Gender: A Case Study of the Local Expert Procedure." Small Town (May-June):14-21 (with J. Carlson, L. Roe, and C. Williams).
1995 "Mean Square Error Confidence Intervals For Measuring Uncertainly in Intercensal Net Migration Estimates: A Case Study of Arkansas, 1980-1990." Journal of Economic and Social Measurement 21:85-126 (with H. Kintner and M. McGehee).

1995 "On the Utility of Lagged Ratio-Correlation as a Short-term County Population Estimation Method: A Case Study of Washington State." Journal of Economic and Social Measurement 21:1-16 (with D. Beck and J. Tayman).

1994 "A New Short-term County Population Projection Method." Journal of Economic and Social Measurement 20: 25-50 (with D. Beck).

1993 "Toward Measuring Uncertainty in Estimates of Intercensal Net Migration." Canadian Studies In Population 20 (2):153-191 (with H. Kintner).

1993 "Measurement Errors in Census Counts and Estimates of Intercensal Net Migration." Journal of Economic and Social Measurement 19 (2):97-120 (with H. Kintner).

1992 "A Variation of the Housing Unit Method for Estimating the Population of Small, Rural Areas: A Case Study of the Local Expert Procedure." Survey Methodology 18(1):155-163 (with J. Carlson and L. Roe).

1992 "The Relationship Between Life Expectancy and Socioeconomic Status in Arkansas, 1970 and 1990." The Journal of the Arkansas Medical Society 89 (December):333-335.

1989 "Confidence Intervals for Postcensal Population Estimates: A Case Study for Local Areas." Survey Methodology 15 (2): 271-280.

1989 "The Impact of Census Error Adjustments on State Population Projections: The Case of Ohio. "Ohio Journal of Science 89 (1):12-18 (with Bennett, R. Prevost, K. Vaidya and R. Yehya).

1989 A State-Based Regression Model for Estimating Substate Life Expectancy." Demography 26 (February):161-170.

1988 "Intercensal Net Migration Among the Three Major Regions of Iraq: 1957-1977." Janasamkhya 6 (December):93-126 (with A. Al-Jiboury).
1988 "Temporal Variations in the Relationship Between Infant Mortality and Economic Status." Social Indicators Research 20:217-227 (with E.G. Stockwell, and J. Wicks).
1988 "Are Geographic Effects On Life Expectancy In Ohio Spurious Because of Race? " Ohio Journal of Science 88 (June):135-142 (with E.G. Stockwell).

1988 "Economic Status Differences in Infant Mortality by Cause of Death." Public Health Reports 103 (March-April):135-142 (with E.G. Stockwell and J. Wicks).
1987 "Judging the Accuracy of the 1980 Census for Small Towns: An Analysis of Survey and Related Data From the Long Form." Small Town (July-August) 4-11 (with J. Van Patten).

1987 "The Age-Cause Proxy Relationship in Infant Mortality." Social Biology 34:249-253 (with E.G. Stockwell and J. Wicks).

1987 "Trends In the Relationship Between Infant Mortality and Socioeconomic Status." Sociological Focus 20 (October):319-327 (with E.G. Stockwell and J. Wicks).

1987 "Public Policy and the Socioeconomic Mortality Differential In Infancy." Population Research and Policy Review 6 (Fall):105-121 (with E.G. Stockwell, M. Bedard, and J. Wicks).

1986 "How Accurate was the Census of Small Towns?" Small Town (January-February): 27-31 (with J. Van Patten).

1986 "Timing the Second Birth: Fecundability Models For Selected Race and Age Groups in Hawaii." Janasamkhya 4 (December):82-113.

1986 "Geographic Variation of Longevity In Ohio, 1930 and 1980." The Ohio Journal of Science 86 (September):144-149 (with E.G. Stockwell).

1986 "Missing Survey Data in End-Use Energy Models: An Overlooked Problem." The Energy Journal 7 (July):149-157.
1986 "Age at First Birth and the Length of the Second Birth Interval: Is a Positive Relationship Universal in Modern Populations?" Janasamkhya 4 (June):57-64.

1985 "Ohio's Population in the Year 2000." Ohio Cities and Villages (August): 9-11 (with J. McKibben, L. Mortezo, R. Prevost and K. Wright).

1984 "Improving the Measurement of Temporal Change in Regression Models Used For County Population Estimates." Demography 20(August): 373-382 (with L. M. Tedrow).
1984 "SUREX: Testing Survival Data for Exponentiality on the VIC-20 Microcomputer." The American Statistician 38 (February):69-70.

1981 "Allocation Accuracy in Population Estimates: An Overlooked Criterion with Fiscal Implications." pp. 13-21 in Small Area Population Estimates, Methods and Their Accuracy and New Metropolitan Areas Definitions and Their Impact on the Private and Public Sector, Series GE-41 No.7, U.S. Bureau of the Census.

1980 "Improving Accuracy in Multiple Regression Estimates of County Populations Using Principles from Causal Modeling. Demography 17 (November):413-427.

1978 "An Evaluation of Ratio and Difference Regression Methods for Estimating Small, Highly Concentrated Populations: The Case of Ethnic Groups." Review of Public Data Use 6 (July):18-27.

1977 "Two Parameter Regression Estimates of Current Life Expectancy at Birth: Part II." Asian \& Pacific Census Forum 5 (May): 5-10 (with J. A. Palmore Jr. and C. Sundaram).
1977 "An Alternative Geometric Representation of the Correlation Coefficient." The American Statistician 31 (February): 52.
1976 "Two Parameter Regression Estimates of Current Life Expectancy at Birth: Part I." Asian \& Pacific Census Forum 3 (November): 5-10 (with J. A. Palmore Jr.).

1976 "A Sampling Distribution and Significance Test For Differences in Qualitative Variation." Social Forces 55:182-184.

1976 "On the Equivalence of Categorical Level Variation and a Ratio Level Concept of Variance." Western Sociological Review 7 (Summer):57-66.

1975 "The Division of Labor: Further Exploration in the Analysis of an Ecological Concept." Western Sociological Review 6 (Summer):72-82.

1973 "A Comment on the Clemente and Gibbs-Martin Measures of the Division of Labor: Their Relation to Amemiya's Index of Economic Differentiation." Pacific Sociological Review 16 (July):401-405.

D. Proceedings

"Working Life Expectancy of Major League Pitchers and Forecasting the Number of them: Tasks made easy by using the Cohort Change Ratio Method. pp. 93-102 in 2018 Proceedings of the Social Statistics Section, American Statistical Association, Alexandria, VA (with J. Baker, J. Tayman, and L. Tedrow).
"Measuring Uncertainty in Population Forecasts: A New Approach." pp. 203-215 in Marco Marsili and Giorgia Capacci (eds.) Proceedings of the $6^{\text {th }}$ EUROSTAT/UNECE Work Session on Demographic Projections. (2014) National Institute of Statistics, Rome, Italy (with J. Tayman).
"Using Cohort Change Ratios to Estimate Life Expectancy in Populations Closed to Migration: A New Approach." Actuarial Research Conference Proceedings 2011.1 (available online athttp://www.soa.org/library/proceedings/arch/2011/arch-2011-iss1.aspx). (with L. Tedrow).
"CEMAF as a Census Method: A Proposal for a Re-Designed Census and a Re-Designed Census Bureau." pp. 229-232 in 2010 Proceedings of the Social Statistics Section, American Statistical Association, Alexandria, VA. 2010 (with P. Walashek).
"Using Cases in the Teaching of Statistics." pp. 21-30 in H. E. Klein (Ed.) Interactive Innovative Teaching and Training: Case Method and Other Techniques. World Association for Case Method Research and Application. Needham, MA, 2003. (with R. Patten).
"New Directions in Population Forecasting." pp. 634-643 in I. Zelinka, P. Chalupa, P. Hustak, and M. Dlapa (Eds.) Proceedings of the $4^{\text {th }}$ International Conference on Prediction and Non-Linear Dynamics (CD-ROM). Institute of Information Technologies, Faculty of Technology, Tomas Bata University, Zlin, Czech Republic, 2001 (with S. Smith and J. Tayman).
"On Measuring Accuracy in Subnational Demographic Forecasts." Proceedings of the 52nd Session of the International Statistical Institute, International Statistical Institute, Voorburg, Netherlands, 1999. located on-line at http://www.stat.fi/isi99/proceedings.html. 1999. (with C. Barr and J. Tayman).
"Teaching Statistics to Non-Specialists: A Course Aimed at Increasing Both Learning and Retention." pp. 159166 in L. Pereira-Mondoza, L. Kea, T. Kee, and W. Wong (Eds.) Statistical Education - Expanding the Network: Proceedings of the Fifth International Conference on Teaching Statistics. International Association for Statistical Education, International Statistical Institute, Voorburg, Netherlands. 1999. (with J. McKibben).
"Estimating the Population of Rural Communities By Age and Gender: A Case Study of the Local Expert Procedure." Proceedings of the 1993 Public Health Conference on Records and Statistics. National Center for Health Statistics, DHHS Publication No. [PHS] 94-1214. Hyattsville, Maryland, 1994 (with L. Roe Carlson and C. Williams).
"A Variation of the Housing Unit Method for Estimating the Age and Gender Distribution of Small Rural Areas. pp.1918-1923 in " High Level Radioactive Waste Management: Proceedings of the 1993 International Conference. American Nuclear Society and American Society of Civil Engineers, New York, New York, 1993. (with J. Carlson, L. Roe, and C. Williams).
"The Development of Small Area Socioeconomic Data to be Utilized for Impact Analysis: Rural Southern Nevada." pp.985-990 in High Level Radioactive Waste Management: Proceedings of the 1990 International Conference, American Nuclear Society and American Society of Civil Engineers, New York, New York, 1990. (with J. Carlson and C. Williams).
"Technical Skills and Training Needs of Applied Demographers." in 1987 Proceedings of the Statistical Education Section, American Statistical Association, American Statistical Association, Alexandria, VA. 1987 (with L. Rosen and H. Kintner).
"Estimating Life Expectancy For Health Service Areas: A Test Using 1980 Data for Indiana." in 1986 Proceedings of the Social Statistics, American Statistical Association, American Statistical Association, Alexandria, VA, 1986.
"Missing Survey Data in End-Use Energy Models: An Overlooked Problem." in 1985 Proceedings of The Business Statistics Section, American Statistical Association, American Statistical Association, Alexandria, VA, 1985.
"Issues in End-Use Survey Research." in Proceedings from The Panel on Improving Methods of Program Evaluation, American Council for an Energy-Efficient Economy, Volume K, ACEEE 1984 Summer Study on Energy Efficiency in Buildings, American Council for an Energy-Efficient Economy, Washington, DC, 1985, (with S. Buller, R. Canter, L. Guliasi, and R. Wong).
"Improving the Measurement of Temporal Change in Regression Models Used for County Population Estimates." in 1983 Proceedings of the Social Statistics Section, American Statistical Association, American Statistical Association Alexandria, VA, 1983 (with L. M. Tedrow).
"Getting at the Factors Underlying Enrollment Trends Using Statistical Decomposition Techniques." in 1983 Proceedings of the College and University Systems Exchange College and University Systems Exchange, Boulder Colorado, 1983 (with S. Story).
"Current State Population Forecasts." in Proceedings of the Washington State Resources Council Symposium: Rapid Community Growth- Is it Manageable? Washington State Resources Council; and the Cooperative Extension Services, Washington State University, Pullman, Washington 1979.
"A Method of Estimating Annual Age-Standardized Mortality Rates for Counties: Results of a Test Using Washington State Data. in 1979 Proceedings of the Social Statistics Section, American Statistical Association, American Statistical Association, Alexandria, VA, 1979 (with L. L. Swanson).

E. Non-refereed Articles

2022 "America's Post-Pandemic Future: A Demographic Perspective." PAA Affairs (https://www.populationassociation.org/blogs/david-swanson/2022/01/04/americas-post-pandemic-future-a-demographic-perspe?CommunityKey=a7bf5d77-d09b-4907-9e17468af4bdf4a6) (with Peter Morrison, Dudley Poston, Steven Krantz, and Arni Rao).

2022 "Been vaccinated?" Northwest Citizen, February 24 ${ }^{\text {th }}$ (https://nwcitizen.com/entry/been-vaccinated).

2022 "Income Inequality in Whatcom County." Northwest Citizen, February $8^{\text {th }}$ (https://nwcitizen.com/entry/income-inequality-in-whatcom-county/writer/3493).

2021 "The Cost of Trying to Help." Northwest Citizen, December 12 ${ }^{\text {th }}$
(https://nwcitizen.com/entry/the-cost-of-trying-to-help/writer/3493).
2021 "Broadband Access During a Pandemic: 2020 Census Results for the Hopi and Lummi Reservations. PAA Affairs. 11-29-2021 https://www.populationassociation.org/blogs/david-swanson/2021/11/29/broadband-access-during-a-pandemic-2020-census?CommunityKey=a7bf5d77-d09b-4907-9e17468af4bdf4a6

2021 "Broadband Access during a Pandemic: 2020 Census Results for the Hopi and Lummi Reservations." Northwest Citizen, October $11^{\text {th }}$ (https://nwcitizen.com/entry/the-lack-of-broadband-during-a-pandemic-2020-census-results-for-the-hopi-and-lummi-reservations/writer/3493).

2021 "The Census: Protecting Privacy versus Creating Useless Data." Northwest Citizen. May $18^{\text {th }}$ (https://nwcitizen.com/entry/the-census-protecting-privacy-versus-creating-uselessdata).

2021 "The Effect of the Differential Privacy Disclosure Avoidance System Proposed by the Census Bureau on 2020 Census Products: Four Case Studies of Census Blocks in Alaska" PAA Affairs (https://www.populationassociation.org/blogs/paa-web1/2021/03/30/the-effect-of-the-differential-privacy-disclosure?CommunityKey=a7bf5d77-d09b-4907-9e17-468af4bdf4a6) (with T. Bryan and R. Sewell).

2021 "Life Expectancy in the U.S. for the Population with Sickle Cell Disease. PAA Affairs (https://www.populationassociation.org/blogs/emily-merchant1/2021/01/31/life- expectancy-sickle-cell?CommunityKey=a7bf5d77-d09b-4907-9e17-468af4bdf4a6).
2020. "RE: Time varying basic reproductive number computed during COVID-19, especially during lockdowns, could be questionable." Science 23 October 23, 2020 (https://science.sciencemag.org/content/early/2020/09/29/science.abd7672/tab-e-letters) (with A. Rao, S. Krantz, M. Bonsall, T. Kurien, S. Byrareddy, R. Bhat, and S. Kurapati).
2020. "A Simple Method for Estimating the Number of Unconfirmed COVID-19 Cases in a Local Area that Includes a Confidence Interval: A Case Study of Whatcom County, Washington MedRxIIV. doi: https://doi.org/10.1101/2020.04.30.20086181. (with R. Cossman)
2020. "Estimating Working Life Expectancy from Cohort Change Ratios: An Example using Major League Pitchers." Casualty Actuarial Society E-Forum. Summer (https://www.casact.org/pubs/forum/20sumforum/09 R Swanson-et-al.pdf) (with J. Baker, J. Tayman, and L. Tedrow).

2020 "The Thanksgiving Surge: How Fared Whatcom County?" Northwest Citizen. December $12^{\text {th }}$ (https://nwcitizen.com/entry/the-thanksgiving-surge-how-fared-whatcom-county/writer/3493.)

2020 "Drilling Deeper into Whatcom County: Covid-19 \& Political Orientation." Northwest Citizen Nov. 19th (https://nwcitizen.com/entry/drilling-deeper-into-whatcom-county-covid-19-political-orientation/writer/3493 (with E. Tyberg)

2020 "Did Trump Help Democrats take the 2020 election in Washington?" Northwest Citizen. November $15^{\text {th }}$ (https://nwcitizen.com/entry/did-trump-help-democrats-take-the-2020-election-in-washington/category/ (with E. Tyberg)

2020 "Did Trump Help Democrats take the election?" Northwest Citizen. November 7 $7^{\text {th }}$ (https://nwcitizen.com/entry/did-trump-help-democrats-take-the-election/writer/3493) (with E. Tyberg).
2020. "The Last Stand." Northwest Citizen. October 17 th (https://nwcitizen.com/writer/3493/David\ A.\ Swanson.) (with E. Tyberg).
2020. "Covid-19 Deaths in Whatcom County. Northwest Citizen. July $26^{\text {th }}$ (https://nwcitizen.com/entry/covid-19-deaths-in-whatcom-county/writer/3493).
2020. "Republican leaning States take the Lead. Northwest Citizen. July $21^{\text {st }}$ (https://nwcitizen.com/entry/republican-leaning-states-are-now-in-the-lead/writer/3493) (With E. Tyberg).
2020. "Update on the Covid-19 Warning System for San Juan County. Northwest Citizen. July $18^{\text {tg }}$ (https://nwcitizen.com/entry/republican-leaning-states-are-now-in-the-lead/writer/3493) (with Peter Morrison).
2020. "Is Being Republican a Risk to One's Health and the Health of Others? Northwest Citizen. July $3^{\text {rd }}$ (https://nwcitizen.com/entry/is-being-republican-a-risk-to-ones-health-and-the-health-of-others/writer/3493 (with E. Tyberg and P. Morrison).
2020. "Revisiting the Estimation of Unconfirmed Cases of Covid-19 in Whatcom County." Northwest Citizen. June 27 ${ }^{\text {th }}$ (https://nwcitizen.com/entry/Revisting-the-Estimation-of-Unconfirmed-Cases-of-COVID-19-in-Whatcom-County/writer/3493 (with R, Cossman)
2020. "A Tale of 30 Counties: Re-opening Washington and Political Orientation." Northwest Citizen June $21^{\text {st }}$ (https://nwcitizen.com/entry/a-tale-of-39-counties-re-opening-washington-and-politicalorientation/writer/3493 (with E. Tyberg).
2020. "A Tale of Two Counties: The Re-opening of Skagit and Whatcom." Northwest Citizen. June $16^{\text {th }}$ (https://nwcitizen.com/entry/a-tale-of-two-counties-re-opening-skagit-and-whatcom/writer/3493 (with E. Tyberg).
2020. "Early Warning System for San Juan County and other Seasonal Resort Communities." Northwest Citizen. June $2^{\text {nd }}$ (https://nwcitizen.com/entry/an-early-warning-covid-19-alert-and-response-protocol-for-san-juan-county-and-other-seasonal-resort-communities/writer/3493) (with P. Morrison).
2020. "Forecasting Covid-19 in Whatcom County, Washington." PAA Affairs_(Spring) 4:5.
2020. "The Lack of Containment Measures: Does it Constitute Senicide?" Northwest Citizen_ May $7^{\text {th }}$ (https://nwcitizen.com/en Conoboy)try/the-lack-of-containment-measures-does-it-constitutesenicide). (Assisted by R. Conoboy).
2020. "Monitoring the Covid-19 Pandemic in Benton County: The Good, the Bad, and the Ugly." Northwest Citizen. May $4^{\text {th }}$ (https://nwcitizen.com/entry/monitoring-the-covid-19-pandemic-in-benton-county-the-good-the-bad-and-the-ugly).
2020. "Whatcom County Covid-19: The Final Report." Northwest Citizen. May $1^{\text {st }}$ (https://nwcitizen.com/entry/whatcom-county-the-final-report
2020. "Modeling and the Covid-19 Pandemic: A Local Area Perspective." Northwest Citizen. April $23{ }^{\text {rd }}$ (https://nwcitizen.com/entry/modeling-and-the-covid-19-pandemic-a-local-areaperspective).
2020. "Monitoring the Covid-19 Surge Peak in Benton County - Update Possible?" Northwest Citizen. April $20^{\text {th }}$ (https://nwcitizen.com/entry/monitoring-the-covid-19-surge-peak-in-benton-county-update-possible).
2020. "Monitoring the Covid-19 Surge Peak in Whatcom County - Update 3." Northwest Citizen. April 17 ${ }^{\text {th }}$ (https://nwcitizen.com/entry/monitoring-the-covid-19-surge-peak-in-whatcom-county-update-3).
2020. "How Many Unconfirmed Cases of Covid-19 are there in Whatcom County?" Northwest Citizen. April 14 $4^{\text {th }}$ (https://nwcitizen.com/entry/how-many-unconfirmed-cases-of-covid-19-are-in-whatcom-county). (With R. Cossman).
2020. "Monitoring the Covid-19 Surge Peak in Whatcom County - Update 2.

Northwest Citizen. April $10^{\text {th }}$ (https://nwcitizen.com/entry/monitoring-the-covid-19-surge-peak-in-whatcom-county-update-2).
2020. "Monitoring the Covid-19 Surge Peak in Benton County." Northwest Citizen. April $7^{\text {th }}$. (https://nwcitizen.com/entry/monitoring-the-covid-19-surge-peak-in-benton-county)
2020. "Covid-19 Hospitalizations in Whatcom County." Northwest Citizen. April $5^{\text {th }}$ (https://nwcitizen.com/entry/how-many-unconfirmed-cases-of-covid-19-are-in-whatcom-county).
2020. "Monitoring the Covid-19 Surge Peak in Whatcom County - Update 1." Northwest Citizen. April $3^{\text {rd }}$. (https://nwcitizen.com/entry/monitoring-the-covid-19-surge-peak-in-whatcom-county-update-i).
2020. "Forecasting the Covid-19 Surge Peak in Whatcom County." Northwest Citizen March $30^{\text {th }}$. (https://nwcitizen.com/entry/forecasting-the-covid-19-surge-peak-in-whatcom-county).

2020 " 23,000 Payday Loan Centers and an Average Credit Card Debt of $\$ 10,300$: Welcome to Low Income America where Average Expenditures on Basics Exceed Average Income by 340%." PAA Affairs (Winter): 6.

2019 "The end of the Census." PAA Affairs (Fall): 6-7 (with P. Walashek).

2019 "Sanctuary Cities get a Census Bonus." Opinion/Commentary Wall Street Journal. 16 July 2019. (with P. Morrison).
2018. "The decision to add a citizenship question in Census 2020 is a non-starter." PAA Affairs (Summer): 8-9.
2016. "On Equalities and Inequalities in Stationary Populations." Casualty Actuarial Society EForum (http://www.casact.org/pubs/forum/16fforum/03-SwansonTedrow.pdf). A copy of this paper is also published by the Actuarial Research Clearing House, Vol. 17.1, https://www.soa.org/Library/Proceedings/Arch/2017/arch-2017-iss1.aspx (with L. Tedrow).
2016. "Life Chances: Income and Expenditure in Australia." PAA Affairs (Summer): 6. (with J. Martins).
2012. "A Loss Function Approach to Examining ACS Estimates: A Case Study of 2010 "Persons Per Household" Estimates for California Counties." pp 98-100 in (D. Cork, ed.) Case Studies and User Profiles, Workshop on the Benefits (and Burdens) of the American Community Survey. National Academies of Science, Committee on National Statistics.
2010. "Kundalini Demography." Journal of Irreproducible Results 51(December): 24-25. .
2008. "Population Aging and the Measurement of Dependency: The Case of Germany." Applied Demography 21 (April): 8-10.

2002 "Meeting Local Information Needs: A Case Study in Team Applied Demography." Applied Demography 14 (Spring): 1-3. (with P. Morrison, C. Popoff, I. Sharkova, and J. Tayman).

1998 "The State of Liberal Education, Part III: Academic Thinking and Institutional Development." Liberal Education 84 (4): 40-47. (with D. Atkinson and M. Reardon).

1998 "The Tragedy of the Census." Applied Demography 14 (Summer): 1-3.
1998 "The State of Liberal Education, Part II: Assessing Institutional Perspectives." Liberal Education 84 (2): 26-31. (with D. Atkinson and M. Reardon).
1994. "Robert C. Schmitt and His Contributions." Applied Demography 9 (Spring): 1-2.

1994 "Ratio-Correlation: An Important Tool in a Sparsely Stocked Box." Applied Demography 9 (Spring): 7-9. (with T. J. Lowe).

1990 "Population Estimation Bibliography" pp. 41-52 in State And Local Agencies Preparing Population and Housing Estimates, Current Population Reports, Series P-25, No. 1063, U.S. Bureau of The Census, Washington, D.C. (with L. M. Tedrow).

1987 "How to Forecast VCR Penetration." American Demographics (December):44-45 (with B. Klopfenstein).

1987 "Profiles of Academic, Government and Private Sector Demographers." Population Today 15 (July): 6-8 (with H. Kintner).

1986 "Evaluating Population Estimates and Short-Term Forecasts." Applied Demography 2 (November): 5-6.

1986 "The Graduate Program in Applied Demography at Bowling Green." Applied Demography 2 (August): 3-5.

1985 "A New Technique for Assessing Error in Ratio-Correlation Estimates of Population: A Preliminary Note." Applied Demography 1 (November): 1-4 (with R. Prevost).

1985 "New Academic Program in Applied Demography.' Applied Demography 1 (September): 9.
1983 "Special Census Results for Oil-Related Worksites in the North Slope Borough." Alaska Economic Trends 3 (March):104.

1982 "North Slope Population Up 68.6 Percent." Alaska Journal of Commerce and Pacific Rim Reporter (March 1): 22.

1979 "Decomposing Change in Population Based Economic Indicators: The Female Labor Force Participation Rate, 1960-1970." Economic Forecast for Washington State: 1979-81, Third Quarter Report: 12-18.

1979 "Trends in the Number of Households." Economic Forecast for Washington State: 1979-81, Second Quarter Report: 7-11.

1979 "Trends in the Age-Related Components of Starter Housing Demand." Economic Forecast_for Washington State: 1979-81, First Quarter Report: 8-11.

1978 "Changes in the Working-Age Population." Economic Forecast for Washington State: 1978-80, Fourth Quarter Report: 13-16.

F. Reports (Published)

Vision 2007: A Plan for Integrating University Units in Mikkeli (Fall, 2002). Report Jointly prepared by Mikkeli Elements of Helsinki University and the Helsinki School of Economics and Business Administration (with P. Mustalampi and P. Siiskonen).

Self-Evaluation Report on Regional Impact (September, 2002) Mikkeli Business Campus, Helsinki School of Economics and Business Administration, Mikkeli Finland (with S. Lampinen, and P. Mustalampi).

HSE-Mikkeli BScBA Degree Program Course Schedule for 2002-2003 (April, 2002). Mikkeli Business Campus, Helsinki School of Economics, Mikkeli, Finland (with M. Syväoja et al.).

BScBA Student Handbook. (April, 2002). Mikkeli Business Campus, Helsinki School of Economics, Mikkeli Finland (with D. Atkinson).

BScBA Course Catalog, 2002-2003. (April, 2002) Mikkeli Business Campus, Helsinki School of Economics, Mikkeli Finland (with D. Atkinson, M. Syvaoja, and S. Pynnönen).

BScBA Faculty Handbook. (April, 2002). Mikkeli Business Campus, Helsinki School of Economics, Mikkeli, Finland. (with D. Atkinson).

The BScBA Quality Assurance System: Developing a Workable Faculty, Course, and Student Evaluation Program. (March, 2002). Mikkeli Business Campus, Helsinki School of Economics, Mikkeli Finland.

BScBA Course Catalog, 2001-2002. (July, 2001) Mikkeli Business Campus, Helsinki School of Economics, Mikkeli Finland (with V-P. Heiskanen, P. Reponen and S. Pynnönen).

BBA. Course Catalog, 2000-2001. (May, 2000) Mikkeli Business Campus, Helsinki School of Economics, Mikkeli Finland (with J. Masalin).

Technical Documentation and Summary Findings of the 1997 Survey in Lincoln County, Nevada. U.S. Department of Energy, Office of Civilian radioactive Waste Management (DE-AC0191RW00134). (May, 1998) U.S. Department of Energy, Yucca Mountain Project, Las Vegas, Nevada.

The 1997 'Biosphere’ Food Consumption Survey: Summary Findings and Technical Documentation. U.S. Department of Energy, Office of Civilian radioactive Waste Management (DE-AC01-91RW00134). (November, 1997) U.S. Department of Energy, Yucca Mountain Project, Las Vegas, Nevada.

A Changing Arkansas: As Reflected by Population and Related Data. (1997). Institute For Economic Advancement, University of Arkansas at Little Rock (with M. McGehee and C. FarrOnuora).

Conditions at Mid-Decade: Economic, Demographic, and Attitudinal Conditions in Arkansas. (1995). Arkansas Institute of Government, College of Professional Studies, University of Arkansas at Little Rock. (with J. Shelnutt, M. McGehee, and R. Hy).

Why Do Group Health Benefit Populations Change Size? Case Study of General Motors Salaried Population, 1983-1990. General Motors North American Operations Research and Development Center Report R \& D-B104 (December, 1993). General Motors Corporation, Warren, Michigan (with H. Kintner).

Projections of The Population of Arkansas By County, Age, Gender, and Race: 1990 to 2010. (September, 1993) Arkansas Institute For Economic Advancement, University of Arkansas at Little Rock (with M. McGehee).

Arkansas Net Migration By Age, Gender, Race, and County: 1980-1990 (August, 1993). Arkansas Institute for Economic Advancement, University of Arkansas at Little Rock (with M. McGehee).

Enrollment Projections For The University of Arkansas at Little Rock, Fall Term, 1991 to Fall Term, 2001 (March, 1993). Arkansas Institute for Economic Advancement, University of Arkansas at Little Rock (with G. Chamberlin).

An Overview of Trends in Saline County and An Analysis of Potential Uses of The ALCOA Property (February, 1993). Arkansas Institute For Economic Advancement, University of Arkansas at Little Rock (with S. Breshears et al.).

The Impact of Downsizing and Demographic Processes on the size of GM's Salaried Health
Benefits Population, 1983-1990. General Motors Research Laboratories Report OS-238. (March, 1993). General Motors Research Laboratories, Warren, Michigan (with H. Kintner).

Abridged Life Tables By Race and Sex, Arkansas, 1970, 1980, and 1990 (December, 1992) Arkansas Institute For Economic Advancement, University of Arkansas at Little Rock (with M. McGehee).

Estimating Demographic Rates from Employer Administrative Databases (July, 1992). General Motors Research Laboratories Report OS 30-75. General Motors Research Laboratories, Warren, Michigan (with H. Kintner).

Measurement Errors in Census Counts and Estimates of Intercensal Net Migration (June, 1992). GM Research Laboratories Report OS 30-73. General Motors Laboratories, Warren, Michigan (with H. Kintner).

Tacoma-Pierce County Employment and Training Consortium Job Retention Research Project (March, 1992). Center for Social Research \& Public Policy, Pacific Lutheran University (with J. Schiller et al.).

Demographic Analysis of the Lummi Indian Reservation (September, 1991) Demographic Research Laboratory, Western Washington University. (with L. M. Tedrow).

1991 Tacoma Area Quality of Life Survey I: Summary Findings and Technical Documentation. Center for Social Research \& Public Policy, Pacific Lutheran University (December, 1991).

1991 Pierce County Recycling and Solid Waste Management Survey I: Summary Findings and
Technical Documentation. Center for Social Research \& Public Policy, Pacific Lutheran University (October, 1991).

1990 Tacoma Area Quality of Life Survey I: Summary Findings and a Technical Documentation. Center for Social Research \& Public Policy, Pacific Lutheran University. (March, 1991).

Perspectives on Change in GM's Salaried Health Benefits Population, Part II: Changes by Age and Gender (February, 1991). GM Research Laboratories Report OS-181. General Motors Research Laboratories, Warren, Michigan (with H. Kintner).

Perspectives on change in the GM Salaried Benefits Population, Part I: Trends in Enrollees, Dependents, and Members (January, 1991). GM Research Laboratories Report OS-181. General Motors Research Laboratories, Warren, Michigan (with H. Kintner).

The Development of Confidence Intervals For Estimates of Intercensal Net Migration. (October, 1990). GM Research Laboratories Report OS-170. General Motors Research Laboratories Report OS-170. GM Motor Research Laboratories, Warren, Michigan (with H. Kintner).

Confidence Intervals For the Populations: A Case Study of General Motors' Salaried Retirees. (August, 1990) GM Research Laboratories Report GMR-7124. General Motors Research Laboratories, Warren, Michigan (with H. Kintner).

Confidence Intervals for Forecasting Health Care Costs For GM's Retirees, Part I: An Evaluation of Three Alternative Survivorship Functions for Current Salaried Retirees. (February, 1990) General Motors Research Laboratories Report OS-154. GM Research Laboratories, Warren, Michigan (with H. Kintner).

Toward A Method of Forecasting Health Care Costs for GM's Retirees, Part I: An Evaluation of Three Alternative Survivorship Functions for Current Salaried Retirees. (February, 1990) General Motors Research Laboratories Report OS-136. GM Research Laboratories, Warren, Michigan (with H. Kintner).

1989 Tacoma Area Quality of Life Survey, I. Summary Findings and Technical Documentation. Center for Social Research \& Public Policy, Pacific Lutheran University (March, 1990).

1989 Prince of Peace Community Survey. Summary Findings and Technical Documentation. Center for Social Research \& Public Policy, Pacific Lutheran University (February, 1990) (with D. Rosenauer et al.).

1988 Tacoma Area Quality of Life Survey, III. The Status of Whites. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (March, 1989).

1988 Tacoma Area Quality of Life Survey, II. The Status of Blacks. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (February, 1989) (with G. Winston).

Pierce County Recycling and Waste Management Survey, III. Estimates of Solid Waste Disposal and Recycling Practices For 1988 and Baseline Projections for 2000. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (January, 1989).

Pierce County Recycling and Waste Management Survey, II. Penetration Analysis and Segment Identification. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (December, 1988) (with J. Schiller).

Pierce County Recycling and Waste Management Survey, I. Summary Findings and Technical Documentation. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (December, 1988).

1988 Tacoma Area Quality of Life Survey, I. Summary Findings and Technical Documentation. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (December, 1987).

A Critique of DEMPRO, The Population Forecasting Subsystem of SEAM. Population and Society Research Center, Bowling Green State University (August, 1987).

The Potential Market For Hospital Training Programs: Results From A Fourteen-State Survey. Population and Society Research Center, Bowling Green State University (January, 1985).
"Survey Findings." pp. 15-26 in Community Gap: Report of a Public Hearing on the Levels and Types of Public Affairs Programming Desired by Citizens of Commercial Television, Choosing Our Future, Inc.: Menlo Park, California (June, 1984).

The People Speak: Is Television Serving the Public Interest. Choosing Our Future, Inc.: Menlo Park, California (May, 1984) (with E. Babbie, M. Bedard, S. Buller, D. Elgin, L. Guliasi, and A. Niehaus).
"A Population Forecasting System for 1982 to 2002 " in Alaska Population Overview: 1982 (1983).
"Population Determination: Technical Documentation" in Alaska Population Overview: 1982(1983).
"Municipal Population Estimation: Conceptual and Practical Features of the Housing Unit Method." in Alaska Population Overview: 1982 (1983) (with B. Baker and J. Van Patten).
"Municipal Census Results and Costs for 1981." in Alaska Population Overview: 1981 (1982)."State Population Estimates for Alaska During the 1970's" in Alaska Population Overview: 1981 (1982).
"Change in Average Household Size: 1970-80." in Alaska Population Overview: 1981 (1982)."1981 Population Determinations, Technical Documentation." in Alaska Population Overview: 1981 (1982).
"Changes in Household Size, 1970-79." in State of Washington Population Trends, 1979, Washington State Office of Financial Management (1980) (with T. Lowe).
"Current Activities of the Population, Enrollment and Economic Studies Division" in State of Washington Population Trends, 1978. Washington State Office of Financial Management (1978).
"Comparative Mortality Levels for Washington State Counties in 1975." in State of Washington Population Trends, 1977. Washington State Office of Financial Management (1977).

G. Reports (Unpublished)

Estimated Life Expectancy and Present Value of Household Costs, Z. Kirkson. O'Reilly Law Group, Las Vegas, Nevada. 6 November 2019.

Estimated Present Value of Lost Earnings and Benefits, J. Schrage. O'Reilly Law Group, Las Vegas, Nevada. 4 November, 2019

Forecast of Hopi Tribal Members (2019). Hopi Tribe Office of Financial Management. Kykotsmovi, Arizona. Consulting Contract 18-029.

State of Washington Population Projection Model Evaluation: Long-Range Assumptions and Ranges for Mortality, Fertility, and Net Migration. (March, 2015). OFM Contract Nos. K1634 and K1644.Washington State Office of Financial Management, Olympia, Washington (with J. Tayman).

Expert Witness Report in the matter of Conseil scolaire francophone de la Colombie-Britannique, Fédération des parents francophones de Colombie-Britannique, et al v. Her Majesty the Queen in Right of the Province of British Columbia, and the Minister of Education of the Province of British Columbia, Vancouver Registry S103975
in the Supreme Court of British Columbia. Prepared for the Office of the Attorney General, Ministry of Justice, Province of British Columbia, Canada (September, 2014).

Population Estimation: An Annotated Bibliography and Glossary. Working Paper No. 08-01, Blakely Center for Sustainable Suburban Development, University of California Riverside. (2012) (Available online at http://cssd.ucr.edu/Papers/PDFs/1-Population\ Estimation.pdf.)

A Blind Ex Post Facto Evaluation of Total Population and Total Household Forecasts made by Five Vendors for 2010: Results by Geography and Error Criteria. ESRI, Redlands, CA (September, 2011) (with M. Cropper, J. McKibben, and J. Tayman).

An Evaluation of the Accuracy of Population Estimates used by Arbitron for Clark County, Nevada: The Case of Black Males Aged 18-34. Kemp Communications, Las Vegas, Nevada (January, 2011).

Disappearing Hispanics? The Case of Los Angeles County, California, 1990-2000. Working Paper No. 10-01, Blakely Center for Sustainable Suburban Development, University of California Riverside. (February 2010) (with M. Kaneshiro and A. Martinez).

The Methods and Materials used to Generate Two Key Elements of the Housing Unit Method of Population Estimation: Vacancy Rates (VR) and Persons Per Household (PPH). U.S Census Bureau (March, 2009).

Expert Witness Report.in the matter of Quest Diagnostics versus Factory Mutual Insurance Company. Podvey, Meanor, Catenacci, Hildner, Cocoziello \& Chattman, P.C. (February, 2009).

Estimating the Foreign-Born: An Evaluation of Methods and Data. Sabre Systems (November, 2008).

Expert Witness Report in the matter of Ochsner Clinical Foundation versus Continental Casualty Company. Fisher and Kanaris, PC (August, 2008).

Hurricane Katrina: Its Impacts on the Population and Candidates for Endovascular Surgery in the Primary and Secondary Service Areas of Garden Park Hospital as Defined by Hospital Corporation of America. Salloum and Brawley LLP (October 2007).

Expert Witness Report: The Future Population in the Service Area of a Hospital in Spring Hill, Tennessee Proposed by the Hospital Corporation of America. Miller and Martin LLP (April, 2007).

A Description and Evaluation of the Belize Valley Archaeological Research Field School. Office of Outreach and Continuing Studies, University of Mississippi. (December, 2006).

The Needs of Researchers in Regard to Population Estimates. Center for Population Studies, University of Mississippi. (July 2006).

Five Year Plan for the Center for Population Studies, University of Mississippi (January 2005)
Five Year Plan for the Department of Sociology and Anthropology, University of Mississippi (January 2005)

The 1999-2001 American Community Survey and the 2000 Census: Data Quality and Data Comparisons, Multnomah County, Oregon. (September 2004) (U.S. Bureau of the Census (requisition/Reference No. 03-32183-0-0), Order No. YA1323-03-SE-0319). March, 2004) (with G. Hough).

Forecasting Headcount at the Desoto Center. Office of Outreach and Continuing Studies, University of Mississippi. (January 2004). (With C. Holley).

The Size of Twelve Age-Related and Six Income-Related lifestyle Segments in the U. S., 2002 through 2012. Third Wave Research, Inc., Madison, WI (October, 2002)

Results of the HSE-Mikkeli Alumni Survey. Mikkeli Business Campus, Helsinki School of Economics, Mikkeli, Finland. (July, 2002).

Visiting Faculty Guide. Mikkeli Business Campus, Helsinki School of Economics, Mikkeli, Finland. (June, 2001).

The BScBA Admission Index. Mikkeli Business Campus, Helsinki School of Economics, Mikkeli, Finland. (April, 2001).

Consumption of Locally Produced Food and Tap Water. Data Tracking Number MO9908COLPRFTW.000. Automated Technical Data Tracking System, Technical Library, Yucca Mountain Site Characterization Project Reference, (http://www.ymp.gov). (August 5, 1999).

Four National Geodetic Survey (NGS) High Accuracy Reference Network (HARN) Control Points in Southern Nevada and The Goldstone Continuously Operating Reference Station (CORS) in Southern California. Data Tracking Number MO9901NGSHARNC.000. Automated Technical Data Tracking System, Technical Library, Yucca Mountain Site Characterization Project Reference, (http://www.ymp.gov). (January 6, 1999).

Yucca Mountain Site Characterization Project: Summary of Socioeconomic Data Analyses Conducted in Support of the Radiological Monitoring Program: April 1997 to April 1998. TRW Environmental Safety Systems, Inc. Las Vegas, Nevada. (June, 1998).

Summary Results of the MetroMail Household Income Estimation Project. Third Wave Research, Inc. Madison, Wisconsin. (April, 1998).

Yucca Mountain Site Characterization Project: Summary of Socioeconomic Data Analyses Conducted in Support of the Radiological Monitoring Program: April 1996 to April 1997. TRW Environmental Safety Systems, Inc., Las Vegas, Nevada. (June , 1997).

The Size of Selected Lifestyle Segments: 1990 to 2010. Third Wave Research, Madison, WI. (with T. Bryan and G. Hough) (March, 1996).

Summary of Work Elements Proposed for the REMI Modifications. SAIC, Inc. (with Y. Zhao) (March, 1994).

Summary of Work Accomplished Under the 1993 Contract for Demographic Services, SAIC, Inc., (September, 1993).

Analysis of Las Vegas Gaming Revenues and Tourism: Clark County. Report prepared for the U.S. Department of Energy (contact DE-ACO8-87NV105760: Science Applications International Corporation) (with J. Carlson et al.) (October, 1988).

An Evaluation of 'Cohort' with Recommendations for Improvement. Center for Social Research \& Public Policy and Public Policy, Pacific Lutheran University (May, 1988).

Technical Documentation of the Toledo Area VCR Survey, Population and Society Research Center, Bowling Green State University (July, 1986).

Sex-Specific 1980 Life Tables For the Black and White Populations of Cleveland, Ohio. Population and Society Research Center, Bowling Green State University (with D. K. Knowlton) (April, 1986).

Life Tables, by Sex, 1980 and 1970 and Net Migration by Age and Sex, 1970-80 and 1960-70 for Ohio. Population and Society Research Center, Bowling Green State University (December, 1984).

Energy Consumption Patterns for New Dwellings. Unpublished Report, Economics and Statistics Department, Pacific Gas and Electric Company (May, 1984).

Forecasted Enrollment Demand by the Alaska Commission on Post-Secondary Education: An Evaluation. Final Report, Alaska House of Representatives Research Agency, (September, 1983).

Forecasts of the State and County Populations by Age and Sex: 1985-2000. Special Report No. 30, Washington State Office of Financial Management (January, 1980).

Discriminant Analysis Results for Criterion Variables Used to Select States for the Department of Personnel Out-of-State Salary Survey. Special Report No. 29, Washington State Office of Financial Management (1980).
"Using the SPSS 'Write Cases' Task and a Subsequent 'Add Cases / Add Subfiles' Task with Raw Data in Binary Format." Technical Document No. 2 Washington State Office of Financial Management (1978).
"An Evaluation of the 1977 Round of Municipal Vacancy Estimates for 1 and 2 Unit Structures." Staff Document No. 42. Olympia, WA: Washington State Office of Financial Management (1977). (with D Randall and L. Weisser).
"Ridge Regression Procedure Documentation." Technical Document No. 1 Washington State Office Financial Management (1977).
"An Evaluation of the 1977 Round of Municipal Vacancy Estimates for One and Two Unit Structures." Staff Document No. 42. Washington State Office of Financial Management (1977).

Population Characteristics of the KVOS-TV Viewing Area, Final Report for KVOS-TV, Inc. Bellingham, Washington, (August, 1974).

Jewish Population Trends, Final Report for American Friends of Hebrew University of Jerusalem, Inc., New York, (August, 1973).

Population Characteristics of the KVOS-TV Viewing Area, Final Report for KVOS-TV, Inc., Bellingham, Washington, (August, 1972).

H. Training Manuals

Trend Extrapolation Forecasting Methods. 2001. Mikkeli Business Campus, Helsinki School of Economics.

VAX/VMS User Guide for Statistics 231. 1988. Department of Sociology, Pacific Lutheran University (Adapted from the VAX/VMS Users Guide, University Computer Services, Bowling Green State University.

Alaska Census Administrator's Manual. 1981. Alaska Department of Labor (Adapted from the Washington State Census Administrator's Manual).

Alaska Census Enumerator's Manual. 1981. Alaska Department of Labor (Adapted from the Washington State Census Enumerator's Manual).

The Housing Unit Method: A Manual for Municipal Personnel Responsible for Making Annual Population Estimates. Alaska Department of Labor. 1981. (Extensively revised and expanded form of a manual with the same title written by T. J. Lowe, D. B. Pittenger, D. A. Swanson, and J. R. Walker).

I. Book Reviews

Model-based Demography: Essays on Integrating Data, Technique and Theory. Springer Research Monographs, 2018, by Thomas K. Burch. Invited Review, Canadian Studies in Population 45(3-4): 144-145.

Changes in Censuses from Imperialist to Welfare States: How Societies and States Count. Palgrave Macmillan Press, 2016, by Rebecca J. Emigh, Dylan Riley, and Patricia Ahmed. Invited review Contemporary Sociology 46 (Spring): 179-180.

Applied Multiregional Demography: Migration and Population Redistribution. Springer BV Press, 2016, by Andrei Rogers. Invited Review, Canadian Studies in Population 43 (3-4): 289-290.

Multistate Analysis of Life Histories with R. Springer BV Press, 2015, by Frans Willekens. Invited Review, Canadian Studies in Population 42 (3-4): 80-81.

Demographic Forecasting. Princeton University Press, 2009, by Frederico Girosi and Gary King. Invited review published by Contemporary Sociology 38 (July): 369-370.

VIII. Papers Read at Professional Conferences

A. Contributed Refereed Papers

"Boosted Regression Trees for Small-Area Population Forecasting." Presented at the 2022 Conference of the Southern Demographic Association, Knoxville, TN (with J. Baker and J. Tayman).
"Expert Judgment \& Standard Small Area Projection Methods: Population Forecasting for Water District Needs." Presented at the 2022 Conference of the Southern Demographic Association, Knoxville, TN (with T, Bryan, M. Hattendorf, K. Comstock, L. Starosta, and R. Schmidt).
"Repurposing record matching algorithms to identify blocks and block groups affected by Differential Privacy: Progress Report on a Pilot Project." Presented at the 2022 Small Area Estimation Conference, Session on Challenging Problems from SAE and Modern Data Science, May 26 (with T. Bryan).
"Producing Summary Statistics of COVID-19 cases and deaths over time: The case for using geometric measures, not arithmetic ones. Presented at the 2022 Conference of the Canadian Population Association, Session on Covid-19 and Mortality, May 10 (with R. Verdugo, A. Rao, and S. Krantz).
"Boosted Regression Trees for Small-Area Population Forecasting." Presented at the Annual Meeting of the Population Association of America, Session on Challenges Facing Small Area Forecasting and Estimation. Atlanta, GA. February $1^{\text {st }}$, 2022. (with J. Baker and J. Tayman).
"Taylor's Law and the Relationship between Life Expectancy at Birth and Variance in Age at Death in a Period Life Table." Presented at the Annual Meeting of the Population Association of America, Session on Mathematical Demography. Atlanta, GA. April 9th, 2022. (with L. M. Tedrow).
"Forecasting a Tribal Population using the Cohort-Component Method: A Case Study of the Hopi." Presented at the Annual Meeting of the Population Association of America, Session on Old Wine in New Bottles: Tools for Applied Demographers, Atlanta, GA, April 8th, 2022.
"Boosted Regression Trees for Small-Area Population Forecasting." Presented at the 2022 Applied Demography Conference, February $1^{\text {st. }}$. (with J. Baker)
"The American Community Survey: Would keeping the Long Form in conjunction with a MidDecade Census have been a better choice?" Presented at the 2022 Applied Demography Conference, February $1^{\text {st }}$.
"Broadband Access during a Pandemic: 2020 Census Results for the Hopi and Lummi Reservations. Presented at the 2022 Applied Demography Conference, February $2^{\text {nd }}$.
"The Effect of the Differential Privacy Disclosure Avoidance System Proposed by the Census Bureau on 2020 Census Products: Four Case Studies of Census Blocks in Mississippi.." Presented at the Annual Conference of the American Statistical Association, Seattle, WA, August 11, 2021. (with R. Cossman).
"The Effect of the Differential Privacy Disclosure Avoidance System Proposed by the Census Bureau on 2020 Census Products: Four Case Studies of Census Blocks in Alaska." Presented at the Symposium on Data Sciences and Statistics, June 4 ${ }^{\text {th }}, 2021$ (with T. Bryan and R. Sewell).
"Taylor's Law and the Relationship between Life Expectancy at Birth and Variance in Age at Death in a Period Life Table." Presented at the 2021 Conference of the Canadian Population Society, May 18-19.

A Simple Method for Estimating the Number of Unconfirmed COVID-19 Cases in a Local Area that Includes a Confidence Interval: A Case Study of Whatcom County, Washington. Presented at the 2021 Conference of the Canadian Population Society, May 18-19, (with R. Cossman).
"An Example of Converting Clinical Study Data into a Life Table: A Life Table for the U.S. Population with Sickle Cell Disease." Presented at the 2021 Applied Demography Conference, February 1-4 (https://www.populationassociation.org/events-publications/adc-2021).

Modeling and the COVID - 19 Pandemic: A Local Area Perspective David Swanson. Presented at the 2021 Applied Demography Conference, February 1-4 (https://www.populationassociation.org/events-publications/adc-2021).
"The End of the Census." Presented at the Annual Meeting of the American Statistical Association, Philadelphia, PA 1-6 August, 2020 (with P. Walashek).
"Estimating the underlying infant mortality rates for small populations: A case study of counties in Estonia." Presented at the Annual Meeting of the Population Association of America, Austin, Texas, 10-13 April, 2019
"Constructing Life Tables from the Kaiser Permanente Smoking Study and Applying the Results to Models Designed to assess the Population Health Impact of Reduced Risk Tobacco Products." Presented at the Population \& Public Policy Conference, Albuquerque, NM, 8-10 February, 2019 (with L. Wei, T. Hannel, R. Muhammad-Kah, T. Bryan and S. Chow).
"On Mathematical Equalities and Inequalities in the Life Table: Something Old and Something New." Presented at the Family and Population Conference of the International Sociological Association, Singapore, 17-19 May, 2018 (with L. Tedrow).
"Sources for publications and records of the Washington State Census Board and Its successor Agencies. Presented at the Conference of the Pacific Northwest Historians Guild, Seattle, Washington, March 2-3, 2018.
"Forecasting using Spatial Dependencies." Presented at the International Conference of Population Geographies, Seattle, Washington, June 29- July 1, 2017. (with J. Baker, J. Tayman, and L. Tedrow).
"Use of Demography in Public Sector Decision-Making." Presented at the 2017 Conference of the Population Association of America, Chicago, II.
"The Number of Native and Part-Hawaiians in Hawaíi, 1778 to 1900: Demographic Estimates by Age, with Discussion." Presented at the 2016 Conference of the British Society for Population Studies." University of Winchester, Winchester, England.
"A New Estimate of the Hawaiian Population for 1778, the Year of First European Contact." Presented at the 2016 meeting of the American Sociological Association, Seattle, WA.
"Equality and Inequality in Stationary Populations." Presented at the 51st (2016) Actuarial Research Conference, Minneapolis, MN (with L. M. Tedrow).
"Forecasting with Modified Cohort Change Ratios and Child Woman Ratios." Presented at the 2016 Council of Governments/Metropolitan Planning Organizations Socio-economic Modeling Conference, San Diego, CA (with J. Tayman).
"Language in America: Diversity, Dominance, and Cultural Maintenance, 1910-2010." presented at the 2016 Conference of the Western Social Science Association, Reno, NV. (with R. Verdugo).
"The Top Ten Reasons to use the Cohort Change Ratio Method." Presented at the 2016 Conference of the Population Association of America, Washington, D.C. (with L. M. Tedrow).
"Exploring Stable Population Concepts from the Perspective of Cohort Change Ratios: Estimating Time to Stability and Intrinsic r." Presented at the 2014 Conference of the Population Association of America, Boston, MA (with L. M. Tedrow).
"Exploring Stable Population Concepts from the Perspective of Cohort Change Ratios." Presented at the 2013 Conference of the Canadian Population Society, Victoria, BC, Canada (with L. M. Tedrow).
"An Alternative Way to Estimate Life Expectancy from Census Survival Ratios: Examples and Comparisons for Native Hawaiians in the Early 20th Century." Presented at the 2012 Conference of the Social Science History Association, Vancouver, BC, Canada (with L. M. Tedrow).
"Socio-Economic Status and Life Expectancy in the United States, 1990-2010: Are We Reaching the Limits of Life Expectancy? Presented at the 2012 Conference of the American Statistical Association, San Diego, CA (with A. Sanford).
"A "Blind" Ex Post Facto Evaluation of Total Population and Total Household Forecast for Small Areas Made by Five Vendors for 2010: Results by Geography and Error Criteria." Presented at the 2012 Conference of the Canadian Population Society, Waterloo, Ontario, Canada. (with M. Cropper, J. McKibben, and J. Tayman).
"MAPE-R: An Empirical Assessment." Presented at the 2011 Conference of the Population Association of American, Washington, D.C. (with J. Tayman and T. Bryan).
"Urban-Suburban Migration Patterns in the United States, 2004-2008: The Beginning of the End for Suburbanization?" Presented at the 2010 European Population Conference, 1-4 September, Vienna, Austria. (with J. McKibben).
"Disappearing Hispanics? The Case of Los Angeles County, California 1990-2000." Presented at the 2010 Conference of the American Statistical Association, 31 July - 5 August, Vancouver, BC, Canada (with M. Kaneshiro and A. Martinez).
"Using Cohort Change Ratios to Estimate Life Expectancy in Populations Closed to Migration." Presented at the $45^{\text {th }}$ (2010) Actuarial Research Conference, Burnaby, British Columbia, July 2628. (with L. M. Tedrow).
"MAPE-R: A Refined Measure of Accuracy for Ex Post Evaluation of Estimates and Forecasts." Presented at the 2010 International Symposium of Forecasting, 20-23 June, San Diego, California (with J. Tayman and T. Bryan).
"The American Community Survey from a User's Perspective." Presented at the 2010 Council of Governments/Metropolitan Planning Organizations Socio-economic Modeling Conference, San Diego, CA (with J. Tayman).
"The Methods and Materials used to Generate Two Key Elements of the Housing Unit Method of Population Estimation" Vacancy Rates (VR) and Persons per Household (PPH)." Presented at the 2010 Conference of the Population Association of America, 15-17 April, Dallas, Texas.
"DOMICLE 1.0: An Agent-Based Simulation Model for Population Estimates at the Domicile Level." Presented at the 2010 Applied Demography Conference, 10-12 January, San Antonio, Texas (with Cameron Griffith, Bryon Long, and Mike Knight).
"Developing Annual Population Data in the United States: New Possibilities for the 21st Century." Presented at the 2009 Conference of the International Union for the Scientific Study of Population, 27 September - 2 October, Marrakech, Morocco (with J. McKibben).
"A Demographic Approach to Forecasting Groups Covered by Employer Health Insurance." Presented at the $44^{\text {th }}$ Annual Actuarial Research Conference, 30 July - 1 August, 2009, Madison, Wisconsin. (with H. Kintner).
"Socio-Economic Status and Life Expectancy in Mississippi, 1970 to 1990." Presented at the 2009 Conference of the Canadian Population Society, 27-29 May, Ottawa, Ontario, Canada (with M. McGehee).
"An Evaluation of Data Generated By the American Community Survey." Presented at the 2008 Conference of the European Association for Population Studies, 9-12 July, Barcelona, Spain (with G. Hough).
"An Evaluation of Persons Per Household (PPH) Data Generated By the American Community Survey: A Demographic Perspective." Presented at the 2008 Conference of the Canadian Population Society, 4-6 June, Vancouver, British Columbia, Canada (with G. Hough).
"Assessing Katrina's Impact on the Mississippi Gulf Coast: A Report on Completed Research." Presented at the 2008 Conference of the Population Association of America, 17-19 April, New Orleans, LA (with R. Forgette and M. Van Boening).
"The Demographic Effects of Hurricane Katrina on the Mississippi Gulf Coast: An Analysis by Zipcode." Presented at the 2008 Conference of the Mississippi Academy of Sciences, 20-22 February, Olive Branch, Mississippi.
"Teaching Business Demography Using Case Studies with Demographic Cases." Presented at the 2007 special seminar on Business Demography, International Union for the Scientific Study of Population, 8-9 October, Sydney, Australia (with P. Morrison).
"New Directions in the Development of Population Estimates and Projections." Presented at the 2007 Conference of the International Statistical Institute, Satellite Conference on Small Area Statistics, Pisa, Italy. 3-5 September. (with J. McKibben).
"Assessing Katrina's Demographic and Social Impacts on the Mississippi Gulf Coast: Preliminary Results ." Presented at the 2007 Conference of the American Statistical Association, 29 July - 3 August, Salt Lake City, UT (with M. Van Boening and R. Forgette).
"Assessing Katrina's Impact on the Mississippi Gulf Coast: Social Network Effects." Presented at the 2007 Applied Demography Conference, 7-9 January, San Antonio, Texas (with R. Forgette, M. Van Boening, and B. Dettrey).
"Forecasting the Population of Census Tracts by Age and Sex: An Example of the Hamilton-Perry Method in Action." Presented at the 2007 Applied Demography Conference, 7-9 January, San Antonio, Texas (with A. Schlottmann and R. Schmidt).
"Measuring Uncertainty in Population Data Generated by the Cohort-Component Method: A Report on Research in Progress." Presented at the 2007 Applied Demography Conference, 7-9 January, San Antonio, Texas.
"Toward Measuring Uncertainty in Population Data Generated by the Cohort-Component Method." Presented at the 2006 Annual Meeting of the British Society for Population Studies, 1921 September, Southampton, England.
"Population Ageing and the Measurement of Dependency: The Case of Germany." Presented at the 2006 Meeting of the European Association for Population Studies. 20-24 June, Liverpool, England.
"Research on the Impacts of Hurricane Katrina on the Mississippi Gulf Coast." Presented at the Annual Meeting of the Southern Demographic Association, 3-5 November, 2005. Oxford, Mississippi.
"Contemporary Developments in Applied Demography within the United States." Presented at the 2005 Conference of the International Union for the Scientific Study of Population, 18-23 July, 2005. Tours, France. (with L. Pol).
"Controversy over Providing Special Census Tabulations to Government Security Agencies: the Case of Arab-Americans." Presented at the 2005 Conference of the International Union for the Scientific Study of Population, 18-23 July, 2005. Tours, France. (with S. El-Baldry).
"A Comparison of In-Class and On-line Student Evaluations." Presented at the Annual Meeting of the Mississippi Academy of Sciences, 16-18 February, 2005. Oxford, Mississippi.
"On MAPE-R as a Measure of Estimation and Forecast Accuracy." Presented at the Annual Meeting of the Southern Demographic Association. 14-16 October, 2004. Hilton Head. SC. (with C. Coleman).
" $19^{\text {th }}$ Century Roots of Contentious Litigation over Census Counts in the late $20^{\text {th }}$ Century." Presented at the Hawaii International Conference on the Social Sciences, 16-19 June, 2004. Honolulu, HI (with P. Walashek).
"An Evaluation of the American Community Survey: Preliminary Results from a County Level Analysis of the Oregon Test Site." Presented at the Annual Meeting of the Mississippi Academy of Sciences, February $18^{\text {th }}$ to $20^{\text {th }}, 2004$, Biloxi, Mississippi (with G. Hough).
"Advancing Methodological Knowledge within State and Local Demography: A Case Study." Presented at the Annual Meeting of the Southern Demographic Association, October $23^{\text {rd }}$ to $25^{\text {th }}$, 2003, Alexandria, Virginia.
"Contemporary Developments in Applied Demography in the U.S." presented at the European Population Conference, Warsaw, Poland, August 23-26, 2003 (with L. Pol).
"Using Cases in the Teaching of Statistics." presented at the annual meeting of the World Association for Case Method Research and Application, Bordeaux, France, June $29^{\text {th }}$ to July $2^{\text {nd }}$, 2003 (with R. Patten).
"MAPE-R: Its Features and Results from a National Block-Group Test." Presented at the Annual Meeting of the American Statistical Association, New York City, New York, August 13, 2002. (with T. Bryan, J. Tayman, and C. Barr).
"Applied Demography in Action: A Case Study of 'Population Identification'." Presented at the Annual Meeting of the Population Association of America, Atlanta, Georgia, May 10, 2002.
"New Directions in Population Forecasting." Presented at the $4^{\text {th }}$ International Conference on Prediction and Non-Linear Dynamics, Tomas Bata University, Zlin, Czech Republic, September 25-26, 2001 (with S. Smith and J. Tayman).
"Leveraging Extant Data to Meet Local Information Needs: A Case Study in Team Applied Demography." Presented at the Annual Meeting of the Population Association of America, March, 2000, Los Angeles, California (with P. Morrison, C. Popoff, I. Sharkova, and J. Tayman).
" We are What We Measure: Toward A New Approach for Assessing Population Forecast Accuracy." Presented at the Annual Meeting of the Southern Demographic Association, October $29^{\text {th }}, 1999$, San Antonio, Texas. (with J. Tayman and C. Barr).
"On Measuring Accuracy in Subnational Demographic Forecasts." Presented at the 52nd Congress of the International Statistical Institute, Helsinki, Finland, August 18, 1999 (with J. Tayman and C. Barr).
"Population Estimates from Remotely Sensed Data: A Discussion of Recent Technological Developments and Future Research Plans." Presented at the Annual Meeting of the Canadian Population Society, Lennoxville, Quebec, Canada, June, 1999 (with J. Wicks, R. Vincent, and J. Luiz Pereira De Almeida.
"Teaching Statistics to Non-Specialists in an Intercultural Setting: Addressing Issues of Understanding and Retention in a Modern Learning Environment." Presented at the Mid-Term Conference of the Sociology of Education Research Committee, International Sociological Association, Joensuu, Finland, June, 1997. (with J. McKibben).
"A Computer-Based Curriculum For Service Courses In Statistics." Presented at the International Conference On Problems of Statistical Education, St. Petersburg, Russia, July, 1996 (with J. McKibben).
"In Defense of The Net Migrant." Presented at the 1996 Annual Meeting of the Population Association of America, New Orleans, Louisiana (with S. Smith).
"What Is Applied Demography?" Presented at the 1996 Annual Meeting of the Population Association of America, New Orleans, Louisiana (with T. Burch and L. Tedrow).
"Alternative Measures For Evaluating Population Forecasts: A Comparison of State, County, and Sub-county Geographic Areas." Presented at the 1995 Annual Meeting of the Population Association of America, San Francisco, California (with J. Tayman).
"Changes in Factories, Changes in Accuracies: On the Relationship Between Economic Structure and the Ratio-Correlation Method of Population Estimation." Presented at the 1994 Annual Meeting of the Southern Demographic Association, Atlanta, Georgia (with J. McKibben).
"Forecasting Health Benefits Populations." Presented at the XIVth International Symposium on Forecasting, Stockholm, Sweden (with H. Kintner).
"Between A Rock and A Hard Place: The Evaluation of Demographic Forecasts." Presented at the XIVth International Symposium on Forecasting, Stockholm, Sweden (with J. Tayman).
"Construction of Confidence Intervals for Population Forecasts Generated by the CohortComponent Method." Presented at the 1994 Annual Meeting of The Population Association of America, Miami, Florida (with D. Arnold, J. Carlson, H. Kintner, and C. Williams).
"Ties that Bind: Families, Organizational Demography, and Health Benefits." Presented at the 1994 Annual Meeting of The Population of America, Miami, Florida (with H. Kintner).
"Measuring the Utility of Population Projections." Presented at the 1994 Annual Meeting of The Ohio Academy of Science. Toledo, Ohio (with J. Tayman).
"Mean Square Error Confidence Intervals for Intercensal Net Migration Estimates: A Case Study of Arkansas 1980-1990." Presented at the 1993 Annual Meeting of the Southern Demographic Association, New Orleans, Louisiana (with H. Kintner and M. McGehee).
"Estimating Demographic Rates From Employer Administrative Database." Presented at the 1993 Annual Meeting of the International Union for the Scientific Study of Population, Montreal, Quebec (with H. Kintner).
"Evaluation of Ratio-Correlation and Difference-Correlation Methods for Estimating County Populations: The Case of Post-Industrial Indiana." Presented at the 1993 Annual Meeting of the American Statistical Association, San Francisco, California (with J. McKibben).
"Ratio-Correlation: A Short-Term County Population Projection Method." Presented at the 1993 International Symposium on Forecasting. Pittsburgh, Pennsylvania (with D. Beck).
"The Relationship Between Life Expectancy and Socioeconomic Status In Arkansas, 1970 and 1990." Presented at the 1993 Annual Meeting of the Population Association of America, Cincinnati, Ohio.
"Measurement Errors in Census Counts and Estimates of Intercensal Net Migration." Presented at the 1993 Annual Meeting of the Population Association of the America, Cincinnati, Ohio (with H. Kintner).
"Ratio-Correlation as a Short-Term County Population Projection Method: A Case Study for Washington State." Presented at the 1992 Annual Meeting of the Southern Demographic Association , Charleston, South Carolina (with D. Beck).
"Adult Transfer Students: Predicting Who Will Finish and Who Will Drop Out." Presented at the 1992 Annual Meeting of the Pacific Northwest Association of Institutional Researchers and Planners, Bellingham, Washington (with S. Hedman and L. Nelson).
"Measurement Errors in Census Counts and Estimates of Intercensal Net Migration." Presented at the 1992 Annual Meeting of the American Statistical Association, Boston, Massachusetts (with H. Kintner).
"The Disposal of Household Hazardous Waste: Results From a Survey of Pierce County, Washington." Presented at the 1992 Annual Meeting of the Northwest Scientific Association, Bellingham, Washington.
"A Variation of the Housing Unit Method For Estimating the Population of Small, Rural Areas: A Case Study of the Local Expert Procedure." Presented at the 1992 Annual Meeting of the Population Association of America, Denver, Colorado (with J. Carlson and L. Roe).
"A System for Placing Confidence Intervals Around Estimated the Population of Small, Rural Areas: A Case Study of the Local Expert Procedure." Presented at the 1992 Annual Meeting of the Population Association of America, Denver, Colorado (with J. Carlson and L. Roe).
"Perspectives on Change in Employer Health Benefits Populations." Presented at the 1991 Annual Meeting of the Population Association of America, Washington, D.C. (with H. Kintner).
"Evaluating Socioeconomic Impact Models: An Adoption of Winter's Method to the Yucca Mountain Project." Presented at the 1990 Annual Meeting of the American Statistical Association, Anaheim, California (with J. Carlson, J. Hollingsworth, and C. Williams).
"The Development of Small Area Socioeconomic Data to be Utilized for Impact Analysis: Rural Southern Nevada." Presented at the 1990 International High Level Radioactive Waste Management Conference, Las Vegas, Nevada (with J. Carlson and C. Williams).
"Identifying Factors Associated with the Subjective Feelings of One's Quality of Health." Presented at the 1990 U.S. Uniformed Services Conference of Family Physicians, Richmond, Virginia (with W. F. Miser).
"Demographic Issues for Washington State." Session on Regional Demography, 1989 Annual Meeting of the Rural Sociological Society, Seattle, Washington.
"Intercensal Net Migration Among the Three Major Regions of Iraq, 1957-1977." Presented at the 1989 Annual Meeting of the Population Association of America, Baltimore, Maryland (with A. AlJiboury).
"VCR Households: A Comparison of Early and Recent Adopters." Presented at the 1988 Annual Meeting of the Broadcast Education Association, Las Vegas, Nevada (with B. Klopfenstein).
"Technical Skills and Training Needs of Applied Demography." Presented at the 1987 Annual Meeting for the American Statistical Association, San Francisco, California (with L. S. Rosen and H. J. Kintner).
"Causes of Death in Infancy and the Proposed Redefinition of the Neonatal Period." Presented at the 1987 Annual Meeting of the North Central Sociological Association, Cincinnati, Ohio (with E. G. Stockwell and J. Wicks).
"The Impact of Census Error Adjustments on Ohio Population Projections." Presented at the 1987 Annual Meeting of the North Central Sociological Association, Cincinnati, Ohio (with K. Vaidya, R. Yehya, B. Bennett and R. Prevost).
"Projecting Household VCR Penetration: A Demographic Approach." Presented at the 1987 Annual Meeting of the Population Association of America, Chicago, lllinois (with B. Klopfenstein).
"A State Based Regression Model For Estimating Substate Life Expectancy: Tests Using 1980 Data." Presented at the 1987 Annual Meeting of the American Statistical Association, San Francisco, California.
"An Analysis of VCR Adopter Characteristics and Behavior." Presented at the 1987 Annual Meeting of the International Communication Association, Montreal, Quebec, Canada (with B. Klopfenstein).
"Estimating Life Expectancy For Health Service Areas: A Test Using 1980 Data For Indiana." Presented at the 1986 Annual Meeting of the American Statistical Association, Chicago, Illinois.
"Converging Trends in the Relationship Between Infant Mortality and Socioeconomic Status." Presented at the 1986 Annual Meeting of the North Central Sociological Association, Toledo, Ohio (with E. Stockwell and J. Wicks).
"Geographic Variation of Longevity in Ohio, 1930 and 1980." Presented at the 1986 Annual Meeting of the North Central Sociological Association, Toledo, Ohio (with E. Stockwell).
"Identifying Extreme Errors in Ratio-Correlation Estimates of Population." Presented at the 1986 Annual Meeting of the Population Association of America, San Francisco, California (with R. Prevost).
"Missing Survey Data in End-Use Energy Models: An Overlooked Problem." Presented at the 1985 Annual Meeting of the American Statistical Association, Las Vegas, Nevada.
"Fecundability Among Ethnic Groups in Hawaii." Presented at the 1985 Annual Meeting of the North Central Sociological Association, Louisville, Kentucky.
"Issues in Energy End-Use Survey Research." Presented at the 1985 Conference of the American Council for an Energy Efficient Society, San Cruz, California (with S. M. Buller, R. J. Canter, L. Guliasi, and R. M. Wong).
"Improving the Measurement of Temporal Change in Regression Models Used for County Population Estimates." Presented at the 1983 Annual Meeting of the Population Association of America, Pittsburgh, Pennsylvania (with B. Baker and J. Van Patten).
"Municipal Population Estimation: Practical and Conceptual Features of the Housing Unit Method." Presented at the 1983 Annual Meeting of the Population Association of America, Pittsburgh, Pennsylvania (with B. Baker and J. Van Patten).
"Getting at the Factors Underlying Trends Using Statistical Decomposition Techniques." Presented at the 1980 Annual Meeting of The College and University Systems Exchange, Phoenix, Arizona.
"Allocation Accuracy in Population in Estimates: An Overlooked Criterion with Fiscal Implications." Presented at the 1980 Annual Meeting of The American Statistical Association, Houston, Texas.
"Graphic Display of Demographic Data." Presented at the 1979 Annual Meeting of The Population Association of America, Philadelphia, Pennsylvania (with L. M. Tedrow).
"A Method of Estimating Annual Age-Standardized Mortality Rates for Counties: Results of a Test Using Washington State Data." Presented at the 1978 Annual Meeting of The American Statistical Association, San Diego, California.
"Preliminary Results of an Evaluation of the Utility of Ridge Regression for Making County Population Estimates." Presented at the 1978 Annual Meeting of the Pacific Sociological Association.

B. Contributed Non-Refereed Papers

"Why Do Group Health Benefit Populations Change Size? A Case Study of General Motors Salaried Population, 1983-1990." Presented at the 1994 Applied Demography Conference, Bowling Green, Ohio (with H. Kintner).
"An Evaluation of the Demographic Components of a Proprietary Economic Forecasting and Simulation System: The REMI Model as used by SAIC, Inc. for the Yucca Mountain Project in Nevada." Presented at the 1994 Applied Demography Conference, Bowling Green, Ohio (with Y. Zhao and J. Carlson).
"On the Utility of Lagged Ratio-Correlation as a Short-Term County Population Projection Method: A Case Study of Washington State." Presented at the 1994 Applied Demography Conference, Bowling Green, Ohio (with J. Tayman and D. Beck).
"The Producers Perspective." Presented at the 1994 Annual Meeting of Federal-State Cooperative Program for Population Projections, Session on The Utility of Population Projections, Miami, Florida.
"Confidence Intervals for Net Migration Estimates that Incorporate Measurement Errors in Census Counts." Presented at the 1992 Applied Demography Conference, Bowling Green, Ohio (with H. Kintner).
"Baseline Projections of Household Solid Waste Generation: A Case Study of Pierce County, Washington." Presented at the 1990 Applied Demography Conference, Bowling Green, Ohio.
"Conference Intervals for Estimates of Intercensal Net Migration." Presented at the 1990 Applied Demography Conference, Bowling Green, Ohio (with H. Kintner).
"Estimating Migration in a Sparsely-Populated Specialized Economic Area: The Yucca Mountain High-Level Nuclear Waste Repository." Presented at the 1990 Applied Demography Conference, Bowling Green, Ohio (with J. Carlson).
"Development of Demographic Data Utilizing Key Informants in Rural Incorporated Places." Presented at the 1990 Applied Demography Conference, Bowling Green, Ohio (with L. K. Roe and J. Carlson).
"Poverty and Infant Mortality." Presented at the June, 1989 Meeting of the Washington State Child Health Research and Policy Group, Seattle, Washington.
"Some Results of the 1988 'Research Experience for Undergraduates' Program in Demography." Poster Session at the 1988 Applied Demography Conference, Bowling Green, Ohio (with L. Tedrow).
"Overview of the Survey of Applied Demographers." Presented at the 1987 Annual Meeting of the Population of Association of America, Chicago, Illinois (with H. Kintner).
"Applied Demography." Presented to the Department of Sociology, Western Washington University, October, 1986.
"Preliminary Results From the 1986 Survey Demographers." Presented at the 1986 Annual Meeting of the Population Association of America, San Francisco, CA (with H. Kintner et al.).
"Survey Findings." Presented at the Public Hearing on Public Affairs Programming and Commercial Television, June, 1984 San Francisco, California.
"Comparative Analysis of Change in Average Household Size With Reference to IRS Data on Average Exemptions Per Return: Census Results From Selected Municipalities in Washington, 1970, 1977, and 1978." Presented at the October, 1979 meeting of The Task Force on SubCounty Population Estimates Federal-State Cooperative Program for Population Estimates, Washington, D. C. (with T. J. Lowe).
"Recent Trends in Household Size for Rural, Predominantly White, Non-Hispanic Communities: Special Census Results From Three Towns in Washington, 1976 and 1979." Presented at the October, 1979 meeting of The Task Force on Sub-County Population Estimates, Federal-State Cooperative Program for Population Estimates, Washington, D. C. (with T. J. Lowe).

IX. Invited Presentations

"Modeling and the Covid-19 Pandemic: A Local Area Perspective." Presented at the Annual Meeting of the Federal-State Cooperative Program for Population Projections (Virtual), May 1314, 2021.
"Using a Simple Population Forecasting Method to Assess Economic and Health Characteristics of a Population of Interest." Presented at the Department of Public and Regional Economics, Aoyama Gakuin University, Tokyo, Japan, 7 November 2018
"Using a Population Forecasting Method to Assess the Demographic Impact of Natural and Manmade Disasters." Presented at the Department of Sociology, Kyoto University, Kyoto, Japan, 5 November 2018
"Cohort Change Ratios and Their Applications." Presented as part of the Open Seminar, Foreign Scholar Lecture Series, National Institute for Population and Social Security Research, Tokyo, Japan, 31 October 2018 (http://www.ipss.go.jp/int-sem/e/lec2.html)
"On Equality and Inequality in Stationary Populations." Presented at the $4^{\text {th }}$ International Symposium on the Human Mortality Database, Berlin, Germany, May 23, 2017 (with Lucky Tedrow).
"Use of Demography in the Public Sector." presented in an invited session on demography and policy at the 2017 Conference of the Population Association of American, Chicago, IL.
"The Washington State Census Board and Its Demographic Legacy." Presented at the Center for Studies in Demography and Ecology, University of Washington. Seattle, Washington, January 8, 2016.
"Aging in the Western Hemisphere, 2015-2035." Presented at the analytic exchange on Demographic Change and Mobility in Aging Regions to 2035. Co-sponsored by the U.S. National Intelligence Council and the Bureau of Intelligence and Research, U.S. State Department. Arlington, VA. July 17. 2015.
"The Current Status of Applied Demography: A Four-Field View with an Eye toward the Future." Plenary Presentation. $8^{\text {th }}$ International Conference on Population Geographies, University of Queensland, Brisbane, Australia. July 1-3, 2015.
"A New Estimate of the Hawaiian Population for 1778, the Year of First European Contact." Presented as part of the Colloquium Series, Department of Sociology, University of Hawai'i. February $13^{\text {th }}, 2015$.
"Measuring Uncertainty in Population Forecasts: A New Approach Employing the Hamilton-Perry Method." Presented at the Population Institute Methods Workshop, Penn State University, June $24^{\text {th }}, 2014$. State College, PA (with Jeff Tayman).
"Measuring Uncertainty in Population Forecasts: A New Approach Employing the Hamilton-Perry Method." Presented at the Annual Conference of the Federal-State Cooperative Program for Population Projections, Boston, MA, April 30th, 2014. (with Jeff Tayman).
"Measuring Uncertainty in Population Forecasts: A New Approach." Presented at the Joint Eurostat/UNECE Work Session on Demographic Projections, October 29-31, 2013. Rome, Italy (with Jeff Tayman).
"People of the Inland Empire: Changes in Ethnicity, Age and Race, Presented at the "Practically Speaking" Development Series, Center for Sustainable Suburban Development, University of California Riverside, June 11 ${ }^{\text {th }}, 2013$. Riverside, CA.
"A Loss Function Approach to Examining ACS Estimates: A Case Study of 2010 "Persons Per Household" Estimates for California Counties." Presented at the Workshop on "The Benefits (and Burdens) of the American Community Survey" sponsored by the Committee on National Statistics, National Academies of Science. June 14-15, 2012, Washington, DC (with George Hough).
"Practical Demography." Keynote address presented at the Warren Kalbach Conference, March 18-19, 2011, Edmonton Society of Demographers, University of Alberta, Edmonton, Alberta, Canada.
"Developing Small Area Population Estimates for Use in Health Information Systems." Presented in the Introductory Plenary Session at the 19th International Conference of the Forum for Interdisciplinary Mathematics,18-20 December 2010, Patna University, Patna, India. (with J. McKibben and K. Faust).
"Perspectives on the American Community Survey." Presented at the 2010 Conference of the Latin American Association for Population Studies, 15-19 November, Havana, Cuba.
"New Directions for the Decennial Census?" Presented in the Invited Session, What if the 2020 Census Was the First Census: What Would We do?, 2010 Conference of the American Statistical Association, 31 July - 5 August, Vancouver, British Columbia, Canada.
"Demographics and Housing." Presented at the Randall Lewis Seminar, Blakely Center for Sustainable Suburban Development, Riverside, California, 17 June 2010.
"The Possibilities for using the Housing Unit method." Presented at Statistics Canada, Ottawa, Ontario, 28 May, 2009.
"The Future of Suburbs." Presented at Pitney Bowles Business Decisions. Toronto, Ontario, 27 May 09.
"Socio-economic Status and Life Expectancy in the United States: 1970 to 1990." Presented at the School of Public Policy, University of Texas- San Antonio, San Antonio, TX. 21 April 2009.
"Small Area Estimation and Health Information Systems" Presented at the Small Area Measurement Consultation Conference, Institute for Health Metrics and Evaluation, University of Washington. Seattle, WA, 10 April 2009.
"Aging and other Population Trends and their Implications for Suburbs." Presented as part of the 'Leadership Lenexa' Seminar Series, Lenexa Chamber of Commerce. Lenexa, KS. 27 June 2008.
"How the Changing U.S. Census will Affect Decision-Making." Presented at the Randall Lewis Seminar, Blakely Center for Sustainable Suburban Development, Riverside, California, 15 May 2008.
"An Evaluation of Persons Per Household (PPH) Data Generated By the American Community Survey: A Demographic Perspective." Presented at the American Community Survey, Multi-Year Estimates Meeting, 15 November 2006, U.S. Census Bureau, Suitland, Maryland.
"Counting the Gulf Coast: A Demographer Gauges Katrina's Impact in Mississippi." Department of Sociology, University of California Irvine, 23 October 207, Irvine, CA.
"Assessing Katrina's Impact on the Mississippi Gulf Coast: A Report on Completed Research." Poster presented at the 2007 Post-Katrina Forum Gulf States Alliance: Network Science and Recovery, 19-21 August, Biloxi, MS (with R. Forgette, M. Van Boening).
"The Needs of Researchers in Regard to Population Estimates." Conference on U.S. Census Bureau Population Estimates: Meeting User Needs." Sponsored by Council of Professional Associations on Federal Statistics. 19 July 2006. Alexandria, VA.

The Impact of Hurricane Katrina on the Mississippi Gulf Coast." Annual Exhibition of the Coalition for National Science Funding, 7 June 2006. Washington, DC.
"The Impact of Hurricane Katrina on the Mississippi Gulf Coast." Annual CLARITAS Client Conference, 30-29 April, 2006, San Diego, CA.
"The Impact of Hurricane Katrina on the Mississippi Gulf Coast. Annual Meeting of the Population Association of America, Session of the Committee on Population Statistics. 30 March 2006. Los Angeles, CA.
"Demographic Changes Affecting Undergraduate Enrollment in Mississippi." College of Liberal Arts Faculty Forum, 22 March 2005. University of Mississippi.
"The Changing Demography of the CSGS Region." Plenary Keynote Address, Annual Meeting of the Conference of Southern Graduate Schools, 26 February 2005. Biloxi, MS.
"An Evaluation of the American Community Survey: Results from the Oregon Test Site."
Presented at the Annual Meeting of the American Statistical Association, August 8 $8^{\text {th }}$ to $10^{\text {th }}, 2004$. Toronto, Ontario, Canada (with G. Hough).
"Evidence From Oregon." Presented at the Annual Meeting of the Population Association of America, April $1^{\text {st }}$ to $3^{\text {rd }}, 2004$. Boston, Massachusetts (with G. Hough).
"The Impact of Demographic Factors on Business: Selected Examples." Presented to Faculty of the H.E.L.P. Institute, Kuala Lumpur, Malaysia, 25 April 2003
"Results of the BScBA Program Self-Evaluation Study." Presented at the External Accreditation Peer Review Team's On-Site Visit, Finnish Ministry of Education, Valamo, Finland, October 8-9, 2002.
"Demographic Constraints on Regional Development." Presented at the Technology and Economic Development in the Periphery (TEDIP) Dissemination Seminar, Joensuu University, Savonlinna, Finland, June 13 ${ }^{\text {th }}, 2002$.
"International Education in Finland: Issues and Challenges." Presented to the Rural Studies Workshop, Institute for Rural Research Studies, Helsinki University, Mikkeli, Finland, February 1st, 2002
"The International BBA Program of the Helsinki School of Economics and Business Administration." Presented to the President of Finland, Mikkeli, Finland, May 15 th, 2001.
"Providing International Education: A Finnish Example of the European Experience." Presented at the $4^{\text {th }}$ Strategy Seminar on Strategic Alliances and Partnerships in International Education, Kuala Lumpur, Malaysia, April 7th, 2001.
"On Measuring Accuracy in Subnational Demographic Estimates." Presented at the National Conference on Population Estimates Methods, Sponsored by the Population Estimates Branch, U.S. Bureau of the Census, June $8^{\text {th }}$, 1999. Suitland, Maryland (with J. Tayman and C. Barr).
"Census Errors and Census 2000: The Role of Local Government." Presented at the Public Stakeholders Meeting of the Southern Nevada Census 2000 Committee, March 23rd ${ }^{\text {ra }}$, 1999, Las Vegas, Nevada.
"The Food Consumption Survey." Presented at the Total System Performance Assessment Technical Exchange, U.S. Department of Energy/ U.S. Nuclear Regulatory Commission. Las Vegas, Nevada, November 6 ${ }^{\text {th }}$, 1997.
"Amargosa Valley Population Survey." Presented to the U.S. National Advisory Committee on Nuclear Waste, U.S. Nuclear Regulatory Commission. 94 ${ }^{\text {th }}$ Meeting, Las Vegas, Nevada, September 23rd, 1997.
"An ACS Performance Assessment." Presented in the session "The American Community Survey - Uses and Issues." Annual Meeting of the American Statistical Association, Anaheim, California, August $13^{\text {th }}, 1997$.
"The Region's Changing Demographics." Presented at the International Council of Shopping Centers' 1996 Meeting, Skamania Lodge, Skamania, Washington, August, 1996.
"Local Population Trends." Presented at the Chamber of Commerce Leadership Program." West Linn, Oregon, March, 1996.
"Oregon's Population Trends." Presented at the Strategic Budget Conference of Oregon State Agency Directors, Salem, Oregon , March, 1996.
"Evaluation Plan for the Arkansas Network Based Technology Deployment Program." Presented at the Workshop on Manufacturing Modernization: Evaluation Practices, Methods and Results. National Institute of Standards and Technology, Atlanta, Georgia, September 18-20, 1994.
"Estimates of the Current Cost of Health Care in Arkansas." Presented to the Governor's Task Force on Health Care Reform. Little Rock, Arkansas, April 13, 1994.
"An Overview of Impact Analysis." Presented at the Local Development Association Meeting, Heber Springs, Arkansas 1993.
"Applied Demography for Urban Studies." Two-day workshop presented at Loyola University, Chicago, Illinois, 1993.
"Confidence Intervals for Net Migration Estimates that Incorporate Measurement Errors in Census." Presented at the Central Arkansas Chapter of the American Statistical Association, November, 1992 (with H. Kintner).
"Demographic Aspects of Labor Force Trends in Arkansas." Presented at the March 5th, 1993 Arkansas Business Leaders Symposium, Arkansas College, Batesville, Arkansas.
"Decennial Census Products and Their Use in Research." Presented in the Research Conference Series, Center for Mental Health Research, University of Arkansas for Medical Sciences, November 18th, 1992.
"Factor Analysis and Related Analytical Techniques." Presented to the Uniformed Services Physicians' Fellowship Program, Madigan Army Medical Center, April 17th, 1992.
"A Variation of the Housing Unit Method for Estimating the Age and Gender Distribution of Small, Rural Areas: A Case Study of the Local Expert Procedure." Presented at the Invited Paper Session Methods of Small Area Population Estimation. Annual Meeting of the American Statistical Association, San Francisco, California, August, 1993 (with J. Carlson, L. Rowe and C. Williams).
"A First Bite in a Seven Course Meal: Results from the 1990 Census." Presented to the City Club of Tacoma, June, 1991 (with W. Opitz).
"A New Method for Projecting Small Area Populations." Presented to the Center for Business and Economic Research, College of Business, University of Nevada, Las Vegas, March, 1991.
"Socio-Economic Impact Analysis for the Yucca Mountain Nuclear Waste Project: Insights from Demography." Presented to the Department of Sociology, Michigan State University, February, 1991.
"Ratio-Correlation as a Short-Term, Subnational Population Forecasting Method: A Case Study Using Washington State Data." Presented to the Demography Division, Statistics Canada, Ottawa, Ontario, February 11, 1991.
"Demographics! Demographics! Demographics!" Presented to members of the Private Industry Council, Pierce County, Washington, March, 1990.
"Marx vs. Malthus: An Empirical Approach to Examining Orthodoxy." Presented in the Colloquium Series "Living In A Fragile Environment," Valparaiso University, January, 1990.
"Small Area Socio-Economic Forecasting," Presented to the Faculty Club, Valparaiso University, January,1990.
"Local, National, and International Demographic Trends." Presented to the Washington Agriculture and Forestry Leadership Program, Pacific Lutheran University, January, 1990.
"Some Problems in Small Area Forecasting." Presented at the ICPSR Summer Program in Quantitative Methods, University of Michigan, July, 1989.
"Washington State Population Issues." Presented at the Washington State Public School Social Studies Educators Retreat, Pilgrim Firs, Washington, October, 1987.
"Why are American Babies Dying Before Their First Birthday?' Presented at the October, 1987 Interdepartmental Colloquium, Pacific Lutheran University.
"Subnational Population Estimation and Its Relation to Emerging Legal Challenges in the United States." Presented at the November, 1986 Brown-bag session of The Population Studies Center, University of Michigan.
"Population Trends in North Central Ohio." Presented at the November, 1986 meeting of The Social Science Club, Firelands College.
"The Multiple Regression Approach to Deriving Local Area Population Estimates." Presented at the April, 1985 meeting of the Northwest Ohio Chapter of The American Statistical Association, Bowling Green, Ohio.
"Population and Enrollment Forecasting." Presented at the March, 1983 meeting of the Anchorage Demographic Group, Anchorage, Alaska.
"Trends in Washington's Population." Presented at the November, 1979 meeting of the Seattle Economists' Club, Seattle, Washington.

X. Testimony

A. Legislative and Regulatory

Oral and written Testimony, "Why 2+2 Should Never Equal 3: Getting Intercensal Population Estimates Right the First Time," House Government Reform Subcommittee on Federalism and the Census oversight hearing Washington, DC. September 6, 2006.

Oral and written Testimony, Nuclear Regulatory Commission, Advisory Committee On Nuclear Waste, September 25, 1997, Las Vegas, Nevada.

Oral Testimony on Oregon's Population Trends. Presented to the Interim Committee On Growth Management, Oregon House of Representatives, February, 1996.

Written Testimony on "The Proposed Options For Incorporating Information From The PostEnumeration Survey into The Intercensal Population Estimates produced By the Bureau of the Census." Public Hearing Docket (No. 920895-2195) U.S. Bureau of the Census. August 31, 1992.
"Results From the 1988 Recycling Survey." Presented to the Subcommittee on Solid Waste Management, Pierce County Council, January, 1989.

Written Testimony on "Plans for Conducting the 1990 Census in Alaska." Subcommittee on Census and Population, Hearing Conducted in Anchorage, Alaska, August 19, 1987.

Written Testimony on "Federal Statistics and National Data Needs." Subcommittee on Energy, Nuclear Proliferation and Government Processes of the Committee on Government Affairs, United States Senate, 98th Congress, 1st Session. Committee Print (S. Print 98-191) Washington: 1984.

Oral and Written Testimony, Labor Committee, Alaska House of Representatives, 1981, 1982, 1983.

Oral and Written Testimony, Finance Committee, Alaska House of Representatives, 1981, 1982, 1983.

Oral and Written Testimony, Finance Committee, Washington State Senate, 1979.
Oral and Written Testimony, Finance Committee, Hawaii State House of Representatives, 1974.

B. Judicial

Deposed and Testifying Expert Witness. 2022. Case A-17-762364-C. Estate of Joseph P. Schrage Jr \& Kristina. D. Schrage v. Allan Stahl. Eighth Judicial Court, Clark County, Las Vegas, Nevada.

Deposed and Testifying Witness. 2021. Civil No. CV 6417-203, State of Arizona, General Adjudication of All Rights in the Little Colorado River System and Source, Phoenix, AZ

Deposed and Testifying Expert Witness. 2012. Board of Education, Shelby County, Tennessee et al. v. Memphis City Board of Education et al. / Board of County Commissioners, Shelby County, Tennessee (third party plaintiff) v. Robert E. Cooper et al (third party defendant)." (Constitutionality of a Tennessee state law). Baker, Donelson, Bearman, Caldwell and Berkowitz, PC. Memphis, TN.

Deposed Expert Witness. 2009. "Quest Medical Services v. FMIC." (Demographic Effects of Hurricane Katrina on New Orleans in a case involving a Medical Service Provider). . Podvey, Meanor, Catenacci, Hildner, Cocoziello, and Chattman, P.C., Newark, NJ.

Deposed and Testifying Expert Witness. 2007. "Spring Hill Hospital, Inc. v. Williamson Medical Center and Maury Regional Hospital." (Evaluation of population forecasts in a case involving a proposed hospital). Miller and Martin, PLLC, Nashville.

Deposed and Testifying Expert Witness. 1994. Arkansas Supreme Court. (Statistical evaluation of the accuracy of the number of qualified signatures on a public referendum as determined by a sample).
Deposed Expert Witness. 1983. "Anchorage, et al., vs. J. Hammond et al." (Lawsuit brought by local governments against the state of Alaska on how populations are determined for purposes of state revenue sharing to local governments).

XI. Service

A. Professional

Co-editor, Special Issue on Population Forecasting, Population Research and Policy Review (2023) (with J. Baker, I. Grossman, and T. Wilson).

Mortality Expert Panel, Society of Actuaries Research Institute, February, 2022 -
Interview, "Census Bureau's use of Synthetic Data worries Researchers." A story that appears in Associate Press News. May 27, 2021
https://apnews.com/article/census-2020-technology-data-privacy-businessbe938fa5db887a0ae6858dff0be217ef

External Advisory Board, Geo-Spatial and Population Studies Research Center, University of New Mexico, April 2019 -

Chair, Estimates and Projections Session I, 2022 Applied Demography Conference February $1^{\text {st }}$.
Interview: "Information for Real Estate Agents." Wallethub, April 24th, 2019.
https://wallethub.com/edu/best-worst-cities-to-be-a-real-estate-agent/18713/\#expert=david-aswanson

Interview: "Demographic Formula Reveals Surprisingly Short Careers for MLB Pitchers." A story that appears in UPl's Science News, August 3rd, 2018 (https://www.upi.com/Demographic-formula-reveals-surprisingly-short-careers-for-MLB-pitchers/3841533304869/).

Editorial Board, Population Research and Policy Review, 2014-2021
Advisory Board, Online Program in Applied Demography, Pennsylvania State University, 20172021

Advisory Board, Nantucket Data Platform Project, Nantucket, Massachusetts, 2017-2020
Reviewer, Proposals for a special issue of Population Research and Policy Review, 2017.
Co-organizer, Conference on Applied Demography and Public Policy, University of Houston, Houston, TX, January, 2017.

Chair, Applied Demography Track Committee, 2017 Program Committee, Population Association of America. 2016-17.

2017 Program Committee, Population Association of America. 2016-2017.
Invited Commentary, "Compare Hawai'i and Mississippi," on the question, "Is Hawai'i a racial paradise?" Zocalo Public Square, September 15 ${ }^{\text {th }}, 2015$ (http://www.zocalopublicsquare.org/2015/09/15/is-hawaii-a-racial-paradise/ideas/up-fordiscussion/\#David+A.+Swanson).

Poster Session Judge, "8 $8^{\text {th }}$ International Conference on Population Geographies, Brisbane, Australia, June $30^{\text {th }}$ to July $3^{\text {rd }}, 2015$.

Discussant, Session 1130, "Demographic and Statistical Approaches to Small Area Estimation." Population Association of American, April $30^{\text {th }}$ to May $1^{\text {st }}$, 2014. Boston, MA.

Session Chair, "Mortality and Later Life Health." Social Science History Association, 1-4 November 2012, Vancouver, BC, Canada.

Grant Proposal Reviewer. "FR/38/2-220/11 - Defining the Demographic Prospects of Georgia and Providing their Software," Shosta Rustaveli National Science Foundation of Georgia, Republic of Georgia (December, 2011).

Session Organizer and Chair, "Population Projections," Applied Demography Conference, 8-10 January 2012, San Antonio, Texas.

Interview: "Experts Predict Bright Future." A story that appears in The Telegraph. (Calcutta, India) December 21, 2010.

Interview: "Census Bureau releases detailed statistics on smaller Inland areas." A story written by David Olson that appears in the Press-Enterprise, December 14, 2010

Interview: "Inland area lags behind state, nation in returning census forms." A story written by David OIson that appears in The Press-Enterprise, March 31, 2010

Interview: "Government 'a Counting: Does the U.S. Census Need a 21st-Century
Makeover?." A story written by Katie Moisse that appears in Scientific American, March 25, 2010
Interview: "Some Hispanics puzzle over race question on census form." A story written by Randy Cordova that appears in the Arizona Republic, March 23, 2010.

Interview: "The census inspires a sense of civic duty, distrust and fear." A story written by Robert L. Smith that appears in The Cleveland Plain Dealer, March 16, 2010

Interview: "Campaign counts on snowbird surveys in Palm Springs." A story
written by Kate McGinty that appears in The Desert Sun, March 13, 2010
Interview: "Census Bureau reaching out in Inland area to communities least likely to be counted." A story written by David OIson that appears in The Press-Enterprise, January 28, 2010

Interview: "Countdown to the Count-up." A story written by Bettye Miller that appears in UCR: The Magazine of UC Riverside Winter, 2010, pp. 22-23.

Session Chair, "The 2010 Census." Applied Demography Conference, 10-12 January 2010, San Antonio, Texas.

Session Organizer and Chair, "Expert Witness Work and the Applied Demographer," Applied Demography Conference, 10-12 January 2010, San Antonio, Texas.

Co-Program Organizer (with Nazrul Hoque and Lloyd Potter), Applied Demography Conference, 10-12 January 2010, San Antonio, Texas.

Discussant, Session 1704, "Using Demography in the Business and Public Sectors." 2009 Conference of the International Union for the Scientific Study of Population, Marrakech, Morocco, 27 September - 2 October 2009.

Associate Editor, Open Demography Journal, 2009-2010
Facilitator, Census Advisory Committee of Professional Associations, U.S. Census Bureau, 200910

Chair, Committee representing the Population Association of America, Census Advisory Committee of Professional Associations, U.S. Census Bureau. 2008-2009

Census Advisory Committee of Professional Associations, U.S. Census Bureau. 2004-2010
Member, Development Committee, Population Association of America, 2008-2013.

Chair and Conference Organizer, Psychology and Social Sciences Section, Mississippi Academy of Sciences, 2007-8.

Chair, Session on "Fertility: Social Issues and Reproduction." Annual Meeting of the Southern Demographic Association, 13 October 2007, Birmingham, Al.

Presenter and Discussant, "Symposium for School Districts that will be affected by the Toyota Assembly Plant near Tupelo. Mississippi." School of Education, University of Mississippi, 30 March 2007.

Organizer, Symposium: "the Psychological and Social Impacts of Hurricane Katrina." 2007 Conference of the Mississippi Academy of Sciences 22 February. Starkville, Mississippi.

Program Organizer, Applied Demography Conference, 9-11 January 2007, San Antonio, TX.
Chair and Conference Organizer, Psychology and Social Sciences Section, Mississippi Academy of Sciences, 2006-7.

Reviewer, Using the American Community Survey: Benefits and Challenges, Committee on Functionality and Usability of Data from the American Community Survey, Committee on National Statistics, National Research Council. Washington, DC: National Academy of Sciences Press. 2007.

Chair, Session on "Anxiety, Ambiguity, and Multiculturalism in Statistical Education," Annual Meeting of the American Statistical Association, 10 August 2006, Seattle, WA

Vice-Chair, Psychology and Social Sciences Section, Mississippi Academy of Sciences, 2005-6.
Local Arrangements Coordinator, Annual Meeting of the Southern Demographic Association University of Mississippi, October, 2005.

Editor, Population Research and Policy Review, Official Journal of the Southern Demographic Association, July $1^{\text {stt }}, 2004$ - July $1^{\text {st }}, 2007$.

Member, Advisory Board, Fulbright Academy of Science and Technology, 2003-2008.
Participant, Users Perspective Meeting, Panel on the Functionality and Usability of Data from the American Community Survey, Committee on National Statistics of the National Academies, April 2005, Washington, DC.

Technical Review Panel Member, Small Business Innovative Initiative Grants, National Institutes of Health, 2002.

Chair, National Committee on Applied Demography, Population Association of America, 2001-2.
Publications Officer, Government Statistics Section, American Statistical Association, 2001-2.
Member, National Committee on Applied Demography, Population Association of America, 1999 to 2003 .

Organizer and Moderator, "Population Controls for the American Community Survey,"
Annual Meeting of the Southern Demographic Association, University of Mississippi, Oxford, Mississippi, November, 2005.

Organizer and Chair, "New Directions in Local Area Estimation and Forecasting,"

Annual Meeting of the Population Association of America, New York, New York. March, 1999
Technical Review Panel Member, Small Business Innovative Initiative Grants, National Institutes of Health, 1997.

Organizer and Chair, Panel Discussion on "Surf's Up! Building, Accessing, and Linking Demography's Internet Sites," Annual Meeting of the Southern Demographic Association, Memphis, Tennessee, October, 1996.

Chair, Session on "Computer Support of Statistical Education," The International Conference On Statistical Education In The Modern World: Ideas, Orientations, Technologies, St. Petersburg, Russia, July, 1996.

Chair, Membership Committee, Population Association of America, 1996 to 1998.
Technical Advisory Committee, Oregon Survey Research Laboratory, University of Oregon, 199697.

Textbook Reviewer, Life in a Business Oriented Society (by Richard Caston), Allyn and Bacon Publishers, 1996.

Member, Editorial Board, Population Research and Policy Review, 1995 to 1997, 2007-current.
Organizer and Chair, Session on "Estimates and Projection," 1996 Annual Meeting of the Population Association of America.

Co-Organizer, Sessions and Papers on State and Local Demography, 1995 Annual Meeting of the Population Association of America.

Member, Committee on Applied Demography, Population Association of America, 1994 to 1997.
Chair, Session on "Population, Environment and Development," 1994 Annual Meeting of The Southern Demographic Association, Atlanta, Georgia.

Secretary-Treasurer, Southern Demographic Association, 1994-1997 and 2004-2007.
Chair, Session on "Demographics of School and College Enrollment." 1994 Applied Demography Conference, Bowling Green, Ohio.

Organizer, Session on "Should Projections be Privatized?" and Session on "The Utility of Population Projections." 1994 Annual Meeting of the Federal-State Cooperative Program on Population Projections, Miami, Florida.

Member, Delegation to visit U.S. Senators RE the FY 1994 Budget for the U.S. Bureau of the Census, sponsored by The Population Association of American, July, 1993.

Member, Senior Council, Ohio Academy of Science, 1993-95.
Roundtable Discussion Leader on "School District Demography" 1993 Annual Meeting of the Population Association of America, Cincinnati, Ohio.

Organizer, Session on "Methods of Forecasting and Estimating," 1993 Annual Workshop of the National Association for Welfare Research and Statistics, Scottsdale, Arizona.

Arkansas State Representative to the Federal-State Cooperative Program for Population Projections, 1992 to 1995.

Member, National Peer Review Committee, Socio-economic Studies, High Level Radioactive Waste Repository, 1992, Yucca Mountain, Nevada.

Organizer and Chair, Session on "Projection and Forecasting Special Populations," 1990 North American Conference on Applied Demography, Bowling Green, Ohio.

National Chairman, Federal -State Cooperative Program for Population Projections, 1993-94.
Discussant, Session on "Survey Research to Support Social Statistics," 1990 Annual Meeting of the American Statistical Association, Anaheim, California.

Panelist, "Applied Demography and the Population Association of America," given at the 1990 Annual Meeting of the Population Association of America, Toronto, Ontario. May, 1990.

External Examiner, "A Model for Fertility Change," Ph.D. Dissertation submitted by N. Sugathan, Department of Demography, University of Kerala, 1989.

Participant, National Resource Persons Network, Office of Minority Health Resource Center, U.S. Public Health Service, 1989.

Member, Washington State Child Health Research and Policy Group, 1989-1993.
Discussant, Session on "Is the Non-Metropolitan Population Turnaround Over?" 1989 Annual Meeting of the Rural Sociological Society, Seattle, Washington.

Organizer and Chair, Session on "Demographic Issues and The Law," 1988 National Conference on Applied Demography, Bowling Green, Ohio.

Chair, State and Local Demography Interest Group, Population Association of America, 1988-90.
Organizer and Chair, Session on Methodological Advances In State and Local Demography. 1988 Annual Meeting of the Population Association of America, New Orleans, Louisiana.

Member, Subcommittee on Academic Outreach, Business Demography Committee, Population Association of America, 1987-1988.

Roundtable Discussion Leader, "Marketing Your Organization's Demographic Expertise and Resources." 1987 Annual Meeting of The Population Association of America, Chicago, Illinois.

Judge, North Central Sociological Association Undergraduate Student Paper Competition, 1987. Co-Organizer, 1st Biennial Conference on Applied Demography, held at Bowling Green State University, September 26-27, 1986.

Member, State Advisory Committee on Population Forecasts, Ohio Data Users Center, Ohio Department of Development, 1986-1987.

Discussant, Session on Estimating and Forecasting Demographic Characteristics of Small Areas, 1986 Annual Meeting of the Population Association of America, San Francisco, California.

Discussant, Session on Estimates and Projections for State and Local Areas, 1985 Annual Meeting of the Population Association of America, Boston, Massachusetts.

Speaker, Panel on Careers in Applied Demography, 1985 Annual Meeting of the Population Association of America, Boston, Massachusetts.

Discussant, Session on Issues in State and Legal Demography, 1984 Annual Meeting of the Population Association of America, Minneapolis, Minnesota.

Alaska State Representative to the Federal State Cooperative Program for Population Projections, 1981-1983.

Discussant, Session on Forecasting Energy Demand, Northwest Utilities Conference, 1980 Annual Meeting, Portland, Oregon.

Discussant, Session on Mathematical Models in Sociology, 1978 Annual Meeting of the Pacific Sociological Association, Spokane, Washington.

Member, Editorial Board, Applied Demography, Population Association of America, 1985 to 1993.
External Examiner, "Unique Competencies of International Non-Governmental Organizations (INGOs): Empirical Explorations from India." Sociology Dissertation by Pranaya Kumar Swain, Ph.D. Candidate, Indian Institute of Technology-Kanpur, Kanpur, Utter Pradesh, India. 1995.

Editorial Referee, Demography, 2022 (1 paper)
Editorial Referee, Demographic Research 2021 (1 paper)
Editorial Referee, Population Research and Policy Review, 2021 (1 paper)
Editorial Referee, Spatial Demography, 2020 (1 paper)

Editorial Referee, Journal of Engineering and Applied Research, 2019 (1 paper)
Editorial Referee Spatial Demography, 2019 (1 paper),
Editorial Referee, Demography, 2018 (1 paper)
Editorial Referee, Canadian Studies in Population, 2018 (1 paper)
Editorial Referee, Journal of Mathematical Biology, 2018 (1 paper)
Editorial Referee, Demography, 2017 (1 paper)
Editorial Referee, Population, Space and Place, 2017 (1 paper)

Editorial Referee, Population Research \& Policy Review, 2017 (1 paper)
Editorial Referee, Demography, 2016 (1 paper).
Editorial Referee, Review of Economics and Finance, 2016 (1 paper)
Editorial Referee, Journal of Population Research, 2016 (1 paper)
Editorial Referee, Population Studies, 2015 (1 paper).
Editorial Referee, The American Statistician, 2914 (1 paper)
Editorial Referee, Journal of Population Research. 2014. (1 paper).

Editorial Referee, Journal of Population Research. 2013. (1 paper)
Editorial Referee, Open Demography Journal. 2012. (1 paper)
Editorial Referee, Disasters Journal. 2012 (1 paper)
Editorial Referee, Population Research and Policy Review, 2011 (2 papers)
Editorial Referee, Canadian Journal of Sociology, 2011 (1 paper).
Editorial Referee, Journal of Population Research, 2011 (1 paper).
Editorial Referee, Journal of Population Research, 2010 (1 paper).
Editorial Referee, Population Research and Policy Review, 2010 (1 paper).
Editorial Referee, American Sociological Review, 2010 (1 paper).
Editorial Referee, Demography. 2010 (1 paper).
Editorial Referee, Population Health Metrics. 2010 (1 paper).
Editorial Referee, Journal of Planning Education and Research, 2009 (1 paper).
Editorial Referee, Population Research and Policy Review, 2009 (1 paper).
Editorial Referee, Population Research and Policy Review, 2008 (2 papers).
Editorial Referee, Population Studies, 2008 (1 paper).
Editorial Referee, Journal of the Mississippi Academy of Sciences, 2008 (2 papers) .
Editorial Referee, Population Research and Policy Review, 2007 (1 paper).
Editorial Referee, Journal of Population Research, 2007 (2 papers).
Editorial Referee, City and Community, 2006 (1 paper).
Editorial Referee, Journal of Economic and Social Measurement, 2005 (1 paper).
Editorial Referee, International Journal of Forecasting, 2004 (1 paper).
Editorial Referee, Demography, 2001 (1 paper).
Editorial Referee, Population Research and Policy Review, 1999 (1 paper).
Editorial Referee, International Journal of Forecasting, 1997 (1 paper).
Editorial Referee, Population Research and Policy Review 1996 (1 paper).
Editorial Referee, Demography, 1993 (1 paper).
Editorial Referee, Demography, 1991 (1 paper).
Editorial Referee, Demography, 1987 (1 paper).

Editorial Referee, The Energy Journal, 1987 (1 paper).
Editorial Referee, Demography, 1986 (1 paper).
Editorial Referee, Human Biology, 1985 (1 paper).
Editorial Referee, Demography, 1984 (1 paper).
Editorial Referee, Demography, 1981 (1 paper).
Editorial Referee, Social Biology, 1981 (1 paper).
Editorial Referee, Demography, 1980, (1 paper).
Reviewer, Proceedings of the 1992 International Conference on Applied Demography (1 paper).

B. Academic

Reviewer, Long range demographic and Enrollment projections for California," as part of the "Framework for UC's Growth and Support" project, at the request of the UC Provost, Aimee Dorr, 2017.

Faculty Chair, Graduate Student Awards Committee, Department of Sociology, University of California Riverside, 2016-2017

Faculty Chair, Technology Committee, Department of Sociology, University of California Riverside, 2016-2017.

Faculty Member, Undergraduate Studies Committee, Department of Sociology, University of California Riverside, 2010-2015.

Faculty Chair, Undergraduate Program Review Committee, Department of Sociology, University of California Riverside, 2010-2011.

Interim Director, Blakely Center for Sustainable Suburban Development, University of California Riverside, 2008-2009.

Member, Leadership Institute Steering Committee, University of Mississippi, 2006-7.
Chair, Provost's Task Force on Undergraduate Education, University of Mississippi, 2004-5.
Member, Faculty Grant Review Committee, College of Liberal Arts, University of Mississippi, 2004-5.

Member, Ad Hoc Committee on Off-Campus Programs, College of Liberal Arts, University of Mississippi, 2003-4.

Member, Curriculum and Policy Committee, College of Liberal Arts, University of Mississippi, 2003-7.

BScBA Program Representative, Academic Council, Helsinki School of Economics, 2001-3. International Summer Term Governing Board, Mikkeli Polytechnic College, 2001-3.

Campus Council, Mikkeli Business Campus, Helsinki School of Economics, 1999-2003.
Member, Dean's Executive Council, School of Urban and Public Affairs, Portland State University, 1995-97.

Member, UALR 2000 Response Group, University of Arkansas at Little Rock, 1994-95.
Mentor in Demography, Arkansas Delta Research, Education and Development Foundation, West Memphis, Arkansas, 1992-93.

Member, Urban Demography Subcommittee, Masters of Social Science Committee, University of Arkansas at Little Rock, 1992-93.

Member, East Campus Facilities Usage Group, Pacific Lutheran University, 1991-92.
Member, Provost's Ad Hoc Committee for Faculty Research, Pacific Lutheran University, 1990-92.

Member, Center For Social Research Committee, Division of Social Sciences, Pacific Lutheran University, 1987-89.

Member, Graduate Studies Committee, Department of Sociology, Bowling Green State University, 1986-87.

Library Representative, Department of Sociology, Bowling Green State University, 1986-87.
Member, Search Committee for the Assistant Director of Research Services, the Graduate College, Bowling Green State University, 1985.

Representative, Washington Community College Computing Consortium, 1981.
President, Sociology Graduate Student Association, University of Hawaii, 1974-75
Member, Executive Committee, Department of Sociology, University of Hawaii, 1974-75 Member, Graduate Admission Committee, Department of Sociology, University of Hawaii, 197576.

B. Community

2022 Pro Bono Consulting, Department of City Planning (Kendra Taylor et al.), Atlanta, GA,

2018- Member, Public Advisory Board, Caring Nurses Home Health Service, Las Vegas, NV.

2016-2022 President, University of Hawai'i Alumni Association, Las Vegas, NV Chapter

2016-2017 Secretary, Board, "Kimo Leads the Way," a non-profit organization in Las Vegas with a mission to ease the suffering of child cancer patients and their Parents.

2015-2016 Vice-President, University of Hawai'i Alumni Association, Las Vegas Chapter

1987- As an annual donor and fund raiser, participate(d) in the endowment of the Demography Scholarship, Western Washington University Foundation, Bellingham, Washington.

2010 As a representative of the University of Hawai'i Alumni Association, represented the University of Hawai'i to prospective university students and their parents at the Laguna Beach High School Annual "College Round-up," 6 October, Laguna Beach, CA,

2008 As a donor, established the David L. Swanson Endowed Scholarship for first generation college students, Eastern Washington University Foundation, Cheney, Washington.

2003-2007 As a donor and fund raiser, helped establish the E. Walter Terrie Endowed Graduate Student Award for the Southern Demographic Association, Florida State University Foundation, Tallahassee, Florida.

2007 Donor, Schiller Scholarship and Jobes Scholarship, Department of Sociology, Pacific Lutheran University, Tacoma, Washington.

2006 Demographic Advisor, Town of Walls, Mississippi (Pro Bono Assistance)
2003-2005 Mississippi State Director, National Association of Medics and Corpsmen.
2001- As an annual donor and fund raiser, helped establish the Gary K. Sakihara Graduate Student Award, Department of Sociology, University of Hawai'i at Mānoa, University of Hawai'i Foundation, Honolulu, Hawai'i.

2003-2007 Annual donor, unrestricted funds for the Department of Sociology and Anthropology, University of Mississippi Foundation, Oxford, Mississippi

2001-2003 Representative, Savo Provincial Higher Education Council, Mikkeli, Finland
1999-2000 Member, Census 2000 Advisory Committee, City of Las Vegas, Las Vegas, Nevada
1996-1997 Member, Board of Directors, Mt. Hood Brewing Company, Portland, Oregon.
1994-1995 Member, Governor's Task Force on Hispanic Issues, State of Arkansas.
1994. Technical Demographic Advisor, Evangelical Lutheran Church in America, Research and Planning Office, National Headquarters, Chicago, Illinois (Pro Bono Assistance).

1992-1994. Technical Demographic Advisor, Catholic Church Diocese Officer, Little Rock, Arkansas (Pro Bono Assistance).
1993. Technical Coordinator, Governor's Task Force on Health Care Reform, State of Arkansas.

1988-1990. Survey and Research Consultant, Prince of Peace Lutheran Church, Des Moines, Washington (Pro Bono Assistance).

Life Member, $101^{\text {st }}$ Airborne Division Association.

Life Member, National Association of Corpsmen and Medics.
Life Member, Western Washington University Alumni Association

XII. Research and Professional Consulting

Demographic Consultant, Bryan GeoDemographics, 2021-
Wrongful Death Loss Consultant, O'Reilly Law Group, Las Vegas, Nevada. 2019-2022.
Demographic Consultant, "Forecast of Hopi Tribal Members et al." The Hopi Tribe, Kykotsmovi, AZ, 2017-2022.

Demographic and Statistical Consultant, ALCS LLC, Richmond, VA, 2016-2018
Course Development Consultant, Department of Sociology, Penn State University, 2016-2017
Demographic Consultant, Watts Guerra, LLC. San Antonio, TX. 2016.
Demographic Consultant. "Conseil Scolaire Francophone de la Columbia-Britannique et al. v. Her Majesty the Queen et al." SCBC, Vancouver registry, No. S103975. McCarthy Tetrault LLP. Vancouver, British Columbia, Canada. 2013-2014.

Demographic Consultant, Kemp Communications, Las Vegas, Nevada. 2011.
Demographic Consultant, "Population Projections." Miller and Martin, PLLC. Nashville, TN. 2010.
Demographic Consultant, Third Wave Research, Madison, WI. "Agent-Based Population
Projections. 2009-2010.
Demographic Consultant, Third Wave Research, Madison, WI. "Population Projections for the Nine Census Divisions, 2010-2020, by Single Years of Age and Sex. 2009.

Demographic Consultant, Kemp Communications, Las Vegas, Nevada. 2009.
Demographic Consultant, McKibben Demographics. "Planning a Charter School in the Lagniappe Area of New Orleans, Louisiana," Grant funded by the Smart Foundation. 2009.

Demographic Consultant, "Quest Diagnostics, Inc. v. FMIC." Podvey, Meanor, Catenacci, Hildner, Cocoziello, and Chattman, P.C., Newark, NJ. 2008-2009

Demographic Consultant, "Socio-Economic Economic Resilience and Dynamic Micro-Economic Analysis for a Large-Scale Catastrophe, Grant funded by The Southeast Regional Research Initiative (SERRI), with R. Forgette and M. Van Boening, University of Mississippi, Principal Investigators, 2009-2010

Demographic Consultant, "Ochsner Clinical Foundation v. Continental Casualty Company." Fisher Kanaris P. C., Chicago, IL, 2007.

Demographic and Statistical Consultant, Hurricane Katrina: Its Impact on the Population and Candidates for Endovascular Surgery in the Primary and Secondary Service Areas of Garden Park Hospital," Lemle and Kelleher, PLLC, Shreveport, LA. 2007.

Demographic Consultant, "Population Projections." Miller and Martin, PLLC. Nashville, TN. 20062007.

Demographic Consultant. "Evaluation of Methods for Estimating the Foreign Born Population." U.S. Census Bureau. 2006-2008.

Demographic Consultant, "Estimated Number of Employees with Health Insurance by Employee Type (Private Sector and Government), Size of Establishment, and City: Clark County, Nevada." 2004. Regulatory Economics, Inc. Henderson, NV.

Demographic Consultant, "Estimating and Forecasting the Size of U.S. Lifestyle Segments."
Third Wave Research, Inc. Madison, Wisconsin, 2003; 2002; 1996.
Demographic Consultant, Nevada Consulting Alliance, "Evaluation of Population and Related Projections of Nevada." 2002.

Demographic Consultant, Nevada Consulting Alliance, "Critique of the State Demographer's 2002 Population Estimate for Clark County." 2002.

Consulting Scientist to Consulting Senior Scientist, Science Applications International Corporation, 1988-2002.

Demographic Consultant, Senecio Software, Inc. "Remote Sensing Estimates of Population." 1999-2002.

Demographic Consultant and Consulting Team Leader, Washoe County, Nevada, "Development of a Small Area Population Estimation System. 1999.

Consultant/Resource Faculty, "Applied Demographic Research in Migration." National Science Foundation (with L. M. Tedrow, Director), 1999.
Demographic Consultant, Parsons Brinckerhoff and SaudConsult, "Review and Revision of the Population Forecast for Jubail, Saudi Arabia." 1999.

Demographic Consultant, Nevada Consulting Alliance, "Revision of the Nevada County-level Economic and Demographic Forecasting Model," Nevada State Demographer's Office, 1998-99

Demographic and Statistical Estimation Consultant, "MetroMail Household Income/Asset Estimation Project," Third Wave Research, Inc. Madison, Wisconsin, 1996-97.

Demographic Consultant and Census Enumerator/Crew Leader Training Instructor, "American Community Survey Evaluation Project," Multnomah Progress Board, Portland, Oregon, 1997.

Demographic Consultant, "Initial Evaluation of the American Community Survey Portland Test Site Results," U.S. Bureau of the Census, 1996-97.

Enrollment and Demographic Consultant, "Enrollment Forecasts and Attendance Zone Adjustments," Hillsboro 1J School District, Oregon, 1995-1996

Enrollment and Demographic Consultant, "Enrollment Forecasts," Newberg School District Newberg School District, Oregon, 1996.

Demographic Consultant, "Higher Education Trends," NORED, Inc., Olympia, Washington, 1995

Demographic and Enrollment Consultant, "Enrollment and Market Area Profiles," Portland Community College, Portland, Oregon, 1995.

Consultant/Resource Faculty, "Applied Demographic Research in Migration" National Science Foundation (with L. M. Tedrow, Director), 1994.
Demographic Consultant, General Motors Research and Development Labs, GM North America Operations Center Michigan, 1988 to 1994.

Demographic Consultant, "Tribal Membership Forecasts," Lummi Tribal Business Council, Whatcom County, Washington, 1991.

Statistical Consultant, Iceberg Seafoods, Anchorage, Alaska, 1991-92, 1997-99, 2000.
Demographic Consultant, State of Connecticut Department of Health, "Small Area Population Estimation System" (with D. Pittenger and E. Schroeder), 1990.

Survey Research Consultant, Policy Division, Washington State Office of Financial Management, Olympia, Washington, 1990.

Demographic Consultant, Battelle Pacific Northwest Laboratories, Richland, Washington.
"Hanford Environmental Dose Reconstruction Project," Subcontract No. 041581-A-K1. Richland, Washington, 1988-1990.

Survey Research Consultant, Choosing Our Future, Inc., Menlo Park, California, 1984.
Survey Research Consultant, "Household Characteristics and Residential Energy Use," Pacific Gas and Electric Company, San Francisco, California, 1983-1984.

Demographic Consultant, "Sub-county Estimation," U.S. Bureau of the Census, 1983.
Population and Enrollment Consultant, Anchorage Community College, 1983
Demographic Consultant, University of Phoenix, 1982.
Demographic Consultant, KVOS TV, Inc., Bellingham, WA., 1972, 1974.
Survey Research Consultant, Ewa Mental Health Clinic, Honolulu, Hawaii, 1975.

Information Systems Consultant, Hawaii Center for Environmental Education, Honolulu, HI. 1973.
Demographic Consultant, America Friends of Hebrew University of Jerusalem, Inc.,
New York, N. Y., 1973.

XIII. Memberships in Associations

Academic Central, Casualty Actuarial Society (2016 to present)
American Statistical Association (1975 to present)
Canadian Population Society (Life Member)
European Association for Population Studies. (1999 to 2018)

Fulbright Academy for Science and Technology (2003 to 2009)
Fulbright Association (1994-97, 2002 to 2010)
Population Association of America (1975 to present)
Mississippi Academy of Sciences (Life member)
Southern Demographic Association (1992 to present)
Western Social Science Association (2015 to 2017)

XIII. Selected Awards and Honors

2022 E. Walter Terrie Award for State and Local Demography, for ""Boosted Regression Trees for Small-Area Population Forecasting." Selected as the best paper on an applied topic at the 2022 Conference of the Southern Demographic Association, Knoxville, TN (with J. Baker and J. Tayman).

2020-21 Edward A. Dickson Emeritus Professor Award, University of California Riverside

2016 E. Walter Terrie Award for State and Local Demography, for "Using Modified Cohort Change and Child-Woman Ratios in the Hamilton-Perry Forecasting Method." Selected as the best paper on an applied topic at the 2016 Annual Meeting of the Southern Demographic Association, October 12 ${ }^{\text {th }}$, 2016, Athens, Georgia. (with J. Tayman).

Fulbright Specialist Roster (in Applied Demography, appointed March 2014 for a five year term).
Merit Increase to Professor VIII, University of California Riverside, (June) 2013.
Certificate of Appreciation, US Census Bureau (for service on behalf of Census 2010) (September) 2010.

Outstanding American Award 2006, National Association of Medics and Corpsmen (for service on behalf of Hurricane Katrina victims).

Research Fellow, Social Science Research Center, Mississippi State University (appointed, October 2005).

RAND "Research Summer Institute" Scholarship (July), 2004,
Fulbright "German Studies Seminar," (June), 2003,
1999 E. Walter Terrie Award for State and Local Demography, for " We are What We Measure: Toward A New Approach for Assessing Population Forecast Accuracy." Selected as the best paper on an applied topic at the 1999 Annual Meeting of the Southern Demographic Association, October 29 ${ }^{\text {th }}$, 1999, San Antonio, Texas. (with J. Tayman and C. Barr).

Hammer Award (as part of a research team evaluating the American Community Survey, U.S. Bureau of the Census), Vice-President of the United States of America, July, 1999,

Performance Award, Science Applications International Corporation, 1999.
Task Achievement Program Award, U.S. Department of Energy, Yucca Mountain Project, 1998.
Certificate of Appreciation, Community Based Leadership Institute, Minority Affairs Division, American Association of Retired Persons, 1992.

Fulbright Lecturing Award, 1990-91, Department of Demography, University of Kerala, Trivandrum, India.

Nominee, Outstanding Contributor to Graduate Education, 1985-86, Graduate Student Senate, Bowling Green State University, 1986.

East-West Center Fellowship, 1980. East-West Center, Honolulu, Hawai'I.
Graduate with honors (cum laude), Western Washington State College, 1972.
Alpha Kappa Delta, National Sociology Honorary Society
Phi Theta Kappa, National Community College Honorary Society, Kappa Epsilon Chapter

XIV. Languages

English (US): Native Language
Swedish: Reading and Speaking, Good; Writing, Fair.
Finnish: Reading and Speaking, Poor; Writing, Very Poor.

THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF MISSISSIPPI GREENVILLE DIVISION

DYAMONE WHITE; DERRICK
SIMMONS; TY PINKINS;
CONSTANCE OLIVIA SLAUGHTER
HARVEY-BURWELL

PLAINTIFFS

VS.
CIVIL ACTION NO. 4:22-cv-00062-SA-JMV

STATE BOARD OF ELECTION
COMMISSIONERS; TATE REEVES
in his official capacity as Governor of
Mississippi; LYNN FITCH in her
official capacity as Attorney General of
Mississippi; MICHAEL WATSON in
his official capacity as Secretary of
State of Mississippi

DEFENDANTS

DECLARATION OF DAVID A. SWANSON, Ph.D.

I, David A. Swanson, Ph.D., do hereby declare as follows:

1. My name is David A. Swanson. I am an adult resident citizen of Whatcom County, Washington. I have personal knowledge of the facts and matters set forth herein and am otherwise fully competent to offer the testimony hereafter stated.
2. I was retained by Defendants to analyze a report submitted by Plaintiffs' expert Dr. Traci Burch (120206_Dr. Burch Rebuttal Report.Final.Signed(2721085.100)) in this litigation. I was asked to check the accuracy of her use of data in supporting her opinions and, if necessary, to collect and examine data tending to support opinions to the contrary.
3. My qualifications to offer the opinions presented in my report and in this declaration are stated in $\boldsymbol{9} \boldsymbol{T l} 1$ 1-11 of my report.

As I discuss in detail in this report, I find, in summary, that Dr. Burch's Rebuttal Report contains major errors. These errors, combined with several critical oversights, render her opinion invalid.
4. My observations of Dr. Burch's work are that she:
(1) claims that the Current Population Survey (CPS) is unreliable, ${ }^{1}$ therefore causing her to turn to a new data set, The "Cooperative Election Survey" (CES) for "validated voters." However, the CES is itself linked back to the CPS to establish weights for "validated voters," a fact which she does not acknowledge;
(2) claims on the basis of an extremely small sample that the CES data showed that 74% of the White Mississippi respondents who said they voted actually did so, while 57% of the Black Mississippi respondents did so.
(3) uses a weighting scheme in her "logistic regression" analyses that is not recommended by the authors of the CES study and compounding this failure by declaring that there were "statistically significant" coefficients in her two sample-based logistic regression models, both of which, in fact, turn out to be not statistically significant when the recommended weighting scheme is used. That is, Dr. Burch fails to create logistic regression models from which she can make inferences from the CES samples to the populations in question;
(4) incorrectly identifies the counties in Mississippi Supreme Court District 1 in her "Ecological Inference" Model of District 1 by erroneously excluding Bolivar County and erroneously including Adams County; and
(5) compares White voters to Non-White Voters in her two Ecological Inference models, one for District 1 and the other for the state as a whole, when, in fact the question is in regard to White Voters and Black Voters.
5. Because of these and other errors and oversights I discuss in the report that follows, I find Dr. Burch has no valid opinion regarding White voters relative to Black Voters both in MS Supreme Court District 1 and in Mississippi as a whole. As such, her "findings" do not rebut my conclusion or change my opinion that Black Mississippians are able to participate effectively in the political process in MS Supreme Court District 1 and in the state as a whole.

[^52]6. Next, I examine the background of Dr. Burch's original expert report and the contents of her supplemental report that lead to my conclusions. At page 10 of her initial expert report, Dr. Burch offered the following opinion:
"Black people in Mississippi have had less access to quality education and therefore have lower educational attainment for the reasons discussed in this section; this lower educational attainment leads to lower voter turnout."

The data supporting this opinion was her calculation on page 10 of her expert report that:
> " 56.1% of white Mississippi citizens voted in the 2020 general election, compared with 53.0% of Black Mississippi citizens."
7. Figure 4, found on page 10 of Dr. Burch's expert report, shows that the calculation supporting this opinion relied upon the 2020 Current Population Survey ("CPS") Voting Supplement, official data collected by the United States Census Bureau. In conducting a "quality control" assessment of this calculation by Dr. Burch, I first examined historical CPS data provided by the Census Bureau and found, as stated in $\mathbb{1} 128$ of my expert report, that Black voter turnout exceeded White voter turnout in Mississippi every year since 2012. Moreover, as stated in 『 137 of my expert report, I found that the official 2020 CPS data claimed to have been used by Dr. Burch in generating her calculation contradicted the opinion she formed from this calculation. Instead of showing that 2020 voter turnout by White Mississippians exceeded the 2020 voter turnout by Black Mississippians, it showed that the turnout by the latter exceeded the turnout by the former.
8. As stated in ब 149 of my expert report, I found that in using the official 2020 CPS data to come to her opinion, Dr. Burch neglected to use the correct age filters so that only those 18 years and over who are eligible to vote would be included in her calculations. These errors led, in turn, to her erroneous opinion that White voter turnout was higher than Black voter turnout in Mississippi. When the correct age filters are applied, the same CPS data used by Dr. Burch show that Black voter turnout is higher than White voter turnout in Mississippi, which contradicts not only the opinion found in her expert report, but also to the adherence of this erroneous opinion found in her rebuttal.
9. In a further effort to substantiate my finding from the CPS that Black voter turnout exceeds White voter turnout in Mississippi (and has for some time) while simultaneously examining Dr. Burch's opinion that an "overall gap in turnout between Black and white Mississippians exists," also found on page 10 of her expert report, I examined a second set of data. The Social Science Research Center at Mississippi State University has conducted annual statewide surveys of registration and voting frequency from 2015 to 2021. In ब 148-151 of my report, I determined that these additional data also indicated that Black voter turnout generally exceeds White voter turnout in Mississippi.
10. In response to my findings, Dr. Burch submitted a rebuttal report (120206_Dr. Burch Rebuttal Report.Final.Signed(2721085.100)) on February 6, 2023. She admits at page 3 of this rebuttal report that, as I pointed out in my declaration of March 8, 2023, she miscalculated White and Black voter turnout in Mississippi's 2020 general election because she failed to use the correct age filters in her analysis. The CPS educational question is only asked if persons aged 15 years and over and she erroneously included those under 18 in the portion of her analysis related to educational attainment (i.e., she included those aged 15,16 , and 17 , who are not eligible to vote). In providing her estimate of overall voter turnout, Dr. Burch compounds this error by including even more of those who are not eligible to vote, namely all of those under the age of 18 , to include infants. Overlooking her errors for the moment, I find that, in spite of the fact that she relied on CPS data in her in her expert report, she now states at page 4 of her rebuttal that she has now determined that "turnout estimates in the CPS are unreliable." This statement repudiates not only her own expert report, but disregards the fact that the CPS represents a nationally recognized source of record for statistics on voter registration and voter turnout on which, like Dr. Burch, I relied in my expert report.
11. Dr. Burch reveals on page 4 of her rebuttal report that she now relies upon for the first time the "2020 Cooperative Election Study" (CES) as a remedial dataset. This national dataset has been available and has been used by experts in the field for many years. This data set has a number of issues in regard to its Mississippi sample. First, the 2020 CPS data that Dr. Burch originally relied upon has 2,548 total respondents, and 1,657 voting-age respondents. By comparison, the CES that Dr. Burch turns to remediate the CPS has 462 voting-age respondents. Generally speaking, when a survey sample is being used to analyze extremely small populations, the largest sample possible is most beneficial. What Dr. Burch asserts is that while the CPS has a larger sample size, that larger sample in its entirety is flawed, it cannot be relied upon, and another source with $1 / 4$ the sample size should be the appropriate source of record for measuring voter turnout in Mississippi.
12. An issue that frequently stands out in survey samples that are weighted to represent a population (such as the CES using 462 people to represent nearly 2.3 million voting age population in Mississippi) $)^{2}$ is that more rare populations that have unique combinations of characteristics tend to have high weights that carry the risk of significantly and disproportionately impacting statistics using those respondents - and impacting the interpretation and conclusions based on them.

[^53]13. There are glaring examples of this problem in the CES. One feature that stands out among its many issues is that the answers for four Black respondents - who count as 51 respondents in reporting survey results when they are weighted using the "commonPostweight." ${ }^{3}$ Because the sum of the CommonPostweights in the survey is 419 - that means those four respondents are actually representing 12% of Mississippi's total sample and 29% of its Black sample. While even one of those respondents could end up changing the results of a table if it found its way into a given analytic cell - the consequences of all four of those respondents being grouped together could be disastrously misleading. With these four respondents forming a potentially influential set of cases in the small subsample she uses in her analysis, Dr. Burch is clearly ignoring the warning found in the CES Study Guide (Ansolabehere, Schaffner, and Luks, 2021: 23): "... we advise caution when analyzing very small subsamples as random measurement error may lead to faulty inferences about analyzing very small subpopulations."
14. In her rebuttal report, Dr. Burch touts the value of the CES in enabling the researcher to look beyond self-reported voting behavior, on page 4-5:

Because much of the bias in turnout estimates based on the CPS has to do with differential overreporting of voting by race, 11 it is necessary to examine alternative sources that do not depend on self-reporting of turnout to estimate turnout by race in Mississippi. First, I examine the 2020 Cooperative Election Study (CES), which contains a sample of 462. Mississippi adults (unweighted). The CES, although it is a survey, independently validates voter registration and turnout for respondents by attempting to match respondents to a database of registered voters maintained by Catalist, a corporation that maintains a national database of voters. Catalist updates their information on voter registration and history with data directly from states. In my analysis, I use the measure of validated voter turnout rather than self-reported voter turnout to estimate racial gaps in turnout, distinguishing this survey from the unvalidated selfreported turnout from CPS or Mississippi State University analyzed by Dr. Swanson.
15. Based on Dr. Burch's advocacy of the benefits of the CES, and her discussion of how it enables validation of voters by matching to Catalist, and the direction by the authors of the CES:
"We recommend the use of "vvweight" or "vvweight_post" any time researchers wish to characterize the opinions, behaviors, or traits of voters or registered voters. The "vv" stands for

[^54]"voter validated" and these weights are missing for all respondents who were not validated as (active) registered voters."

I anticipated an analysis of the CES leveraging the powerful technique of matching voters who said they voted to those who actually voted.
16. On page 6 Burch observes:

CES allows us to examine overreporting of voting. Comparing selfreported voter turnout to validated voter turnout shows substantial overreporting of voting. The CES team was able to validate in Catalist that 74% of the White Mississippi respondents who said they voted actually did so, but were only able to validate that 57% of the Black Mississippi respondents who said they voted did so. Thus, as the CES shows, corroborating the recent work of Ansolabehere et al. discussed supra, differential over-reporting of voter turnout by race is an important phenomenon that affects estimates of voter turnout in Mississippi and demonstrates the problems with relying only on self-reported voting to estimate racial differences in turnout. ${ }^{4}$
17. In the footnote of this discussion, Dr. Burch states: "For this analysis, which includes reported voter turnout, I weighted the sample by the variable "commonpostweight." After writing at length about the power that CES has in validating voters and reading the CES technical documentation instructing users to use "vvweight or vvweight post any time researchers wish to characterize the opinions behavior or traits of voters or registered voters" (see page 16) it is inexplicable why Dr. Burch would instead use a weight (commonpostweight) that the CES technical documentation says not to use for the analysis Dr. Burch performs. Next, I perform a statistical investigation in an effort to understand the effect of her choice.
18. I attempted to replicate Dr. Burch's results (See Appendix B for a discussion of approaches to validating voters from the CES technical documentation). Dr. Burch appears to use the third and most rigorous method, just without using the correct weights. In Figure 1.1 I show the self-identification variable "cc20_401."

[^55]Figure 1.1: CC20_401 Self-reported voting variable
Voted in 2020
Which of the following statements best describes you?
CC20_401

Voted in 2020	N
I did not vote in the election this November.	1317
I thought about voting this time-but didn't.	620
I usually vote, but didn't this time.	432
I attempted to vote but did not or could not.	433
I definitely voted in the November 2020 General Election.	45660
N	48462

19. Next, in Figure 1.2 I show the CL_2020GVM variable - which is the Catalist variable showing whether the respondent actually voted. A combination of "I definitely voted" from Figure 1.1 and any response to Figure 1.2 would be the number of validated voters, divided by everyone who said they definitely voted.

Figure 1.2 CL_2020GVM Self-reported voting variable
CL_2020gvm - How respondent voted in 2020 general election (if missing, respondent did not have a record of voting)

1. absentee
2. earlyVote
3. mail
4. polling
5. unknown
6. In Table 1.1, for white voters, I show the CC20_401 (self-reported voting) variable at the top, for those who "definitely voted". On the left of Table 1.1, I show the responses for CL_2020gvm. Associated with the code of " 5 " under the first column, we can see in the second column of Table 1.1 that there were 127 (weighted) white respondents (135 unweighted) who reported they voted and were validated (we just don't know in what manner they voted). Continuing on to the "NA" code in the first column, we can see in the second column that there were 45 (weighted) white respondents (49 unweighted) who reported that they voted but were not validated. In this case, the 127 weighted White voters who were validated divided by 172 , the total number of weighted White respondents who stated that they voted yields an estimate of 73.6% white- matching Dr. Burch's estimate. The problem here is that this estimate is using the incorrect "commonpostweight".

Table 1.1 Calculation of Validated white Voters Using "Commonpostweight"

inputstate race	28
	White
5	Def Voted
NA	127
Grand Total	45
Voted and Validated	172

21. Similarly in Table 1.2, for Black voters, I show the CC20_401 (self-reported voting) variable at the top, for those who "definitely voted". On the left of Table 1.2, I show the responses for CL_2020gvm. Associated with the code " 5 " under the first column, we can see in the second column of Table 1.2, that there are 81 (weighted) Black respondents (52 unweighted) who reported they voted and were validated (we just don't know in what manner they voted). Continuing on to the "NA" code in the first column, we can see in the second column that there were 61 Black respondents (35 unweighted) who reported they voted but were not validated. In this case, the 81 weighted Black voters divided by the 143 weighted Black respondents who stated they voted yields an estimate of 57.1% - matching Dr. Burch's estimate. The problem here again is that this estimate is generated using the incorrect "commonpostweight".

Table 1.2 Calculation of Validated Black Voters Using "Commonpostweight"

inputstate race	28
	Black
5	Def Voted
NA	81
Grand Total	61
Voted and Validated	143

22. Using the incorrect weighting scheme,"commonpostweight," it appears that: (1) 73.6 percent of Whites who reported voting actually did vote; and (2) 57.1 percent of Blacks who reported voting actually did vote. However, a different story emerges when the correct weighting system is used.

Table 1.3 Calculation of Validated white Voters Using the Correct Weighting Scheme, "vvweight_post"

inputstate race	28 White
	Def Voted
5	115
NA	6
Grand Total	121
Voted and Validated	95.1%

23. On the left of Table 1.3, I show the responses for CL_2020gvm. Associated with the code " 5 " in the first column of Table 1.3 we can see in the second column that there are 115 (weighted) White respondents (134 unweighted) who reported they voted and were validated. Associated with the "NA" in the first column, we can see in the second column that there are 6 (weighted) White respondents (6 unweighted) who reported they voted but were not validated. In this case, the 115 weighted White "validated voters" divided by the 121 weighted White respondents who reported they voted yields an estimate of 95.1% "Whites who voted and were validated."

Table 1.4 Calculation of Validated Black Voters Using the Correct Weighting Scheme, "vvweight_post"

inputstate	28	
race	Black	7
	Def Voted	
5	70	
NA	15	
Grand Total	85	
Voted and Validated	82.8%	

24. On the left of Table 1.4, I show the responses for CL_2020gvm. Associated with the code " 5 " in the first column of Table 1.4, we can see that in the second column that there are 70 (weighted) Black respondents (52 unweighted) who reported they voted and were validated. Continuing on to the "NA" in the first Column, we can see in the second column that there are 15 (weighted) Black respondents (9 unweighted) who reported they voted but were not validated. In this case, the 70 weighted Black "validated voters" divided by the 85 weighted Black respondents who said they voted yields an estimate of 82.8% "Blacks who voted and were validated."
25. Had she used the correct weighting scheme, "vvweight_post," Dr. Burch would have found that 95.1% of White respondents and 82.8% of Black respondents correctly reported that they voted. While we can see that this less of a difference than found using the incorrect weighting scheme used by Dr. Burch (12.3 \% vs. 16.5%), it is here that we begin to see the strain of the CES small sample size. Using the vvweight_post, there are only 6 nonvalidated white voters (both weighted and unweighted), and only 9 non-validated Black
voters (15 weighted). That is - the numerator for estimating rates of validated voting from the CES for Mississippi are 6 white respondents (out of 140, representing approximately 1.3 million white, NH VAP from the 2020 Census) and 9 Black respondents (out of 61 , representing approximately 800,000 any part Black VAP from the 2020 Census). This difference of 12.3% between validated Black and white voters (both based on single-digit sample sizes) is not statistically significant, per the results of an Aspin-Welch Unequal Variance, Two sample T-test I ran with $\alpha=.05$, which yielded $\mathrm{p}=0.9743$ (NCSS, https://www.ncss.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Two-Sample_T-
Test.pdf). See Appendix C. The irony is that Dr. Burch repeatedly touts the strength of a survey-based voter validation system that in the end she fails both to understand and use correctly.
26. As we can now see, Dr. Burch's "finding" regarding the validation of White and Black voters in Mississippi is inaccurate for two reasons. First, she used the incorrect weights. Second, even had she used the correct weights, she would have found there was no statistically significant difference between the validated White and Black voters had she conducted an appropriate statistical test. As you will see, in the following section, I continue to examine her use of incorrect weights and failing to take into account sample size when I examine the logistic regression models constructed by Dr. Burch.
27. In combination with Dr. Burch's statement at page 4 of her rebuttal that "turnout estimates in the CPS are unreliable" it is, indeed, ironic that the "Cooperative Election Survey," the data set to which she turned because, unlike the CPS, it contains "validated voting results," the CES (Ansolabehere, Schaffner, and Luks, 2021: 16) weights these validated voters using the CPS:
> "A second set of weights was constructed after matching the survey to Catalist. Respondents for whom there was a validated voter registration record were weighted using the same approach as described above, but this time to ensure that those individuals were representative of registered voters (according to the 2020 CPS)."
28. Thus, in her use of CES data because it has "validated voters," Dr. Burch's analysis is again tied to the CPS, a data set she declared has turnout estimates that are unreliable. In conjunction with this new data set she introduces two new analytic methods, logistic regression and ecological inference. I now turn to an examination of her logistic regression analysis.

Burch's Logistic Regression model(s)

29. I find a number of problems with the discussion of the logistic model(s) Dr. Burch constructed, including but not limited to, her failure to:
(1) fully document the input data from the Current Election Study (CES) and not making it clear that she used only 460 of the 462 cases for Mississippi;
(2) adequately describe the characteristics of her logistic model(s) in that, among other omissions, she does not describe the "fit" of her model to the data and whether or not any of the assumptions underlying a logistic regression model were violated;
(3) identify the statistical package she used to generate the logistic model(s), which turned out to be SPSS;
(4) include in her rebuttal the fact that there are exceptional weights in the CES Mississippi sample, which places a lot of explanatory burden on only a few subjects such that if these subjects were eliminated, the characteristics of her logistic model(s) would change substantially (See paragraph 10);
(5) report that "Model 1 " only correctly classifies 57.5 percent of the voters found in the Mississippi CES sample into the correct category, which is not much better than simply flipping a fair coin for which we would expect to be correct in calling "heads" 50 percent of the time (see Appendix A); and
(6) report that she used a weighting scheme not recommended by the authors of the CES study guide for the type of analysis she conducted and compounding that failure by declaring that there were "statistically significant" coefficients in her sample-based logistic regression model labeled as "Model 1" (shown in Table 2 of her rebuttal) and that if the recommended weighting scheme had been used, that there are no "statistically significant" coefficients in "Model 1."
30. This final and $6^{\text {th }}$ failure essentially renders moot the other problems with her logistic model(s) and inconsequential the discussion she provides of them in her rebuttal because "Model 1" cannot be used to infer from the incorrectly weighted sample data to the "universe" that the sample represents.
31. Before turning to the discussion of the incorrect weights used by Dr. Burch in her logistic regression models, I provide a simple description of weighting for purposes of clarification and understanding.
32. In many sample surveys, the proportion of respondents in the survey with a given characteristic does not match the same proportion found in the entire population of interest. When this occurs, "weighting" is used to make the survey results consistent with what is expected for the entire population (Kish, 1965).
33. As an illustration, I adapt a discussion of gender-based weights from Swanson (1997). In this situation, it was known the frequency of females in the sample for a given community
is not equal to its frequency in the population. Using Amargosa Valley, Nevada, as an illustration, 61.5% (120) of the 195 adults sampled in this community were female, but they only constitute 49% (221) of the total population (452). This "over-representation" of females (and "under-representation" of males) in the sample survey needs to be taken into account in order to correctly infer from the sample to the population as a whole. Using the population and sample data, the "weight" that will do this for females is found by multiplying the total sample (195) by the proportion of females in the population (.49) and dividing this quotient by the number of females in the sample (120), a process that yields $\left(195^{*} .49\right) / 120=0.796$, which can be rounded to 0.80 . For males, this process yields $\left(195^{*} .51\right) / 75=1.326$, which can be rounded to 1.3 .
34. These weights for females and males, respectively, would be applied to the survey respondents by gender to obtain results that would apply to the population as a whole. As a simple illustration, if the 120 females in the sample all answered "yes" to a question and the 75 males all answered "no," the sample would show that 61.5% answered "yes." In order to apply this to the population by taking into account the over-representation of females, we multiply .615 by 0.80 , which yields 0.49 . That is, 49% of the population of adults in Amargosa Valley, NV replied "yes" to this question.
35. The CES weighting scheme is much more complicated than the preceding example, but underneath all of the complications, it is simply trying to get the sample survey results to the level where they represent the population the sample is intended to represent.
36. Turning now, to the CES, in looking at which of four weighting schemes to use in analyzing data taken from the CES study, here are the recommendations as found in the CES Study Guide (Ansolabehere, Schaffner, and Luks, 2021: 16-17):
"Using Weights
Note that the 2020 CES Common Content includes weights for both the Pre-Election and Post Election waves of the study. The weights are constructed to ensure that the sample is representative of different populations either adult Americans or adult Americans who are registered to vote.

Variable name Respondent group Target population
commonweight All respondents Adults
commonpostweight Answered both waves Adults
vvweight Matched to validated registration record Registered adults
vvweight_post Answered both waves \& matched to registration record Registered adults
We recommend the use of "commonweight" any time researchers wish to characterize the opinions and behaviors of adult Americans. However, use "commonpostweight" when you wish to characterize the opinions and behaviors of adult Americans but you are using any items from the post-election wave of the questionnaire. We recommend the use of "vvweight" or "vvweight post" any time researchers wish to characterize the opinions, behaviors, or traits of voters or registered voters. The "vv" stands for "voter validated" and these
weights are missing for all respondents who were not validated as (active) registered voters. This approach differs from previous cycles when all respondents received a value for "vvweight" and those weights were not designed solely for use with voters or registered voters. If seeking to characterize the opinions, behaviors, or traits of voters, use "vvweight" or "vvweight_post" in conjunction with the vote validation variables."
37. Dr. Burch uses logistic regression to show that white subjects in the CES sample for Mississippi who report as having voted are more likely to be validated than Black subjects in the MS CES sample. In so doing, she uses the "commonweight," which as can be seen above in the excerpt is designed for characterizing the opinions and behaviors of adult Americans in general. However, she uses the "validation" variable in her logistic model, which according to the same excerpt, needs the "commonpostweight" because she is reaching across to the post-election wave, where the validation of "I voted" takes place. Thus, she has not used the weight recommended in the CES Study Guide (Ansolabehere, Schaffner, and Luks (2021: 16-17).
38. In using "commonweight," the incorrect weighting scheme for her analysis, Dr. Burch reports in Table 2 of her rebuttal that two of the three coefficients (including the "constant") in "Model 1" are statistically significant, where ${ }^{* * *}=\mathrm{P}<.001$, ${ }^{* *}=\mathrm{P}<.01$, and $*=\mathrm{P}<.05$. In displaying these " p values" she is indicating that she is using a hypothesis test to assess the validity of her model for the entire population that the sample represents (Swanson, 2012: 131-240).

Variable name	coefficient	p level
Black	-0.545	**
Other race	-1.246	
Constant	0.388	***

39. When using "commonpostweight," the recommended weight for going across into the postelection time period, the coefficients change in value and neither the Black variable nor the constant is statistically significant, a finding I made after replicating her logistic analysis with "commonweight," the "incorrect weight" and subsequently using "commonpostweight," the recommended weight for an analysis that reaches into the postelection period (See the Appendix for the NCSS output of these two models, with the replication of Burch's incorrectly weighted model in Appendix A and the logistic regression model that results when the correctly weighting scheme is used in Appendix B)

$\underline{\text { Variable name }}$	$\underline{l o e f f i c i e n t}$	\underline{p} level	
Black	-0.308		$(\mathrm{p}=.12289)$, not statistically significant because $\mathrm{p}>0.05$
Other race	-1.19123		$(\mathrm{p}=.12849)$, not statistically significant because $\mathrm{p}>0.05$
Constant	0.15301		$(\mathrm{p}=.08171)$, not statistically significant because $\mathrm{p}>0.05$

40. Essentially, when the recommended weights are used, one cannot statistically infer (which is what we need to do because the CES data are a sample) that Dr. Burch has constructed a logistic regression model that proves her point. That is, following the path she selected, which was to use hypothesis testing in regard to the model's coefficients, we cannot reject the null hypothesis that each of these three coefficients assembled from the sample data do not represent the corresponding coefficient that would be found if we had the entire voting age population data set to analyze. Thus, Dr. Burch has not constructed a valid logistic regression model that represents the entire voting age population in Mississippi.
41. It is important to note that a colleague of mine, L.M. Tedrow, a research associate at Western Washington University, confirmed the results I found using the NCSS statistical package by using the same package that Dr. Burch used, SPSS.

$\underline{\text { Variable name }}$	$\underline{\text { coefficient }}$		p level
Black	-0.308		$(\mathrm{p}=.12289)$, not statistically significant because $\mathrm{p}>0.05$
Other race	-1.19123		$(\mathrm{p}=.12849)$, not statistically significant because $\mathrm{p}>0.05$
Constant	0.15301		$(\mathrm{p}=.08171)$, not statistically significant because $\mathrm{p}>0.05$

Here is the confirmatory SPSS output provided by Mr. Tedrow.
Variables in the Equation

	B	S.E.	Wald	df	Sig.	$\operatorname{Exp}(B)$
Step 1 $^{\text {a }}$	Black	-.308	.200	2.380	1	.123
	otherrace -1.191	.784	2.311	1	.735	
	Constant .201	.131	2.334	1	.128	.304

a. Variable(s) entered on step 1: black, other race.
42. Dr. Burch's "findings" in regard to using logistic regression in conjunction with the CES data neither rebuts my conclusion nor changes my opinion concerning the ability of Black Mississippians to participate effectively in the political process. As I showed in my initial report: Black people vote at higher rates than White people.

The Ecological Inference Model for District 1

43. In constructing her Ecological Inference (EI) model of existing District 1, Dr. Burch erroneously included Adams County (a county in existing District 2) and erroneously excluded Bolivar Country (a county in existing District 1). Again, following my "quality control" protocol, I discovered this by examining the file I was provided that was represented by Plaintiffs as the file Dr. Burch used in her EI analysis of District 1 ("neweicentraldist for EI," a text document). In checking this file, I found that there were 32 block groups with the Adams County Code (28001.......) and zero block groups with the Bolivar County code (28011.......). There should have been 28 of the latter in this file, as is found in the file I was provided that was represented by Plaintiff as the file Dr. Burch used in her EI analysis of Mississippi as a whole ("dataforEI2," a text document).
44. In her Ecological Inference analysis she uses "non-white," not Black, as can be seen in Figure 4 on page 11 of her rebuttal report. So, she is now expressing an opinion about White voters relative to non-white voters, not an opinion about White voters relative to Black voters.
45. On page 10 of her rebuttal, Dr. Burch states that she places the Hispanic population (regardless of race) into the "nonwhite" category she employs in her EI analysis by using "...block group data on the citizen voting age population by race, distinguishing nonHispanic white population from the non-White population." In so doing, she places White Hispanics of voting age into her non-white category, along with Asian, American Indian and Alaskan Natives, and "other" Non-Black people of voting age. This action serves to further dilute Dr. Burch's ability to provide an opinion about White voters relative to Black voters in District 1.
46. Coupled with her error of excluding all of the 28 Bolivar County block groups from her EI analysis of District 1 and erroneously including all 32 of the Adams County block groups, the fact that she compares white voters to non-white votes, leads me to conclude that Dr. Burch has neither an opinion on District 1 (in terms of its correct definition) nor an opinion regarding White voters relative to Black Voters in District 1.
47. Dr. Burch's "findings" in regard to using the Ecological Inference Method in conjunction with the CES data applied to District 1 do not rebut my conclusion or change my opinion
that Black Mississippians are able to participate effectively in the political process. As I showed in my initial report, Blacks vote at higher rates than Whites in District 1.

The Ecological Inference (EI) Model for Mississippi as a Whole

48. As was the case for District 1, in her Ecological Inference analysis for Mississippi as a whole, Dr. Burch uses "non-white," not Black, as can be seen in Figure 4 on page 11 of her rebuttal report. So, she is now expressing an opinion about White voters relative to non-white voters not an opinion about White voters relative to Black voters. Moreover, as noted in \#21, she further diluted her ability to provide an opinion about White voters relative to Black voters because she placed Hispanics of any race into the non-white category, which for the state as a whole includes 29,061 White (alone and in combination with other races) Hispanics of voting age, along with Asian, American Indian and Alaskan Natives, and "other" Non-Black people of voting age. As a consequence of these actions, Dr. Burch has no opinion regarding White voters relative to Black Voters in Mississippi as a whole.
49. Dr. Burch's "findings" in regard to using the Ecological Inference Method in conjunction with the CES data relative to Mississippi as a whole do not rebut my conclusion or change my opinion that Black Mississippians are able to participate effectively in the political process. As I showed in my initial report: Blacks vote at higher rates than Whites in Mississippi as a whole.

In summary, I find that Dr. Burch's Rebuttal Report contains major and other errors that along with related oversights render invalid the opinions she presents in it, to include:
(1) claiming that the Current Population Survey (CPS) is unreliable, therefore causing her to turn to a new data set, The Cooperative Election Survey" (CES) for "validated voters." However, the CES is itself linked back to the CPS to establish weights for "validated voters," a fact of which she is either ignorant or ignores;
(2) Claiming on the basis of an extremely small sample that she incorrectly weighted that the CES data showed that 74% of the White Mississippi respondents who said they voted actually did so, while 57% of the Black Mississippi respondents did so.
(3) using a weighting scheme in her "logistic regression" analyses that is not recommended by the authors of the CES study and compounding this failure by declaring that there were "statistically significant" coefficients in her two sample-based logistic regression models, both of which, in fact, turn out to be not statistically significant when the recommended weighting scheme is
used. That is, Dr. Burch fails to create logistic regression models from which she can make inferences from the CES samples to the two populations in question;
(4) incorrectly identifying the counties in MS Supreme Court District 1 in her "Ecological Inference" Model of District 1 by erroneously excluding Bolivar County and erroneously including Adams County; and
(5) comparing White voters to Non-White Voters in her two Ecological Inference models, one for District 1 and the other for the state as a whole, when, in fact the question is in regard to White Voters and Black Voters.
50. Because of these and other errors and oversights, I find Dr. Burch has no valid opinion regarding White voters relative to Black Voters both in MS Supreme Court District 1 and in Mississippi as a whole. As such, her "findings" do not rebut my conclusion or change my opinion that Black Mississippians are able to participate effectively in the political process in MS Supreme Court District 1 and in the state as a whole.

Pursuant to 28 U.S.C. § 1746, I, David A. Swanson, Ph.D., hereby certify under penalty of perjury under the laws of the United States of America that the foregoing is true and correct to the best of my knowledge, information, and belief at the time of making this declaration.

Executed this the 15th day of September, 2023.

DAVID A. SWANSON, PH.D.

References

Ansolabehere, S., B. Schaffner, and S. Luks (2021). Guide to the 2020 Cooperative Election StudyData Release No. 21 (June).

Kish, L. 1965. Survey Sampling. New York: Wiley.
NCSS (no date). Logistic Regression. NCSS Statistical Software. (https://www.ncss.com/wpcontent/themes/ncss/pdf/Procedures/NCSS/Logistic Regression.pdf)

Swanson, D.A. (1997). The "Biosphere" Food Consumption Survey. Presented at the Nuclear Regulatory Commission/Department of Energy Total System Performance Assessment Technical Exchange. Las Vegas, NV.

APPENDIX

Appendix A. Logistic Regression Results when the incorrect weights are used.

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Run Summary

Item	Value	Item	Value
Y Variable	validvote	Rows Processed	460
Reference Value	0	Rows Used	460
Number of Y-Values	2	Rows for Validation	0
Frequency Variable	commonweight	Rows X's Missing	0
Numeric X Variables	2	Rows Freq Miss. or 0	0
Categorical X Variables	0	Rows Prediction Only	0
Final Log Likelihood	-358.43367	Unique Rows (Y and X's)	6
Model R2	0.83627	Sum of Frequencies	527.457094326484
Actual Convergence	$7.461232 \mathrm{E}-10$	Likelihood Iterations	4
Target Convergence	$1 \mathrm{E}-06$	Maximum Iterations	20
Model D.F.	3	Completion Status	Normal Completion
Priors	Equal		

Y Variable Summary

Y	Unique Rows	\mathbf{Y}	\mathbf{Y} Prior	\mathbf{R}^{2} (Y vs Pred. Probability)	Percent Correctly Classified
validvote	Count	Y and X's)	Proportion	0.50000	0.02252

Coefficient Significance Tests

Independent	Regression	Standard	Wald		Odds
Variable	Coefficient	Error	Z-Value	Wald	Ratio
X	b(i)	Sb(i)	H0: $\beta=0$	P-Value	$\operatorname{Exp}(\mathrm{b}(\mathrm{i})$)
Intercept	0.25268	0.07911	3.194	0.00140	1.28748
black	-0.54495	0.18019	-3.024	0.00249	0.57987
otherrace	-1.24551	0.64877	-1.920	0.05488	0.28779

Coefficient Confidence Intervals

Independent	Regression Coefficient	Standard Error	Lower 95\% Confidence	Upper 95\% Confidence	Odds Ratio

X	b(i)	$\mathbf{S b}(\mathbf{i})$	Limit	Limit	Exp(b(i))
Intercept	0.25268	0.07911	0.09764	0.40773	1.28748
black	-0.54495	0.18019	-0.89811	-0.19178	0.57987
otherrace	-1.24551	0.64877	-2.51708	0.02606	0.28779

NCSS 2020, v20.0.1

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Odds Ratios

Independent	Regression Coefficient	Odds Ratio Exp(b(i))	Lower 95\% Confidence Limit	Upper 95\% Confidence
Variable	0.25268	1.28748	1.10256	1.50340
X	-0.54495	0.57987	0.40734	0.82549
Intercept	-1.24551	0.28779	0.08070	1.02640

Analysis of Deviance

Term	DF	Increase From Model		
Omitted	2	728.81738	Deviance $($ Chi	
All	11.95004	P-Value		
black	1	726.08487	9.00254	
otherrace	1	720.96271	4.09538	0.00240
None(Model)	2	716.86734		

The Prob Level is for testing the significance of that term after considering all other terms.

Log Likelihood \& \mathbf{R}^{2}

Term(s)		Log	R^{2} of Remaining	Reduction From	Reduction From
Omitted	DF	Likelihood	Term(s)	Model R ${ }^{2}$	Saturated \mathbf{R}^{2}
All	1	-364.40869	0.00000		
black	1	-363.04243	0.19122	0.64505	0.80878
otherrace	1	-360.48136	0.54968	0.28660	0.45032
None(Model)	2	-358.43367	0.83627	0.00000	0.16373
None(Saturated)	6	-357.26388	1.00000		0.00000

	Estimated		
Actual	$\mathbf{0}$	$\mathbf{1}$	Total
$\mathbf{0}$	124.9911	120.9789	245.9699
$\mathbf{1}$	103.2388	178.2484	281.4872
Total	228.2298	299.2273	527.4571

Percent Correctly classified $=57.5 \%$

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																								
1	1	11.46233	\|													..	4.49750	\|																0.46074	\|						...					
2	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
3*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	3.86756	\|													...	0.58141	\|																									
4*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......										
5	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......											
6	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......											
7*	1	11.15826	\|												...	3.86756	\|											...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																
8	1	11.46233	\|														..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......										
9	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
10	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......											
11	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
12	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
13	1	11.46233	\|													.	4.49750	\|															0.46074	$\|\|\|\|\|\|\mid$.......												
14*	1	2.93353	\|		0.82207	\\|............	0.92572	\|																																					
15^{*}	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|															
16*	1	11.15826	\|												...	3.86756	\|												...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....															
17*	1	11.15826	\|												...	3.86756	\|											...	0.58141	\|															
18	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......											
19	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
20*	0	-13.00597	\|																	-4.34811	\|																	0.46074	\|						
21	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......											
22*	0	-13.00597	\|																-4.34811	\|															0.46074	\|									
23	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																
24	0	-9.64124	\|										...	-3.73948	\|											...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																		
25*	1	2.93353	\|		0.82207	\\|............	0.92572	\|																																					
26	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
27*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......											
28	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
29*	0	-13.00597	\|																-4.34811	\|																0.46074	$\|\|\|\|\|\|\mid$.......									
30*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......										
31	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
32	1	11.46233	\|															..	4.49750	\|																		0.46074	\|						
33	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......											
34*	0	-13.00597	\|															-4.34811	\|														.	0.46074	\|										
35*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	\|												...	0.58141	\|																										
36*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......										
37	1	11.46233	\|												..	4.49750	\|															0.46074	\|												

38	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|													
39*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
40*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
41	1	11.46233	\|													.	4.49750	\|																0.46074	\|								
42	1	11.46233	\|													..	4.49750	\|																	0.46074	\|							..
43*	0	-13.00597	\|															-4.34811	\|														0.46074	\|								
44	0	-1.78567	\|	-0.79495	\|	.	0.92572	\|																																		
45	1	11.46233	\|													.	4.49750	\|															0.46074	$\|\|\|\|\|\|\mid$..									
46*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
47*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
48	1	11.46233	\|1壮	4.49750	\|																0.46074	\|							.														

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight
Residual Report	
(Continued)	

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																					
49	1	11.46233	\|													.	4.49750	\|															0.46074	\|								
50	1	11.46233	\|													.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
51	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	\|																				
52*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
53	1	11.46233	\|													..	4.49750	\|															0.46074	\|						\ldots.....			
54	0	-9.64124	\|										-3.73948	\|												...	0.58141	\|													
55*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
56	1	11.46233	\|													..	4.49750	\|																0.46074	\|						\ldots.....		
57	1	11.46233	\|														..	4.49750	\|																0.46074	\|						
58*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																							
59	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
60	1	11.46233	\|												..	4.49750	\|															0.46074	\|										
61*	1	2.93353	\|		0.82207	\|	0.92572	\|																																	
62*	0	-13.00597	\|															-4.34811	\|													.	0.46074	\|								
63	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	\|																				
64	0	-9.64124	\|											...	-3.73948	\|											...	0.58141	\|								-....						
65*	0	-13.00597	\|															-4.34811	\|														.	0.46074	\|							
66	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
67	1	11.46233	\|													..	4.49750	\|															0.46074	\|								
68	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
69	1	11.46233	\|													.	4.49750	\|																0.46074	\|							
70*	0	-13.00597	\|															-4.34811	\|														0.46074	\|						\ldots.....			
71*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|											
72	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
73*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
74*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						\ldots.....	
75	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
76*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
77	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
78	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
79	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
80	1	11.46233	\|														..	4.49750	\|																0.46074	\|							.
81	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																								
82*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|											
83	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
84	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																								
85*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|											
86	0	-1.78567	\|	-0.79495	\|	0.92572	\|																																		
87	1	11.46233	\|													.	4.49750	\|															0.46074	\|								
88*	0	-13.00597	\|															-4.34811	\|															0.46074	\|							
89	1	11.46233	\|														.	4.49750	\|																0.46074	\|						
90	1	11.46233	\|													..	4.49750	\|															0.46074	\|						\ldots.....			
91	1	11.46233	\|														.	4.49750	\|																0.46074	\|						
92	1	11.46233	\|													..	4.49750	\|															0.46074	\|								

| 93* | 0 | -13.00597 | \|||||||||||||||| | -4.34811 | \||||||||||||||| | 0.46074 | \|||||||....... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 94 | 1 | 11.46233 | $\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$. | 4.49750 | \|||||||||||||||| | 0.46074 | \||||||||....... |
| 95 | 1 | 11.46233 | \||||||||||||||. | 4.49750 | \||||||||||||||| | 0.46074 | \||||||||...... |
| 96* | 1 | 11.15826 | $\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$ | 3.86756 | $\|\|\|\|\|\|\|\|\|\|\|\mid 1 .$. | 0.58141 | \|||||||||..... |

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 7

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																						
97	1	11.46233	\|													..	4.49750	\|															0.46074	\|						...				
98	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
99*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
100*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																																				
101*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	3.86756	\|											...	0.58141	\|																									
102	0	-9.64124	\|										...	-3.73948	\|											...	0.58141	\|								\ldots...								
103*	0	-13.00597	\|																-4.34811	\|																0.46074	$\|\|\|\|\|\|\mid$.......							
104*	1	11.15826	\|											...	3.86756	\|												...	0.58141	\|								...						
105*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......									
106*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.58141	\|																																				
107*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\|\mid \ldots . . .$.								
108*	1	11.15826	\|											...	3.86756	\|												...	0.58141	\|													
109	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																										
110*	1	11.15826	\|												...	3.86756	\|												...	0.58141	$\|\|\|\|\|\|\|\|\|\mid$....													
111*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
112*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.58141	\|																																				
113	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
114	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|									.					
115*	0	-13.00597	\|															-4.34811	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
116*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
117	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......									
118	1	11.46233	\|												..	4.49750	\|															0.46074	\|										
119	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
120	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....														
121*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......									
122*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
123	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......									
124	1	11.46233	\|												..	4.49750	\|															0.46074	\|										
125	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
126*	0	-13.00597	\|																-4.34811	\|																0.46074	\|						
127	1	11.46233	\|												-.	4.49750	\|															0.46074	\|										
128	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
129*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......								
130	1	11.46233	\|												..	4.49750	\|															0.46074	\|										
131*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
132*	0	-13.00597	\|																-4.34811	\|																0.46074	\|						
133	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
134	1	11.46233	\|													..	4.49750	\|																0.46074	\|									
135*	0	-13.00597	\|															-4.34811	\|														0.46074	$\|\|\|\|\|\|\mid \ldots . . .$.										

| 136* | 0 | -13.00597 | \|||||||||||||||| | -4.34811 | \||||||||||||||| | 0.46074 | \|||||||....... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 137* | 0 | -13.00597 | \||||||||||||||| | -4.34811 | \||||||||||||||| | 0.46074 | \||||||||....... |
| 138* | 0 | -13.00597 | \||||||||||||||| | -4.34811 | \||||||||||||||| | 0.46074 | \||||||||. |
| 139* | 1 | 11.15826 | \|||||||||||||... | 3.86756 | \|||||||||||||... | 0.58141 | \||||||||||..... |
| 140 | 0 | -9.64124 | \||||||||||||... | -3.73948 | \|||||||||||||... | 0.58141 | \||||||||||..... |
| 141 | 1 | 11.46233 | \||||||||||||||.. | 4.49750 | \|||||||||||||||| | 0.46074 | \||||||||....... |
| 142 | 0 | -9.64124 | \||||||||||||... | -3.73948 | \|||||||||||||... | 0.58141 | \||||||||| |
| 143* | 1 | 11.15826 | \|||||||||||||... | 3.86756 | \|||||||||||||... | 0.58141 | \||||||||||. |
| 144* | 1 | 11.15826 | $\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$ | 3.86756 | \||||||||||||... | 0.58141 | $\|\|\|\|\|\|\|\|\mid \ldots .$. |

NCSS 2020, v20.0.15/10/2023 10:10:08 PM

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																						
145*	0	-13.00597	\|															-4.34811	\|													.	0.46074	\|							.			
146	0	-1.78567	\|	-0.79495	\\|............	0.92572	\|																																				
147*	1	11.15826	\|												..	3.86756	\|											...	0.58141	\|													
148*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	\|																								
149	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
150*	1	11.15826	\|											...	3.86756	\|											...	0.58141	\|															
151*	1	2.93353	\|		0.82207	\\|............	0.92572	\|																																			
152	0	-9.64124	\|											...	-3.73948	\|											...	0.58141	\|														
153*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
154	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
155	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|														
156*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
157*	1	11.15826	\|											...	3.86756	\|											...	0.58141	\|														
158	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
159*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							.	
160	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																										
161*	0	-13.00597	\|																-4.34811	\|																0.46074	\|							
162*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
163*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
164	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
165	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|													
166	1	11.46233	\|													..	4.49750	\|																0.46074	\|									
167	0	-9.64124	\|												...	-3.73948	\|													...	0.58141	\|											
168	1	11.46233	\|													..	4.49750	\|																0.46074	\|									
169	1	11.46233	\|														.	4.49750	\|																0.46074	\|							
170	0	-9.64124	\|											-3.73948	\|												...	0.58141	\|													
171	1	11.46233	\|													..	4.49750	\|																0.46074	\|						..			
172	1	11.46233	\|														..	4.49750	\|																	0.46074	\|							
173*	0	-13.00597	\|																-4.34811	\|																0.46074	\|							
174*	0	-13.00597	\|															-4.34811	\|														.	0.46074	\|							.		
175	0	-9.64124	\|											-3.73948	\|												...	0.58141	\|													
176*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
177*	0	-13.00597	\|															-4.34811	\|															0.46074	\|						.			
178	1	11.46233	\|													.	4.49750	\|															0.46074	\|						.				

179	0	-9.64124	\|											-3.73948	\|											...	0.58141	\|															
180*	0	-13.00597	\|																-4.34811	\|																0.46074	\|						
181*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\mid$..	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																																				
182	0	-9.64124	\|										-...	-3.73948	\|											...	0.58141	\|															
183*	0	-13.00597	\|																-4.34811	\|															0.46074	\|								
184*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\mid$..	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																																				
185	0	-9.64124	\|										-...	-3.73948	\|											...	0.58141	\|															
186	1	11.46233	\|													..	4.49750	\|																0.46074	\|									
187	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
188	1	11.46233	\|														.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.								
189	1	11.46233	\|													..	4.49750	\|																0.46074	\|									
190	1	11.46233	\|													..	4.49750	\|																0.46074	\|									
191*	0	-13.00597	\|																-4.34811	\|														-	0.46074	\|						-......		
192*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 9

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual																
193	1	11.46233	\|													.		
194	1	11.46233	\|													.		
195	1	11.46233	\|													.		
196*	0	-13.00597	\|															
197	0	-9.64124	\|											...				
198	0	-9.64124	\|															
199	1	11.46233	\|													-.		
200	1	11.46233	\|													.		
201*	0	-13.00597	\|															
202*	0	-13.00597	\|															
203	0	-9.64124	\|															
204	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.															
205*	1	11.15826	\|												..			
206	0	-9.64124	\|											...				
207*	0	-13.00597	\|															
208	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\mid$...															
209*	0	-13.00597	\|															
210*	0	-13.00597	\|															
211*	0	-13.00597	\|															
212*	0	-13.00597	\|															
213*	0	-13.00597	\|															
214	1	11.46233	\|													.		
215	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.															
216	1	11.46233	\|													..		
217	1	11.46233	\|													.		
218*	0	-13.00597	\|															
219	1	11.46233	\|													.		
220*	1	11.15826	\|												...			
221	1	11.46233	\|												..			

Deviance																	
Residual																	
4.49750	\|	intin															
4.49750																	
4.49750																	
-4.34811	$11\|1\|$																
-3.73948																	
-3.73948																	
4.49750	\|																
4.49750	\|																
-4.34811	\|	I															
-4.34811	\|															.	
-3.73948	\|																
4.49750	\|																
3.86756	IIII																
-3.73948	\|																
-4.34811	\|														.		
-3.73948	\|																
-4.34811	\|														.		
-4.34811	IIII																
-4.34811	\|																
-4.34811	\|														.		
-4.34811	\|																
4.49750	\|																
4.49750	\|																
4.49750	\|																
4.49750	\|																
-4.34811	\|																
4.49750	\|																
3.86756	\|																
4.49750	\|																

Maximum Hat Diagonal 0.46074 0.46074 |||||||
0.46074 ||||||||
0.46074 ||||||||........
0.58141 |||||||||.............
0.58141 |||||||||.....
0.46074 ||||||
0.46074 |||||| \qquad
0.46074 ||||||| \qquad
0.46074 |||||||........
0.46074 |||||||
0.58141 |||||||||......
0.46074
0.58141 ||||||||||....
0.46074 ||||||| \qquad
0.46074 ||||||| \qquad
0.46074 ||
||||||||.
0.46074 IIII \qquad
0.46074 \qquad
0.46074 ||||||||
0.46074
0.46074
0.58141
 \qquad

222*	0	-13.00597	\|															-4.34811	\|															0.46074	\|									
223	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																																				
224*	0	-13.00597	\|															-4.34811	\|															0.46074	\|									
225*	1	2.93353	\|		0.82207		0.92572	\|																																			
226	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
227	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
228*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
229	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
230	1	11.46233	\|													.	4.49750	\|																0.46074	\|						...			
231*	1	11.15826	\|											...	3.86756	\|												...	0.58141	\|														
232	0	-1.78567	\|	-0.79495	\|	0.92572	\|																																			
233	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
234	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
235*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|													
236	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|														
237*	0	-13.00597	\|																-4.34811	\|																0.46074	\|							.
238*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
239*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
240	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|													

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 10

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight
Residual Report	

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																						
241	1	11.46233	\|													.	4.49750	\|																0.46074	\|									
242*	0	-13.00597	\|																-4.34811	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.46074	\|																						
243*	0	-13.00597	\|																-4.34811	\|																0.46074	\|							
244*	1	11.15826	\|											...	3.86756	\|												...	0.58141	\|													
245	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......																						
246	1	11.46233	\|													.	4.49750	\|																0.46074	\|									
247	0	-9.64124	\|												...	-3.73948	\|													...	0.58141	\|												
248	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......																						
249	1	11.46233	\|													.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......									
250	1	11.46233	\|													.	4.49750	\|																0.46074	\|								
251	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......																						
252*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$...									
253	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	\|																																					
254	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																																					
255*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\|\mid \ldots . . .$.								
256	1	11.46233	\|													.	4.49750	\|																0.46074	\|								
257	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......																						
258*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	3.86756	\|												...	0.58141	\|																								
259	1	11.46233	\|														.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
260*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
261*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
262	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......																						
263*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	\|												...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																									
264*	0	-13.00597	\|															-4.34811	\|														0.46074	$\|\|\|\|\|\|\mid$.										

265*	0	-13.00597	\|															-4.34811	\|															0.46074	\|						.		
266	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	\|																								
267	1	11.46233	\|												-.	4.49750	\|															0.46074	\|									
268	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
269*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......							
270*	0	-13.00597	\|															-4.34811	\|															0.46074	\|							
271	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
272*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.58141	\|																																			
273*	1	11.15826	\|											...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.58141	\|																								
274	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
275*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
276	1	11.46233	\|												-.	4.49750	\|															0.46074	\|									
277*	0	-13.00597	\|															-4.34811	\|															0.46074	\|							
278	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																								
279*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|									.			
280*	0	-13.00597	\|																-4.34811	\|																0.46074	$\|\|\|\|\|\|\mid$.......						
281	0	-9.64124	\|										...	-3.73948	\|												...	0.58141	\|								...						
282*	1	11.15826	\|											...	3.86756	\|											...	0.58141	\|								-....						
283	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
284*	1	11.15826	\|											...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|								-....																	
285	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
286	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	\|																								
287	1	11.46233	\|													..	4.49750	\|															0.46074	\|								
288*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......								

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 11

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight
Residual Report	
(Continued)	

	Actual validvote	Pearson Residual		Deviance			
Residual						\quad	Maximum
:---:							
289*							

308*	0	-13.00597	\|															-4.34811	\|														.	0.46074	\|								
309	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|													
310	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
311*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
312	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	$\|\|\|\|\|\|\|\|\|\mid$....																																					
313	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|														
314	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
315	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|														
316*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$...								
317*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|									.				
318*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																								
319	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|								\ldots...						
320*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
321	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
322	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|														
323*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							.	
324*	0	-13.00597	\|																-4.34811	\|																0.46074	\|							
325*	0	-13.00597	\|															-4.34811	\|															0.46074	\|									
326*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
327*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
328*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.									
329	0	-9.64124	\|												...	-3.73948	\|													...	0.58141	\|												
330	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|									.					
331*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
332	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
333	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|														
334*	0	-13.00597	\|															-4.34811	\|														.	0.46074	\|									
335*	1	2.93353	\|		0.82207	\|	0.92572	\|																																		
336*	1	11.15826	\|											...	3.86756	\|											...	0.58141	\|														

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 12

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																						
337	1	11.46233	\|													.	4.49750	\|															0.46074	\|										
338	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																																					
339	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	\|																									
340	1	11.46233	\|														.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
341*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
342	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	\|							...															
343	0	-9.64124	\|											-3.73948	\|												...	0.58141	\|									.						
344*	0	-13.00597	\|																-4.34811	\|																0.46074	\|							.
345	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																										
346*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......									
347	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|															0.46074	\|																						
348*	1	2.93353	\|		0.82207	\|	0.92572	\|																																		
349	1	11.46233	\|													.	4.49750	\|															0.46074	\|										
350*	0	-13.00597	\|															-4.34811	\|														0.46074	$\|\|\|\|\|\|\mid$.......										

351	0	-9.64124	\|										...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	\|									..																	
352*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	$\|\|\|\|\|\|\|\|\|\mid . . .$.																																				
353*	0	-13.00597	\|																-4.34811	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.46074	\|																					
354*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	\|																							
355	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																								
356*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......							
357	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
358	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	$\|\|\|\|\|\|\|\|\|\mid \ldots .$.													
359*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	$\|\|\|\|\|\|\|\|\|\mid$.....																																				
360*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	\|																							
361*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
362*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
363*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																							
364	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
365*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	\|																																			
366	1	11.46233	\|													..	4.49750	\|															0.46074	$\|\|\|\|\|\|\mid$.......									
367	1	11.46233	\|													.	4.49750	\|																0.46074	\|							
368*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
369	1	11.46233	\|													..	4.49750	\|															0.46074	\|								
370*	0	-13.00597	\|															-4.34811	\|														.	0.46074	\|						..		
371*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	\|																																			
372*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																								
373*	1	11.15826	\|											...	3.86756	\|												...	0.58141	\|												
374	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
375*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|											
376*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
377*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......							
378*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
379	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
380	1	11.46233	\|													.	4.49750	\|															0.46074	\|								
381	0	-1.78567	\|	-0.79495	\|	0.92572	\|																																		
382*	1	11.15826	\|												...	3.86756	\|												...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....												
383*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......							
384*	1	11.15826	\|											...	3.86756	\|											...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....														

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 13

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																					
385*	1	11.15826	\|												..	3.86756	\|												..	0.58141	\|								.				
386	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|													
387	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|								...					
388	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|												
389*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$...							
390	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																																				
391*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							.
392*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							.
393	1	11.46233	\|													.	4.49750	\|															0.46074	\|						.			

394*	1	11.15826	\|											...	3.86756	\|											...	0.58141	\|																
395	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|															
396	1	11.46233	\|													.	4.49750	\|															0.46074	\|											
397*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	3.86756	\|												...	0.58141	\|																										
398*	0	-13.00597	\|															-4.34811	\|																0.46074	$\|\|\|\|\|\|\mid$.......										
399	0	-9.64124	\|										-3.73948	\|											...	0.58141	\|																		
400	1	11.46233	\|													.	4.49750	\|																0.46074	\|										
401	0	-9.64124	\|										-3.73948	\|											...	0.58141	\|																	
402	0	-1.78567	\\|............	-0.79495	\|	0.92572	\|																																						
403	0	-9.64124	\|										-3.73948	\|											...	0.58141	\|																	
404*	0	-13.00597	\|															-4.34811	\|															0.46074	\|											
405*	1	2.93353	\|		0.82207	\\|............	0.92572	\|																																					
406*	0	-13.00597	\|																-4.34811	\|														.	0.46074	\|									
407	1	11.46233	\|													.	4.49750	\|																0.46074	\|											
408*	0	-13.00597	\|																-4.34811	\|															0.46074	\|									
409	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-3.73948	\|												...	0.58141	\|																										
410*	1	11.15826	\|											...	3.86756	\|												...	0.58141	\|															
411	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|															
412	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|																
413*	0	-13.00597	\|															-4.34811	\|															0.46074	\|										
414	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	-3.73948	\|											...	0.58141	\|																											
415	0	-1.78567	\\|............	-0.79495	\\|............	0.92572	\|																																							
416	1	11.46233	\|												..	4.49750	\|															0.46074	\|												
417	1	11.46233	\|														.	4.49750	\|																	0.46074	\|								
418	0	-9.64124	\|												-3.73948	\|												...	0.58141	\|															
419	1	11.46233	\|													.	4.49750	\|															0.46074	\|											
420	1	11.46233	\|														.	4.49750	\|																	0.46074	\|								
421	0	-9.64124	\|										-3.73948	\|											...	0.58141	\|																	
422	0	-1.78567	\\|............	-0.79495	\|	0.92572	\|																																						
423	1	11.46233	\|													.	4.49750	\|																0.46074	\|										
424	1	11.46233	\|														.	4.49750	\|																0.46074	\|									
425	1	11.46233	\|													.	4.49750	\|															0.46074	\|											
426*	0	-13.00597	\|																	-4.34811	\|																	0.46074	\|						
427*	0	-13.00597	\|																-4.34811	\|															0.46074	\|										
428	1	11.46233	\|												.	4.49750	\|															0.46074	\|												
429	0	-1.78567	\\|............	-0.79495		0.92572	\|																																							
430	0	-1.78567	\\|............	-0.79495	\|	0.92572	\|																																						
431*	0	-13.00597	\|															-4.34811	\|													.	0.46074	\|											
432	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	-3.73948	\|											...	0.58141	\|																											

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 14

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																				
433	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|											
434*	0	-13.00597	\|																-4.34811	\|															0.46074	\|					
435*	0	-13.00597	\|															-4.34811	\|															0.46074	\|						
436	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																																		

437	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|									.					
438	0	-1.78567	\\|............	-0.79495	\\|............	0.92572	\|																																					
439*	0	-13.00597	\|																-4.34811	\|																0.46074	\|						
440*	0	-13.00597	\|															-4.34811	\|																0.46074	\|							
441	0	-9.64124	\|										...	-3.73948	\|												...	0.58141	\|														
442*	0	-13.00597	\|															-4.34811	\|																0.46074	\|							
443	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.58141	\|																																				
444*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
445	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																																				
446*	0	-13.00597	\|																-4.34811	\|																0.46074	\|						
447*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
448*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.58141	\|																																				
449*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	3.86756	\|												...	0.58141	\|																								
450*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
451	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	\|																					
452	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
453	0	-9.64124	\|											-3.73948	\|												...	0.58141	\|														
454*	0	-13.00597	\|																-4.34811	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.46074	\|																					
455	0	-9.64124	\|										...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																										
456	0	-9.64124	\|										...	-3.73948	\|												...	0.58141	\|									.						
457	0	-9.64124	\|											-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	\|																									
458*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
459	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
460	0	-9.64124	\|										-3.73948	\|											...	0.58141	\|															

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 15

Logistic Regression Report

Dataset	...Imsexport460.NCSS Y (Ref Value) Frequency
validvote(0)	
commonweight	

Simple Residuals vs X's Plots

NCSS 2020, v20.0.1

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Deviance Residuals vs X's Plots

Pearson Residuals vs X's Plots

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

ROC Curves (Combined and Separate)

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Prob Correct vs Cutoff Plot

Procedure Input Settings

Autosave Inactive
Variables, Model Tab
-- Variables
Y: validvote
Reference Value:
Numeric X's:
0
Categorical X's:
Frequencies:
Validation Filter:
black, otherrace
<Empty>
commonweight
<Empty>
-- Regression Model
Terms:
Remove Intercept

1-Way
Unchecked
.. Prior Y-Value Probabilities (Changes Intercept and Predicted Values)
Priors:
Equal across Y Values

Subset Selection Tab

-- Select the Best Subset from the X's

Search for the Best Subset from the X's	Unchecked
Iteration Tab	
-- Iteration Options ---	
Maximum Iterations:	20
Iteration Termination:	0.000001

NCSS 2020, v20.0.1

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Reports Tab

-- Select Reports
. Summaries

Run Summary	Checked
Y Variable Summary	Checked

. Subset Selection

Subset Summary	Checked
Subset Detail	Checked

.. Estimation

Coefficient Significance Tests	Checked
Coefficient Confidence Limits	Checked
Odds Ratios	Checked
Estimated Model (Reading Form)	Unchecked
Estimated Model (Transformation Form)	Unchecked

.. Goodness-of-Fit

Analysis of Deviance	Checked
Log-Likelihood and R^{2}	Checked

.. Classification

Classification Matrix	Checked
Validation Matrix	Checked
ROC Report	Checked

- Row-by-Row Lists

Row Classification Report:	None
Row Classification Probs Report:	None
Simple Residuals Report:	None

Residuals	Checked
DfBetas	Unchecked
Influence Diagnostics	Unchecked
Residual Diagnostics	Unchecked
Report Options Tab -- Confidence Levels	
Confidence Level:	95
-- Variable and Value Labels	

Variable Names:	Names
Value Labels:	Data Values
Stagger label and output if label length is \geq	15

Logistic Regression Report

Dataset	..Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Procedure Input Settings (Continued)

Report Options Tab (Continued)

-- Decimal Places

Precision:

Single

Probability:5
Beta (Coefficients): 5
SE(Beta): 5
Z: 3
Log Likelihood: 5
Odds Ratio: 5
DFBeta: 5
Coefficients in Reading Form Model: 2

Plots Tab
-- Select Plots

Y vs X	Checked
ROC Curves (Combined)	Checked
ROC Curve (Separate)	Checked
Residuals vs X	Checked
Skip Reference Value	Checked
Deviance Residuals vs X	Checked
Pearson Residuals vs X	Checked
Pr(Correct) vs Cutoff	Checked

-- ROC Curves and Prob(Correct) vs Cutoff Plot Options

Number Cutoffs:
29

Storage Tab

-- Data Storage Options
Storage Option:
Do not store data

Appendix B. NCSS Logistic Regression Results when the correct weights are used.

Logistic Regression Report			
Dataset ...lN	Smsexport.NCSS		
Y (Ref Value) valid	(0)		
Frequency com	npostweight		
Run Summary			
Item	Value	Item	Value
Y Variable	validvote	Rows Processed	460
Reference Value	0	Rows Used	349
Number of Y-Values	2	Rows for Validation	0
Frequency Variable	commonpostweight	Rows X's Missing	0
Numeric X Variables	2	Rows Freq Miss. or 0	111
Categorical X Variables	0	Rows Prediction Only	0
Final Log Likelihood	-288.15982	Unique Rows (Y and X 's)	6
Model R ${ }^{2}$	0.94973	Sum of Frequencies	419.122537315027
Actual Convergence	4.048361E-09	Likelihood Iterations	4
Target Convergence	1E-06	Maximum Iterations	20
Model D.F.	3	Completion Status	Normal Completion
Priors	Equal		

Y Variable Summary

	Unique			R^{2}	Percent
Y	Rows	Y	Y	(Y vs Pred.	Correctly
validvote Count	(Y and X's)	Proportion	Prior	Probability)	Classified
0204.557067111209	3	0.48806	0.50000	0.01049	48.550
1214.565470203818	3	0.51194	0.50000	0.01049	59.957
Total419.122537315027	6				54.390

Coefficient Significance Tests

Independent	Regression	Standard	Wald		Odds
Variable	Coefficient	Error	Z-Value	Wald	Ratio
X	b(i)	Sb(i)	H0: $\beta=0$	P-Value	Exp(b(i))
Intercept	0.15301	0.08790	1.741	0.08171	1.16534
black	-0.30844	0.19993	-1.543	0.12289	0.73459
otherrace	-1.19123	0.78367	-1.520	0.12849	0.30385

Coefficient Confidence Intervals

Independent	Regression	Standard	Lower 95\%	Upper 95\%	Odds
Variable	Coefficient	Error	Confidence	Confidence	Ratio
X	b(i)	Sb(i)	Limit	Limit	Exp(b(i))
Intercept	0.15301	0.08790	-0.01926	0.32529	1.16534
black	-0.30844	0.19993	-0.70030	0.08341	0.73459
otherrace	-1.19123	0.78367	-2.72719	0.34473	0.30385
NCSS 12.0.4				5/17	1:26:51 PM

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Odds Ratios
\(\left.$$
\begin{array}{lrrrr}\text { Independent } & \begin{array}{r}\text { Regression } \\
\text { Coefficient }\end{array} & \begin{array}{r}\text { Odds } \\
\text { Ratio } \\
\text { (bariable }\end{array} & \begin{array}{r}\text { Lower 95\% } \\
\text { Exp(bb(i)) }\end{array} & \begin{array}{r}\text { Upper 95\% } \\
\text { Confidence } \\
\text { Limit }\end{array}\end{array}
$$ \begin{array}{r}Confidence

Limit\end{array}\right]\)| X |
| :--- |

Estimated Logistic Regression Model(s) in Reading Form

Model for Logit(validvote) = XB when validvote $=1$ 0.15-0.31 * black - 1.19 * otherrace

Estimated Logistic Regression Model(s) in Transformation Form

Model for Logit(validvote) $=$ XB when validvote $=1$
$0.15301475991198-0.308441217146693^{*}$ black -1.1912307058887^{*} otherrace

Each model estimates $X B$ (where Logit $(Y)=X B$) for a specific Y outcome. To calculate the
Y-value probabilities when there are only 2 outcomes, transform the logit using
$\operatorname{Prob}(Y=$ outcome $)=1 /(1+\operatorname{Exp}(-X B))$ or $\operatorname{Prob}(Y \neq$ outcome $)=\operatorname{Exp}(-X B) /(1+\operatorname{Exp}(-X B))$. For the calculation formula to use when there are more than 2 outcomes, see the help documentation.

Analysis of Deviance

		Increase From Model		
Term	DF	Deviance	$\left(\right.$ Chi $\left.^{2}\right)$	P-Value

All	2	580.78819	4.46856	0.10707
black	1	578.70605	2.38642	0.12239
otherrace	1	578.94312	2.62349	0.10529
None(Model)	2	576.31963		

The Prob Level is for testing the significance of that term after considering all other terms.

Log Likelihood \& $\mathbf{R}^{\mathbf{2}}$

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight
Residual Report	

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																					
1	1	10.39601	\|												..	2.36709	\|															0.44911	\|							.			
2	1	10.39601	\|													..	2.36709	\|																0.44911	\|							.	
3*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|										
4*	0	-11.22260	\|																-2.33898	\|															0.44911	\|							
5	1	10.39601	\|													.	2.36709	\|															0.44911	\|									

6	1	10.39601	\|												..	2.36709	\|															0.44911	\|										
7*	1	9.76123	\|												..	2.06318	\|												..	0.57746	\|												
8	1	10.39601	\|													..	2.36709	\|																	0.44911	\|							
9	1	10.39601	\|													..	2.36709	\|																0.44911	\|								
10	1	10.39601	\|													..	2.36709	\|																0.44911	\|								
11	1	10.39601	\|													.	2.36709	\|																0.44911	\|								
12	1	10.39601	\|												..	2.36709	\|																0.44911	\|									
13	1	10.39601	\|											..	2.36709	\|														0.44911	\|												
14*	1	2.50368	\|I	0.40136		0.96226	\|																																				
15^{*}	1	9.76123	\|												..	2.06318	\|													.	0.57746	\|											
16*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|										
17*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|											
18	1	10.39601	\|													.	2.36709	\|															0.44911	\|									
19	1	10.39601	\|													..	2.36709	\|																0.44911	\|								
20*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							
21	1	10.39601	\|													.	2.36709	\|																0.44911	\|								
22*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							
23	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|															
24	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|															
25^{*}	1	2.50368	\|		0.40136		0.96226	\|																																			
26	1	10.39601	\|											..	2.36709	\|														0.44911	\|												
27*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|								
28	1	10.39601	\|													..	2.36709	\|																0.44911	\|								
29*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							
30*	0	-11.22260	\|																-2.33898	\|																0.44911	\|							.
31	1	10.39601	\|													.	2.36709	\|																0.44911	\|								
32	1	10.39601	\|													..	2.36709	\|																0.44911	\|								
33	1	10.39601	\|													..	2.36709	\|																0.44911	\|						..			
34^{*}	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|								
35*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|										
36*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							.	
37	1	10.39601	\|													.	2.36709	\|															0.44911	\|									
38	0	-9.03138	\|										...	-2.03870	\|										...	0.57746	\|																
39*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							.		
40*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							.	
41		10.39601	\|													..	2.36709	\|																0.44911	\|								
42	1	10.39601	\|													..	2.36709	\|																0.44911	\|						.			
43*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							.		
44	0	-1.48982		-0.39661		0.96226	\|																																					
45	1	10.39601	\|												..	2.36709	\|																0.44911	\|									
46*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							.		
47*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							
48	1	10.39601	\|													..	2.36709	\|																0.44911	\|								
49	1	10.39601	\|												..	2.36709	\|																0.44911	\|							.			

NCSS 12.0.4
5/17/2023 1:26:51 PM
6

Logistic Regression Report

Dataset Y (Ref Value)
...INCSSmsexport.NCSS
validvote(0)
Frequency commonpostweight

Residual Report (Continued)

Actual
Pearson
Deviance
Maximum

Row	validvote	Residual		Residual																														
50	1	10.39601	\|													..	2.36709	\|																
51	1	10.39601	\|													..	2.36709	\|																
52*	0	-11.22260	\|																-2.33898	\|														.
53	1	10.39601	\|													..	2.36709	\|																
54	0	-9.03138	\|											...	-2.03870	\|											...							
55*	0	-11.22260	\|																-2.33898	\|														.
56	1	10.39601	\|													..	2.36709	\|																
57	1	10.39601	\|												..	2.36709	\|																	
58*	1	9.76123	\|													..	2.06318	\|													..			
59	1	10.39601	\|													..	2.36709	\|																
60	1	10.39601	\|												..	2.36709	\|																	
61*	1	2.50368	\|		1...	0.40136																												
62*	0	-11.22260	\|															-2.33898	\|															
63	1	10.39601	\|												..	2.36709	\|																	
64	0	-9.03138	\|												...	-2.03870	\|												...					
65*	0	-11.22260	\|																-2.33898	\|														.
66	1	10.39601	\|													..	2.36709	\|																
67	1	10.39601	\|													..	2.36709	\|																
68	1	10.39601	\|												..	2.36709	\|																	
69	1	10.39601	\|												..	2.36709	\|																	
70*	0	-11.22260	\|																-2.33898	\|														.
71*	1	9.76123	\|													..	2.06318	\|													..			
72	1	10.39601	\|													..	2.36709	\|																
73*	0	-11.22260	\|																-2.33898	\|].
74*	0	-11.22260	\|																-2.33898	\|														
75		10.39601	\|													..	2.36709	\|																
76*	0	-11.22260	\|																-2.33898	\|														.
77	1	10.39601	\|													..	2.36709	\|																
78	1	10.39601	\|													..	2.36709	\|																
79	1	10.39601	\|													..	2.36709	\|																
80	1	10.39601	\|													..	2.36709	\|																
81	0	-9.03138	\|										...	-2.03870	\|										...									
82*	1	9.76123	\|													..	2.06318	\|													..			
83	1	10.39601	\|													..	2.36709	\|																
84	0	-9.03138	\|												...	-2.03870	\|												...					
85*	1	9.76123	\|												..	2.06318	\|												..					
86	0	-1.48982		-0.39661																														
87	1	10.39601	\|												..	2.36709	\|																	
88*	0	-11.22260	\|															-2.33898	\|															
89	1	10.39601	\|													..	2.36709	\|																
90	1	10.39601	\|													..	2.36709	\|																
91	1	10.39601	\|													..	2.36709	\|																
92	1	10.39601	\|													..	2.36709	\|																
93*	0	-11.22260	\|																-2.33898	\|														.
94	1	10.39601	\|													..	2.36709	\|																
95	1	10.39601	\|													..	2.36709	\|																
96*	1	9.76123	\|													..	2.06318	\|													..			
97	1	10.39601	\|													..	2.36709	\|																
98	1	10.39601	\|												..	2.36709	迷																	

Hat Diagonal

0.44911 |||||||.........
0.44911 |||||||.......
0.44911 |||||||...........
0.44911 |||||||.........
0.44911 |||||||.......
0.44911 |||||||.........
0.44911 |||||||.......
0.44911 |||||||...........
0.44911 |||||||.......
$0.57746||||||||\mid$.
0.57746 |||l||||.....
0.44911 ||||||||.........
0.57746 |||||||||.....
0.57746 |||||||||....
$0.96226|||||||||||||||\mid$

0.44911 ||||||||.........
0.44911 ||||||||........
0.44911 |||||||........
0.44911
$|||||||\mid$.
0.44911 |||||||......
0.44911 |||||||.....
0.44911 ||||||||.......
0.57746 |||||||||......
0.44911 ||||||||...
0.44911 |||||||.

Logistic Regression Report

Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																								
99*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|						.					
100*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|													
101*	1	9.76123	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	2.06318	\|														..	0.57746	\|																								
102	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
103*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|										
104*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
105*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
106*	1	9.76123	\|														.	2.06318	\|														..	0.57746	\|									.		
107*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
108*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
109	0	-9.03138	\|											...	-2.03870	\|												...	0.57746	\|															
110*	1	9.76123	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	2.06318	\|													..	0.57746	\|																									
111*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
112*	1	9.76123	\|															.	2.06318	\|															..	0.57746	\|									\ldots....
113	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
114	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.57746	$\|\|\|\|\|\|\|\|\mid$.....																																							
115*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|										
116*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|												
117	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
118	1	10.39601	\|													.	2.36709	\|																0.44911	\|										
119	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
120	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
121*	0	-11.22260	\|																-2.33898	\|															0.44911	$\|\|\|\|\|\|\|\mid$.										
122*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
123	1	10.39601	\|													..	2.36709	\|																0.44911	\|							.				
124	1	10.39601	\|													.	2.36709	\|																0.44911	\|										
125	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
126*	0	-11.22260	\|																-2.33898	\|																0.44911	\|								
127	1	10.39601	\|														..	2.36709	\|																	0.44911	\|								
128	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
129*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
130	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
131*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
132*	0	-11.22260	\|																-2.33898	\|															0.44911	$\|\|\|\|\|\|\|\mid$.......										
133	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
134	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
135*	0	-11.22260	\|																	-2.33898	\|																	0.44911	\|						
136*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
137*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
138*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
139*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
140	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	-2.03870	\|												...	0.57746	\|																										
141	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
142	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	-2.03870	\|												...	0.57746	\|																											
143*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
144*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
145*	0	-11.22260	\|															-2.33898	\|															0.44911	\|										
146	0	-1.48982	-0.39661	\|	0.96226	\|																																						
147*	1	9.76123	\|												..	2.06318	\|												..	0.57746	$\|\|\|\|\|\|\|\|\mid$.....															

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																								
148*	1	9.76123	\|												..	2.06318	\|													.	0.57746	\|													
149	1	10.39601	\|												-.	2.36709	\|																0.44911	\|											
150*	1	9.76123	\|													.	2.06318	\|													..	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.													
151*	1	2.50368	\|		0.40136	\|	0.96226	\|																																				
152	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|																
153*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
154	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
155	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
156*	0	-11.22260	\|																-2.33898	\|																0.44911	\|								
157*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
158	1	10.39601	\|													..	2.36709	\|																0.44911	$\|\|\|\|\|\|\|\mid$.											
159*	0	-11.22260	\|																-2.33898	\|																0.44911	\|								
160	0	-9.03138	\|											...	-2.03870	\|												...	0.57746	\|															
161*	0	-11.22260	\|																	-2.33898	\|																	0.44911	\|						
162*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
163*	0	-11.22260	\|															-2.33898	\|															0.44911	\|										
164	1	10.39601	\|													..	2.36709	\|															0.44911	\|											
165	0	-9.03138	\|												...	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	$\|\|\|\|\|\|\|\|\mid$.....																											
166	1	10.39601	\|												-.	2.36709	\|															0.44911	\|												
167	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
168	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
169	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
170	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
171	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
172	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
173*	0	-11.22260	\|																	-2.33898	\|																0.44911	\|							
174*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
175	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
176*	0	-11.22260	\|																-2.33898	\|																0.44911	\|								
177*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
178	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
179	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
180*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|										
181*	1	9.76123	\|													..	2.06318	\|														.	0.57746	\|											
182	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
183*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|											
184*	1	9.76123	\|														.	2.06318	\|														.	0.57746	\|										
185	0	-9.03138	\|												...	-2.03870	\|													...	0.57746	\|									-....					
186	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
187	1	10.39601	\|													..	2.36709	\|																	0.44911	\|									
188	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
189	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
190	1	10.39601	\|												..	2.36709	\|															0.44911	\|												

191*	0	-11.22260	\|																-2.33898	\|													
192*	0	-11.22260	\|																-2.33898	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.													
193	1	10.39601	\|													..	2.36709	\|															
194	1	10.39601	\|													..	2.36709	\|															
195	1	10.39601	\|													..	2.36709	\|															
196*	0	-11.22260	\|															-2.33898	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.														

NCSS 12.0.4
5/17/2023 1:26:51 PM
9

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																								
197	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|									..						
198	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\mid 1 .$.	-2.03870	\|												...	0.57746	\|									...																		
199	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
200	1	10.39601	\|													..	2.36709	\|																0.44911	\|											
201*	0	-11.22260	\|																-2.33898	\|															0.44911	\|										
202*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							.				
203	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	-2.03870	\|												...	0.57746	\|																										
204	1	10.39601	\|													..	2.36709	\|																0.44911	\|							.				
205*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|													
206	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	\|																																							
207*	0	-11.22260	\|																-2.33898	\|															0.44911	\|										
208	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|															
209*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
210*	0	-11.22260	\|																-2.33898	\|															0.44911	\|										
211*	0	-11.22260	\|																		-2.33898	\|																0.44911	\|							.
212*	0	-11.22260	\|																-2.33898	\|															0.44911	\|										
213*	0	-11.22260	\|															-2.33898	\|															0.44911	\|										
214	1	10.39601	\|													..	2.36709	\|																0.44911	\|											
215	1	10.39601	\|													.	2.36709	\|															0.44911	\|												
216	1	10.39601	\|													..	2.36709	\|																	0.44911	\|										
217	1	10.39601	\|													..	2.36709	\|																0.44911	\|											
218*	0	-11.22260	\|																-2.33898	\|															0.44911	\|										
219	1	10.39601	\|													..	2.36709	\|																0.44911	\|							.				
220*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
221	1	10.39601	\|													.	2.36709	\|															0.44911	\|												
222*	0	-11.22260	\|																	-2.33898	\|																0.44911	\|							.	
223	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	\|																																							
224*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|											
225*	1	2.50368	\|		0.40136	\|	0.96226	\|																																				
226	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
227	1	10.39601	\|													.	2.36709	\|															0.44911	\|												
228*	0	-11.22260	\|																	-2.33898	\|																0.44911	\|								
229	1	10.39601	\|													..	2.36709	\|															0.44911	\|												
230	1	10.39601	\|													..	2.36709	\|																0.44911	\|							.				
231*		9.76123	\|												..	2.06318	\|													.	0.57746	\|													
232	0	-1.48982		-0.39661	\|	0.96226	\|																																						
233	1	10.39601	\|												..	2.36709	\|															0.44911	\|												

234	1	10.39601	\|													.	2.36709	\|																
235*	1	9.76123	\|													.	2.06318	\|													..			
236	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	-2.03870	\|												...																	
237*	0	-11.22260	\|															-2.33898	\|															
238*	1	9.76123	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	2.06318	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.																													
239*	0	-11.22260	\|																-2.33898	\|														
240	0	-9.03138	\|											...	-2.03870	\|											..							
241	1	10.39601	\|													.	2.36709	\|																
242*	0	-11.22260	\|																-2.33898	\|														
243*	0	-11.22260	\|																	-2.33898	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.													
244*	1	9.76123	\|														.	2.06318	\|														.	
245	1	10.39601	\|												..	2.36709	\|																	

91									
0.57746									
0.57746									
0.44911									
0.57746									
0.44911	\|								
0.57746	\|								
0.44911									
0.44911	\|								
0.44911	\|								
0.57746	\|								
0.44911	\|								

NCSS 12.0.45/17/2023 1:26:51 PM 10

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																							
246	1	10.39601	\|													.	2.36709	\|															0.44911	\|										
247	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|													
248	1	10.39601	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	2.36709	\|																0.44911	$\|\|\|\|\|\|\mid$.......																							
249	1	10.39601	\|													.	2.36709	\|																0.44911	\|									
250	1	10.39601	\|													.	2.36709	\|															0.44911	\|										
251	1	10.39601	\|													..	2.36709	\|															0.44911	\|										
252*	0	-11.22260	\|																-2.33898	\|															0.44911	\|							...		
253	0	-9.03138	\|												..	-2.03870	\|												...	0.57746	$\|\|\|\|\|\|\|\|\mid$.														
254	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	$\|\|\|\|\|\|\|\|\mid$.....														
255*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
256	1	10.39601	\|													.	2.36709	\|															0.44911	\|										
257	1	10.39601	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	2.36709	\|																0.44911	\|							..																
258*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|								.				
259	1	10.39601	\|														.	2.36709	\|																	0.44911	\|							
260*	0	-11.22260	\|																-2.33898	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.44911	\|																							
261*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
262	1	10.39601	\|														.	2.36709	\|																0.44911	\|								
263*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|											
264*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
265*	0	-11.22260	\|																	-2.33898	\|																0.44911	\|							
266	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
267	1	10.39601	\|													..	2.36709	\|																0.44911	\|									
268	1	10.39601	\|													.	2.36709	\|																0.44911	\|									
269*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
270*	0	-11.22260	\|																-2.33898	\|														-	0.44911	\|								
271	1	10.39601	\|															.	2.36709	\|																	0.44911	\|							
272*	1	9.76123	\|													.	2.06318	\|													.	0.57746	\|											
273*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|											
274	1	10.39601	\|													..	2.36709	\|																0.44911	\|									
275*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
276	1	10.39601	\|													.	2.36709	\|															0.44911	$\|\|\|\|\|\|\mid$.......											

277*	0	-11.22260	\|															-2.33898	\|															0.44911	\|								
278	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|											
279*	1	9.76123	\|													..	2.06318	\|													..	0.57746	$\|\|\|\|\|\|\|\|\|\mid \ldots .$.										
280*	0	-11.22260	\|															-2.33898	\|															0.44911	\|							
281	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.																																				
282*	1	9.76123	\|													..	2.06318	\|													..	0.57746	$\|\|\|\|\|\|\|\|\|\mid \ldots .$.										
283	1	10.39601	\|													.	2.36709	\|															0.44911	\|								
284*	1	9.76123	\|													.	2.06318	\|													..	0.57746	$\|\|\|\|\|\|\|\|\mid$....										
285	1	10.39601	\|													..	2.36709	\|																0.44911	\|							
286	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|											
287	1	10.39601	\|														..	2.36709	\|																0.44911	\|						
288*	0	-11.22260	\|																-2.33898	\|															0.44911	\|						
289*	0	-11.22260	\|																-2.33898	\|															0.44911	\|						
290	1	10.39601	\|													..	2.36709	\|																0.44911	\|							
291	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	$\|\|\|\|\|\|\|\|\mid$....												
292	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|									\ldots...			
293	1	10.39601	\|													..	2.36709	\|																0.44911	\|							
294	1	10.39601	\|													..	2.36709	\|															0.44911	\|						-.....			

NCSS 12.0.4
5/17/2023 1:26:51 PM 11

Logistic Regression Report

Dataset	...WCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight
Residual Report	

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																							
295	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	-2.03870	\|												...	0.57746	\|																									
296*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
297*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|											
298	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	\|												...	0.57746	\|																									
299*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
300*	0	-11.22260	\|															-2.33898	\|															0.44911	\|									
301*	0	-11.22260	\|																	-2.33898	\|																0.44911	\|						
302*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
303	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|													
304	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	-2.03870	\|												...	0.57746	\|																									
305	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	\|											...	0.57746	\|																										
306*	0	-11.22260	\|															-2.33898	\|															0.44911	\|						-......				
307	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	\|																																					
308*	0	-11.22260	\|															-2.33898	\|															0.44911	\|									
309	0	-9.03138	\|													...	-2.03870	\|													...	0.57746	\|											
310	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
311*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
312	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|														
313	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	-2.03870	\|												...	0.57746	\|																									
314	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
315	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.....																																						
316*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
317*	1	9.76123	\|														..	2.06318	\|													..	0.57746	\|										
318*	1	9.76123	\|												..	2.06318	\|												..	0.57746	\|													

319	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|														
320*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							
321	1	10.39601	\|													..	2.36709	\|																0.44911	\|							.	
322	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|												
323*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							.
324*	0	-11.22260	\|																-2.33898	\|															0.44911	\|							.
325*	0	-11.22260	\|															-2.33898	\|														0.44911	\|									
326*	1	9.76123	\|												..	2.06318	\|												.	0.57746	\|											
$327 *$	0	-11.22260	\|															-2.33898	\|															0.44911	\|							..	
328*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							.
329	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|												
330	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|														
331*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|									
332	1	10.39601	\|												..	2.36709	\|																0.44911	\|							.		
333	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|													
334*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|								
335*	1	2.50368		0.40136		0.96226	\|																																				
336*	1	9.76123	\|												..	2.06318	\|												..	0.57746	\|											
337	1	10.39601	\|													.	2.36709	\|															0.44911	\|								
338	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|											
339	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|													
340	1	10.39601	\|													..	2.36709	\|																0.44911	\|							
341*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							.	
342	1	10.39601	\|													.	2.36709	\|																0.44911	\|								
343	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|											

NCSS 12.0.45/17/2023 1:26:51 PM 12

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual																
344*	0	-11.22260	\|															
345	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..															
346*	0	-11.22260	\|															
347	1	10.39601	\|													.		
348*	1	2.50368	\|														
349	1	10.39601	\|													.		
350*	0	-11.22260	\|															
351	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.															
352*	1	9.76123	\|													.		
353*	0	-11.22260	\|															
354*	1	9.76123	\|													.		
355	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.															
356*	0	-11.22260	\|															
357	1	10.39601	\|													.		
358	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..															
359*	1	9.76123	\|													.		
360*	1	9.76123	\|													..		
361*	1	9.76123	\|												..			

Deviance																
Residual																
-2.33898	\|															
-2.03870	\|												...			
-2.33898	\|															
2.36709	\|															
0.40136																
2.36709	\|															
-2.33898	\|															
-2.03870	\|												...			
2.06318	\|													.		
-2.33898	\|															
2.06318	\|													.		
-2.03870	\|												...			
-2.33898	\|															
2.36709	\|															
-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..															
2.06318	\|													.		
2.06318	\|												.			
2.06318	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$.															

Maximum Hat Diagonal															
0.44911	\|														
0.57746	\\| $\\|$ I!														
0.44911	\|														
0.44911	\|														
0.96226	\|														
0.44911	\|													
0.44911	\|														
0.57746	\|														
0.57746	\|														
0.44911	\|														
0.57746	\|														
0.57746	\|														
0.44911	\|														
0.44911	\|														
0.57746	\|														
0.57746	\|													
0.57746	\|													
0.57746	\|								...						

362*	0	-11.22260	\|															-2.33898	\|															0.44911	\|							.			
363*	1	9.76123	\|													..	2.06318	\|													..	0.57746	$\|\|\|\|\|\|\|\|\mid$....												
364	1	10.39601	\|													..	2.36709	\|																0.44911	\|									
365*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|									.			
366	1	10.39601	\|													..	2.36709	\|																0.44911	$\|\|\|\|\|\|\mid$..										
367	1	10.39601	\|													..	2.36709	\|																0.44911	\|						.				
368*	0	-11.22260	\|															-2.33898	\|														0.44911	\|						...					
369	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
370*	0	-11.22260	\|																-2.33898	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.44911	$\|\|\|\|\|\|\mid$...																							
371*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
372*	1	9.76123	\|													..	2.06318	\|														..	0.57746	\|									...		
373*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|									.			
374	1	10.39601	\|												-.	2.36709	\|															0.44911	\|											
375*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|											
376*	0	-11.22260	\|																-2.33898	\|															0.44911	$\|\|\|\|\|\|\mid$......									
377*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
378*	0	-11.22260	\|																-2.33898	\|														-	0.44911	\|								
379	1	10.39601	\|													..	2.36709	\|																0.44911	$\|\|\|\|\|\|\mid$......										
380	1	10.39601	\|												..	2.36709	\|															0.44911	\|											
381	0	-1.48982	\|.............	-0.39661	\|	0.96226	\|																																					
382*	1	9.76123	\|												..	2.06318	\|												-.	0.57746	$\|\|\|\|\|\|\|\|\mid$....														
383*	0	-11.22260	\|																-2.33898	\|																0.44911	\|							
384*	1	9.76123	\|														..	2.06318	\|														..	0.57746	\|										
385*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|									...			
386	0	-9.03138	\|												..	-2.03870	\|											...	0.57746	\|															
387	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|													
388	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	$\|\|\|\|\|\|\|\|\mid$....																
389*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
390	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	\|									...																													
391*	0	-11.22260	\|																-2.33898	\|															0.44911	$\|\|\|\|\|\|\mid$......									
392*	0	-11.22260	\|															-2.33898	\|													.	0.44911	\|										

NCSS 12.0.4
5/17/2023 1:26:51 PM
13

Logistic Regression Report

Dataset Y (Ref Value) ...INCSSmsexport.NCSS validvote(0)
Frequency commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																				
393	1	10.39601	\|												..	2.36709	\|																0.44911	\|								
394*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|								
395	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.																																			
396	1	10.39601	\|													..	2.36709	\|																0.44911	\|							
397*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|								
398*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							.
399	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|									.		
400	1	10.39601	\|													..	2.36709	\|															0.44911	\|								
401	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\mid$..	-2.03870	\|											...	0.57746	\|																								
402	0	-1.48982	\|.............	-0.39661	\|	0.96226	\|																																		
403	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|												
404*	0	-11.22260	\|															-2.33898	\|															0.44911	\|						

405*	1	2.50368	I\|I.....	0.40136	\|I...	0.96226	\|																																						
406*	0	-11.22260	\|																-2.33898	\|													.	0.44911	\|									
407	1	10.39601	\|													..	2.36709	\|																0.44911	\|									
408*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|								
409	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|														
410*	1	9.76123	\|													..	2.06318	\|													.	0.57746	\|											
411	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|													
412	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|														
413*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|								
414	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|									.					
415	0	-1.48982		-0.39661		0.96226	\|																																						
416	1	10.39601	\|													.	2.36709	\|															0.44911	\|										
417	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
418	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|														
419	1	10.39601	\|													..	2.36709	\|															0.44911	\|										
420	1	10.39601	\|													..	2.36709	\|																0.44911	\|									
421	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|																
422	0	-1.48982		-0.39661		0.96226	\|																																						
423	1	10.39601	\|												..	2.36709	\|															0.44911	\|											
424	1	10.39601	\|													..	2.36709	\|															0.44911	\|										
425	1	10.39601	\|													..	2.36709	\|																0.44911	\|									
426*	0	-11.22260	\|																-2.33898	\|																0.44911	\|							
427*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							.		
428	1	10.39601	\|													.	2.36709	\|															0.44911	\|											
429	0	-1.48982		-0.39661		0.96226	\|																																						
430	0	-1.48982	-0.39661	\\|	0.96226	\|																																					
431*	0	-11.22260	\|															-2.33898	\|													.	0.44911	\|										
432	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|													
433	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|														
434*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|						.			
435*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|									
436	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|													
437	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|									.						
438	0	-1.48982		-0.39661		0.96226	\|																																						
439*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|								
440*	0	-11.22260	\|																	-2.33898	\|															.	0.44911	\|						
441	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|																

NCSS 12.0.4
5/17/2023 1:26:51 PM
14

Logistic Regression Report

Dataset Y (Ref Value)
...INCSSmsexport.NCSS validvote(0)
Frequency commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual															
442*	0	-11.22260	\|														
443	0	-9.03138	\|												.		
444*	0	-11.22260	\|														
445	0	-9.03138	\|											...			
446*	0	-11.22260	\|														
447*	1	9.76123	\|														.

Deviance															
Residual															
-2.33898	\|														
-2.03870	\|	I													
-2.33898	IIII														
-2.03870	IIIII														
-2.33898	\|														
2.06318	\|														

Maximum										
Hat Diagonal										
0.44911	\|									
0.57746	\|									
0.44911	\|						.			
0.57746	\|									
0.44911	\|									
0.57746	\|								...	

448*	1	9.76123	\|												..	2.06318	\|													..	0.57746	\|											
449*	1	9.76123	\|													..	2.06318	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.57746	\|									...														
450*	0	-11.22260	\|																-2.33898	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.44911	\|																					
451	1	10.39601	\|													..	2.36709	\|																0.44911	\|							
452	1	10.39601	\|													..	2.36709	\|															0.44911	\|								
453	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	\|																																			
454*	0	-11.22260	\|																-2.33898	\|															0.44911	\|						
455	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	\|											...	0.57746	\|																									
456	0	-9.03138	\|												..	-2.03870	\|												..	0.57746	\|									.			
457	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	-2.03870	\|												...	0.57746	\|																							
458*	0	-11.22260	\|															-2.33898	\|														-	0.44911	\|							
459	1	10.39601	\|													..	2.36709	\|															0.44911	\|								
460	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	\|																																			

NCSS 12.0.45/17/2023 1:26:51 PM 15

Logistic Regression Report

Dataset	... INCSSmsexport. NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$

Row	Actual validvote	DFBeta Intercept		DFBeta black		DFBeta otherrace																																
1	1	0.44216	\|.............	-0.43466		-0.11089																																
2	1	0.44216	\|.............	-0.43466		-0.11089																																
3*	1	-0.54033	\|.............	0.56461	\|.............	0.00000																																
4*	0	-20.08375	\|													.	19.74307	\|												.	5.03686							
5	1	0.44216		-0.43466		-0.11089																																
6	1	0.44216		-0.43466		-0.11089																																
7*	1	-0.54033		0.56461		0.00000																																
8	1	0.44216		-0.43466		-0.11089																																
9	1	0.44216		-0.43466		-0.11089																																
10	1	0.44216		-0.43466		-0.11089																																
11	1	0.44216		-0.43466		-0.11089																																
12	1	0.44216		-0.43466		-0.11089																																
13	1	0.44216		-0.43466		-0.11089																																
14*	1	-0.22785		0.00000		1.59732																																
15*	1	-0.54033		0.56461		0.00000																																
16*	1	-0.54033		0.56461		0.00000																																
17^{*}	1	-0.54033		0.56461		0.00000																																
18	1	0.44216		-0.43466		-0.11089																																
19	1	0.44216		-0.43466	\|.............	-0.11089																																
20*	0	-20.08375	\|													.	19.74307	\|												.	5.03686							
21	1	0.44216		-0.43466	...	-0.11089																																
22*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
23	0	20.95992	\|																	-21.90187	\|																	0.00000
24	0	20.95992	\|															-21.90187	\|															0.00000				
25*	1	-0.22785	\|.............	0.00000	1.59732																																
26	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																																
27*	0	-20.08375	\|													.	19.74307	\|												.	5.03686							
28	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																																
29*	0	-20.08375	\|													.	19.74307	\|												.	5.03686							

30*	0	-20.08375	\|											.	19.74307	\|											.	5.03686						
31	1	0.44216		-0.43466		-0.11089																												
32	1	0.44216		-0.43466		-0.11089																												
33	1	0.44216		-0.43466		-0.11089																												
34*	0	-20.08375	\|													.	19.74307	\|												..	5.03686			
35*	1	-0.54033		0.56461		0.00000																												
36*	0	-20.08375	\|													.	19.74307	\|												..	5.03686			
37	1	0.44216		-0.43466	\|............	-0.11089																												
38	0	20.95992	\|														-21.90187	\|													0.00000			
39*	0	-20.08375	\|															19.74307	\|													..	5.03686	
40*	0	-20.08375	\|														.	19.74307	\|													.	5.03686	
41	1	0.44216		-0.43466		-0.11089																												
42	1	0.44216		-0.43466		-0.11089																												
43*	0	-20.08375	\|													.	19.74307	\|												..	5.03686			
44	0	6.38662	\|II	0.00000		-44.77268	\|																										
45	1	0.44216		-0.43466		-0.11089																												
46*	0	-20.08375	\|															19.74307	\|													.	5.03686	
47*	0	-20.08375	\|															19.74307	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	5.03686														
48	1	0.44216		-0.43466	...	-0.11089																												
49	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																												

NCSS 12.0.45/17/2023 1:26:51 PM 16

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept																
50	1	0.44216	\|.............															
51	1	0.44216	\|.....															
52*	0	-20.08375	\|													.		
53	1	0.44216																
54	0	20.95992	\|															
55*	0	-20.08375	\|													.		
56	1	0.44216	\|.............															
57	1	0.44216	\|.............															
58*	1	-0.54033	\|.............															
59	1	0.44216	\|............															
60	1	0.44216	\|.............															
61*	1	-0.22785	\|.															
62*	0	-20.08375	\|													.		
63	1	0.44216	\|.............															
64	0	20.95992	\|															
65*	0	-20.08375	\|															
66	1	0.44216																
67	1	0.44216	\|.............															
68	1	0.44216	\|.............															
69	1	0.44216	\|.......															
70*	0	-20.08375	\|													.		
71*	1	-0.54033																
72	1	0.44216	\|.............															

73*	0	-20.08375	\|															19.74307	\|												..	5.03686	\|.............		
74*	0	-20.08375	\|															19.74307	\|													.	5.03686		
75	1	0.44216	\|.	-0.43466	\|.............	-0.11089																													
76*	0	-20.08375	\|													.	19.74307	\|												..	5.03686				
77	1	0.44216		-0.43466		-0.11089																													
78	1	0.44216	\|.............	-0.43466	\|.............	-0.11089	\|.............																												
79	1	0.44216		-0.43466	\|.............	-0.11089	\|.............																												
80	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																													
81	0	20.95992	\|															-21.90187	\|															0.00000	\|.............
82*	1	-0.54033		0.56461		0.00000																													
83	1	0.44216		-0.43466		-0.11089																													
84	0	20.95992	\|															-21.90187	\|															0.00000	
85*	1	-0.54033		0.56461		0.00000																													
86	0	6.38662	\|			0.00000	\|............	-44.77268	\|																									
87	1	0.44216	\|.	-0.43466	\|.............	-0.11089																													
88*	0	-20.08375	\|													.	19.74307	\|												..	5.03686	\|.			
89	1	0.44216	\|.............	-0.43466	\|.............	-0.11089	\|.																												
90	1	0.44216		-0.43466		-0.11089																													
91	1	0.44216		-0.43466		-0.11089	\|.............																												
92	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																													
93*	0	-20.08375	\|													.	19.74307	\|												..	5.03686				
94	1	0.44216		-0.43466	\|.............	-0.11089	\|.............																												
95	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																													
96*	1	-0.54033		0.56461		0.00000																													
97	1	0.44216		-0.43466		-0.11089																													
98	1	0.44216	\|.............	-0.43466	\|.............	-0.11089	\|.............																												

NCSS 12.0.4
5/17/2023 1:26:51 PM
17

Logistic Regression Report

Dataset	\ldots... NCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept																
99*	0	-20.08375	\|													.		
100*	1	-0.54033																
101*	1	-0.54033	\|.............															
102	0	20.95992	\|															
103*	0	-20.08375	\|													.		
104*	1	-0.54033	\|...........															
105*	0	-20.08375	\|													.		
106*	1	-0.54033	\|............															
107*	0	-20.08375	\|													.		
108*	1	-0.54033																
109	0	20.95992	\|															
110*	1	-0.54033															
111*	1	-0.54033																
112*	1	-0.54033																
113	1	0.44216																
114	0	20.95992	\|															
115*	0	-20.08375	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.															

116*	1	-0.54033		0.56461		0.00000																													
117	1	0.44216	...	-0.43466	\|...........	-0.11089																													
118	1	0.44216		-0.43466		-0.11089																													
119	1	0.44216		-0.43466		-0.11089																													
120	0	20.95992	\|														-21.90187	\|													0.00000				
121*	0	-20.08375	\|														.	19.74307	\|													.	5.03686		
122*	0	-20.08375	\|														.	19.74307	\|												..	5.03686			
123		0.44216		-0.43466		-0.11089																													
124	1	0.44216		-0.43466	\|............	-0.11089																													
125	1	0.44216		-0.43466		-0.11089																													
126*	0	-20.08375	\|											.	19.74307	\|											.	5.03686							
127	1	0.44216		-0.43466		-0.11089																													
128	1	0.44216		-0.43466	\|...........	-0.11089																													
129*	0	-20.08375	\|													.	19.74307	\|												..	5.03686				
130	1	0.44216		-0.43466		-0.11089																													
131*	0	-20.08375	\|														.	19.74307	\|												..	5.03686			
132*	0	-20.08375	\|].	19.74307	\|												..	5.03686				
133	1	0.44216		-0.43466		-0.11089																													
134	1	0.44216		-0.43466		-0.11089																													
135*	0	-20.08375	\|															19.74307	\|												..	5.03686			
136*	0	-20.08375	\|														.	19.74307	\|													..	5.03686		
137*	0	-20.08375	\|															19.74307	\|												..	5.03686			
138*	0	-20.08375	\|I			il	il	i	l.	19.74307	\|I		il	il	i		..	5.03686																	
139*	1	-0.54033		0.56461		0.00000																													
140	0	20.95992	\|															-21.90187	\|															0.00000	
141	1	0.44216		-0.43466		-0.11089																													
142	0	20.95992	\|															-21.90187	\|															0.00000	
143*	1	-0.54033		0.56461		0.00000																													
144*	1	-0.54033	\|............	0.56461	\|.....	0.00000																													
145*	0	-20.08375	\|													.	19.74307	\|												..	5.03686				
146	0	6.38662	\|			0.00000		-44.77268	\|																									
147*	1	-0.54033	\|............	0.56461	\|............	0.00000																													

NCSS 12.0.4

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote = 1 (Continued)

Row	Actual validvote	DFBeta Intercept															
148*	1	-0.54033															
149	1	0.44216															
150*	1	-0.54033															
151*	1	-0.22785	.														
152	0	20.95992	\|														
153*	1	-0.54033	\|.............														
154	1	0.44216															
155	0	20.95992	\|														
156*	0	-20.08375	\|														
157*	1	-0.54033															
158	1	0.44216														

DFBeta black	
0.56461	$\mid \ldots \ldots \ldots \ldots .$.
-0.43466	$\mid \ldots \ldots \ldots \ldots .$.
0.56461	$\mid \ldots \ldots \ldots \ldots .$.
0.00000	$\mid \ldots \ldots \ldots \ldots .$.
-21.90187	$\|\|\|\|\|\|\|\|\|\|\|\mid$
0.56461	$\mid \ldots \ldots \ldots \ldots .$.
-0.43466	$\mid \ldots \ldots \ldots \ldots .$.
-21.90187	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$
19.74307	$\|\|\|\|\|\|\|\|\|\|\mid$.
0.56461	$\mid \ldots \ldots \ldots \ldots$.
-0.43466	$\mid \ldots \ldots \ldots \ldots$.

DFBeta otherrace
0.00000
-0.11089
0.00000
1.59732
0.00000
0.00000
-0.11089
0.00000
5.03686
0.00000
-0.11089

159*	0	-20.08375	\|												19.74307	\|											.	5.03686										
160	0	20.95992	\|																-21.90187	\|																0.00000		
161*	0	-20.08375	\|														.	19.74307	\|													.	5.03686					
162*	0	-20.08375	\|														.	19.74307	\|													..	5.03686					
163*	0	-20.08375	\|														.	19.74307	\|													.	5.03686					
164	1	0.44216		-0.43466		-0.11089																															
165	0	20.95992	\|																-21.90187	\|																0.00000		
166	1	0.44216		-0.43466		-0.11089																																
167	0	20.95992	\|														-21.90187	\|														0.00000						
168	1	0.44216		-0.43466		-0.11089																																
169	1	0.44216		-0.43466		-0.11089																																
170	0	20.95992	\|															-21.90187	\|															0.00000				
171	1	0.44216		-0.43466		-0.11089																																
172	1	0.44216		-0.43466		-0.11089																																
173*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
174*	0	-20.08375	\|														.	19.74307	\|													..	5.03686					
175	0	20.95992	\|																	-21.90187	\|																0.00000	
176*	0	-20.08375	\|															.	19.74307	\|													..	5.03686				
177*	0	-20.08375	\|														.	19.74307	\|												..	5.03686						
178	1	0.44216		-0.43466		-0.11089																																
179	0	20.95992	\|															-21.90187	\|															0.00000				
180*	0	-20.08375	\|														19.74307	\|												..	5.03686							
181*	1	-0.54033		0.56461		0.00000																																
182	0	20.95992	\|																-21.90187	\|															0.00000			
183*	0	-20.08375	\|														.	19.74307	\|												..	5.03686						
184*	1	-0.54033		0.56461		0.00000																																
185	0	20.95992	\|															-21.90187	\|															0.00000				
186	1	0.44216	...	-0.43466		-0.11089																																
187	1	0.44216	\|...	-0.43466		-0.11089																																
188	1	0.44216	\|............	-0.43466	-0.11089																																
189	1	0.44216	\|............	-0.43466	\|............	-0.11089																																
190	1	0.44216		-0.43466		-0.11089																																
191*	0	-20.08375	\|															19.74307	\|												..	5.03686						
192*	0	-20.08375	\|														19.74307	\|												.	5.03686							
193	1	0.44216		-0.43466		-0.11089																																
194	1	0.44216		-0.43466		-0.11089																																
195	1	0.44216		-0.43466		-0.11089																																
196*	0	-20.08375	\|													.	19.74307	\|												.	5.03686							

NCSS 12.0.4

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept		DFBeta black		DFBeta otherrace																														
197	0	20.95992	\|																-21.90187	\|																0.00000
198	0	20.95992	\|															-21.90187	\|															0.00000		
199	1	0.44216		-0.43466		-0.11089																														
200	1	0.44216		-0.43466		-0.11089																														
201*	0	-20.08375	\|													19.74307	\|											.	5.03686							

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

```
DFBetas Report For validvote = 1 (Continued)
```

Row	Actual validvote	DFBeta Intercept		DFBeta black		DFBeta otherrace																																
246	1	0.44216		-0.43466		-0.11089																																
247	0	20.95992	\|															-21.90187	\|															0.00000				
248	1	0.44216		-0.43466		-0.11089																																
249	1	0.44216	\|............	-0.43466		-0.11089																																
250	1	0.44216	\|............	-0.43466		-0.11089																																
251	1	0.44216		-0.43466		-0.11089																																
252*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
253	0	20.95992	\|																-21.90187	\|																0.00000		
254	0	20.95992	\|																	-21.90187	\|																0.00000	
255*	0	-20.08375	\|															19.74307	\|													.	5.03686					
256	1	0.44216		-0.43466		-0.11089																																
257	1	0.44216		-0.43466		-0.11089																																
258*	1	-0.54033		0.56461		0.00000																																
259	1	0.44216	-0.43466		-0.11089																																
260*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
261*	0	-20.08375	\|													.	19.74307	\|												.	5.03686							
262	1	0.44216		-0.43466		-0.11089																																
263*	1	-0.54033		0.56461		0.00000																																
264*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
265*	0	-20.08375	\|															19.74307	\|												..	5.03686						
266	0	20.95992	\|																-21.90187	\|															0.00000			
267	1	0.44216		-0.43466		-0.11089																																
268	1	0.44216		-0.43466		-0.11089																																
269*	0	-20.08375	\|														.	19.74307	\|													.	5.03686					
270*	0	-20.08375	\|															19.74307	\|												..	5.03686						
271	1	0.44216		-0.43466		-0.11089																																
272*	1	-0.54033		0.56461		0.00000																																
273*	1	-0.54033	\|.....	0.56461		0.00000																																
274	1	0.44216		-0.43466		-0.11089																																
275*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
276	1	0.44216		-0.43466		-0.11089																																
277*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
278	0	20.95992	\|																-21.90187	\|															0.00000			
279*	1	-0.54033		0.56461		0.00000																																
280*	0	-20.08375	\|															19.74307	\|													.	5.03686					
281	0	20.95992	\|																-21.90187	\|																0.00000		
282*	1	-0.54033		0.56461		0.00000																																
283	1	0.44216	\|............	-0.43466		-0.11089																																
284*	1	-0.54033	0.56461		0.00000																																
285	1	0.44216	\|.....	-0.43466		-0.11089																																
286	0	20.95992	\|															-21.90187	\|															0.00000				
287	1	0.44216		-0.43466		-0.11089																																
288*	0	-20.08375	\|														.	19.74307	\|													.	5.03686					
289*	0	-20.08375	\|															19.74307	\|												..	5.03686						
290		0.44216		-0.43466		-0.11089																																
291	0	20.95992	\|																-21.90187	\|																0.00000		
292	0	20.95992	\|																-21.90187	\|																0.00000		
293	1	0.44216		-0.43466		-0.11089																																
294	1	0.44216	\|..........	-0.43466		-0.11089																																

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept		DFBeta black		DFBeta otherrace																															
295	0	20.95992	\|															-21.90187	\|															0.00000			
296*	0	-20.08375	\|															19.74307	\|													.	5.03686				
297*	1	-0.54033	\|............	0.56461		0.00000																															
298	0	20.95992	\|																-21.90187	\|																0.00000	
299*	0	-20.08375	\|															19.74307	\|													..	5.03686				
300*	0	-20.08375	\|															19.74307	\|												..	5.03686					
301*	0	-20.08375	\|															19.74307	\|													..	5.03686				
302*	0	-20.08375	\|															19.74307	\|													..	5.03686				
303	0	20.95992	\|																-21.90187	\|																0.00000	
304	0	20.95992	\|																-21.90187	\|																0.00000	
305	0	20.95992	\|																-21.90187	\|																0.00000	
306*	0	-20.08375	\|															19.74307	\|												.	5.03686					
307	0	20.95992	\|																-21.90187	\|															0.00000		
308*	0	-20.08375	\|															19.74307	\|													..	5.03686				
309	0	20.95992	\|																-21.90187	\|															0.00000		
310	1	0.44216		-0.43466		-0.11089																															
311*	1	-0.54033	\|.	0.56461		0.00000																															
312	0	20.95992	\|															-21.90187	\|															0.00000			
313	0	20.95992	\|																-21.90187	\|																0.00000	
314	1	0.44216		-0.43466		-0.11089																															
315	0	20.95992	\|															-21.90187	\|															0.00000			
316*	0	-20.08375	\|														19.74307	\|												..	5.03686						
317*	1	-0.54033		0.56461		0.00000																															
318*	1	-0.54033		0.56461		0.00000																															
319	0	20.95992	\|															-21.90187	\|															0.00000			
320*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
321	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																															
322	0	20.95992	\|															-21.90187	\|															0.00000			
323*	0	-20.08375	\|																19.74307	\|														5.03686			
324*	0	-20.08375	\|															19.74307	\|													..	5.03686				
325*	0	-20.08375	\|															19.74307	\|												..	5.03686					
326*	1	-0.54033	\|.............	0.56461		0.00000																															
327*	0	-20.08375	\|															19.74307	\|													..	5.03686				
328*	0	-20.08375	\|															19.74307	\|													..	5.03686				
329	0	20.95992	\|																-21.90187	\|																0.00000	
330	0	20.95992	\|															-21.90187	\|															0.00000			
331*	1	-0.54033		0.56461		0.00000																															
332	1	0.44216	\|............	-0.43466	\|............	-0.11089																															
333	0	20.95992	\|															-21.90187	\|																0.00000		
334*	0	-20.08375	\|														19.74307	\|												..	5.03686						
335*	1	-0.22785		0.00000		1.59732																															
336*	1	-0.54033		0.56461		0.00000																															
337	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																															
338	0	20.95992	\|																-21.90187	\|																0.00000	
339	0	20.95992	\|															-21.90187	\|															0.00000			
340	1	0.44216	\|.............	-0.43466		-0.11089																															
341*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
342	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																														

\qquad

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept		DFBeta black		DFBeta otherrace																															
344*	0	-20.08375	\|														.	19.74307	\|												..	5.03686					
345	0	20.95992	\|																-21.90187	\|																0.00000	
346*	0	-20.08375	\|														19.74307	\|												..	5.03686						
347	1	0.44216		-0.43466		-0.11089																															
348*	1	-0.22785	\|............	0.00000	1.59732																															
349	1	0.44216		-0.43466		-0.11089																															
350*	0	-20.08375	\|															19.74307	\|												..	5.03686					
351	0	20.95992	\|															-21.90187	\|															0.00000			
352*	1	-0.54033		0.56461		0.00000																															
353*	0	-20.08375	\|													19.74307	\|											.	5.03686								
354*	1	-0.54033		0.56461		0.00000																															
355	0	20.95992	\|																-21.90187	\|															0.00000		
356*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
357	1	0.44216		-0.43466		-0.11089																															
358	0	20.95992	\|															-21.90187	\|															0.00000			
359*	1	-0.54033		0.56461		0.00000																															
360*	1	-0.54033	\|...	0.56461		0.00000																															
361*	1	-0.54033		0.56461		0.00000																															
362*	0	-20.08375	\|													.	19.74307	\|												.	5.03686						
363*	1	-0.54033		0.56461		0.00000																															
364	1	0.44216	\|...	-0.43466	\|............	-0.11089																															
365*	1	-0.54033	\|...	0.56461	\|............	0.00000																															
366	1	0.44216		-0.43466		-0.11089																															
367	1	0.44216		-0.43466		-0.11089																															
368*	0	-20.08375	\|													.	19.74307	\|												.	5.03686						
369	1	0.44216		-0.43466		-0.11089																															
370*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
371*	1	-0.54033	\|............	0.56461		0.00000																															
372*	1	-0.54033	\|............	0.56461		0.00000																															
373*	1	-0.54033	\|............	0.56461		0.00000																															
374		0.44216		-0.43466		-0.11089																															
375*	1	-0.54033		0.56461		0.00000																															
376*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
$377 *$	0	-20.08375	\|																19.74307	\|													..	5.03686			
378*	0	-20.08375	\|														.	19.74307	\|												..	5.03686					
379	1	0.44216		-0.43466		-0.11089																															
380	1	0.44216	\|...........	-0.43466		-0.11089																															
381	0	6.38662	\|			0.00000		-44.77268	\|																											
382*	1	-0.54033	\|......	0.56461		0.00000																															
383*	0	-20.08375	\|														19.74307	\|												.	5.03686						
384*	1	-0.54033		0.56461		0.00000																															
385*	1	-0.54033	\|............	0.56461	\|............	0.00000																															

386	0	20.95992	\|															-21.90187	\|															0.00000			
387	0	20.95992	\|																-21.90187	\|																0.00000	
388	0	20.95992	\|															-21.90187	\|															0.00000			
389*	0	-20.08375	\|														.	19.74307	\|													..	5.03686				
390	0	20.95992	\|																-21.90187	\|															0.00000		
391*	0	-20.08375	\|														.	19.74307	\|													.	5.03686				
392*	0	-20.08375	\|														.	19.74307	\|												..	5.03686					

NCSS 12.0.45/17/2023 1:26:51 PM 23

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept		DFBeta black		DFBeta otherrace																															
393	1	0.44216		-0.43466	\|............	-0.11089																															
394*	1	-0.54033		0.56461		0.00000																															
395	0	20.95992	\|															-21.90187	\|															0.00000			
396	1	0.44216		-0.43466		-0.11089																															
397*	1	-0.54033		0.56461		0.00000																															
398*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
399	0	20.95992	\|															-21.90187	\|															0.00000			
400	1	0.44216		-0.43466		-0.11089																															
401	0	20.95992	\|															-21.90187	\|															0.00000			
402	0	6.38662	\|			..	0.00000		-44.77268	\|																											
403	0	20.95992	\|																-21.90187	\|																0.00000	
404*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
405*	1	-0.22785		0.00000		1.59732																															
406*	0	-20.08375	\|													19.74307	\|											..	5.03686								
407	1	0.44216		-0.43466		-0.11089																															
408*	0	-20.08375	\|													19.74307	\|											..	5.03686								
409	0	20.95992	\|															-21.90187	\|																0.00000		
410*	1	-0.54033		0.56461		0.00000																															
411	0	20.95992	\|															-21.90187	\|																0.00000		
412	0	20.95992	\|																-21.90187	\|																0.00000	
413*	0	-20.08375	\|																19.74307	\|													..	5.03686			
414	0	20.95992	\|																-21.90187	\|																0.00000	
415	0	6.38662	\|			.	0.00000		-44.77268	\|																											
416	1	0.44216		-0.43466		-0.11089																															
417	1	0.44216		-0.43466		-0.11089																															
418	0	20.95992	\|															-21.90187	\|															0.00000			
419	1	0.44216		-0.43466		-0.11089																															
420	1	0.44216		-0.43466		-0.11089																															
421	0	20.95992	\|															-21.90187	\|															0.00000			
422	0	6.38662	\|			0.00000		-44.77268	\|																											
423	1	0.44216	\|............	-0.43466	\|............	-0.11089																															
424	1	0.44216	\|..	-0.43466		-0.11089																															
425	1	0.44216		-0.43466		-0.11089																															
426*	0	-20.08375	\|														.	19.74307	\|													.	5.03686				
427*	0	-20.08375	\|															19.74307	\|												..	5.03686					
428	1	0.44216		-0.43466		-0.11089																															

429	0	6.38662		0.00000		-44.77268	\|																														
430	0	6.38662		0.00000		-44.77268	\|																														
431*	0	-20.08375	\|															19.74307	\|													..	5.03686				
432	0	20.95992	\|																-21.90187	\|																0.00000	
433	0	20.95992	\|																-21.90187	\|																0.00000	
434*	0	-20.08375	\|															19.74307	\|												.	5.03686					
435*	0	-20.08375	\|															19.74307	\|													..	5.03686				
436	0	20.95992	\|																-21.90187	\|																0.00000	
437	0	20.95992	\|															-21.90187	\|															0.00000			
438	0	6.38662	\|			0.00000		-44.77268	\|																											
439*	0	-20.08375	\|															19.74307	\|												..	5.03686					
440*	0	-20.08375	\|															19.74307	\|												..	5.03686					
441	0	20.95992	\|															-21.90187	\|															0.00000			

NCSS 12.0.4

Logistic Regression Report

Dataset	... INCSSmsexport. NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept		DFBeta black																																
442*	0	-20.08375	\|															19.74307	\|												.-					
443	0	20.95992	\|																-21.90187	\|																
444*	0	-20.08375	\|															19.74307	\|													..				
445	0	20.95992	\|																-21.90187	\|																
446*	0	-20.08375	\|															19.74307	\|												..					
447*	1	-0.54033		0.56461																																
448*	1	-0.54033	\|.............	0.56461																																
449*	1	-0.54033	\|.............	0.56461	\|............																															
450*	0	-20.08375	\|													.	19.74307	\|												..						
451	1	0.44216		-0.43466																																
452	1	0.44216		-0.43466																																
453	0	20.95992	\|															-21.90187	\|																	
454*	0	-20.08375	\|																19.74307	\|].			
455	0	20.95992	\|																	-21.90187	\|															
456	0	20.95992	\|																-21.90187	\|																
457	0	20.95992	\|																-21.90187	\|																
458*	0	-20.08375	\|														19.74307	\|												..						
459	1	0.44216		-0.43466	\|........																															
460	0	20.95992	\|															-21.90187	\|																	

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Influence Diagnostics Report For validvote =1

Row	Actual validvote	Hat Diagonal		Cook's Distance (C)		Cook's Distance (CBar)																																													
1	1	0.44911	\|						159.93919		88.10898	\|																																					
2	1	0.44911	\|							159.93919		88.10898	\|																																				
3*	1	0.57746	\|								308.17036		130.21478	\|											...																									
4*	0	0.44911	\|							186.38389		102.67711	\|																																				
5	1	0.44911	\|						159.93919		88.10898	\|																																					
6	1	0.44911	\|							159.93919		88.10898	\|																																				
7*	1	0.57746	\|									308.17036		130.21478	\|												...																							
8	1	0.44911	\|							159.93919		88.10898	\|																																				
9	1	0.44911	\|							159.93919		88.10898	\|																																				
10	1	0.44911	\|							159.93919		88.10898	\|																																				
11	1	0.44911	\|							.	159.93919		88.10898	\|								.																													
12	1	0.44911	\|							159.93919	\|...	88.10898	\|																																				
13	1	0.44911	\|							159.93919		88.10898	\|																																				
14*	1	0.96226	\|																4235.00431	\|															159.82785	\|															
15*	1	0.57746	\|									308.17036		130.21478	\|												...																							
16*	1	0.57746	\|								308.17036		130.21478	\|												...																								
17*	1	0.57746	\|								308.17036		130.21478	\|												...																								
18	1	0.44911	\|							159.93919		88.10898	\|																																				
19	1	0.44911	\|							159.93919	-..	88.10898	\|																																				
20*	0	0.44911	\|						...	186.38389		102.67711	\|																																					
21	1	0.44911	\|								159.93919		88.10898	\|																																					
22*	0	0.44911	\|						...	186.38389		102.67711	\|																																					
23	0	0.57746	\|									263.80925		111.47037	\|										..																									
24	0	0.57746	\|									.	263.80925		111.47037	\|										..																									
25*	1	0.96226	\|																4235.00431	\|															159.82785	\|															
26	1	0.44911	\|							159.93919		88.10898	\|																																				
27*	0	0.44911	\|							186.38389		102.67711	\|																																				
28	1	0.44911	\|						159.93919		88.10898	\|																																						
29*	0	0.44911	\|						186.38389		102.67711	\|																																						
30*	0	0.44911	\|								186.38389		102.67711	\|									.																												
31	1	0.44911	\|							159.93919		88.10898	\|																																				
32	1	0.44911	\|							159.93919		88.10898	\|																																				
33	1	0.44911	\|							159.93919		88.10898	\|																																				
$34 *$	0	0.44911	\|							186.38389		102.67711	\|																																				
35*	1	0.57746	\|									308.17036		130.21478	\|												..																							
36*	0	0.44911	\|							...	186.38389		102.67711	\|									...																												
37	1	0.44911	\|							.	159.93919		88.10898	\|																																					
38	0	0.57746	\|									263.80925	...	111.47037	\|																																		
39*	0	0.44911	\|							186.38389		102.67711	\|																																				
40*	0	0.44911	\|							186.38389		102.67711	\|																																				
41	1	0.44911	\|						159.93919		88.10898	\|								.																														
42	1	0.44911	\|						...	159.93919		88.10898	\|							..																															
43^{*}	0	0.44911	\|								186.38389		102.67711	\|																																				
44	0	0.96226	\|																1499.55501	\|				56.59278	\|																								
45	1	0.44911	\|							159.93919		88.10898	\|																																				
46*	0	0.44911	\|						...	186.38389		102.67711	\|																																					
47*	0	0.44911	\|							186.38389		102.67711	\|																																				
48	1	0.44911	\|							159.93919	88.10898	\|																																				

Logistic Regression Report

Dataset	\ldots INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight
Influence Diagnostics Report For validvote = $\mathbf{1}$ (Continued)	

Row	Actual validvote	Hat Diagonal		Cook's Distance (C)		Cook's Distance (CBar)																																												
49	1	0.44911	\|						159.93919		88.10898	\|					.																																
50	1	0.44911	\|							159.93919		88.10898	\|																																				
51	1	0.44911	\|						159.93919		88.10898	\|																																				
52*	0	0.44911	\|						186.38389		102.67711	\|																																				
53	1	0.44911	\|						159.93919		88.10898	\|																																				
54	0	0.57746	\|									263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . .$.																																		
55*	0	0.44911	\|							186.38389		102.67711	$\|\|\|\|\|\|\|\|\|\mid \ldots .$.																																					
56	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$.																																				
57	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
58*	1	0.57746	\|								308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																																			
59	1	0.44911	\|						159.93919		88.10898	\|																																				
60	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$..																																					
61*	1	0.96226	\|															4235.00431	\|															159.82785	\|															
62*	0	0.44911	\|						186.38389		102.67711	$\|\|\|\|\|\|\|\|\|\mid$.....																																					
63	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
64	0	0.57746	\|								263.80925		111.47037	\|																																		
65*	0	0.44911	\|						186.38389		102.67711	\|																																				
66	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$.																																					
67	1	0.44911	\|						159.93919		88.10898	\|								.																													
68	1	0.44911	\|						159.93919		88.10898	\|																																				
69	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid \ldots . .$.																																					
70*	0	0.44911	\|						186.38389		102.67711	\|																																				
71*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																																		
72	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
73*	0	0.44911	\|							186.38389		102.67711	\|																																				
74*	0	0.44911	\|						186.38389		102.67711	\|																																				
75	1	0.44911	\|						159.93919		88.10898	\|																																				
76*	0	0.44911	\|						-......	186.38389		102.67711	\|																																				
77	1	0.44911	\|						159.93919		88.10898	\|																																					
78	1	0.44911	\|						159.93919		88.10898	\|																																					
79	1	0.44911	\|						159.93919		88.10898	\|																																					
80	1	0.44911	\|						159.93919		88.10898	\|																																					
81	0	0.57746	\|									263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . .$.																																		
82*	1	0.57746	\|									308.17036		130.21478	\|												...																							
83	1	0.44911	\|						159.93919		88.10898	\|																																					
84	0	0.57746	\|								263.80925		111.47037	\|																																		
85*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																																		
86	0	0.96226	\|															1499.55501	\|				56.59278	\|																									
87	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																				
88*	0	0.44911	\|						186.38389		102.67711	\|																																				
89	1	0.44911	\|						159.93919		88.10898	\|																																					
90	1	0.44911	\|						159.93919		88.10898	\|								.																													
91	1	0.44911	\|						159.93919		88.10898	\|								.																													
92	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
93*	0	0.44911	\|						186.38389	\|.......	102.67711	$\|\|\|\|\|\|\|\|\mid \ldots .$.																																					

| 94 | 1 | 0.44911 | \|||||| | 159.93919 | ... | 88.10898 | \||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95 | 1 | 0.44911 | \|||||||| | 159.93919 | | 88.10898 | $\|\|\|\|\|\|\|\mid$...... |
| 96* | 1 | 0.57746 | \|||||||| | 308.17036 | \|............. | 130.21478 | $\|\|\|\|\|\|\|\|\|\|\|\mid .$. |

NCSS 12.0.45/17/2023 1:26:51 PM 27

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Influence Diagnostics Report For validvote = 1 (Continued)

Row	Actual validvote	Hat Diagonal		Cook's Distance (C)		Cook's Distance (CBar)																						
97	1	0.44911	\|							159.93919		88.10898	\|														
98	1	0.44911	\|							159.93919		88.10898	\|								.						
99*	0	0.44911	\|						186.38389		102.67711	$\|\|\|\|\|\|\|\|\mid$.															
100*	1	0.57746	\|										308.17036		130.21478	\|												...
101*	1	0.57746	\|									...	308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..												
102	0	0.57746	\|								263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\mid$....													
103*	0	0.44911	\|						186.38389		102.67711	\|															
104*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.												
105*	0	0.44911	\|							186.38389		102.67711	$\|\|\|\|\|\|\|\|\mid$.....														
106*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..												
107*	0	0.44911	\|						186.38389		102.67711	$\|\|\|\|\|\|\|\|\|\mid . . .$.															
108*	1	0.57746	\|								308.17036		130.21478	\|												...	
109	0	0.57746	\|								263.80925		111.47037	\|												
110*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..													
111*	1	0.57746	\|									308.17036		130.21478	\|												...	
112*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..												
113	1	0.44911	\|						159.93919		88.10898	\|								.							
114	0	0.57746	\|								263.80925		111.47037	\|												
115*	0	0.44911	\|						186.38389		102.67711	$\|\|\|\|\|\|\|\|\|\mid$.															
116*	1	0.57746	\|									308.17036		130.21478	\|												...	
117	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\mid$.														
118	1	0.44911	\|						159.93919		88.10898	\|															
119	1	0.44911	\|						159.93919		88.10898	\|															
120	0	0.57746	\|								263.80925		111.47037	\|												
121*	0	0.44911	\|						186.38389		102.67711	$\|\|\|\|\|\|\|\|\mid$.															
122*	0	0.44911	\|							186.38389		102.67711	\|															
123	1	0.44911	\|							159.93919		88.10898	\|								.						
124	1	0.44911	\|						159.93919		88.10898	\|															
125	1	0.44911	\|						159.93919		88.10898	\|								.							
126*	0	0.44911	\|						-......	186.38389		102.67711	\|														
127	1	0.44911	\|						159.93919		88.10898	\|								.							
128	1	0.44911	\|						159.93919		88.10898	\|															
129*	0	0.44911	\|							186.38389		102.67711	\|														
130	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$.															
131*	0	0.44911	\|						186.38389		102.67711	\|								-....							
132*	0	0.44911	\|							186.38389	102.67711	\|														
133	1	0.44911	\|						159.93919		88.10898	\|															
134	1	0.44911	\|						159.93919		88.10898	\|															
135*	0	0.44911	\|						186.38389	\|............	102.67711	\|														

136*	0	0.44911	\|							186.38389	102.67711													
137*	0	0.44911	\|						186.38389	102.67711	\|												
138*	0	0.44911	\|						-......	186.38389	102.67711	\|													
139*	1	0.57746	\|									308.17036	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...										
140	0	0.57746	\|									263.80925	111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . .$.											
141	1	0.44911	\|							159.93919	88.10898	\|													
142	0	0.57746	\|									263.80925	111.47037	\|										
143*	1	0.57746	\|									308.17036	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.											
144*	1	0.57746	\|								308.17036	130.21478	\|											

NCSS 12.0.4

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Influence Diagnostics Report For validvote = 1 (Continued)

Row	Actual validvote	Hat Diagonal		Cook's Distance (C)		Cook's Distance (CBar)																																											
145*	0	0.44911	\|						...	186.38389		102.67711	\|																																			
146	0	0.96226	\|																1499.55501	\|					56.59278	\|																						
147*	1	0.57746	\|									308.17036	\|....	130.21478	\|												...																						
148*	1	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.....	308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...																																										
149	1	0.44911	\|						159.93919		88.10898	\|								...																												
150*	1	0.57746	\|								-....	308.17036	\|...	130.21478	\|												...																						
151*	1	0.96226	\|															4235.00431	\|															159.82785	\|														
152	0	0.57746	\|									263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . . .$.																																		
153*	1	0.57746	\|								308.17036		130.21478	\|												...																						
154	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$......																																				
155	0	0.57746	\|								263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . .$.																																		
156*	0	0.44911	\|						186.38389		102.67711	\|																																				
157*	1	0.57746	\|									308.17036		130.21478	\|												...																					
158	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$......																																				
159*	0	0.44911	\|						186.38389		102.67711	\|																																				
160	0	0.57746	\|									263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . . .$.																																	
161*	0	0.44911	\|						186.38389		102.67711	\|																																			
162*	0	0.44911	\|						186.38389		102.67711	\|																																			
163*	0	0.44911	\|						186.38389		102.67711	\|																																			
164	1	0.44911	\|						159.93919		88.10898	\|																																				
165	0	0.57746	\|								263.80925		111.47037	\|																																		
166	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$.																																				
167	0	0.57746	\|								263.80925		111.47037	\|																																	
168	1	0.44911	\|						159.93919		88.10898	\|																																			
169	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$.																																				
170	0	0.57746	\|								263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.																																		
171	1	0.44911	\|						159.93919		88.10898	\|																																				
172	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid \ldots . .$.																																				
173*	0	0.44911	\|						186.38389		102.67711	\|																																			
174*	0	0.44911	\|						186.38389		102.67711	\|																																				
175	0	0.57746	\|								263.80925		111.47037	\|																																	
176*	0	0.44911	\|							186.38389		102.67711	\|																																		
177*	0	0.44911	\|						186.38389	\|...........	102.67711	\|																																			

178	1	0.44911	\|							159.93919		88.10898	\|														
179	0	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.....	263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid$....																					
180*	0	0.44911	\|						186.38389		102.67711	\|														
181*	1	0.57746	\|								-....	308.17036		130.21478	\|												...	
182	0	0.57746	\|								263.80925		111.47037	\|												
183*	0	0.44911	\|							186.38389	\|.............	102.67711	\|														
184*	1	0.57746	\|									...	308.17036		130.21478	\|												...
185	0	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.....	263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid$....																					
186	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$......														
187	1	0.44911	\|						159.93919		88.10898	\|														
188	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$......														
189	1	0.44911	\|							159.93919		88.10898	\|													
190	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......														
191*	0	0.44911	\|							186.38389		102.67711	\|													
192*	0	0.44911	\|						186.38389	\|.............	102.67711	\|														

NCSS 12.0.4

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight
Influence Diagnostics Report For validvote = 1 (Continued)	

220*	1	0.57746	\|									308.17036		130.21478	..																																				
221	1	0.44911	\|							159.93919	\|.............	88.10898	\|																																					
222*	0	0.44911	\|						186.38389		102.67711	\|																																						
223	0	0.57746	\|									263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid$.																																			
224*	0	0.44911	\|							186.38389		102.67711	\|																																					
225*	1	0.96226	\|																4235.00431	\|															159.82785	\|															
226	1	0.44911	\|							159.93919		88.10898	\|																																						
227	1	0.44911	\|						159.93919		88.10898	\|																																						
228*	0	0.44911	\|							186.38389		102.67711	\|																																						
229	1	0.44911	\|						159.93919		88.10898	\|																																						
230	1	0.44911	\|						159.93919		88.10898	\|																																						
231*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																																			
232	0	0.96226	\|																1499.55501	\|				56.59278	$\|\|\|\|\mid$.																									
233	1	0.44911	\|						159.93919		88.10898	\|																																						
234	1	0.44911	\|						159.93919		88.10898	\|																																						
235*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																																			
236	0	0.57746	\|								263.80925	\|............	111.47037	\|										.																										
237*	0	0.44911	\|							186.38389		102.67711	\|									.																												
238*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\mid$...																																			
239*	0	0.44911	\|						186.38389	102.67711	\|																																						
240	0	0.57746	\|								263.80925		111.47037	\|																																			

NCSS 12.0.4

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Influence Diagnostics Report For validvote $=1$ (Continued)

262	1	0.44911	\|								159.93919	88.10898	\|													
263*	1	0.57746	\|									308.17036	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.											
264*	0	0.44911	\|							186.38389	102.67711	\|													
265*	0	0.44911	\|							186.38389	102.67711	\|												
266	0	0.57746	\|								263.80925	111.47037	\|											
267	1	0.44911	\|							159.93919	88.10898	\|												
268	1	0.44911	\|							.	159.93919	88.10898	\|								.					
269*	0	0.44911	\|							.	186.38389	102.67711	\|													
270*	0	0.44911	\|						186.38389	102.67711	$\|\|\|\|\|\|\|\|\mid$.														
271	1	0.44911	\|						159.93919	88.10898	\|													
272*	1	0.57746	\|									308.17036	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.											
273*	1	0.57746	\|								308.17036	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\mid . .$.												
274	1	0.44911	\|							159.93919	88.10898	\|													
275*	0	0.44911	\|							186.38389	102.67711	\|													
276	1	0.44911	\|						159.93919	88.10898	\|													
277*	0	0.44911	$\|\|\|\|\|\|\mid$..	186.38389	102.67711	\|																			
278	0	0.57746	\|									.	263.80925	111.47037	\|											
279*	1	0.57746	\|								308.17036	130.21478	\|												...
280*	0	0.44911	\|							.	186.38389	102.67711	$\|\|\|\|\|\|\|\|\|\mid$.													
281	0	0.57746	\|									.	263.80925	111.47037	\|											
282*	1	0.57746	\|								308.17036	130.21478	\|											...	
283	1	0.44911	\|							159.93919	88.10898	$\|\|\|\|\|\|\|\mid$......													
284*	1	0.57746	\|								308.17036	130.21478	\|												...
285	1	0.44911	\|								159.93919	88.10898	\|													
286	0	0.57746	\|									263.80925	111.47037	\|										
287	1	0.44911	\|						159.93919	88.10898	\|													
288*	0	0.44911	\|						186.38389	102.67711	\|													

NCSS 12.0.4

Logistic Regression Report

Dataset
Y (Ref Value)
Frequency
...INCSSmsexport.NCSS
validvote(0)
commonpostweight

Influence Diagnostics Report For validvote = 1 (Continued)

304	0	0.57746	\|									...	263.80925	\|.............	111.47037	\|																																		
305	0	0.57746	\|								263.80925		111.47037	\|																																				
306*	0	0.44911	\|								186.38389		102.67711	\|																																				
307	0	0.57746	\|									263.80925	\|.............	111.47037	\|									-...																									
308*	0	0.44911	\|						186.38389		102.67711	\|																																				
309	0	0.57746	\|									263.80925		111.47037	\|																																	
310	1	0.44911	\|							159.93919		88.10898	\|																																			
311*	1	0.57746	\|										308.17036		130.21478	\|												...																						
312	0	0.57746	\|									.	263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . . .$.																																		
313	0	0.57746	\|									263.80925		111.47037	\|									-...																									
314	1	0.44911	\|							159.93919		88.10898	\|																																			
315	0	0.57746	\|									263.80925		111.47037	\|																																	
316*	0	0.44911	\|							186.38389		102.67711	\|																																				
317*	1	0.57746	\|										308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...																																		
318*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																																		
319	0	0.57746	\|									263.80925		111.47037	\|																																	
320*	0	0.44911	\|							186.38389		102.67711	\|																																				
321	1	0.44911	\|							159.93919		88.10898	\|																																			
322	0	0.57746	\|									.	263.80925		111.47037	\|																																		
323*	0	0.44911	\|							186.38389		102.67711	\|																																				
324*	0	0.44911	\|							186.38389		102.67711	\|																																			
325*	0	0.44911	\|						186.38389		102.67711	\|																																				
326*	1	0.57746	\|									308.17036		130.21478	\|											-..																							
327*	0	0.44911	\|							186.38389		102.67711	\|									.																											
328*	0	0.44911	\|							186.38389		102.67711	\|																																				
329	0	0.57746	\|									.	263.80925		111.47037	\|										..																								
330	0	0.57746	\|									263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\mid$....																																		
331*	1	0.57746	\|									308.17036		130.21478	\|											...																							
332	1	0.44911	\|							159.93919	\|.............	88.10898	$\|\|\|\|\|\|\|\mid$......																																				
333	0	0.57746	\|									.	263.80925		111.47037	\|									-...																									
334*	0	0.44911	\|							186.38389	\|.............	102.67711	\|																																					
335*	1	0.96226	\|															4235.00431	\|															159.82785	\|															
336*	1	0.57746	\|								308.17036	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\mid$...																																			

NCSS 12.0.4

Logistic Regression Report

Dataset
Y (Ref Value)
Frequency
...INCSSmsexport.NCSS validvote(0) commonpostweight

Influence Diagnostics Report For validvote = 1 (Continued)

Row	Actual validvote	Hat Diagonal		Cook's Distance (C)		Cook's Distance (CBar)																				
337	1	0.44911	\|								159.93919		88.10898	\|												
338	0	0.57746	\|									263.80925		111.47037	\|										
339	0	0.57746	\|									263.80925		111.47037	\|									
340	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid \ldots . .$.												
341*	0	0.44911	\|							186.38389	..	102.67711	\|													
342	1	0.44911	\|							159.93919		88.10898	\|												
343	0	0.57746	\|									263.80925	\|.............	111.47037	\|										
344*	0	0.44911	\|						186.38389	\|.............	102.67711	\|													
345	0	0.57746	\|								263.80925	\|......	111.47037	\|									.		

346*	0	0.44911	\|							186.38389		102.67711	\|								.																														
347	1	0.44911	\|							...	159.93919	\|.............	88.10898	\|																																					
348*	1	0.96226	\|																4235.00431	\|															159.82785	\|															
349	1	0.44911	\|							.	159.93919		88.10898	\|																																					
350*	0	0.44911	\|						186.38389		102.67711	\|																																						
351	0	0.57746	\|									263.80925		111.47037	\|																																			
352*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																																			
353*	0	0.44911	\|								186.38389		102.67711	\|																																					
354*	1	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.	308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...																																												
355	0	0.57746	\|									263.80925		111.47037	\|																																			
356*	0	0.44911	\|							186.38389		102.67711	\|																																					
357	1	0.44911	\|						159.93919		88.10898	\|								.																														
358	0	0.57746	\|								263.80925		111.47037	\|									..																											
359*	1	0.57746	\|								..	308.17036		130.21478	\|											...																									
360*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																																				
361*	1	0.57746	\|								308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																																				
362*	0	0.44911	\|							186.38389		102.67711	\|								-....																													
363*	1	0.57746	\|								308.17036		130.21478	\|											...																									
364	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$.																																						
365*	1	0.57746	\|									.	308.17036		130.21478	\|											...																								
366	1	0.44911	\|							159.93919		88.10898	\|																																					
367	1	0.44911	\|						159.93919		88.10898	\|																																						
368*	0	0.44911	\|							186.38389		102.67711	\|																																					
369	1	0.44911	\|						159.93919		88.10898	\|																																						
370*	0	0.44911	\|							.	186.38389		102.67711	\|									.																												
371*	1	0.57746	\|								308.17036		130.21478	\|												.																								
372*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																																			
373*	1	0.57746	\|									308.17036		130.21478	\|											...																									
374	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\mid$.																																						
375*	1	0.57746	\|								308.17036		130.21478	\|												...																								
376*	0	0.44911	\|								186.38389		102.67711	\|																																					
377*	0	0.44911	\|						.	186.38389		102.67711	\|																																						
378*	0	0.44911	\|						186.38389		102.67711	\|																																						
379	1	0.44911	\|						159.93919		88.10898	\|																																						
380	1	0.44911	\|						159.93919		88.10898	\|																																						
381	0	0.96226	\|															1499.55501	\|				56.59278	\|																										
382*	1	0.57746	\|									308.17036		130.21478	\|												...																							
383*	0	0.44911	\|							186.38389	\|.............	102.67711	\|									.																												
384*	1	0.57746	\|								308.17036	\|.............	130.21478	\|											...																									

NCSS 12.0.4

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Influence Diagnostics Report For validvote = 1 (Continued)

388	0	0.57746	\|									263.80925	\|.	111.47037	\|																																		
389*	0	0.44911	\|								186.38389		102.67711	\|																																				
390	0	0.57746	\|									263.80925		111.47037	\|																																	
391*	0	0.44911	\|							186.38389	\|.............	102.67711	\|																																			
392*	0	0.44911	\|						186.38389		102.67711	\|																																				
393	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$.																																				
394*	1	0.57746	\|									308.17036	\|.	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...																																		
395	0	0.57746	\|								263.80925		111.47037	\|																																		
396	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$......																																				
397*	1	0.57746	\|								308.17036		130.21478	\|												...																							
398*	0	0.44911	\|							186.38389		102.67711	\|																																			
399	0	0.57746	\|									263.80925		111.47037	\|																																	
400	1	0.44911	\|								159.93919		88.10898	\|																																			
401	0	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.	263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . .$.																																											
402	0	0.96226	\|															1499.55501	\|				56.59278	\|																								
403	0	0.57746	\|									263.80925		111.47037	\|																																	
404*	0	0.44911	\|							186.38389		102.67711	\|																																			
405*	1	0.96226	\|															4235.00431	\|															159.82785	\|															
406*	0	0.44911	\|							186.38389		102.67711	\|																																			
407	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$......																																				
408*	0	0.44911	\|						186.38389		102.67711	\|																																				
409	0	0.57746	\|								263.80925		111.47037	\|																																		
410*	1	0.57746	\|									308.17036		130.21478	\|												...																						
411	0	0.57746	\|									263.80925		111.47037	\|																																	
412	0	0.57746	\|									263.80925		111.47037	\|										\ldots																								
413*	0	0.44911	\|							186.38389		102.67711	\|																																			
414	0	0.57746	\|									263.80925		111.47037	\|																																	
415	0	0.96226	\|															1499.55501	\|				56.59278	\|																								
416	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$.																																				
417	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
418	0	0.57746	\|									263.80925		111.47037	\|																																	
419	1	0.44911	\|							159.93919		88.10898	\|																																			
420	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
421	0	0.57746	\|								263.80925		111.47037	\|																																		
422	0	0.96226	\|															1499.55501	\|				56.59278	\|																								
423	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid \ldots . .$.																																				
424	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid \ldots .$.																																				
425	1	0.44911	\|						159.93919	\|.............	88.10898	$\|\|\|\|\|\|\|\mid \ldots . .$.																																					
426*	0	0.44911	\|						186.38389		102.67711	\|																																				
427*	0	0.44911	\|						186.38389		102.67711	\|																																				
428	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
429	0	0.96226	\|																1499.55501	\|				56.59278	\|																							
430	0	0.96226	\|																1499.55501	$\|\|\|\|\mid$.........	56.59278	\|																											
431*	0	0.44911	\|							186.38389		102.67711	\|																																				
432	0	0.57746	\|								263.80925	\|............	111.47037	\|																																		

NCSS 12.0.4

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Influence Diagnostics Report For validvote = 1 (Continued)

Row	Actual validvote	Hat Diagonal		Cook's Distance (C)		Cook's Distance (CBar)																						
433	0	0.57746	\|									263.80925	\|.............	111.47037	\|												
434*	0	0.44911	\|							186.38389	\|.	102.67711	\|													
435*	0	0.44911	\|						186.38389		102.67711	\|														
436	0	0.57746	\|									263.80925		111.47037	\|											
437	0	0.57746	\|									263.80925	\|.	111.47037	\|											
438	0	0.96226	\|															1499.55501	\|				56.59278	\|			
439*	0	0.44911	\|							186.38389		102.67711	\|													
440*	0	0.44911	\|						186.38389		102.67711	\|														
441	0	0.57746	\|								263.80925		111.47037	\|												
442*	0	0.44911	\|						186.38389	\|.............	102.67711	\|														
443	0	0.57746	\|									263.80925		111.47037	\|											
444*	0	0.44911	\|						186.38389		102.67711	\|															
445	0	0.57746	\|									263.80925		111.47037	\|											
446*	0	0.44911	\|						186.38389		102.67711	\|														
447*	1	0.57746	\|								308.17036		130.21478	\|												..	
448*	1	0.57746	\|									308.17036		130.21478	\|												...
449*	1	0.57746	\|								308.17036		130.21478	\|											...		
450*	0	0.44911	\|						186.38389		102.67711	\|														
451	1	0.44911	\|						159.93919		88.10898	\|														
452	1	0.44911	\|						159.93919		88.10898	\|														
453	0	0.57746	\|								263.80925		111.47037	\|												
454*	0	0.44911	\|						186.38389		102.67711	\|														
455	0	0.57746	\|									.	263.80925		111.47037	\|											
456	0	0.57746	\|								263.80925		111.47037	\|												
457	0	0.57746	\|									263.80925		111.47037	\|											
458*	0	0.44911	\|						186.38389		102.67711	\|								-....							
459	1	0.44911	\|						159.93919		88.10898	\|														
460	0	0.57746	\|								263.80925	\|.............	111.47037	\|												

NCSS 12.0.4

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Diagnostics Report For validvote $=1$

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																				
1	1	0.44911	\|							93.71207	\|							196.18596	\|											..												
2	1	0.44911	\|							93.71207	\|							196.18596	\|												...									
3*	1	0.57746	\|								134.47151	\|											-..	225.49637	\|																
4*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
5	1	0.44911	\|						93.71207	\|							196.18596	\|												...										
6	1	0.44911	\|						93.71207	\|							196.18596	\|												...										
7*	1	0.57746	\|									134.47151	\|												...	225.49637	\|														
8	1	0.44911	\|						93.71207	\|							196.18596	\|												..										
9	1	0.44911	\|						93.71207	\|							196.18596	\|												...										
10	1	0.44911	\|						93.71207	\|							196.18596	\|												...										

11	1	0.44911	\|						93.71207	\|							196.18596	\|											...																
12	1	0.44911	\|						93.71207	\|							-.....	196.18596	\|											...																
13	1	0.44911	\|							93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																										
14*	1	0.96226	\|															159.98894	\|																166.09627	\|										
15*	1	0.57746	$\|\|\|\|\|\|\|\|\mid$.....	134.47151	\|												...	225.49637	\|																												
16*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																			
17*	1	0.57746	\|									134.47151	\|											...	225.49637	\|																					
18	1	0.44911	\|						93.71207	\|							196.18596	\|											...																
19	1	0.44911	\|						93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																											
20*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
21	1	0.44911	\|							93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$																										
22*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																									
23	0	0.57746	\|								115.62666	\|										193.03618	\|												...										
24	0	0.57746	\|									115.62666	\|										193.03618	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																					
25*	1	0.96226	\|																159.98894	\|																166.09627	\|									
26	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
27*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
28	1	0.44911	\|						93.71207	\|								196.18596	\|											...																
29*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																									
30*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
31	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
32	1	0.44911	\|						93.71207	\|								196.18596	\|												...															
33	1	0.44911	\|							93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																									
34*	0	0.44911	\|						108.14792	\|									228.62377	\|																									
35*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																			
36*	0	0.44911	\|						108.14792	\|									228.62377	\|																									
37	1	0.44911	\|						93.71207	\|								196.18596	\|												...														
38	0	0.57746	\|									115.62666	\|										193.03618	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																					
39*	0	0.44911	\|						108.14792	\|									228.62377	\|																									
40*	0	0.44911	\|						108.14792	\|										228.62377	\|																								
41	1	0.44911	\|							93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																										
42	1	0.44911	\|							93.71207	\|								196.18596	\|												...														
43*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
44	0	0.96226	\|															56.75007	\|				58.81234	\|																						
45	1	0.44911	\|							93.71207	\|							-.....	196.18596	\|											...															
46*	0	0.44911	\|						108.14792	\|										228.62377	\|																								
47*	0	0.44911	\|						108.14792	\|									228.62377	\|																									
48	1	0.44911	\|						93.71207	\|							\ldots....	196.18596	\|												...															

NCSS 12.0.4

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

$\left.\begin{array}{lrrrrrr} & & & & \text { Deviance } & & \text { Chi-Square } \\ \text { Change }\end{array}\right]$

53	1	0.44911	\|						93.71207	\|							196.18596	\|											...															
54	0	0.57746	\|								115.62666	\|									193.03618	\|											...											
55*	0	0.44911	\|						108.14792	\|									228.62377	\|																								
56	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
57	1	0.44911	\|						...	93.71207	\|							196.18596	\|												...														
58*	1	0.57746	\|								134.47151	\|											...	225.49637	\|														.						
59	1	0.44911	\|							93.71207	\|							196.18596	\|											...														
60	1	0.44911	I\|I				93.71207	IIII\|			196.18596	\\|										...																							
61*	1	0.96226	\|																159.98894	\|															166.09627	\|									
62*	0	0.44911	\|							.	108.14792	\|										228.62377	\|																						
63	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
64	0	0.57746	\|								115.62666	\|									193.03618	\|												...										
65*	0	0.44911	\|						108.14792	\|									228.62377	\|																								
66	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
67	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
68	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
69	1	0.44911	\|						..	93.71207	\|							196.18596	\|												...														
70*	0	0.44911	\|						108.14792	\|									228.62377	\|																								
71*	1	0.57746	\|									134.47151	\|											...	225.49637	\|														.					
72	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
73*	0	0.44911	\|							108.14792	\|									228.62377	\|																							
74*	0	0.44911	\|							108.14792	\|									228.62377	\|																							
75	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
76*	0	0.44911	\|							108.14792	\|									228.62377	\|																							
77	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
78	1	0.44911	\|							93.71207	\|							196.18596	\|											...														
79	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
80	1	0.44911	\|						..	93.71207	\|							196.18596	\|												...														
81	0	0.57746	\|									115.62666	\|									193.03618	\|												...										
82*	1	0.57746	\|								134.47151	\|											...	225.49637	\|														.						
83	1	0.44911	\|							93.71207	\|							196.18596	\|												...													
84	0	0.57746	\|								115.62666	\|									193.03618	\|												...										
85*	,	0.57746	\|								..	134.47151	\|											...	225.49637	\|														.						
86	0	0.96226	\|																56.75007	\|	I			58.81234																						
87		0.44911	\|						..	93.71207	\|							196.18596	\|											..															
88*	0	0.44911	\|							108.14792	\|									228.62377	\|																							
89		0.44911	\|							93.71207	\|							196.18596	\|												...													
90	1	0.44911	\|							93.71207	\|							196.18596	\|												...													
91	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
92		0.44911	\|							93.71207	\|								196.18596	\|												...												
93*	0	0.44911	\|						108.14792	\|									228.62377	\|																								
94	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
95		0.44911	\|						93.71207	\|							196.18596	\|												...														
96*	1	0.57746	\|								134.47151	\|											...	225.49637	\|														.						

NCSS 12.0.4

Logistic Regression Report

Dataset Y (Ref Value)
Frequency
...INCSSmsexport.NCSS
validvote(0)
commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																					
97	1	0.44911	\|						93.71207	\|							196.18596	\|												..											
98	1	0.44911	\|						93.71207	\|							-.....	196.18596	\|												...											
99*	0	0.44911	\|						108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																														
100*	1	0.57746	\|									134.47151	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	225.49637	\|																											
101*	1	0.57746	\|									...	134.47151	\|												...	225.49637	\|															
102	0	0.57746	\|								115.62666	$\|\|\|\|\|\|\|\|\|\mid$....	193.03618	\|												...																
103*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid . . .$.	228.62377	\|																													
104*	1	0.57746	\|								134.47151	\|												...	225.49637	\|																
105*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid . . .$.	228.62377	\|																													
106*	1	0.57746	$\|\|\|\|\|\|\|\|\mid$.....	134.47151	\|												...	225.49637	\|																								
107*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																														
108*	1	0.57746	\|									.	134.47151	\|												...	225.49637	\|															
109	0	0.57746	\|									115.62666	$\|\|\|\|\|\|\|\|\|\mid$....	193.03618	\|												..																
110*	1	0.57746	\|									134.47151	\|												..	225.49637	\|															
111*	1	0.57746	\|									134.47151	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	225.49637	\|																											
112*	1	0.57746	\|								134.47151	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	225.49637	\|																												
113	1	0.44911	\|							93.71207	\|							196.18596	\|												...											
114	0	0.57746	\|									115.62666	\|										193.03618	\|												...					
115*	0	0.44911	\|						108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																														
116*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																	
117	1	0.44911	\|							93.71207	\|								196.18596	\|												...									
118	1	0.44911	\|							93.71207	\|								196.18596	\|												...									
119	1	0.44911	\|							.	93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																					
120	0	0.57746	\|									115.62666	$\|\|\|\|\|\|\|\|\|\mid$....	193.03618	\|												...															
121*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																														
122*	0	0.44911	\|							108.14792	\|									228.62377	\|																				
123	1	0.44911	\|							.	93.71207	\|								196.18596	\|												..									
124	1	0.44911	\|							.	93.71207	\|								196.18596	\|												\ldots									
125	1	0.44911	\|							.	93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																					
126*	0	0.44911	\|						108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																														
127	1	0.44911	\|							93.71207	\|								196.18596	\|												..									
128	1	0.44911	\|						93.71207	\|								196.18596	\|												...										
129*	0	0.44911	\|							.	108.14792	\|										228.62377	\|																			
130	1	0.44911	\|								93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																					
131*	0	0.44911	\|						108.14792	\|										228.62377	\|																				
132*	0	0.44911	\|							108.14792	\|										228.62377	\|																			
133	1	0.44911	\|						93.71207	\|								196.18596	\|												...										
134	1	0.44911	\|						93.71207	\|								196.18596	\|												...										
135*	0	0.44911	\|							.	108.14792	\|										228.62377	\|																			
136*	0	0.44911	\|						...	108.14792	\|										228.62377	\|																				
137*	0	0.44911	\|						108.14792	\|										228.62377	\|																				
138*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																					
139*	1	0.57746	\|								134.47151	\|												...	225.49637	\|																
140	0	0.57746	\|									115.62666	$\|\|\|\|\|\|\|\|\|\mid$....	193.03618	\|												...															
141	1	0.44911	\|							93.71207	\|								196.18596	\|												..										
142	0	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.....	115.62666	$\|\|\|\|\|\|\|\|\|\|\mid$....	193.03618	\|												...																								
143*	1	0.57746	\|									134.47151	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	225.49637	\|																											
144*	1	0.57746	\|									134.47151	\|												...	225.49637	\|															

NCSS 12.0.4
5/17/2023 1:26:51 PM

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																									
145*	0	0.44911	\|							108.14792	\|									228.62377	\|																								
146	0	0.96226	\|																56.75007	\|					58.81234																						
147*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																			
148*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																					
149	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
150*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																			
151*	1	0.96226	\|																159.98894	\|																166.09627	\|									
152	0	0.57746	\|									115.62666	\|										193.03618	\|												...									
153*	1	0.57746	\|									.	134.47151	\|												...	225.49637	\|																			
154	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
155	0	0.57746	\|								115.62666	\|										193.03618	\|												...										
156*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
157*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																			
158	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
159*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																									
160	0	0.57746	\|								115.62666	\|										193.03618	\|												...										
161*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
162*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																									
163*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
164	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
165	0	0.57746	\|								115.62666	\|									193.03618	\|												...											
166	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
167	0	0.57746	\|									115.62666	\|										193.03618	\|												...									
168	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
169	1	0.44911	\|							.	93.71207	\|							196.18596	\|												...														
170	0	0.57746	\|									115.62666	\|									193.03618	\|												...										
171	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
172	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
173*	0	0.44911	\|						108.14792	\|										228.62377	\|																								
174*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
175	0	0.57746	\|									.	115.62666	\|										193.03618	\|												...									
176*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
177*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																									
178	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
179	0	0.57746	\|								115.62666	\|									193.03618	\|												...											
180*	0	0.44911	\|								108.14792	\|										228.62377	\|																							
181*	1	0.57746	\|										134.47151	\|												...	225.49637	\|																			
182	0	0.57746	\|									115.62666	\|										193.03618	\|												...									
183*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
184*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																			
185	0	0.57746	\|									115.62666	\|									193.03618	\|												...										
186	1	0.44911	\|							93.71207	\|								196.18596	\|													..												
187	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																											

| 188 | 1 | 0.44911 | \||||||| | 93.71207 | \|||||||| | 196.18596 | \||||||||| ... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 189 | 1 | 0.44911 | \||||||| | 93.71207 | $\|\|\|\|\|\|\|\mid$.. | 196.18596 | $\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$. |
| 190 | 1 | 0.44911 | \|||||||. | 93.71207 | $\|\|\|\|\|\|\|\mid$.... | 196.18596 | $\|\|\|\|\|\|\|\|\|\|\|\mid . .$. |
| 191* | 0 | 0.44911 | \|||||||. | 108.14792 | $\|\|\|\|\|\|\|\|\|\mid$.. | 228.62377 | \||||||||||||||| |
| 192* | 0 | 0.44911 | \|||||||. | 108.14792 | $\|\|\|\|\|\|\|\|\|\mid$.... | 228.62377 | \||||||||||||||| |

NCSS 12.0.45/17/2023 1:26:51 PM 39

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																								
193	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
194	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
195	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																										
196*	0	0.44911	\|								108.14792	\|										.	228.62377	\|																						
197	0	0.57746	\|									...	115.62666	\|										.	193.03618	\|												...								
198	0	0.57746	\|								115.62666	\|										193.03618	\|												...									
199	1	0.44911	\|						93.71207	\|							196.18596	\|												..														
200	1	0.44911	\|						93.71207	\|								196.18596	\|												...													
201*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$	228.62377	\|																																	
202*	0	0.44911	\|							108.14792	\|										228.62377	\|																						
203	0	0.57746	\|								115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|												...																			
204	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
205*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																		
206	0	0.57746	\|								115.62666	\|										193.03618	\|												...									
207*	0	0.44911	\|							108.14792	\|										...	228.62377	\|																							
208	0	0.57746	\|									115.62666	\|										193.03618	\|												...								
209*	0	0.44911	\|						108.14792	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	228.62377	\|																																	
210*	0	0.44911	\|						108.14792	\|										228.62377	\|																							
211*	0	0.44911	\|						108.14792	\|										228.62377	\|																							
212*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$	228.62377	\|																																	
213*	0	0.44911	\|							108.14792	\|										228.62377	\|																						
214	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
215	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
216	1	0.44911	\|						93.71207	\|							-.....	196.18596	\|												...														
217	1	0.44911	\|						93.71207	\|								196.18596	\|												...													
218*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$	228.62377	\|																																	
219	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																										
220*	1	0.57746	\|									134.47151	\|												..	225.49637	\|																			
221	1	0.44911	\|							93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																									
222*	0	0.44911	\|						-......	108.14792	\|										228.62377	\|																							
223	0	0.57746	\|									115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|												...																			
224*	0	0.44911	\|						108.14792	\|										228.62377	\|																							
225*	1	0.96226	\|																159.98894	\|															166.09627	\|									
226	1	0.44911	\|						93.71207	\|							196.18596	\|												..														
227	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
228*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
229	1	0.44911	\|						93.71207	$\|\|\|\|\|\|\|\mid$......	196.18596	$\|\|\|\|\|\|\|\|\|\|\|\mid$..																																	

230	1	0.44911	\|							93.71207	\|								196.18596	..																							
231*	1	0.57746	\|									.	134.47151	\|											...	225.49637	\|																
232	0	0.96226	\|																56.75007	\|				58.81234																		
233	1	0.44911	\|							93.71207	\|								196.18596	\|												..									
234	1	0.44911	\|						93.71207	\|							196.18596	\|												...											
235*	1	0.57746	\|									134.47151	\|												...	225.49637	\|															
236	0	0.57746	\|								115.62666	\|										193.03618	\|												...						
237*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																													
238*	1	0.57746	\|									134.47151	\|												...	225.49637	\|															
239*	0	0.44911	\|							108.14792	\|										228.62377	\|																			
240	0	0.57746	\|								115.62666	\|									193.03618	\|											...								

NCSS 12.0.4
5/17/2023 1:26:51 PM 40

Logistic Regression Report

Dataset
Y (Ref Value)
Frequency
...INCSSmsexport.NCSS
validvote(0)
commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																			
241	1	0.44911	\|						93.71207	\|								196.18596	\|												...									
242*	0	0.44911	\|						108.14792	\|									.	228.62377	\|																			
243*	0	0.44911	\|							108.14792	\|										228.62377	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$																		
244*	1	0.57746	\|									134.47151	\|												...	225.49637	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.													
245	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																					
246	1	0.44911	\|						93.71207	$\|\|\|\|\|\|\|\mid$......	196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																												
247	0	0.57746	\|									115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																									
248	1	0.44911	\|						93.71207	\|								196.18596	\|												...								
249	1	0.44911	\|						93.71207	\|								196.18596	\|												...								
250	1	0.44911	\|						93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																				
251	1	0.44911	\|						93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...																				
252*	0	0.44911	\|						108.14792	\|										228.62377	\|																		
253	0	0.57746	\|								115.62666	\|										193.03618	\|												...				
254	0	0.57746	\|									115.62666	\|										193.03618	\|												...			
255*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																												
256	1	0.44911	\|						93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																				
257	1	0.44911	\|						93.71207	\|							196.18596	\|												...									
258*	1	0.57746	\|								134.47151	\|												...	225.49637	\|														
259	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																					
260*	0	0.44911	\|						108.14792	\|										228.62377	\|																		
261*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																												
262	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																					
263*	1	0.57746	\|									134.47151	\|											...	225.49637	\|														
264*	0	0.44911	\|						108.14792	\|										228.62377	\|																		
265*	0	0.44911	\|						108.14792	\|										228.62377	\|																		
266	0	0.57746	\|									115.62666	\|										193.03618	\|												...			
267	1	0.44911	\|							93.71207	\|								196.18596	\|												...							
268	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																					
269*	0	0.44911	\|						108.14792	\|										228.62377	\|																		
270*	0	0.44911	\|						108.14792	\|										228.62377	\|																		
271	1	0.44911	\|						93.71207	\|							196.18596	\|																					

272*	1	0.57746	\|								...	134.47151	\|											...	225.49637	\|																
273*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																
274	1	0.44911	\|							93.71207	\|							196.18596	\|											...											
275*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
276	1	0.44911	\|						93.71207	\|							.	196.18596	\|												...										
277*	0	0.44911	\|						.	108.14792	\|										228.62377	\|																			
278	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
279*	1	0.57746	\|								134.47151	\|												.	225.49637	\|														.	
280*	0	0.44911	\|						...	108.14792	\|									228.62377	\|																				
281	0	0.57746	\|								115.62666	\|									193.03618	\|											...							
282*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																
283	1	0.44911	\|I	I			93.71207	I\|I					196.18596	\|											...															
284*	1	0.57746	\|									134.47151	\|												...	225.49637	\|														.
285	1	0.44911	\|						..	93.71207	\|							196.18596	\|												...										
286	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
287	1	0.44911	\|							93.71207	\|								196.18596	\|											...									
288*	0	0.44911	\|							108.14792	\|										228.62377	\|																		

NCSS 12.0.4
5/17/2023 1:26:51 PM

Logistic Regression Report

Dataset
Y (Ref Value)
Frequency
...INCSSmsexport.NCSS
validvote(0)
commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																				
289*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
290	1	0.44911	\|						.	93.71207	\|	I						196.18596	\|											...												
291	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
292	0	0.57746	\|								115.62666	\|									193.03618	\|											...							
293	1	0.44911	\|							93.71207	\|								196.18596	\|												..								
294	1	0.44911	\|						93.71207	\|							.	196.18596	\|											...											
295	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
296*	0	0.44911	\|							108.14792	\|									228.62377	\|																			
297*	1	0.57746	\|									134.47151	\|												...	225.49637	\|														.
298	0	0.57746	\|								115.62666	\|									193.03618	\|												..						
299*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
300*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
301*	0	0.44911	\|							108.14792	\|										228.62377	\|																		
302*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
303	0	0.57746	\|								115.62666	\|										.	193.03618	\|																	
304	0	0.57746	\|								115.62666	\|									193.03618	\|												..						
305	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
306*	0	0.44911	\|						...	108.14792	\|									228.62377	\|																				
307	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
308*	0	0.44911	\|							108.14792	\|										228.62377	\|																		
309	0	0.57746	\|									115.62666	\|										193.03618	\|																
310	1	0.44911	\|						.	93.71207	\|							.	196.18596	\|												...										
311*	1	0.57746	\|								134.47151	\|												225.49637	\|																
312	0	0.57746	\|								115.62666	\|										...	193.03618	\|											...						
313	0	0.57746	\|									115.62666	\|										193.03618	\|										...						

314	1	0.44911	\|						93.71207	\|							.	196.18596	\|											...													
315	0	0.57746	\|								115.62666	\|									193.03618	\|											...									
316*	0	0.44911	\|						...	108.14792	\|									228.62377	\|																						
317*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																		
318*	1	0.57746	\|								134.47151	\|												...	225.49637	\|																	
319	0	0.57746	\|								115.62666	\|									193.03618	\|												...								
320*	0	0.44911	\|							108.14792	\|									228.62377	\|																					
321	1	0.44911	\|								93.71207	\|									196.18596	\|												...										
322	0	0.57746	\|								115.62666	\|									193.03618	\|											...									
323*	0	0.44911	\|							108.14792	\|									228.62377	\|																					
324*	0	0.44911	\|							108.14792	\|									228.62377	\|																					
325*	0	0.44911	\|							108.14792	\|										228.62377	\|																				
326*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																
327*	0	0.44911	\|							108.14792	\|									228.62377	\|																					
328*	0	0.44911	\|						.	108.14792	\|									228.62377	\|																						
329	0	0.57746	\|								115.62666	\|									193.03618	\|												...								
330	0	0.57746	\|								115.62666	\|									193.03618	\|												...								
331*	1	0.57746	\|								134.47151	\|											...	225.49637	\|														.				
332	1	0.44911	\|							93.71207	\|								196.18596	\|												...										
333	0	0.57746	\|									115.62666	\|									193.03618	\|												...							
334*	0	0.44911	\|								108.14792	\|									228.62377	\|																					
335*	1	0.96226	\|															159.98894	\|															166.09627	\|									
336*	1	0.57746	\|								134.47151	\|										..	225.49637	\|																			

NCSS 12.0.4
5/17/2023 1:26:51 PM
42

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y(Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																				
337	1	0.44911	\|								93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																					
338	0	0.57746	\|									115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|												...														
339	0	0.57746	\|									115.62666	\|										193.03618	\|												...				
340	1	0.44911	\|							93.71207	\|							196.18596	\|											...										
341*	0	0.44911	\|						108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																													
342	1	0.44911	\|							93.71207	\|								196.18596	\|												...								
343	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
344*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																												
345	0	0.57746	\|								115.62666	\|										193.03618	\|												...					
346*	0	0.44911	\|							108.14792	\|										228.62377	\|																		
347	1	0.44911	\|						93.71207	\|								196.18596	\|												...									
348*	1	0.96226	\|																159.98894	\|																166.09627	$\|\|\|\|\|\|\|\|\|\|\mid$					
349	1	0.44911	\|							93.71207	\|								196.18596	\|												...								
350*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																												
351	0	0.57746	\|								115.62666	\|										193.03618	\|												...					
352*	1	0.57746	\|									134.47151	\|												...	225.49637	\|														
353*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\mid \ldots .$.	228.62377	\|																												
354*	1	0.57746	\|									.	134.47151	\|												...	225.49637	\|														
355	0	0.57746	\|								115.62666	\|									193.03618	\|												..						

356*	0	0.44911	\|							108.14792	\|										228.62377	\|																		
357	1	0.44911	\|							93.71207	\|								196.18596	\|												.									
358	0	0.57746	\|									.	115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|												...														
359*	1	0.57746	\|									134.47151	\|											...	225.49637	\|															
360*	1	0.57746	\|									134.47151	\|												..	225.49637	\|														
361*	1	0.57746	\|								134.47151	$\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	225.49637	\|																											
362*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																												
363*	1	0.57746	\|										134.47151	\|											...	225.49637	\|															
364	1	0.44911	\|							93.71207	$\|\|\|\|\|\|\|\mid$......	196.18596	\|												...																
365*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																
366	1	0.44911	\|						93.71207	\|							196.18596	\|												...										
367	1	0.44911	\|						93.71207	\|							196.18596	\|												...										
368*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																				
369	1	0.44911	\|						93.71207	\|							196.18596	\|												..										
370*	0	0.44911	\|						108.14792	\|										228.62377	\|																			
371*	1	0.57746	\|									134.47151	\|												..	225.49637	\|														
372*	1	0.57746	\|									134.47151	\|											...	225.49637	\|															
373*	1	0.57746	\|									134.47151	$\|\|\|\|\|\|\|\|\|\|\|\mid 1 .$.	225.49637	\|																										
374	1	0.44911	\|								93.71207	\|								196.18596	\|																				
375*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																
376*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	228.62377	\|																												
377*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																				
378*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
379	1	0.44911	\|							.	93.71207	\|								196.18596	\|												...								
380	1	0.44911	\|						..	93.71207	\|							196.18596	\|		...																				
381	0	0.96226	\|															56.75007	\|				58.81234	\|																
382*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																
383*	0	0.44911	\|							108.14792	\|										228.62377	\|																		
384*	1	0.57746	\|									134.47151	\|												...	225.49637	\|														

NCSS 12.0.4
5/17/2023 1:26:51 PM

Logistic Regression Report

Dataset	\ldots..INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																			
385*	1	0.57746	\|								...	134.47151	\|											...	225.49637	\|														.	
386	0	0.57746	\|									.	115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|												..													
387	0	0.57746	$\|\|\|\|\|\|\|\|\mid$..	115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . . .$.	193.03618	\|												..																						
388	0	0.57746	$\|\|\|\|\|\|\|\|\mid$.....	115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|												..																						
389*	0	0.44911	\|						108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																												
390	0	0.57746	\|								115.62666	$\|\|\|\|\|\|\|\|\|\mid$....	193.03618	\|												..														
391*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																											
392*	0	0.44911	\|								108.14792	\|											228.62377	\|																
393	1	0.44911	\|						93.71207	\|								196.18596	\|												..								
394*	1	0.57746	\|								134.47151	\|												...	225.49637	\|														
395	0	0.57746	\|								115.62666	\|										193.03618	\|												..				
396	1	0.44911	\|								93.71207	\|								196.18596	\|												..							
397*	1	0.57746	\|								134.47151	\|											...	225.49637	\|															

398*	0	0.44911	\|								108.14792	\|									..	228.62377	\|																							
399	0	0.57746	\|								115.62666	\|									193.03618	\|											...											
400	1	0.44911	\|						...	93.71207	\|							196.18596	\|												...														
401	0	0.57746	\|								...	115.62666	\|									193.03618	\|											...											
402	0	0.96226	\|																56.75007	\|				58.81234																					
403	0	0.57746	\|									115.62666	\|									193.03618	\|											...										
404*	0	0.44911	\|								108.14792	\|									.	228.62377	\|																							
405*	1	0.96226	\|																159.98894	\|															166.09627	\|									
406*	0	0.44911	\|							108.14792	\|									228.62377	\|																							
407	1	0.44911	\|						93.71207	\|							196.18596	\|											...															
408*	0	0.44911	\|	i	l		108.14792	\|i								228.62377	\|I	I																										
409	0	0.57746	\|								115.62666	\|									193.03618	\|											...											
410*	1	0.57746	\|								134.47151	\|												...	225.49637	\|														.					
411	0	0.57746	\|								115.62666	\|									193.03618	\|												...										
412	0	0.57746	\|									115.62666	\|									193.03618	\|												...									
413*	0	0.44911	\|							108.14792	\|										228.62377	\|																						
414	0	0.57746	\|	I							115.62666	\|										193.03618	\|												...									
415	0	0.96226	\|																56.75007	\|					58.81234																				
416	1	0.44911	\|								93.71207	\|							196.18596	\|											...														
417	1	0.44911	\|								93.71207	\|							.	196.18596	\|											...														
418	0	0.57746	\|									115.62666	\|									193.03618	\|												...									
419	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
420	1	0.44911	\|						93.71207	\|	l					196.18596	\|											...																
421	0	0.57746	\|									115.62666	\|									193.03618	\|												...									
422	0	0.96226	\|																56.75007	\|				58.81234																					
423	1	0.44911	\|						...	93.71207	\|							196.18596	\|											...															
424	1	0.44911	\|							.	93.71207	\|							196.18596	\|												...													
425	1	0.44911	\|						...	93.71207	\|							196.18596	\|											...															
426*	0	0.44911	\|						108.14792	\|								228.62377	\|																									
427*	0	0.44911	\|						.	108.14792	\|									228.62377	\|																								
428	1	0.44911	\|							.	93.71207	\|							196.18596	\|											...														
429	0	0.96226	\|																56.75007	\|				58.81234																					
430	0	0.96226	\|																56.75007	\|				58.81234																					
431*	0	0.44911	I\|IIII		108.14792	\|									228.62377	\|																													
432	0	0.57746	\|								115.62666	\|									193.03618	\|											...											

NCSS 12.0.4
5/17/2023 1:26:51 PM
44

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																
433	0	0.57746	\|								115.62666	\|									193.03618	\|											...			
434*	0	0.44911	\|						108.14792	\|										228.62377	\|															
435*	0	0.44911	\|						108.14792	\|										228.62377	\|															
436	0	0.57746	\|								115.62666	\|									-...	193.03618	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.														
437	0	0.57746	\|								115.62666	\|									193.03618	\|											...			
438	0	0.96226	\|															56.75007	\|					58.81234	\|	1.											
439*	0	0.44911	\|						108.14792	\|									228.62377	\|																

440*	0	0.44911	\|								108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																										
441	0	0.57746	$\|\|\|\|\|\|\|\|\|\mid . . .$.	115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|																																	
442*	0	0.44911	\|								108.14792	\|										228.62377	\|																
443	0	0.57746	\|								\ldots...	115.62666	\|									193.03618	\|												...				
444*	0	0.44911	\|							108.14792	\|										228.62377	\|																	
445	0	0.57746	\|									.	115.62666	\|									193.03618	\|												...			
446*	0	0.44911	\|							108.14792	\|									228.62377	\|																	
447*	1	0.57746	\|								...	134.47151	\|											...	225.49637	\|														
448*	1	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.	134.47151	\|												...	225.49637	\|																					
449*	1	0.57746	\|									134.47151	\|											...	225.49637	\|														
450*	0	0.44911	\|						108.14792	\|									228.62377	\|																		
451	1	0.44911	\|						-....	93.71207	\|							196.18596	\|												...								
452	1	0.44911	\|							.	93.71207	\|								196.18596	\|												...						
453	0	0.57746	\|								.	115.62666	\|									193.03618	\|												..				
454*	0	0.44911	$\|\|\|\|\|\|\mid$..	108.14792	\|										228.62377	\|																							
455	0	0.57746	\|									115.62666	\|									-...	193.03618	\|												...			
456	0	0.57746	\|									115.62666	\|										193.03618	\|												...		
457	0	0.57746	\|									115.62666	\|									193.03618	\|												...			
458*	0	0.44911	\|							108.14792	\|									-...	228.62377	\|																		
459	1	0.44911	\|								93.71207	\|							196.18596	\|												..							
460	0	0.57746	\|								\ldots...	115.62666	\|									193.03618	\|												...				

NCSS 12.0.4

Logistic Regression Report

Dataset ...INCSSmsexport.NCSS

Y (Ref Value) validvote(0)
Frequency commonpostweight
Diagnostic Plots

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Autosave Inactive
Variables, Model Tab
-- Variables

```
Y: validvote
    Reference Value:
    O
Numeric X's:
black, otherrace
Categorical X's:
<Empty>
Frequencies: commonpostweight
Validation Filter:
<Empty>
```

-- Regression Model

Terms:
 Remove Intercept

1-Way
Unchecked
.. Prior Y-Value Probabilities (Changes Intercept and Predicted Values)
Priors:
Equal across Y Values

Subset Selection Tab

-- Select the Best Subset from the X's
Search for the Best Subset from the X's
Unchecked
Iteration Tab
-- Iteration Options

20
Iteration Termination:
0.000001

Reports Tab
-- Select Reports
.. Summaries

Run Summary	Checked
Y Variable Summary	Checked

.. Subset Selection

Subset Summary	Checked
Subset Detail	Checked

.. Estimation

Coefficient Significance Tests	Checked
Coefficient Confidence Limits	Checked
Odds Ratios	Checked
Estimated Model (Reading Form)	Checked
Estimated Model (Transformation Form)	Checked

.. Goodness-of-Fit
Analysis of Deviance \quad Checked

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

- Classification

Classification Matrix	Checked
Validation Matrix	Checked
ROC Report	Checked

- Row-by-Row Lists

Row Classification Report:	None
Row Classification Probs Report:	None
Simple Residuals Report:	None
Residuals	Checked
Dfetas	Checked
Influence Diagnostics	Checked
Residual Diagnostics	Checked

Report Options Tab

-- Confidence Levels
Confidence Level:
95
-- Variable and Value Labels

Variable Names:	Names
Value Labels:	Data Values
Stagger label and output if label length is \geq	15

-- Decimal Places
Precision:
Single
Probability: 5
Beta (Coefficients): 5
SE(Beta): 5
Z: 3
Log Likelihood: 5
Odds Ratio: 5
DFBeta: 5
Coefficients in Reading Form Model: 2

Plots Tab

-- Select Plots

Y vs X	Checked
ROC Curves (Combined)	Checked
ROC Curve (Separate)	Checked

Residuals vs X	Checked	
Skip Reference Value	Checked	
Deviance Residuals vs X	Checked	
Pearson Residuals vs X	Checked	
Pr (Correct) vs Cutoff	Checked	
-- ROC Curves and Prob(Correct) vs Cutoff Plot Options\qquad		
Number Cutoffs:	29	
NCSS 12.0.4		5/17/2023 1:26:51 PM
Logistic Regression Report		
Dataset ...INCSSmsexport.NCSS		
Y (Ref Value) validvote(0)		
Frequency commonpostweig		
Procedure Input Settings (Continued)		
Storage Tab		
-- Data Storage Op		
Storage Option:	Do not stor	

Appendix B

There are three possible ways to measure turnout in the 2020 CES using the validation variables. Two use only the "CL_2020gvm" vote validation variable while the third uses this variable in conjunction with self-reported registration (votereg_post) and self-reported turnout (CC20_401).

1. Un-matched as non-voters. The first specification defines voters as respondents with a validated voting record no matter their mode of participation, and defines nonvoters as both matched non-voters and non-matched respondents. This specification retains the integrity of the full CES sample, no missing values are created. The justification for this approach is the fact that the most common reason that Catalist will not have a record for an individual is because that individual is not registered to vote. Indeed, rates of self-reported non-registration and nonvoting are much higher among un-matched respondents than among those for whom there is a match.
2. Only matched non-voters as non-voters. The second specification defines nonvoters as only matched non-voters. This specification reduces the CES sample and results in validated turnout estimates that are larger than those in the first specification. However, this specification increases the level of certainty in the identification of non-voters in the CES, because there could possibly be actual voters among nonmatched respondents.
3. Matched non-voters and self-reported non-voters as non-voters. The third specification defines non-voters as (1) matched non-voters, (2) non-matched respondents who reported not being registered to vote in the "votereg_post" question, and (3) non-matched respondents who are self-reported non-voters in the "CC20_401" question. This definition excludes non-matched respondents who are self-reported voters (these individuals would be coded as missing). This definition assumes that self-reported non-voters are honest about their non-participation because there is no incentive to go against the democratic norm of participation.

Appendix C

NCSS 12.0.18
Two-Sample Comparison Report
Dataset
...IVALIDATE VOTED BLACK \& WHITE T TEST.NCSS
Confidence Intervals of Means

					95.0\% C. I. of $\boldsymbol{\mu}$	
			Standard	Standard	Lower	Upper
Group	\mathbf{N}	Mean	Deviation	Error	Limit	Limit
1	121	0.049	0.218	0.01981818	0.009761379	0.08823862
2	61	0.1475	0.357	0.04570917	0.05606806	0.2389319

Two-Sided Confidence Interval for $\boldsymbol{\mu 1}$ - $\boldsymbol{\mu} \mathbf{2}$

							95.0% C. I. of $\mu 1-\mu 2$	
Upper								

Equal-Variance T-Test

| Alternative | Mean
 Hypothesis
 Difference
 $\mu 1-\mu 2>0$ | Standard | Error of
 Difference | T-Statistic | d.f. | Prob
 Level |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Reject H0 |
| :--- |
| at $\alpha=$ |

Aspin-Welch Unequal-Variance T-Test

Alternative Hypothesis 0.050	Mean Difference	Standard Error of Difference	T-Statistic	d.f.	Prob Level	Reject H0 at $\alpha=$
0	-0.0985	0.04982056	-1.9771	83.21	0.97433	No

Procedure Input Settings
Autosave Inactive
Data Tab
--- Group Summary Values -----------------------------------
Group 1 Sample Size:

Group 1 Mean:	.049
Group 1 Standard Deviation:	.218
Group 2 Sample Size:	61
Group 2 Mean:	.1475
Group 2 Standard Deviation:	.357
Reports Tab	
-- Confidence Intervals ---	
Confidence Level:	95
Confidence Intervals of Each Group Mean	Checked Confidence Interval of $\mu 1-\mu 2$ Limits:
Confidence Intervals of Each Group Standard Deviation	Twne-Sided Confidence Interval of $\sigma 1 / \sigma 2$

Two-Sample Comparison Report

Dataset ...IVALIDATE VOTED BLACK \& WHITE T TEST.NCSS

Procedure Input Settings (Continued)

Reports Tab (Continued)

-- Tests

Alpha:	0.05
H0: $\mu 1-\mu 2=$	0.0
Ha:	$\mu 1-\mu 2>\mathrm{H} 0$ Value (one-sided)

.. Parametric

Equal-Variance T-Test	Checked
Unequal-Variance T-Test	Checked
Z-Test	Unchecked
Equivalence Test	Unchecked
Power Report for Equal-Variance T-Test	Unchecked
Power Report for Unequal-Variance T-Test	Unchecked

. Assumptions

```
Variance-Ratio Test Unchecked
```

-- Decimal Places

Means, Differences, and C.I. Limits:
Standard Deviations and Standard Errors:
P-Values and Powers:
Test Statistics:

Auto (Up to 7)
Auto (Up to 7)
5
4

THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF MISSISSIPPI GREENVILLE DIVISION

DYAMONE WHITE; DERRICK
SIMMONS; TY PINKINS;
CONSTANCE OLIVIA SLAUGHTER
HARVEY-BURWELL

PLAINTIFFS

VS.
CIVIL ACTION NO. 4:22-cv-00062-SA-JMV

STATE BOARD OF ELECTION
COMMISSIONERS; TATE REEVES
in his official capacity as Governor of
Mississippi; LYNN FITCH in her
official capacity as Attorney General of
Mississippi; MICHAEL WATSON in
his official capacity as Secretary of
State of Mississippi

DEFENDANTS

DECLARATION OF DAVID A. SWANSON, Ph.D.

I, David A. Swanson, Ph.D., do hereby declare as follows:

1. My name is David A. Swanson. I am an adult resident citizen of Whatcom County, Washington. I have personal knowledge of the facts and matters set forth herein and am otherwise fully competent to offer the testimony hereafter stated.
2. I was retained by Defendants to analyze a report submitted by Plaintiffs' expert Dr. Traci Burch (120206_Dr. Burch Rebuttal Report.Final.Signed(2721085.100)) in this litigation. I was asked to check the accuracy of her use of data in supporting her opinions and, if necessary, to collect and examine data tending to support opinions to the contrary.
3. My qualifications to offer the opinions presented in my report and in this declaration are stated in $\boldsymbol{9} \boldsymbol{T l} 1$ 1-11 of my report.

As I discuss in detail in this report, I find, in summary, that Dr. Burch's Rebuttal Report contains major errors. These errors, combined with several critical oversights, render her opinion invalid.
4. My observations of Dr. Burch's work are that she:
(1) claims that the Current Population Survey (CPS) is unreliable, ${ }^{1}$ therefore causing her to turn to a new data set, The "Cooperative Election Survey" (CES) for "validated voters." However, the CES is itself linked back to the CPS to establish weights for "validated voters," a fact which she does not acknowledge;
(2) claims on the basis of an extremely small sample that the CES data showed that 74% of the White Mississippi respondents who said they voted actually did so, while 57% of the Black Mississippi respondents did so.
(3) uses a weighting scheme in her "logistic regression" analyses that is not recommended by the authors of the CES study and compounding this failure by declaring that there were "statistically significant" coefficients in her two sample-based logistic regression models, both of which, in fact, turn out to be not statistically significant when the recommended weighting scheme is used. That is, Dr. Burch fails to create logistic regression models from which she can make inferences from the CES samples to the populations in question;
(4) incorrectly identifies the counties in Mississippi Supreme Court District 1 in her "Ecological Inference" Model of District 1 by erroneously excluding Bolivar County and erroneously including Adams County; and
(5) compares White voters to Non-White Voters in her two Ecological Inference models, one for District 1 and the other for the state as a whole, when, in fact the question is in regard to White Voters and Black Voters.
5. Because of these and other errors and oversights I discuss in the report that follows, I find Dr. Burch has no valid opinion regarding White voters relative to Black Voters both in MS Supreme Court District 1 and in Mississippi as a whole. As such, her "findings" do not rebut my conclusion or change my opinion that Black Mississippians are able to participate effectively in the political process in MS Supreme Court District 1 and in the state as a whole.

[^56]6. Next, I examine the background of Dr. Burch's original expert report and the contents of her supplemental report that lead to my conclusions. At page 10 of her initial expert report, Dr. Burch offered the following opinion:
"Black people in Mississippi have had less access to quality education and therefore have lower educational attainment for the reasons discussed in this section; this lower educational attainment leads to lower voter turnout."

The data supporting this opinion was her calculation on page 10 of her expert report that:
> " 56.1% of white Mississippi citizens voted in the 2020 general election, compared with 53.0% of Black Mississippi citizens."
7. Figure 4, found on page 10 of Dr. Burch's expert report, shows that the calculation supporting this opinion relied upon the 2020 Current Population Survey ("CPS") Voting Supplement, official data collected by the United States Census Bureau. In conducting a "quality control" assessment of this calculation by Dr. Burch, I first examined historical CPS data provided by the Census Bureau and found, as stated in $\mathbb{1} 128$ of my expert report, that Black voter turnout exceeded White voter turnout in Mississippi every year since 2012. Moreover, as stated in 『 137 of my expert report, I found that the official 2020 CPS data claimed to have been used by Dr. Burch in generating her calculation contradicted the opinion she formed from this calculation. Instead of showing that 2020 voter turnout by White Mississippians exceeded the 2020 voter turnout by Black Mississippians, it showed that the turnout by the latter exceeded the turnout by the former.
8. As stated in ब 149 of my expert report, I found that in using the official 2020 CPS data to come to her opinion, Dr. Burch neglected to use the correct age filters so that only those 18 years and over who are eligible to vote would be included in her calculations. These errors led, in turn, to her erroneous opinion that White voter turnout was higher than Black voter turnout in Mississippi. When the correct age filters are applied, the same CPS data used by Dr. Burch show that Black voter turnout is higher than White voter turnout in Mississippi, which contradicts not only the opinion found in her expert report, but also to the adherence of this erroneous opinion found in her rebuttal.
9. In a further effort to substantiate my finding from the CPS that Black voter turnout exceeds White voter turnout in Mississippi (and has for some time) while simultaneously examining Dr. Burch's opinion that an "overall gap in turnout between Black and white Mississippians exists," also found on page 10 of her expert report, I examined a second set of data. The Social Science Research Center at Mississippi State University has conducted annual statewide surveys of registration and voting frequency from 2015 to 2021. In ब 148-151 of my report, I determined that these additional data also indicated that Black voter turnout generally exceeds White voter turnout in Mississippi.
10. In response to my findings, Dr. Burch submitted a rebuttal report (120206_Dr. Burch Rebuttal Report.Final.Signed(2721085.100)) on February 6, 2023. She admits at page 3 of this rebuttal report that, as I pointed out in my declaration of March 8, 2023, she miscalculated White and Black voter turnout in Mississippi's 2020 general election because she failed to use the correct age filters in her analysis. The CPS educational question is only asked if persons aged 15 years and over and she erroneously included those under 18 in the portion of her analysis related to educational attainment (i.e., she included those aged 15,16 , and 17 , who are not eligible to vote). In providing her estimate of overall voter turnout, Dr. Burch compounds this error by including even more of those who are not eligible to vote, namely all of those under the age of 18 , to include infants. Overlooking her errors for the moment, I find that, in spite of the fact that she relied on CPS data in her in her expert report, she now states at page 4 of her rebuttal that she has now determined that "turnout estimates in the CPS are unreliable." This statement repudiates not only her own expert report, but disregards the fact that the CPS represents a nationally recognized source of record for statistics on voter registration and voter turnout on which, like Dr. Burch, I relied in my expert report.
11. Dr. Burch reveals on page 4 of her rebuttal report that she now relies upon for the first time the "2020 Cooperative Election Study" (CES) as a remedial dataset. This national dataset has been available and has been used by experts in the field for many years. This data set has a number of issues in regard to its Mississippi sample. First, the 2020 CPS data that Dr. Burch originally relied upon has 2,548 total respondents, and 1,657 voting-age respondents. By comparison, the CES that Dr. Burch turns to remediate the CPS has 462 voting-age respondents. Generally speaking, when a survey sample is being used to analyze extremely small populations, the largest sample possible is most beneficial. What Dr. Burch asserts is that while the CPS has a larger sample size, that larger sample in its entirety is flawed, it cannot be relied upon, and another source with $1 / 4$ the sample size should be the appropriate source of record for measuring voter turnout in Mississippi.
12. An issue that frequently stands out in survey samples that are weighted to represent a population (such as the CES using 462 people to represent nearly 2.3 million voting age population in Mississippi) $)^{2}$ is that more rare populations that have unique combinations of characteristics tend to have high weights that carry the risk of significantly and disproportionately impacting statistics using those respondents - and impacting the interpretation and conclusions based on them.

[^57]13. There are glaring examples of this problem in the CES. One feature that stands out among its many issues is that the answers for four Black respondents - who count as 51 respondents in reporting survey results when they are weighted using the "commonPostweight." ${ }^{3}$ Because the sum of the CommonPostweights in the survey is 419 - that means those four respondents are actually representing 12% of Mississippi's total sample and 29% of its Black sample. While even one of those respondents could end up changing the results of a table if it found its way into a given analytic cell - the consequences of all four of those respondents being grouped together could be disastrously misleading. With these four respondents forming a potentially influential set of cases in the small subsample she uses in her analysis, Dr. Burch is clearly ignoring the warning found in the CES Study Guide (Ansolabehere, Schaffner, and Luks, 2021: 23): "... we advise caution when analyzing very small subsamples as random measurement error may lead to faulty inferences about analyzing very small subpopulations."
14. In her rebuttal report, Dr. Burch touts the value of the CES in enabling the researcher to look beyond self-reported voting behavior, on page 4-5:

Because much of the bias in turnout estimates based on the CPS has to do with differential overreporting of voting by race, 11 it is necessary to examine alternative sources that do not depend on self-reporting of turnout to estimate turnout by race in Mississippi. First, I examine the 2020 Cooperative Election Study (CES), which contains a sample of 462. Mississippi adults (unweighted). The CES, although it is a survey, independently validates voter registration and turnout for respondents by attempting to match respondents to a database of registered voters maintained by Catalist, a corporation that maintains a national database of voters. Catalist updates their information on voter registration and history with data directly from states. In my analysis, I use the measure of validated voter turnout rather than self-reported voter turnout to estimate racial gaps in turnout, distinguishing this survey from the unvalidated selfreported turnout from CPS or Mississippi State University analyzed by Dr. Swanson.
15. Based on Dr. Burch's advocacy of the benefits of the CES, and her discussion of how it enables validation of voters by matching to Catalist, and the direction by the authors of the CES:
"We recommend the use of "vvweight" or "vvweight_post" any time researchers wish to characterize the opinions, behaviors, or traits of voters or registered voters. The "vv" stands for

[^58]"voter validated" and these weights are missing for all respondents who were not validated as (active) registered voters."

I anticipated an analysis of the CES leveraging the powerful technique of matching voters who said they voted to those who actually voted.
16. On page 6 Burch observes:

CES allows us to examine overreporting of voting. Comparing selfreported voter turnout to validated voter turnout shows substantial overreporting of voting. The CES team was able to validate in Catalist that 74% of the White Mississippi respondents who said they voted actually did so, but were only able to validate that 57% of the Black Mississippi respondents who said they voted did so. Thus, as the CES shows, corroborating the recent work of Ansolabehere et al. discussed supra, differential over-reporting of voter turnout by race is an important phenomenon that affects estimates of voter turnout in Mississippi and demonstrates the problems with relying only on self-reported voting to estimate racial differences in turnout. ${ }^{4}$
17. In the footnote of this discussion, Dr. Burch states: "For this analysis, which includes reported voter turnout, I weighted the sample by the variable "commonpostweight." After writing at length about the power that CES has in validating voters and reading the CES technical documentation instructing users to use "vvweight or vvweight post any time researchers wish to characterize the opinions behavior or traits of voters or registered voters" (see page 16) it is inexplicable why Dr. Burch would instead use a weight (commonpostweight) that the CES technical documentation says not to use for the analysis Dr. Burch performs. Next, I perform a statistical investigation in an effort to understand the effect of her choice.
18. I attempted to replicate Dr. Burch's results (See Appendix B for a discussion of approaches to validating voters from the CES technical documentation). Dr. Burch appears to use the third and most rigorous method, just without using the correct weights. In Figure 1.1 I show the self-identification variable "cc20_401."

[^59]Figure 1.1: CC20_401 Self-reported voting variable
Voted in 2020
Which of the following statements best describes you?
CC20_401

Voted in 2020	N
I did not vote in the election this November.	1317
I thought about voting this time-but didn't.	620
I usually vote, but didn't this time.	432
I attempted to vote but did not or could not.	433
I definitely voted in the November 2020 General Election.	45660
N	48462

19. Next, in Figure 1.2 I show the CL_2020GVM variable - which is the Catalist variable showing whether the respondent actually voted. A combination of "I definitely voted" from Figure 1.1 and any response to Figure 1.2 would be the number of validated voters, divided by everyone who said they definitely voted.

Figure 1.2 CL_2020GVM Self-reported voting variable
CL_2020gvm - How respondent voted in 2020 general election (if missing, respondent did not have a record of voting)

1. absentee
2. earlyVote
3. mail
4. polling
5. unknown
6. In Table 1.1, for white voters, I show the CC20_401 (self-reported voting) variable at the top, for those who "definitely voted". On the left of Table 1.1, I show the responses for CL_2020gvm. Associated with the code of " 5 " under the first column, we can see in the second column of Table 1.1 that there were 127 (weighted) white respondents (135 unweighted) who reported they voted and were validated (we just don't know in what manner they voted). Continuing on to the "NA" code in the first column, we can see in the second column that there were 45 (weighted) white respondents (49 unweighted) who reported that they voted but were not validated. In this case, the 127 weighted White voters who were validated divided by 172 , the total number of weighted White respondents who stated that they voted yields an estimate of 73.6% white- matching Dr. Burch's estimate. The problem here is that this estimate is using the incorrect "commonpostweight".

Table 1.1 Calculation of Validated white Voters Using "Commonpostweight"

inputstate race	28
	White
5	Def Voted
NA	127
Grand Total	45
Voted and Validated	172

21. Similarly in Table 1.2, for Black voters, I show the CC20_401 (self-reported voting) variable at the top, for those who "definitely voted". On the left of Table 1.2, I show the responses for CL_2020gvm. Associated with the code " 5 " under the first column, we can see in the second column of Table 1.2, that there are 81 (weighted) Black respondents (52 unweighted) who reported they voted and were validated (we just don't know in what manner they voted). Continuing on to the "NA" code in the first column, we can see in the second column that there were 61 Black respondents (35 unweighted) who reported they voted but were not validated. In this case, the 81 weighted Black voters divided by the 143 weighted Black respondents who stated they voted yields an estimate of 57.1% - matching Dr. Burch's estimate. The problem here again is that this estimate is generated using the incorrect "commonpostweight".

Table 1.2 Calculation of Validated Black Voters Using "Commonpostweight"

inputstate race	28
	Black
5	Def Voted
NA	81
Grand Total	61
Voted and Validated	143

22. Using the incorrect weighting scheme,"commonpostweight," it appears that: (1) 73.6 percent of Whites who reported voting actually did vote; and (2) 57.1 percent of Blacks who reported voting actually did vote. However, a different story emerges when the correct weighting system is used.

Table 1.3 Calculation of Validated white Voters Using the Correct Weighting Scheme, "vvweight_post"

inputstate race	28 White
	Def Voted
5	115
NA	6
Grand Total	121
Voted and Validated	95.1%

23. On the left of Table 1.3, I show the responses for CL_2020gvm. Associated with the code " 5 " in the first column of Table 1.3 we can see in the second column that there are 115 (weighted) White respondents (134 unweighted) who reported they voted and were validated. Associated with the "NA" in the first column, we can see in the second column that there are 6 (weighted) White respondents (6 unweighted) who reported they voted but were not validated. In this case, the 115 weighted White "validated voters" divided by the 121 weighted White respondents who reported they voted yields an estimate of 95.1% "Whites who voted and were validated."

Table 1.4 Calculation of Validated Black Voters Using the Correct Weighting Scheme, "vvweight_post"

inputstate	28	
race	Black	7
	Def Voted	
5	70	
NA	15	
Grand Total	85	
Voted and Validated	82.8%	

24. On the left of Table 1.4, I show the responses for CL_2020gvm. Associated with the code " 5 " in the first column of Table 1.4, we can see that in the second column that there are 70 (weighted) Black respondents (52 unweighted) who reported they voted and were validated. Continuing on to the "NA" in the first Column, we can see in the second column that there are 15 (weighted) Black respondents (9 unweighted) who reported they voted but were not validated. In this case, the 70 weighted Black "validated voters" divided by the 85 weighted Black respondents who said they voted yields an estimate of 82.8% "Blacks who voted and were validated."
25. Had she used the correct weighting scheme, "vvweight_post," Dr. Burch would have found that 95.1% of White respondents and 82.8% of Black respondents correctly reported that they voted. While we can see that this less of a difference than found using the incorrect weighting scheme used by Dr. Burch (12.3 \% vs. 16.5%), it is here that we begin to see the strain of the CES small sample size. Using the vvweight_post, there are only 6 nonvalidated white voters (both weighted and unweighted), and only 9 non-validated Black
voters (15 weighted). That is - the numerator for estimating rates of validated voting from the CES for Mississippi are 6 white respondents (out of 140, representing approximately 1.3 million white, NH VAP from the 2020 Census) and 9 Black respondents (out of 61 , representing approximately 800,000 any part Black VAP from the 2020 Census). This difference of 12.3% between validated Black and white voters (both based on single-digit sample sizes) is not statistically significant, per the results of an Aspin-Welch Unequal Variance, Two sample T-test I ran with $\alpha=.05$, which yielded $\mathrm{p}=0.9743$ (NCSS, https://www.ncss.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Two-Sample_T-
Test.pdf). See Appendix C. The irony is that Dr. Burch repeatedly touts the strength of a survey-based voter validation system that in the end she fails both to understand and use correctly.
26. As we can now see, Dr. Burch's "finding" regarding the validation of White and Black voters in Mississippi is inaccurate for two reasons. First, she used the incorrect weights. Second, even had she used the correct weights, she would have found there was no statistically significant difference between the validated White and Black voters had she conducted an appropriate statistical test. As you will see, in the following section, I continue to examine her use of incorrect weights and failing to take into account sample size when I examine the logistic regression models constructed by Dr. Burch.
27. In combination with Dr. Burch's statement at page 4 of her rebuttal that "turnout estimates in the CPS are unreliable" it is, indeed, ironic that the "Cooperative Election Survey," the data set to which she turned because, unlike the CPS, it contains "validated voting results," the CES (Ansolabehere, Schaffner, and Luks, 2021: 16) weights these validated voters using the CPS:
> "A second set of weights was constructed after matching the survey to Catalist. Respondents for whom there was a validated voter registration record were weighted using the same approach as described above, but this time to ensure that those individuals were representative of registered voters (according to the 2020 CPS)."
28. Thus, in her use of CES data because it has "validated voters," Dr. Burch's analysis is again tied to the CPS, a data set she declared has turnout estimates that are unreliable. In conjunction with this new data set she introduces two new analytic methods, logistic regression and ecological inference. I now turn to an examination of her logistic regression analysis.

Burch's Logistic Regression model(s)

29. I find a number of problems with the discussion of the logistic model(s) Dr. Burch constructed, including but not limited to, her failure to:
(1) fully document the input data from the Current Election Study (CES) and not making it clear that she used only 460 of the 462 cases for Mississippi;
(2) adequately describe the characteristics of her logistic model(s) in that, among other omissions, she does not describe the "fit" of her model to the data and whether or not any of the assumptions underlying a logistic regression model were violated;
(3) identify the statistical package she used to generate the logistic model(s), which turned out to be SPSS;
(4) include in her rebuttal the fact that there are exceptional weights in the CES Mississippi sample, which places a lot of explanatory burden on only a few subjects such that if these subjects were eliminated, the characteristics of her logistic model(s) would change substantially (See paragraph 10);
(5) report that "Model 1 " only correctly classifies 57.5 percent of the voters found in the Mississippi CES sample into the correct category, which is not much better than simply flipping a fair coin for which we would expect to be correct in calling "heads" 50 percent of the time (see Appendix A); and
(6) report that she used a weighting scheme not recommended by the authors of the CES study guide for the type of analysis she conducted and compounding that failure by declaring that there were "statistically significant" coefficients in her sample-based logistic regression model labeled as "Model 1" (shown in Table 2 of her rebuttal) and that if the recommended weighting scheme had been used, that there are no "statistically significant" coefficients in "Model 1."
30. This final and $6^{\text {th }}$ failure essentially renders moot the other problems with her logistic model(s) and inconsequential the discussion she provides of them in her rebuttal because "Model 1" cannot be used to infer from the incorrectly weighted sample data to the "universe" that the sample represents.
31. Before turning to the discussion of the incorrect weights used by Dr. Burch in her logistic regression models, I provide a simple description of weighting for purposes of clarification and understanding.
32. In many sample surveys, the proportion of respondents in the survey with a given characteristic does not match the same proportion found in the entire population of interest. When this occurs, "weighting" is used to make the survey results consistent with what is expected for the entire population (Kish, 1965).
33. As an illustration, I adapt a discussion of gender-based weights from Swanson (1997). In this situation, it was known the frequency of females in the sample for a given community
is not equal to its frequency in the population. Using Amargosa Valley, Nevada, as an illustration, 61.5% (120) of the 195 adults sampled in this community were female, but they only constitute 49% (221) of the total population (452). This "over-representation" of females (and "under-representation" of males) in the sample survey needs to be taken into account in order to correctly infer from the sample to the population as a whole. Using the population and sample data, the "weight" that will do this for females is found by multiplying the total sample (195) by the proportion of females in the population (.49) and dividing this quotient by the number of females in the sample (120), a process that yields $\left(195^{*} .49\right) / 120=0.796$, which can be rounded to 0.80 . For males, this process yields $\left(195^{*} .51\right) / 75=1.326$, which can be rounded to 1.3 .
34. These weights for females and males, respectively, would be applied to the survey respondents by gender to obtain results that would apply to the population as a whole. As a simple illustration, if the 120 females in the sample all answered "yes" to a question and the 75 males all answered "no," the sample would show that 61.5% answered "yes." In order to apply this to the population by taking into account the over-representation of females, we multiply .615 by 0.80 , which yields 0.49 . That is, 49% of the population of adults in Amargosa Valley, NV replied "yes" to this question.
35. The CES weighting scheme is much more complicated than the preceding example, but underneath all of the complications, it is simply trying to get the sample survey results to the level where they represent the population the sample is intended to represent.
36. Turning now, to the CES, in looking at which of four weighting schemes to use in analyzing data taken from the CES study, here are the recommendations as found in the CES Study Guide (Ansolabehere, Schaffner, and Luks, 2021: 16-17):
"Using Weights
Note that the 2020 CES Common Content includes weights for both the Pre-Election and Post Election waves of the study. The weights are constructed to ensure that the sample is representative of different populations either adult Americans or adult Americans who are registered to vote.

Variable name Respondent group Target population
commonweight All respondents Adults
commonpostweight Answered both waves Adults
vvweight Matched to validated registration record Registered adults
vvweight_post Answered both waves \& matched to registration record Registered adults
We recommend the use of "commonweight" any time researchers wish to characterize the opinions and behaviors of adult Americans. However, use "commonpostweight" when you wish to characterize the opinions and behaviors of adult Americans but you are using any items from the post-election wave of the questionnaire. We recommend the use of "vvweight" or "vvweight post" any time researchers wish to characterize the opinions, behaviors, or traits of voters or registered voters. The "vv" stands for "voter validated" and these
weights are missing for all respondents who were not validated as (active) registered voters. This approach differs from previous cycles when all respondents received a value for "vvweight" and those weights were not designed solely for use with voters or registered voters. If seeking to characterize the opinions, behaviors, or traits of voters, use "vvweight" or "vvweight_post" in conjunction with the vote validation variables."
37. Dr. Burch uses logistic regression to show that white subjects in the CES sample for Mississippi who report as having voted are more likely to be validated than Black subjects in the MS CES sample. In so doing, she uses the "commonweight," which as can be seen above in the excerpt is designed for characterizing the opinions and behaviors of adult Americans in general. However, she uses the "validation" variable in her logistic model, which according to the same excerpt, needs the "commonpostweight" because she is reaching across to the post-election wave, where the validation of "I voted" takes place. Thus, she has not used the weight recommended in the CES Study Guide (Ansolabehere, Schaffner, and Luks (2021: 16-17).
38. In using "commonweight," the incorrect weighting scheme for her analysis, Dr. Burch reports in Table 2 of her rebuttal that two of the three coefficients (including the "constant") in "Model 1" are statistically significant, where ${ }^{* * *}=\mathrm{P}<.001$, ${ }^{* *}=\mathrm{P}<.01$, and $*=\mathrm{P}<.05$. In displaying these " p values" she is indicating that she is using a hypothesis test to assess the validity of her model for the entire population that the sample represents (Swanson, 2012: 131-240).

Variable name	coefficient	p level
Black	-0.545	**
Other race	-1.246	
Constant	0.388	***

39. When using "commonpostweight," the recommended weight for going across into the postelection time period, the coefficients change in value and neither the Black variable nor the constant is statistically significant, a finding I made after replicating her logistic analysis with "commonweight," the "incorrect weight" and subsequently using "commonpostweight," the recommended weight for an analysis that reaches into the postelection period (See the Appendix for the NCSS output of these two models, with the replication of Burch's incorrectly weighted model in Appendix A and the logistic regression model that results when the correctly weighting scheme is used in Appendix B)

$\underline{\text { Variable name }}$	$\underline{l o e f f i c i e n t}$	\underline{p} level	
Black	-0.308		$(\mathrm{p}=.12289)$, not statistically significant because $\mathrm{p}>0.05$
Other race	-1.19123		$(\mathrm{p}=.12849)$, not statistically significant because $\mathrm{p}>0.05$
Constant	0.15301		$(\mathrm{p}=.08171)$, not statistically significant because $\mathrm{p}>0.05$

40. Essentially, when the recommended weights are used, one cannot statistically infer (which is what we need to do because the CES data are a sample) that Dr. Burch has constructed a logistic regression model that proves her point. That is, following the path she selected, which was to use hypothesis testing in regard to the model's coefficients, we cannot reject the null hypothesis that each of these three coefficients assembled from the sample data do not represent the corresponding coefficient that would be found if we had the entire voting age population data set to analyze. Thus, Dr. Burch has not constructed a valid logistic regression model that represents the entire voting age population in Mississippi.
41. It is important to note that a colleague of mine, L.M. Tedrow, a research associate at Western Washington University, confirmed the results I found using the NCSS statistical package by using the same package that Dr. Burch used, SPSS.

$\underline{\text { Variable name }}$	$\underline{\text { coefficient }}$		p level
Black	-0.308		$(\mathrm{p}=.12289)$, not statistically significant because $\mathrm{p}>0.05$
Other race	-1.19123		$(\mathrm{p}=.12849)$, not statistically significant because $\mathrm{p}>0.05$
Constant	0.15301		$(\mathrm{p}=.08171)$, not statistically significant because $\mathrm{p}>0.05$

Here is the confirmatory SPSS output provided by Mr. Tedrow.
Variables in the Equation

	B	S.E.	Wald	df	Sig.	$\operatorname{Exp}(B)$
Step 1 $^{\text {a }}$	Black	-.308	.200	2.380	1	.123
	otherrace -1.191	.784	2.311	1	.735	
	Constant .201	.131	2.334	1	.128	.304

a. Variable(s) entered on step 1: black, other race.
42. Dr. Burch's "findings" in regard to using logistic regression in conjunction with the CES data neither rebuts my conclusion nor changes my opinion concerning the ability of Black Mississippians to participate effectively in the political process. As I showed in my initial report: Black people vote at higher rates than White people.

The Ecological Inference Model for District 1

43. In constructing her Ecological Inference (EI) model of existing District 1, Dr. Burch erroneously included Adams County (a county in existing District 2) and erroneously excluded Bolivar Country (a county in existing District 1). Again, following my "quality control" protocol, I discovered this by examining the file I was provided that was represented by Plaintiffs as the file Dr. Burch used in her EI analysis of District 1 ("neweicentraldist for EI," a text document). In checking this file, I found that there were 32 block groups with the Adams County Code (28001.......) and zero block groups with the Bolivar County code (28011.......). There should have been 28 of the latter in this file, as is found in the file I was provided that was represented by Plaintiff as the file Dr. Burch used in her EI analysis of Mississippi as a whole ("dataforEI2," a text document).
44. In her Ecological Inference analysis she uses "non-white," not Black, as can be seen in Figure 4 on page 11 of her rebuttal report. So, she is now expressing an opinion about White voters relative to non-white voters, not an opinion about White voters relative to Black voters.
45. On page 10 of her rebuttal, Dr. Burch states that she places the Hispanic population (regardless of race) into the "nonwhite" category she employs in her EI analysis by using "...block group data on the citizen voting age population by race, distinguishing nonHispanic white population from the non-White population." In so doing, she places White Hispanics of voting age into her non-white category, along with Asian, American Indian and Alaskan Natives, and "other" Non-Black people of voting age. This action serves to further dilute Dr. Burch's ability to provide an opinion about White voters relative to Black voters in District 1.
46. Coupled with her error of excluding all of the 28 Bolivar County block groups from her EI analysis of District 1 and erroneously including all 32 of the Adams County block groups, the fact that she compares white voters to non-white votes, leads me to conclude that Dr. Burch has neither an opinion on District 1 (in terms of its correct definition) nor an opinion regarding White voters relative to Black Voters in District 1.
47. Dr. Burch's "findings" in regard to using the Ecological Inference Method in conjunction with the CES data applied to District 1 do not rebut my conclusion or change my opinion
that Black Mississippians are able to participate effectively in the political process. As I showed in my initial report, Blacks vote at higher rates than Whites in District 1.

The Ecological Inference (EI) Model for Mississippi as a Whole

48. As was the case for District 1, in her Ecological Inference analysis for Mississippi as a whole, Dr. Burch uses "non-white," not Black, as can be seen in Figure 4 on page 11 of her rebuttal report. So, she is now expressing an opinion about White voters relative to non-white voters not an opinion about White voters relative to Black voters. Moreover, as noted in \#21, she further diluted her ability to provide an opinion about White voters relative to Black voters because she placed Hispanics of any race into the non-white category, which for the state as a whole includes 29,061 White (alone and in combination with other races) Hispanics of voting age, along with Asian, American Indian and Alaskan Natives, and "other" Non-Black people of voting age. As a consequence of these actions, Dr. Burch has no opinion regarding White voters relative to Black Voters in Mississippi as a whole.
49. Dr. Burch's "findings" in regard to using the Ecological Inference Method in conjunction with the CES data relative to Mississippi as a whole do not rebut my conclusion or change my opinion that Black Mississippians are able to participate effectively in the political process. As I showed in my initial report: Blacks vote at higher rates than Whites in Mississippi as a whole.

In summary, I find that Dr. Burch's Rebuttal Report contains major and other errors that along with related oversights render invalid the opinions she presents in it, to include:
(1) claiming that the Current Population Survey (CPS) is unreliable, therefore causing her to turn to a new data set, The Cooperative Election Survey" (CES) for "validated voters." However, the CES is itself linked back to the CPS to establish weights for "validated voters," a fact of which she is either ignorant or ignores;
(2) Claiming on the basis of an extremely small sample that she incorrectly weighted that the CES data showed that 74% of the White Mississippi respondents who said they voted actually did so, while 57% of the Black Mississippi respondents did so.
(3) using a weighting scheme in her "logistic regression" analyses that is not recommended by the authors of the CES study and compounding this failure by declaring that there were "statistically significant" coefficients in her two sample-based logistic regression models, both of which, in fact, turn out to be not statistically significant when the recommended weighting scheme is
used. That is, Dr. Burch fails to create logistic regression models from which she can make inferences from the CES samples to the two populations in question;
(4) incorrectly identifying the counties in MS Supreme Court District 1 in her "Ecological Inference" Model of District 1 by erroneously excluding Bolivar County and erroneously including Adams County; and
(5) comparing White voters to Non-White Voters in her two Ecological Inference models, one for District 1 and the other for the state as a whole, when, in fact the question is in regard to White Voters and Black Voters.
50. Because of these and other errors and oversights, I find Dr. Burch has no valid opinion regarding White voters relative to Black Voters both in MS Supreme Court District 1 and in Mississippi as a whole. As such, her "findings" do not rebut my conclusion or change my opinion that Black Mississippians are able to participate effectively in the political process in MS Supreme Court District 1 and in the state as a whole.

Pursuant to 28 U.S.C. § 1746, I, David A. Swanson, Ph.D., hereby certify under penalty of perjury under the laws of the United States of America that the foregoing is true and correct to the best of my knowledge, information, and belief at the time of making this declaration.

Executed this the 15th day of September, 2023.

DAVID A. SWANSON, PH.D.

References

Ansolabehere, S., B. Schaffner, and S. Luks (2021). Guide to the 2020 Cooperative Election StudyData Release No. 21 (June).

Kish, L. 1965. Survey Sampling. New York: Wiley.
NCSS (no date). Logistic Regression. NCSS Statistical Software. (https://www.ncss.com/wpcontent/themes/ncss/pdf/Procedures/NCSS/Logistic Regression.pdf)

Swanson, D.A. (1997). The "Biosphere" Food Consumption Survey. Presented at the Nuclear Regulatory Commission/Department of Energy Total System Performance Assessment Technical Exchange. Las Vegas, NV.

APPENDIX

Appendix A. Logistic Regression Results when the incorrect weights are used.

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Run Summary

Item	Value	Item	Value
Y Variable	validvote	Rows Processed	460
Reference Value	0	Rows Used	460
Number of Y-Values	2	Rows for Validation	0
Frequency Variable	commonweight	Rows X's Missing	0
Numeric X Variables	2	Rows Freq Miss. or 0	0
Categorical X Variables	0	Rows Prediction Only	0
Final Log Likelihood	-358.43367	Unique Rows (Y and X's)	6
Model R2	0.83627	Sum of Frequencies	527.457094326484
Actual Convergence	$7.461232 \mathrm{E}-10$	Likelihood Iterations	4
Target Convergence	$1 \mathrm{E}-06$	Maximum Iterations	20
Model D.F.	3	Completion Status	Normal Completion
Priors	Equal		

Y Variable Summary

Y	Unique Rows	\mathbf{Y}	\mathbf{Y} Prior	\mathbf{R}^{2} (Y vs Pred. Probability)	Percent Correctly Classified
validvote	Count	Y and X's)	Proportion	0.50000	0.02252

Coefficient Significance Tests

Independent	Regression	Standard	Wald		Odds
Variable	Coefficient	Error	Z-Value	Wald	Ratio
X	b(i)	Sb(i)	H0: $\beta=0$	P-Value	$\operatorname{Exp}(\mathrm{b}(\mathrm{i})$)
Intercept	0.25268	0.07911	3.194	0.00140	1.28748
black	-0.54495	0.18019	-3.024	0.00249	0.57987
otherrace	-1.24551	0.64877	-1.920	0.05488	0.28779

Coefficient Confidence Intervals

Independent	Regression Coefficient	Standard Error	Lower 95\% Confidence	Upper 95\% Confidence	Odds Ratio

X	b(i)	$\mathbf{S b}(\mathbf{i})$	Limit	Limit	Exp(b(i))
Intercept	0.25268	0.07911	0.09764	0.40773	1.28748
black	-0.54495	0.18019	-0.89811	-0.19178	0.57987
otherrace	-1.24551	0.64877	-2.51708	0.02606	0.28779

NCSS 2020, v20.0.1

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Odds Ratios

Independent	Regression Coefficient	Odds Ratio Exp(b(i))	Lower 95\% Confidence Limit	Upper 95\% Confidence
Variable	0.25268	1.28748	1.10256	1.50340
X	-0.54495	0.57987	0.40734	0.82549
Intercept	-1.24551	0.28779	0.08070	1.02640

Analysis of Deviance

Term	DF	Increase From Model		
Omitted	2	728.81738	Deviance $($ Chi	
All	11.95004	P-Value		
black	1	726.08487	9.00254	
otherrace	1	720.96271	4.09538	0.00240
None(Model)	2	716.86734		

The Prob Level is for testing the significance of that term after considering all other terms.

Log Likelihood \& \mathbf{R}^{2}

Term(s)		Log	R^{2} of Remaining	Reduction From	Reduction From
Omitted	DF	Likelihood	Term(s)	Model R ${ }^{2}$	Saturated \mathbf{R}^{2}
All	1	-364.40869	0.00000		
black	1	-363.04243	0.19122	0.64505	0.80878
otherrace	1	-360.48136	0.54968	0.28660	0.45032
None(Model)	2	-358.43367	0.83627	0.00000	0.16373
None(Saturated)	6	-357.26388	1.00000		0.00000

	Estimated		
Actual	$\mathbf{0}$	$\mathbf{1}$	Total
$\mathbf{0}$	124.9911	120.9789	245.9699
$\mathbf{1}$	103.2388	178.2484	281.4872
Total	228.2298	299.2273	527.4571

Percent Correctly classified $=57.5 \%$

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																								
1	1	11.46233	\|													..	4.49750	\|																0.46074	\|						...					
2	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
3*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	3.86756	\|													...	0.58141	\|																									
4*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......										
5	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......											
6	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......											
7*	1	11.15826	\|												...	3.86756	\|											...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																
8	1	11.46233	\|														..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......										
9	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
10	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......											
11	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
12	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
13	1	11.46233	\|													.	4.49750	\|															0.46074	$\|\|\|\|\|\|\mid$.......												
14*	1	2.93353	\|		0.82207	\\|............	0.92572	\|																																					
15^{*}	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|															
16*	1	11.15826	\|												...	3.86756	\|												...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....															
17*	1	11.15826	\|												...	3.86756	\|											...	0.58141	\|															
18	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......											
19	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
20*	0	-13.00597	\|																	-4.34811	\|																	0.46074	\|						
21	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......											
22*	0	-13.00597	\|																-4.34811	\|															0.46074	\|									
23	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																
24	0	-9.64124	\|										...	-3.73948	\|											...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																		
25*	1	2.93353	\|		0.82207	\\|............	0.92572	\|																																					
26	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
27*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......											
28	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
29*	0	-13.00597	\|																-4.34811	\|																0.46074	$\|\|\|\|\|\|\mid$.......									
30*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......										
31	1	11.46233	\|													..	4.49750	\|																0.46074	\|										
32	1	11.46233	\|															..	4.49750	\|																		0.46074	\|						
33	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......											
34*	0	-13.00597	\|															-4.34811	\|														.	0.46074	\|										
35*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	\|												...	0.58141	\|																										
36*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......										
37	1	11.46233	\|												..	4.49750	\|															0.46074	\|												

38	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|													
39*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
40*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
41	1	11.46233	\|													.	4.49750	\|																0.46074	\|								
42	1	11.46233	\|													..	4.49750	\|																	0.46074	\|							..
43*	0	-13.00597	\|															-4.34811	\|														0.46074	\|								
44	0	-1.78567	\|	-0.79495	\|	.	0.92572	\|																																		
45	1	11.46233	\|													.	4.49750	\|															0.46074	$\|\|\|\|\|\|\mid$..									
46*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
47*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
48	1	11.46233	\|1壮	4.49750	\|																0.46074	\|							.														

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight
Residual Report	
(Continued)	

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																					
49	1	11.46233	\|													.	4.49750	\|															0.46074	\|								
50	1	11.46233	\|													.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
51	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	\|																				
52*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
53	1	11.46233	\|													..	4.49750	\|															0.46074	\|						\ldots.....			
54	0	-9.64124	\|										-3.73948	\|												...	0.58141	\|													
55*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
56	1	11.46233	\|													..	4.49750	\|																0.46074	\|						\ldots.....		
57	1	11.46233	\|														..	4.49750	\|																0.46074	\|						
58*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																							
59	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
60	1	11.46233	\|												..	4.49750	\|															0.46074	\|										
61*	1	2.93353	\|		0.82207	\|	0.92572	\|																																	
62*	0	-13.00597	\|															-4.34811	\|													.	0.46074	\|								
63	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	\|																				
64	0	-9.64124	\|											...	-3.73948	\|											...	0.58141	\|								-....						
65*	0	-13.00597	\|															-4.34811	\|														.	0.46074	\|							
66	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
67	1	11.46233	\|													..	4.49750	\|															0.46074	\|								
68	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
69	1	11.46233	\|													.	4.49750	\|																0.46074	\|							
70*	0	-13.00597	\|															-4.34811	\|														0.46074	\|						\ldots.....			
71*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|											
72	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
73*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
74*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						\ldots.....	
75	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
76*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
77	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
78	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
79	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
80	1	11.46233	\|														..	4.49750	\|																0.46074	\|							.
81	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																								
82*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|											
83	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
84	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																								
85*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|											
86	0	-1.78567	\|	-0.79495	\|	0.92572	\|																																		
87	1	11.46233	\|													.	4.49750	\|															0.46074	\|								
88*	0	-13.00597	\|															-4.34811	\|															0.46074	\|							
89	1	11.46233	\|														.	4.49750	\|																0.46074	\|						
90	1	11.46233	\|													..	4.49750	\|															0.46074	\|						\ldots.....			
91	1	11.46233	\|														.	4.49750	\|																0.46074	\|						
92	1	11.46233	\|													..	4.49750	\|															0.46074	\|								

| 93* | 0 | -13.00597 | \|||||||||||||||| | -4.34811 | \||||||||||||||| | 0.46074 | \|||||||....... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 94 | 1 | 11.46233 | $\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$. | 4.49750 | \|||||||||||||||| | 0.46074 | \||||||||....... |
| 95 | 1 | 11.46233 | \||||||||||||||. | 4.49750 | \||||||||||||||| | 0.46074 | \||||||||...... |
| 96* | 1 | 11.15826 | $\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$ | 3.86756 | $\|\|\|\|\|\|\|\|\|\|\|\mid 1 .$. | 0.58141 | \|||||||||..... |

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 7

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																						
97	1	11.46233	\|													..	4.49750	\|															0.46074	\|						...				
98	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
99*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
100*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																																				
101*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	3.86756	\|											...	0.58141	\|																									
102	0	-9.64124	\|										...	-3.73948	\|											...	0.58141	\|								\ldots...								
103*	0	-13.00597	\|																-4.34811	\|																0.46074	$\|\|\|\|\|\|\mid$.......							
104*	1	11.15826	\|											...	3.86756	\|												...	0.58141	\|								...						
105*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......									
106*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.58141	\|																																				
107*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\|\mid \ldots . . .$.								
108*	1	11.15826	\|											...	3.86756	\|												...	0.58141	\|													
109	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																										
110*	1	11.15826	\|												...	3.86756	\|												...	0.58141	$\|\|\|\|\|\|\|\|\|\mid$....													
111*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
112*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.58141	\|																																				
113	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
114	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|									.					
115*	0	-13.00597	\|															-4.34811	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
116*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
117	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......									
118	1	11.46233	\|												..	4.49750	\|															0.46074	\|										
119	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
120	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....														
121*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......									
122*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
123	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......									
124	1	11.46233	\|												..	4.49750	\|															0.46074	\|										
125	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
126*	0	-13.00597	\|																-4.34811	\|																0.46074	\|						
127	1	11.46233	\|												-.	4.49750	\|															0.46074	\|										
128	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
129*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......								
130	1	11.46233	\|												..	4.49750	\|															0.46074	\|										
131*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
132*	0	-13.00597	\|																-4.34811	\|																0.46074	\|						
133	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
134	1	11.46233	\|													..	4.49750	\|																0.46074	\|									
135*	0	-13.00597	\|															-4.34811	\|														0.46074	$\|\|\|\|\|\|\mid \ldots . . .$.										

| 136* | 0 | -13.00597 | \|||||||||||||||| | -4.34811 | \||||||||||||||| | 0.46074 | \|||||||....... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 137* | 0 | -13.00597 | \||||||||||||||| | -4.34811 | \||||||||||||||| | 0.46074 | \||||||||....... |
| 138* | 0 | -13.00597 | \||||||||||||||| | -4.34811 | \||||||||||||||| | 0.46074 | \||||||||. |
| 139* | 1 | 11.15826 | \|||||||||||||... | 3.86756 | \|||||||||||||... | 0.58141 | \||||||||||..... |
| 140 | 0 | -9.64124 | \||||||||||||... | -3.73948 | \|||||||||||||... | 0.58141 | \||||||||||..... |
| 141 | 1 | 11.46233 | \||||||||||||||.. | 4.49750 | \|||||||||||||||| | 0.46074 | \||||||||....... |
| 142 | 0 | -9.64124 | \||||||||||||... | -3.73948 | \|||||||||||||... | 0.58141 | \||||||||| |
| 143* | 1 | 11.15826 | \|||||||||||||... | 3.86756 | \|||||||||||||... | 0.58141 | \||||||||||. |
| 144* | 1 | 11.15826 | $\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$ | 3.86756 | \||||||||||||... | 0.58141 | $\|\|\|\|\|\|\|\|\mid \ldots .$. |

NCSS 2020, v20.0.15/10/2023 10:10:08 PM

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																						
145*	0	-13.00597	\|															-4.34811	\|													.	0.46074	\|							.			
146	0	-1.78567	\|	-0.79495	\\|............	0.92572	\|																																				
147*	1	11.15826	\|												..	3.86756	\|											...	0.58141	\|													
148*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	\|																								
149	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
150*	1	11.15826	\|											...	3.86756	\|											...	0.58141	\|															
151*	1	2.93353	\|		0.82207	\\|............	0.92572	\|																																			
152	0	-9.64124	\|											...	-3.73948	\|											...	0.58141	\|														
153*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
154	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
155	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|														
156*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
157*	1	11.15826	\|											...	3.86756	\|											...	0.58141	\|														
158	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
159*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							.	
160	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																										
161*	0	-13.00597	\|																-4.34811	\|																0.46074	\|							
162*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
163*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
164	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
165	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|													
166	1	11.46233	\|													..	4.49750	\|																0.46074	\|									
167	0	-9.64124	\|												...	-3.73948	\|													...	0.58141	\|											
168	1	11.46233	\|													..	4.49750	\|																0.46074	\|									
169	1	11.46233	\|														.	4.49750	\|																0.46074	\|							
170	0	-9.64124	\|											-3.73948	\|												...	0.58141	\|													
171	1	11.46233	\|													..	4.49750	\|																0.46074	\|						..			
172	1	11.46233	\|														..	4.49750	\|																	0.46074	\|							
173*	0	-13.00597	\|																-4.34811	\|																0.46074	\|							
174*	0	-13.00597	\|															-4.34811	\|														.	0.46074	\|							.		
175	0	-9.64124	\|											-3.73948	\|												...	0.58141	\|													
176*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
177*	0	-13.00597	\|															-4.34811	\|															0.46074	\|						.			
178	1	11.46233	\|													.	4.49750	\|															0.46074	\|						.				

179	0	-9.64124	\|											-3.73948	\|											...	0.58141	\|															
180*	0	-13.00597	\|																-4.34811	\|																0.46074	\|						
181*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\mid$..	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																																				
182	0	-9.64124	\|										-...	-3.73948	\|											...	0.58141	\|															
183*	0	-13.00597	\|																-4.34811	\|															0.46074	\|								
184*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\mid$..	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																																				
185	0	-9.64124	\|										-...	-3.73948	\|											...	0.58141	\|															
186	1	11.46233	\|													..	4.49750	\|																0.46074	\|									
187	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
188	1	11.46233	\|														.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.								
189	1	11.46233	\|													..	4.49750	\|																0.46074	\|									
190	1	11.46233	\|													..	4.49750	\|																0.46074	\|									
191*	0	-13.00597	\|																-4.34811	\|														-	0.46074	\|						-......		
192*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 9

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual																
193	1	11.46233	\|													.		
194	1	11.46233	\|													.		
195	1	11.46233	\|													.		
196*	0	-13.00597	\|															
197	0	-9.64124	\|											...				
198	0	-9.64124	\|															
199	1	11.46233	\|													-.		
200	1	11.46233	\|													.		
201*	0	-13.00597	\|															
202*	0	-13.00597	\|															
203	0	-9.64124	\|															
204	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.															
205*	1	11.15826	\|												..			
206	0	-9.64124	\|											...				
207*	0	-13.00597	\|															
208	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\mid$...															
209*	0	-13.00597	\|															
210*	0	-13.00597	\|															
211*	0	-13.00597	\|															
212*	0	-13.00597	\|															
213*	0	-13.00597	\|															
214	1	11.46233	\|													.		
215	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.															
216	1	11.46233	\|													..		
217	1	11.46233	\|													.		
218*	0	-13.00597	\|															
219	1	11.46233	\|													.		
220*	1	11.15826	\|												...			
221	1	11.46233	\|												..			

Deviance																	
Residual																	
4.49750	\|	intin															
4.49750																	
4.49750																	
-4.34811	$11\|1\|$																
-3.73948																	
-3.73948																	
4.49750	\|																
4.49750	\|																
-4.34811	\|	I															
-4.34811	\|															.	
-3.73948	\|																
4.49750	\|																
3.86756	IIII																
-3.73948	\|																
-4.34811	\|														.		
-3.73948	\|																
-4.34811	\|														.		
-4.34811	IIII																
-4.34811	\|																
-4.34811	\|														.		
-4.34811	\|																
4.49750	\|																
4.49750	\|																
4.49750	\|																
4.49750	\|																
-4.34811	\|																
4.49750	\|																
3.86756	\|																
4.49750	\|																

Maximum Hat Diagonal 0.46074 0.46074 |||||||
0.46074 ||||||||
0.46074 ||||||||........
0.58141 |||||||||.............
0.58141 |||||||||.....
0.46074 ||||||
0.46074 |||||| \qquad
0.46074 ||||||| \qquad
0.46074 |||||||........
0.46074 |||||||
0.58141 |||||||||......
0.46074
0.58141 ||||||||||....
0.46074 ||||||| \qquad
0.46074 ||||||| \qquad
0.46074 ||
||||||||.
0.46074 IIII \qquad
0.46074 \qquad
0.46074 ||||||||
0.46074
0.46074
0.58141
 \qquad

222*	0	-13.00597	\|															-4.34811	\|															0.46074	\|									
223	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																																				
224*	0	-13.00597	\|															-4.34811	\|															0.46074	\|									
225*	1	2.93353	\|		0.82207		0.92572	\|																																			
226	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
227	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
228*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
229	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
230	1	11.46233	\|													.	4.49750	\|																0.46074	\|						...			
231*	1	11.15826	\|											...	3.86756	\|												...	0.58141	\|														
232	0	-1.78567	\|	-0.79495	\|	0.92572	\|																																			
233	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
234	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
235*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|													
236	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|														
237*	0	-13.00597	\|																-4.34811	\|																0.46074	\|							.
238*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
239*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
240	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|													

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 10

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight
Residual Report	

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																						
241	1	11.46233	\|													.	4.49750	\|																0.46074	\|									
242*	0	-13.00597	\|																-4.34811	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.46074	\|																						
243*	0	-13.00597	\|																-4.34811	\|																0.46074	\|							
244*	1	11.15826	\|											...	3.86756	\|												...	0.58141	\|													
245	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......																						
246	1	11.46233	\|													.	4.49750	\|																0.46074	\|									
247	0	-9.64124	\|												...	-3.73948	\|													...	0.58141	\|												
248	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......																						
249	1	11.46233	\|													.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......									
250	1	11.46233	\|													.	4.49750	\|																0.46074	\|								
251	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......																						
252*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$...									
253	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	\|																																					
254	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																																					
255*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\|\mid \ldots . . .$.								
256	1	11.46233	\|													.	4.49750	\|																0.46074	\|								
257	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......																						
258*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	3.86756	\|												...	0.58141	\|																								
259	1	11.46233	\|														.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
260*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
261*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
262	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......																						
263*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	\|												...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																									
264*	0	-13.00597	\|															-4.34811	\|														0.46074	$\|\|\|\|\|\|\mid$.										

265*	0	-13.00597	\|															-4.34811	\|															0.46074	\|						.		
266	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	\|																								
267	1	11.46233	\|												-.	4.49750	\|															0.46074	\|									
268	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
269*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......							
270*	0	-13.00597	\|															-4.34811	\|															0.46074	\|							
271	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
272*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.58141	\|																																			
273*	1	11.15826	\|											...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.58141	\|																								
274	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
275*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
276	1	11.46233	\|												-.	4.49750	\|															0.46074	\|									
277*	0	-13.00597	\|															-4.34811	\|															0.46074	\|							
278	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																								
279*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|									.			
280*	0	-13.00597	\|																-4.34811	\|																0.46074	$\|\|\|\|\|\|\mid$.......						
281	0	-9.64124	\|										...	-3.73948	\|												...	0.58141	\|								...						
282*	1	11.15826	\|											...	3.86756	\|											...	0.58141	\|								-....						
283	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
284*	1	11.15826	\|											...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|								-....																	
285	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
286	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	\|																								
287	1	11.46233	\|													..	4.49750	\|															0.46074	\|								
288*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......								

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 11

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight
Residual Report	
(Continued)	

	Actual validvote	Pearson Residual		Deviance			
Residual						\quad	Maximum
:---:							
289*							

308*	0	-13.00597	\|															-4.34811	\|														.	0.46074	\|								
309	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|													
310	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
311*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
312	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	$\|\|\|\|\|\|\|\|\|\mid$....																																					
313	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|														
314	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
315	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|														
316*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$...								
317*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|									.				
318*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																								
319	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|								\ldots...						
320*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
321	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
322	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|														
323*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							.	
324*	0	-13.00597	\|																-4.34811	\|																0.46074	\|							
325*	0	-13.00597	\|															-4.34811	\|															0.46074	\|									
326*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
327*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
328*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.									
329	0	-9.64124	\|												...	-3.73948	\|													...	0.58141	\|												
330	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|									.					
331*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
332	1	11.46233	\|													..	4.49750	\|																0.46074	\|								
333	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|														
334*	0	-13.00597	\|															-4.34811	\|														.	0.46074	\|									
335*	1	2.93353	\|		0.82207	\|	0.92572	\|																																		
336*	1	11.15826	\|											...	3.86756	\|											...	0.58141	\|														

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 12

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																						
337	1	11.46233	\|													.	4.49750	\|															0.46074	\|										
338	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																																					
339	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	\|																									
340	1	11.46233	\|														.	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
341*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
342	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	\|							...															
343	0	-9.64124	\|											-3.73948	\|												...	0.58141	\|									.						
344*	0	-13.00597	\|																-4.34811	\|																0.46074	\|							.
345	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																										
346*	0	-13.00597	\|															-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......									
347	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|															0.46074	\|																						
348*	1	2.93353	\|		0.82207	\|	0.92572	\|																																		
349	1	11.46233	\|													.	4.49750	\|															0.46074	\|										
350*	0	-13.00597	\|															-4.34811	\|														0.46074	$\|\|\|\|\|\|\mid$.......										

351	0	-9.64124	\|										...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	\|									..																	
352*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	$\|\|\|\|\|\|\|\|\|\mid . . .$.																																				
353*	0	-13.00597	\|																-4.34811	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.46074	\|																					
354*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	\|																							
355	0	-9.64124	\|											...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																								
356*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......							
357	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
358	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	$\|\|\|\|\|\|\|\|\|\mid \ldots .$.													
359*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	$\|\|\|\|\|\|\|\|\|\mid$.....																																				
360*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	\|																							
361*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
362*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
363*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																							
364	1	11.46233	\|													..	4.49750	\|																0.46074	$\|\|\|\|\|\|\mid$.......								
365*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	0.58141	\|																																			
366	1	11.46233	\|													..	4.49750	\|															0.46074	$\|\|\|\|\|\|\mid$.......									
367	1	11.46233	\|													.	4.49750	\|																0.46074	\|							
368*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
369	1	11.46233	\|													..	4.49750	\|															0.46074	\|								
370*	0	-13.00597	\|															-4.34811	\|														.	0.46074	\|						..		
371*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	\|																																			
372*	1	11.15826	\|												...	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....																								
373*	1	11.15826	\|											...	3.86756	\|												...	0.58141	\|												
374	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
375*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|											
376*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							
377*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......							
378*	0	-13.00597	\|																-4.34811	\|															0.46074	\|						
379	1	11.46233	\|													..	4.49750	\|																0.46074	\|							
380	1	11.46233	\|													.	4.49750	\|															0.46074	\|								
381	0	-1.78567	\|	-0.79495	\|	0.92572	\|																																		
382*	1	11.15826	\|												...	3.86756	\|												...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....												
383*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$.......							
384*	1	11.15826	\|											...	3.86756	\|											...	0.58141	$\|\|\|\|\|\|\|\|\mid$.....														

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 13

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																					
385*	1	11.15826	\|												..	3.86756	\|												..	0.58141	\|								.				
386	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|													
387	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|								...					
388	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|												
389*	0	-13.00597	\|																-4.34811	\|															0.46074	$\|\|\|\|\|\|\mid$...							
390	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.58141	\|																																				
391*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							.
392*	0	-13.00597	\|																-4.34811	\|															0.46074	\|							.
393	1	11.46233	\|													.	4.49750	\|															0.46074	\|						.			

394*	1	11.15826	\|											...	3.86756	\|											...	0.58141	\|																
395	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|															
396	1	11.46233	\|													.	4.49750	\|															0.46074	\|											
397*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	3.86756	\|												...	0.58141	\|																										
398*	0	-13.00597	\|															-4.34811	\|																0.46074	$\|\|\|\|\|\|\mid$.......										
399	0	-9.64124	\|										-3.73948	\|											...	0.58141	\|																		
400	1	11.46233	\|													.	4.49750	\|																0.46074	\|										
401	0	-9.64124	\|										-3.73948	\|											...	0.58141	\|																	
402	0	-1.78567	\\|............	-0.79495	\|	0.92572	\|																																						
403	0	-9.64124	\|										-3.73948	\|											...	0.58141	\|																	
404*	0	-13.00597	\|															-4.34811	\|															0.46074	\|											
405*	1	2.93353	\|		0.82207	\\|............	0.92572	\|																																					
406*	0	-13.00597	\|																-4.34811	\|														.	0.46074	\|									
407	1	11.46233	\|													.	4.49750	\|																0.46074	\|											
408*	0	-13.00597	\|																-4.34811	\|															0.46074	\|									
409	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-3.73948	\|												...	0.58141	\|																										
410*	1	11.15826	\|											...	3.86756	\|												...	0.58141	\|															
411	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|															
412	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|																
413*	0	-13.00597	\|															-4.34811	\|															0.46074	\|										
414	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	-3.73948	\|											...	0.58141	\|																											
415	0	-1.78567	\\|............	-0.79495	\\|............	0.92572	\|																																							
416	1	11.46233	\|												..	4.49750	\|															0.46074	\|												
417	1	11.46233	\|														.	4.49750	\|																	0.46074	\|								
418	0	-9.64124	\|												-3.73948	\|												...	0.58141	\|															
419	1	11.46233	\|													.	4.49750	\|															0.46074	\|											
420	1	11.46233	\|														.	4.49750	\|																	0.46074	\|								
421	0	-9.64124	\|										-3.73948	\|											...	0.58141	\|																	
422	0	-1.78567	\\|............	-0.79495	\|	0.92572	\|																																						
423	1	11.46233	\|													.	4.49750	\|																0.46074	\|										
424	1	11.46233	\|														.	4.49750	\|																0.46074	\|									
425	1	11.46233	\|													.	4.49750	\|															0.46074	\|											
426*	0	-13.00597	\|																	-4.34811	\|																	0.46074	\|						
427*	0	-13.00597	\|																-4.34811	\|															0.46074	\|										
428	1	11.46233	\|												.	4.49750	\|															0.46074	\|												
429	0	-1.78567	\\|............	-0.79495		0.92572	\|																																							
430	0	-1.78567	\\|............	-0.79495	\|	0.92572	\|																																						
431*	0	-13.00597	\|															-4.34811	\|													.	0.46074	\|											
432	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	-3.73948	\|											...	0.58141	\|																											

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 14

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																				
433	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|											
434*	0	-13.00597	\|																-4.34811	\|															0.46074	\|					
435*	0	-13.00597	\|															-4.34811	\|															0.46074	\|						
436	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																																		

437	0	-9.64124	\|											...	-3.73948	\|												...	0.58141	\|									.					
438	0	-1.78567	\\|............	-0.79495	\\|............	0.92572	\|																																					
439*	0	-13.00597	\|																-4.34811	\|																0.46074	\|						
440*	0	-13.00597	\|															-4.34811	\|																0.46074	\|							
441	0	-9.64124	\|										...	-3.73948	\|												...	0.58141	\|														
442*	0	-13.00597	\|															-4.34811	\|																0.46074	\|							
443	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.58141	\|																																				
444*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
445	0	-9.64124	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																																				
446*	0	-13.00597	\|																-4.34811	\|																0.46074	\|						
447*	1	11.15826	\|												...	3.86756	\|												...	0.58141	\|												
448*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	3.86756	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.58141	\|																																				
449*	1	11.15826	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	3.86756	\|												...	0.58141	\|																								
450*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
451	1	11.46233	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	4.49750	\|																0.46074	\|																					
452	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
453	0	-9.64124	\|											-3.73948	\|												...	0.58141	\|														
454*	0	-13.00597	\|																-4.34811	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.46074	\|																					
455	0	-9.64124	\|										...	-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.58141	\|																										
456	0	-9.64124	\|										...	-3.73948	\|												...	0.58141	\|									.						
457	0	-9.64124	\|											-3.73948	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	0.58141	\|																									
458*	0	-13.00597	\|															-4.34811	\|															0.46074	\|								
459	1	11.46233	\|													.	4.49750	\|															0.46074	\|									
460	0	-9.64124	\|										-3.73948	\|											...	0.58141	\|															

NCSS 2020, v20.0.15/10/2023 10:10:08 PM 15

Logistic Regression Report

Dataset	...Imsexport460.NCSS Y (Ref Value) Frequency
validvote(0)	
commonweight	

Simple Residuals vs X's Plots

NCSS 2020, v20.0.1

Logistic Regression Report

Dataset	... Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Deviance Residuals vs X's Plots

Pearson Residuals vs X's Plots

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

ROC Curves (Combined and Separate)

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Prob Correct vs Cutoff Plot

Procedure Input Settings

Autosave Inactive
Variables, Model Tab
-- Variables
Y: validvote
Reference Value:
Numeric X's:
0
Categorical X's:
Frequencies:
Validation Filter:
black, otherrace
<Empty>
commonweight
<Empty>
-- Regression Model
Terms:
Remove Intercept

1-Way
Unchecked
.. Prior Y-Value Probabilities (Changes Intercept and Predicted Values)
Priors:
Equal across Y Values

Subset Selection Tab

-- Select the Best Subset from the X's

Search for the Best Subset from the X's	Unchecked
Iteration Tab	
-- Iteration Options ---	
Maximum Iterations:	20
Iteration Termination:	0.000001

NCSS 2020, v20.0.1

Logistic Regression Report

Dataset	...Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Reports Tab

-- Select Reports
. Summaries

Run Summary	Checked
Y Variable Summary	Checked

. Subset Selection

Subset Summary	Checked
Subset Detail	Checked

.. Estimation

Coefficient Significance Tests	Checked
Coefficient Confidence Limits	Checked
Odds Ratios	Checked
Estimated Model (Reading Form)	Unchecked
Estimated Model (Transformation Form)	Unchecked

.. Goodness-of-Fit

Analysis of Deviance	Checked
Log-Likelihood and R^{2}	Checked

.. Classification

Classification Matrix	Checked
Validation Matrix	Checked
ROC Report	Checked

- Row-by-Row Lists

Row Classification Report:	None
Row Classification Probs Report:	None
Simple Residuals Report:	None

Residuals	Checked
DfBetas	Unchecked
Influence Diagnostics	Unchecked
Residual Diagnostics	Unchecked
Report Options Tab -- Confidence Levels	
Confidence Level:	95
-- Variable and Value Labels	

Variable Names:	Names
Value Labels:	Data Values
Stagger label and output if label length is \geq	15

Logistic Regression Report

Dataset	..Imsexport460.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonweight

Procedure Input Settings (Continued)

Report Options Tab (Continued)

-- Decimal Places

Precision:

Single

Probability:5
Beta (Coefficients): 5
SE(Beta): 5
Z: 3
Log Likelihood: 5
Odds Ratio: 5
DFBeta: 5
Coefficients in Reading Form Model: 2

Plots Tab
-- Select Plots

Y vs X	Checked
ROC Curves (Combined)	Checked
ROC Curve (Separate)	Checked
Residuals vs X	Checked
Skip Reference Value	Checked
Deviance Residuals vs X	Checked
Pearson Residuals vs X	Checked
Pr(Correct) vs Cutoff	Checked

-- ROC Curves and Prob(Correct) vs Cutoff Plot Options

Number Cutoffs:
29

Storage Tab

-- Data Storage Options
Storage Option:
Do not store data

Appendix B. NCSS Logistic Regression Results when the correct weights are used.

Logistic Regression Report			
Dataset ...lN	Smsexport.NCSS		
Y (Ref Value) valid	(0)		
Frequency com	npostweight		
Run Summary			
Item	Value	Item	Value
Y Variable	validvote	Rows Processed	460
Reference Value	0	Rows Used	349
Number of Y-Values	2	Rows for Validation	0
Frequency Variable	commonpostweight	Rows X's Missing	0
Numeric X Variables	2	Rows Freq Miss. or 0	111
Categorical X Variables	0	Rows Prediction Only	0
Final Log Likelihood	-288.15982	Unique Rows (Y and X 's)	6
Model R ${ }^{2}$	0.94973	Sum of Frequencies	419.122537315027
Actual Convergence	4.048361E-09	Likelihood Iterations	4
Target Convergence	1E-06	Maximum Iterations	20
Model D.F.	3	Completion Status	Normal Completion
Priors	Equal		

Y Variable Summary

	Unique			R^{2}	Percent
Y	Rows	Y	Y	(Y vs Pred.	Correctly
validvote Count	(Y and X's)	Proportion	Prior	Probability)	Classified
0204.557067111209	3	0.48806	0.50000	0.01049	48.550
1214.565470203818	3	0.51194	0.50000	0.01049	59.957
Total419.122537315027	6				54.390

Coefficient Significance Tests

Independent	Regression	Standard	Wald		Odds
Variable	Coefficient	Error	Z-Value	Wald	Ratio
X	b(i)	Sb(i)	H0: $\beta=0$	P-Value	Exp(b(i))
Intercept	0.15301	0.08790	1.741	0.08171	1.16534
black	-0.30844	0.19993	-1.543	0.12289	0.73459
otherrace	-1.19123	0.78367	-1.520	0.12849	0.30385

Coefficient Confidence Intervals

Independent	Regression	Standard	Lower 95\%	Upper 95\%	Odds
Variable	Coefficient	Error	Confidence	Confidence	Ratio
X	b(i)	Sb(i)	Limit	Limit	Exp(b(i))
Intercept	0.15301	0.08790	-0.01926	0.32529	1.16534
black	-0.30844	0.19993	-0.70030	0.08341	0.73459
otherrace	-1.19123	0.78367	-2.72719	0.34473	0.30385
NCSS 12.0.4				5/17	1:26:51 PM

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Odds Ratios
\(\left.$$
\begin{array}{lrrrr}\text { Independent } & \begin{array}{r}\text { Regression } \\
\text { Coefficient }\end{array} & \begin{array}{r}\text { Odds } \\
\text { Ratio } \\
\text { (bariable }\end{array} & \begin{array}{r}\text { Lower 95\% } \\
\text { Exp(bb(i)) }\end{array} & \begin{array}{r}\text { Upper 95\% } \\
\text { Confidence } \\
\text { Limit }\end{array}\end{array}
$$ \begin{array}{r}Confidence

Limit\end{array}\right]\)| X |
| :--- |

Estimated Logistic Regression Model(s) in Reading Form

Model for Logit(validvote) = XB when validvote $=1$ 0.15-0.31 * black - 1.19 * otherrace

Estimated Logistic Regression Model(s) in Transformation Form

Model for Logit(validvote) $=$ XB when validvote $=1$
$0.15301475991198-0.308441217146693^{*}$ black -1.1912307058887^{*} otherrace

Each model estimates $X B$ (where Logit $(Y)=X B$) for a specific Y outcome. To calculate the
Y-value probabilities when there are only 2 outcomes, transform the logit using
$\operatorname{Prob}(Y=$ outcome $)=1 /(1+\operatorname{Exp}(-X B))$ or $\operatorname{Prob}(Y \neq$ outcome $)=\operatorname{Exp}(-X B) /(1+\operatorname{Exp}(-X B))$. For the calculation formula to use when there are more than 2 outcomes, see the help documentation.

Analysis of Deviance

		Increase From Model		
Term	DF	Deviance	$\left(\right.$ Chi $\left.^{2}\right)$	P-Value

All	2	580.78819	4.46856	0.10707
black	1	578.70605	2.38642	0.12239
otherrace	1	578.94312	2.62349	0.10529
None(Model)	2	576.31963		

The Prob Level is for testing the significance of that term after considering all other terms.

Log Likelihood \& $\mathbf{R}^{\mathbf{2}}$

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight
Residual Report	

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																					
1	1	10.39601	\|												..	2.36709	\|															0.44911	\|							.			
2	1	10.39601	\|													..	2.36709	\|																0.44911	\|							.	
3*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|										
4*	0	-11.22260	\|																-2.33898	\|															0.44911	\|							
5	1	10.39601	\|													.	2.36709	\|															0.44911	\|									

6	1	10.39601	\|												..	2.36709	\|															0.44911	\|										
7*	1	9.76123	\|												..	2.06318	\|												..	0.57746	\|												
8	1	10.39601	\|													..	2.36709	\|																	0.44911	\|							
9	1	10.39601	\|													..	2.36709	\|																0.44911	\|								
10	1	10.39601	\|													..	2.36709	\|																0.44911	\|								
11	1	10.39601	\|													.	2.36709	\|																0.44911	\|								
12	1	10.39601	\|												..	2.36709	\|																0.44911	\|									
13	1	10.39601	\|											..	2.36709	\|														0.44911	\|												
14*	1	2.50368	\|I	0.40136		0.96226	\|																																				
15^{*}	1	9.76123	\|												..	2.06318	\|													.	0.57746	\|											
16*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|										
17*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|											
18	1	10.39601	\|													.	2.36709	\|															0.44911	\|									
19	1	10.39601	\|													..	2.36709	\|																0.44911	\|								
20*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							
21	1	10.39601	\|													.	2.36709	\|																0.44911	\|								
22*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							
23	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|															
24	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|															
25^{*}	1	2.50368	\|		0.40136		0.96226	\|																																			
26	1	10.39601	\|											..	2.36709	\|														0.44911	\|												
27*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|								
28	1	10.39601	\|													..	2.36709	\|																0.44911	\|								
29*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							
30*	0	-11.22260	\|																-2.33898	\|																0.44911	\|							.
31	1	10.39601	\|													.	2.36709	\|																0.44911	\|								
32	1	10.39601	\|													..	2.36709	\|																0.44911	\|								
33	1	10.39601	\|													..	2.36709	\|																0.44911	\|						..			
34^{*}	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|								
35*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|										
36*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							.	
37	1	10.39601	\|													.	2.36709	\|															0.44911	\|									
38	0	-9.03138	\|										...	-2.03870	\|										...	0.57746	\|																
39*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							.		
40*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							.	
41		10.39601	\|													..	2.36709	\|																0.44911	\|								
42	1	10.39601	\|													..	2.36709	\|																0.44911	\|						.			
43*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							.		
44	0	-1.48982		-0.39661		0.96226	\|																																					
45	1	10.39601	\|												..	2.36709	\|																0.44911	\|									
46*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							.		
47*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							
48	1	10.39601	\|													..	2.36709	\|																0.44911	\|								
49	1	10.39601	\|												..	2.36709	\|																0.44911	\|							.			

NCSS 12.0.4
5/17/2023 1:26:51 PM
6

Logistic Regression Report

Dataset Y (Ref Value)
...INCSSmsexport.NCSS
validvote(0)
Frequency commonpostweight

Residual Report (Continued)

Actual
Pearson
Deviance
Maximum

Row	validvote	Residual		Residual																														
50	1	10.39601	\|													..	2.36709	\|																
51	1	10.39601	\|													..	2.36709	\|																
52*	0	-11.22260	\|																-2.33898	\|														.
53	1	10.39601	\|													..	2.36709	\|																
54	0	-9.03138	\|											...	-2.03870	\|											...							
55*	0	-11.22260	\|																-2.33898	\|														.
56	1	10.39601	\|													..	2.36709	\|																
57	1	10.39601	\|												..	2.36709	\|																	
58*	1	9.76123	\|													..	2.06318	\|													..			
59	1	10.39601	\|													..	2.36709	\|																
60	1	10.39601	\|												..	2.36709	\|																	
61*	1	2.50368	\|		1...	0.40136																												
62*	0	-11.22260	\|															-2.33898	\|															
63	1	10.39601	\|												..	2.36709	\|																	
64	0	-9.03138	\|												...	-2.03870	\|												...					
65*	0	-11.22260	\|																-2.33898	\|														.
66	1	10.39601	\|													..	2.36709	\|																
67	1	10.39601	\|													..	2.36709	\|																
68	1	10.39601	\|												..	2.36709	\|																	
69	1	10.39601	\|												..	2.36709	\|																	
70*	0	-11.22260	\|																-2.33898	\|														.
71*	1	9.76123	\|													..	2.06318	\|													..			
72	1	10.39601	\|													..	2.36709	\|																
73*	0	-11.22260	\|																-2.33898	\|].
74*	0	-11.22260	\|																-2.33898	\|														
75		10.39601	\|													..	2.36709	\|																
76*	0	-11.22260	\|																-2.33898	\|														.
77	1	10.39601	\|													..	2.36709	\|																
78	1	10.39601	\|													..	2.36709	\|																
79	1	10.39601	\|													..	2.36709	\|																
80	1	10.39601	\|													..	2.36709	\|																
81	0	-9.03138	\|										...	-2.03870	\|										...									
82*	1	9.76123	\|													..	2.06318	\|													..			
83	1	10.39601	\|													..	2.36709	\|																
84	0	-9.03138	\|												...	-2.03870	\|												...					
85*	1	9.76123	\|												..	2.06318	\|												..					
86	0	-1.48982		-0.39661																														
87	1	10.39601	\|												..	2.36709	\|																	
88*	0	-11.22260	\|															-2.33898	\|															
89	1	10.39601	\|													..	2.36709	\|																
90	1	10.39601	\|													..	2.36709	\|																
91	1	10.39601	\|													..	2.36709	\|																
92	1	10.39601	\|													..	2.36709	\|																
93*	0	-11.22260	\|																-2.33898	\|														.
94	1	10.39601	\|													..	2.36709	\|																
95	1	10.39601	\|													..	2.36709	\|																
96*	1	9.76123	\|													..	2.06318	\|													..			
97	1	10.39601	\|													..	2.36709	\|																
98	1	10.39601	\|												..	2.36709	迷																	

Hat Diagonal

0.44911 |||||||.........
0.44911 |||||||.......
0.44911 |||||||...........
0.44911 |||||||.........
0.44911 |||||||.......
0.44911 |||||||.........
0.44911 |||||||.......
0.44911 |||||||...........
0.44911 |||||||.......
$0.57746||||||||\mid$.
0.57746 |||l||||.....
0.44911 ||||||||.........
0.57746 |||||||||.....
0.57746 |||||||||....
$0.96226|||||||||||||||\mid$

0.44911 ||||||||.........
0.44911 ||||||||........
0.44911 |||||||........
0.44911
$|||||||\mid$.
0.44911 |||||||......
0.44911 |||||||.....
0.44911 ||||||||.......
0.57746 |||||||||......
0.44911 ||||||||...
0.44911 |||||||.

Logistic Regression Report

Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																								
99*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|						.					
100*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|													
101*	1	9.76123	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	2.06318	\|														..	0.57746	\|																								
102	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
103*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|										
104*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
105*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
106*	1	9.76123	\|														.	2.06318	\|														..	0.57746	\|									.		
107*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
108*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
109	0	-9.03138	\|											...	-2.03870	\|												...	0.57746	\|															
110*	1	9.76123	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	2.06318	\|													..	0.57746	\|																									
111*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
112*	1	9.76123	\|															.	2.06318	\|															..	0.57746	\|									\ldots....
113	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
114	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.57746	$\|\|\|\|\|\|\|\|\mid$.....																																							
115*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|										
116*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|												
117	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
118	1	10.39601	\|													.	2.36709	\|																0.44911	\|										
119	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
120	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
121*	0	-11.22260	\|																-2.33898	\|															0.44911	$\|\|\|\|\|\|\|\mid$.										
122*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
123	1	10.39601	\|													..	2.36709	\|																0.44911	\|							.				
124	1	10.39601	\|													.	2.36709	\|																0.44911	\|										
125	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
126*	0	-11.22260	\|																-2.33898	\|																0.44911	\|								
127	1	10.39601	\|														..	2.36709	\|																	0.44911	\|								
128	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
129*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
130	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
131*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
132*	0	-11.22260	\|																-2.33898	\|															0.44911	$\|\|\|\|\|\|\|\mid$.......										
133	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
134	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
135*	0	-11.22260	\|																	-2.33898	\|																	0.44911	\|						
136*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
137*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
138*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
139*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
140	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	-2.03870	\|												...	0.57746	\|																										
141	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
142	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	-2.03870	\|												...	0.57746	\|																											
143*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
144*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
145*	0	-11.22260	\|															-2.33898	\|															0.44911	\|										
146	0	-1.48982	-0.39661	\|	0.96226	\|																																						
147*	1	9.76123	\|												..	2.06318	\|												..	0.57746	$\|\|\|\|\|\|\|\|\mid$.....															

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																								
148*	1	9.76123	\|												..	2.06318	\|													.	0.57746	\|													
149	1	10.39601	\|												-.	2.36709	\|																0.44911	\|											
150*	1	9.76123	\|													.	2.06318	\|													..	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.													
151*	1	2.50368	\|		0.40136	\|	0.96226	\|																																				
152	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|																
153*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
154	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
155	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
156*	0	-11.22260	\|																-2.33898	\|																0.44911	\|								
157*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
158	1	10.39601	\|													..	2.36709	\|																0.44911	$\|\|\|\|\|\|\|\mid$.											
159*	0	-11.22260	\|																-2.33898	\|																0.44911	\|								
160	0	-9.03138	\|											...	-2.03870	\|												...	0.57746	\|															
161*	0	-11.22260	\|																	-2.33898	\|																	0.44911	\|						
162*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
163*	0	-11.22260	\|															-2.33898	\|															0.44911	\|										
164	1	10.39601	\|													..	2.36709	\|															0.44911	\|											
165	0	-9.03138	\|												...	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	$\|\|\|\|\|\|\|\|\mid$.....																											
166	1	10.39601	\|												-.	2.36709	\|															0.44911	\|												
167	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
168	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
169	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
170	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
171	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
172	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
173*	0	-11.22260	\|																	-2.33898	\|																0.44911	\|							
174*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
175	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
176*	0	-11.22260	\|																-2.33898	\|																0.44911	\|								
177*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
178	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
179	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
180*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|										
181*	1	9.76123	\|													..	2.06318	\|														.	0.57746	\|											
182	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
183*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|											
184*	1	9.76123	\|														.	2.06318	\|														.	0.57746	\|										
185	0	-9.03138	\|												...	-2.03870	\|													...	0.57746	\|									-....					
186	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
187	1	10.39601	\|													..	2.36709	\|																	0.44911	\|									
188	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
189	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
190	1	10.39601	\|												..	2.36709	\|															0.44911	\|												

191*	0	-11.22260	\|																-2.33898	\|													
192*	0	-11.22260	\|																-2.33898	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.													
193	1	10.39601	\|													..	2.36709	\|															
194	1	10.39601	\|													..	2.36709	\|															
195	1	10.39601	\|													..	2.36709	\|															
196*	0	-11.22260	\|															-2.33898	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.														

NCSS 12.0.4
5/17/2023 1:26:51 PM
9

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																								
197	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|									..						
198	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\mid 1 .$.	-2.03870	\|												...	0.57746	\|									...																		
199	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
200	1	10.39601	\|													..	2.36709	\|																0.44911	\|											
201*	0	-11.22260	\|																-2.33898	\|															0.44911	\|										
202*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							.				
203	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	-2.03870	\|												...	0.57746	\|																										
204	1	10.39601	\|													..	2.36709	\|																0.44911	\|							.				
205*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|													
206	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	\|																																							
207*	0	-11.22260	\|																-2.33898	\|															0.44911	\|										
208	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|															
209*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
210*	0	-11.22260	\|																-2.33898	\|															0.44911	\|										
211*	0	-11.22260	\|																		-2.33898	\|																0.44911	\|							.
212*	0	-11.22260	\|																-2.33898	\|															0.44911	\|										
213*	0	-11.22260	\|															-2.33898	\|															0.44911	\|										
214	1	10.39601	\|													..	2.36709	\|																0.44911	\|											
215	1	10.39601	\|													.	2.36709	\|															0.44911	\|												
216	1	10.39601	\|													..	2.36709	\|																	0.44911	\|										
217	1	10.39601	\|													..	2.36709	\|																0.44911	\|											
218*	0	-11.22260	\|																-2.33898	\|															0.44911	\|										
219	1	10.39601	\|													..	2.36709	\|																0.44911	\|							.				
220*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
221	1	10.39601	\|													.	2.36709	\|															0.44911	\|												
222*	0	-11.22260	\|																	-2.33898	\|																0.44911	\|							.	
223	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	\|																																							
224*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|											
225*	1	2.50368	\|		0.40136	\|	0.96226	\|																																				
226	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
227	1	10.39601	\|													.	2.36709	\|															0.44911	\|												
228*	0	-11.22260	\|																	-2.33898	\|																0.44911	\|								
229	1	10.39601	\|													..	2.36709	\|															0.44911	\|												
230	1	10.39601	\|													..	2.36709	\|																0.44911	\|							.				
231*		9.76123	\|												..	2.06318	\|													.	0.57746	\|													
232	0	-1.48982		-0.39661	\|	0.96226	\|																																						
233	1	10.39601	\|												..	2.36709	\|															0.44911	\|												

234	1	10.39601	\|													.	2.36709	\|																
235*	1	9.76123	\|													.	2.06318	\|													..			
236	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	-2.03870	\|												...																	
237*	0	-11.22260	\|															-2.33898	\|															
238*	1	9.76123	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	2.06318	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.																													
239*	0	-11.22260	\|																-2.33898	\|														
240	0	-9.03138	\|											...	-2.03870	\|											..							
241	1	10.39601	\|													.	2.36709	\|																
242*	0	-11.22260	\|																-2.33898	\|														
243*	0	-11.22260	\|																	-2.33898	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.													
244*	1	9.76123	\|														.	2.06318	\|														.	
245	1	10.39601	\|												..	2.36709	\|																	

91									
0.57746									
0.57746									
0.44911									
0.57746									
0.44911	\|								
0.57746	\|								
0.44911									
0.44911	\|								
0.44911	\|								
0.57746	\|								
0.44911	\|								

NCSS 12.0.45/17/2023 1:26:51 PM 10

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																							
246	1	10.39601	\|													.	2.36709	\|															0.44911	\|										
247	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|													
248	1	10.39601	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	2.36709	\|																0.44911	$\|\|\|\|\|\|\mid$.......																							
249	1	10.39601	\|													.	2.36709	\|																0.44911	\|									
250	1	10.39601	\|													.	2.36709	\|															0.44911	\|										
251	1	10.39601	\|													..	2.36709	\|															0.44911	\|										
252*	0	-11.22260	\|																-2.33898	\|															0.44911	\|							...		
253	0	-9.03138	\|												..	-2.03870	\|												...	0.57746	$\|\|\|\|\|\|\|\|\mid$.														
254	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	$\|\|\|\|\|\|\|\|\mid$.....														
255*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
256	1	10.39601	\|													.	2.36709	\|															0.44911	\|										
257	1	10.39601	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	2.36709	\|																0.44911	\|							..																
258*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|								.				
259	1	10.39601	\|														.	2.36709	\|																	0.44911	\|							
260*	0	-11.22260	\|																-2.33898	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.44911	\|																							
261*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
262	1	10.39601	\|														.	2.36709	\|																0.44911	\|								
263*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|											
264*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
265*	0	-11.22260	\|																	-2.33898	\|																0.44911	\|							
266	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|														
267	1	10.39601	\|													..	2.36709	\|																0.44911	\|									
268	1	10.39601	\|													.	2.36709	\|																0.44911	\|									
269*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
270*	0	-11.22260	\|																-2.33898	\|														-	0.44911	\|								
271	1	10.39601	\|															.	2.36709	\|																	0.44911	\|							
272*	1	9.76123	\|													.	2.06318	\|													.	0.57746	\|											
273*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|											
274	1	10.39601	\|													..	2.36709	\|																0.44911	\|									
275*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
276	1	10.39601	\|													.	2.36709	\|															0.44911	$\|\|\|\|\|\|\mid$.......											

277*	0	-11.22260	\|															-2.33898	\|															0.44911	\|								
278	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|											
279*	1	9.76123	\|													..	2.06318	\|													..	0.57746	$\|\|\|\|\|\|\|\|\|\mid \ldots .$.										
280*	0	-11.22260	\|															-2.33898	\|															0.44911	\|							
281	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.																																				
282*	1	9.76123	\|													..	2.06318	\|													..	0.57746	$\|\|\|\|\|\|\|\|\|\mid \ldots .$.										
283	1	10.39601	\|													.	2.36709	\|															0.44911	\|								
284*	1	9.76123	\|													.	2.06318	\|													..	0.57746	$\|\|\|\|\|\|\|\|\mid$....										
285	1	10.39601	\|													..	2.36709	\|																0.44911	\|							
286	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|											
287	1	10.39601	\|														..	2.36709	\|																0.44911	\|						
288*	0	-11.22260	\|																-2.33898	\|															0.44911	\|						
289*	0	-11.22260	\|																-2.33898	\|															0.44911	\|						
290	1	10.39601	\|													..	2.36709	\|																0.44911	\|							
291	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	$\|\|\|\|\|\|\|\|\mid$....												
292	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|									\ldots...			
293	1	10.39601	\|													..	2.36709	\|																0.44911	\|							
294	1	10.39601	\|													..	2.36709	\|															0.44911	\|						-.....			

NCSS 12.0.4
5/17/2023 1:26:51 PM 11

Logistic Regression Report

Dataset	...WCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight
Residual Report	

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																							
295	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	-2.03870	\|												...	0.57746	\|																									
296*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
297*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|											
298	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	\|												...	0.57746	\|																									
299*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
300*	0	-11.22260	\|															-2.33898	\|															0.44911	\|									
301*	0	-11.22260	\|																	-2.33898	\|																0.44911	\|						
302*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
303	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|													
304	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	-2.03870	\|												...	0.57746	\|																									
305	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	\|											...	0.57746	\|																										
306*	0	-11.22260	\|															-2.33898	\|															0.44911	\|						-......				
307	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	\|																																					
308*	0	-11.22260	\|															-2.33898	\|															0.44911	\|									
309	0	-9.03138	\|													...	-2.03870	\|													...	0.57746	\|											
310	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
311*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
312	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|														
313	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	-2.03870	\|												...	0.57746	\|																									
314	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
315	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.....																																						
316*	0	-11.22260	\|																-2.33898	\|															0.44911	\|									
317*	1	9.76123	\|														..	2.06318	\|													..	0.57746	\|										
318*	1	9.76123	\|												..	2.06318	\|												..	0.57746	\|													

319	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|														
320*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							
321	1	10.39601	\|													..	2.36709	\|																0.44911	\|							.	
322	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|												
323*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							.
324*	0	-11.22260	\|																-2.33898	\|															0.44911	\|							.
325*	0	-11.22260	\|															-2.33898	\|														0.44911	\|									
326*	1	9.76123	\|												..	2.06318	\|												.	0.57746	\|											
$327 *$	0	-11.22260	\|															-2.33898	\|															0.44911	\|							..	
328*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							.
329	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|												
330	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|														
331*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|									
332	1	10.39601	\|												..	2.36709	\|																0.44911	\|							.		
333	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|													
334*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|								
335*	1	2.50368		0.40136		0.96226	\|																																				
336*	1	9.76123	\|												..	2.06318	\|												..	0.57746	\|											
337	1	10.39601	\|													.	2.36709	\|															0.44911	\|								
338	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|											
339	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|													
340	1	10.39601	\|													..	2.36709	\|																0.44911	\|							
341*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							.	
342	1	10.39601	\|													.	2.36709	\|																0.44911	\|								
343	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|											

NCSS 12.0.45/17/2023 1:26:51 PM 12

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual																
344*	0	-11.22260	\|															
345	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..															
346*	0	-11.22260	\|															
347	1	10.39601	\|													.		
348*	1	2.50368	\|														
349	1	10.39601	\|													.		
350*	0	-11.22260	\|															
351	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.															
352*	1	9.76123	\|													.		
353*	0	-11.22260	\|															
354*	1	9.76123	\|													.		
355	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.															
356*	0	-11.22260	\|															
357	1	10.39601	\|													.		
358	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..															
359*	1	9.76123	\|													.		
360*	1	9.76123	\|													..		
361*	1	9.76123	\|												..			

Deviance																
Residual																
-2.33898	\|															
-2.03870	\|												...			
-2.33898	\|															
2.36709	\|															
0.40136																
2.36709	\|															
-2.33898	\|															
-2.03870	\|												...			
2.06318	\|													.		
-2.33898	\|															
2.06318	\|													.		
-2.03870	\|												...			
-2.33898	\|															
2.36709	\|															
-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..															
2.06318	\|													.		
2.06318	\|												.			
2.06318	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$.															

Maximum Hat Diagonal															
0.44911	\|														
0.57746	\\| $\\|$ I!														
0.44911	\|														
0.44911	\|														
0.96226	\|														
0.44911	\|													
0.44911	\|														
0.57746	\|														
0.57746	\|														
0.44911	\|														
0.57746	\|														
0.57746	\|														
0.44911	\|														
0.44911	\|														
0.57746	\|														
0.57746	\|													
0.57746	\|													
0.57746	\|								...						

362*	0	-11.22260	\|															-2.33898	\|															0.44911	\|							.			
363*	1	9.76123	\|													..	2.06318	\|													..	0.57746	$\|\|\|\|\|\|\|\|\mid$....												
364	1	10.39601	\|													..	2.36709	\|																0.44911	\|									
365*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|									.			
366	1	10.39601	\|													..	2.36709	\|																0.44911	$\|\|\|\|\|\|\mid$..										
367	1	10.39601	\|													..	2.36709	\|																0.44911	\|						.				
368*	0	-11.22260	\|															-2.33898	\|														0.44911	\|						...					
369	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
370*	0	-11.22260	\|																-2.33898	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.44911	$\|\|\|\|\|\|\mid$...																							
371*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|												
372*	1	9.76123	\|													..	2.06318	\|														..	0.57746	\|									...		
373*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|									.			
374	1	10.39601	\|												-.	2.36709	\|															0.44911	\|											
375*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|											
376*	0	-11.22260	\|																-2.33898	\|															0.44911	$\|\|\|\|\|\|\mid$......									
377*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
378*	0	-11.22260	\|																-2.33898	\|														-	0.44911	\|								
379	1	10.39601	\|													..	2.36709	\|																0.44911	$\|\|\|\|\|\|\mid$......										
380	1	10.39601	\|												..	2.36709	\|															0.44911	\|											
381	0	-1.48982	\|.............	-0.39661	\|	0.96226	\|																																					
382*	1	9.76123	\|												..	2.06318	\|												-.	0.57746	$\|\|\|\|\|\|\|\|\mid$....														
383*	0	-11.22260	\|																-2.33898	\|																0.44911	\|							
384*	1	9.76123	\|														..	2.06318	\|														..	0.57746	\|										
385*	1	9.76123	\|													..	2.06318	\|													..	0.57746	\|									...			
386	0	-9.03138	\|												..	-2.03870	\|											...	0.57746	\|															
387	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|													
388	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	$\|\|\|\|\|\|\|\|\mid$....																
389*	0	-11.22260	\|																-2.33898	\|															0.44911	\|								
390	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	\|									...																													
391*	0	-11.22260	\|																-2.33898	\|															0.44911	$\|\|\|\|\|\|\mid$......									
392*	0	-11.22260	\|															-2.33898	\|													.	0.44911	\|										

NCSS 12.0.4
5/17/2023 1:26:51 PM
13

Logistic Regression Report

Dataset Y (Ref Value) ...INCSSmsexport.NCSS validvote(0)
Frequency commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual		Deviance Residual		Maximum Hat Diagonal																																				
393	1	10.39601	\|												..	2.36709	\|																0.44911	\|								
394*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|								
395	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.																																			
396	1	10.39601	\|													..	2.36709	\|																0.44911	\|							
397*	1	9.76123	\|													.	2.06318	\|													..	0.57746	\|								
398*	0	-11.22260	\|															-2.33898	\|														.	0.44911	\|							.
399	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|									.		
400	1	10.39601	\|													..	2.36709	\|															0.44911	\|								
401	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\mid$..	-2.03870	\|											...	0.57746	\|																								
402	0	-1.48982	\|.............	-0.39661	\|	0.96226	\|																																		
403	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|												
404*	0	-11.22260	\|															-2.33898	\|															0.44911	\|						

405*	1	2.50368	I\|I.....	0.40136	\|I...	0.96226	\|																																						
406*	0	-11.22260	\|																-2.33898	\|													.	0.44911	\|									
407	1	10.39601	\|													..	2.36709	\|																0.44911	\|									
408*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|								
409	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|														
410*	1	9.76123	\|													..	2.06318	\|													.	0.57746	\|											
411	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|													
412	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|														
413*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|								
414	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|									.					
415	0	-1.48982		-0.39661		0.96226	\|																																						
416	1	10.39601	\|													.	2.36709	\|															0.44911	\|										
417	1	10.39601	\|													..	2.36709	\|																0.44911	\|										
418	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|														
419	1	10.39601	\|													..	2.36709	\|															0.44911	\|										
420	1	10.39601	\|													..	2.36709	\|																0.44911	\|									
421	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|																
422	0	-1.48982		-0.39661		0.96226	\|																																						
423	1	10.39601	\|												..	2.36709	\|															0.44911	\|											
424	1	10.39601	\|													..	2.36709	\|															0.44911	\|										
425	1	10.39601	\|													..	2.36709	\|																0.44911	\|									
426*	0	-11.22260	\|																-2.33898	\|																0.44911	\|							
427*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|							.		
428	1	10.39601	\|													.	2.36709	\|															0.44911	\|											
429	0	-1.48982		-0.39661		0.96226	\|																																						
430	0	-1.48982	-0.39661	\\|	0.96226	\|																																					
431*	0	-11.22260	\|															-2.33898	\|													.	0.44911	\|										
432	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|													
433	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|														
434*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|						.			
435*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|									
436	0	-9.03138	\|												...	-2.03870	\|												...	0.57746	\|													
437	0	-9.03138	\|												...	-2.03870	\|											...	0.57746	\|									.						
438	0	-1.48982		-0.39661		0.96226	\|																																						
439*	0	-11.22260	\|																-2.33898	\|														.	0.44911	\|								
440*	0	-11.22260	\|																	-2.33898	\|															.	0.44911	\|						
441	0	-9.03138	\|											...	-2.03870	\|											...	0.57746	\|																

NCSS 12.0.4
5/17/2023 1:26:51 PM
14

Logistic Regression Report

Dataset Y (Ref Value)
...INCSSmsexport.NCSS validvote(0)
Frequency commonpostweight

Residual Report (Continued)

Row	Actual validvote	Pearson Residual															
442*	0	-11.22260	\|														
443	0	-9.03138	\|												.		
444*	0	-11.22260	\|														
445	0	-9.03138	\|											...			
446*	0	-11.22260	\|														
447*	1	9.76123	\|														.

Deviance															
Residual															
-2.33898	\|														
-2.03870	\|	I													
-2.33898	IIII														
-2.03870	IIIII														
-2.33898	\|														
2.06318	\|														

Maximum										
Hat Diagonal										
0.44911	\|									
0.57746	\|									
0.44911	\|						.			
0.57746	\|									
0.44911	\|									
0.57746	\|								...	

448*	1	9.76123	\|												..	2.06318	\|													..	0.57746	\|											
449*	1	9.76123	\|													..	2.06318	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.57746	\|									...														
450*	0	-11.22260	\|																-2.33898	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	0.44911	\|																					
451	1	10.39601	\|													..	2.36709	\|																0.44911	\|							
452	1	10.39601	\|													..	2.36709	\|															0.44911	\|								
453	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	\|																																			
454*	0	-11.22260	\|																-2.33898	\|															0.44911	\|						
455	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	\|											...	0.57746	\|																									
456	0	-9.03138	\|												..	-2.03870	\|												..	0.57746	\|									.			
457	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	-2.03870	\|												...	0.57746	\|																							
458*	0	-11.22260	\|															-2.33898	\|														-	0.44911	\|							
459	1	10.39601	\|													..	2.36709	\|															0.44911	\|								
460	0	-9.03138	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	-2.03870	$\|\|\|\|\|\|\|\|\|\|\|\mid .$.	0.57746	\|																																			

NCSS 12.0.45/17/2023 1:26:51 PM 15

Logistic Regression Report

Dataset	... INCSSmsexport. NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$

Row	Actual validvote	DFBeta Intercept		DFBeta black		DFBeta otherrace																																
1	1	0.44216	\|.............	-0.43466		-0.11089																																
2	1	0.44216	\|.............	-0.43466		-0.11089																																
3*	1	-0.54033	\|.............	0.56461	\|.............	0.00000																																
4*	0	-20.08375	\|													.	19.74307	\|												.	5.03686							
5	1	0.44216		-0.43466		-0.11089																																
6	1	0.44216		-0.43466		-0.11089																																
7*	1	-0.54033		0.56461		0.00000																																
8	1	0.44216		-0.43466		-0.11089																																
9	1	0.44216		-0.43466		-0.11089																																
10	1	0.44216		-0.43466		-0.11089																																
11	1	0.44216		-0.43466		-0.11089																																
12	1	0.44216		-0.43466		-0.11089																																
13	1	0.44216		-0.43466		-0.11089																																
14*	1	-0.22785		0.00000		1.59732																																
15*	1	-0.54033		0.56461		0.00000																																
16*	1	-0.54033		0.56461		0.00000																																
17^{*}	1	-0.54033		0.56461		0.00000																																
18	1	0.44216		-0.43466		-0.11089																																
19	1	0.44216		-0.43466	\|.............	-0.11089																																
20*	0	-20.08375	\|													.	19.74307	\|												.	5.03686							
21	1	0.44216		-0.43466	...	-0.11089																																
22*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
23	0	20.95992	\|																	-21.90187	\|																	0.00000
24	0	20.95992	\|															-21.90187	\|															0.00000				
25*	1	-0.22785	\|.............	0.00000	1.59732																																
26	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																																
27*	0	-20.08375	\|													.	19.74307	\|												.	5.03686							
28	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																																
29*	0	-20.08375	\|													.	19.74307	\|												.	5.03686							

30*	0	-20.08375	\|											.	19.74307	\|											.	5.03686						
31	1	0.44216		-0.43466		-0.11089																												
32	1	0.44216		-0.43466		-0.11089																												
33	1	0.44216		-0.43466		-0.11089																												
34*	0	-20.08375	\|													.	19.74307	\|												..	5.03686			
35*	1	-0.54033		0.56461		0.00000																												
36*	0	-20.08375	\|													.	19.74307	\|												..	5.03686			
37	1	0.44216		-0.43466	\|............	-0.11089																												
38	0	20.95992	\|														-21.90187	\|													0.00000			
39*	0	-20.08375	\|															19.74307	\|													..	5.03686	
40*	0	-20.08375	\|														.	19.74307	\|													.	5.03686	
41	1	0.44216		-0.43466		-0.11089																												
42	1	0.44216		-0.43466		-0.11089																												
43*	0	-20.08375	\|													.	19.74307	\|												..	5.03686			
44	0	6.38662	\|II	0.00000		-44.77268	\|																										
45	1	0.44216		-0.43466		-0.11089																												
46*	0	-20.08375	\|															19.74307	\|													.	5.03686	
47*	0	-20.08375	\|															19.74307	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.	5.03686														
48	1	0.44216		-0.43466	...	-0.11089																												
49	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																												

NCSS 12.0.45/17/2023 1:26:51 PM 16

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept																
50	1	0.44216	\|.............															
51	1	0.44216	\|.....															
52*	0	-20.08375	\|													.		
53	1	0.44216																
54	0	20.95992	\|															
55*	0	-20.08375	\|													.		
56	1	0.44216	\|.............															
57	1	0.44216	\|.............															
58*	1	-0.54033	\|.............															
59	1	0.44216	\|............															
60	1	0.44216	\|.............															
61*	1	-0.22785	\|.															
62*	0	-20.08375	\|													.		
63	1	0.44216	\|.............															
64	0	20.95992	\|															
65*	0	-20.08375	\|															
66	1	0.44216																
67	1	0.44216	\|.............															
68	1	0.44216	\|.............															
69	1	0.44216	\|.......															
70*	0	-20.08375	\|													.		
71*	1	-0.54033																
72	1	0.44216	\|.............															

73*	0	-20.08375	\|															19.74307	\|												..	5.03686	\|.............		
74*	0	-20.08375	\|															19.74307	\|													.	5.03686		
75	1	0.44216	\|.	-0.43466	\|.............	-0.11089																													
76*	0	-20.08375	\|													.	19.74307	\|												..	5.03686				
77	1	0.44216		-0.43466		-0.11089																													
78	1	0.44216	\|.............	-0.43466	\|.............	-0.11089	\|.............																												
79	1	0.44216		-0.43466	\|.............	-0.11089	\|.............																												
80	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																													
81	0	20.95992	\|															-21.90187	\|															0.00000	\|.............
82*	1	-0.54033		0.56461		0.00000																													
83	1	0.44216		-0.43466		-0.11089																													
84	0	20.95992	\|															-21.90187	\|															0.00000	
85*	1	-0.54033		0.56461		0.00000																													
86	0	6.38662	\|			0.00000	\|............	-44.77268	\|																									
87	1	0.44216	\|.	-0.43466	\|.............	-0.11089																													
88*	0	-20.08375	\|													.	19.74307	\|												..	5.03686	\|.			
89	1	0.44216	\|.............	-0.43466	\|.............	-0.11089	\|.																												
90	1	0.44216		-0.43466		-0.11089																													
91	1	0.44216		-0.43466		-0.11089	\|.............																												
92	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																													
93*	0	-20.08375	\|													.	19.74307	\|												..	5.03686				
94	1	0.44216		-0.43466	\|.............	-0.11089	\|.............																												
95	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																													
96*	1	-0.54033		0.56461		0.00000																													
97	1	0.44216		-0.43466		-0.11089																													
98	1	0.44216	\|.............	-0.43466	\|.............	-0.11089	\|.............																												

NCSS 12.0.4
5/17/2023 1:26:51 PM
17

Logistic Regression Report

Dataset	\ldots... NCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept																
99*	0	-20.08375	\|													.		
100*	1	-0.54033																
101*	1	-0.54033	\|.............															
102	0	20.95992	\|															
103*	0	-20.08375	\|													.		
104*	1	-0.54033	\|...........															
105*	0	-20.08375	\|													.		
106*	1	-0.54033	\|............															
107*	0	-20.08375	\|													.		
108*	1	-0.54033																
109	0	20.95992	\|															
110*	1	-0.54033															
111*	1	-0.54033																
112*	1	-0.54033																
113	1	0.44216																
114	0	20.95992	\|															
115*	0	-20.08375	$\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.															

116*	1	-0.54033		0.56461		0.00000																													
117	1	0.44216	...	-0.43466	\|...........	-0.11089																													
118	1	0.44216		-0.43466		-0.11089																													
119	1	0.44216		-0.43466		-0.11089																													
120	0	20.95992	\|														-21.90187	\|													0.00000				
121*	0	-20.08375	\|														.	19.74307	\|													.	5.03686		
122*	0	-20.08375	\|														.	19.74307	\|												..	5.03686			
123		0.44216		-0.43466		-0.11089																													
124	1	0.44216		-0.43466	\|............	-0.11089																													
125	1	0.44216		-0.43466		-0.11089																													
126*	0	-20.08375	\|											.	19.74307	\|											.	5.03686							
127	1	0.44216		-0.43466		-0.11089																													
128	1	0.44216		-0.43466	\|...........	-0.11089																													
129*	0	-20.08375	\|													.	19.74307	\|												..	5.03686				
130	1	0.44216		-0.43466		-0.11089																													
131*	0	-20.08375	\|														.	19.74307	\|												..	5.03686			
132*	0	-20.08375	\|].	19.74307	\|												..	5.03686				
133	1	0.44216		-0.43466		-0.11089																													
134	1	0.44216		-0.43466		-0.11089																													
135*	0	-20.08375	\|															19.74307	\|												..	5.03686			
136*	0	-20.08375	\|														.	19.74307	\|													..	5.03686		
137*	0	-20.08375	\|															19.74307	\|												..	5.03686			
138*	0	-20.08375	\|I			il	il	i	l.	19.74307	\|I		il	il	i		..	5.03686																	
139*	1	-0.54033		0.56461		0.00000																													
140	0	20.95992	\|															-21.90187	\|															0.00000	
141	1	0.44216		-0.43466		-0.11089																													
142	0	20.95992	\|															-21.90187	\|															0.00000	
143*	1	-0.54033		0.56461		0.00000																													
144*	1	-0.54033	\|............	0.56461	\|.....	0.00000																													
145*	0	-20.08375	\|													.	19.74307	\|												..	5.03686				
146	0	6.38662	\|			0.00000		-44.77268	\|																									
147*	1	-0.54033	\|............	0.56461	\|............	0.00000																													

NCSS 12.0.4

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote = 1 (Continued)

Row	Actual validvote	DFBeta Intercept															
148*	1	-0.54033															
149	1	0.44216															
150*	1	-0.54033															
151*	1	-0.22785	.														
152	0	20.95992	\|														
153*	1	-0.54033	\|.............														
154	1	0.44216															
155	0	20.95992	\|														
156*	0	-20.08375	\|														
157*	1	-0.54033															
158	1	0.44216														

DFBeta black	
0.56461	$\mid \ldots \ldots \ldots \ldots .$.
-0.43466	$\mid \ldots \ldots \ldots \ldots .$.
0.56461	$\mid \ldots \ldots \ldots \ldots .$.
0.00000	$\mid \ldots \ldots \ldots \ldots .$.
-21.90187	$\|\|\|\|\|\|\|\|\|\|\|\mid$
0.56461	$\mid \ldots \ldots \ldots \ldots .$.
-0.43466	$\mid \ldots \ldots \ldots \ldots .$.
-21.90187	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$
19.74307	$\|\|\|\|\|\|\|\|\|\|\mid$.
0.56461	$\mid \ldots \ldots \ldots \ldots$.
-0.43466	$\mid \ldots \ldots \ldots \ldots$.

DFBeta otherrace
0.00000
-0.11089
0.00000
1.59732
0.00000
0.00000
-0.11089
0.00000
5.03686
0.00000
-0.11089

159*	0	-20.08375	\|												19.74307	\|											.	5.03686										
160	0	20.95992	\|																-21.90187	\|																0.00000		
161*	0	-20.08375	\|														.	19.74307	\|													.	5.03686					
162*	0	-20.08375	\|														.	19.74307	\|													..	5.03686					
163*	0	-20.08375	\|														.	19.74307	\|													.	5.03686					
164	1	0.44216		-0.43466		-0.11089																															
165	0	20.95992	\|																-21.90187	\|																0.00000		
166	1	0.44216		-0.43466		-0.11089																																
167	0	20.95992	\|														-21.90187	\|														0.00000						
168	1	0.44216		-0.43466		-0.11089																																
169	1	0.44216		-0.43466		-0.11089																																
170	0	20.95992	\|															-21.90187	\|															0.00000				
171	1	0.44216		-0.43466		-0.11089																																
172	1	0.44216		-0.43466		-0.11089																																
173*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
174*	0	-20.08375	\|														.	19.74307	\|													..	5.03686					
175	0	20.95992	\|																	-21.90187	\|																0.00000	
176*	0	-20.08375	\|															.	19.74307	\|													..	5.03686				
177*	0	-20.08375	\|														.	19.74307	\|												..	5.03686						
178	1	0.44216		-0.43466		-0.11089																																
179	0	20.95992	\|															-21.90187	\|															0.00000				
180*	0	-20.08375	\|														19.74307	\|												..	5.03686							
181*	1	-0.54033		0.56461		0.00000																																
182	0	20.95992	\|																-21.90187	\|															0.00000			
183*	0	-20.08375	\|														.	19.74307	\|												..	5.03686						
184*	1	-0.54033		0.56461		0.00000																																
185	0	20.95992	\|															-21.90187	\|															0.00000				
186	1	0.44216	...	-0.43466		-0.11089																																
187	1	0.44216	\|...	-0.43466		-0.11089																																
188	1	0.44216	\|............	-0.43466	-0.11089																																
189	1	0.44216	\|............	-0.43466	\|............	-0.11089																																
190	1	0.44216		-0.43466		-0.11089																																
191*	0	-20.08375	\|															19.74307	\|												..	5.03686						
192*	0	-20.08375	\|														19.74307	\|												.	5.03686							
193	1	0.44216		-0.43466		-0.11089																																
194	1	0.44216		-0.43466		-0.11089																																
195	1	0.44216		-0.43466		-0.11089																																
196*	0	-20.08375	\|													.	19.74307	\|												.	5.03686							

NCSS 12.0.4

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept		DFBeta black		DFBeta otherrace																														
197	0	20.95992	\|																-21.90187	\|																0.00000
198	0	20.95992	\|															-21.90187	\|															0.00000		
199	1	0.44216		-0.43466		-0.11089																														
200	1	0.44216		-0.43466		-0.11089																														
201*	0	-20.08375	\|													19.74307	\|											.	5.03686							

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

```
DFBetas Report For validvote = 1 (Continued)
```

Row	Actual validvote	DFBeta Intercept		DFBeta black		DFBeta otherrace																																
246	1	0.44216		-0.43466		-0.11089																																
247	0	20.95992	\|															-21.90187	\|															0.00000				
248	1	0.44216		-0.43466		-0.11089																																
249	1	0.44216	\|............	-0.43466		-0.11089																																
250	1	0.44216	\|............	-0.43466		-0.11089																																
251	1	0.44216		-0.43466		-0.11089																																
252*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
253	0	20.95992	\|																-21.90187	\|																0.00000		
254	0	20.95992	\|																	-21.90187	\|																0.00000	
255*	0	-20.08375	\|															19.74307	\|													.	5.03686					
256	1	0.44216		-0.43466		-0.11089																																
257	1	0.44216		-0.43466		-0.11089																																
258*	1	-0.54033		0.56461		0.00000																																
259	1	0.44216	-0.43466		-0.11089																																
260*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
261*	0	-20.08375	\|													.	19.74307	\|												.	5.03686							
262	1	0.44216		-0.43466		-0.11089																																
263*	1	-0.54033		0.56461		0.00000																																
264*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
265*	0	-20.08375	\|															19.74307	\|												..	5.03686						
266	0	20.95992	\|																-21.90187	\|															0.00000			
267	1	0.44216		-0.43466		-0.11089																																
268	1	0.44216		-0.43466		-0.11089																																
269*	0	-20.08375	\|														.	19.74307	\|													.	5.03686					
270*	0	-20.08375	\|															19.74307	\|												..	5.03686						
271	1	0.44216		-0.43466		-0.11089																																
272*	1	-0.54033		0.56461		0.00000																																
273*	1	-0.54033	\|.....	0.56461		0.00000																																
274	1	0.44216		-0.43466		-0.11089																																
275*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
276	1	0.44216		-0.43466		-0.11089																																
277*	0	-20.08375	\|													.	19.74307	\|												..	5.03686							
278	0	20.95992	\|																-21.90187	\|															0.00000			
279*	1	-0.54033		0.56461		0.00000																																
280*	0	-20.08375	\|															19.74307	\|													.	5.03686					
281	0	20.95992	\|																-21.90187	\|																0.00000		
282*	1	-0.54033		0.56461		0.00000																																
283	1	0.44216	\|............	-0.43466		-0.11089																																
284*	1	-0.54033	0.56461		0.00000																																
285	1	0.44216	\|.....	-0.43466		-0.11089																																
286	0	20.95992	\|															-21.90187	\|															0.00000				
287	1	0.44216		-0.43466		-0.11089																																
288*	0	-20.08375	\|														.	19.74307	\|													.	5.03686					
289*	0	-20.08375	\|															19.74307	\|												..	5.03686						
290		0.44216		-0.43466		-0.11089																																
291	0	20.95992	\|																-21.90187	\|																0.00000		
292	0	20.95992	\|																-21.90187	\|																0.00000		
293	1	0.44216		-0.43466		-0.11089																																
294	1	0.44216	\|..........	-0.43466		-0.11089																																

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept		DFBeta black		DFBeta otherrace																															
295	0	20.95992	\|															-21.90187	\|															0.00000			
296*	0	-20.08375	\|															19.74307	\|													.	5.03686				
297*	1	-0.54033	\|............	0.56461		0.00000																															
298	0	20.95992	\|																-21.90187	\|																0.00000	
299*	0	-20.08375	\|															19.74307	\|													..	5.03686				
300*	0	-20.08375	\|															19.74307	\|												..	5.03686					
301*	0	-20.08375	\|															19.74307	\|													..	5.03686				
302*	0	-20.08375	\|															19.74307	\|													..	5.03686				
303	0	20.95992	\|																-21.90187	\|																0.00000	
304	0	20.95992	\|																-21.90187	\|																0.00000	
305	0	20.95992	\|																-21.90187	\|																0.00000	
306*	0	-20.08375	\|															19.74307	\|												.	5.03686					
307	0	20.95992	\|																-21.90187	\|															0.00000		
308*	0	-20.08375	\|															19.74307	\|													..	5.03686				
309	0	20.95992	\|																-21.90187	\|															0.00000		
310	1	0.44216		-0.43466		-0.11089																															
311*	1	-0.54033	\|.	0.56461		0.00000																															
312	0	20.95992	\|															-21.90187	\|															0.00000			
313	0	20.95992	\|																-21.90187	\|																0.00000	
314	1	0.44216		-0.43466		-0.11089																															
315	0	20.95992	\|															-21.90187	\|															0.00000			
316*	0	-20.08375	\|														19.74307	\|												..	5.03686						
317*	1	-0.54033		0.56461		0.00000																															
318*	1	-0.54033		0.56461		0.00000																															
319	0	20.95992	\|															-21.90187	\|															0.00000			
320*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
321	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																															
322	0	20.95992	\|															-21.90187	\|															0.00000			
323*	0	-20.08375	\|																19.74307	\|														5.03686			
324*	0	-20.08375	\|															19.74307	\|													..	5.03686				
325*	0	-20.08375	\|															19.74307	\|												..	5.03686					
326*	1	-0.54033	\|.............	0.56461		0.00000																															
327*	0	-20.08375	\|															19.74307	\|													..	5.03686				
328*	0	-20.08375	\|															19.74307	\|													..	5.03686				
329	0	20.95992	\|																-21.90187	\|																0.00000	
330	0	20.95992	\|															-21.90187	\|															0.00000			
331*	1	-0.54033		0.56461		0.00000																															
332	1	0.44216	\|............	-0.43466	\|............	-0.11089																															
333	0	20.95992	\|															-21.90187	\|																0.00000		
334*	0	-20.08375	\|														19.74307	\|												..	5.03686						
335*	1	-0.22785		0.00000		1.59732																															
336*	1	-0.54033		0.56461		0.00000																															
337	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																															
338	0	20.95992	\|																-21.90187	\|																0.00000	
339	0	20.95992	\|															-21.90187	\|															0.00000			
340	1	0.44216	\|.............	-0.43466		-0.11089																															
341*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
342	1	0.44216	\|.............	-0.43466	\|.............	-0.11089																														

\qquad

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept		DFBeta black		DFBeta otherrace																															
344*	0	-20.08375	\|														.	19.74307	\|												..	5.03686					
345	0	20.95992	\|																-21.90187	\|																0.00000	
346*	0	-20.08375	\|														19.74307	\|												..	5.03686						
347	1	0.44216		-0.43466		-0.11089																															
348*	1	-0.22785	\|............	0.00000	1.59732																															
349	1	0.44216		-0.43466		-0.11089																															
350*	0	-20.08375	\|															19.74307	\|												..	5.03686					
351	0	20.95992	\|															-21.90187	\|															0.00000			
352*	1	-0.54033		0.56461		0.00000																															
353*	0	-20.08375	\|													19.74307	\|											.	5.03686								
354*	1	-0.54033		0.56461		0.00000																															
355	0	20.95992	\|																-21.90187	\|															0.00000		
356*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
357	1	0.44216		-0.43466		-0.11089																															
358	0	20.95992	\|															-21.90187	\|															0.00000			
359*	1	-0.54033		0.56461		0.00000																															
360*	1	-0.54033	\|...	0.56461		0.00000																															
361*	1	-0.54033		0.56461		0.00000																															
362*	0	-20.08375	\|													.	19.74307	\|												.	5.03686						
363*	1	-0.54033		0.56461		0.00000																															
364	1	0.44216	\|...	-0.43466	\|............	-0.11089																															
365*	1	-0.54033	\|...	0.56461	\|............	0.00000																															
366	1	0.44216		-0.43466		-0.11089																															
367	1	0.44216		-0.43466		-0.11089																															
368*	0	-20.08375	\|													.	19.74307	\|												.	5.03686						
369	1	0.44216		-0.43466		-0.11089																															
370*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
371*	1	-0.54033	\|............	0.56461		0.00000																															
372*	1	-0.54033	\|............	0.56461		0.00000																															
373*	1	-0.54033	\|............	0.56461		0.00000																															
374		0.44216		-0.43466		-0.11089																															
375*	1	-0.54033		0.56461		0.00000																															
376*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
$377 *$	0	-20.08375	\|																19.74307	\|													..	5.03686			
378*	0	-20.08375	\|														.	19.74307	\|												..	5.03686					
379	1	0.44216		-0.43466		-0.11089																															
380	1	0.44216	\|...........	-0.43466		-0.11089																															
381	0	6.38662	\|			0.00000		-44.77268	\|																											
382*	1	-0.54033	\|......	0.56461		0.00000																															
383*	0	-20.08375	\|														19.74307	\|												.	5.03686						
384*	1	-0.54033		0.56461		0.00000																															
385*	1	-0.54033	\|............	0.56461	\|............	0.00000																															

386	0	20.95992	\|															-21.90187	\|															0.00000			
387	0	20.95992	\|																-21.90187	\|																0.00000	
388	0	20.95992	\|															-21.90187	\|															0.00000			
389*	0	-20.08375	\|														.	19.74307	\|													..	5.03686				
390	0	20.95992	\|																-21.90187	\|															0.00000		
391*	0	-20.08375	\|														.	19.74307	\|													.	5.03686				
392*	0	-20.08375	\|														.	19.74307	\|												..	5.03686					

NCSS 12.0.45/17/2023 1:26:51 PM 23

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept		DFBeta black		DFBeta otherrace																															
393	1	0.44216		-0.43466	\|............	-0.11089																															
394*	1	-0.54033		0.56461		0.00000																															
395	0	20.95992	\|															-21.90187	\|															0.00000			
396	1	0.44216		-0.43466		-0.11089																															
397*	1	-0.54033		0.56461		0.00000																															
398*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
399	0	20.95992	\|															-21.90187	\|															0.00000			
400	1	0.44216		-0.43466		-0.11089																															
401	0	20.95992	\|															-21.90187	\|															0.00000			
402	0	6.38662	\|			..	0.00000		-44.77268	\|																											
403	0	20.95992	\|																-21.90187	\|																0.00000	
404*	0	-20.08375	\|													.	19.74307	\|												..	5.03686						
405*	1	-0.22785		0.00000		1.59732																															
406*	0	-20.08375	\|													19.74307	\|											..	5.03686								
407	1	0.44216		-0.43466		-0.11089																															
408*	0	-20.08375	\|													19.74307	\|											..	5.03686								
409	0	20.95992	\|															-21.90187	\|																0.00000		
410*	1	-0.54033		0.56461		0.00000																															
411	0	20.95992	\|															-21.90187	\|																0.00000		
412	0	20.95992	\|																-21.90187	\|																0.00000	
413*	0	-20.08375	\|																19.74307	\|													..	5.03686			
414	0	20.95992	\|																-21.90187	\|																0.00000	
415	0	6.38662	\|			.	0.00000		-44.77268	\|																											
416	1	0.44216		-0.43466		-0.11089																															
417	1	0.44216		-0.43466		-0.11089																															
418	0	20.95992	\|															-21.90187	\|															0.00000			
419	1	0.44216		-0.43466		-0.11089																															
420	1	0.44216		-0.43466		-0.11089																															
421	0	20.95992	\|															-21.90187	\|															0.00000			
422	0	6.38662	\|			0.00000		-44.77268	\|																											
423	1	0.44216	\|............	-0.43466	\|............	-0.11089																															
424	1	0.44216	\|..	-0.43466		-0.11089																															
425	1	0.44216		-0.43466		-0.11089																															
426*	0	-20.08375	\|														.	19.74307	\|													.	5.03686				
427*	0	-20.08375	\|															19.74307	\|												..	5.03686					
428	1	0.44216		-0.43466		-0.11089																															

429	0	6.38662		0.00000		-44.77268	\|																														
430	0	6.38662		0.00000		-44.77268	\|																														
431*	0	-20.08375	\|															19.74307	\|													..	5.03686				
432	0	20.95992	\|																-21.90187	\|																0.00000	
433	0	20.95992	\|																-21.90187	\|																0.00000	
434*	0	-20.08375	\|															19.74307	\|												.	5.03686					
435*	0	-20.08375	\|															19.74307	\|													..	5.03686				
436	0	20.95992	\|																-21.90187	\|																0.00000	
437	0	20.95992	\|															-21.90187	\|															0.00000			
438	0	6.38662	\|			0.00000		-44.77268	\|																											
439*	0	-20.08375	\|															19.74307	\|												..	5.03686					
440*	0	-20.08375	\|															19.74307	\|												..	5.03686					
441	0	20.95992	\|															-21.90187	\|															0.00000			

NCSS 12.0.4

Logistic Regression Report

Dataset	... INCSSmsexport. NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

DFBetas Report For validvote $=1$ (Continued)

Row	Actual validvote	DFBeta Intercept		DFBeta black																																
442*	0	-20.08375	\|															19.74307	\|												.-					
443	0	20.95992	\|																-21.90187	\|																
444*	0	-20.08375	\|															19.74307	\|													..				
445	0	20.95992	\|																-21.90187	\|																
446*	0	-20.08375	\|															19.74307	\|												..					
447*	1	-0.54033		0.56461																																
448*	1	-0.54033	\|.............	0.56461																																
449*	1	-0.54033	\|.............	0.56461	\|............																															
450*	0	-20.08375	\|													.	19.74307	\|												..						
451	1	0.44216		-0.43466																																
452	1	0.44216		-0.43466																																
453	0	20.95992	\|															-21.90187	\|																	
454*	0	-20.08375	\|																19.74307	\|].			
455	0	20.95992	\|																	-21.90187	\|															
456	0	20.95992	\|																-21.90187	\|																
457	0	20.95992	\|																-21.90187	\|																
458*	0	-20.08375	\|														19.74307	\|												..						
459	1	0.44216		-0.43466	\|........																															
460	0	20.95992	\|															-21.90187	\|																	

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Influence Diagnostics Report For validvote =1

Row	Actual validvote	Hat Diagonal		Cook's Distance (C)		Cook's Distance (CBar)																																													
1	1	0.44911	\|						159.93919		88.10898	\|																																					
2	1	0.44911	\|							159.93919		88.10898	\|																																				
3*	1	0.57746	\|								308.17036		130.21478	\|											...																									
4*	0	0.44911	\|							186.38389		102.67711	\|																																				
5	1	0.44911	\|						159.93919		88.10898	\|																																					
6	1	0.44911	\|							159.93919		88.10898	\|																																				
7*	1	0.57746	\|									308.17036		130.21478	\|												...																							
8	1	0.44911	\|							159.93919		88.10898	\|																																				
9	1	0.44911	\|							159.93919		88.10898	\|																																				
10	1	0.44911	\|							159.93919		88.10898	\|																																				
11	1	0.44911	\|							.	159.93919		88.10898	\|								.																													
12	1	0.44911	\|							159.93919	\|...	88.10898	\|																																				
13	1	0.44911	\|							159.93919		88.10898	\|																																				
14*	1	0.96226	\|																4235.00431	\|															159.82785	\|															
15*	1	0.57746	\|									308.17036		130.21478	\|												...																							
16*	1	0.57746	\|								308.17036		130.21478	\|												...																								
17*	1	0.57746	\|								308.17036		130.21478	\|												...																								
18	1	0.44911	\|							159.93919		88.10898	\|																																				
19	1	0.44911	\|							159.93919	-..	88.10898	\|																																				
20*	0	0.44911	\|						...	186.38389		102.67711	\|																																					
21	1	0.44911	\|								159.93919		88.10898	\|																																					
22*	0	0.44911	\|						...	186.38389		102.67711	\|																																					
23	0	0.57746	\|									263.80925		111.47037	\|										..																									
24	0	0.57746	\|									.	263.80925		111.47037	\|										..																									
25*	1	0.96226	\|																4235.00431	\|															159.82785	\|															
26	1	0.44911	\|							159.93919		88.10898	\|																																				
27*	0	0.44911	\|							186.38389		102.67711	\|																																				
28	1	0.44911	\|						159.93919		88.10898	\|																																						
29*	0	0.44911	\|						186.38389		102.67711	\|																																						
30*	0	0.44911	\|								186.38389		102.67711	\|									.																												
31	1	0.44911	\|							159.93919		88.10898	\|																																				
32	1	0.44911	\|							159.93919		88.10898	\|																																				
33	1	0.44911	\|							159.93919		88.10898	\|																																				
$34 *$	0	0.44911	\|							186.38389		102.67711	\|																																				
35*	1	0.57746	\|									308.17036		130.21478	\|												..																							
36*	0	0.44911	\|							...	186.38389		102.67711	\|									...																												
37	1	0.44911	\|							.	159.93919		88.10898	\|																																					
38	0	0.57746	\|									263.80925	...	111.47037	\|																																		
39*	0	0.44911	\|							186.38389		102.67711	\|																																				
40*	0	0.44911	\|							186.38389		102.67711	\|																																				
41	1	0.44911	\|						159.93919		88.10898	\|								.																														
42	1	0.44911	\|						...	159.93919		88.10898	\|							..																															
43^{*}	0	0.44911	\|								186.38389		102.67711	\|																																				
44	0	0.96226	\|																1499.55501	\|				56.59278	\|																								
45	1	0.44911	\|							159.93919		88.10898	\|																																				
46*	0	0.44911	\|						...	186.38389		102.67711	\|																																					
47*	0	0.44911	\|							186.38389		102.67711	\|																																				
48	1	0.44911	\|							159.93919	88.10898	\|																																				

Logistic Regression Report

Dataset	\ldots INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight
Influence Diagnostics Report For validvote = $\mathbf{1}$ (Continued)	

Row	Actual validvote	Hat Diagonal		Cook's Distance (C)		Cook's Distance (CBar)																																												
49	1	0.44911	\|						159.93919		88.10898	\|					.																																
50	1	0.44911	\|							159.93919		88.10898	\|																																				
51	1	0.44911	\|						159.93919		88.10898	\|																																				
52*	0	0.44911	\|						186.38389		102.67711	\|																																				
53	1	0.44911	\|						159.93919		88.10898	\|																																				
54	0	0.57746	\|									263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . .$.																																		
55*	0	0.44911	\|							186.38389		102.67711	$\|\|\|\|\|\|\|\|\|\mid \ldots .$.																																					
56	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$.																																				
57	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
58*	1	0.57746	\|								308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																																			
59	1	0.44911	\|						159.93919		88.10898	\|																																				
60	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$..																																					
61*	1	0.96226	\|															4235.00431	\|															159.82785	\|															
62*	0	0.44911	\|						186.38389		102.67711	$\|\|\|\|\|\|\|\|\|\mid$.....																																					
63	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
64	0	0.57746	\|								263.80925		111.47037	\|																																		
65*	0	0.44911	\|						186.38389		102.67711	\|																																				
66	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$.																																					
67	1	0.44911	\|						159.93919		88.10898	\|								.																													
68	1	0.44911	\|						159.93919		88.10898	\|																																				
69	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid \ldots . .$.																																					
70*	0	0.44911	\|						186.38389		102.67711	\|																																				
71*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																																		
72	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
73*	0	0.44911	\|							186.38389		102.67711	\|																																				
74*	0	0.44911	\|						186.38389		102.67711	\|																																				
75	1	0.44911	\|						159.93919		88.10898	\|																																				
76*	0	0.44911	\|						-......	186.38389		102.67711	\|																																				
77	1	0.44911	\|						159.93919		88.10898	\|																																					
78	1	0.44911	\|						159.93919		88.10898	\|																																					
79	1	0.44911	\|						159.93919		88.10898	\|																																					
80	1	0.44911	\|						159.93919		88.10898	\|																																					
81	0	0.57746	\|									263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . .$.																																		
82*	1	0.57746	\|									308.17036		130.21478	\|												...																							
83	1	0.44911	\|						159.93919		88.10898	\|																																					
84	0	0.57746	\|								263.80925		111.47037	\|																																		
85*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																																		
86	0	0.96226	\|															1499.55501	\|				56.59278	\|																									
87	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																				
88*	0	0.44911	\|						186.38389		102.67711	\|																																				
89	1	0.44911	\|						159.93919		88.10898	\|																																					
90	1	0.44911	\|						159.93919		88.10898	\|								.																													
91	1	0.44911	\|						159.93919		88.10898	\|								.																													
92	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
93*	0	0.44911	\|						186.38389	\|.......	102.67711	$\|\|\|\|\|\|\|\|\mid \ldots .$.																																					

| 94 | 1 | 0.44911 | \|||||| | 159.93919 | ... | 88.10898 | \||||||||| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95 | 1 | 0.44911 | \|||||||| | 159.93919 | | 88.10898 | $\|\|\|\|\|\|\|\mid$...... |
| 96* | 1 | 0.57746 | \|||||||| | 308.17036 | \|............. | 130.21478 | $\|\|\|\|\|\|\|\|\|\|\|\mid .$. |

NCSS 12.0.45/17/2023 1:26:51 PM 27

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Influence Diagnostics Report For validvote = 1 (Continued)

Row	Actual validvote	Hat Diagonal		Cook's Distance (C)		Cook's Distance (CBar)																						
97	1	0.44911	\|							159.93919		88.10898	\|														
98	1	0.44911	\|							159.93919		88.10898	\|								.						
99*	0	0.44911	\|						186.38389		102.67711	$\|\|\|\|\|\|\|\|\mid$.															
100*	1	0.57746	\|										308.17036		130.21478	\|												...
101*	1	0.57746	\|									...	308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..												
102	0	0.57746	\|								263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\mid$....													
103*	0	0.44911	\|						186.38389		102.67711	\|															
104*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.												
105*	0	0.44911	\|							186.38389		102.67711	$\|\|\|\|\|\|\|\|\mid$.....														
106*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..												
107*	0	0.44911	\|						186.38389		102.67711	$\|\|\|\|\|\|\|\|\|\mid . . .$.															
108*	1	0.57746	\|								308.17036		130.21478	\|												...	
109	0	0.57746	\|								263.80925		111.47037	\|												
110*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..													
111*	1	0.57746	\|									308.17036		130.21478	\|												...	
112*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..												
113	1	0.44911	\|						159.93919		88.10898	\|								.							
114	0	0.57746	\|								263.80925		111.47037	\|												
115*	0	0.44911	\|						186.38389		102.67711	$\|\|\|\|\|\|\|\|\|\mid$.															
116*	1	0.57746	\|									308.17036		130.21478	\|												...	
117	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\mid$.														
118	1	0.44911	\|						159.93919		88.10898	\|															
119	1	0.44911	\|						159.93919		88.10898	\|															
120	0	0.57746	\|								263.80925		111.47037	\|												
121*	0	0.44911	\|						186.38389		102.67711	$\|\|\|\|\|\|\|\|\mid$.															
122*	0	0.44911	\|							186.38389		102.67711	\|															
123	1	0.44911	\|							159.93919		88.10898	\|								.						
124	1	0.44911	\|						159.93919		88.10898	\|															
125	1	0.44911	\|						159.93919		88.10898	\|								.							
126*	0	0.44911	\|						-......	186.38389		102.67711	\|														
127	1	0.44911	\|						159.93919		88.10898	\|								.							
128	1	0.44911	\|						159.93919		88.10898	\|															
129*	0	0.44911	\|							186.38389		102.67711	\|														
130	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$.															
131*	0	0.44911	\|						186.38389		102.67711	\|								-....							
132*	0	0.44911	\|							186.38389	102.67711	\|														
133	1	0.44911	\|						159.93919		88.10898	\|															
134	1	0.44911	\|						159.93919		88.10898	\|															
135*	0	0.44911	\|						186.38389	\|............	102.67711	\|														

136*	0	0.44911	\|							186.38389	102.67711													
137*	0	0.44911	\|						186.38389	102.67711	\|												
138*	0	0.44911	\|						-......	186.38389	102.67711	\|													
139*	1	0.57746	\|									308.17036	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...										
140	0	0.57746	\|									263.80925	111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . .$.											
141	1	0.44911	\|							159.93919	88.10898	\|													
142	0	0.57746	\|									263.80925	111.47037	\|										
143*	1	0.57746	\|									308.17036	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.											
144*	1	0.57746	\|								308.17036	130.21478	\|											

NCSS 12.0.4

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Influence Diagnostics Report For validvote = 1 (Continued)

Row	Actual validvote	Hat Diagonal		Cook's Distance (C)		Cook's Distance (CBar)																																											
145*	0	0.44911	\|						...	186.38389		102.67711	\|																																			
146	0	0.96226	\|																1499.55501	\|					56.59278	\|																						
147*	1	0.57746	\|									308.17036	\|....	130.21478	\|												...																						
148*	1	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.....	308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...																																										
149	1	0.44911	\|						159.93919		88.10898	\|								...																												
150*	1	0.57746	\|								-....	308.17036	\|...	130.21478	\|												...																						
151*	1	0.96226	\|															4235.00431	\|															159.82785	\|														
152	0	0.57746	\|									263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . . .$.																																		
153*	1	0.57746	\|								308.17036		130.21478	\|												...																						
154	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$......																																				
155	0	0.57746	\|								263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . .$.																																		
156*	0	0.44911	\|						186.38389		102.67711	\|																																				
157*	1	0.57746	\|									308.17036		130.21478	\|												...																					
158	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$......																																				
159*	0	0.44911	\|						186.38389		102.67711	\|																																				
160	0	0.57746	\|									263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . . .$.																																	
161*	0	0.44911	\|						186.38389		102.67711	\|																																			
162*	0	0.44911	\|						186.38389		102.67711	\|																																			
163*	0	0.44911	\|						186.38389		102.67711	\|																																			
164	1	0.44911	\|						159.93919		88.10898	\|																																				
165	0	0.57746	\|								263.80925		111.47037	\|																																		
166	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$.																																				
167	0	0.57746	\|								263.80925		111.47037	\|																																	
168	1	0.44911	\|						159.93919		88.10898	\|																																			
169	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$.																																				
170	0	0.57746	\|								263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.																																		
171	1	0.44911	\|						159.93919		88.10898	\|																																				
172	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid \ldots . .$.																																				
173*	0	0.44911	\|						186.38389		102.67711	\|																																			
174*	0	0.44911	\|						186.38389		102.67711	\|																																				
175	0	0.57746	\|								263.80925		111.47037	\|																																	
176*	0	0.44911	\|							186.38389		102.67711	\|																																		
177*	0	0.44911	\|						186.38389	\|...........	102.67711	\|																																			

178	1	0.44911	\|							159.93919		88.10898	\|														
179	0	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.....	263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid$....																					
180*	0	0.44911	\|						186.38389		102.67711	\|														
181*	1	0.57746	\|								-....	308.17036		130.21478	\|												...	
182	0	0.57746	\|								263.80925		111.47037	\|												
183*	0	0.44911	\|							186.38389	\|.............	102.67711	\|														
184*	1	0.57746	\|									...	308.17036		130.21478	\|												...
185	0	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.....	263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid$....																					
186	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$......														
187	1	0.44911	\|						159.93919		88.10898	\|														
188	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$......														
189	1	0.44911	\|							159.93919		88.10898	\|													
190	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......														
191*	0	0.44911	\|							186.38389		102.67711	\|													
192*	0	0.44911	\|						186.38389	\|.............	102.67711	\|														

NCSS 12.0.4

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight
Influence Diagnostics Report For validvote = 1 (Continued)	

220*	1	0.57746	\|									308.17036		130.21478	..																																				
221	1	0.44911	\|							159.93919	\|.............	88.10898	\|																																					
222*	0	0.44911	\|						186.38389		102.67711	\|																																						
223	0	0.57746	\|									263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid$.																																			
224*	0	0.44911	\|							186.38389		102.67711	\|																																					
225*	1	0.96226	\|																4235.00431	\|															159.82785	\|															
226	1	0.44911	\|							159.93919		88.10898	\|																																						
227	1	0.44911	\|						159.93919		88.10898	\|																																						
228*	0	0.44911	\|							186.38389		102.67711	\|																																						
229	1	0.44911	\|						159.93919		88.10898	\|																																						
230	1	0.44911	\|						159.93919		88.10898	\|																																						
231*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																																			
232	0	0.96226	\|																1499.55501	\|				56.59278	$\|\|\|\|\mid$.																									
233	1	0.44911	\|						159.93919		88.10898	\|																																						
234	1	0.44911	\|						159.93919		88.10898	\|																																						
235*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																																			
236	0	0.57746	\|								263.80925	\|............	111.47037	\|										.																										
237*	0	0.44911	\|							186.38389		102.67711	\|									.																												
238*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\mid$...																																			
239*	0	0.44911	\|						186.38389	102.67711	\|																																						
240	0	0.57746	\|								263.80925		111.47037	\|																																			

NCSS 12.0.4

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Influence Diagnostics Report For validvote $=1$ (Continued)

262	1	0.44911	\|								159.93919	88.10898	\|													
263*	1	0.57746	\|									308.17036	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.											
264*	0	0.44911	\|							186.38389	102.67711	\|													
265*	0	0.44911	\|							186.38389	102.67711	\|												
266	0	0.57746	\|								263.80925	111.47037	\|											
267	1	0.44911	\|							159.93919	88.10898	\|												
268	1	0.44911	\|							.	159.93919	88.10898	\|								.					
269*	0	0.44911	\|							.	186.38389	102.67711	\|													
270*	0	0.44911	\|						186.38389	102.67711	$\|\|\|\|\|\|\|\|\mid$.														
271	1	0.44911	\|						159.93919	88.10898	\|													
272*	1	0.57746	\|									308.17036	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.											
273*	1	0.57746	\|								308.17036	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\mid . .$.												
274	1	0.44911	\|							159.93919	88.10898	\|													
275*	0	0.44911	\|							186.38389	102.67711	\|													
276	1	0.44911	\|						159.93919	88.10898	\|													
277*	0	0.44911	$\|\|\|\|\|\|\mid$..	186.38389	102.67711	\|																			
278	0	0.57746	\|									.	263.80925	111.47037	\|											
279*	1	0.57746	\|								308.17036	130.21478	\|												...
280*	0	0.44911	\|							.	186.38389	102.67711	$\|\|\|\|\|\|\|\|\|\mid$.													
281	0	0.57746	\|									.	263.80925	111.47037	\|											
282*	1	0.57746	\|								308.17036	130.21478	\|											...	
283	1	0.44911	\|							159.93919	88.10898	$\|\|\|\|\|\|\|\mid$......													
284*	1	0.57746	\|								308.17036	130.21478	\|												...
285	1	0.44911	\|								159.93919	88.10898	\|													
286	0	0.57746	\|									263.80925	111.47037	\|										
287	1	0.44911	\|						159.93919	88.10898	\|													
288*	0	0.44911	\|						186.38389	102.67711	\|													

NCSS 12.0.4

Logistic Regression Report

Dataset
Y (Ref Value)
Frequency
...INCSSmsexport.NCSS
validvote(0)
commonpostweight

Influence Diagnostics Report For validvote = 1 (Continued)

304	0	0.57746	\|									...	263.80925	\|.............	111.47037	\|																																		
305	0	0.57746	\|								263.80925		111.47037	\|																																				
306*	0	0.44911	\|								186.38389		102.67711	\|																																				
307	0	0.57746	\|									263.80925	\|.............	111.47037	\|									-...																									
308*	0	0.44911	\|						186.38389		102.67711	\|																																				
309	0	0.57746	\|									263.80925		111.47037	\|																																	
310	1	0.44911	\|							159.93919		88.10898	\|																																			
311*	1	0.57746	\|										308.17036		130.21478	\|												...																						
312	0	0.57746	\|									.	263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . . .$.																																		
313	0	0.57746	\|									263.80925		111.47037	\|									-...																									
314	1	0.44911	\|							159.93919		88.10898	\|																																			
315	0	0.57746	\|									263.80925		111.47037	\|																																	
316*	0	0.44911	\|							186.38389		102.67711	\|																																				
317*	1	0.57746	\|										308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...																																		
318*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																																		
319	0	0.57746	\|									263.80925		111.47037	\|																																	
320*	0	0.44911	\|							186.38389		102.67711	\|																																				
321	1	0.44911	\|							159.93919		88.10898	\|																																			
322	0	0.57746	\|									.	263.80925		111.47037	\|																																		
323*	0	0.44911	\|							186.38389		102.67711	\|																																				
324*	0	0.44911	\|							186.38389		102.67711	\|																																			
325*	0	0.44911	\|						186.38389		102.67711	\|																																				
326*	1	0.57746	\|									308.17036		130.21478	\|											-..																							
327*	0	0.44911	\|							186.38389		102.67711	\|									.																											
328*	0	0.44911	\|							186.38389		102.67711	\|																																				
329	0	0.57746	\|									.	263.80925		111.47037	\|										..																								
330	0	0.57746	\|									263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\mid$....																																		
331*	1	0.57746	\|									308.17036		130.21478	\|											...																							
332	1	0.44911	\|							159.93919	\|.............	88.10898	$\|\|\|\|\|\|\|\mid$......																																				
333	0	0.57746	\|									.	263.80925		111.47037	\|									-...																									
334*	0	0.44911	\|							186.38389	\|.............	102.67711	\|																																					
335*	1	0.96226	\|															4235.00431	\|															159.82785	\|															
336*	1	0.57746	\|								308.17036	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\mid$...																																			

NCSS 12.0.4

Logistic Regression Report

Dataset
Y (Ref Value)
Frequency
...INCSSmsexport.NCSS validvote(0) commonpostweight

Influence Diagnostics Report For validvote = 1 (Continued)

Row	Actual validvote	Hat Diagonal		Cook's Distance (C)		Cook's Distance (CBar)																				
337	1	0.44911	\|								159.93919		88.10898	\|												
338	0	0.57746	\|									263.80925		111.47037	\|										
339	0	0.57746	\|									263.80925		111.47037	\|									
340	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid \ldots . .$.												
341*	0	0.44911	\|							186.38389	..	102.67711	\|													
342	1	0.44911	\|							159.93919		88.10898	\|												
343	0	0.57746	\|									263.80925	\|.............	111.47037	\|										
344*	0	0.44911	\|						186.38389	\|.............	102.67711	\|													
345	0	0.57746	\|								263.80925	\|......	111.47037	\|									.		

346*	0	0.44911	\|							186.38389		102.67711	\|								.																														
347	1	0.44911	\|							...	159.93919	\|.............	88.10898	\|																																					
348*	1	0.96226	\|																4235.00431	\|															159.82785	\|															
349	1	0.44911	\|							.	159.93919		88.10898	\|																																					
350*	0	0.44911	\|						186.38389		102.67711	\|																																						
351	0	0.57746	\|									263.80925		111.47037	\|																																			
352*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																																			
353*	0	0.44911	\|								186.38389		102.67711	\|																																					
354*	1	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.	308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...																																												
355	0	0.57746	\|									263.80925		111.47037	\|																																			
356*	0	0.44911	\|							186.38389		102.67711	\|																																					
357	1	0.44911	\|						159.93919		88.10898	\|								.																														
358	0	0.57746	\|								263.80925		111.47037	\|									..																											
359*	1	0.57746	\|								..	308.17036		130.21478	\|											...																									
360*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																																				
361*	1	0.57746	\|								308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																																				
362*	0	0.44911	\|							186.38389		102.67711	\|								-....																													
363*	1	0.57746	\|								308.17036		130.21478	\|											...																									
364	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$.																																						
365*	1	0.57746	\|									.	308.17036		130.21478	\|											...																								
366	1	0.44911	\|							159.93919		88.10898	\|																																					
367	1	0.44911	\|						159.93919		88.10898	\|																																						
368*	0	0.44911	\|							186.38389		102.67711	\|																																					
369	1	0.44911	\|						159.93919		88.10898	\|																																						
370*	0	0.44911	\|							.	186.38389		102.67711	\|									.																												
371*	1	0.57746	\|								308.17036		130.21478	\|												.																								
372*	1	0.57746	\|									308.17036		130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																																			
373*	1	0.57746	\|									308.17036		130.21478	\|											...																									
374	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\mid$.																																						
375*	1	0.57746	\|								308.17036		130.21478	\|												...																								
376*	0	0.44911	\|								186.38389		102.67711	\|																																					
377*	0	0.44911	\|						.	186.38389		102.67711	\|																																						
378*	0	0.44911	\|						186.38389		102.67711	\|																																						
379	1	0.44911	\|						159.93919		88.10898	\|																																						
380	1	0.44911	\|						159.93919		88.10898	\|																																						
381	0	0.96226	\|															1499.55501	\|				56.59278	\|																										
382*	1	0.57746	\|									308.17036		130.21478	\|												...																							
383*	0	0.44911	\|							186.38389	\|.............	102.67711	\|									.																												
384*	1	0.57746	\|								308.17036	\|.............	130.21478	\|											...																									

NCSS 12.0.4

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Influence Diagnostics Report For validvote = 1 (Continued)

388	0	0.57746	\|									263.80925	\|.	111.47037	\|																																		
389*	0	0.44911	\|								186.38389		102.67711	\|																																				
390	0	0.57746	\|									263.80925		111.47037	\|																																	
391*	0	0.44911	\|							186.38389	\|.............	102.67711	\|																																			
392*	0	0.44911	\|						186.38389		102.67711	\|																																				
393	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$.																																				
394*	1	0.57746	\|									308.17036	\|.	130.21478	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...																																		
395	0	0.57746	\|								263.80925		111.47037	\|																																		
396	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$......																																				
397*	1	0.57746	\|								308.17036		130.21478	\|												...																							
398*	0	0.44911	\|							186.38389		102.67711	\|																																			
399	0	0.57746	\|									263.80925		111.47037	\|																																	
400	1	0.44911	\|								159.93919		88.10898	\|																																			
401	0	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.	263.80925		111.47037	$\|\|\|\|\|\|\|\|\|\|\mid . .$.																																											
402	0	0.96226	\|															1499.55501	\|				56.59278	\|																								
403	0	0.57746	\|									263.80925		111.47037	\|																																	
404*	0	0.44911	\|							186.38389		102.67711	\|																																			
405*	1	0.96226	\|															4235.00431	\|															159.82785	\|															
406*	0	0.44911	\|							186.38389		102.67711	\|																																			
407	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$......																																				
408*	0	0.44911	\|						186.38389		102.67711	\|																																				
409	0	0.57746	\|								263.80925		111.47037	\|																																		
410*	1	0.57746	\|									308.17036		130.21478	\|												...																						
411	0	0.57746	\|									263.80925		111.47037	\|																																	
412	0	0.57746	\|									263.80925		111.47037	\|										\ldots																								
413*	0	0.44911	\|							186.38389		102.67711	\|																																			
414	0	0.57746	\|									263.80925		111.47037	\|																																	
415	0	0.96226	\|															1499.55501	\|				56.59278	\|																								
416	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid$.																																				
417	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
418	0	0.57746	\|									263.80925		111.47037	\|																																	
419	1	0.44911	\|							159.93919		88.10898	\|																																			
420	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
421	0	0.57746	\|								263.80925		111.47037	\|																																		
422	0	0.96226	\|															1499.55501	\|				56.59278	\|																								
423	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid \ldots . .$.																																				
424	1	0.44911	\|							159.93919		88.10898	$\|\|\|\|\|\|\|\|\mid \ldots .$.																																				
425	1	0.44911	\|						159.93919	\|.............	88.10898	$\|\|\|\|\|\|\|\mid \ldots . .$.																																					
426*	0	0.44911	\|						186.38389		102.67711	\|																																				
427*	0	0.44911	\|						186.38389		102.67711	\|																																				
428	1	0.44911	\|						159.93919		88.10898	$\|\|\|\|\|\|\|\mid$......																																					
429	0	0.96226	\|																1499.55501	\|				56.59278	\|																							
430	0	0.96226	\|																1499.55501	$\|\|\|\|\mid$.........	56.59278	\|																											
431*	0	0.44911	\|							186.38389		102.67711	\|																																				
432	0	0.57746	\|								263.80925	\|............	111.47037	\|																																		

NCSS 12.0.4

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Influence Diagnostics Report For validvote = 1 (Continued)

Row	Actual validvote	Hat Diagonal		Cook's Distance (C)		Cook's Distance (CBar)																						
433	0	0.57746	\|									263.80925	\|.............	111.47037	\|												
434*	0	0.44911	\|							186.38389	\|.	102.67711	\|													
435*	0	0.44911	\|						186.38389		102.67711	\|														
436	0	0.57746	\|									263.80925		111.47037	\|											
437	0	0.57746	\|									263.80925	\|.	111.47037	\|											
438	0	0.96226	\|															1499.55501	\|				56.59278	\|			
439*	0	0.44911	\|							186.38389		102.67711	\|													
440*	0	0.44911	\|						186.38389		102.67711	\|														
441	0	0.57746	\|								263.80925		111.47037	\|												
442*	0	0.44911	\|						186.38389	\|.............	102.67711	\|														
443	0	0.57746	\|									263.80925		111.47037	\|											
444*	0	0.44911	\|						186.38389		102.67711	\|															
445	0	0.57746	\|									263.80925		111.47037	\|											
446*	0	0.44911	\|						186.38389		102.67711	\|														
447*	1	0.57746	\|								308.17036		130.21478	\|												..	
448*	1	0.57746	\|									308.17036		130.21478	\|												...
449*	1	0.57746	\|								308.17036		130.21478	\|											...		
450*	0	0.44911	\|						186.38389		102.67711	\|														
451	1	0.44911	\|						159.93919		88.10898	\|														
452	1	0.44911	\|						159.93919		88.10898	\|														
453	0	0.57746	\|								263.80925		111.47037	\|												
454*	0	0.44911	\|						186.38389		102.67711	\|														
455	0	0.57746	\|									.	263.80925		111.47037	\|											
456	0	0.57746	\|								263.80925		111.47037	\|												
457	0	0.57746	\|									263.80925		111.47037	\|											
458*	0	0.44911	\|						186.38389		102.67711	\|								-....							
459	1	0.44911	\|						159.93919		88.10898	\|														
460	0	0.57746	\|								263.80925	\|.............	111.47037	\|												

NCSS 12.0.4

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Diagnostics Report For validvote $=1$

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																				
1	1	0.44911	\|							93.71207	\|							196.18596	\|											..												
2	1	0.44911	\|							93.71207	\|							196.18596	\|												...									
3*	1	0.57746	\|								134.47151	\|											-..	225.49637	\|																
4*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
5	1	0.44911	\|						93.71207	\|							196.18596	\|												...										
6	1	0.44911	\|						93.71207	\|							196.18596	\|												...										
7*	1	0.57746	\|									134.47151	\|												...	225.49637	\|														
8	1	0.44911	\|						93.71207	\|							196.18596	\|												..										
9	1	0.44911	\|						93.71207	\|							196.18596	\|												...										
10	1	0.44911	\|						93.71207	\|							196.18596	\|												...										

11	1	0.44911	\|						93.71207	\|							196.18596	\|											...																
12	1	0.44911	\|						93.71207	\|							-.....	196.18596	\|											...																
13	1	0.44911	\|							93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																										
14*	1	0.96226	\|															159.98894	\|																166.09627	\|										
15*	1	0.57746	$\|\|\|\|\|\|\|\|\mid$.....	134.47151	\|												...	225.49637	\|																												
16*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																			
17*	1	0.57746	\|									134.47151	\|											...	225.49637	\|																					
18	1	0.44911	\|						93.71207	\|							196.18596	\|											...																
19	1	0.44911	\|						93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																											
20*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
21	1	0.44911	\|							93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$																										
22*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																									
23	0	0.57746	\|								115.62666	\|										193.03618	\|												...										
24	0	0.57746	\|									115.62666	\|										193.03618	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																					
25*	1	0.96226	\|																159.98894	\|																166.09627	\|									
26	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
27*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
28	1	0.44911	\|						93.71207	\|								196.18596	\|											...																
29*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																									
30*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
31	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
32	1	0.44911	\|						93.71207	\|								196.18596	\|												...															
33	1	0.44911	\|							93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																									
34*	0	0.44911	\|						108.14792	\|									228.62377	\|																									
35*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																			
36*	0	0.44911	\|						108.14792	\|									228.62377	\|																									
37	1	0.44911	\|						93.71207	\|								196.18596	\|												...														
38	0	0.57746	\|									115.62666	\|										193.03618	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																					
39*	0	0.44911	\|						108.14792	\|									228.62377	\|																									
40*	0	0.44911	\|						108.14792	\|										228.62377	\|																								
41	1	0.44911	\|							93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$.																										
42	1	0.44911	\|							93.71207	\|								196.18596	\|												...														
43*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
44	0	0.96226	\|															56.75007	\|				58.81234	\|																						
45	1	0.44911	\|							93.71207	\|							-.....	196.18596	\|											...															
46*	0	0.44911	\|						108.14792	\|										228.62377	\|																								
47*	0	0.44911	\|						108.14792	\|									228.62377	\|																									
48	1	0.44911	\|						93.71207	\|							\ldots....	196.18596	\|												...															

NCSS 12.0.4

Logistic Regression Report

Dataset	... INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

$\left.\begin{array}{lrrrrrr} & & & & \text { Deviance } & & \text { Chi-Square } \\ \text { Change }\end{array}\right]$

53	1	0.44911	\|						93.71207	\|							196.18596	\|											...															
54	0	0.57746	\|								115.62666	\|									193.03618	\|											...											
55*	0	0.44911	\|						108.14792	\|									228.62377	\|																								
56	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
57	1	0.44911	\|						...	93.71207	\|							196.18596	\|												...														
58*	1	0.57746	\|								134.47151	\|											...	225.49637	\|														.						
59	1	0.44911	\|							93.71207	\|							196.18596	\|											...														
60	1	0.44911	I\|I				93.71207	IIII\|			196.18596	\\|										...																							
61*	1	0.96226	\|																159.98894	\|															166.09627	\|									
62*	0	0.44911	\|							.	108.14792	\|										228.62377	\|																						
63	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
64	0	0.57746	\|								115.62666	\|									193.03618	\|												...										
65*	0	0.44911	\|						108.14792	\|									228.62377	\|																								
66	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
67	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
68	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
69	1	0.44911	\|						..	93.71207	\|							196.18596	\|												...														
70*	0	0.44911	\|						108.14792	\|									228.62377	\|																								
71*	1	0.57746	\|									134.47151	\|											...	225.49637	\|														.					
72	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
73*	0	0.44911	\|							108.14792	\|									228.62377	\|																							
74*	0	0.44911	\|							108.14792	\|									228.62377	\|																							
75	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
76*	0	0.44911	\|							108.14792	\|									228.62377	\|																							
77	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
78	1	0.44911	\|							93.71207	\|							196.18596	\|											...														
79	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
80	1	0.44911	\|						..	93.71207	\|							196.18596	\|												...														
81	0	0.57746	\|									115.62666	\|									193.03618	\|												...										
82*	1	0.57746	\|								134.47151	\|											...	225.49637	\|														.						
83	1	0.44911	\|							93.71207	\|							196.18596	\|												...													
84	0	0.57746	\|								115.62666	\|									193.03618	\|												...										
85*	,	0.57746	\|								..	134.47151	\|											...	225.49637	\|														.						
86	0	0.96226	\|																56.75007	\|	I			58.81234																						
87		0.44911	\|						..	93.71207	\|							196.18596	\|											..															
88*	0	0.44911	\|							108.14792	\|									228.62377	\|																							
89		0.44911	\|							93.71207	\|							196.18596	\|												...													
90	1	0.44911	\|							93.71207	\|							196.18596	\|												...													
91	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
92		0.44911	\|							93.71207	\|								196.18596	\|												...												
93*	0	0.44911	\|						108.14792	\|									228.62377	\|																								
94	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
95		0.44911	\|						93.71207	\|							196.18596	\|												...														
96*	1	0.57746	\|								134.47151	\|											...	225.49637	\|														.						

NCSS 12.0.4

Logistic Regression Report

Dataset Y (Ref Value)
Frequency
...INCSSmsexport.NCSS
validvote(0)
commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																					
97	1	0.44911	\|						93.71207	\|							196.18596	\|												..											
98	1	0.44911	\|						93.71207	\|							-.....	196.18596	\|												...											
99*	0	0.44911	\|						108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																														
100*	1	0.57746	\|									134.47151	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..	225.49637	\|																											
101*	1	0.57746	\|									...	134.47151	\|												...	225.49637	\|															
102	0	0.57746	\|								115.62666	$\|\|\|\|\|\|\|\|\|\mid$....	193.03618	\|												...																
103*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid . . .$.	228.62377	\|																													
104*	1	0.57746	\|								134.47151	\|												...	225.49637	\|																
105*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid . . .$.	228.62377	\|																													
106*	1	0.57746	$\|\|\|\|\|\|\|\|\mid$.....	134.47151	\|												...	225.49637	\|																								
107*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																														
108*	1	0.57746	\|									.	134.47151	\|												...	225.49637	\|															
109	0	0.57746	\|									115.62666	$\|\|\|\|\|\|\|\|\|\mid$....	193.03618	\|												..																
110*	1	0.57746	\|									134.47151	\|												..	225.49637	\|															
111*	1	0.57746	\|									134.47151	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	225.49637	\|																											
112*	1	0.57746	\|								134.47151	$\|\|\|\|\|\|\|\|\|\|\|\mid$...	225.49637	\|																												
113	1	0.44911	\|							93.71207	\|							196.18596	\|												...											
114	0	0.57746	\|									115.62666	\|										193.03618	\|												...					
115*	0	0.44911	\|						108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																														
116*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																	
117	1	0.44911	\|							93.71207	\|								196.18596	\|												...									
118	1	0.44911	\|							93.71207	\|								196.18596	\|												...									
119	1	0.44911	\|							.	93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																					
120	0	0.57746	\|									115.62666	$\|\|\|\|\|\|\|\|\|\mid$....	193.03618	\|												...															
121*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																														
122*	0	0.44911	\|							108.14792	\|									228.62377	\|																				
123	1	0.44911	\|							.	93.71207	\|								196.18596	\|												..									
124	1	0.44911	\|							.	93.71207	\|								196.18596	\|												\ldots									
125	1	0.44911	\|							.	93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																					
126*	0	0.44911	\|						108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																														
127	1	0.44911	\|							93.71207	\|								196.18596	\|												..									
128	1	0.44911	\|						93.71207	\|								196.18596	\|												...										
129*	0	0.44911	\|							.	108.14792	\|										228.62377	\|																			
130	1	0.44911	\|								93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																					
131*	0	0.44911	\|						108.14792	\|										228.62377	\|																				
132*	0	0.44911	\|							108.14792	\|										228.62377	\|																			
133	1	0.44911	\|						93.71207	\|								196.18596	\|												...										
134	1	0.44911	\|						93.71207	\|								196.18596	\|												...										
135*	0	0.44911	\|							.	108.14792	\|										228.62377	\|																			
136*	0	0.44911	\|						...	108.14792	\|										228.62377	\|																				
137*	0	0.44911	\|						108.14792	\|										228.62377	\|																				
138*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																					
139*	1	0.57746	\|								134.47151	\|												...	225.49637	\|																
140	0	0.57746	\|									115.62666	$\|\|\|\|\|\|\|\|\|\mid$....	193.03618	\|												...															
141	1	0.44911	\|							93.71207	\|								196.18596	\|												..										
142	0	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.....	115.62666	$\|\|\|\|\|\|\|\|\|\|\mid$....	193.03618	\|												...																								
143*	1	0.57746	\|									134.47151	$\|\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	225.49637	\|																											
144*	1	0.57746	\|									134.47151	\|												...	225.49637	\|															

NCSS 12.0.4
5/17/2023 1:26:51 PM

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																									
145*	0	0.44911	\|							108.14792	\|									228.62377	\|																								
146	0	0.96226	\|																56.75007	\|					58.81234																						
147*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																			
148*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																					
149	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
150*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																			
151*	1	0.96226	\|																159.98894	\|																166.09627	\|									
152	0	0.57746	\|									115.62666	\|										193.03618	\|												...									
153*	1	0.57746	\|									.	134.47151	\|												...	225.49637	\|																			
154	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
155	0	0.57746	\|								115.62666	\|										193.03618	\|												...										
156*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
157*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																			
158	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
159*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																									
160	0	0.57746	\|								115.62666	\|										193.03618	\|												...										
161*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
162*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																									
163*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
164	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
165	0	0.57746	\|								115.62666	\|									193.03618	\|												...											
166	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
167	0	0.57746	\|									115.62666	\|										193.03618	\|												...									
168	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
169	1	0.44911	\|							.	93.71207	\|							196.18596	\|												...														
170	0	0.57746	\|									115.62666	\|									193.03618	\|												...										
171	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
172	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
173*	0	0.44911	\|						108.14792	\|										228.62377	\|																								
174*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
175	0	0.57746	\|									.	115.62666	\|										193.03618	\|												...									
176*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
177*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																									
178	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
179	0	0.57746	\|								115.62666	\|									193.03618	\|												...											
180*	0	0.44911	\|								108.14792	\|										228.62377	\|																							
181*	1	0.57746	\|										134.47151	\|												...	225.49637	\|																			
182	0	0.57746	\|									115.62666	\|										193.03618	\|												...									
183*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
184*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																			
185	0	0.57746	\|									115.62666	\|									193.03618	\|												...										
186	1	0.44911	\|							93.71207	\|								196.18596	\|													..												
187	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																											

| 188 | 1 | 0.44911 | \||||||| | 93.71207 | \|||||||| | 196.18596 | \||||||||| ... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 189 | 1 | 0.44911 | \||||||| | 93.71207 | $\|\|\|\|\|\|\|\mid$.. | 196.18596 | $\|\|\|\|\|\|\|\|\|\|\|\|\mid . .$. |
| 190 | 1 | 0.44911 | \|||||||. | 93.71207 | $\|\|\|\|\|\|\|\mid$.... | 196.18596 | $\|\|\|\|\|\|\|\|\|\|\|\mid . .$. |
| 191* | 0 | 0.44911 | \|||||||. | 108.14792 | $\|\|\|\|\|\|\|\|\|\mid$.. | 228.62377 | \||||||||||||||| |
| 192* | 0 | 0.44911 | \|||||||. | 108.14792 | $\|\|\|\|\|\|\|\|\|\mid$.... | 228.62377 | \||||||||||||||| |

NCSS 12.0.45/17/2023 1:26:51 PM 39

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																								
193	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
194	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
195	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																										
196*	0	0.44911	\|								108.14792	\|										.	228.62377	\|																						
197	0	0.57746	\|									...	115.62666	\|										.	193.03618	\|												...								
198	0	0.57746	\|								115.62666	\|										193.03618	\|												...									
199	1	0.44911	\|						93.71207	\|							196.18596	\|												..														
200	1	0.44911	\|						93.71207	\|								196.18596	\|												...													
201*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$	228.62377	\|																																	
202*	0	0.44911	\|							108.14792	\|										228.62377	\|																						
203	0	0.57746	\|								115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|												...																			
204	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
205*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																		
206	0	0.57746	\|								115.62666	\|										193.03618	\|												...									
207*	0	0.44911	\|							108.14792	\|										...	228.62377	\|																							
208	0	0.57746	\|									115.62666	\|										193.03618	\|												...								
209*	0	0.44911	\|						108.14792	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	228.62377	\|																																	
210*	0	0.44911	\|						108.14792	\|										228.62377	\|																							
211*	0	0.44911	\|						108.14792	\|										228.62377	\|																							
212*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$	228.62377	\|																																	
213*	0	0.44911	\|							108.14792	\|										228.62377	\|																						
214	1	0.44911	\|							93.71207	\|								196.18596	\|												...												
215	1	0.44911	\|							93.71207	\|								196.18596	\|												...													
216	1	0.44911	\|						93.71207	\|							-.....	196.18596	\|												...														
217	1	0.44911	\|						93.71207	\|								196.18596	\|												...													
218*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$	228.62377	\|																																	
219	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																										
220*	1	0.57746	\|									134.47151	\|												..	225.49637	\|																			
221	1	0.44911	\|							93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																									
222*	0	0.44911	\|						-......	108.14792	\|										228.62377	\|																							
223	0	0.57746	\|									115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|												...																			
224*	0	0.44911	\|						108.14792	\|										228.62377	\|																							
225*	1	0.96226	\|																159.98894	\|															166.09627	\|									
226	1	0.44911	\|						93.71207	\|							196.18596	\|												..														
227	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
228*	0	0.44911	\|							108.14792	\|										228.62377	\|																							
229	1	0.44911	\|						93.71207	$\|\|\|\|\|\|\|\mid$......	196.18596	$\|\|\|\|\|\|\|\|\|\|\|\mid$..																																	

230	1	0.44911	\|							93.71207	\|								196.18596	..																							
231*	1	0.57746	\|									.	134.47151	\|											...	225.49637	\|																
232	0	0.96226	\|																56.75007	\|				58.81234																		
233	1	0.44911	\|							93.71207	\|								196.18596	\|												..									
234	1	0.44911	\|						93.71207	\|							196.18596	\|												...											
235*	1	0.57746	\|									134.47151	\|												...	225.49637	\|															
236	0	0.57746	\|								115.62666	\|										193.03618	\|												...						
237*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																													
238*	1	0.57746	\|									134.47151	\|												...	225.49637	\|															
239*	0	0.44911	\|							108.14792	\|										228.62377	\|																			
240	0	0.57746	\|								115.62666	\|									193.03618	\|											...								

NCSS 12.0.4
5/17/2023 1:26:51 PM 40

Logistic Regression Report

Dataset
Y (Ref Value)
Frequency
...INCSSmsexport.NCSS
validvote(0)
commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																			
241	1	0.44911	\|						93.71207	\|								196.18596	\|												...									
242*	0	0.44911	\|						108.14792	\|									.	228.62377	\|																			
243*	0	0.44911	\|							108.14792	\|										228.62377	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$																		
244*	1	0.57746	\|									134.47151	\|												...	225.49637	$\|\|\|\|\|\|\|\|\|\|\|\|\|\|\mid$.													
245	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																					
246	1	0.44911	\|						93.71207	$\|\|\|\|\|\|\|\mid$......	196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																												
247	0	0.57746	\|									115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																									
248	1	0.44911	\|						93.71207	\|								196.18596	\|												...								
249	1	0.44911	\|						93.71207	\|								196.18596	\|												...								
250	1	0.44911	\|						93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																				
251	1	0.44911	\|						93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$...																				
252*	0	0.44911	\|						108.14792	\|										228.62377	\|																		
253	0	0.57746	\|								115.62666	\|										193.03618	\|												...				
254	0	0.57746	\|									115.62666	\|										193.03618	\|												...			
255*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																												
256	1	0.44911	\|						93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																				
257	1	0.44911	\|						93.71207	\|							196.18596	\|												...									
258*	1	0.57746	\|								134.47151	\|												...	225.49637	\|														
259	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.																					
260*	0	0.44911	\|						108.14792	\|										228.62377	\|																		
261*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																												
262	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																					
263*	1	0.57746	\|									134.47151	\|											...	225.49637	\|														
264*	0	0.44911	\|						108.14792	\|										228.62377	\|																		
265*	0	0.44911	\|						108.14792	\|										228.62377	\|																		
266	0	0.57746	\|									115.62666	\|										193.03618	\|												...			
267	1	0.44911	\|							93.71207	\|								196.18596	\|												...							
268	1	0.44911	\|						93.71207	\|							196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																					
269*	0	0.44911	\|						108.14792	\|										228.62377	\|																		
270*	0	0.44911	\|						108.14792	\|										228.62377	\|																		
271	1	0.44911	\|						93.71207	\|							196.18596	\|																					

272*	1	0.57746	\|								...	134.47151	\|											...	225.49637	\|																
273*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																
274	1	0.44911	\|							93.71207	\|							196.18596	\|											...											
275*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
276	1	0.44911	\|						93.71207	\|							.	196.18596	\|												...										
277*	0	0.44911	\|						.	108.14792	\|										228.62377	\|																			
278	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
279*	1	0.57746	\|								134.47151	\|												.	225.49637	\|														.	
280*	0	0.44911	\|						...	108.14792	\|									228.62377	\|																				
281	0	0.57746	\|								115.62666	\|									193.03618	\|											...							
282*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																
283	1	0.44911	\|I	I			93.71207	I\|I					196.18596	\|											...															
284*	1	0.57746	\|									134.47151	\|												...	225.49637	\|														.
285	1	0.44911	\|						..	93.71207	\|							196.18596	\|												...										
286	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
287	1	0.44911	\|							93.71207	\|								196.18596	\|											...									
288*	0	0.44911	\|							108.14792	\|										228.62377	\|																		

NCSS 12.0.4
5/17/2023 1:26:51 PM

Logistic Regression Report

Dataset
Y (Ref Value)
Frequency
...INCSSmsexport.NCSS
validvote(0)
commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																				
289*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
290	1	0.44911	\|						.	93.71207	\|	I						196.18596	\|											...												
291	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
292	0	0.57746	\|								115.62666	\|									193.03618	\|											...							
293	1	0.44911	\|							93.71207	\|								196.18596	\|												..								
294	1	0.44911	\|						93.71207	\|							.	196.18596	\|											...											
295	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
296*	0	0.44911	\|							108.14792	\|									228.62377	\|																			
297*	1	0.57746	\|									134.47151	\|												...	225.49637	\|														.
298	0	0.57746	\|								115.62666	\|									193.03618	\|												..						
299*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
300*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
301*	0	0.44911	\|							108.14792	\|										228.62377	\|																		
302*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
303	0	0.57746	\|								115.62666	\|										.	193.03618	\|																	
304	0	0.57746	\|								115.62666	\|									193.03618	\|												..						
305	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
306*	0	0.44911	\|						...	108.14792	\|									228.62377	\|																				
307	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
308*	0	0.44911	\|							108.14792	\|										228.62377	\|																		
309	0	0.57746	\|									115.62666	\|										193.03618	\|																
310	1	0.44911	\|						.	93.71207	\|							.	196.18596	\|												...										
311*	1	0.57746	\|								134.47151	\|												225.49637	\|																
312	0	0.57746	\|								115.62666	\|										...	193.03618	\|											...						
313	0	0.57746	\|									115.62666	\|										193.03618	\|										...						

314	1	0.44911	\|						93.71207	\|							.	196.18596	\|											...													
315	0	0.57746	\|								115.62666	\|									193.03618	\|											...									
316*	0	0.44911	\|						...	108.14792	\|									228.62377	\|																						
317*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																		
318*	1	0.57746	\|								134.47151	\|												...	225.49637	\|																	
319	0	0.57746	\|								115.62666	\|									193.03618	\|												...								
320*	0	0.44911	\|							108.14792	\|									228.62377	\|																					
321	1	0.44911	\|								93.71207	\|									196.18596	\|												...										
322	0	0.57746	\|								115.62666	\|									193.03618	\|											...									
323*	0	0.44911	\|							108.14792	\|									228.62377	\|																					
324*	0	0.44911	\|							108.14792	\|									228.62377	\|																					
325*	0	0.44911	\|							108.14792	\|										228.62377	\|																				
326*	1	0.57746	\|									134.47151	\|												...	225.49637	\|																
327*	0	0.44911	\|							108.14792	\|									228.62377	\|																					
328*	0	0.44911	\|						.	108.14792	\|									228.62377	\|																						
329	0	0.57746	\|								115.62666	\|									193.03618	\|												...								
330	0	0.57746	\|								115.62666	\|									193.03618	\|												...								
331*	1	0.57746	\|								134.47151	\|											...	225.49637	\|														.				
332	1	0.44911	\|							93.71207	\|								196.18596	\|												...										
333	0	0.57746	\|									115.62666	\|									193.03618	\|												...							
334*	0	0.44911	\|								108.14792	\|									228.62377	\|																					
335*	1	0.96226	\|															159.98894	\|															166.09627	\|									
336*	1	0.57746	\|								134.47151	\|										..	225.49637	\|																			

NCSS 12.0.4
5/17/2023 1:26:51 PM
42

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y(Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																				
337	1	0.44911	\|								93.71207	\|								196.18596	$\|\|\|\|\|\|\|\|\|\|\|\|\mid$..																					
338	0	0.57746	\|									115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|												...														
339	0	0.57746	\|									115.62666	\|										193.03618	\|												...				
340	1	0.44911	\|							93.71207	\|							196.18596	\|											...										
341*	0	0.44911	\|						108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																													
342	1	0.44911	\|							93.71207	\|								196.18596	\|												...								
343	0	0.57746	\|								115.62666	\|									193.03618	\|												...						
344*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																												
345	0	0.57746	\|								115.62666	\|										193.03618	\|												...					
346*	0	0.44911	\|							108.14792	\|										228.62377	\|																		
347	1	0.44911	\|						93.71207	\|								196.18596	\|												...									
348*	1	0.96226	\|																159.98894	\|																166.09627	$\|\|\|\|\|\|\|\|\|\|\mid$					
349	1	0.44911	\|							93.71207	\|								196.18596	\|												...								
350*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																												
351	0	0.57746	\|								115.62666	\|										193.03618	\|												...					
352*	1	0.57746	\|									134.47151	\|												...	225.49637	\|														
353*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\mid \ldots .$.	228.62377	\|																												
354*	1	0.57746	\|									.	134.47151	\|												...	225.49637	\|														
355	0	0.57746	\|								115.62666	\|									193.03618	\|												..						

356*	0	0.44911	\|							108.14792	\|										228.62377	\|																		
357	1	0.44911	\|							93.71207	\|								196.18596	\|												.									
358	0	0.57746	\|									.	115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|												...														
359*	1	0.57746	\|									134.47151	\|											...	225.49637	\|															
360*	1	0.57746	\|									134.47151	\|												..	225.49637	\|														
361*	1	0.57746	\|								134.47151	$\|\|\|\|\|\|\|\|\|\|\|\mid \ldots$	225.49637	\|																											
362*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																												
363*	1	0.57746	\|										134.47151	\|											...	225.49637	\|															
364	1	0.44911	\|							93.71207	$\|\|\|\|\|\|\|\mid$......	196.18596	\|												...																
365*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																
366	1	0.44911	\|						93.71207	\|							196.18596	\|												...										
367	1	0.44911	\|						93.71207	\|							196.18596	\|												...										
368*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																				
369	1	0.44911	\|						93.71207	\|							196.18596	\|												..										
370*	0	0.44911	\|						108.14792	\|										228.62377	\|																			
371*	1	0.57746	\|									134.47151	\|												..	225.49637	\|														
372*	1	0.57746	\|									134.47151	\|											...	225.49637	\|															
373*	1	0.57746	\|									134.47151	$\|\|\|\|\|\|\|\|\|\|\|\mid 1 .$.	225.49637	\|																										
374	1	0.44911	\|								93.71207	\|								196.18596	\|																				
375*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																
376*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	228.62377	\|																												
377*	0	0.44911	\|						108.14792	\|									-...	228.62377	\|																				
378*	0	0.44911	\|						108.14792	\|									228.62377	\|																				
379	1	0.44911	\|							.	93.71207	\|								196.18596	\|												...								
380	1	0.44911	\|						..	93.71207	\|							196.18596	\|		...																				
381	0	0.96226	\|															56.75007	\|				58.81234	\|																
382*	1	0.57746	\|								134.47151	\|											...	225.49637	\|																
383*	0	0.44911	\|							108.14792	\|										228.62377	\|																		
384*	1	0.57746	\|									134.47151	\|												...	225.49637	\|														

NCSS 12.0.4
5/17/2023 1:26:51 PM

Logistic Regression Report

Dataset	\ldots..INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																			
385*	1	0.57746	\|								...	134.47151	\|											...	225.49637	\|														.	
386	0	0.57746	\|									.	115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|												..													
387	0	0.57746	$\|\|\|\|\|\|\|\|\mid$..	115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . . .$.	193.03618	\|												..																						
388	0	0.57746	$\|\|\|\|\|\|\|\|\mid$.....	115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|												..																						
389*	0	0.44911	\|						108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																												
390	0	0.57746	\|								115.62666	$\|\|\|\|\|\|\|\|\|\mid$....	193.03618	\|												..														
391*	0	0.44911	\|							108.14792	$\|\|\|\|\|\|\|\|\|\|\mid \ldots$.	228.62377	\|																											
392*	0	0.44911	\|								108.14792	\|											228.62377	\|																
393	1	0.44911	\|						93.71207	\|								196.18596	\|												..								
394*	1	0.57746	\|								134.47151	\|												...	225.49637	\|														
395	0	0.57746	\|								115.62666	\|										193.03618	\|												..				
396	1	0.44911	\|								93.71207	\|								196.18596	\|												..							
397*	1	0.57746	\|								134.47151	\|											...	225.49637	\|															

398*	0	0.44911	\|								108.14792	\|									..	228.62377	\|																							
399	0	0.57746	\|								115.62666	\|									193.03618	\|											...											
400	1	0.44911	\|						...	93.71207	\|							196.18596	\|												...														
401	0	0.57746	\|								...	115.62666	\|									193.03618	\|											...											
402	0	0.96226	\|																56.75007	\|				58.81234																					
403	0	0.57746	\|									115.62666	\|									193.03618	\|											...										
404*	0	0.44911	\|								108.14792	\|									.	228.62377	\|																							
405*	1	0.96226	\|																159.98894	\|															166.09627	\|									
406*	0	0.44911	\|							108.14792	\|									228.62377	\|																							
407	1	0.44911	\|						93.71207	\|							196.18596	\|											...															
408*	0	0.44911	\|	i	l		108.14792	\|i								228.62377	\|I	I																										
409	0	0.57746	\|								115.62666	\|									193.03618	\|											...											
410*	1	0.57746	\|								134.47151	\|												...	225.49637	\|														.					
411	0	0.57746	\|								115.62666	\|									193.03618	\|												...										
412	0	0.57746	\|									115.62666	\|									193.03618	\|												...									
413*	0	0.44911	\|							108.14792	\|										228.62377	\|																						
414	0	0.57746	\|	I							115.62666	\|										193.03618	\|												...									
415	0	0.96226	\|																56.75007	\|					58.81234																				
416	1	0.44911	\|								93.71207	\|							196.18596	\|											...														
417	1	0.44911	\|								93.71207	\|							.	196.18596	\|											...														
418	0	0.57746	\|									115.62666	\|									193.03618	\|												...									
419	1	0.44911	\|						93.71207	\|							196.18596	\|												...														
420	1	0.44911	\|						93.71207	\|	l					196.18596	\|											...																
421	0	0.57746	\|									115.62666	\|									193.03618	\|												...									
422	0	0.96226	\|																56.75007	\|				58.81234																					
423	1	0.44911	\|						...	93.71207	\|							196.18596	\|											...															
424	1	0.44911	\|							.	93.71207	\|							196.18596	\|												...													
425	1	0.44911	\|						...	93.71207	\|							196.18596	\|											...															
426*	0	0.44911	\|						108.14792	\|								228.62377	\|																									
427*	0	0.44911	\|						.	108.14792	\|									228.62377	\|																								
428	1	0.44911	\|							.	93.71207	\|							196.18596	\|											...														
429	0	0.96226	\|																56.75007	\|				58.81234																					
430	0	0.96226	\|																56.75007	\|				58.81234																					
431*	0	0.44911	I\|IIII		108.14792	\|									228.62377	\|																													
432	0	0.57746	\|								115.62666	\|									193.03618	\|											...											

NCSS 12.0.4
5/17/2023 1:26:51 PM
44

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Residual Diagnostics Report For validvote $=1$ (Continued)

Row	Actual validvote	Hat Diagonal		Deviance Change (DFDev)		Chi-Square Change (DFChi2)																																
433	0	0.57746	\|								115.62666	\|									193.03618	\|											...			
434*	0	0.44911	\|						108.14792	\|										228.62377	\|															
435*	0	0.44911	\|						108.14792	\|										228.62377	\|															
436	0	0.57746	\|								115.62666	\|									-...	193.03618	$\|\|\|\|\|\|\|\|\|\|\|\|\mid .$.														
437	0	0.57746	\|								115.62666	\|									193.03618	\|											...			
438	0	0.96226	\|															56.75007	\|					58.81234	\|	1.											
439*	0	0.44911	\|						108.14792	\|									228.62377	\|																

440*	0	0.44911	\|								108.14792	$\|\|\|\|\|\|\|\|\|\mid$....	228.62377	\|																										
441	0	0.57746	$\|\|\|\|\|\|\|\|\|\mid . . .$.	115.62666	$\|\|\|\|\|\|\|\|\|\|\mid . .$.	193.03618	\|																																	
442*	0	0.44911	\|								108.14792	\|										228.62377	\|																
443	0	0.57746	\|								\ldots...	115.62666	\|									193.03618	\|												...				
444*	0	0.44911	\|							108.14792	\|										228.62377	\|																	
445	0	0.57746	\|									.	115.62666	\|									193.03618	\|												...			
446*	0	0.44911	\|							108.14792	\|									228.62377	\|																	
447*	1	0.57746	\|								...	134.47151	\|											...	225.49637	\|														
448*	1	0.57746	$\|\|\|\|\|\|\|\|\|\mid$.	134.47151	\|												...	225.49637	\|																					
449*	1	0.57746	\|									134.47151	\|											...	225.49637	\|														
450*	0	0.44911	\|						108.14792	\|									228.62377	\|																		
451	1	0.44911	\|						-....	93.71207	\|							196.18596	\|												...								
452	1	0.44911	\|							.	93.71207	\|								196.18596	\|												...						
453	0	0.57746	\|								.	115.62666	\|									193.03618	\|												..				
454*	0	0.44911	$\|\|\|\|\|\|\mid$..	108.14792	\|										228.62377	\|																							
455	0	0.57746	\|									115.62666	\|									-...	193.03618	\|												...			
456	0	0.57746	\|									115.62666	\|										193.03618	\|												...		
457	0	0.57746	\|									115.62666	\|									193.03618	\|												...			
458*	0	0.44911	\|							108.14792	\|									-...	228.62377	\|																		
459	1	0.44911	\|								93.71207	\|							196.18596	\|												..							
460	0	0.57746	\|								\ldots...	115.62666	\|									193.03618	\|												...				

NCSS 12.0.4

Logistic Regression Report

Dataset ...INCSSmsexport.NCSS

Y (Ref Value) validvote(0)
Frequency commonpostweight
Diagnostic Plots

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

Autosave Inactive
Variables, Model Tab
-- Variables

```
Y: validvote
    Reference Value:
    O
Numeric X's:
black, otherrace
Categorical X's:
<Empty>
Frequencies: commonpostweight
Validation Filter:
<Empty>
```

-- Regression Model

Terms:
 Remove Intercept

1-Way
Unchecked
.. Prior Y-Value Probabilities (Changes Intercept and Predicted Values)
Priors:
Equal across Y Values

Subset Selection Tab

-- Select the Best Subset from the X's
Search for the Best Subset from the X's
Unchecked
Iteration Tab
-- Iteration Options

20
Iteration Termination:
0.000001

Reports Tab
-- Select Reports
.. Summaries

Run Summary	Checked
Y Variable Summary	Checked

.. Subset Selection

Subset Summary	Checked
Subset Detail	Checked

.. Estimation

Coefficient Significance Tests	Checked
Coefficient Confidence Limits	Checked
Odds Ratios	Checked
Estimated Model (Reading Form)	Checked
Estimated Model (Transformation Form)	Checked

.. Goodness-of-Fit
Analysis of Deviance \quad Checked

Logistic Regression Report

Dataset	...INCSSmsexport.NCSS
Y (Ref Value)	validvote(0)
Frequency	commonpostweight

- Classification

Classification Matrix	Checked
Validation Matrix	Checked
ROC Report	Checked

- Row-by-Row Lists

Row Classification Report:	None
Row Classification Probs Report:	None
Simple Residuals Report:	None
Residuals	Checked
Dfetas	Checked
Influence Diagnostics	Checked
Residual Diagnostics	Checked

Report Options Tab

-- Confidence Levels
Confidence Level:
95
-- Variable and Value Labels

Variable Names:	Names
Value Labels:	Data Values
Stagger label and output if label length is \geq	15

-- Decimal Places
Precision:
Single
Probability: 5
Beta (Coefficients): 5
SE(Beta): 5
Z: 3
Log Likelihood: 5
Odds Ratio: 5
DFBeta: 5
Coefficients in Reading Form Model: 2

Plots Tab

-- Select Plots

Y vs X	Checked
ROC Curves (Combined)	Checked
ROC Curve (Separate)	Checked

Residuals vs X	Checked	
Skip Reference Value	Checked	
Deviance Residuals vs X	Checked	
Pearson Residuals vs X	Checked	
Pr (Correct) vs Cutoff	Checked	
-- ROC Curves and Prob(Correct) vs Cutoff Plot Options\qquad		
Number Cutoffs:	29	
NCSS 12.0.4		5/17/2023 1:26:51 PM
Logistic Regression Report		
Dataset ...INCSSmsexport.NCSS		
Y (Ref Value) validvote(0)		
Frequency commonpostweig		
Procedure Input Settings (Continued)		
Storage Tab		
-- Data Storage Op		
Storage Option:	Do not stor	

Appendix B

There are three possible ways to measure turnout in the 2020 CES using the validation variables. Two use only the "CL_2020gvm" vote validation variable while the third uses this variable in conjunction with self-reported registration (votereg_post) and self-reported turnout (CC20_401).

1. Un-matched as non-voters. The first specification defines voters as respondents with a validated voting record no matter their mode of participation, and defines nonvoters as both matched non-voters and non-matched respondents. This specification retains the integrity of the full CES sample, no missing values are created. The justification for this approach is the fact that the most common reason that Catalist will not have a record for an individual is because that individual is not registered to vote. Indeed, rates of self-reported non-registration and nonvoting are much higher among un-matched respondents than among those for whom there is a match.
2. Only matched non-voters as non-voters. The second specification defines nonvoters as only matched non-voters. This specification reduces the CES sample and results in validated turnout estimates that are larger than those in the first specification. However, this specification increases the level of certainty in the identification of non-voters in the CES, because there could possibly be actual voters among nonmatched respondents.
3. Matched non-voters and self-reported non-voters as non-voters. The third specification defines non-voters as (1) matched non-voters, (2) non-matched respondents who reported not being registered to vote in the "votereg_post" question, and (3) non-matched respondents who are self-reported non-voters in the "CC20_401" question. This definition excludes non-matched respondents who are self-reported voters (these individuals would be coded as missing). This definition assumes that self-reported non-voters are honest about their non-participation because there is no incentive to go against the democratic norm of participation.

Appendix C

NCSS 12.0.18
Two-Sample Comparison Report
Dataset
...IVALIDATE VOTED BLACK \& WHITE T TEST.NCSS
Confidence Intervals of Means

					95.0\% C. I. of $\boldsymbol{\mu}$	
			Standard	Standard	Lower	Upper
Group	\mathbf{N}	Mean	Deviation	Error	Limit	Limit
1	121	0.049	0.218	0.01981818	0.009761379	0.08823862
2	61	0.1475	0.357	0.04570917	0.05606806	0.2389319

Two-Sided Confidence Interval for $\boldsymbol{\mu 1}$ - $\boldsymbol{\mu} \mathbf{2}$

							95.0% C. I. of $\mu 1-\mu 2$	
Upper								

Equal-Variance T-Test

| Alternative | Mean
 Hypothesis
 Difference
 $\mu 1-\mu 2>0$ | Standard | Error of
 Difference | T-Statistic | d.f. | Prob
 Level |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Reject H0 |
| :--- |
| at $\alpha=$ |

Aspin-Welch Unequal-Variance T-Test

Alternative Hypothesis 0.050	Mean Difference	Standard Error of Difference	T-Statistic	d.f.	Prob Level	Reject H0 at $\alpha=$
0	-0.0985	0.04982056	-1.9771	83.21	0.97433	No

Procedure Input Settings
Autosave Inactive
Data Tab
--- Group Summary Values -----------------------------------
Group 1 Sample Size:

Group 1 Mean:	.049
Group 1 Standard Deviation:	.218
Group 2 Sample Size:	61
Group 2 Mean:	.1475
Group 2 Standard Deviation:	.357
Reports Tab	
-- Confidence Intervals ---	
Confidence Level:	95
Confidence Intervals of Each Group Mean	Checked Confidence Interval of $\mu 1-\mu 2$ Limits:
Confidence Intervals of Each Group Standard Deviation	Twne-Sided Confidence Interval of $\sigma 1 / \sigma 2$

Two-Sample Comparison Report

Dataset ...IVALIDATE VOTED BLACK \& WHITE T TEST.NCSS

Procedure Input Settings (Continued)

Reports Tab (Continued)

-- Tests

Alpha:	0.05
H0: $\mu 1-\mu 2=$	0.0
Ha:	$\mu 1-\mu 2>\mathrm{H} 0$ Value (one-sided)

.. Parametric

Equal-Variance T-Test	Checked
Unequal-Variance T-Test	Checked
Z-Test	Unchecked
Equivalence Test	Unchecked
Power Report for Equal-Variance T-Test	Unchecked
Power Report for Unequal-Variance T-Test	Unchecked

. Assumptions

```
Variance-Ratio Test Unchecked
```

-- Decimal Places

Means, Differences, and C.I. Limits:
Standard Deviations and Standard Errors:
P-Values and Powers:
Test Statistics:

Auto (Up to 7)
Auto (Up to 7)
5
4

IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF MISSISSIPPI GREENVILLE DIVISION

DYAMONE WHITE, et al.,

Plaintiffs,
vs.
STATE BOARD OF ELECTION COMMISSIONERS, et al.,

Defendants.

No. 4:22cv62-MPM-JMV

DECLARATION OF WILLIAM S. COOPER

WILLIAM S. COOPER, acting in accordance with 28 U.S.C. § 1746,
Federal Rule of Civil Procedure 26(a) (2) (B), and Federal Rules of Evidence 702 and 703 , does hereby declare and say:

I. INTRODUCTION

A. Redistricting Experience

1. My name is William S. Cooper. I have a B.A. in Economics from Davidson College. As a private consultant, I was retained as a demographic and redistricting expert for the Plaintiffs. I am compensated at a rate of $\$ 150$ per hour, and my compensation is not contingent on the outcome of this litigation. I reserve the right to continue to amend or supplement my reports, including in light of
additional facts, testimony, and/or materials that may come to light over the course of the discovery period in this case.
2. I have been accepted as an expert trial witness on redistricting and demographics in about 50 federal-court voting rights cases across 18 states, including Mississippi. Five of those cases resulted in changes to statewide legislative boundaries. ${ }^{1}$ Approximately 25 of those cases led to changes in local election district plans. ${ }^{2}$ My testimony in such cases almost always includes a review of the demographics and socioeconomic characteristics of the jurisdiction or jurisdictions at issue. In Voting Rights Act cases, I also typically produce one or more illustrative districting plans for the jurisdiction.
3. In 2022, I have testified as an expert in redistricting and demographics in six cases challenging district boundaries under Section 2 of the Voting Rights Act:

Caster v. Merrill, No. 21-1356-AMM (N.D. Ala.), Pendergrass v. Raffensperger,
No. 21-05337-SCJ (N.D. Ga.), Alpha Phi Alpha Fraternity v. Raffensperger, No.
21-05339-SCJ (N.D. Ga.), NAACP v Baltimore County, No.21-cv-03232-LKG

[^60](Md.), Christian Ministerial Alliance v. Hutchinson No. 4:19-cv-402-JM (E.D. Ar.), and Robinson v. Ardoin, No. 3:22-cv-00211-SDD-SDJ (M.D. La.). I also testified at trial this year as an expert on demographics in NAACP v. Lee, No. 4:21cv187MW/MAF (N.D. Fla.), a case involving recent changes to Florida election law.
4. With respect to my work in Mississippi, I served as an expert witness in redistricting and demographics in Thomas v. Reeves, No. 18-cv-441 (S.D. Miss.), a Voting Rights Act case which resulted in the revision of Mississippi State Senate District lines in the Mississippi Delta. In addition to the Thomas case, I have testified at trial in two other state-level voting lawsuits in Mississippi: NAACP v. Fordice in 1999, which involved the districts used for the Public Service Commission and Transportation Commission, and Smith v. Clark in 2002, which involved congressional redistricting in Mississippi.
5. I have also testified at trial over the past three decades as a redistricting and demographics expert in several local-level voting cases in Mississippi-in the $1990 s^{3}, 2000 s^{4}$, and 2010s ${ }^{5}$.

[^61]6. I have also developed election plans that were adopted by the following local governing bodies in Mississippi: in the 1990s-Webster County; in the 2000s-Bolivar County and Webster County; and in the 2010s-Bolivar County, Claiborne County, and the City of Grenada. I currently serve as a post-2020 redistricting consultant to the Bolivar County Board of Supervisors, Washington County Board of Supervisors, and the City of Grenada Council.
7. For additional historical information on my testimony as an expert witness and experience preparing and assessing proposed redistricting maps for Section 2 litigation, see a summary of my redistricting work attached as Exhibit A. A listing of Mississippi voting cases where I have filed declarations but did not testify at trial is also available in Exhibit A. Six of the lawsuits where I filed declarations resulted in changes to local redistricting plans.

B. Purpose of Report

8. The attorneys for the Plaintiffs in this case have asked me to determine whether the Black population in Mississippi is "sufficiently large and geographically compact" ${ }^{6}$ to allow for one of the three at-large districts for the
${ }^{6}$ Thornburg v. Gingles, 478 U.S. 30, 50 (1986).

Mississippi Supreme Court to be drawn with a majority Black voting age population ("BVAP"), consistent with traditional districting principles.
9. The attorneys also asked me to review historical and current demographics (reported in the decennial Census published by the U.S. Census Bureau), as well as socioeconomic characteristics reported in the annual releases of the American Community Survey ("ACS") for African Americans and non-Hispanic Whites. ${ }^{7}$
10. Exhibit B describes the sources and methodology I have employed in the preparation of this report and the illustrative plans described below.

C. Summary of Expert Conclusions

11. I have reached the following conclusions:

- Based on the 2020 Census, Black Mississippians are sufficiently numerous and geographically compact to allow for one majority-Black VAP district as part of a three-district plan for the Mississippi Supreme Court. A number of illustrative plans can be drawn that are consistent with traditional districting principles and that do not split a single county.

[^62]- In addition, Black Mississippians have been sufficiently numerous and geographically compact to allow for one majority-Black VAP district as part of a three-district plan for the Mississippi Supreme Court based on the prior decennial Census numbers from 1990, 2000, and 2010.
- As reported in the 1-Year 2021 ACS, a demographic survey published by the U.S. Census Bureau, in Mississippi non-Hispanic Whites significantly outpace Black Mississippians across most key indicators of socioeconomic well-being, including employment rates, household income, and homeownership.

D. Organization of Report

12. The remainder of this declaration is organized as follows:
13. Section II reviews current and historical demographics at the statewide, regional, and county-level.
14. Section III examines the three-district Supreme Court plan in effect for elections from 1987 to the present, as well as its immediate predecessor, the threedistrict 1942 Plan.
15. Section IV presents a hypothetical plan demonstrating that a threemember majority-Black VAP Supreme Court district could have been drawn under the 1990 Census and would have remained majority-Black VAP through the 2020 Census.
16. Section V presents two illustrative plans based on the 2020 Census. Like the 1987 Plan, both plans contain three three-member districts. Unlike the 1987 Plan, both plans contain one district with a majority-Black VAP.
17. Section VI presents two additional "least change" demonstrative plans, which provide for one three-member majority-Black VAP district as part of a threedistrict plan for the Mississippi Supreme Court while limiting the number of voters and counties that would be shifted from the 1987 Plan.
18. Section VII summarizes data from the U.S. Census Bureau documenting socioeconomic disparities experienced by Black Mississippians when compared with their White counterparts, as reported in the American Community Survey.

II. DEMOGRAPHIC PROFILE OF MISSISSIPPI

A. Statewide Population - 2010 to 2020

19. The table in Figure 1 presents the population of Mississippi by race and ethnicity for the 2010 and 2020 decennial censuses.

Figure 1: Mississippi - 2010 to 2020 Census Population by Race and Ethnicity

All Ages	2010	Percent of Total Population	2020	Percent of Total Population	$\begin{array}{r} 2010-2020 \\ \text { Change } \\ \hline \end{array}$	Percent 2010-2020 Change
Total Population	2,967,297	100.00\%	2,961,279	100.00\%	-6,018	-0.20\%
NH White*	1,722,287	58.04\%	1,639,077	55.35\%	-83,210	-4.83\%
Total Minority Pop.	1,245,010	41.96\%	1,322,202	44.65\%	77,192	6.20\%
Latino	81,481	2.75\%	105,220	3.55\%	23,739	29.13\%
NH Black*	1,093,512	36.85\%	1,079,001	36.44\%	-14,511	-1.33\%
NH Asian*	25,477	0.86\%	32,305	1.09\%	6,828	26.80\%
NH Hawaiian and PI*	948	0.03\%	1,037	0.04\%	89	9.39\%
NH American Indian and Alaska Native	13,845	0.47\%	14,019	0.47\%	174	1.26\%
NH Other*	1,828	0.06\%	7,174	0.24\%	5,346	292.45\%
NH Two or More Races	27,919	0.94\%	83,446	2.82\%	55,527	198.89\%
SR Black (Single-race Black)	1,098,385	37.02\%	1,084,481	36.62\%	-13,904	-1.27\%
AP Black (Any Part Black)	1,115,801	37.60\%	1,123,613	37.94\%	7,812	0.70\%

* Single-race, non-Hispanic.

20. According to the 2020 Census, non-Hispanic Whites comprise 55.35% of the population in Mississippi-down from 58.04\% in 2010. African Americans are the next largest racial/ethnic category, representing 37.94% of the population in 2020 - the highest proportion of any state in the nation and up slightly from 37.60% in 2010. Latinos registered sharp gains between 2010 and 2020, representing 3.55\% of the statewide population in 2020-up from 2.75% in 2010.

B. Statewide Voting Age Population (1990 to 2020)

21. As shown in Figure 2, in percentage terms, the statewide BVAP has steadily increased over the past 30 years-from 31.63% in 1990 to 36.14% in 2020. During that same time period, the NH White VAP has dropped by nearly ten percentage points, from 67.49% in 1990 to 57.76% in 2020 .

Figure 2: Mississippi - 1990 to 2020 Census Percent Voting Age Population by Race and Ethnicity

	$\mathbf{1 9 9 0}$	$\mathbf{\% 1 9 9 0}$	$\mathbf{2 0 0 0}$	$\mathbf{\%} \mathbf{2 0 0 0}$	$\mathbf{2 0 1 0}$	$\mathbf{\%} \mathbf{2 0 1 0}$	$\mathbf{2 0 2 0}$	$\mathbf{\%} \mathbf{2 0 2 0}$
Total	$1,826,455$	100.00%	$2,069,471$	100.00%	$2,211,742$	100.0%	$2,277,599$.	100.0%
Black	577,669	31.63%	688,994	33.29%	773,869	34.99%	823,080	36.14%
NH White	$1,232,687$	67.49%	$1,327,768$	64.16%	$1,348,246$	60.96%	$1,315,451$.	57.76%

C. Distribution of Mississippi's Black Population

22. In the 19th Century, enslaved African Americans began populating the Mississippi Delta via the Mississippi River. ${ }^{8}$ Today, much of the Black population in Mississippi lives in the Delta and adjacent counties-spanning the length of the Mississippi River from DeSoto County in the north to Wilkinson County in the south.

[^63]23. The map in Figure 3 depicts 2020 Black population percentage by county, with transparent overlays. Blue lines identify the state's ten Planning and Development Districts ("planning districts" or PDDs)), which are Mississippi’s official sub-state regions and are used to define regional boundaries for various administrative, planning, and development purposes. ${ }^{9}$ Red lines depict areas where the boundaries of current majority-Black Congressional District 2 ("CD 2") diverge from planning district boundaries. ${ }^{10}$
24. In addition to existing district lines such as CD 2, Mississippi’s planning districts are a useful reference point for constructing electoral districts in the state. In the 1960s, local Mississippi officials created the PDDs as an administrative and governance structure to "allow communities to collectively address problems." ${ }^{11}$ Since then, "each PDD [has] represent[ed] a distinctly different region of the state," and each district's responsibilities span "community and economic development," "health and social services," "small business assistance," "workforce development," "loan assistance," and Medicaid case management, among other "local needs and

[^64]priorities." ${ }^{12}$ As such, PDD boundaries, by definition, delineate parts of Mississippi that share policy interests.
25. Exhibit C-1 is a higher resolution version of the Figure $\mathbf{3}$ map. Exhibit

C-2 reports total population and Black population percentage by county for the 1990 through 2020 decennial censuses.

[^65]Figure 3: 2020 Percent Black by County Planning Districts (blue lines) and 2022 CD 2 (red)

26. Figure 4 reveals that about 58% (651,798 of 1.12 million) of Black Mississippians live in the five planning districts running north-south along the Mississippi and Yazoo Rivers-North Delta, South Delta, North

Central, Central, and Southwest (bolded in Figure 4).

Figure 4: Mississippi Planning Districts - 2020 Census Population by Race and Ethnicity

Planning District	Population	AP Black	\% AP Black	Latino	\% Latino	NH White	\% NH White
Central	$\mathbf{6 1 9 , 7 0 0}$	$\mathbf{2 9 7 , 2 2 0}$	$\mathbf{4 8 . 0 \%}$	$\mathbf{1 7 , 1 9 7}$	$\mathbf{2 . 8 \%}$	$\mathbf{2 8 8 , 4 6 7}$	$\mathbf{4 6 . 5 \%}$
East Central	227,806	88,263	38.7%	8,496	3.7%	119,855	52.6%
Golden Triangle	175,474	76,701	43.7%	3,447	2.0%	90,528	51.6%
North Central	$\mathbf{1 1 7 , 1 5 8}$	$\mathbf{6 5 , 7 5 8}$	$\mathbf{5 6 . 1 \%}$	$\mathbf{2 , 0 1 6}$	$\mathbf{1 . 7 \%}$	$\mathbf{4 7 , 9 4 4}$	$\mathbf{4 0 . 9 \%}$
North Delta	$\mathbf{2 9 6 , 6 4 9}$	$\mathbf{1 2 0 , 4 1 9}$	$\mathbf{4 0 . 6 \%}$	$\mathbf{1 2 , 6 3 1}$	$\mathbf{4 . 3 \%}$	$\mathbf{1 5 4 , 4 7 6}$	$\mathbf{5 2 . 1 \%}$
Northeast	141,811	31,216	22.0%	4,993	3.5%	102,531	72.3%
South Delta	$\mathbf{1 1 4 , 8 0 1}$	$\mathbf{8 0 , 5 9 9}$	$\mathbf{7 0 . 2 \%}$	$\mathbf{2 , 3 1 9}$	$\mathbf{2 . 0 \%}$	$\mathbf{3 0 , 6 8 0}$	$\mathbf{2 6 . 7 \%}$
Southern	805,302	205,707	25.5%	40,696	5.1%	523,916	65.1%
Southwest	$\mathbf{1 7 6 , 0 4 6}$	$\mathbf{8 7 , 8 0 2}$	$\mathbf{4 9 . 9 \%}$	$\mathbf{2 , 8 6 0}$	$\mathbf{1 . 6 \%}$	$\mathbf{8 2 , 7 7 9}$	$\mathbf{4 7 . 0 \%}$
Three Rivers	286,532	69,928	24.4%	10,565	3.7%	197,901	69.1%

27. African Americans comprise about half (49.2\%) of the 2020 population (1.32 million) in those five planning districts. The ideal population size for a 2020 Supreme Court district is 987,093-so these five planning districts encompass about 350,000 persons more than necessary to constitute a single Supreme Court district.
28. Under the 2020 Census, CD 2 (62.15% BVAP), which largely overlaps with those five planning districts, contains a population of 740,319 persons-about 250,000 persons short of the ideal district size for the three-district Supreme Court.
29. Taking paragraphs 23 through 28 into account, one can immediately ascertain that a majority-Black Supreme Court district anchored in the Delta region can be drawn in and around CD 2 and the five planning districts that border the Mississippi and Yazoo Rivers.

III. ENACTED SUPREME COURT PLANS (1942 AND 1987)

A. Historical 1942 Plan

30. The map in Figure 5 depicts the 1942 Supreme Court Plan, with an overlay (black lines) showing the 1987 Plan. To create the 1987 Plan, Attala County was shifted into Supreme Court District 3 from 1942 Supreme Court District 1. In turn, Claiborne, Copiah, and Jefferson Counties were shifted from 1942 Supreme Court District 2 into Supreme Court District 1.

Figure 5: 1942 Supreme Court Plan

B. Enacted 1987 Plan

31. A map of the 1987 Plan is depicted in Figure 6, overlaid on the ten
planning districts discussed above. Corresponding decade-by-decade population statistics are included in the table in Figure 7.

Figure 6: Current 1987 Supreme Court Plan

Figure 7: Enacted 1987 Supreme Court Plan Percent Black Voting Age by Decade

District	$\mathbf{1 9 9 0} *$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 0}$
1	42.24%	45.77%	48.6%	49.29%
2	23.91%	24.99%	26.3%	27.66%
3	28.49%	29.44%	30.9%	32.65%

[^66]32. The Enacted 1987 Plan dilutes Black voting strength. In particular, 1987 Supreme Court District 1 "cracks" ${ }^{13}$ Mississippi's Black population because it does not encompass a number of majority-Black counties in the north Delta as well as the southwest corner of the state. Instead, Supreme Court District 1 extends east from the Delta into a predominantly White area within the confines of the Appalachian Regional Commission ("ARC")—a distinct regional, cultural, and economic community of interest separate from the Delta. ${ }^{14}$
33. As shown in the map in Exhibit D, the ARC area extends south and west from the foothills of Tishomingo County to a band of counties ${ }^{15}$ in the mid-section of the state-following the trajectory of the historical Natchez Trace (the land route into Mississippi for many $19^{\text {th }}$ Century White settlers) and the modern-day Tennessee-Tombigbee Waterway.
34. To be sure, two more sparsely-populated Black-majority ARC counties-Noxubee and Kemper, with a combined 2020 total population of

[^67]19,273-are in 1987 Supreme Court District 1, but the other counties east of the Delta in District 1 are all majority-White.
35. As shown in the Figure 6 map, the 1987 Plan splits five of the ten regional planning districts-North Central, Central, East Central, Golden Triangle and Southwest. Supreme Court District 1 contributes to each one of those splits. South Delta is the only planning district entirely in Supreme Court District 1.
36. A higher resolution version of the 1987 Plan as depicted in Figure 6 is in Exhibit E-1. Summary population statistics, applying the 2020 Census data to the boundaries from the 1987 Plan, are in Figure 8 below, with additional population details in Exhibit E-2. Exhibit E-3 identifies county assignments by district.
37. At the time of enactment, in terms of Black voting strength, there was almost no difference between the 1987 Plan and the 1942 Plan. Under the 1990 Census, 1942 Plan Supreme Court District 1 contained a 41.08\% BVAP-a mere 1.2% lower than the BVAP of District 1 under the 1987 Plan. ${ }^{16}$
38. Today, 35 years later and after more than three decades of statewide Black population growth and White population decline, 1987 Supreme Court

[^68]District 1 is only a 4 percentage-point plurality BVAP district (49.29\% BVAP, 45.35\% NH White VAP), as shown in the table in Figure 8.
39. Moreover, and perhaps unsurprisingly given that there has been no redistricting in over 30 years, the population deviation among the districts is greater than 10%, which in the state legislative context would be considered a presumptive violation of "one person, one vote" principles.

Figure 8: Current 1987 Plan - 2020 Census

District	Population	\% Dev.	18+ Pop	\% 18+ Black	\% 18+ Latino	\% 18+ NH White
1	933847	-5.39%	716402	49.29%	2.54%	45.35%
2	1037093	5.07%	796767	27.66%	3.65%	64.94%
3	990339	0.33%	764430	32.65%	2.79%	61.90%

40. Furthermore, even that slight plurality may disappear when the effects of felony disenfranchisement in Mississippi are taken into account. Black people of voting age are disproportionately disenfranchised in Mississippi due to a felony conviction. An analysis by Mississippi Today found that, from 1994 through 2017, 61% of Mississippians who lost their right to vote due to a felony conviction were Black, even though Black people represent only 36% of the state's voting age population. ${ }^{17}$ A Fifth Circuit judge recognized this in a recent concurring opinion. See Harness v. Watson, 47 F.4th 296, 316 (5th Cir. 2022) (Ho, J., concurring in part

[^69]and concurring in the judgment) (noting that Mississippi's felon disenfranchisement scheme "operates today to disproportionately disenfranchise African-Americans"); id. at 314-15 n. 3 ("No one denies that there's a meaningful disparity between the disenfranchised population and the entire population of Mississippi."). ${ }^{18}$ And there is no reason to conclude that this impact will diminish in the future - the population incarcerated in state facilities has climbed from 16,499 in 2017 to 18,000 in 2022.19

[^70]
IV. HYPOTHETICAL 1990, 2000, AND 2010 SUPREME COURT PLANS

41. The map in Figure 9 demonstrates that a majority-BVAP Supreme

Court district in a three-district plan could have been drawn based on the 1990
Census.
Figure 9: Hypothetical 1991 Plan (1990 Census)

42. As shown in the map in Figure 9, the 1991 Hypothetical Plan is comprised of whole counties, except for a split along 1990 precinct lines in Madison County. ${ }^{20}$
43. The table in Figure 10 presents decennial Census population statistics for the 1991 Hypothetical Plan. According to the 1990 Census, 1991 Hypothetical Supreme Court District 1 had an SR BVAP of 50.35%, with a deviation ${ }^{21}$ of $4.63 \%(-39,732$ persons) from the ideal district size of 857,739.22 1991

Hypothetical Supreme Court District 1 would have remained majority-Black over
the course of the past 35 years.

Figure 10: 1991 Hypothetical Plan Percent Black Voting Age by Decade

[^71]| District | 1990* | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 1 0}$ | $\mathbf{2 0 2 0}$ |
| :---: | ---: | ---: | ---: | ---: |
| 1 | 50.35% | 56.3% | 61.0% | 62.9% |
| 2 | 22.98% | 24.1% | 26.0% | 27.4% |
| 3 | 23.48% | 24.3% | 25.9% | 27.9% |

* SR BVAP

44. According to the 2000 Census, by 2000 the 1991 Hypothetical Plan Supreme Court District 1 would have become underpopulated (-13.31\%).

However, based on the 2000 Census, a Hypothetical 2001 Supreme Court District 1 could have been drawn as a majority-Black district (53.1\% AP BVAP, -0.67% deviation, Exhibit F-1) without splitting any counties. And a similar majorityBlack Hypothetical 2011 Supreme Court District 1 could have been drawn under the 2010 Census (55.31\% AP BVAP, -1.79\% deviation, Exhibit F-2), also without splitting counties.
45. As the 1991, 2001, and 2011 Hypothetical Plans demonstrate, it has been possible to draw a Black-majority District 1 for decades, and it has been possible to do so with whole counties since at least 2001, all while maintaining acceptable population deviations. And, just as easily, the 1987 Plan can be modified to meet Section 2 requirements of the Voting Rights Act, as described in Section V.

V. GINGLES 1 ILLUSTRATIVE PLANS

A. Illustrative Plans and Traditional Redistricting Principles

46. The two illustrative plans that I have developed contain three districtseach with one majority-Black district. Both illustrative plans comply with traditional redistricting principles, including compactness, contiguity, respect for communities of interest, and the non-dilution of minority voting strength, as well as ensuring that districts are not malapportioned.
47. The illustrative plans meet the first Gingles precondition, i.e., they demonstrate that the Black population in Mississippi is sufficiently numerous and geographically compact to allow for the creation of at least one 3-member majorityBlack district.
48. There is no question that Mississippi's Black population is "geographically compact." For example, and by way of reference, the nine-single member district plan shown in Exhibit G contains three contiguous majority-Black VAP districts (Districts 4, 5, and 6)—demonstrating beyond a shadow of doubt that the Black population is compactly distributed north-to-south in and around the Delta.

B. Illustrative District Plans - Key Features

49. Key features of the two illustrative plans are summarized below:

- Consistent with the 1987 Plan, the illustrative plans follow county boundaries. There are no county splits.
- The illustrative plans generally follow state-defined regional Planning and Development district boundaries.
- The illustrative plans unite Black voters in the Delta in a majority-Black Supreme Court District 1-rather than dividing them between Districts 1 and 3, as under the 1987 Plan-thereby respecting the Delta as a significant cultural and historical community of interest in Mississippi.
- The illustrative plans also unite voters who live along the Mississippi River, as opposed to the three-way split created by the 1987 Plan. Delta voters concerned about water-related issues are, therefore, placed on an equal footing with voters in the Tennessee-Tombigbee region and the Gulf Coast, which are placed entirely within a single-judicial district under both the 1987 Plan and the illustrative plans. ${ }^{23}$
- Under the illustrative plans, Supreme Court District 1 aligns closely with the boundaries established for CD 2, Mississippi's Second Congressional District, under the 2022 Congressional Plan enacted by the Stateboundaries that recognize a Delta-based, predominantly Black community of interest rather than fracturing that community as in the 1987 Plan.
- Under the illustrative plans, Illustrative Supreme Court District 3 encompasses most of the counties in the federally defined Appalachian Regional Commission, respecting that community of interest.
- Under the illustrative plans, approximately 50% of Mississippi's Black voting age population would live in a majority-Black district-up from 0% under the 1987 Plan.

[^72]
C. Illustrative Plan 1

50. The map in Figure 10 depicts Illustrative Plan 1. A higher resolution version of Illustrative Plan 1 is in Exhibit H-1. Summary population statistics are in Figure 11 below, with additional population details in Exhibit H-2. Exhibit H3 identifies county assignments by district.
51. Illustrative Plan 1 splits two planning districts-North Delta (placing DeSoto County in Supreme Court District 3) and Central (placing Rankin and Simpson Counties in Supreme Court District 2)—rather than five as in the 1987 Plan.

Figure 10: Illustrative Plan 1

Figure 11: Illustrative Plan 1-2020 Census

District	Population	\% Dev.	18+ Pop	\% 18+ Black	\% 18+ Latino	\% 18+ NH White
1	956060	-3.14%	737689	55.31%	2.04%	40.9%
2	988282	0.12%	757569	23.51%	3.96%	68.4%
3	1016937	3.02%	782341	30.29%	3.02%	63.4%

52. As shown in Figure 12, District 1 significantly resembles CD 2 in the

2022 Congressional Plan (red lines depict CD 2). Three quarters of the total
population in CD 2 (75.21%) is assigned to Supreme Court District 1 and 85.36% of the Black Population in CD 2 is in District 1.

Figure 12: Illustrative Plan 1 (and CD 2 overlay)

53. Under Illustrative Plan 1, District 1 (55.31\% BVAP) generally follows

CD 2 district lines north to south. In the north, Supreme Court District 1 extends beyond CD 2 to include Tate County (part of the historical Delta). Madison County is entirely in Supreme Court District 1 rather than split as with CD 2. South of

Copiah County, in order to minimize population deviation, Illustrative Supreme Court District 1 extends east beyond the CD 2 boundary to encompass all of the Southwest Planning District counties.

D. Illustrative Plan 2

54. The map in Figure 13 depicts Illustrative Plan 2. A higher resolution version of Illustrative Plan 2 is in Exhibit I-1. Summary population statistics are in Figure 14 below, with additional population details in Exhibit I-2. Exhibit I-3 identifies county assignments by district.

Figure 13: Illustrative Plan 2

Figure 14: Illustrative Plan 2 - 2020 Census

District	Population	\% Dev.	18+ Pop	\% 18+ Black	\% 18+ Latino	\% 18+ NH White
1	971422	-1.59%	746385	54.19%	2.45%	41.4%
2	997491	1.05%	770854	28.27%	2.84%	65.6%
3	992366	0.53%	760360	26.40%	3.75%	65.9%

55. Under Illustrative Plan 2, Supreme Court District 1 (54.2\% BVAP) encompasses the entire historical Delta (including DeSoto County), as well as most of the counties in the Southwest Planning District.
56. Illustrative Plan 2 splits three planning districts. Two splits involve Supreme Court District 1-Central (placing the counties of Madison, Rankin, and Simpson in District 3) and Southwest (placing Lincoln, Lawrence, and Walthall in District 2).

VI. LEAST CHANGE PLANS

57. The illustrative plans demonstrate that there are viable remedies in this Section 2 lawsuit which are sufficient to satisfy Gingles 1. However, alternative plan configurations beyond those presented in the two main illustrative plans are also possible.
58. For example, compared to the illustrative plans, the two "least change plans" described below are sub-optimal in terms of Black voting strength in Supreme Court District 1 and preservation of regional communities of interest across all three districts. However, the least change plans still fare better than the 1987 Plan on those scores. And under the least change plans, fewer voters would be shifted from their current 1987 districts in the process of creating a Deltaanchored majority-Black Supreme Court 1 as compared to the illustrative plans.

A. Least Change Plan 1

59. The map in Figure 15 depicts Least Change Plan 1. A higher resolution version of Least Change Plan 1 is in Exhibit J-1. Summary population statistics are in Figure 16, with additional population details in Exhibit J-2. Exhibit J-3 identifies county assignments by district.
60. Least Change Plan 1 shifts Madison County from Supreme Court District 1 into District 3. In turn, five majority-Black counties in the northern Delta are moved into District 1-Coahoma, Leflore, Quitman, Tallahatchie, and Tunica. Two
majority-Black counties bordering the Mississippi River are moved into Supreme Court District 1 from District 2—Adams and Wilkinson. Least Change Plan 1 thus maintains the overall east-west configuration of the 1987 Plan, while also better uniting the Mississippi Delta and creating a majority Black District 1.

Figure 15: Least Change Plan 1

Figure 16: Least Change Plan 1 - 2020 Census

District	Population	\% Dev.	18+ Pop	\% 18+ Black	\% 18+ Latino	\% 18+ NH White
1	941229	-4.65%	722892	53.00%	2.48%	42.1%
2	998968	1.20%	766360	26.46%	3.67%	66.0%
3	1021082	3.44%	788347	30.09%	2.87%	64.1%

B. Least Change Plan 2

61. The map in Figure 17 depicts Least Change Plan 2. Summary population statistics are Figure 18. A higher resolution version of Least Change Plan 2 is in Exhibit K-1. Summary population statistics are Figure 15, with additional population details in Exhibit K-2. Exhibit K-3 identifies county assignments by district.
62. Least Change Plan 2 also maintains the overall east-west configuration of the 1987 Plan. Under Least Change Plan 2, Madison County remains in Supreme Court District 1. Like Least Change Plan 1, five majority-Black counties in the northern Delta are moved into District 1 from District 3-Coahoma, Leflore, Quitman, Tallahatchie, and Tunica. Leake and Neshoba Counties are moved into District 3 from District 1. District 2 is completely unchanged from the 1987 Plan.

Figure 17: Least Change Plan 2

Figure 18: Least Change Plan 2 - 2020 Census

District	Population	\% Dev.	18+ Pop	\% 18+ Black	\% 18+ Latino	\% 18+ NH White
1	961887	-2.55%	738384	52.01%	2.52%	43.3%
2	1037093	5.07%	796767	27.66%	3.65%	64.9%
3	962299	-2.51%	742448	29.45%	2.82%	64.5%

VII. SOCIOECONOMIC PROFILE OF MISSISSIPPI

63. As in most other Section 2 cases where I have served as an expert, I also reviewed the socioeconomic statistics for Mississippi published by the Census Bureau in the American Community Survey ("ACS").
64. In Mississippi, African Americans trail NH whites across most key indicators of socioeconomic well-being. This disparity is summarized below and depicted with further detail in the charts in Exhibit L-1 and the table in Exhibit L-

2, as reported in Table S0201 from the 2021 1-year ACS. ${ }^{24}$

(a) Income

- 30.9% of African Americans in Mississippi live in poverty, compared to 11.5\% of Whites. (Exhibit L-1 at p. 2 and Exhibit L-2 at p. 11)
- 44.5% of African-American children live in poverty, compared to 12.9% of White children. (Exhibit L-1 at p. 2 and Exhibit L-2 at p.11)
- African-American median household income is $\$ 33,541$, compared to the \$61,318 median income for White households. (Exhibit L-1 at p. 5 and Exhibit L2 at p.9)
- Per capita income disparities in Mississippi track the disparities seen in median household income. African-American per capita income is $\$ 18,368$, compared to White per capita income of $\$ 33,374$. (Exhibit L-1 at p. 7 and Exhibit L-2 at p. 10)

[^73]- 24.6% of African-American households rely on food stamps (SNAP), more than triple the 7.0\% SNAP participation rate of White households. (Exhibit L-1 at p. 8 and Exhibit L-2 at p. 10)

(b) Education

- Of persons 25 years of age and over, 17.9% of African Americans have not finished high school, compared to 10.1% of their White counterparts. (Exhibit L1 at p. 10 and Exhibit L-2 at p. 3)
- At the other end of the educational scale, for ages 25 and over, 18.2% of African Americans have a bachelor's degree or higher, compared to 28.6% of Whites. (Exhibit L-1 at p. 10 and Exhibit L-2 at p. 4)

(c) Employment

- The Black unemployment rate (for the population over 16, expressed as a percent of the civilian labor force) is 10.5%, compared to a 3.9% White unemployment rate. (Exhibit L-1 at p. 12 and Exhibit L-2 at p. 6)
- Of employed African Americans, 26.2% are in management or professional occupations, compared to 41.1% rate of Whites. (Exhibit L-1 at p. 13 and Exhibit L-2 at p. 7)

(d) Housing

- In Mississippi, a little over half of African-American householders (53.8\%) are homeowners, while more than three quarters of White households (80.1\%) are owner-occupied. (Exhibit L-1 at p. 14 and Exhibit L-2 at p. 12)
- Median home value for African-American homeowners is $\$ 95,800$, compared to the $\$ 162,200$ median home value for Whites. (Exhibit L-1 at p. 15 and Exhibit L-2 at p. 13)

(e) Transportation/Communication

- One in ten African-American households (10.0\%) lacks access to a vehicle, while 4.3% of White households are without a vehicle. (Exhibit L-1 at p. 17 and

Exhibit L-2 at p. 12)

- There is about a four-point Black-White gap in households with a computer, smartphone or tablet-88.7\% versus 93.0\%. (Exhibit L-1 at p. 18 and Exhibit L-2 at p. 13)
- With respect to broadband internet connections, African-American households trail White households-77.1\% versus 84.4\%. (Exhibit L-1 at p. 18 and Exhibit L-2 at p. 13)

65. Based on the 2020 Census, 39.5% of the Black population in Mississippi lives in the area encompassed by CD 2 under the 2011 Plan.

Exhibit M-1 and M-2 report socioeconomic disparities specific to 2011
CD 2, according to the 2021 ACS. ${ }^{25}$
66. In addition, I have prepared socioeconomic contrast charts by race and ethnicity for all counties, municipalities, and unincorporated places with populations greater than 2,500 (and 10% or more SR Black), available via the link: http://www.fairdata2000.com/ACS_2015_19/Mississippi/ ${ }^{26}$
67. The 5-year 2015-2019 ACS charts make clear that the
statewide and CD 2-level socioeconomic disparities by race also exist at the county and municipal levels throughout Mississippi.

[^74]
+++

I reserve the right to amend or supplement my report in light of additional facts, testimony and/or materials that may come to light. Pursuant to 28 U.S.C. 1746 , I declare under penalty of perjury of the laws of the United States that the foregoing is true and correct according to the best of my knowledge, information, and belief.

Executed on October 3, 2022.

IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF MISSISSIPPI GREENVILLE DIVISION

DYAMONE WHITE, et al.,

Plaintiffs,
vs.
STATE BOARD OF ELECTION COMMISSIONERS, et al.,

Defendants.

No. 4:22cv62-MPM-JMV

DECLARATION OF WILLIAM S. COOPER

WILLIAM S. COOPER, acting in accordance with 28 U.S.C. § 1746,
Federal Rule of Civil Procedure 26(a) (2) (B), and Federal Rules of Evidence 702 and 703 , does hereby declare and say:

I. INTRODUCTION

A. Redistricting Experience

1. My name is William S. Cooper. I have a B.A. in Economics from Davidson College. As a private consultant, I was retained as a demographic and redistricting expert for the Plaintiffs. I am compensated at a rate of $\$ 150$ per hour, and my compensation is not contingent on the outcome of this litigation. I reserve the right to continue to amend or supplement my reports, including in light of
additional facts, testimony, and/or materials that may come to light over the course of the discovery period in this case.
2. I have been accepted as an expert trial witness on redistricting and demographics in about 50 federal-court voting rights cases across 18 states, including Mississippi. Five of those cases resulted in changes to statewide legislative boundaries. ${ }^{1}$ Approximately 25 of those cases led to changes in local election district plans. ${ }^{2}$ My testimony in such cases almost always includes a review of the demographics and socioeconomic characteristics of the jurisdiction or jurisdictions at issue. In Voting Rights Act cases, I also typically produce one or more illustrative districting plans for the jurisdiction.
3. In 2022, I have testified as an expert in redistricting and demographics in six cases challenging district boundaries under Section 2 of the Voting Rights Act:

Caster v. Merrill, No. 21-1356-AMM (N.D. Ala.), Pendergrass v. Raffensperger,
No. 21-05337-SCJ (N.D. Ga.), Alpha Phi Alpha Fraternity v. Raffensperger, No.
21-05339-SCJ (N.D. Ga.), NAACP v Baltimore County, No.21-cv-03232-LKG

[^75](Md.), Christian Ministerial Alliance v. Hutchinson No. 4:19-cv-402-JM (E.D. Ar.), and Robinson v. Ardoin, No. 3:22-cv-00211-SDD-SDJ (M.D. La.). I also testified at trial this year as an expert on demographics in NAACP v. Lee, No. 4:21cv187MW/MAF (N.D. Fla.), a case involving recent changes to Florida election law.
4. With respect to my work in Mississippi, I served as an expert witness in redistricting and demographics in Thomas v. Reeves, No. 18-cv-441 (S.D. Miss.), a Voting Rights Act case which resulted in the revision of Mississippi State Senate District lines in the Mississippi Delta. In addition to the Thomas case, I have testified at trial in two other state-level voting lawsuits in Mississippi: NAACP v. Fordice in 1999, which involved the districts used for the Public Service Commission and Transportation Commission, and Smith v. Clark in 2002, which involved congressional redistricting in Mississippi.
5. I have also testified at trial over the past three decades as a redistricting and demographics expert in several local-level voting cases in Mississippi-in the $1990 s^{3}, 2000 s^{4}$, and 2010s ${ }^{5}$.

[^76]6. I have also developed election plans that were adopted by the following local governing bodies in Mississippi: in the 1990s-Webster County; in the 2000s-Bolivar County and Webster County; and in the 2010s-Bolivar County, Claiborne County, and the City of Grenada. I currently serve as a post-2020 redistricting consultant to the Bolivar County Board of Supervisors, Washington County Board of Supervisors, and the City of Grenada Council.
7. For additional historical information on my testimony as an expert witness and experience preparing and assessing proposed redistricting maps for Section 2 litigation, see a summary of my redistricting work attached as Exhibit A. A listing of Mississippi voting cases where I have filed declarations but did not testify at trial is also available in Exhibit A. Six of the lawsuits where I filed declarations resulted in changes to local redistricting plans.

B. Purpose of Report

8. The attorneys for the Plaintiffs in this case have asked me to determine whether the Black population in Mississippi is "sufficiently large and geographically compact" ${ }^{6}$ to allow for one of the three at-large districts for the
${ }^{6}$ Thornburg v. Gingles, 478 U.S. 30, 50 (1986).

Mississippi Supreme Court to be drawn with a majority Black voting age population ("BVAP"), consistent with traditional districting principles.
9. The attorneys also asked me to review historical and current demographics (reported in the decennial Census published by the U.S. Census Bureau), as well as socioeconomic characteristics reported in the annual releases of the American Community Survey ("ACS") for African Americans and non-Hispanic Whites. ${ }^{7}$
10. Exhibit B describes the sources and methodology I have employed in the preparation of this report and the illustrative plans described below.

C. Summary of Expert Conclusions

11. I have reached the following conclusions:

- Based on the 2020 Census, Black Mississippians are sufficiently numerous and geographically compact to allow for one majority-Black VAP district as part of a three-district plan for the Mississippi Supreme Court. A number of illustrative plans can be drawn that are consistent with traditional districting principles and that do not split a single county.

[^77]- In addition, Black Mississippians have been sufficiently numerous and geographically compact to allow for one majority-Black VAP district as part of a three-district plan for the Mississippi Supreme Court based on the prior decennial Census numbers from 1990, 2000, and 2010.
- As reported in the 1-Year 2021 ACS, a demographic survey published by the U.S. Census Bureau, in Mississippi non-Hispanic Whites significantly outpace Black Mississippians across most key indicators of socioeconomic well-being, including employment rates, household income, and homeownership.

D. Organization of Report

12. The remainder of this declaration is organized as follows:
13. Section II reviews current and historical demographics at the statewide, regional, and county-level.
14. Section III examines the three-district Supreme Court plan in effect for elections from 1987 to the present, as well as its immediate predecessor, the threedistrict 1942 Plan.
15. Section IV presents a hypothetical plan demonstrating that a threemember majority-Black VAP Supreme Court district could have been drawn under the 1990 Census and would have remained majority-Black VAP through the 2020 Census.
16. Section V presents two illustrative plans based on the 2020 Census. Like the 1987 Plan, both plans contain three three-member districts. Unlike the 1987 Plan, both plans contain one district with a majority-Black VAP.
17. Section VI presents two additional "least change" demonstrative plans, which provide for one three-member majority-Black VAP district as part of a threedistrict plan for the Mississippi Supreme Court while limiting the number of voters and counties that would be shifted from the 1987 Plan.
18. Section VII summarizes data from the U.S. Census Bureau documenting socioeconomic disparities experienced by Black Mississippians when compared with their White counterparts, as reported in the American Community Survey.

II. DEMOGRAPHIC PROFILE OF MISSISSIPPI

A. Statewide Population - 2010 to 2020

19. The table in Figure 1 presents the population of Mississippi by race and ethnicity for the 2010 and 2020 decennial censuses.

Figure 1: Mississippi - 2010 to 2020 Census Population by Race and Ethnicity

All Ages	2010	Percent of Total Population	2020	Percent of Total Population	$\begin{array}{r} 2010-2020 \\ \text { Change } \\ \hline \end{array}$	Percent 2010-2020 Change
Total Population	2,967,297	100.00\%	2,961,279	100.00\%	-6,018	-0.20\%
NH White*	1,722,287	58.04\%	1,639,077	55.35\%	-83,210	-4.83\%
Total Minority Pop.	1,245,010	41.96\%	1,322,202	44.65\%	77,192	6.20\%
Latino	81,481	2.75\%	105,220	3.55\%	23,739	29.13\%
NH Black*	1,093,512	36.85\%	1,079,001	36.44\%	-14,511	-1.33\%
NH Asian*	25,477	0.86\%	32,305	1.09\%	6,828	26.80\%
NH Hawaiian and PI*	948	0.03\%	1,037	0.04\%	89	9.39\%
NH American Indian and Alaska Native	13,845	0.47\%	14,019	0.47\%	174	1.26\%
NH Other*	1,828	0.06\%	7,174	0.24\%	5,346	292.45\%
NH Two or More Races	27,919	0.94\%	83,446	2.82\%	55,527	198.89\%
SR Black (Single-race Black)	1,098,385	37.02\%	1,084,481	36.62\%	-13,904	-1.27\%
AP Black (Any Part Black)	1,115,801	37.60\%	1,123,613	37.94\%	7,812	0.70\%

* Single-race, non-Hispanic.

20. According to the 2020 Census, non-Hispanic Whites comprise 55.35% of the population in Mississippi-down from 58.04\% in 2010. African Americans are the next largest racial/ethnic category, representing 37.94% of the population in 2020 - the highest proportion of any state in the nation and up slightly from 37.60% in 2010. Latinos registered sharp gains between 2010 and 2020, representing 3.55\% of the statewide population in 2020-up from 2.75% in 2010.

B. Statewide Voting Age Population (1990 to 2020)

21. As shown in Figure 2, in percentage terms, the statewide BVAP has steadily increased over the past 30 years-from 31.63% in 1990 to 36.14% in 2020. During that same time period, the NH White VAP has dropped by nearly ten percentage points, from 67.49% in 1990 to 57.76% in 2020 .

Figure 2: Mississippi - 1990 to 2020 Census Percent Voting Age Population by Race and Ethnicity

	$\mathbf{1 9 9 0}$	$\mathbf{\% 1 9 9 0}$	$\mathbf{2 0 0 0}$	$\mathbf{\%} \mathbf{2 0 0 0}$	$\mathbf{2 0 1 0}$	$\mathbf{\%} \mathbf{2 0 1 0}$	$\mathbf{2 0 2 0}$	$\mathbf{\%} \mathbf{2 0 2 0}$
Total	$1,826,455$	100.00%	$2,069,471$	100.00%	$2,211,742$	100.0%	$2,277,599$.	100.0%
Black	577,669	31.63%	688,994	33.29%	773,869	34.99%	823,080	36.14%
NH White	$1,232,687$	67.49%	$1,327,768$	64.16%	$1,348,246$	60.96%	$1,315,451$.	57.76%

C. Distribution of Mississippi's Black Population

22. In the 19th Century, enslaved African Americans began populating the Mississippi Delta via the Mississippi River. ${ }^{8}$ Today, much of the Black population in Mississippi lives in the Delta and adjacent counties-spanning the length of the Mississippi River from DeSoto County in the north to Wilkinson County in the south.

[^78]23. The map in Figure 3 depicts 2020 Black population percentage by county, with transparent overlays. Blue lines identify the state's ten Planning and Development Districts ("planning districts" or PDDs)), which are Mississippi’s official sub-state regions and are used to define regional boundaries for various administrative, planning, and development purposes. ${ }^{9}$ Red lines depict areas where the boundaries of current majority-Black Congressional District 2 ("CD 2") diverge from planning district boundaries. ${ }^{10}$
24. In addition to existing district lines such as CD 2, Mississippi’s planning districts are a useful reference point for constructing electoral districts in the state. In the 1960s, local Mississippi officials created the PDDs as an administrative and governance structure to "allow communities to collectively address problems." ${ }^{11}$ Since then, "each PDD [has] represent[ed] a distinctly different region of the state," and each district's responsibilities span "community and economic development," "health and social services," "small business assistance," "workforce development," "loan assistance," and Medicaid case management, among other "local needs and

[^79]priorities." ${ }^{12}$ As such, PDD boundaries, by definition, delineate parts of Mississippi that share policy interests.
25. Exhibit C-1 is a higher resolution version of the Figure $\mathbf{3}$ map. Exhibit

C-2 reports total population and Black population percentage by county for the 1990 through 2020 decennial censuses.

[^80]Figure 3: 2020 Percent Black by County Planning Districts (blue lines) and 2022 CD 2 (red)

26. Figure 4 reveals that about 58% (651,798 of 1.12 million) of Black Mississippians live in the five planning districts running north-south along the Mississippi and Yazoo Rivers-North Delta, South Delta, North

Central, Central, and Southwest (bolded in Figure 4).

Figure 4: Mississippi Planning Districts - 2020 Census Population by Race and Ethnicity

Planning District	Population	AP Black	\% AP Black	Latino	\% Latino	NH White	\% NH White
Central	$\mathbf{6 1 9 , 7 0 0}$	$\mathbf{2 9 7 , 2 2 0}$	$\mathbf{4 8 . 0 \%}$	$\mathbf{1 7 , 1 9 7}$	$\mathbf{2 . 8 \%}$	$\mathbf{2 8 8 , 4 6 7}$	$\mathbf{4 6 . 5 \%}$
East Central	227,806	88,263	38.7%	8,496	3.7%	119,855	52.6%
Golden Triangle	175,474	76,701	43.7%	3,447	2.0%	90,528	51.6%
North Central	$\mathbf{1 1 7 , 1 5 8}$	$\mathbf{6 5 , 7 5 8}$	$\mathbf{5 6 . 1 \%}$	$\mathbf{2 , 0 1 6}$	$\mathbf{1 . 7 \%}$	$\mathbf{4 7 , 9 4 4}$	$\mathbf{4 0 . 9 \%}$
North Delta	$\mathbf{2 9 6 , 6 4 9}$	$\mathbf{1 2 0 , 4 1 9}$	$\mathbf{4 0 . 6 \%}$	$\mathbf{1 2 , 6 3 1}$	$\mathbf{4 . 3 \%}$	$\mathbf{1 5 4 , 4 7 6}$	$\mathbf{5 2 . 1 \%}$
Northeast	141,811	31,216	22.0%	4,993	3.5%	102,531	72.3%
South Delta	$\mathbf{1 1 4 , 8 0 1}$	$\mathbf{8 0 , 5 9 9}$	$\mathbf{7 0 . 2 \%}$	$\mathbf{2 , 3 1 9}$	$\mathbf{2 . 0 \%}$	$\mathbf{3 0 , 6 8 0}$	$\mathbf{2 6 . 7 \%}$
Southern	805,302	205,707	25.5%	40,696	5.1%	523,916	65.1%
Southwest	$\mathbf{1 7 6 , 0 4 6}$	$\mathbf{8 7 , 8 0 2}$	$\mathbf{4 9 . 9 \%}$	$\mathbf{2 , 8 6 0}$	$\mathbf{1 . 6 \%}$	$\mathbf{8 2 , 7 7 9}$	$\mathbf{4 7 . 0 \%}$
Three Rivers	286,532	69,928	24.4%	10,565	3.7%	197,901	69.1%

27. African Americans comprise about half (49.2\%) of the 2020 population (1.32 million) in those five planning districts. The ideal population size for a 2020 Supreme Court district is 987,093-so these five planning districts encompass about 350,000 persons more than necessary to constitute a single Supreme Court district.
28. Under the 2020 Census, CD 2 (62.15% BVAP), which largely overlaps with those five planning districts, contains a population of 740,319 persons-about 250,000 persons short of the ideal district size for the three-district Supreme Court.
29. Taking paragraphs 23 through 28 into account, one can immediately ascertain that a majority-Black Supreme Court district anchored in the Delta region can be drawn in and around CD 2 and the five planning districts that border the Mississippi and Yazoo Rivers.

III. ENACTED SUPREME COURT PLANS (1942 AND 1987)

A. Historical 1942 Plan

30. The map in Figure 5 depicts the 1942 Supreme Court Plan, with an overlay (black lines) showing the 1987 Plan. To create the 1987 Plan, Attala County was shifted into Supreme Court District 3 from 1942 Supreme Court District 1. In turn, Claiborne, Copiah, and Jefferson Counties were shifted from 1942 Supreme Court District 2 into Supreme Court District 1.

Figure 5: 1942 Supreme Court Plan

B. Enacted 1987 Plan

31. A map of the 1987 Plan is depicted in Figure 6, overlaid on the ten
planning districts discussed above. Corresponding decade-by-decade population statistics are included in the table in Figure 7.

Figure 6: Current 1987 Supreme Court Plan

Figure 7: Enacted 1987 Supreme Court Plan Percent Black Voting Age by Decade

District	$\mathbf{1 9 9 0} *$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 2 0}$
1	42.24%	45.77%	48.6%	49.29%
2	23.91%	24.99%	26.3%	27.66%
3	28.49%	29.44%	30.9%	32.65%

[^81]32. The Enacted 1987 Plan dilutes Black voting strength. In particular, 1987 Supreme Court District 1 "cracks" ${ }^{13}$ Mississippi's Black population because it does not encompass a number of majority-Black counties in the north Delta as well as the southwest corner of the state. Instead, Supreme Court District 1 extends east from the Delta into a predominantly White area within the confines of the Appalachian Regional Commission ("ARC")—a distinct regional, cultural, and economic community of interest separate from the Delta. ${ }^{14}$
33. As shown in the map in Exhibit D, the ARC area extends south and west from the foothills of Tishomingo County to a band of counties ${ }^{15}$ in the mid-section of the state-following the trajectory of the historical Natchez Trace (the land route into Mississippi for many $19^{\text {th }}$ Century White settlers) and the modern-day Tennessee-Tombigbee Waterway.
34. To be sure, two more sparsely-populated Black-majority ARC counties-Noxubee and Kemper, with a combined 2020 total population of

[^82]19,273-are in 1987 Supreme Court District 1, but the other counties east of the Delta in District 1 are all majority-White.
35. As shown in the Figure 6 map, the 1987 Plan splits five of the ten regional planning districts-North Central, Central, East Central, Golden Triangle and Southwest. Supreme Court District 1 contributes to each one of those splits. South Delta is the only planning district entirely in Supreme Court District 1.
36. A higher resolution version of the 1987 Plan as depicted in Figure 6 is in Exhibit E-1. Summary population statistics, applying the 2020 Census data to the boundaries from the 1987 Plan, are in Figure 8 below, with additional population details in Exhibit E-2. Exhibit E-3 identifies county assignments by district.
37. At the time of enactment, in terms of Black voting strength, there was almost no difference between the 1987 Plan and the 1942 Plan. Under the 1990 Census, 1942 Plan Supreme Court District 1 contained a 41.08\% BVAP-a mere 1.2% lower than the BVAP of District 1 under the 1987 Plan. ${ }^{16}$
38. Today, 35 years later and after more than three decades of statewide Black population growth and White population decline, 1987 Supreme Court

[^83]District 1 is only a 4 percentage-point plurality BVAP district (49.29\% BVAP, 45.35\% NH White VAP), as shown in the table in Figure 8.
39. Moreover, and perhaps unsurprisingly given that there has been no redistricting in over 30 years, the population deviation among the districts is greater than 10%, which in the state legislative context would be considered a presumptive violation of "one person, one vote" principles.

Figure 8: Current 1987 Plan - 2020 Census

District	Population	\% Dev.	18+ Pop	\% 18+ Black	\% 18+ Latino	\% 18+ NH White
1	933847	-5.39%	716402	49.29%	2.54%	45.35%
2	1037093	5.07%	796767	27.66%	3.65%	64.94%
3	990339	0.33%	764430	32.65%	2.79%	61.90%

40. Furthermore, even that slight plurality may disappear when the effects of felony disenfranchisement in Mississippi are taken into account. Black people of voting age are disproportionately disenfranchised in Mississippi due to a felony conviction. An analysis by Mississippi Today found that, from 1994 through 2017, 61% of Mississippians who lost their right to vote due to a felony conviction were Black, even though Black people represent only 36% of the state's voting age population. ${ }^{17}$ A Fifth Circuit judge recognized this in a recent concurring opinion. See Harness v. Watson, 47 F.4th 296, 316 (5th Cir. 2022) (Ho, J., concurring in part

[^84]and concurring in the judgment) (noting that Mississippi's felon disenfranchisement scheme "operates today to disproportionately disenfranchise African-Americans"); id. at 314-15 n. 3 ("No one denies that there's a meaningful disparity between the disenfranchised population and the entire population of Mississippi."). ${ }^{18}$ And there is no reason to conclude that this impact will diminish in the future - the population incarcerated in state facilities has climbed from 16,499 in 2017 to 18,000 in 2022.19

[^85]
IV. HYPOTHETICAL 1990, 2000, AND 2010 SUPREME COURT PLANS

41. The map in Figure 9 demonstrates that a majority-BVAP Supreme

Court district in a three-district plan could have been drawn based on the 1990
Census.
Figure 9: Hypothetical 1991 Plan (1990 Census)

42. As shown in the map in Figure 9, the 1991 Hypothetical Plan is comprised of whole counties, except for a split along 1990 precinct lines in Madison County. ${ }^{20}$
43. The table in Figure 10 presents decennial Census population statistics for the 1991 Hypothetical Plan. According to the 1990 Census, 1991 Hypothetical Supreme Court District 1 had an SR BVAP of 50.35%, with a deviation ${ }^{21}$ of $4.63 \%(-39,732$ persons) from the ideal district size of 857,739.22 1991

Hypothetical Supreme Court District 1 would have remained majority-Black over
the course of the past 35 years.

Figure 10: 1991 Hypothetical Plan Percent Black Voting Age by Decade

[^86]| District | 1990* | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 1 0}$ | $\mathbf{2 0 2 0}$ |
| :---: | ---: | ---: | ---: | ---: |
| 1 | 50.35% | 56.3% | 61.0% | 62.9% |
| 2 | 22.98% | 24.1% | 26.0% | 27.4% |
| 3 | 23.48% | 24.3% | 25.9% | 27.9% |

* SR BVAP

44. According to the 2000 Census, by 2000 the 1991 Hypothetical Plan Supreme Court District 1 would have become underpopulated (-13.31\%).

However, based on the 2000 Census, a Hypothetical 2001 Supreme Court District 1 could have been drawn as a majority-Black district (53.1\% AP BVAP, -0.67% deviation, Exhibit F-1) without splitting any counties. And a similar majorityBlack Hypothetical 2011 Supreme Court District 1 could have been drawn under the 2010 Census (55.31\% AP BVAP, -1.79\% deviation, Exhibit F-2), also without splitting counties.
45. As the 1991, 2001, and 2011 Hypothetical Plans demonstrate, it has been possible to draw a Black-majority District 1 for decades, and it has been possible to do so with whole counties since at least 2001, all while maintaining acceptable population deviations. And, just as easily, the 1987 Plan can be modified to meet Section 2 requirements of the Voting Rights Act, as described in Section V.

V. GINGLES 1 ILLUSTRATIVE PLANS

A. Illustrative Plans and Traditional Redistricting Principles

46. The two illustrative plans that I have developed contain three districtseach with one majority-Black district. Both illustrative plans comply with traditional redistricting principles, including compactness, contiguity, respect for communities of interest, and the non-dilution of minority voting strength, as well as ensuring that districts are not malapportioned.
47. The illustrative plans meet the first Gingles precondition, i.e., they demonstrate that the Black population in Mississippi is sufficiently numerous and geographically compact to allow for the creation of at least one 3-member majorityBlack district.
48. There is no question that Mississippi's Black population is "geographically compact." For example, and by way of reference, the nine-single member district plan shown in Exhibit G contains three contiguous majority-Black VAP districts (Districts 4, 5, and 6)—demonstrating beyond a shadow of doubt that the Black population is compactly distributed north-to-south in and around the Delta.

B. Illustrative District Plans - Key Features

49. Key features of the two illustrative plans are summarized below:

- Consistent with the 1987 Plan, the illustrative plans follow county boundaries. There are no county splits.
- The illustrative plans generally follow state-defined regional Planning and Development district boundaries.
- The illustrative plans unite Black voters in the Delta in a majority-Black Supreme Court District 1-rather than dividing them between Districts 1 and 3, as under the 1987 Plan-thereby respecting the Delta as a significant cultural and historical community of interest in Mississippi.
- The illustrative plans also unite voters who live along the Mississippi River, as opposed to the three-way split created by the 1987 Plan. Delta voters concerned about water-related issues are, therefore, placed on an equal footing with voters in the Tennessee-Tombigbee region and the Gulf Coast, which are placed entirely within a single-judicial district under both the 1987 Plan and the illustrative plans. ${ }^{23}$
- Under the illustrative plans, Supreme Court District 1 aligns closely with the boundaries established for CD 2, Mississippi's Second Congressional District, under the 2022 Congressional Plan enacted by the Stateboundaries that recognize a Delta-based, predominantly Black community of interest rather than fracturing that community as in the 1987 Plan.
- Under the illustrative plans, Illustrative Supreme Court District 3 encompasses most of the counties in the federally defined Appalachian Regional Commission, respecting that community of interest.
- Under the illustrative plans, approximately 50% of Mississippi's Black voting age population would live in a majority-Black district-up from 0% under the 1987 Plan.

[^87]
C. Illustrative Plan 1

50. The map in Figure 10 depicts Illustrative Plan 1. A higher resolution version of Illustrative Plan 1 is in Exhibit H-1. Summary population statistics are in Figure 11 below, with additional population details in Exhibit H-2. Exhibit H3 identifies county assignments by district.
51. Illustrative Plan 1 splits two planning districts-North Delta (placing DeSoto County in Supreme Court District 3) and Central (placing Rankin and Simpson Counties in Supreme Court District 2)—rather than five as in the 1987 Plan.

Figure 10: Illustrative Plan 1

Figure 11: Illustrative Plan 1-2020 Census

District	Population	\% Dev.	18+ Pop	\% 18+ Black	\% 18+ Latino	\% 18+ NH White
1	956060	-3.14%	737689	55.31%	2.04%	40.9%
2	988282	0.12%	757569	23.51%	3.96%	68.4%
3	1016937	3.02%	782341	30.29%	3.02%	63.4%

52. As shown in Figure 12, District 1 significantly resembles CD 2 in the

2022 Congressional Plan (red lines depict CD 2). Three quarters of the total
population in CD 2 (75.21%) is assigned to Supreme Court District 1 and 85.36% of the Black Population in CD 2 is in District 1.

Figure 12: Illustrative Plan 1 (and CD 2 overlay)

53. Under Illustrative Plan 1, District 1 (55.31\% BVAP) generally follows

CD 2 district lines north to south. In the north, Supreme Court District 1 extends beyond CD 2 to include Tate County (part of the historical Delta). Madison County is entirely in Supreme Court District 1 rather than split as with CD 2. South of

Copiah County, in order to minimize population deviation, Illustrative Supreme Court District 1 extends east beyond the CD 2 boundary to encompass all of the Southwest Planning District counties.

D. Illustrative Plan 2

54. The map in Figure 13 depicts Illustrative Plan 2. A higher resolution version of Illustrative Plan 2 is in Exhibit I-1. Summary population statistics are in Figure 14 below, with additional population details in Exhibit I-2. Exhibit I-3 identifies county assignments by district.

Figure 13: Illustrative Plan 2

Figure 14: Illustrative Plan 2 - 2020 Census

District	Population	\% Dev.	18+ Pop	\% 18+ Black	\% 18+ Latino	\% 18+ NH White
1	971422	-1.59%	746385	54.19%	2.45%	41.4%
2	997491	1.05%	770854	28.27%	2.84%	65.6%
3	992366	0.53%	760360	26.40%	3.75%	65.9%

55. Under Illustrative Plan 2, Supreme Court District 1 (54.2\% BVAP) encompasses the entire historical Delta (including DeSoto County), as well as most of the counties in the Southwest Planning District.
56. Illustrative Plan 2 splits three planning districts. Two splits involve Supreme Court District 1-Central (placing the counties of Madison, Rankin, and Simpson in District 3) and Southwest (placing Lincoln, Lawrence, and Walthall in District 2).

VI. LEAST CHANGE PLANS

57. The illustrative plans demonstrate that there are viable remedies in this Section 2 lawsuit which are sufficient to satisfy Gingles 1. However, alternative plan configurations beyond those presented in the two main illustrative plans are also possible.
58. For example, compared to the illustrative plans, the two "least change plans" described below are sub-optimal in terms of Black voting strength in Supreme Court District 1 and preservation of regional communities of interest across all three districts. However, the least change plans still fare better than the 1987 Plan on those scores. And under the least change plans, fewer voters would be shifted from their current 1987 districts in the process of creating a Deltaanchored majority-Black Supreme Court 1 as compared to the illustrative plans.

A. Least Change Plan 1

59. The map in Figure 15 depicts Least Change Plan 1. A higher resolution version of Least Change Plan 1 is in Exhibit J-1. Summary population statistics are in Figure 16, with additional population details in Exhibit J-2. Exhibit J-3 identifies county assignments by district.
60. Least Change Plan 1 shifts Madison County from Supreme Court District 1 into District 3. In turn, five majority-Black counties in the northern Delta are moved into District 1-Coahoma, Leflore, Quitman, Tallahatchie, and Tunica. Two
majority-Black counties bordering the Mississippi River are moved into Supreme Court District 1 from District 2—Adams and Wilkinson. Least Change Plan 1 thus maintains the overall east-west configuration of the 1987 Plan, while also better uniting the Mississippi Delta and creating a majority Black District 1.

Figure 15: Least Change Plan 1

Figure 16: Least Change Plan 1 - 2020 Census

District	Population	\% Dev.	18+ Pop	\% 18+ Black	\% 18+ Latino	\% 18+ NH White
1	941229	-4.65%	722892	53.00%	2.48%	42.1%
2	998968	1.20%	766360	26.46%	3.67%	66.0%
3	1021082	3.44%	788347	30.09%	2.87%	64.1%

B. Least Change Plan 2

61. The map in Figure 17 depicts Least Change Plan 2. Summary population statistics are Figure 18. A higher resolution version of Least Change Plan 2 is in Exhibit K-1. Summary population statistics are Figure 15, with additional population details in Exhibit K-2. Exhibit K-3 identifies county assignments by district.
62. Least Change Plan 2 also maintains the overall east-west configuration of the 1987 Plan. Under Least Change Plan 2, Madison County remains in Supreme Court District 1. Like Least Change Plan 1, five majority-Black counties in the northern Delta are moved into District 1 from District 3-Coahoma, Leflore, Quitman, Tallahatchie, and Tunica. Leake and Neshoba Counties are moved into District 3 from District 1. District 2 is completely unchanged from the 1987 Plan.

Figure 17: Least Change Plan 2

Figure 18: Least Change Plan 2 - 2020 Census

District	Population	\% Dev.	18+ Pop	\% 18+ Black	\% 18+ Latino	\% 18+ NH White
1	961887	-2.55%	738384	52.01%	2.52%	43.3%
2	1037093	5.07%	796767	27.66%	3.65%	64.9%
3	962299	-2.51%	742448	29.45%	2.82%	64.5%

VII. SOCIOECONOMIC PROFILE OF MISSISSIPPI

63. As in most other Section 2 cases where I have served as an expert, I also reviewed the socioeconomic statistics for Mississippi published by the Census Bureau in the American Community Survey ("ACS").
64. In Mississippi, African Americans trail NH whites across most key indicators of socioeconomic well-being. This disparity is summarized below and depicted with further detail in the charts in Exhibit L-1 and the table in Exhibit L-

2, as reported in Table S0201 from the 2021 1-year ACS. ${ }^{24}$

(a) Income

- 30.9% of African Americans in Mississippi live in poverty, compared to 11.5\% of Whites. (Exhibit L-1 at p. 2 and Exhibit L-2 at p. 11)
- 44.5% of African-American children live in poverty, compared to 12.9% of White children. (Exhibit L-1 at p. 2 and Exhibit L-2 at p.11)
- African-American median household income is $\$ 33,541$, compared to the \$61,318 median income for White households. (Exhibit L-1 at p. 5 and Exhibit L2 at p.9)
- Per capita income disparities in Mississippi track the disparities seen in median household income. African-American per capita income is $\$ 18,368$, compared to White per capita income of $\$ 33,374$. (Exhibit L-1 at p. 7 and Exhibit L-2 at p. 10)

[^88]- 24.6% of African-American households rely on food stamps (SNAP), more than triple the 7.0\% SNAP participation rate of White households. (Exhibit L-1 at p. 8 and Exhibit L-2 at p. 10)

(b) Education

- Of persons 25 years of age and over, 17.9% of African Americans have not finished high school, compared to 10.1% of their White counterparts. (Exhibit L1 at p. 10 and Exhibit L-2 at p. 3)
- At the other end of the educational scale, for ages 25 and over, 18.2% of African Americans have a bachelor's degree or higher, compared to 28.6% of Whites. (Exhibit L-1 at p. 10 and Exhibit L-2 at p. 4)

(c) Employment

- The Black unemployment rate (for the population over 16, expressed as a percent of the civilian labor force) is 10.5%, compared to a 3.9% White unemployment rate. (Exhibit L-1 at p. 12 and Exhibit L-2 at p. 6)
- Of employed African Americans, 26.2% are in management or professional occupations, compared to 41.1% rate of Whites. (Exhibit L-1 at p. 13 and Exhibit L-2 at p. 7)

(d) Housing

- In Mississippi, a little over half of African-American householders (53.8\%) are homeowners, while more than three quarters of White households (80.1\%) are owner-occupied. (Exhibit L-1 at p. 14 and Exhibit L-2 at p. 12)
- Median home value for African-American homeowners is $\$ 95,800$, compared to the $\$ 162,200$ median home value for Whites. (Exhibit L-1 at p. 15 and Exhibit L-2 at p. 13)

(e) Transportation/Communication

- One in ten African-American households (10.0\%) lacks access to a vehicle, while 4.3% of White households are without a vehicle. (Exhibit L-1 at p. 17 and

Exhibit L-2 at p. 12)

- There is about a four-point Black-White gap in households with a computer, smartphone or tablet-88.7\% versus 93.0\%. (Exhibit L-1 at p. 18 and Exhibit L-2 at p. 13)
- With respect to broadband internet connections, African-American households trail White households-77.1\% versus 84.4\%. (Exhibit L-1 at p. 18 and Exhibit L-2 at p. 13)

65. Based on the 2020 Census, 39.5% of the Black population in Mississippi lives in the area encompassed by CD 2 under the 2011 Plan.

Exhibit M-1 and M-2 report socioeconomic disparities specific to 2011
CD 2, according to the 2021 ACS. ${ }^{25}$
66. In addition, I have prepared socioeconomic contrast charts by race and ethnicity for all counties, municipalities, and unincorporated places with populations greater than 2,500 (and 10% or more SR Black), available via the link: http://www.fairdata2000.com/ACS_2015_19/Mississippi/ ${ }^{26}$
67. The 5-year 2015-2019 ACS charts make clear that the
statewide and CD 2-level socioeconomic disparities by race also exist at the county and municipal levels throughout Mississippi.

[^89]
+++

I reserve the right to amend or supplement my report in light of additional facts, testimony and/or materials that may come to light. Pursuant to 28 U.S.C. 1746 , I declare under penalty of perjury of the laws of the United States that the foregoing is true and correct according to the best of my knowledge, information, and belief.

Executed on October 3, 2022.

Qualifications and Background

My name is Traci Burch. I am an Associate Professor of Political Science at Northwestern University and Research Professor at the American Bar Foundation. I received my Ph.D. in Government and Social Policy from Harvard University in 2007.

Over the past 15 years, I have led several large, long-term quantitative and qualitative research projects on political participation in the United States. I have participated in and coauthored several book chapters and articles that examine race, political participation, and inequality. For instance, I have worked with Professors Kay Schlozman, Sidney Verba, and Henry Brady on book chapters and articles related to the causes and consequences of inequality in political participation. I also collected data on congressional hearings and interest group activities for that book. For my coauthored article with Jennifer Hochschild and our book with Vesla Weaver, I analyzed the legislative history of several racial policies, including the 1965 Hart-Cellar Act. We also explore political participation and attitudes in our book as well.

I am widely regarded as an expert on political behavior, barriers to voting, and political participation. My work has been widely cited and replicated and has won several awards. In particular, my dissertation on the effects of felony disenfranchisement on voting in North Carolina, Georgia, and other states, "Punishment and Participation: How Criminal Convictions Threaten American Democracy" won the Robert Noxon Toppan Prize for the Best Dissertation on a Subject of Political Science at Harvard in 2007. I also achieved national recognition for this work; the dissertation was also awarded the E.E. Schattschneider Award from the American Political Science Association for the best dissertation in American Government, and the William Anderson Award for the best dissertation in federalism, intergovernmental relations, and state and local politics. Several articles from this dissertation, including work evaluating voting patterns among people with felony convictions in North Carolina, Georgia, Florida, Missouri, and Michigan, have been published in leading peer-reviewed journals.

In particular, my articles "Did Disfranchisement Laws Help Elect President Bush? New Evidence on the Turnout and Party Registration of Florida's Ex-Felons" and "Turnout and Party Registration among Criminal Offenders in the 2008 General Election," which appeared in the peer-reviewed journals Law and Society Review and Political Behavior, respectively, included my calculations of felony disenfranchisement. My academic book on the community-level effects of criminal convictions on political participation, Trading Democracy for Justice, was published by the University of Chicago Press and also won multiple national awards from the American Political Science Association and its sections, including the Ralph J. Bunche Award for the best scholarly work that explores the phenomenon of ethnic and cultural pluralism and best book awards from the law and politics and urban politics sections. Trading Democracy for Justice, as well as the articles "The Effects of Imprisonment and Community Supervision on Political Participation," "Did Disenfranchisement Laws Help Elect President Bush?" "Skin Color and the Criminal Justice System," and "Turnout and Party Registration among Criminal Offenders in the 2008 General Election" rely on the analysis of data from Georgia.

I have testified before the U.S. Commission on Civil Rights about the collateral consequences of felony convictions with respect to voting and other issues. I have received several grants for my work, including a grant from the Stanford University Center on Poverty
and Inequality. I also serve as co-Principal Investigator on a National Science Foundation grant that supports graduate and postdoctoral fellowships at the American Bar Foundation. I have served on Editorial Boards of leading journals including Political Behavior and Law and Social Inquiry. Currently, I am on the Board of Overseers for the General Social Survey, a longstanding national public opinion survey run by the National Opinion Research Center at the University of Chicago. I routinely review the work of my peers for tenure, scholarly journals, university presses, and grants and have served as a reviewer for the American Political Science Review, The American Journal of Political Science, The Journal of Politics, Political Behavior, the National Science Foundation, Cambridge University Press, Princeton University Press, the University of Chicago Press, Oxford University Press, and many other entities. I also am a member of the Executive Council of the Elections, Public Opinion, and Voting Behavior Section of the American Political Science Association.

My curriculum vitae is provided in the Appendix. I am being compensated $\$ 350$ per hour for work in this case, plus expenses. This is my ninth engagement as an expert witness. I previously testified at trial and in a deposition in a case in federal district court in Florida, Kelvin Jones vs. Ron DeSantis, etc. et al. (Consolidated Case No. 4:19-cv-300), at trial and in a deposition in North Carolina (Community Success Initiative, et al., Plaintiffs v. Timothy K. Moore in Superior Court, Wake County, NC Case No. 19-cv-15941) and at trial and in a deposition in federal district court in Alabama (People First of Alabama, et al., v. John Merrill, in his official capacity as the Secretary of State of Alabama, et al.; Case No.: 2:20-cv-00619-AKK). I was deposed and testified at trial in a case in federal district court in Florida (Florida State Conference of the NAACP, Common Cause, and Disability Rights Florida v. Laurel M. Lee; Case no. 4:21-cv-00187-MWMAF) and deposed in a case in federal district court in the western district of Wisconsin (One Wisconsin Institute Inc. v. Jacobs Case No. 15-CV-324-JDP; Luft v. Evers Case No. 20-CV-768JDP. I also testified in a preliminary injunction hearing in Robinson et al. v. Ardoin (Case No. 22 CV-00211, Middle District of Louisiana). In all cases where an opinion was issued, the courts accepted and relied on my expert testimony.

Scope of the Report

I was asked by the attorneys for the plaintiffs in this case to provide information relevant for evaluating Senate Factor 5, or "the extent to which minority group members bear the effects of discrimination in areas such as education, employment, and health, which hinder their ability to participate effectively in the political process." I have also been asked to provide information relevant for evaluating Senate Factor 8, "whether there is a lack of responsiveness on the part of elected officials to the particularized needs of minority group members." In formulating my opinions, I relied on my analysis of standard sources for political scientists such as the reviews of scholarly literature and the analysis of demographic data, government reports, and public opinion surveys where noted. My work in this matter is ongoing, and I reserve the right to amend, modify, or supplement my analysis and opinions.

Summary of Conclusions

Based on my analyses and review of the scholarly literature, I offer the following opinions:

- Senate Factor 5: The state of Mississippi has consistently failed to provide equal educational opportunities to Black children in the state, and as a result, there are significant gaps in educational attainment and academic achievement between Black and white Mississippians.
- Senate Factor 5: Voter turnout in Mississippi varies by educational attainment, and much of the gap in turnout between Black and white Mississippi residents can be accounted for by the denial of educational opportunities to Black Mississippians.
- Senate Factor 5: Black people in Mississippi also face discrimination in employment and access to capital; financial resources have been shown to affect voter turnout generally and in studies of Mississippi in particular.
- Senate Factor 5: Housing discrimination also plagues Black Mississippians; factors such as homeownership and racial residential segregation have been shown to affect voter turnout.
- Senate Factor 5: Health outcomes such as cancer mortality, infant mortality, and life expectancy vary by race in Mississippi. Discrimination is a factor in these racial gaps: studies of Mississippi residents have shown that exposure to racial discrimination affects heart health, and that Black Mississippi residents have greater difficulty accessing health care and healthy foods.
- Senate Factor 5: Research has shown that discrimination affects conviction and sentencing in Mississippi; such discrimination plays a role in the racial gaps in criminal justice supervision between Black and white Mississippi residents. These racial gaps also affect voting because of Mississippi's felony disenfranchisement law.
- Senate Factor 8: Mississippi ranks at the bottom of states in almost all measures of well being, including health, education, and poverty. However, despite the availability of federal resources and majority public support for policies that could alleviate racial disparities in education, socioeconomic status, health, and criminal justice, the state of Mississippi clearly and repeatedly refuses to enact such policies. In fact, in several instances, the state has misused or misspent federal money earmarked to help vulnerable groups.

I discuss each of these conclusions further in the sections below.

Senate Factor 5: Discrimination in Educational Attainment and Voting Participation

People with higher educational attainment are more likely to vote (Almond and Verba 1963, Brady, Verba, and Schlozman 1995b, Burden 2009, Campbell et al. 1980, Verba, Schlozman, and Brady 1995b). Verba, Schlozman, and Brady argue that the relationship between socioeconomic status and voting exists because people with greater education also tend to have more of the resources such as time, money, and civic skills that affect the calculus of participation (1995: 282). Education makes it easier for individuals to navigate the costs of voting such as acquiring information about the candidates and issues or learning how to register and vote (Verba, Schlozman, and Brady 1995b).

Black people in Mississippi have faced educational discrimination throughout the state's history, hindering their ability to vote. Although the U. S. Supreme Court ruled segregation in public schools unconstitutional in Brown v. Board of Education in 1954, and Congress outlawed segregation in public accommodations in the Civil Rights Act of 1964, as I will discuss, the state failed to desegregate public schools for several years after those rulings. In fact, I will show
below that Mississippi's state and local governments have continued to enforce and support segregation in educational institutions even in recent years; for instance, by funding racially homogenous private schools, by assigning students to schools and classrooms by race and by maintaining racially separate proms, homecoming courts, and other activities.

Despite the court's ruling in Brown, the education provided by the state to Black and white students remained separate and unequal. Mississippi historically spent less money on educating Black children than white children; for instance, in 1950, this gap was $\$ 22.29$ dollars to $\$ 71.00$, respectively (Margo 1990). By May of 1961, the Southern Educational Reporting Service found that no Mississippi Black students attended school with white students in public elementary, secondary, or post-secondary institutions (Southern Educational Reporting Service 1961, 1961).

The lack of progress on desegregating public schools was due to the massive resistance of white parents and the policies of Mississippi state and local governments. The Mississippi legislature adopted several laws in special sessions that were designed to maintain segregated schools (1961, Douglas and Center 2005). Beginning in the mid-1960s, many districts in the state "desegregated" by adopting a "freedom of choice" scheme that encouraged the maintenance of separate public and private schools for white children (Fuquay 2002, Bolton 2009). Of course, no white children opted to go to Black schools, and Black students who tried to attend white schools faced intimidation and violence (Fuquay 2002: 172-175). Even as late as 1967, one-third of Mississippi school districts were still completely segregated, and fewer than three percent of Black children in the state attended school with white children (Bolton 2009).

Mississippi officially desegregated all school districts in 1970 in the aftermath of rulings in Alexander v. Holmes County Board of Education, 396 US 19 (1969) and U.S. v. Hinds County Board of Education, 417 F. $2{ }^{\text {nd }} 852$ ($5^{\text {th }}$ Cir. 1969). However, Mississippi schools continued to be segregated in practice. The number of private schools for white children increased dramatically after the desegregation order, as did the number of white children opting out of the public school system:

The Alexander decision led to an explosion of private schools across Mississippi. One student of the movement estimated that 61 schools were founded in that year, a number that is certainly understated. By 1973 there were 125 segregation academies operating in Mississippi. In the 30 districts specifically named by the Alexander decision, the number of academies increased from 6 to 30. Incredibly, most of these schools were created between the time of the court order in December and its implementation date on January 7. Already existing schools were in a position to take full advantage of the advent of "mass integration" and they saw their enrollments skyrocket. (Fuquay 2002: 176-177).

The State continued to support school segregation. Early on, state vouchers paid for students to attend these "segregation academies," and even after 1970 these schools received textbooks, supplies, and transportation paid for with public money (Fuquay 2002: 169, 178). The state also punished districts for desegregating: in 1971, the governor of Mississippi issued an executive order denying school districts state funds if children were bused to desegregate, an order that caused Jackson Public Schools to lose 40\% of their budget that year (Dixon 2020:3).

White flight did not just occur via the transfer of white students into private schools. In many communities, parents also moved to avoid desegregation (Dixon 2020:3). For instance, the city of Jackson went from majority white in 1960 to majority Black today due to a decline in the white population spurred at first by the prospect of integration (Hennessy-Fiske 2022).

The state resisted desegregation in higher education as well. Well after the Supreme Court ruled in a series of cases that segregation in public education was unconstitutional, Mississippi still maintained a completely segregated system of public higher education (1961: 30). Although the number of Black and white children in the elementary and secondary education system was roughly equal in the state, there were 19 white public colleges but only 6 Black colleges in 1961 (Southern Educational Reporting Service 1961: 30). After violence, riots, and legal maneuvering, James Meredith was able to enroll in the University of Mississippi, escorted by federal agents in 1961 (Bridges and Walker 1995). However, after the admission of Meredith to the University of Mississippi, the U. S. Supreme Court found:

For the next 12 years the segregated public university system in the State remained largely intact. Mississippi State University, Mississippi University for Women, University of Southern Mississippi, and Delta State University each admitted at least one Black student during these years, but the student composition of these institutions was still almost completely white. During this period, Jackson State and Mississippi Valley State were exclusively Black; Alcorn State had admitted five white students by 1968. United States v. Fordice, 505 U.S. 717, 722 (1992).

The Court ruled in 1992 that the "State has not met its affirmative obligation to dismantle its prior dual system" of separate but unequal higher education. Id. at 743. Research shows that integration of Mississippi's system of state universities is not complete; Mississippi's historically Black institutions still are stigmatized and held in low regard by white students (Paul, Steven Andrew, and King 2004).

Today, it is not difficult to see the ways in which Mississippi’s history of racial discrimination against Black citizens in education still produces gaps in educational equality. There is ample evidence that Mississippi has and continues to promote separate and unequal education for Black and white students. Racial segregation and resource inequity still can be found in Mississippi public schools.

School segregation has been shown to detrimentally affect the academic performance of minority students: Black and Latino students who grew up under conditions of segregation were less academically prepared for college and had been exposed to more violence and social disorder than those coming from "majority-dominant settings." (Massey and Fischer 2006). School segregation continues in Mississippi today. Currently, there are 37 school districts that are more than 90% Black in Mississippi (2022). There is ample evidence of the resistance of white parents and local school boards to desegregation. Following the tradition started with the segregation academies in the 1960s, white parents continue to opt out of public schools, especially in majority Black districts. As shown in Figure 1, Black students are overrepresented relative to their share of the population in most school districts in Mississippi; in fact, in districts (many in the Delta region) where Black students are more than three-quarters of students, white students have abandoned the public schools altogether.

Figure 1: Racial composition of school districts vs. school district enrollment by race in Mississippi for the 2017-18 school year. Data from EdBuild.org and the American Community Survey.

Coincidentally, more than 35 of the schools that began as segregation academies were still operating in 2012 (Carr 2012). These schools still enroll few to no students of color, and have discriminatory rules such as banning Black hairstyles (Carr 2012, Klein 2018). The state allows vouchers paid by public money to be used at some of these academies (Klein 2018). Many Mississippi politicians attended these academies, including Senator Cindy Hyde Smith (Klein 2018).

Several districts recently have engaged in practices that actively maintain racial segregation. More than 50 years after Brown, several Mississippi districts have been found to assign children to schools, classrooms, and even extracurricular activities by race. For instance, the Cleveland School District finally was ordered to desegregate in 2016 as it was still assigning students to Black and white schools (U. S. Department of Justice 2016). A Brookhaven, Mississippi policy that still assigned students to classrooms based on parent requests also has led to segregated classrooms (Northam 2019). Students still were being assigned to classrooms by race in Waynesboro Elementary School in 2012 (Consent Order, United States v. Mississippi, 2012 WL 13219550 (S.D. Miss. Jan. 3, 2012). ${ }^{1}$ A judge found evidence that a racially

[^90]discriminatory policy of transferring white students to all-white schools led to resegregation in Walthall County (U. S. Department of Justice 2010). Recent evidence of separate proms for Black and white students (2008), separate elections for class officers by race, and even separate homecoming court selections has been found as well (United States v. Nettleton Line Consolidated School District Civil Action, 2020 WL 5237806 (N.D. Miss. Sept. 2, 2020); United States v. Covington County School District 2:66-Cv-02148 (S.D. Miss. Feb. 27, 1976); United States v. Mississippi, 2012 WL 13219551 (S.D. Miss. Jan. 3, 2012).

Mississippi also provides resources to schools unequally. Based on data from EdBuild.org, in Mississippi school districts in which 90% or more of the students were nonwhite, the state government provided an average of $\$ 5,280$ per pupil, compared with $\$ 5,561$ in districts where students were more than 90% white (2022). ${ }^{2}$ When multiplied out based on the number of students in those districts, those nonwhite districts were shortchanged \$27,993,501 in that school year alone. This funding disparity exists even though the Edbuild.org data show that poverty rates were much higher in the 90% nonwhite districts: in those districts, the median student poverty rate was 41% and no district had fewer than 25% of students in poverty (2022). For the white districts, the Edbuild.org data show that the median student poverty rate was 19% and none had a poverty rate above 23% (2022). Evidence of unequal facilities has been found in some districts as well. Gray v. Lowndes County School District, 900 F. Supp. 2d 703 (N.D. Miss. 2012). Several Black districts, particularly in the Delta region, have fewer resources, meaning that students have to make do with teacher and bus shortages, older textbooks, and crumbling or dilapidated buildings (Parks 2021). The state has fully funded public education only three times in the last 30 years, and rural districts such as Holmes and Durant have been shortchanged millions of dollars (Parks 2021).

Figure 2: English (a) and Math (b) Proficiency by Race in Mississippi. Source: Mississippi Department of Education.

[^91]
Math Proficiency By Race

Given this historical and contemporary under-investment in public education for Black students, educational outcomes in Mississippi vary among currently enrolled students by race. As shown in Figure 2, among current students, there is a gap in scores on assessment tests in Mississippi; for example, only 24.3% of Black girls and 17.4% of Black boys are proficient in English, compared with 53.0% of white girls and 47.2% of white boys (Mississippi Department of Education 2022). Similar gaps exist in math proficiency: 20.6\% of Black girls and 17.2% of Black boys were proficient in math, compared with 53.7% of white girls and 53.8% of white boys (Mississippi Department of Education 2022). In the 2017-2018 school year (the latest data available from the federal government), Black students were 49.0% and white students were 44.0% of Mississippi public school students (U. S. Department of Education 2018). However, that year, Black students were only 24.4% of students in gifted and talented programs and 31.7% of students taking Advanced Placement courses (U. S. Department of Education 2018).

The evidence suggests that racial disparities in school discipline exist in Mississippi. School suspensions have been shown to increase subsequent arrests and other anti-social behavior in youth (Mowen and Brent 2016, Hemphill et al. 2006). Sixty-five percent of students who received one or more out-of-school suspensions were Black (U. S. Department of Education 2018). Twice as many Black students as white students were referred to law enforcement in Mississippi (U. S. Department of Education 2018). In Meridian, MS, the U.S. Department of Justice found persistent racial disparities in school discipline (U. S. Department of Justice 2013). Corporal punishment is also more likely to be used against Black children in Mississippi (Gershoff and Font 2016).

This long history of persistent racial discrimination in education affects outcomes in educational attainment for Mississippians. Although there have been gains in educational attainment in Mississippi over time, racial gaps persist. Figure 3 shows data from the 2019 1Year Estimates from the American Community Survey on the educational attainment of Mississippi residents over the age of 25, by race. The data show that white Mississippi adults are
far more likely than Black Mississippi adults to have earned a bachelor's or postgraduate degree, and that Black Mississippians have lower educational attainment overall. ${ }^{3}$

Figure 3: Educational Attainment by Race in Mississippi. Source: 2019 American Community Survey 1-Year Estimates

Even worse, literacy rates vary by race in Mississippi. An estimated 28\% of Mississippi adults are classified as low literacy (National Center for Education Statistics 2022). ${ }^{4}$ In Black counties, low literacy rates are even more prevalent. For instance, 50% of adults in Humphreys County, 48% of adults in Quitman and Noxubee Counties, and 47% of adults in Holmes, Claiborne, and Wilkinson Counties are estimated to be below level 1 in literacy. Low literacy is a barrier to voting (Brady, Verba, and Schlozman 1995a, Summers et al. 2014).

[^92]Figure 4: Racial Differences in Voter Turnout Overall and by Education Level in Mississippi. Source: 2020 Current Population Survey Voting and Registration Supplement

Examining voter turnout in Mississippi by race and educational level in Figure 4 shows the clear impact of Mississippi's history of educational inequality on voting. As shown in the last columns of the figure, overall, white Mississippians have higher voter turnout than Black Mississippians: 56.1% of white Mississippi citizens voted in the 2020 general election, compared with 53.0% of Black Mississippi citizens. However, once we control for educational level, we see that for every level of educational attainment, Black Mississippians vote at higher rates than white Mississippians. These data suggest that the overall gap in turnout between Black and white Mississippians exists because of the gap in educational opportunities between Black and white Mississippians. Black people in Mississippi have had less access to quality education and therefore have lower educational attainment for the reasons discussed in this section; this lower educational attainment leads to lower voter turnout.

Income, Poverty, Wealth and Voting

Income and wealth affect voting to the extent that greater income can make it easier to overcome the costs of voting, such as having the ability to afford time off work to go to the polls (Verba, Schlozman, and Brady 1995a). On every economic measure, Mississippi ranks among the worst-off states in the country (Suneson 2018). Black Mississippi residents fare worse than white Mississippi residents. For instance, as shown in Figure 5, the median household income for white Mississippi households is almost twice as high as that for Black Mississippi households. In Figure 6, it is clear that gaps exist on other economic measures as well: Black unemployment is more than twice as high as white unemployment, Black poverty is almost three times higher than white poverty, and more than three times as many Black households as white households lack access to a vehicle. Studies have shown that polling place distance affects voter turnout, and those effects are related to transportation access (Brady and McNulty 2011, Bagwe,

Margitic, and Stashko 2020). In states with no excuse absentee voting, people tend to offset issues accessing physical polling places with voting by mail; however, in states with limited absentee ballot options, such as that in Mississippi, the "substitution to mail-in voting" is smaller (Bagwe, Margitic, and Stashko 2020: 4). Overall, poverty and related issues have been shown to decrease political participation in Mississippi and other states (Austin, Franklin, and Lewis 2013).

Figure 5: Median Household Income by Race in Mississippi. Source 2019 American Community Survey 1 year estimates.

Median Household Income by Race in Mississippi		
\$70,000.00		
\$60,000.00		
\$55,000.00		
\$40,000.00		
\$30,000.00	\$57,555.00	
\$20,000.00 \$10,000.00		\$31,092.00
	White SOURCE	$\begin{aligned} & \text { Black } \\ & \text { r suviver } \end{aligned}$

Figure 6: Selected Economic Characteristics by Race in Mississippi. Source: 2019 American Community Survey 1 year estimates.

The persistent educational discrimination faced by Black Mississippi residents can account for much of the disparity in socioeconomic wellbeing (Long 2010). However, decades of persistent discrimination in employment and access to capital over decades also have produced economic disparities.

Mississippi is predominantly rural, so agriculture has loomed large as a determinant of both income and wealth in the state. Of course, Mississippi's agricultural system was dominated first by plantation slavery and then through sharecropping. Eventually, Black farmers did gain a foothold, buying farmland in the Mississippi delta and other regions. However, land dispossession due to discriminatory or otherwise improper lending practices led Black farmers to lose their land at greater rates than white farmers in the state (Newkirk II 2019). For instance, white farmers had greater access to federal subsidies and farm aid than Black farmers due to discrimination in the federal and local administration of relief programs (United States Commission on Civil Rights 1965). Black farmers lost almost 800,000 acres in Mississippi between 1950 and 1964 (Newkirk II 2019). The federal government eventually compensated Black farmers for these discriminatory practices, Pigford v. Glickman, 185 F.R.D. 82 (D.D.C. 1999), but not enough to make Black farmers whole (Newkirk II 2019, Wright et al. 2020).
V.O. Key argues famously that southern politics are driven by race: in "those counties and sections of the southern states in which Negroes constitute a substantial proportion of the population . . . a real problem of politics, broadly considered, is the maintenance of control by a white minority" (Key and Heard 1949:5). Key later writes, "the beginning and the end of Mississippi politics is the Negro" because of the racial diversity of the state (Key and Heard

1949: 229). This political reality has important economic implications for the Delta region. According to Sharon Wright Austin, depopulation of the Delta region was a goal of economic policy in Mississippi by the 1960s, so that wages were kept artificially low and mechanization devastated sharecroppers (Austin 2012: 36). These policies led to a mass exodus of Black people to northern cities in search of opportunity (Austin 2012: 36-37). Afterward, economic development continued to lag in the region because local white elites opposed factories and other economic engines that would replace farming and provide opportunities for advancement (Austin 2012: 39). Plus, poor educational systems and depopulation made the Delta region unattractive to companies looking for places to locate factories and offices (Austin 2012: 37). In this way, the persistent poverty of the region was driven by systematic underdevelopment; although attempts have been made in recent years to spur growth through gaming and prisons, these have not been enough to ameliorate rural poverty in Mississippi (Austin 2012).

Discrimination still affects the ability of Black people to achieve economic parity with white people in Mississippi. For instance, an analysis of data from the Equal Employment Opportunity Commission by Paychex found that Mississippi ranks second highest in the nation for employment discrimination complaints based on color and/or race (Paychex 2019). Employment may affect voter turnout through several pathways. First, white collar occupations may provide employees with a greater opportunity to develop civic skills that can be useful in navigating electoral bureaucracies (Almond and Verba 1963, Verba, Schlozman, and Brady 1995b). Second, salaried workers may have greater freedom to take time off work without risking their pay. Finally, Rosenstone and Hansen argue that work is an important site for recruitment into politics, which also increases voter turnout (Rosenstone and Hansen 1993).

Racial disparities in access to capital also affect Mississippians. Black people in Mississippi are four times as likely to be unbanked as white people in Mississippi (24.1% vs. 6.6%, respectively (FDIC n.d.)). Several towns in Mississippi, such as Itta Bena, are banking deserts, meaning that there are no branches available for people to conduct their daily business (Ross 2019). Banks are more likely to lend in places where they have branches and longstanding relationships with clients (Morgan, Pinkovskiy, and Yang 2016).

Housing, Residence, and Voting

Neighborhood context matters for political mobilization and political outcomes (Burbank 1997, Burch 2013, Cohen and Dawson 1993, Huckfeldt, Plutzer, and Sprague 1993, Huckfeldt 1979, Tam Cho and Rudolph 2008). As discussed elsewhere in this report, many Black Mississippi residents have the misfortune of living in banking, healthcare, and food deserts, which contribute to racial disparities in health and wealth. However, where people live also matters because racial residential segregation has been shown to decrease Black voter turnout. Researchers argue that segregated Black areas have less access to public goods, such as polling places or transportation, that might matter for voting (Zingher and Moore 2019). In fact, Black Mississippi voters in the $2^{\text {nd }}$ Congressional District face longer wait times than other voters in the district (Chen et al. 2019: 54). Racial residential segregation also affects politics indirectly because it is an important determinant of economic and health outcomes. Racial residential segregation increases Black poverty rates, lowers Black educational attainment, and increases income inequality between Black and white residents (Ananat 2011). Research attributes these effects to isolation from quality schools and jobs (Kruse 2013, Massey and Fischer 2006, Wilson 1996). Racial residential segregation also contributes to the test score gap between Black and
white students (Reardon, Kalogrides, and Shores 2019), to inequalities in the provision of public goods, to lower public goods expenditures (Trounstine 2016), and to worse health outcomes and greater exposure to environmental toxins (Ard 2016, Kramer and Hogue 2009).

For example, Jackson, Mississippi was segregated by race historically. Federal housing policy was a major driver of racial residential segregation. The Federal Housing Administration (FHA) was created in 1934 in order to "insure lenders against any loss on loans made for purchasing homes" (Kimble 2007: 402). The FHA, in this role, "could dictate the range of acceptable, insurable terms and conditions of home lending" (Kimble 2007: 403). In order to prevent lending to places where Black people lived, the FHA relied on Residential Security Maps that were produced by the Home Owners Loan Corporation ("HOLC") (2021a). These maps "color-coded neighborhoods using racial composition as a primary indicator of their acceptability as candidates for mortgage investment" (Kimble 2007: 405). The maps assigned grades to neighborhoods based on racial composition, "with 'A' being most desirable and a 'D' grade ensuring rejection" (Kimble 2007: 405). The HOLC map for Jackson is shown in Figure 7 and follows this traditional grading system for lending based on neighborhood race (2021a).

Research shows that the Jackson area still suffers from a high degree of racial residential segregation today (2021b, Athey et al. 2021). ${ }^{5}$ As Trounstine (2016) finds, racially segregated cities spend less on public goods and allocate such goods unequally; a prominent example of this phenomenon is the water crisis currently devastating the city. The residents of Jackson were under a boil water advisory for months during the summer of 2022, and ultimately ended up losing running water altogether for weeks (Nawaz 2022). Jackson's water system has had problems for a long time due to decades of underinvestment (Breslow 2022). However, despite the obvious problems, the Mississippi state legislature refused to appropriate money to fix the system and the Mississippi governor vetoed bipartisan legislation designed to help residents pay their bills and infuse money into the system (Breslow 2022). Professor Robert Bullard, an expert on environmental racism, argued that this neglect of Jackson's water is because of race (Nawaz 2022).

[^93]Figure 7: Homeowners Loan Corporation Underwriting Map for Jackson, MS

Homeownership affects voting through at least two pathways. First, residency requirements have been shown to reduce voter registration and turnout, largely because residential mobility increases the administrative burden of maintaining registration (Highton 2000). Renters are more mobile than owners. Second, linking back to the previous section, homeownership also has important effects on wealth accumulation (Grinstein-Weiss et al. 2013, Turner and Luea 2009).

Homeownership differs by race in Mississippi. As shown in Figure 8, Black people in Mississippi are less likely to own their homes. When they do, their homes are worth less than those owned by white Mississippians: according to the 2010 American Community Survey 5-
year estimates, the median home value for white Mississippi residents is $\$ 114,500$, but only $\$ 68,300$ for Black Mississippi residents. The 2010 American Community Survey data also show that Black Mississippians also are more likely than white Mississippians to live in homes that do not have access to a telephone (7.5% vs. 4.9%, respectively).

Figure 8: Homeownership by Race in Mississippi. Source: 2019 American Community Survey 1 year estimates.

Recent evidence suggests that racial gaps in homeownership as well as access to high quality overall results from discrimination. A 2019 report by the Mississippi Home Corporation, a state entity, found that Black people in Mississippi were denied mortgage loans more frequently and faced discrimination in rental markets (Mississippi Home Corporation 2019). Other studies also have shown that Black Mississippi applicants face discrimination in home lending (Ezeala-Harrison and Glover 2008) and that discriminatory practices affect the ability of Black renters to find rental housing in Mississippi (National Fair Housing Alliance 2017, U. S. Department of Justice 2020).

Health

Health status also may affect voting. Several studies have associated poor health with lower voter turnout (Blakely, Kennedy, and Kawachi 2001, Lyon 2021, Pacheco and Fletcher 2015). The effects of health on voting may take many pathways, such as reducing the availability of free time and money that could otherwise be devoted to politics (Pacheco and Fletcher 2015). Impaired cognitive functioning or physical disability also may make voting more difficult (Pacheco and Fletcher 2015). Poor health is likely the reason that voter turnout declines in old age (Pacheco and Fletcher 2015). People with disabilities also are less likely to vote; problems with polling place accessibility only partially explain this gap (Schur, Ameri, and

Adya 2017, Schur et al. 2002). Health and politics are particularly linked in Mississippi (Jones 2019).

Mississippi ranks among the least healthy of the American states. In many ways, Black Mississippians are worse off relative to white Mississippians. For instance, mortality rates for cancer are worse for Black Mississippi residents relative to whites (217.3 vs. 186.4 per 100,000 residents, age adjusted) (Centers for Disease Control 2022). However, this gap in mortality is not driven by a gap in the incidence of cancer, which is quite similar between Black and white Mississippians (518.2 vs. 513.5 per 100,000 residents, age adjusted) (Centers for Disease Control 2022). As Figure 9 shows, Black people in Mississippi also suffer from diabetes, high blood pressure, and obesity at higher rates than white people in the state (CDC). Overall, life expectancy for Black people in Mississippi is lower than that for white people; in 53 Mississippi counties, the average white person is expected to live more than two years longer than the average Black person (County Health Rankings and Roadmaps 2022). In three counties (Jefferson Davis, Coahoma, and Holmes), the life expectancy for white people is greater than seven years longer than that for Black people (County Health Rankings and Roadmaps 2022). Infant mortality is much higher for Black babies: 11.9 per 1000 live births vs. 6.2 per 1000 live births for white babies (Mississippi State Department of Public Health 2018).

Figure 9: Disease Incidence, by Race. Source, Centers for Disease Control.

Figure 10: Access to Health Care, by Race. Source: Centers for Disease Control.

These health disparities are caused partially by disparities in access to resources. In Mississippi, as shown in Figure 10, Black people are less likely to have health insurance or a primary care physician than white people (CDC). Moreover, Black people are more likely to report that they did not go see a doctor when they needed to because of cost considerations (CDC). Racial residential segregation also may make it more difficult for Black Americans to access primary care physicians and other doctors (Gaskin et al. 2012, Anderson 2018). For instance, many areas of Mississippi, particularly the Delta region, are medically underserved, and some counties have few to no primary care physicians practicing (Williams and Sprinkle 2021). Many people in the Delta also lack access to stores that sell nutritious food; food deserts have been linked to poor health outcomes as well (Goodman, Thomson, and Landry 2020, Hossfeld and Rico Mendez 2018). Similar problems have been reported with respect to racial disparities in access to COVID-19 vaccination sites early in the vaccine rollout in Mississippi, partly due to failure to reach people in medically underserved areas (Doyle 2021, Gravlee et al. 2021). Even in Jackson, access to vaccines was limited; the city did not open its first drive-thru vaccination site until three weeks after sites opened in other areas (Associated Press 2021).

Discrimination also contributes to racial health disparities. Several long-term studies of Jackson, Mississippi residents have shown that racial discrimination affects cardiac health (Sims et al. 2012, Forde et al. 2020). Racial residential segregation has been shown to lead to worse health outcomes for Black Americans. Several studies have demonstrated that racial residential segregation contributes to racial gaps in cancer outcomes (Landrine et al. 2017, Blanco et al. 2021, Poulson et al. 2021). Such factors, by contributing to racial disparities in health, ultimately may affect voting because of the link between poor health and lower voter turnout.

Criminal Justice

A growing body of research shows that criminal justice interactions affect political behavior. Several studies have shown that, for individuals, contact with the criminal justice system, from police stops, to arrest, to incarceration, directly decreases voter turnout (Burch 2011, Lerman and Weaver 2014, Weaver and Lerman 2010). Primarily, criminal justice contact decreases turnout through "the combined forces of stigma, punishment and exclusion" which impose "barriers to most avenues of influence" and diminish "factors such as civic capacity, governmental trust, individual efficacy, and social connectedness that encourage activity" (Burch 2007: 12).

Black people are disproportionately represented among Mississippi’s prisoners, probationers, and parolees as shown in Figure 11. As a reminder, 38.0% of Mississippi's population is Black, but according to the Mississippi Department of Corrections, 60.4% of prisoners, 52.0% of probationers, and 55.5% of parolees in Mississippi are Black. Black people were 54.1% of arrestees in Mississippi in 2020 (Federal Bureau of Investigation 2022).

Figure 11: Mississippi Correctional Populations, by Race. Source: Mississippi Department of Corrections

Racial discrimination accounts for some of this disparity. Studies have shown that racial disparities in arrest are caused by factors that make it more likely that police will stop or search Black people, such as spatially differentiated policing, racial residential segregation, and discrimination (Beckett, Nyrop, and Pfingst 2006, Gelman, Fagan, and Kiss 2007, Ousey and Lee 2008, Pierson et al. 2020). Racial disparities in bail decisions (Arnold, Dobbie, and Yang 2018) and in sentencing also may contribute to incarceration disparities (Bushway and Piehl 2001, Mitchell 2005, Steffensmeier and Demuth 2000, Steffensmeier, Ulmer, and Kramer 1998). Research shows evidence of racial discrimination in sentencing in Mississippi (Fender et al. 2006). The Mississippi legislature passed several reforms of the criminal justice system. However, the evidence suggests that racial discrimination still leads to disparate sentencing outcomes (Mississippi Office of State Public Defender 2018). Moreover, the Supreme Court
found evidence of racial discrimination in the use of peremptory challenges in Flowers v. Mississippi 139 S. Ct. 2228 (2019). In addition to the Flowers case, scholars have found that racial discrimination of the use of peremptory challenges is a widespread practice in Mississippi (DeCamp and DeCamp 2020).

Mississippi's felony disenfranchisement law was designed "to obstruct the exercise of the franchise by the Negro race," Ratliff v. Beale, 20 So. 865, 868 (1896), after the Civil War (Behrens, Uggen, and Manza 2003). Because of this law, involvement with the criminal justice system directly affects voting. In Mississippi, people with felony convictions for certain offenses are prevented from voting while they are serving their sentence in prison or in the community and even after they have finished serving their sentences. Because of the disproportionate involvement of Black Mississippians with the criminal justice system, Black people disproportionately are more likely to have lost their voting rights permanently. Based on an analysis of records from the Administrative Office of the Courts, an estimated 56,000 people are disenfranchised permanently in Mississippi (Rozier 2018). Black people are 61% of the disenfranchised population (Rozier 2018).,.

In Mississippi, Black people are disproportionately arrested, convicted, and punished for crimes. Research suggests that racial discrimination has played a role in these disparities historically and continues to do so because of discriminatory arrest, conviction, and sentencing practices. It is important to remember that, because of felony disenfranchisement laws, disparities in criminal justice involvement translate into disparities in voting participation because Black Mississippians are disproportionately barred from voting based on their criminal histories.

Section 5: Conclusion
To summarize the discussion, Black people in Mississippi are subjected to worse outcomes in education, socioeconomic status, housing, health, and criminal justice. Research cited in this report shows how these racial disparities partly are the result of historical and contemporary discrimination by state and local governments as well as private market actors. In particular, policies that continue to support segregation in education and fail to allocate resources equitably across domains such as health, housing, and education help maintain racial gaps in well-being. As I have demonstrated in this report, researchers have shown that such disparities in education, employment, poverty, income, housing, health, and criminal justice involvement all contribute to gaps in voter turnout.

Senate Factor 8: Lack of Responsiveness

Under Section 2 of the Voting Rights Act, courts may consider additional factors, such as whether there is a lack of responsiveness on the part of elected officials to the particularized needs of minority group members. The longstanding and persistent gaps in socioeconomic status, incarceration, and health discussed throughout this report demonstrate the lack of responsiveness of public officials to the needs of Mississippi's Black communities. Research has shown that public policies are important for creating and sustaining racial disparities. For instance, as described earlier in this report, persistent test score gaps and educational segregation continue to pose problems for Mississippi students; however, Mississippi continues to underfund public schools in the state (Parks 2021). Black Mississippians have worse health outcomes, are less likely to have health insurance, and are more likely to avoid care because of costs, and yet

Mississippi has not accepted the federal Medicaid expansion (Kaiser Family Foundation 2022). Mississippi is the poorest state in the nation, but Mississippi misused millions of dollars in funds from the Temporary Assistance to Needy Families Program, refusing to spend that money on the citizens with the most need (Wolfe 2020). Mississippi also faces allegations that money meant for rental assistance was misdirected toward millions of dollars in lawyer fees (O'Connell and Torbati 2021), and that money meant to alleviate racial disparities in COVID 19 also went mostly unused (Galewitz, Weber, and Whitehead 2022). In Jackson, a persistent water crisis has left residents without water for weeks, and yet the state refused to allocate money to help the city repeatedly (Breslow 2022). A majority of Mississippi voters favor policies such as Medicaid expansion, helping the city of Jackson with fixing the water crisis, and restoring voting rights to people with felony convictions (College 2019, 2021). Moreover, in each of these cases, federal money is there to help. The state just refuses to do so.

Prominent Black leaders in Mississippi attribute these policy decisions to racism. Representative Bennie Thompson, for instance, said of COVID 19 vaccine sites, "But that is a decision that has to go through the governor's office. And the majority of people don't have any confidence that the governor is interested in providing those kinds of services in the minority community" (Chatlani 2021). Zakiya Summers, a Mississippi State Legislator, said of her state,
"Wealthier areas, she said, "tend to get more resources, more state support. West Jackson, we haven't seen that in a while. It's areas where poor Black people are concentrated where help is slow moving or it's none at all" (Hennessy-Fiske 2022).

Governor Reeves disagrees. He said, "There is not systemic racism in America" (Ganucheau 2021).

Works Cited

1961. A statistical summary, State by State, of segregation-desegregation activity affecting Southern schools from 1954 to present, together with pertinent data on enrollment, teachers, colleges, litigation and legislation. Southern Education Reporting Service.
1962. Mississippi School Holds First Interracial Prom. In The Bryant Park Project: NPR.

2021a. "Mapping Inequality Redlining in New Deal America." University of Richmond Digital Scholarship Lab, accessed 5 Apr 2022. https://dsl.richmond.edu/panorama/redlining/\#loc=5/39.1/-94.58.
2021b. "Most to Least Segregated Metro Regions." University of California at Berkeley Othering and Belonging Institute, accessed 1 Dec 2021. https://belonging.berkeley.edu/most-least-segregated-metro-regions.
2022. "Data Dashboard: Mississippi." EdBuild, accessed 7 Sep 2022. https://shiny.edbuild.org/apps/edbuild-dashboard/.
Almond, Gabriel, and Sidney Verba. 1963. The Civic Culture. Princeton: Princeton University Press.
Ananat, Elizabeth Oltmans. 2011. "The wrong side (s) of the tracks: The causal effects of racial segregation on urban poverty and inequality." American Economic Journal: Applied Economics 3 (2):34-66.
Anderson, Kathryn Freeman. 2018. "Racial/ethnic residential segregation, the distribution of physician's offices and access to health care: the case of Houston, Texas." Social Sciences 7 (8):119.
Ard, Kerry. 2016. "By all measures: An examination of the relationship between segregation and health risk from air pollution." Population and Environment 38 (1):1-20.
Arnold, David, Will Dobbie, and Crystal S Yang. 2018. "Racial bias in bail decisions." The Quarterly Journal of Economics 133 (4):1885-1932.
Associated Press. 2021. "Mississippi Opens New Drive-Thru Vaccination Site in Jackson." U. S. News and World Report, 21 Jan 2021. Accessed 30 Sep 2022. https://www.usnews.com/news/best-states/mississippi/articles/2021-01-21/mississippi-opens-new-drive-thru-vaccination-site-in-jackson.
Athey, Susan, Billy Ferguson, Matthew Gentzkow, and Tobias Schmidt. 2021. "Estimating experienced racial segregation in US cities using large-scale GPS data." Proceedings of the National Academy of Sciences 118 (46).
Austin, Sharon D Wright. 2012. The transformation of plantation politics: Black politics, concentrated poverty, and social capital in the Mississippi Delta: SUNY Press.
Austin, Sharon D. Wright, Sekou M. Franklin, and Angela K. Lewis. 2013. "The Effects of Concentrated Poverty on Black and White Political Participation in the Southern Black Belt." National Political Science Review 15:57-69.
Bagwe, Gaurav, Juan Margitic, and Allison Stashko. 2020. Polling Place Location and the Costs of Voting. Working Paper.
Beckett, Katherine, Kris Nyrop, and Lori Pfingst. 2006. "Race, drugs, and policing: Understanding disparities in drug delivery arrests." Criminology 44 (1):105-137.
Behrens, Angela, Christopher Uggen, and Jeff Manza. 2003. "Ballot manipulation and the "menace of Negro domination": Racial threat and felon disenfranchisement in the United States, 1850-2002." American Journal of Sociology 109 (3):559-605.
Blakely, Tony A, Bruce P Kennedy, and Ichiro Kawachi. 2001. "Socioeconomic inequality in voting participation and self-rated health." American journal of public health 91 (1):99.

Blanco, Barbara Aldana, Michael Poulson, Kelly M Kenzik, David B McAneny, Jennifer F Tseng, and Teviah E Sachs. 2021. "The impact of residential segregation on pancreatic cancer diagnosis, treatment, and mortality." Annals of surgical oncology 28 (6):31473155.

Bolton, Charles C. 2009. "The Last Stand of Massive Resistance: Mississippi Public School Integration, 1970." Mississippi Historical Society, accessed 7 Sep 2022.
https://www.mshistorynow.mdah.ms.gov/issue/the-last-stand-of-massive-resistance1970.

Brady, Henry E, Sidney Verba, and Kay Lehman Schlozman. 1995a. "Beyond SES: A resource model of political participation." American political science review 89 (2):271-294.
Brady, Henry E., and John E. McNulty. 2011. "Turning Out to Vote: The Costs of Finding and Getting to the Polling Place." The American Political Science Review 105 (1):115-134. doi: https://doi.org/10.1017/S0003055410000596.
Brady, Henry E., Sidney Verba, and Kay Lehman Schlozman. 1995b. "Beyond SES: A Resource Model of Political Participation." American Political Science Review Vol. 89, No. 2 (Jun. 1995):271-294.
Breslow, Jason. 2022. "The Water Crisis in Jackson Follows Years of Failure to Fix an Aging System." NPR, 31 Aug 2022. Accessed 12 Sep 2022. https://www.npr.org/2022/08/31/1120166328/jackson-mississippi-water-crisis.
Bridges, Billy G, and Wendy E Walker. 1995. "The Forty Years Fight to Desegregate Public Education in the Fifth Circuit and in Particular, Mississippi." Miss. CL Rev. 16:289.
Burbank, Matthew J. 1997. "Explaining contextual effects on vote choice." Political Behavior 19 (2):113-132.
Burch, Traci. 2011. "Turnout and Party Registration among Criminal Offenders in the 2008 General Election." Law and Society Review 45 (3):699-730.
Burch, Traci. 2013. Trading Democracy for Justice: Criminal Convictions and the Decline of Neighborhood Political Participation. Chicago: University of Chicago Press.
Burden, Barry C. 2009. "The dynamic effects of education on voter turnout." Electoral studies 28 (4):540-549.
Bushway, Shawn D, and Anne Morrison Piehl. 2001. "Judging judicial discretion: Legal factors and racial discrimination in sentencing." Law and Society Review:733-764.
Campbell, Angus, Philip E Converse, Warren E Miller, and Donald E Stokes. 1980. The american voter: University of Chicago Press.
Carr, Sarah. 2012. "In Southern Towns, 'Segregation Academies' Are Still Going Strong." The Atlantic, 13 Dec 2012.
CDC. "Chronic Disease Indicators." Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, accessed 3 Mar 2022. https://nccd.cdc.gov/cdi.
Centers for Disease Control. 2022. "Leading Indicators for Chronic Diseases and Risk Factors." accessed 12 Sep 2022. https://chronicdata.cdc.gov/.
Chatlani, Shalina. 2021. "Past and Present Collide as Community Health Centers Strive to Close Rural Care Gaps in the Pandemic." New Orleans Public Radio, 19 Apr 2021. Accessed 30 Sep 2021. https://www.wwno.org/2021-04-19/past-and-present-collide-as-community-health-centers-strive-to-close-rural-care-gaps-in-the-pandemic-covid19-coronavirus-fqhc.

Chen, M Keith, Kareem Haggag, Devin G Pope, and Ryne Rohla. 2019. "Racial disparities in voting wait times: evidence from smartphone data." The Review of Economics and Statistics:1-27.
Cohen, Cathy J., and Michael C. Dawson. 1993. "Neighborhood Poverty and African-American Politics." American Political Science Review 87 (2):286-302.
College, Millsaps. 2019. State of the State Poll.
College, Millsaps. 2021. State of the State Poll.
County Health Rankings and Roadmaps. 2022. "Mississippi." accessed 12 Sep 2022. https://www.countyhealthrankings.org/app/mississippi/2022/measure/outcomes/147/data.
DeCamp, Whitney, and Elise DeCamp. 2020. "It's Still about Race: Peremptory Challenge Use on Black Prospective Jurors." Journal of Research in Crime and Delinquency 57 (1):330. doi: 10.1177/0022427819873943.

Dixon, LaTanya L. 2020. "From Statehood to School Desegregation: Racial Disparities in the Public Education of Mississippi, 1817-1969." AERA Open 6 (4):2332858420975396.
Douglas, Davison M, and Federal Judicial Center. 2005. "Bush v. Orleans Parish School Board and the Desegregation of New Orleans Schools." Prepared for inclusion in the project Federal Trials and Great Debates in United States History, Federal Judicial Center, Federal Judicial History Office 8.
Doyle, Rory. 2021. "In Mississippi, Black Residents Are Desperate to Get Vaccinated. But They Face Access Barriers." NBC News, 4 Feb 2021.
Ezeala-Harrison, Fidel, and Glenda B. Glover. 2008. "Determinants of Housing Loan Patterns Toward Minority Borrowers in Mississippi." Journal of Economic Issues 42 (1):75-96. doi: 10.1080/00213624.2008.11507115.
FDIC. n.d. Five-Year Estimates Table Tool.
Federal Bureau of Investigation. 2022. "Crime Data Explorer." accessed 13 Sep 2022. https://crime-data-explorer.fr.cloud.gov/pages/explorer/crime/arrest.
Fender, Blakely Fox, Carl Brooking, Lucy McNair, Dolly Mehta, Jared Eastlack, and Brooke Pierce. 2006. "The Impact of Race and Gender on Sentencing for Mississippi’s Indigent Population." Journal of Economic Insight (formerly the Journal of Economics (MVEA)) 32 (1):57-73.
Forde, Allana T., Mario Sims, Paul Muntner, Tené Lewis, Amanda Onwuka, Kari Moore, and Ana V. Diez Roux. 2020. "Discrimination and Hypertension Risk Among African Americans in the Jackson Heart Study." Hypertension 76 (3):715-723. doi: doi:10.1161/HYPERTENSIONAHA.119.14492.
Fuquay, Michael W. 2002. "Civil rights and the private school movement in Mississippi, 19641971." History of Education Quarterly 42 (2):159-180.

Galewitz, Phil, Lauren Weber, and Sam Whitehead. 2022. States Have Yet to Spend Hundreds of Millions of Federal Dollars to Tackle Covid Health Disparities. Kaiser Health News.
Ganucheau, Adam. 2021. "Gov. Reeves Says there is no Systemic Racism in the Justice System. The Numbers Say Otherwise." Mississippi Today, 30 Apr 2021. Accessed 30 Sep 2022. https://mississippitoday.org/2021/04/30/gov-reeves-says-there-is-no-systemic-racism-in-the-justice-system-the-numbers-say-otherwise/.
Gaskin, Darrell J, Gniesha Y Dinwiddie, Kitty S Chan, and Rachael R McCleary. 2012. "Residential segregation and the availability of primary care physicians." Health services research 47 (6):2353-2376.

Gelman, Andrew, Jeffrey Fagan, and Alex Kiss. 2007. "An analysis of the New York City police department's "stop-and-frisk" policy in the context of claims of racial bias." Journal of the American statistical association 102 (479):813-823.
Gershoff, Elizabeth T, and Sarah A Font. 2016. "Corporal punishment in US public schools: Prevalence, disparities in use, and status in state and federal policy." Social policy report 30.

Goodman, Melissa, Jessica Thomson, and Alicia Landry. 2020. "Food environment in the lower Mississippi Delta: food deserts, food swamps and hot spots." International journal of environmental research and public health 17 (10):3354.
Gravlee, Emily, Eric Pittman, Wesley Sparkmon, Hyllore Imeri, Hannah-Faith Cox, and Marie Barnard. 2021. "COVID-19 Vaccination Engagement and Barriers among Mississippi Pharmacists." Pharmacy 9 (4):167.
Grinstein-Weiss, Michal, Clinton Key, Shenyang Guo, Yeong Hun Yeo, and Krista Holub. 2013. "Homeownership and wealth among low-and moderate-income households." Housing Policy Debate 23 (2):259-279.
Hemphill, Sheryl A, John W Toumbourou, Todd I Herrenkohl, Barbara J McMorris, and Richard F Catalano. 2006. "The effect of school suspensions and arrests on subsequent adolescent antisocial behavior in Australia and the United States." Journal of adolescent health 39 (5):736-744.

Hennessy-Fiske, Molly. 2022. "White then Black Residents Abandoned Jackson, Propelling Its Water Crisis." The Washington Post, 4 Sep 2022. Accessed 7 Sep 2022. https://www.washingtonpost.com/nation/2022/09/04/jackson-water-crisis/.
Highton, Benjamin. 2000. "Residential mobility, community mobility, and electoral participation." Political Behavior 22 (2):109-120.
Hossfeld, Leslie H, and Gina Rico Mendez. 2018. "Looking For Food." Family \& community health 41 (1):S7-S14.
Huckfeldt, R. Robert. 1979. "Political Participation and the Neighborhood Social Context." American Journal of Political Science 23 (3):579-592.
Huckfeldt, Robert, Eric Plutzer, and John Sprague. 1993. "Alternative Contexts of Political Behavior: Churches, Neighborhoods, and Individuals." Journal Of Politics 55 (2):365381.

Jones, David K. 2019. "Political Participation in the Least Healthy Place in America: Examining the Political Determinants of Health in the Mississippi Delta." Journal of Health Politics, Policy and Law 44 (3):505-531. doi: 10.1215/03616878-7367048.
Kaiser Family Foundation. 2022. Status of State Medicaid Expansion Decisions: Interactive Map.
Key, Valdimer Orlando, and Alexander Heard. 1949. Southern politics in state and nation. Vol. 510: New York: AA Knopf.
Kimble, John. 2007. "Insuring inequality: The role of the Federal Housing Administration in the urban ghettoization of African Americans." Law \& Social Inquiry 32 (2):399-434.
Klein, Rebecca. 2018. "Schools that Were Segregation Academies Now Ban Pregnant and LGBTQ Students." Huffington Post, accessed 7 Sep 2022. https://www.huffpost.com/entry/segregation-academymississippi n 5c12a7bee4b0449012f7f16d.
Kramer, Michael R, and Carol R Hogue. 2009. "Is segregation bad for your health?" Epidemiologic reviews 31 (1):178-194.

Kruse, Kevin M. 2013. White flight: Princeton University Press.
Landrine, Hope, Irma Corral, Joseph GL Lee, Jimmy T Efird, Marla B Hall, and Jukelia J Bess. 2017. "Residential segregation and racial cancer disparities: a systematic review." Journal of racial and ethnic health disparities 4 (6):1195-1205.
Lerman, Amy E, and Vesla M Weaver. 2014. Arresting citizenship: The democratic consequences of American crime control: University of Chicago Press.
Long, Mark C. 2010. "Changes in the returns to education and college quality." Economics of Education Review 29 (3):338-347. doi: https://doi.org/10.1016/j.econedurev.2009.10.005.
Lyon, Gregory. 2021. "The Conditional Effects of Health on Voter Turnout." Journal of Health Politics, Policy and Law 46 (3):409-433.
Margo, Robert A. 1990. "Race and Schooling in the South: A Review of the Evidence." Race and Schooling in the South, 1880-1950: An Economic History:6-32.
Massey, Douglas S, and Mary J Fischer. 2006. "The effect of childhood segregation on minority academic performance at selective colleges." Ethnic and Racial Studies 29 (1):1-26.
Mississippi Department of Education. 2022. "Student Group Data." accessed 7 Sep 2022. https://msrc.mdek12.org/studentgroups?EntityID=0000-000\&SchoolYear=2020.
Mississippi Home Corporation. 2019. 2019 Analysis of Impediments to Fair Housing.
Mississippi Office of State Public Defender. 2018. Overview of Racial Disparity in the Criminal Justice System.
Mississippi State Department of Public Health. 2018. Infant Mortality Report, 2018.
Mitchell, Ojmarrh. 2005. "A Meta-Analysis of Race and Sentencing Research: Explaining the Inconsistencies." Journal of Quantitative Criminology 21:439-466.
Morgan, Donald P., Maxim L. Pinkovskiy, and Bryan Yang. 2016. Banking Deserts, Branch Closings, and Soft Information. Federal Reserve Bank of New York.
Mowen, Thomas, and John Brent. 2016. "School discipline as a turning point: The cumulative effect of suspension on arrest." Journal of research in crime and delinquency 53 (5):628653.

National Center for Education Statistics. 2022. "Program for the International Assessment of Adult Competencies (PIAAC)." accessed 7 Sep 2022. https://nces.ed.gov/surveys/piaac/state-county-estimates.asp.
National Fair Housing Alliance. 2017. National Fair Housing Alliance Settles Race Discrimination Complaint with Real Estate Groups in Jackson, Mississippi.
Nawaz, Amna. 2022. "How Jackson, Mississippi's Water Crisis is a Sign of Larger Racial Inequities." The News Hour, 12 Sep 2022.
Newkirk II, Vann R. 2019. "The Great Land Robbery." The Atlantic.
Northam, Adam. 2019. "Segregated Classrooms in Mississippi Aren't a Thing of the Past. And Parents Play a Role." Clarion Ledger, 2 Apr 2019. Accessed 7 Sep 2022. https://www.clarionledger.com/story/news/local/2019/04/02/segregation-mississippi-classrooms-parental-request-policy-elementary-brookhaven/3291509002/.
O'Connell, Jonathan, and Yeganeh Torbati. 2021. "Mississippi Aid Program Gave Little Help to Renters but Millions to a Top Law Firm." The Washington Post, 1 Oct 2021. Accessed 30 Sep 2022. https://www.washingtonpost.com/business/2021/09/30/mississippi-housingeviction/.
Ousey, Graham C, and Matthew R Lee. 2008. "Racial disparity in formal social control: An investigation of alternative explanations of arrest rate inequality." Journal of Research in Crime and Delinquency 45 (3):322-355.

Pacheco, Julianna, and Jason Fletcher. 2015. "Incorporating health into studies of political behavior: Evidence for turnout and partisanship." Political research quarterly 68 (1):104-116.

Parks, Casey. 2021. "The Tragedy of America's Rural Schools." The New York Times, 7 Sep 2021. Accessed 14 Sep 2022. https://www.nytimes.com/2021/09/07/magazine/rural-public-education.html.
Paul, E. Sum, Light Steven Andrew, and Ronald F. King. 2004. "Race, Reform, and Desegregation in Mississippi Higher Education: Historically Black Institutions after United States v. Fordice." Law \& Social Inquiry 29 (2):403-435.
Paychex. 2019. "Employment and Discrimination: Exploring the Climate of Workplace Discrimination from 1997 to 2018." accessed 13 Sep 2022. https://www.paychex.com/articles/human-resources/eeoc-workplace-discrimination-enforcement-and-litigation.
Pierson, Emma, Camelia Simoiu, Jan Overgoor, Sam Corbett-Davies, Daniel Jenson, Amy Shoemaker, Vignesh Ramachandran, Phoebe Barghouty, Cheryl Phillips, and Ravi Shroff. 2020. "A large-scale analysis of racial disparities in police stops across the United States." Nature human behaviour 4 (7):736-745.
Poulson, Michael R, Brendin R Beaulieu-Jones, Kelly M Kenzik, Tracey A Dechert, Naomi Y Ko, Teviah E Sachs, and Michael R Cassidy. 2021. "Residential racial segregation and disparities in breast cancer presentation, treatment, and survival." Annals of Surgery 273 (1):3-9.

Reardon, Sean F, Demetra Kalogrides, and Kenneth Shores. 2019. "The geography of racial/ethnic test score gaps." American Journal of Sociology 124 (4):1164-1221.
Rosenstone, Steven J., and John Mark Hansen. 1993. Mobilization, Participation, and Democracy in America. New York: MacMillan.
Ross, Janell. 2019. "A Town with no Bank: How Itta Bena, Mississippi Became a Banking Desert." NBC News, 15 Jun 2019. Accessed 12 Sep 2022. https://www.nbenews.com/news/nbcblk/how-itta-bena-mississippi-became-banking-desert-n1017686.
Rozier, Alex. 2018. "Racial Disparity Conspicuous among Missippians Banned from Voting." Mississippi Today, 22 Feb 2018. Accessed 30 Sep 2022. https://mississippitoday.org/2018/02/22/racial-disparity-conspicuous-among-mississippians-banned-voting/.
Schur, Lisa, Mason Ameri, and Meera Adya. 2017. "Disability, voter turnout, and polling place accessibility." Social Science Quarterly 98 (5):1374-1390.
Schur, Lisa, Todd Shields, Douglas Kruse, and Kay Schriner. 2002. "Enabling democracy: Disability and voter turnout." Political Research Quarterly 55 (1):167-190.
Sims, Mario, Ana Diez Roux, Amanda Dudley, Samson Gebreab, Sharon Wyatt, Marino Bruce, Sherman James, Jennifer Robinson, David Williams, and Herman Taylor. 2012. "Perceived Discrimination and Hypertension Among African Americans in the Jackson Heart Study." American journal of public health 102 Suppl 2:S258-65. doi: 10.2105/AJPH.2011.300523.

Southern Educational Reporting Service. 1961. A statistical summary, State by State, of segregation-desegregation activity affecting Southern schools from 1954 to present, together with pertinent data on enrollment, teachers, colleges, litigation and legislation. Southern Education Reporting Service.

Steffensmeier, Darrell, and Stephen Demuth. 2000. "Ethnicity and Sentencing Outcomes in U.S. Federal Courts: Who is Punished More Harshly?" American Sociological Review 65 (5):705-729.

Steffensmeier, Darrell, Jeffery Ulmer, and John Kramer. 1998. "The Interaction of Race, Gender, and Age in Criminal Sentencing: The Punishment Cost of Being Young, Black, and Male." Criminology 36 (4):763-798. doi: 10.1111/j.1745-9125.1998.tb01265.x.
Summers, Kathryn, Dana Chisnell, Drew Davies, Noel Alton, and Megan McKeever. 2014. "Making voting accessible: Designing digital ballot marking for people with low literacy and mild cognitive disabilities." 2014 Electronic Voting Technology Workshop/Workshop on Trustworthy Elections (EVT/WOTE 14).
Suneson, Grant. 2018. "Wealth in America: Where are the Richest and Poorest States Based on Household Income?" USA Today, 8 Oct 2018. Accessed 13 Sep 2022. https://www.usatoday.com/story/money/economy/2018/10/08/wealth-america-household-income-richest-poorest-states/38051359/.
Tam Cho, Wendy K., and Thomas J. Rudolph. 2008. "Emanating Political Participation: Untangling the Spatial Structure Behind Participation." British Journal of Political Science 38:273-289.
Trounstine, Jessica. 2016. "Segregation and inequality in public goods." American Journal of Political Science 60 (3):709-725.
Turner, Tracy M, and Heather Luea. 2009. "Homeownership, wealth accumulation and income status." Journal of Housing Economics 18 (2):104-114.
U. S. Department of Education. 2018. Civil Rights Data Collection: 2017-2018 State and National Estimates. United States Department of Education.
U. S. Department of Justice. 2010. Justice Department Granted Order to Ensure Students in Walthall County, Mississippi Have Equal Opportunities: Court Grants Relief for Flagrant Violations of Federal Desegregation Order.
U. S. Department of Justice. 2013. Justice Department FIles Consent Decree to Prevent and Address Racial Discrimination in Student Discipline in Meridian, Miss.
U. S. Department of Justice. 2016. Federal Court Orders Justice Department Desegregation Plan for Cleveland, Mississippi Schools.
U. S. Department of Justice. 2020. Justice Department Files Race Discrimination Lawsuit Against Pearl, Mississippi Property Owners and Rental Agent.
Uggen, Christopher, Ryan Larson, Sarah Shannon, and Arleth Pulido-Nava. 2020. Locked Out 2020: Estimates of People Denied Voting Rights due to a Felony Convction.
United States Commission on Civil Rights. 1965. Equal Opportunity in Farm Programs.
Verba, Sidney, Kay Lehman Schlozman, and Henry Brady. 1995a. Voice and Equality: Civic Voluntarism in American Politics. Cambridge: Harvard University Press.
Verba, Sidney, Kay Lehman Schlozman, and Henry E. Brady. 1995b. Voice and Equality. Cambridge: Harvard University.
Weaver, Vesla M, and Amy E Lerman. 2010. "Political consequences of the carceral state." American Political Science Review 104 (04):817-833.
Williams, Christin, and Rachel Sprinkle. 2021. Mississippi Primary Care Needs Assessment. edited by MIssissippi Department of Public Health.
Wilson, William Julius. 1996. When Work Disappears. New York: Knopf.
Wolfe, Anna. 2020. "Feds: Mississippi Must Replace All Misspent or Stolen Welfare Money with State Funds." Mississippi Today, 14 May 2020. Accessed 30 Sep 2022.
https://mississippitoday.org/2020/05/14/feds-mississippi-must-replace-all-misspent-or-stolen-welfare-money-with-state-funds/.
Wright, Willie J., Tyler McCreary, Brian Williams, and Adam Bledsoe. 2020. "RACE, LAND, AND THE LAW

Black Farmers and the Limits of a Politics of Recognition." In Black Food Matters, edited by Hanna Garth and AshantÉ M. Reese, 228-250. University of Minnesota Press.
Zingher, Joshua N, and Eric M Moore. 2019. "The Power of Place? Testing the Geographic Determinants of African-American and White Voter Turnout." Social Science Quarterly 100 (4):1056-1071.

Appendix

Traci Burch

Employment

- Associate Professor, Northwestern University Department of Political Science (2014Present)
- Research Professor, American Bar Foundation (2007- Present)
- Assistant Professor, Northwestern University Department of Political Science (20072014)

Education

- Harvard University

Ph.D. in Government and Social Policy
Dissertation: Punishment and Participation: How Criminal Convictions Threaten American Democracy
Committee: Jennifer Hochschild (Chair), Sidney Verba, and Gary King

- Princeton University
A.B. in Politics, magna cum laude

Publications

- Burch, Traci. 2022. "Adding Insult to Injury: the Justification Frame in Official Narratives of Officer-Involved Killings." Journal of Race, Ethnicity, and Politics.
- Burch, Traci. 2022. "Officer-Involved Killings and the Repression of Protest." Urban Affairs Review.
- Burch, Traci. 2021. "Not All Black Lives Matter: Officer-Involved Deaths and the Role of Victim Characteristics in Shaping Political Interest and Voter Turnout." Perspectives on Politics.
- Kay Lehman Schlozman, Philip Edward Jones, Hye Young You, Traci Burch, Sidney Verba, Henry E. Brady. 2018. "Organizations and the Democratic Representation of Interests: What Happens When Those Organizations Have No Members?" Perspectives on Politics.
- Burch, Traci. 2016. "Political Equality and the Criminal Justice System." In Resources, Engagement, and Recruitment. Casey Klofstad, ed. Philadelphia: Temple University Press.
- Burch, Traci. 2016. "Review of The First Civil Right by Naomi Murakawa." The Forum.
- Kay Lehman Schlozman, Philip Edward Jones, Hye Young You, Traci Burch, Sidney Verba, Henry E. Brady. 2015. "Louder Chorus - Same Accent: The Representation of Interests in Pressure Politics, 1981-2011." In Darren Halpin, David Lowery, Virginia Gray, eds. The Organization Ecology of Interest Communities. New York: Palgrave Macmillan.
- Burch, Traci. 2015. "Skin Color and the Criminal Justice System: Beyond Black-White Disparities in Criminal Sentencing." Journal of Empirical Legal Studies 12(3): 395-420.
- Burch, Traci. 2014. "The Old Jim Crow: Racial Residential Segregation and Neighborhood Imprisonment." Law \& Policy 36(3) 223-255.
- Burch, Traci. 2014. "The Effects of Imprisonment and Community Supervision on Political Participation." Detaining Democracy Special Issue. The Annals of the American Academy of Political and Social Science 651 (1) 184-201.
- Burch, Traci. 2013. Trading Democracy for Justice: Criminal Convictions and the Decline of Neighborhood Political Participation. Chicago: University of Chicago Press.
- Hochschild, Jennifer, Vesla Weaver, and Traci Burch. 2012. Transforming the American Racial Order. Princeton: Princeton University Press.
- Schlozman, Kay Lehman, Sidney Verba, Henry Brady, Traci Burch, and Phillip Jones. 2012. "Who Sings in the Heavenly Chorus? The Shape of the Organized Interest System." In Schlozman, Kay Lehman, Sidney Verba, and Henry Brady, The Unheavenly Chorus, Princeton: Princeton University Press.
- Schlozman, Kay Lehman, Sidney Verba, Henry Brady, Phillip Jones, and Traci Burch. 2012. "Political Voice through Organized Interest Activity." In Schlozman, Kay Lehman, Sidney Verba, and Henry Brady, The Unheavenly Chorus, Princeton: Princeton University Press.
- Burch, Traci. 2012. "Did Disfranchisement Laws Help Elect President Bush? New Evidence on the Turnout and Party Registration of Florida’s Ex-Felons." Political Behavior 34 (1); 1-26.
- Burch, Traci. 2011. "Turnout and Party Registration among Criminal Offenders in the 2008 General Election." Law and Society Review 45(3): 699-730.
- Burch, Traci. 2011. "Fixing the Broken System of Financial Sanctions." Criminology and Public Policy 10(3).
- Hochschild, Jennifer; Vesla Weaver, and Traci Burch. 2011. "Destabilizing the American Racial Order." Daedalus 140; 151-165.
- Burch, Traci. 2009. "Can the New Commander-In-Chief Sustain His All Volunteer Standing Army?" The Dubois Review on Race 6(1).
- Burch, Traci. 2009. "Review of Imprisoning Communities, by Todd Clear." Law and Society Review 43(3) 716-18.
- Burch, Traci. 2009. "American Politics and the Not-So-Benign Neglect of Criminal Justice," in The Future of American Politics, ed. Gary King, Kay Schlozman, and Norman Nie. (New York: Routledge).
- Schlozman, Kay Lehman and Traci Burch. 2009. "Political Voice in an Age of Inequality," in America at Risk: Threats to Liberal Self-Government in an Age of Uncertainty, ed. Robert Faulkner and Susan Shell (Ann Arbor: University of Michigan Press).
- Hochschild, Jennifer and Traci Burch. 2007. "Contingent Public Policies and the Stability of Racial Hierarchy: Lessons from Immigration and Census Policy," in Political Contingency: Studying the Unexpected, the Accidental, and the Unforseen, ed. Ian Shapiro and Sonu Bedi (New York: NYU Press).

Grants

- Co-Principal Investigator. "Fellowship and Mentoring Program on Law and Inequality." September 1, 2020 to August 31, 2023. \$349, 313. National Science Foundation.

Honors and Fellowships

- American Political Science Association 2014 Ralph J. Bunche Award (for Trading Democracy for Justice).
- American Political Science Association Urban Section 2014 Best Book Award (for Trading Democracy for Justice).
- American Political Science Association Law and Courts Section 2014 C. Herman Pritchett Award (for Trading Democracy for Justice).
- Research grant, Stanford University Center for Poverty and Inequality (2012).
- American Political Science Association E. E. Schattschneider Award for the best doctoral dissertation in the field of American Government (2009)
- American Political Science Association William Anderson Award for the best doctoral dissertation in the field of state and local politics, federalism, or intergovernmental relations (2008)
- American Political Science Association Urban Section Best Dissertation in Urban Politics Award (2008)
- Harvard University Robert Noxon Toppan Prize for the best dissertation in political science (2007)
- Institute for Quantitative Social Sciences Research Fellowship (2006-07)
- European Network on Inequality Fellowship (2005)
- Research Fellowship, The Sentencing Project (2005)
- Doctoral Fellow, Malcolm Weiner Center for Inequality and Social Policy (2004-07)

Professional Service

- APSA Law and Courts Section Best Paper Award Committee (2020-2021)
- APSA Elections, Public Opinion, and Voting Behavior Executive Committee (2020-2023)
- General Social Survey Board of Overseers (2020-2025)
- APSA Kammerer Prize Committee (2017)
- Associate Editor, Political Behavior (2015-2019)
- APSA Law and Courts Section, Lifetime Achievement Award Prize Committee (20142015)
- Law and Society Association, Kalven Prize Committee (2013-2014)
- American Political Science Association, Urban Politics Section Dissertation Prize Committee (2012-13)
- American Political Science Association, Urban Politics Section Executive Committee (2012-13)
- Law and Society Association Diversity Committee, (2012-2013)
- American Political Science Association, Urban Politics Section Program Co-Chair (2011)
- Associate Editor, Law and Social Inquiry
- American Political Science Association, Urban Politics Section Book Prize Committee (2009)
- Reviewer for The American Political Science Review, Public Opinion Quarterly, American Politics Research, and Time-Sharing Experiments in the Social Sciences.

Presentations and Invited Talks

- University of Pennsylvania. Virtual. "Voice and Representation in American Politics." April 2021.
- University of Michigan. Virtual. "Which Lives Matter? Factors Affecting Mobilization in Response to Officer-Involved Killings." February 2021.
- University of Pittsburgh. Virtual. "Policing and Participation." November 2020.
- Hamilton College Constitution Day Seminar. Virtual. "Racial Protests and the Constitution." September 2020.
- New York Fellows of the American Bar Foundation. New York, NY. "Police Shootings and Political Participation." March 2020.
- Pennsylvania State University, State College, PA. "Effect of Officer Involved Killings on Protest. November 2019.
- Princeton University. Princeton NJ. "Effects of Police Shootings on Protest among Young Blacks." November 2019.
- Missouri Fellows of the American Bar Foundation. Branson, MO. Police Shootings and Political Participation in Chicago. September 2019.
- Northwestern University. "Police Shootings and Political Participation." November, 2018.
- Princeton University. Princeton, NJ. "Police Shootings and Political Participation." September, 2018.
- University of California at Los Angeles. Los Angeles, CA. "Police Shootings and Political Participation." August, 2018.
- American Bar Association Annual Meeting. Chicago, IL. "Police Shootings and Political Participation." August 2018.
- American Bar Endowment Annual Meeting. Lexington, KY. "Effects of Police Shooting in Chicago on Political Participation." June 2018.
- Vanderbilt University. "Effects of Police Shootings in Chicago on Political Participation." April 2018.
- Washington University in St. Louis. "Effects of Pedestrian and Auto Stops on Voter Turnout in St. Louis." February 2018.
- Fellows of the American Bar Foundation, Los Angeles. "Assaulting Democracy." January 2018.
- Northwestern University Reviving American Democracy Conference. Panel presentation. "Barriers to Voting." January 2018.
- University of Illinois at Chicago. "Effects of Police Shootings in Chicago on Political Participation." October, 2017.
- Chico State University. "Constitution Day Address: Policing and Political Participation." September, 2017.
- Fellows of the American Bar Foundation, Atlanta, Georgia. "Policing in Georgia." May 2017.
- United States Commission on Civil Rights. Testimony. "Collateral Consequences of Mass Incarceration." May 2017.
- Northwestern University Pritzker School of Law. "Effects of Police Stops of Cars and Pedestrians on Voter Turnout in St. Louis." April 2017.
- University of California at Los Angeles. Race and Ethnic Politics Workshop. "Effects of Police Stops of Cars and Pedestrians on Voter Turnout in St. Louis." March 2017.
- University of North Carolina at Chapel Hill. American Politics Workshop. "Effects of Police Stops of Cars and Pedestrians on Voter Turnout in St. Louis." February 2017.
- National Bar Association, St. Louis MO. "Political Effects of Mass Incarceration." July 2016.
- Harvard University, Edmond J. Safra Center for Ethics. Inequalities/Equalities in Cities Workshop. April 2016.
- American Political Science Association Annual Meeting. September 2015. "Responsibility for Racial Justice." Discussant.
- St. Olaf College. April 2015. "The Collateral Consequences of Mass Incarceration."
- Northwestern University. Institute for Policy Research. February 2015. "The Civic Culture Structure."
- Texas A\&M University. Race, Ethnicity, and Politics Workshop. September 2014. "Trading Democracy for Justice."
- Columbia University Teachers College. The Suburban Promise of Brown Conference. May 2014. "Can We All Get Along, Revisited: Racial Attitudes, the Tolerance for Diversity, and the Prospects for Integration in the $21^{\text {st }}$ Century."
- University of Kentucky. Reversing Trajectories: Incarceration, Violence, and Political Consequences Conference. April 2014. "Trading Democracy for Justice."
- University of Chicago. American Politics Workshop. March 2014. "How Geographic Differences in Neighborhood Civic Capacity Affect Voter Turnout."
- Kennedy School of Government, Harvard University. February 2014. "Trading Democracy for Justice.
- University of Michigan. American Politics Workshop. December 2013. "Trading Democracy for Justice."
- Yale University. American Politics and Public Policy Workshop. September 2013. "Trading Democracy for Justice."
- American Political Science Association Annual Meeting. August 2013. "The Heavenly Chorus Is Even Louder: The Growth and Changing Composition of the Washington Pressure System." With Kay Lehman Schlozman, Sidney Verba, Henry Brady, and Phillip Jones.
- National Bar Association, Miami Florida, July 2013. "The Collateral Consequences of Mass Imprisonment."
- Loyola University. American Politics Workshop. December 2012. "Mass Imprisonment and Neighborhood Voter Turnout."
- Marquette University School of Law. November 2012. "The Collateral Consequences of Mass Imprisonment."
- Yale University. Detaining Democracy Conference. November 2012. "The Effects of Imprisonment and Community Supervision on Political Participation."
- Brown University. American Politics Workshop. October 2012. "Mass Imprisonment and Neighborhood Voter Turnout."
- American Bar Association National Meeting, August 2012. "Mass Imprisonment: Consequences for Society and Politics."
- University of Madison-Wisconsin. American Politics Workshop. March 2012. "The Spatial Concentration of Imprisonment and Racial Political Inequality."
- American Political Science Association Annual Meeting. 2011. "Theme Panel: How Can Political Science Help Us Understand the Politics of Decarceration?"
- University of Pennsylvania. Democracy, Citizenship, and Constitutionalism Conference. April, 2011. "Vicarious Imprisonment and Neighborhood Political Inequality."
- University of Chicago School of Law. Public Laws Colloquium. Chicago, IL. November, 2010. ""'The Effects of Neighborhood Incarceration Rates on Individual Political Efficacy and Perceptions of Discrimination."
- Pomona College. November, 2010. "Incarceration Nation."
- University of Washington. Surveying Social Marginality Workshop. October 2010. "Using Government Data to Study Current and Former Felons."
- American Bar Foundation, Chicago, IL, September 2010. "The Effects of Neighborhood Incarceration Rates on Individual Political Attitudes."
- Northwestern University. Chicago Area Behavior Conference. May 2010. "Trading Democracy for Justice: The Spillover Effects of Incarceration on Voter Turnout in Charlotte and Atlanta."
- Annual Meeting of the Law and Society Association, Chicago, IL, May 2010. "Neighborhood Criminal Justice Involvement and Voter Turnout in the 2008 General Election."
- Annual Meeting of the Southern Political Science Association, Atlanta, GA, January 2010. "The Art and Science of Voter Mobilization: Grassroots Perspectives on Registration and GOTV from Charlotte, Atlanta, and Chicago."
- University of Illinois at Chicago. Institute for Government and Public Affairs. November 2009. "Turnout and Party Registration among Convicted Offenders during the 2008 Presidential Election."
- Annual Meeting of the American Political Science Association, Toronto, Ontario, Canada, September 2009. "'I Wanted to Vote for History:' Turnout and Party Registration among Convicted Offenders during the 2008 Presidential Election."
- Harris School of Public Policy, University of Chicago. American Politics Workshop. December 2008. "Trading Democracy for Justice? The Spillover Effects of Imprisonment on Neighborhood Voter Participation."
- Northwestern University School of Law. Law and Political Economy Colloquium. November 2008. "Did Disfranchisement Laws Help Elect President Bush? New Evidence on the Turnout Rates and Candidate Preferences of Florida's Ex-Felons."
- University of California, Berkeley. Center for the Study of Law and Society. October 2008. "Trading Democracy for Justice? The Spillover Effects of Imprisonment on Neighborhood Voter Participation."
- Law and Society Association Annual Meeting, Montreal, Canada, May 2008. "Did Disfranchisement Laws Help Elect President Bush? New Evidence on the Turnout Rates and Candidate Preferences of Florida's Ex-Felons."
- Law and Society Association Annual Meeting, Montreal, Canada, May 2008. "Trading Democracy for Justice? The Spillover Effects of Imprisonment on Neighborhood Voter Participation."
- Midwest Political Science Association Conference, Chicago, IL, April 2007. Paper: "Concentrated Incarceration: How Neighborhood Incarceration Decreases Voter Registration."

Working Papers Under Review

- "Introduction" (with Jenn Jackson and Periloux Peay) in Freedom Dreams: A Symposium on Abolition. Eds. Jenn Jackson, Periloux Peay, and Traci Burch. Social Science Quarterly.
- "The Effects of Community Police Performance on Protest in Chicago" (For Symposium Honoring John Hagan)
- "How Police Departments Frame Low-Threat Victims of Officer-Involved Killings"
- Which Lives Matter?

Additional Activities

- Expert witness in Kelvin Jones vs. Ron DeSantis, etc. et al. (U.S. District Court for the Northern District of Florida Consolidated Case No. 4:19-cv-00).
- Expert witness in Community Success Initiative, et al., Plaintiffs v. Timothy K. Moore (Superior Court, Wake County, NC Case No. 19-cv-15941).
- Expert witness in People First of Alabama v. Merrill (U.S. District Court in Birmingham, Alabama, Case No. 2: 20-cv-00619-AKK)
- Expert witness in Florida State Conference of the NAACP v. Lee (U.S. District Court in the Northern District of Florida, Case No. 4:21-cv-00187-MW-MAF)
- Expert witness in One Wisconsin Institute Inc. v. Jacobs (U.S. District Court in the Western District of Wisconsin, Case No. 15-CV-324-JDP).
- Expert witness in Alpha Phi Alpha Fraternity Inc., et al. v. Raffensperger (U.S. District Court for the Northern District of Georgia, Case No. 1:21-cv-05337-SCJ)
- Expert witness in Robinson, et al. v. Ardoin (U.S. District Court for the Middle District of Louisiana, Civil Action No. 22-cv-00211).
- Expert witness in Nairne, et al. v. Ardoin (U.S. District Court for the Middle District of Louisiana, Civil Action No. 3:22-cv-00178 SDD-SDJ).

IN THE UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF MISSISSIPPI
 GREENVILLE DIVISION

DECLARATION OF TRACI BURCH

I, Traci Burch, make the following declaration based on personal knowledge:

I have been retained by the Plaintiffs in the above referenced matter as an expert. I submit that the foregoing report from me is a true and accurate copy of the report I provided to Plaintiffs in this matter. I declare that the information and opinions contained in the report are true and correct to the best of my knowledge.

I declare under penalty of perjury that the foregoing is true and correct. 28 U.S.C. § 1746.

$$
\text { Dated: } 10 / 1 / 2022
$$

Qualifications and Background

My name is Traci Burch. I am an Associate Professor of Political Science at Northwestern University and Research Professor at the American Bar Foundation. I received my Ph.D. in Government and Social Policy from Harvard University in 2007.

Over the past 15 years, I have led several large, long-term quantitative and qualitative research projects on political participation in the United States. I have participated in and coauthored several book chapters and articles that examine race, political participation, and inequality. For instance, I have worked with Professors Kay Schlozman, Sidney Verba, and Henry Brady on book chapters and articles related to the causes and consequences of inequality in political participation. I also collected data on congressional hearings and interest group activities for that book. For my coauthored article with Jennifer Hochschild and our book with Vesla Weaver, I analyzed the legislative history of several racial policies, including the 1965 Hart-Cellar Act. We also explore political participation and attitudes in our book as well.

I am widely regarded as an expert on political behavior, barriers to voting, and political participation. My work has been widely cited and replicated and has won several awards. In particular, my dissertation on the effects of felony disenfranchisement on voting in North Carolina, Georgia, and other states, "Punishment and Participation: How Criminal Convictions Threaten American Democracy" won the Robert Noxon Toppan Prize for the Best Dissertation on a Subject of Political Science at Harvard in 2007. I also achieved national recognition for this work; the dissertation was also awarded the E.E. Schattschneider Award from the American Political Science Association for the best dissertation in American Government, and the William Anderson Award for the best dissertation in federalism, intergovernmental relations, and state and local politics. Several articles from this dissertation, including work evaluating voting patterns among people with felony convictions in North Carolina, Georgia, Florida, Missouri, and Michigan, have been published in leading peer-reviewed journals.

In particular, my articles "Did Disfranchisement Laws Help Elect President Bush? New Evidence on the Turnout and Party Registration of Florida's Ex-Felons" and "Turnout and Party Registration among Criminal Offenders in the 2008 General Election," which appeared in the peer-reviewed journals Law and Society Review and Political Behavior, respectively, included my calculations of felony disenfranchisement. My academic book on the community-level effects of criminal convictions on political participation, Trading Democracy for Justice, was published by the University of Chicago Press and also won multiple national awards from the American Political Science Association and its sections, including the Ralph J. Bunche Award for the best scholarly work that explores the phenomenon of ethnic and cultural pluralism and best book awards from the law and politics and urban politics sections. Trading Democracy for Justice, as well as the articles "The Effects of Imprisonment and Community Supervision on Political Participation," "Did Disenfranchisement Laws Help Elect President Bush?" "Skin Color and the Criminal Justice System," and "Turnout and Party Registration among Criminal Offenders in the 2008 General Election" rely on the analysis of data from Georgia.

I have testified before the U.S. Commission on Civil Rights about the collateral consequences of felony convictions with respect to voting and other issues. I have received several grants for my work, including a grant from the Stanford University Center on Poverty
and Inequality. I also serve as co-Principal Investigator on a National Science Foundation grant that supports graduate and postdoctoral fellowships at the American Bar Foundation. I have served on Editorial Boards of leading journals including Political Behavior and Law and Social Inquiry. Currently, I am on the Board of Overseers for the General Social Survey, a longstanding national public opinion survey run by the National Opinion Research Center at the University of Chicago. I routinely review the work of my peers for tenure, scholarly journals, university presses, and grants and have served as a reviewer for the American Political Science Review, The American Journal of Political Science, The Journal of Politics, Political Behavior, the National Science Foundation, Cambridge University Press, Princeton University Press, the University of Chicago Press, Oxford University Press, and many other entities. I also am a member of the Executive Council of the Elections, Public Opinion, and Voting Behavior Section of the American Political Science Association.

My curriculum vitae is provided in the Appendix. I am being compensated $\$ 350$ per hour for work in this case, plus expenses. This is my ninth engagement as an expert witness. I previously testified at trial and in a deposition in a case in federal district court in Florida, Kelvin Jones vs. Ron DeSantis, etc. et al. (Consolidated Case No. 4:19-cv-300), at trial and in a deposition in North Carolina (Community Success Initiative, et al., Plaintiffs v. Timothy K. Moore in Superior Court, Wake County, NC Case No. 19-cv-15941) and at trial and in a deposition in federal district court in Alabama (People First of Alabama, et al., v. John Merrill, in his official capacity as the Secretary of State of Alabama, et al.; Case No.: 2:20-cv-00619-AKK). I was deposed and testified at trial in a case in federal district court in Florida (Florida State Conference of the NAACP, Common Cause, and Disability Rights Florida v. Laurel M. Lee; Case no. 4:21-cv-00187-MWMAF) and deposed in a case in federal district court in the western district of Wisconsin (One Wisconsin Institute Inc. v. Jacobs Case No. 15-CV-324-JDP; Luft v. Evers Case No. 20-CV-768JDP. I also testified in a preliminary injunction hearing in Robinson et al. v. Ardoin (Case No. 22 CV-00211, Middle District of Louisiana). In all cases where an opinion was issued, the courts accepted and relied on my expert testimony.

Scope of the Report

I was asked by the attorneys for the plaintiffs in this case to provide information relevant for evaluating Senate Factor 5, or "the extent to which minority group members bear the effects of discrimination in areas such as education, employment, and health, which hinder their ability to participate effectively in the political process." I have also been asked to provide information relevant for evaluating Senate Factor 8, "whether there is a lack of responsiveness on the part of elected officials to the particularized needs of minority group members." In formulating my opinions, I relied on my analysis of standard sources for political scientists such as the reviews of scholarly literature and the analysis of demographic data, government reports, and public opinion surveys where noted. My work in this matter is ongoing, and I reserve the right to amend, modify, or supplement my analysis and opinions.

Summary of Conclusions

Based on my analyses and review of the scholarly literature, I offer the following opinions:

- Senate Factor 5: The state of Mississippi has consistently failed to provide equal educational opportunities to Black children in the state, and as a result, there are significant gaps in educational attainment and academic achievement between Black and white Mississippians.
- Senate Factor 5: Voter turnout in Mississippi varies by educational attainment, and much of the gap in turnout between Black and white Mississippi residents can be accounted for by the denial of educational opportunities to Black Mississippians.
- Senate Factor 5: Black people in Mississippi also face discrimination in employment and access to capital; financial resources have been shown to affect voter turnout generally and in studies of Mississippi in particular.
- Senate Factor 5: Housing discrimination also plagues Black Mississippians; factors such as homeownership and racial residential segregation have been shown to affect voter turnout.
- Senate Factor 5: Health outcomes such as cancer mortality, infant mortality, and life expectancy vary by race in Mississippi. Discrimination is a factor in these racial gaps: studies of Mississippi residents have shown that exposure to racial discrimination affects heart health, and that Black Mississippi residents have greater difficulty accessing health care and healthy foods.
- Senate Factor 5: Research has shown that discrimination affects conviction and sentencing in Mississippi; such discrimination plays a role in the racial gaps in criminal justice supervision between Black and white Mississippi residents. These racial gaps also affect voting because of Mississippi's felony disenfranchisement law.
- Senate Factor 8: Mississippi ranks at the bottom of states in almost all measures of well being, including health, education, and poverty. However, despite the availability of federal resources and majority public support for policies that could alleviate racial disparities in education, socioeconomic status, health, and criminal justice, the state of Mississippi clearly and repeatedly refuses to enact such policies. In fact, in several instances, the state has misused or misspent federal money earmarked to help vulnerable groups.

I discuss each of these conclusions further in the sections below.

Senate Factor 5: Discrimination in Educational Attainment and Voting Participation

People with higher educational attainment are more likely to vote (Almond and Verba 1963, Brady, Verba, and Schlozman 1995b, Burden 2009, Campbell et al. 1980, Verba, Schlozman, and Brady 1995b). Verba, Schlozman, and Brady argue that the relationship between socioeconomic status and voting exists because people with greater education also tend to have more of the resources such as time, money, and civic skills that affect the calculus of participation (1995: 282). Education makes it easier for individuals to navigate the costs of voting such as acquiring information about the candidates and issues or learning how to register and vote (Verba, Schlozman, and Brady 1995b).

Black people in Mississippi have faced educational discrimination throughout the state's history, hindering their ability to vote. Although the U. S. Supreme Court ruled segregation in public schools unconstitutional in Brown v. Board of Education in 1954, and Congress outlawed segregation in public accommodations in the Civil Rights Act of 1964, as I will discuss, the state failed to desegregate public schools for several years after those rulings. In fact, I will show
below that Mississippi's state and local governments have continued to enforce and support segregation in educational institutions even in recent years; for instance, by funding racially homogenous private schools, by assigning students to schools and classrooms by race and by maintaining racially separate proms, homecoming courts, and other activities.

Despite the court's ruling in Brown, the education provided by the state to Black and white students remained separate and unequal. Mississippi historically spent less money on educating Black children than white children; for instance, in 1950, this gap was $\$ 22.29$ dollars to $\$ 71.00$, respectively (Margo 1990). By May of 1961, the Southern Educational Reporting Service found that no Mississippi Black students attended school with white students in public elementary, secondary, or post-secondary institutions (Southern Educational Reporting Service 1961, 1961).

The lack of progress on desegregating public schools was due to the massive resistance of white parents and the policies of Mississippi state and local governments. The Mississippi legislature adopted several laws in special sessions that were designed to maintain segregated schools (1961, Douglas and Center 2005). Beginning in the mid-1960s, many districts in the state "desegregated" by adopting a "freedom of choice" scheme that encouraged the maintenance of separate public and private schools for white children (Fuquay 2002, Bolton 2009). Of course, no white children opted to go to Black schools, and Black students who tried to attend white schools faced intimidation and violence (Fuquay 2002: 172-175). Even as late as 1967, one-third of Mississippi school districts were still completely segregated, and fewer than three percent of Black children in the state attended school with white children (Bolton 2009).

Mississippi officially desegregated all school districts in 1970 in the aftermath of rulings in Alexander v. Holmes County Board of Education, 396 US 19 (1969) and U.S. v. Hinds County Board of Education, 417 F. $2{ }^{\text {nd }} 852$ ($5^{\text {th }}$ Cir. 1969). However, Mississippi schools continued to be segregated in practice. The number of private schools for white children increased dramatically after the desegregation order, as did the number of white children opting out of the public school system:

The Alexander decision led to an explosion of private schools across Mississippi. One student of the movement estimated that 61 schools were founded in that year, a number that is certainly understated. By 1973 there were 125 segregation academies operating in Mississippi. In the 30 districts specifically named by the Alexander decision, the number of academies increased from 6 to 30. Incredibly, most of these schools were created between the time of the court order in December and its implementation date on January 7. Already existing schools were in a position to take full advantage of the advent of "mass integration" and they saw their enrollments skyrocket. (Fuquay 2002: 176-177).

The State continued to support school segregation. Early on, state vouchers paid for students to attend these "segregation academies," and even after 1970 these schools received textbooks, supplies, and transportation paid for with public money (Fuquay 2002: 169, 178). The state also punished districts for desegregating: in 1971, the governor of Mississippi issued an executive order denying school districts state funds if children were bused to desegregate, an order that caused Jackson Public Schools to lose 40\% of their budget that year (Dixon 2020:3).

White flight did not just occur via the transfer of white students into private schools. In many communities, parents also moved to avoid desegregation (Dixon 2020:3). For instance, the city of Jackson went from majority white in 1960 to majority Black today due to a decline in the white population spurred at first by the prospect of integration (Hennessy-Fiske 2022).

The state resisted desegregation in higher education as well. Well after the Supreme Court ruled in a series of cases that segregation in public education was unconstitutional, Mississippi still maintained a completely segregated system of public higher education (1961: 30). Although the number of Black and white children in the elementary and secondary education system was roughly equal in the state, there were 19 white public colleges but only 6 Black colleges in 1961 (Southern Educational Reporting Service 1961: 30). After violence, riots, and legal maneuvering, James Meredith was able to enroll in the University of Mississippi, escorted by federal agents in 1961 (Bridges and Walker 1995). However, after the admission of Meredith to the University of Mississippi, the U. S. Supreme Court found:

For the next 12 years the segregated public university system in the State remained largely intact. Mississippi State University, Mississippi University for Women, University of Southern Mississippi, and Delta State University each admitted at least one Black student during these years, but the student composition of these institutions was still almost completely white. During this period, Jackson State and Mississippi Valley State were exclusively Black; Alcorn State had admitted five white students by 1968. United States v. Fordice, 505 U.S. 717, 722 (1992).

The Court ruled in 1992 that the "State has not met its affirmative obligation to dismantle its prior dual system" of separate but unequal higher education. Id. at 743. Research shows that integration of Mississippi's system of state universities is not complete; Mississippi's historically Black institutions still are stigmatized and held in low regard by white students (Paul, Steven Andrew, and King 2004).

Today, it is not difficult to see the ways in which Mississippi’s history of racial discrimination against Black citizens in education still produces gaps in educational equality. There is ample evidence that Mississippi has and continues to promote separate and unequal education for Black and white students. Racial segregation and resource inequity still can be found in Mississippi public schools.

School segregation has been shown to detrimentally affect the academic performance of minority students: Black and Latino students who grew up under conditions of segregation were less academically prepared for college and had been exposed to more violence and social disorder than those coming from "majority-dominant settings." (Massey and Fischer 2006). School segregation continues in Mississippi today. Currently, there are 37 school districts that are more than 90% Black in Mississippi (2022). There is ample evidence of the resistance of white parents and local school boards to desegregation. Following the tradition started with the segregation academies in the 1960s, white parents continue to opt out of public schools, especially in majority Black districts. As shown in Figure 1, Black students are overrepresented relative to their share of the population in most school districts in Mississippi; in fact, in districts (many in the Delta region) where Black students are more than three-quarters of students, white students have abandoned the public schools altogether.

Figure 1: Racial composition of school districts vs. school district enrollment by race in Mississippi for the 2017-18 school year. Data from EdBuild.org and the American Community Survey.

Coincidentally, more than 35 of the schools that began as segregation academies were still operating in 2012 (Carr 2012). These schools still enroll few to no students of color, and have discriminatory rules such as banning Black hairstyles (Carr 2012, Klein 2018). The state allows vouchers paid by public money to be used at some of these academies (Klein 2018). Many Mississippi politicians attended these academies, including Senator Cindy Hyde Smith (Klein 2018).

Several districts recently have engaged in practices that actively maintain racial segregation. More than 50 years after Brown, several Mississippi districts have been found to assign children to schools, classrooms, and even extracurricular activities by race. For instance, the Cleveland School District finally was ordered to desegregate in 2016 as it was still assigning students to Black and white schools (U. S. Department of Justice 2016). A Brookhaven, Mississippi policy that still assigned students to classrooms based on parent requests also has led to segregated classrooms (Northam 2019). Students still were being assigned to classrooms by race in Waynesboro Elementary School in 2012 (Consent Order, United States v. Mississippi, 2012 WL 13219550 (S.D. Miss. Jan. 3, 2012). ${ }^{1}$ A judge found evidence that a racially

[^94]discriminatory policy of transferring white students to all-white schools led to resegregation in Walthall County (U. S. Department of Justice 2010). Recent evidence of separate proms for Black and white students (2008), separate elections for class officers by race, and even separate homecoming court selections has been found as well (United States v. Nettleton Line Consolidated School District Civil Action, 2020 WL 5237806 (N.D. Miss. Sept. 2, 2020); United States v. Covington County School District 2:66-Cv-02148 (S.D. Miss. Feb. 27, 1976); United States v. Mississippi, 2012 WL 13219551 (S.D. Miss. Jan. 3, 2012).

Mississippi also provides resources to schools unequally. Based on data from EdBuild.org, in Mississippi school districts in which 90% or more of the students were nonwhite, the state government provided an average of $\$ 5,280$ per pupil, compared with $\$ 5,561$ in districts where students were more than 90% white (2022). ${ }^{2}$ When multiplied out based on the number of students in those districts, those nonwhite districts were shortchanged \$27,993,501 in that school year alone. This funding disparity exists even though the Edbuild.org data show that poverty rates were much higher in the 90% nonwhite districts: in those districts, the median student poverty rate was 41% and no district had fewer than 25% of students in poverty (2022). For the white districts, the Edbuild.org data show that the median student poverty rate was 19% and none had a poverty rate above 23% (2022). Evidence of unequal facilities has been found in some districts as well. Gray v. Lowndes County School District, 900 F. Supp. 2d 703 (N.D. Miss. 2012). Several Black districts, particularly in the Delta region, have fewer resources, meaning that students have to make do with teacher and bus shortages, older textbooks, and crumbling or dilapidated buildings (Parks 2021). The state has fully funded public education only three times in the last 30 years, and rural districts such as Holmes and Durant have been shortchanged millions of dollars (Parks 2021).

Figure 2: English (a) and Math (b) Proficiency by Race in Mississippi. Source: Mississippi Department of Education.

[^95]
Math Proficiency By Race

Given this historical and contemporary under-investment in public education for Black students, educational outcomes in Mississippi vary among currently enrolled students by race. As shown in Figure 2, among current students, there is a gap in scores on assessment tests in Mississippi; for example, only 24.3% of Black girls and 17.4% of Black boys are proficient in English, compared with 53.0% of white girls and 47.2% of white boys (Mississippi Department of Education 2022). Similar gaps exist in math proficiency: 20.6\% of Black girls and 17.2% of Black boys were proficient in math, compared with 53.7% of white girls and 53.8% of white boys (Mississippi Department of Education 2022). In the 2017-2018 school year (the latest data available from the federal government), Black students were 49.0% and white students were 44.0% of Mississippi public school students (U. S. Department of Education 2018). However, that year, Black students were only 24.4% of students in gifted and talented programs and 31.7% of students taking Advanced Placement courses (U. S. Department of Education 2018).

The evidence suggests that racial disparities in school discipline exist in Mississippi. School suspensions have been shown to increase subsequent arrests and other anti-social behavior in youth (Mowen and Brent 2016, Hemphill et al. 2006). Sixty-five percent of students who received one or more out-of-school suspensions were Black (U. S. Department of Education 2018). Twice as many Black students as white students were referred to law enforcement in Mississippi (U. S. Department of Education 2018). In Meridian, MS, the U.S. Department of Justice found persistent racial disparities in school discipline (U. S. Department of Justice 2013). Corporal punishment is also more likely to be used against Black children in Mississippi (Gershoff and Font 2016).

This long history of persistent racial discrimination in education affects outcomes in educational attainment for Mississippians. Although there have been gains in educational attainment in Mississippi over time, racial gaps persist. Figure 3 shows data from the 2019 1Year Estimates from the American Community Survey on the educational attainment of Mississippi residents over the age of 25, by race. The data show that white Mississippi adults are
far more likely than Black Mississippi adults to have earned a bachelor's or postgraduate degree, and that Black Mississippians have lower educational attainment overall. ${ }^{3}$

Figure 3: Educational Attainment by Race in Mississippi. Source: 2019 American Community Survey 1-Year Estimates

Even worse, literacy rates vary by race in Mississippi. An estimated 28\% of Mississippi adults are classified as low literacy (National Center for Education Statistics 2022). ${ }^{4}$ In Black counties, low literacy rates are even more prevalent. For instance, 50% of adults in Humphreys County, 48% of adults in Quitman and Noxubee Counties, and 47% of adults in Holmes, Claiborne, and Wilkinson Counties are estimated to be below level 1 in literacy. Low literacy is a barrier to voting (Brady, Verba, and Schlozman 1995a, Summers et al. 2014).

[^96]Figure 4: Racial Differences in Voter Turnout Overall and by Education Level in Mississippi. Source: 2020 Current Population Survey Voting and Registration Supplement

Examining voter turnout in Mississippi by race and educational level in Figure 4 shows the clear impact of Mississippi's history of educational inequality on voting. As shown in the last columns of the figure, overall, white Mississippians have higher voter turnout than Black Mississippians: 56.1% of white Mississippi citizens voted in the 2020 general election, compared with 53.0% of Black Mississippi citizens. However, once we control for educational level, we see that for every level of educational attainment, Black Mississippians vote at higher rates than white Mississippians. These data suggest that the overall gap in turnout between Black and white Mississippians exists because of the gap in educational opportunities between Black and white Mississippians. Black people in Mississippi have had less access to quality education and therefore have lower educational attainment for the reasons discussed in this section; this lower educational attainment leads to lower voter turnout.

Income, Poverty, Wealth and Voting

Income and wealth affect voting to the extent that greater income can make it easier to overcome the costs of voting, such as having the ability to afford time off work to go to the polls (Verba, Schlozman, and Brady 1995a). On every economic measure, Mississippi ranks among the worst-off states in the country (Suneson 2018). Black Mississippi residents fare worse than white Mississippi residents. For instance, as shown in Figure 5, the median household income for white Mississippi households is almost twice as high as that for Black Mississippi households. In Figure 6, it is clear that gaps exist on other economic measures as well: Black unemployment is more than twice as high as white unemployment, Black poverty is almost three times higher than white poverty, and more than three times as many Black households as white households lack access to a vehicle. Studies have shown that polling place distance affects voter turnout, and those effects are related to transportation access (Brady and McNulty 2011, Bagwe,

Margitic, and Stashko 2020). In states with no excuse absentee voting, people tend to offset issues accessing physical polling places with voting by mail; however, in states with limited absentee ballot options, such as that in Mississippi, the "substitution to mail-in voting" is smaller (Bagwe, Margitic, and Stashko 2020: 4). Overall, poverty and related issues have been shown to decrease political participation in Mississippi and other states (Austin, Franklin, and Lewis 2013).

Figure 5: Median Household Income by Race in Mississippi. Source 2019 American Community Survey 1 year estimates.

Median Household Income by Race in Mississippi		
\$70,000.00		
\$60,000.00		
\$55,000.00		
\$40,000.00		
\$30,000.00	\$57,555.00	
\$20,000.00 \$10,000.00		\$31,092.00
	White SOURCE	$\begin{aligned} & \text { Black } \\ & \text { r suviver } \end{aligned}$

Figure 6: Selected Economic Characteristics by Race in Mississippi. Source: 2019 American Community Survey 1 year estimates.

The persistent educational discrimination faced by Black Mississippi residents can account for much of the disparity in socioeconomic wellbeing (Long 2010). However, decades of persistent discrimination in employment and access to capital over decades also have produced economic disparities.

Mississippi is predominantly rural, so agriculture has loomed large as a determinant of both income and wealth in the state. Of course, Mississippi's agricultural system was dominated first by plantation slavery and then through sharecropping. Eventually, Black farmers did gain a foothold, buying farmland in the Mississippi delta and other regions. However, land dispossession due to discriminatory or otherwise improper lending practices led Black farmers to lose their land at greater rates than white farmers in the state (Newkirk II 2019). For instance, white farmers had greater access to federal subsidies and farm aid than Black farmers due to discrimination in the federal and local administration of relief programs (United States Commission on Civil Rights 1965). Black farmers lost almost 800,000 acres in Mississippi between 1950 and 1964 (Newkirk II 2019). The federal government eventually compensated Black farmers for these discriminatory practices, Pigford v. Glickman, 185 F.R.D. 82 (D.D.C. 1999), but not enough to make Black farmers whole (Newkirk II 2019, Wright et al. 2020).
V.O. Key argues famously that southern politics are driven by race: in "those counties and sections of the southern states in which Negroes constitute a substantial proportion of the population . . . a real problem of politics, broadly considered, is the maintenance of control by a white minority" (Key and Heard 1949:5). Key later writes, "the beginning and the end of Mississippi politics is the Negro" because of the racial diversity of the state (Key and Heard

1949: 229). This political reality has important economic implications for the Delta region. According to Sharon Wright Austin, depopulation of the Delta region was a goal of economic policy in Mississippi by the 1960s, so that wages were kept artificially low and mechanization devastated sharecroppers (Austin 2012: 36). These policies led to a mass exodus of Black people to northern cities in search of opportunity (Austin 2012: 36-37). Afterward, economic development continued to lag in the region because local white elites opposed factories and other economic engines that would replace farming and provide opportunities for advancement (Austin 2012: 39). Plus, poor educational systems and depopulation made the Delta region unattractive to companies looking for places to locate factories and offices (Austin 2012: 37). In this way, the persistent poverty of the region was driven by systematic underdevelopment; although attempts have been made in recent years to spur growth through gaming and prisons, these have not been enough to ameliorate rural poverty in Mississippi (Austin 2012).

Discrimination still affects the ability of Black people to achieve economic parity with white people in Mississippi. For instance, an analysis of data from the Equal Employment Opportunity Commission by Paychex found that Mississippi ranks second highest in the nation for employment discrimination complaints based on color and/or race (Paychex 2019). Employment may affect voter turnout through several pathways. First, white collar occupations may provide employees with a greater opportunity to develop civic skills that can be useful in navigating electoral bureaucracies (Almond and Verba 1963, Verba, Schlozman, and Brady 1995b). Second, salaried workers may have greater freedom to take time off work without risking their pay. Finally, Rosenstone and Hansen argue that work is an important site for recruitment into politics, which also increases voter turnout (Rosenstone and Hansen 1993).

Racial disparities in access to capital also affect Mississippians. Black people in Mississippi are four times as likely to be unbanked as white people in Mississippi (24.1% vs. 6.6%, respectively (FDIC n.d.)). Several towns in Mississippi, such as Itta Bena, are banking deserts, meaning that there are no branches available for people to conduct their daily business (Ross 2019). Banks are more likely to lend in places where they have branches and longstanding relationships with clients (Morgan, Pinkovskiy, and Yang 2016).

Housing, Residence, and Voting

Neighborhood context matters for political mobilization and political outcomes (Burbank 1997, Burch 2013, Cohen and Dawson 1993, Huckfeldt, Plutzer, and Sprague 1993, Huckfeldt 1979, Tam Cho and Rudolph 2008). As discussed elsewhere in this report, many Black Mississippi residents have the misfortune of living in banking, healthcare, and food deserts, which contribute to racial disparities in health and wealth. However, where people live also matters because racial residential segregation has been shown to decrease Black voter turnout. Researchers argue that segregated Black areas have less access to public goods, such as polling places or transportation, that might matter for voting (Zingher and Moore 2019). In fact, Black Mississippi voters in the $2^{\text {nd }}$ Congressional District face longer wait times than other voters in the district (Chen et al. 2019: 54). Racial residential segregation also affects politics indirectly because it is an important determinant of economic and health outcomes. Racial residential segregation increases Black poverty rates, lowers Black educational attainment, and increases income inequality between Black and white residents (Ananat 2011). Research attributes these effects to isolation from quality schools and jobs (Kruse 2013, Massey and Fischer 2006, Wilson 1996). Racial residential segregation also contributes to the test score gap between Black and
white students (Reardon, Kalogrides, and Shores 2019), to inequalities in the provision of public goods, to lower public goods expenditures (Trounstine 2016), and to worse health outcomes and greater exposure to environmental toxins (Ard 2016, Kramer and Hogue 2009).

For example, Jackson, Mississippi was segregated by race historically. Federal housing policy was a major driver of racial residential segregation. The Federal Housing Administration (FHA) was created in 1934 in order to "insure lenders against any loss on loans made for purchasing homes" (Kimble 2007: 402). The FHA, in this role, "could dictate the range of acceptable, insurable terms and conditions of home lending" (Kimble 2007: 403). In order to prevent lending to places where Black people lived, the FHA relied on Residential Security Maps that were produced by the Home Owners Loan Corporation ("HOLC") (2021a). These maps "color-coded neighborhoods using racial composition as a primary indicator of their acceptability as candidates for mortgage investment" (Kimble 2007: 405). The maps assigned grades to neighborhoods based on racial composition, "with 'A' being most desirable and a 'D' grade ensuring rejection" (Kimble 2007: 405). The HOLC map for Jackson is shown in Figure 7 and follows this traditional grading system for lending based on neighborhood race (2021a).

Research shows that the Jackson area still suffers from a high degree of racial residential segregation today (2021b, Athey et al. 2021). ${ }^{5}$ As Trounstine (2016) finds, racially segregated cities spend less on public goods and allocate such goods unequally; a prominent example of this phenomenon is the water crisis currently devastating the city. The residents of Jackson were under a boil water advisory for months during the summer of 2022, and ultimately ended up losing running water altogether for weeks (Nawaz 2022). Jackson's water system has had problems for a long time due to decades of underinvestment (Breslow 2022). However, despite the obvious problems, the Mississippi state legislature refused to appropriate money to fix the system and the Mississippi governor vetoed bipartisan legislation designed to help residents pay their bills and infuse money into the system (Breslow 2022). Professor Robert Bullard, an expert on environmental racism, argued that this neglect of Jackson's water is because of race (Nawaz 2022).

[^97]Figure 7: Homeowners Loan Corporation Underwriting Map for Jackson, MS

Homeownership affects voting through at least two pathways. First, residency requirements have been shown to reduce voter registration and turnout, largely because residential mobility increases the administrative burden of maintaining registration (Highton 2000). Renters are more mobile than owners. Second, linking back to the previous section, homeownership also has important effects on wealth accumulation (Grinstein-Weiss et al. 2013, Turner and Luea 2009).

Homeownership differs by race in Mississippi. As shown in Figure 8, Black people in Mississippi are less likely to own their homes. When they do, their homes are worth less than those owned by white Mississippians: according to the 2010 American Community Survey 5-
year estimates, the median home value for white Mississippi residents is $\$ 114,500$, but only $\$ 68,300$ for Black Mississippi residents. The 2010 American Community Survey data also show that Black Mississippians also are more likely than white Mississippians to live in homes that do not have access to a telephone (7.5% vs. 4.9%, respectively).

Figure 8: Homeownership by Race in Mississippi. Source: 2019 American Community Survey 1 year estimates.

Recent evidence suggests that racial gaps in homeownership as well as access to high quality overall results from discrimination. A 2019 report by the Mississippi Home Corporation, a state entity, found that Black people in Mississippi were denied mortgage loans more frequently and faced discrimination in rental markets (Mississippi Home Corporation 2019). Other studies also have shown that Black Mississippi applicants face discrimination in home lending (Ezeala-Harrison and Glover 2008) and that discriminatory practices affect the ability of Black renters to find rental housing in Mississippi (National Fair Housing Alliance 2017, U. S. Department of Justice 2020).

Health

Health status also may affect voting. Several studies have associated poor health with lower voter turnout (Blakely, Kennedy, and Kawachi 2001, Lyon 2021, Pacheco and Fletcher 2015). The effects of health on voting may take many pathways, such as reducing the availability of free time and money that could otherwise be devoted to politics (Pacheco and Fletcher 2015). Impaired cognitive functioning or physical disability also may make voting more difficult (Pacheco and Fletcher 2015). Poor health is likely the reason that voter turnout declines in old age (Pacheco and Fletcher 2015). People with disabilities also are less likely to vote; problems with polling place accessibility only partially explain this gap (Schur, Ameri, and

Adya 2017, Schur et al. 2002). Health and politics are particularly linked in Mississippi (Jones 2019).

Mississippi ranks among the least healthy of the American states. In many ways, Black Mississippians are worse off relative to white Mississippians. For instance, mortality rates for cancer are worse for Black Mississippi residents relative to whites (217.3 vs. 186.4 per 100,000 residents, age adjusted) (Centers for Disease Control 2022). However, this gap in mortality is not driven by a gap in the incidence of cancer, which is quite similar between Black and white Mississippians (518.2 vs. 513.5 per 100,000 residents, age adjusted) (Centers for Disease Control 2022). As Figure 9 shows, Black people in Mississippi also suffer from diabetes, high blood pressure, and obesity at higher rates than white people in the state (CDC). Overall, life expectancy for Black people in Mississippi is lower than that for white people; in 53 Mississippi counties, the average white person is expected to live more than two years longer than the average Black person (County Health Rankings and Roadmaps 2022). In three counties (Jefferson Davis, Coahoma, and Holmes), the life expectancy for white people is greater than seven years longer than that for Black people (County Health Rankings and Roadmaps 2022). Infant mortality is much higher for Black babies: 11.9 per 1000 live births vs. 6.2 per 1000 live births for white babies (Mississippi State Department of Public Health 2018).

Figure 9: Disease Incidence, by Race. Source, Centers for Disease Control.

Figure 10: Access to Health Care, by Race. Source: Centers for Disease Control.

These health disparities are caused partially by disparities in access to resources. In Mississippi, as shown in Figure 10, Black people are less likely to have health insurance or a primary care physician than white people (CDC). Moreover, Black people are more likely to report that they did not go see a doctor when they needed to because of cost considerations (CDC). Racial residential segregation also may make it more difficult for Black Americans to access primary care physicians and other doctors (Gaskin et al. 2012, Anderson 2018). For instance, many areas of Mississippi, particularly the Delta region, are medically underserved, and some counties have few to no primary care physicians practicing (Williams and Sprinkle 2021). Many people in the Delta also lack access to stores that sell nutritious food; food deserts have been linked to poor health outcomes as well (Goodman, Thomson, and Landry 2020, Hossfeld and Rico Mendez 2018). Similar problems have been reported with respect to racial disparities in access to COVID-19 vaccination sites early in the vaccine rollout in Mississippi, partly due to failure to reach people in medically underserved areas (Doyle 2021, Gravlee et al. 2021). Even in Jackson, access to vaccines was limited; the city did not open its first drive-thru vaccination site until three weeks after sites opened in other areas (Associated Press 2021).

Discrimination also contributes to racial health disparities. Several long-term studies of Jackson, Mississippi residents have shown that racial discrimination affects cardiac health (Sims et al. 2012, Forde et al. 2020). Racial residential segregation has been shown to lead to worse health outcomes for Black Americans. Several studies have demonstrated that racial residential segregation contributes to racial gaps in cancer outcomes (Landrine et al. 2017, Blanco et al. 2021, Poulson et al. 2021). Such factors, by contributing to racial disparities in health, ultimately may affect voting because of the link between poor health and lower voter turnout.

Criminal Justice

A growing body of research shows that criminal justice interactions affect political behavior. Several studies have shown that, for individuals, contact with the criminal justice system, from police stops, to arrest, to incarceration, directly decreases voter turnout (Burch 2011, Lerman and Weaver 2014, Weaver and Lerman 2010). Primarily, criminal justice contact decreases turnout through "the combined forces of stigma, punishment and exclusion" which impose "barriers to most avenues of influence" and diminish "factors such as civic capacity, governmental trust, individual efficacy, and social connectedness that encourage activity" (Burch 2007: 12).

Black people are disproportionately represented among Mississippi’s prisoners, probationers, and parolees as shown in Figure 11. As a reminder, 38.0% of Mississippi's population is Black, but according to the Mississippi Department of Corrections, 60.4% of prisoners, 52.0% of probationers, and 55.5% of parolees in Mississippi are Black. Black people were 54.1% of arrestees in Mississippi in 2020 (Federal Bureau of Investigation 2022).

Figure 11: Mississippi Correctional Populations, by Race. Source: Mississippi Department of Corrections

Racial discrimination accounts for some of this disparity. Studies have shown that racial disparities in arrest are caused by factors that make it more likely that police will stop or search Black people, such as spatially differentiated policing, racial residential segregation, and discrimination (Beckett, Nyrop, and Pfingst 2006, Gelman, Fagan, and Kiss 2007, Ousey and Lee 2008, Pierson et al. 2020). Racial disparities in bail decisions (Arnold, Dobbie, and Yang 2018) and in sentencing also may contribute to incarceration disparities (Bushway and Piehl 2001, Mitchell 2005, Steffensmeier and Demuth 2000, Steffensmeier, Ulmer, and Kramer 1998). Research shows evidence of racial discrimination in sentencing in Mississippi (Fender et al. 2006). The Mississippi legislature passed several reforms of the criminal justice system. However, the evidence suggests that racial discrimination still leads to disparate sentencing outcomes (Mississippi Office of State Public Defender 2018). Moreover, the Supreme Court
found evidence of racial discrimination in the use of peremptory challenges in Flowers v. Mississippi 139 S. Ct. 2228 (2019). In addition to the Flowers case, scholars have found that racial discrimination of the use of peremptory challenges is a widespread practice in Mississippi (DeCamp and DeCamp 2020).

Mississippi's felony disenfranchisement law was designed "to obstruct the exercise of the franchise by the Negro race," Ratliff v. Beale, 20 So. 865, 868 (1896), after the Civil War (Behrens, Uggen, and Manza 2003). Because of this law, involvement with the criminal justice system directly affects voting. In Mississippi, people with felony convictions for certain offenses are prevented from voting while they are serving their sentence in prison or in the community and even after they have finished serving their sentences. Because of the disproportionate involvement of Black Mississippians with the criminal justice system, Black people disproportionately are more likely to have lost their voting rights permanently. Based on an analysis of records from the Administrative Office of the Courts, an estimated 56,000 people are disenfranchised permanently in Mississippi (Rozier 2018). Black people are 61% of the disenfranchised population (Rozier 2018).,.

In Mississippi, Black people are disproportionately arrested, convicted, and punished for crimes. Research suggests that racial discrimination has played a role in these disparities historically and continues to do so because of discriminatory arrest, conviction, and sentencing practices. It is important to remember that, because of felony disenfranchisement laws, disparities in criminal justice involvement translate into disparities in voting participation because Black Mississippians are disproportionately barred from voting based on their criminal histories.

Section 5: Conclusion
To summarize the discussion, Black people in Mississippi are subjected to worse outcomes in education, socioeconomic status, housing, health, and criminal justice. Research cited in this report shows how these racial disparities partly are the result of historical and contemporary discrimination by state and local governments as well as private market actors. In particular, policies that continue to support segregation in education and fail to allocate resources equitably across domains such as health, housing, and education help maintain racial gaps in well-being. As I have demonstrated in this report, researchers have shown that such disparities in education, employment, poverty, income, housing, health, and criminal justice involvement all contribute to gaps in voter turnout.

Senate Factor 8: Lack of Responsiveness

Under Section 2 of the Voting Rights Act, courts may consider additional factors, such as whether there is a lack of responsiveness on the part of elected officials to the particularized needs of minority group members. The longstanding and persistent gaps in socioeconomic status, incarceration, and health discussed throughout this report demonstrate the lack of responsiveness of public officials to the needs of Mississippi's Black communities. Research has shown that public policies are important for creating and sustaining racial disparities. For instance, as described earlier in this report, persistent test score gaps and educational segregation continue to pose problems for Mississippi students; however, Mississippi continues to underfund public schools in the state (Parks 2021). Black Mississippians have worse health outcomes, are less likely to have health insurance, and are more likely to avoid care because of costs, and yet

Mississippi has not accepted the federal Medicaid expansion (Kaiser Family Foundation 2022). Mississippi is the poorest state in the nation, but Mississippi misused millions of dollars in funds from the Temporary Assistance to Needy Families Program, refusing to spend that money on the citizens with the most need (Wolfe 2020). Mississippi also faces allegations that money meant for rental assistance was misdirected toward millions of dollars in lawyer fees (O'Connell and Torbati 2021), and that money meant to alleviate racial disparities in COVID 19 also went mostly unused (Galewitz, Weber, and Whitehead 2022). In Jackson, a persistent water crisis has left residents without water for weeks, and yet the state refused to allocate money to help the city repeatedly (Breslow 2022). A majority of Mississippi voters favor policies such as Medicaid expansion, helping the city of Jackson with fixing the water crisis, and restoring voting rights to people with felony convictions (College 2019, 2021). Moreover, in each of these cases, federal money is there to help. The state just refuses to do so.

Prominent Black leaders in Mississippi attribute these policy decisions to racism. Representative Bennie Thompson, for instance, said of COVID 19 vaccine sites, "But that is a decision that has to go through the governor's office. And the majority of people don't have any confidence that the governor is interested in providing those kinds of services in the minority community" (Chatlani 2021). Zakiya Summers, a Mississippi State Legislator, said of her state,
"Wealthier areas, she said, "tend to get more resources, more state support. West Jackson, we haven't seen that in a while. It's areas where poor Black people are concentrated where help is slow moving or it's none at all" (Hennessy-Fiske 2022).

Governor Reeves disagrees. He said, "There is not systemic racism in America" (Ganucheau 2021).

Works Cited

1961. A statistical summary, State by State, of segregation-desegregation activity affecting Southern schools from 1954 to present, together with pertinent data on enrollment, teachers, colleges, litigation and legislation. Southern Education Reporting Service.
1962. Mississippi School Holds First Interracial Prom. In The Bryant Park Project: NPR.

2021a. "Mapping Inequality Redlining in New Deal America." University of Richmond Digital Scholarship Lab, accessed 5 Apr 2022. https://dsl.richmond.edu/panorama/redlining/\#loc=5/39.1/-94.58.
2021b. "Most to Least Segregated Metro Regions." University of California at Berkeley Othering and Belonging Institute, accessed 1 Dec 2021. https://belonging.berkeley.edu/most-least-segregated-metro-regions.
2022. "Data Dashboard: Mississippi." EdBuild, accessed 7 Sep 2022. https://shiny.edbuild.org/apps/edbuild-dashboard/.
Almond, Gabriel, and Sidney Verba. 1963. The Civic Culture. Princeton: Princeton University Press.
Ananat, Elizabeth Oltmans. 2011. "The wrong side (s) of the tracks: The causal effects of racial segregation on urban poverty and inequality." American Economic Journal: Applied Economics 3 (2):34-66.
Anderson, Kathryn Freeman. 2018. "Racial/ethnic residential segregation, the distribution of physician's offices and access to health care: the case of Houston, Texas." Social Sciences 7 (8):119.
Ard, Kerry. 2016. "By all measures: An examination of the relationship between segregation and health risk from air pollution." Population and Environment 38 (1):1-20.
Arnold, David, Will Dobbie, and Crystal S Yang. 2018. "Racial bias in bail decisions." The Quarterly Journal of Economics 133 (4):1885-1932.
Associated Press. 2021. "Mississippi Opens New Drive-Thru Vaccination Site in Jackson." U. S. News and World Report, 21 Jan 2021. Accessed 30 Sep 2022. https://www.usnews.com/news/best-states/mississippi/articles/2021-01-21/mississippi-opens-new-drive-thru-vaccination-site-in-jackson.
Athey, Susan, Billy Ferguson, Matthew Gentzkow, and Tobias Schmidt. 2021. "Estimating experienced racial segregation in US cities using large-scale GPS data." Proceedings of the National Academy of Sciences 118 (46).
Austin, Sharon D Wright. 2012. The transformation of plantation politics: Black politics, concentrated poverty, and social capital in the Mississippi Delta: SUNY Press.
Austin, Sharon D. Wright, Sekou M. Franklin, and Angela K. Lewis. 2013. "The Effects of Concentrated Poverty on Black and White Political Participation in the Southern Black Belt." National Political Science Review 15:57-69.
Bagwe, Gaurav, Juan Margitic, and Allison Stashko. 2020. Polling Place Location and the Costs of Voting. Working Paper.
Beckett, Katherine, Kris Nyrop, and Lori Pfingst. 2006. "Race, drugs, and policing: Understanding disparities in drug delivery arrests." Criminology 44 (1):105-137.
Behrens, Angela, Christopher Uggen, and Jeff Manza. 2003. "Ballot manipulation and the "menace of Negro domination": Racial threat and felon disenfranchisement in the United States, 1850-2002." American Journal of Sociology 109 (3):559-605.
Blakely, Tony A, Bruce P Kennedy, and Ichiro Kawachi. 2001. "Socioeconomic inequality in voting participation and self-rated health." American journal of public health 91 (1):99.

Blanco, Barbara Aldana, Michael Poulson, Kelly M Kenzik, David B McAneny, Jennifer F Tseng, and Teviah E Sachs. 2021. "The impact of residential segregation on pancreatic cancer diagnosis, treatment, and mortality." Annals of surgical oncology 28 (6):31473155.

Bolton, Charles C. 2009. "The Last Stand of Massive Resistance: Mississippi Public School Integration, 1970." Mississippi Historical Society, accessed 7 Sep 2022.
https://www.mshistorynow.mdah.ms.gov/issue/the-last-stand-of-massive-resistance1970.

Brady, Henry E, Sidney Verba, and Kay Lehman Schlozman. 1995a. "Beyond SES: A resource model of political participation." American political science review 89 (2):271-294.
Brady, Henry E., and John E. McNulty. 2011. "Turning Out to Vote: The Costs of Finding and Getting to the Polling Place." The American Political Science Review 105 (1):115-134. doi: https://doi.org/10.1017/S0003055410000596.
Brady, Henry E., Sidney Verba, and Kay Lehman Schlozman. 1995b. "Beyond SES: A Resource Model of Political Participation." American Political Science Review Vol. 89, No. 2 (Jun. 1995):271-294.
Breslow, Jason. 2022. "The Water Crisis in Jackson Follows Years of Failure to Fix an Aging System." NPR, 31 Aug 2022. Accessed 12 Sep 2022. https://www.npr.org/2022/08/31/1120166328/jackson-mississippi-water-crisis.
Bridges, Billy G, and Wendy E Walker. 1995. "The Forty Years Fight to Desegregate Public Education in the Fifth Circuit and in Particular, Mississippi." Miss. CL Rev. 16:289.
Burbank, Matthew J. 1997. "Explaining contextual effects on vote choice." Political Behavior 19 (2):113-132.
Burch, Traci. 2011. "Turnout and Party Registration among Criminal Offenders in the 2008 General Election." Law and Society Review 45 (3):699-730.
Burch, Traci. 2013. Trading Democracy for Justice: Criminal Convictions and the Decline of Neighborhood Political Participation. Chicago: University of Chicago Press.
Burden, Barry C. 2009. "The dynamic effects of education on voter turnout." Electoral studies 28 (4):540-549.
Bushway, Shawn D, and Anne Morrison Piehl. 2001. "Judging judicial discretion: Legal factors and racial discrimination in sentencing." Law and Society Review:733-764.
Campbell, Angus, Philip E Converse, Warren E Miller, and Donald E Stokes. 1980. The american voter: University of Chicago Press.
Carr, Sarah. 2012. "In Southern Towns, 'Segregation Academies' Are Still Going Strong." The Atlantic, 13 Dec 2012.
CDC. "Chronic Disease Indicators." Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, accessed 3 Mar 2022. https://nccd.cdc.gov/cdi.
Centers for Disease Control. 2022. "Leading Indicators for Chronic Diseases and Risk Factors." accessed 12 Sep 2022. https://chronicdata.cdc.gov/.
Chatlani, Shalina. 2021. "Past and Present Collide as Community Health Centers Strive to Close Rural Care Gaps in the Pandemic." New Orleans Public Radio, 19 Apr 2021. Accessed 30 Sep 2021. https://www.wwno.org/2021-04-19/past-and-present-collide-as-community-health-centers-strive-to-close-rural-care-gaps-in-the-pandemic-covid19-coronavirus-fqhc.

Chen, M Keith, Kareem Haggag, Devin G Pope, and Ryne Rohla. 2019. "Racial disparities in voting wait times: evidence from smartphone data." The Review of Economics and Statistics:1-27.
Cohen, Cathy J., and Michael C. Dawson. 1993. "Neighborhood Poverty and African-American Politics." American Political Science Review 87 (2):286-302.
College, Millsaps. 2019. State of the State Poll.
College, Millsaps. 2021. State of the State Poll.
County Health Rankings and Roadmaps. 2022. "Mississippi." accessed 12 Sep 2022. https://www.countyhealthrankings.org/app/mississippi/2022/measure/outcomes/147/data.
DeCamp, Whitney, and Elise DeCamp. 2020. "It's Still about Race: Peremptory Challenge Use on Black Prospective Jurors." Journal of Research in Crime and Delinquency 57 (1):330. doi: 10.1177/0022427819873943.

Dixon, LaTanya L. 2020. "From Statehood to School Desegregation: Racial Disparities in the Public Education of Mississippi, 1817-1969." AERA Open 6 (4):2332858420975396.
Douglas, Davison M, and Federal Judicial Center. 2005. "Bush v. Orleans Parish School Board and the Desegregation of New Orleans Schools." Prepared for inclusion in the project Federal Trials and Great Debates in United States History, Federal Judicial Center, Federal Judicial History Office 8.
Doyle, Rory. 2021. "In Mississippi, Black Residents Are Desperate to Get Vaccinated. But They Face Access Barriers." NBC News, 4 Feb 2021.
Ezeala-Harrison, Fidel, and Glenda B. Glover. 2008. "Determinants of Housing Loan Patterns Toward Minority Borrowers in Mississippi." Journal of Economic Issues 42 (1):75-96. doi: 10.1080/00213624.2008.11507115.
FDIC. n.d. Five-Year Estimates Table Tool.
Federal Bureau of Investigation. 2022. "Crime Data Explorer." accessed 13 Sep 2022. https://crime-data-explorer.fr.cloud.gov/pages/explorer/crime/arrest.
Fender, Blakely Fox, Carl Brooking, Lucy McNair, Dolly Mehta, Jared Eastlack, and Brooke Pierce. 2006. "The Impact of Race and Gender on Sentencing for Mississippi’s Indigent Population." Journal of Economic Insight (formerly the Journal of Economics (MVEA)) 32 (1):57-73.
Forde, Allana T., Mario Sims, Paul Muntner, Tené Lewis, Amanda Onwuka, Kari Moore, and Ana V. Diez Roux. 2020. "Discrimination and Hypertension Risk Among African Americans in the Jackson Heart Study." Hypertension 76 (3):715-723. doi: doi:10.1161/HYPERTENSIONAHA.119.14492.
Fuquay, Michael W. 2002. "Civil rights and the private school movement in Mississippi, 19641971." History of Education Quarterly 42 (2):159-180.

Galewitz, Phil, Lauren Weber, and Sam Whitehead. 2022. States Have Yet to Spend Hundreds of Millions of Federal Dollars to Tackle Covid Health Disparities. Kaiser Health News.
Ganucheau, Adam. 2021. "Gov. Reeves Says there is no Systemic Racism in the Justice System. The Numbers Say Otherwise." Mississippi Today, 30 Apr 2021. Accessed 30 Sep 2022. https://mississippitoday.org/2021/04/30/gov-reeves-says-there-is-no-systemic-racism-in-the-justice-system-the-numbers-say-otherwise/.
Gaskin, Darrell J, Gniesha Y Dinwiddie, Kitty S Chan, and Rachael R McCleary. 2012. "Residential segregation and the availability of primary care physicians." Health services research 47 (6):2353-2376.

Gelman, Andrew, Jeffrey Fagan, and Alex Kiss. 2007. "An analysis of the New York City police department's "stop-and-frisk" policy in the context of claims of racial bias." Journal of the American statistical association 102 (479):813-823.
Gershoff, Elizabeth T, and Sarah A Font. 2016. "Corporal punishment in US public schools: Prevalence, disparities in use, and status in state and federal policy." Social policy report 30.

Goodman, Melissa, Jessica Thomson, and Alicia Landry. 2020. "Food environment in the lower Mississippi Delta: food deserts, food swamps and hot spots." International journal of environmental research and public health 17 (10):3354.
Gravlee, Emily, Eric Pittman, Wesley Sparkmon, Hyllore Imeri, Hannah-Faith Cox, and Marie Barnard. 2021. "COVID-19 Vaccination Engagement and Barriers among Mississippi Pharmacists." Pharmacy 9 (4):167.
Grinstein-Weiss, Michal, Clinton Key, Shenyang Guo, Yeong Hun Yeo, and Krista Holub. 2013. "Homeownership and wealth among low-and moderate-income households." Housing Policy Debate 23 (2):259-279.
Hemphill, Sheryl A, John W Toumbourou, Todd I Herrenkohl, Barbara J McMorris, and Richard F Catalano. 2006. "The effect of school suspensions and arrests on subsequent adolescent antisocial behavior in Australia and the United States." Journal of adolescent health 39 (5):736-744.

Hennessy-Fiske, Molly. 2022. "White then Black Residents Abandoned Jackson, Propelling Its Water Crisis." The Washington Post, 4 Sep 2022. Accessed 7 Sep 2022. https://www.washingtonpost.com/nation/2022/09/04/jackson-water-crisis/.
Highton, Benjamin. 2000. "Residential mobility, community mobility, and electoral participation." Political Behavior 22 (2):109-120.
Hossfeld, Leslie H, and Gina Rico Mendez. 2018. "Looking For Food." Family \& community health 41 (1):S7-S14.
Huckfeldt, R. Robert. 1979. "Political Participation and the Neighborhood Social Context." American Journal of Political Science 23 (3):579-592.
Huckfeldt, Robert, Eric Plutzer, and John Sprague. 1993. "Alternative Contexts of Political Behavior: Churches, Neighborhoods, and Individuals." Journal Of Politics 55 (2):365381.

Jones, David K. 2019. "Political Participation in the Least Healthy Place in America: Examining the Political Determinants of Health in the Mississippi Delta." Journal of Health Politics, Policy and Law 44 (3):505-531. doi: 10.1215/03616878-7367048.
Kaiser Family Foundation. 2022. Status of State Medicaid Expansion Decisions: Interactive Map.
Key, Valdimer Orlando, and Alexander Heard. 1949. Southern politics in state and nation. Vol. 510: New York: AA Knopf.
Kimble, John. 2007. "Insuring inequality: The role of the Federal Housing Administration in the urban ghettoization of African Americans." Law \& Social Inquiry 32 (2):399-434.
Klein, Rebecca. 2018. "Schools that Were Segregation Academies Now Ban Pregnant and LGBTQ Students." Huffington Post, accessed 7 Sep 2022. https://www.huffpost.com/entry/segregation-academymississippi n 5c12a7bee4b0449012f7f16d.
Kramer, Michael R, and Carol R Hogue. 2009. "Is segregation bad for your health?" Epidemiologic reviews 31 (1):178-194.

Kruse, Kevin M. 2013. White flight: Princeton University Press.
Landrine, Hope, Irma Corral, Joseph GL Lee, Jimmy T Efird, Marla B Hall, and Jukelia J Bess. 2017. "Residential segregation and racial cancer disparities: a systematic review." Journal of racial and ethnic health disparities 4 (6):1195-1205.
Lerman, Amy E, and Vesla M Weaver. 2014. Arresting citizenship: The democratic consequences of American crime control: University of Chicago Press.
Long, Mark C. 2010. "Changes in the returns to education and college quality." Economics of Education Review 29 (3):338-347. doi: https://doi.org/10.1016/j.econedurev.2009.10.005.
Lyon, Gregory. 2021. "The Conditional Effects of Health on Voter Turnout." Journal of Health Politics, Policy and Law 46 (3):409-433.
Margo, Robert A. 1990. "Race and Schooling in the South: A Review of the Evidence." Race and Schooling in the South, 1880-1950: An Economic History:6-32.
Massey, Douglas S, and Mary J Fischer. 2006. "The effect of childhood segregation on minority academic performance at selective colleges." Ethnic and Racial Studies 29 (1):1-26.
Mississippi Department of Education. 2022. "Student Group Data." accessed 7 Sep 2022. https://msrc.mdek12.org/studentgroups?EntityID=0000-000\&SchoolYear=2020.
Mississippi Home Corporation. 2019. 2019 Analysis of Impediments to Fair Housing.
Mississippi Office of State Public Defender. 2018. Overview of Racial Disparity in the Criminal Justice System.
Mississippi State Department of Public Health. 2018. Infant Mortality Report, 2018.
Mitchell, Ojmarrh. 2005. "A Meta-Analysis of Race and Sentencing Research: Explaining the Inconsistencies." Journal of Quantitative Criminology 21:439-466.
Morgan, Donald P., Maxim L. Pinkovskiy, and Bryan Yang. 2016. Banking Deserts, Branch Closings, and Soft Information. Federal Reserve Bank of New York.
Mowen, Thomas, and John Brent. 2016. "School discipline as a turning point: The cumulative effect of suspension on arrest." Journal of research in crime and delinquency 53 (5):628653.

National Center for Education Statistics. 2022. "Program for the International Assessment of Adult Competencies (PIAAC)." accessed 7 Sep 2022. https://nces.ed.gov/surveys/piaac/state-county-estimates.asp.
National Fair Housing Alliance. 2017. National Fair Housing Alliance Settles Race Discrimination Complaint with Real Estate Groups in Jackson, Mississippi.
Nawaz, Amna. 2022. "How Jackson, Mississippi's Water Crisis is a Sign of Larger Racial Inequities." The News Hour, 12 Sep 2022.
Newkirk II, Vann R. 2019. "The Great Land Robbery." The Atlantic.
Northam, Adam. 2019. "Segregated Classrooms in Mississippi Aren't a Thing of the Past. And Parents Play a Role." Clarion Ledger, 2 Apr 2019. Accessed 7 Sep 2022. https://www.clarionledger.com/story/news/local/2019/04/02/segregation-mississippi-classrooms-parental-request-policy-elementary-brookhaven/3291509002/.
O'Connell, Jonathan, and Yeganeh Torbati. 2021. "Mississippi Aid Program Gave Little Help to Renters but Millions to a Top Law Firm." The Washington Post, 1 Oct 2021. Accessed 30 Sep 2022. https://www.washingtonpost.com/business/2021/09/30/mississippi-housingeviction/.
Ousey, Graham C, and Matthew R Lee. 2008. "Racial disparity in formal social control: An investigation of alternative explanations of arrest rate inequality." Journal of Research in Crime and Delinquency 45 (3):322-355.

Pacheco, Julianna, and Jason Fletcher. 2015. "Incorporating health into studies of political behavior: Evidence for turnout and partisanship." Political research quarterly 68 (1):104-116.

Parks, Casey. 2021. "The Tragedy of America's Rural Schools." The New York Times, 7 Sep 2021. Accessed 14 Sep 2022. https://www.nytimes.com/2021/09/07/magazine/rural-public-education.html.
Paul, E. Sum, Light Steven Andrew, and Ronald F. King. 2004. "Race, Reform, and Desegregation in Mississippi Higher Education: Historically Black Institutions after United States v. Fordice." Law \& Social Inquiry 29 (2):403-435.
Paychex. 2019. "Employment and Discrimination: Exploring the Climate of Workplace Discrimination from 1997 to 2018." accessed 13 Sep 2022. https://www.paychex.com/articles/human-resources/eeoc-workplace-discrimination-enforcement-and-litigation.
Pierson, Emma, Camelia Simoiu, Jan Overgoor, Sam Corbett-Davies, Daniel Jenson, Amy Shoemaker, Vignesh Ramachandran, Phoebe Barghouty, Cheryl Phillips, and Ravi Shroff. 2020. "A large-scale analysis of racial disparities in police stops across the United States." Nature human behaviour 4 (7):736-745.
Poulson, Michael R, Brendin R Beaulieu-Jones, Kelly M Kenzik, Tracey A Dechert, Naomi Y Ko, Teviah E Sachs, and Michael R Cassidy. 2021. "Residential racial segregation and disparities in breast cancer presentation, treatment, and survival." Annals of Surgery 273 (1):3-9.

Reardon, Sean F, Demetra Kalogrides, and Kenneth Shores. 2019. "The geography of racial/ethnic test score gaps." American Journal of Sociology 124 (4):1164-1221.
Rosenstone, Steven J., and John Mark Hansen. 1993. Mobilization, Participation, and Democracy in America. New York: MacMillan.
Ross, Janell. 2019. "A Town with no Bank: How Itta Bena, Mississippi Became a Banking Desert." NBC News, 15 Jun 2019. Accessed 12 Sep 2022. https://www.nbenews.com/news/nbcblk/how-itta-bena-mississippi-became-banking-desert-n1017686.
Rozier, Alex. 2018. "Racial Disparity Conspicuous among Missippians Banned from Voting." Mississippi Today, 22 Feb 2018. Accessed 30 Sep 2022. https://mississippitoday.org/2018/02/22/racial-disparity-conspicuous-among-mississippians-banned-voting/.
Schur, Lisa, Mason Ameri, and Meera Adya. 2017. "Disability, voter turnout, and polling place accessibility." Social Science Quarterly 98 (5):1374-1390.
Schur, Lisa, Todd Shields, Douglas Kruse, and Kay Schriner. 2002. "Enabling democracy: Disability and voter turnout." Political Research Quarterly 55 (1):167-190.
Sims, Mario, Ana Diez Roux, Amanda Dudley, Samson Gebreab, Sharon Wyatt, Marino Bruce, Sherman James, Jennifer Robinson, David Williams, and Herman Taylor. 2012. "Perceived Discrimination and Hypertension Among African Americans in the Jackson Heart Study." American journal of public health 102 Suppl 2:S258-65. doi: 10.2105/AJPH.2011.300523.

Southern Educational Reporting Service. 1961. A statistical summary, State by State, of segregation-desegregation activity affecting Southern schools from 1954 to present, together with pertinent data on enrollment, teachers, colleges, litigation and legislation. Southern Education Reporting Service.

Steffensmeier, Darrell, and Stephen Demuth. 2000. "Ethnicity and Sentencing Outcomes in U.S. Federal Courts: Who is Punished More Harshly?" American Sociological Review 65 (5):705-729.

Steffensmeier, Darrell, Jeffery Ulmer, and John Kramer. 1998. "The Interaction of Race, Gender, and Age in Criminal Sentencing: The Punishment Cost of Being Young, Black, and Male." Criminology 36 (4):763-798. doi: 10.1111/j.1745-9125.1998.tb01265.x.
Summers, Kathryn, Dana Chisnell, Drew Davies, Noel Alton, and Megan McKeever. 2014. "Making voting accessible: Designing digital ballot marking for people with low literacy and mild cognitive disabilities." 2014 Electronic Voting Technology Workshop/Workshop on Trustworthy Elections (EVT/WOTE 14).
Suneson, Grant. 2018. "Wealth in America: Where are the Richest and Poorest States Based on Household Income?" USA Today, 8 Oct 2018. Accessed 13 Sep 2022. https://www.usatoday.com/story/money/economy/2018/10/08/wealth-america-household-income-richest-poorest-states/38051359/.
Tam Cho, Wendy K., and Thomas J. Rudolph. 2008. "Emanating Political Participation: Untangling the Spatial Structure Behind Participation." British Journal of Political Science 38:273-289.
Trounstine, Jessica. 2016. "Segregation and inequality in public goods." American Journal of Political Science 60 (3):709-725.
Turner, Tracy M, and Heather Luea. 2009. "Homeownership, wealth accumulation and income status." Journal of Housing Economics 18 (2):104-114.
U. S. Department of Education. 2018. Civil Rights Data Collection: 2017-2018 State and National Estimates. United States Department of Education.
U. S. Department of Justice. 2010. Justice Department Granted Order to Ensure Students in Walthall County, Mississippi Have Equal Opportunities: Court Grants Relief for Flagrant Violations of Federal Desegregation Order.
U. S. Department of Justice. 2013. Justice Department FIles Consent Decree to Prevent and Address Racial Discrimination in Student Discipline in Meridian, Miss.
U. S. Department of Justice. 2016. Federal Court Orders Justice Department Desegregation Plan for Cleveland, Mississippi Schools.
U. S. Department of Justice. 2020. Justice Department Files Race Discrimination Lawsuit Against Pearl, Mississippi Property Owners and Rental Agent.
Uggen, Christopher, Ryan Larson, Sarah Shannon, and Arleth Pulido-Nava. 2020. Locked Out 2020: Estimates of People Denied Voting Rights due to a Felony Convction.
United States Commission on Civil Rights. 1965. Equal Opportunity in Farm Programs.
Verba, Sidney, Kay Lehman Schlozman, and Henry Brady. 1995a. Voice and Equality: Civic Voluntarism in American Politics. Cambridge: Harvard University Press.
Verba, Sidney, Kay Lehman Schlozman, and Henry E. Brady. 1995b. Voice and Equality. Cambridge: Harvard University.
Weaver, Vesla M, and Amy E Lerman. 2010. "Political consequences of the carceral state." American Political Science Review 104 (04):817-833.
Williams, Christin, and Rachel Sprinkle. 2021. Mississippi Primary Care Needs Assessment. edited by MIssissippi Department of Public Health.
Wilson, William Julius. 1996. When Work Disappears. New York: Knopf.
Wolfe, Anna. 2020. "Feds: Mississippi Must Replace All Misspent or Stolen Welfare Money with State Funds." Mississippi Today, 14 May 2020. Accessed 30 Sep 2022.
https://mississippitoday.org/2020/05/14/feds-mississippi-must-replace-all-misspent-or-stolen-welfare-money-with-state-funds/.
Wright, Willie J., Tyler McCreary, Brian Williams, and Adam Bledsoe. 2020. "RACE, LAND, AND THE LAW

Black Farmers and the Limits of a Politics of Recognition." In Black Food Matters, edited by Hanna Garth and AshantÉ M. Reese, 228-250. University of Minnesota Press.
Zingher, Joshua N, and Eric M Moore. 2019. "The Power of Place? Testing the Geographic Determinants of African-American and White Voter Turnout." Social Science Quarterly 100 (4):1056-1071.

Appendix

Traci Burch

Employment

- Associate Professor, Northwestern University Department of Political Science (2014Present)
- Research Professor, American Bar Foundation (2007- Present)
- Assistant Professor, Northwestern University Department of Political Science (20072014)

Education

- Harvard University

Ph.D. in Government and Social Policy
Dissertation: Punishment and Participation: How Criminal Convictions Threaten American Democracy
Committee: Jennifer Hochschild (Chair), Sidney Verba, and Gary King

- Princeton University
A.B. in Politics, magna cum laude

Publications

- Burch, Traci. 2022. "Adding Insult to Injury: the Justification Frame in Official Narratives of Officer-Involved Killings." Journal of Race, Ethnicity, and Politics.
- Burch, Traci. 2022. "Officer-Involved Killings and the Repression of Protest." Urban Affairs Review.
- Burch, Traci. 2021. "Not All Black Lives Matter: Officer-Involved Deaths and the Role of Victim Characteristics in Shaping Political Interest and Voter Turnout." Perspectives on Politics.
- Kay Lehman Schlozman, Philip Edward Jones, Hye Young You, Traci Burch, Sidney Verba, Henry E. Brady. 2018. "Organizations and the Democratic Representation of Interests: What Happens When Those Organizations Have No Members?" Perspectives on Politics.
- Burch, Traci. 2016. "Political Equality and the Criminal Justice System." In Resources, Engagement, and Recruitment. Casey Klofstad, ed. Philadelphia: Temple University Press.
- Burch, Traci. 2016. "Review of The First Civil Right by Naomi Murakawa." The Forum.
- Kay Lehman Schlozman, Philip Edward Jones, Hye Young You, Traci Burch, Sidney Verba, Henry E. Brady. 2015. "Louder Chorus - Same Accent: The Representation of Interests in Pressure Politics, 1981-2011." In Darren Halpin, David Lowery, Virginia Gray, eds. The Organization Ecology of Interest Communities. New York: Palgrave Macmillan.
- Burch, Traci. 2015. "Skin Color and the Criminal Justice System: Beyond Black-White Disparities in Criminal Sentencing." Journal of Empirical Legal Studies 12(3): 395-420.
- Burch, Traci. 2014. "The Old Jim Crow: Racial Residential Segregation and Neighborhood Imprisonment." Law \& Policy 36(3) 223-255.
- Burch, Traci. 2014. "The Effects of Imprisonment and Community Supervision on Political Participation." Detaining Democracy Special Issue. The Annals of the American Academy of Political and Social Science 651 (1) 184-201.
- Burch, Traci. 2013. Trading Democracy for Justice: Criminal Convictions and the Decline of Neighborhood Political Participation. Chicago: University of Chicago Press.
- Hochschild, Jennifer, Vesla Weaver, and Traci Burch. 2012. Transforming the American Racial Order. Princeton: Princeton University Press.
- Schlozman, Kay Lehman, Sidney Verba, Henry Brady, Traci Burch, and Phillip Jones. 2012. "Who Sings in the Heavenly Chorus? The Shape of the Organized Interest System." In Schlozman, Kay Lehman, Sidney Verba, and Henry Brady, The Unheavenly Chorus, Princeton: Princeton University Press.
- Schlozman, Kay Lehman, Sidney Verba, Henry Brady, Phillip Jones, and Traci Burch. 2012. "Political Voice through Organized Interest Activity." In Schlozman, Kay Lehman, Sidney Verba, and Henry Brady, The Unheavenly Chorus, Princeton: Princeton University Press.
- Burch, Traci. 2012. "Did Disfranchisement Laws Help Elect President Bush? New Evidence on the Turnout and Party Registration of Florida’s Ex-Felons." Political Behavior 34 (1); 1-26.
- Burch, Traci. 2011. "Turnout and Party Registration among Criminal Offenders in the 2008 General Election." Law and Society Review 45(3): 699-730.
- Burch, Traci. 2011. "Fixing the Broken System of Financial Sanctions." Criminology and Public Policy 10(3).
- Hochschild, Jennifer; Vesla Weaver, and Traci Burch. 2011. "Destabilizing the American Racial Order." Daedalus 140; 151-165.
- Burch, Traci. 2009. "Can the New Commander-In-Chief Sustain His All Volunteer Standing Army?" The Dubois Review on Race 6(1).
- Burch, Traci. 2009. "Review of Imprisoning Communities, by Todd Clear." Law and Society Review 43(3) 716-18.
- Burch, Traci. 2009. "American Politics and the Not-So-Benign Neglect of Criminal Justice," in The Future of American Politics, ed. Gary King, Kay Schlozman, and Norman Nie. (New York: Routledge).
- Schlozman, Kay Lehman and Traci Burch. 2009. "Political Voice in an Age of Inequality," in America at Risk: Threats to Liberal Self-Government in an Age of Uncertainty, ed. Robert Faulkner and Susan Shell (Ann Arbor: University of Michigan Press).
- Hochschild, Jennifer and Traci Burch. 2007. "Contingent Public Policies and the Stability of Racial Hierarchy: Lessons from Immigration and Census Policy," in Political Contingency: Studying the Unexpected, the Accidental, and the Unforseen, ed. Ian Shapiro and Sonu Bedi (New York: NYU Press).

Grants

- Co-Principal Investigator. "Fellowship and Mentoring Program on Law and Inequality." September 1, 2020 to August 31, 2023. \$349, 313. National Science Foundation.

Honors and Fellowships

- American Political Science Association 2014 Ralph J. Bunche Award (for Trading Democracy for Justice).
- American Political Science Association Urban Section 2014 Best Book Award (for Trading Democracy for Justice).
- American Political Science Association Law and Courts Section 2014 C. Herman Pritchett Award (for Trading Democracy for Justice).
- Research grant, Stanford University Center for Poverty and Inequality (2012).
- American Political Science Association E. E. Schattschneider Award for the best doctoral dissertation in the field of American Government (2009)
- American Political Science Association William Anderson Award for the best doctoral dissertation in the field of state and local politics, federalism, or intergovernmental relations (2008)
- American Political Science Association Urban Section Best Dissertation in Urban Politics Award (2008)
- Harvard University Robert Noxon Toppan Prize for the best dissertation in political science (2007)
- Institute for Quantitative Social Sciences Research Fellowship (2006-07)
- European Network on Inequality Fellowship (2005)
- Research Fellowship, The Sentencing Project (2005)
- Doctoral Fellow, Malcolm Weiner Center for Inequality and Social Policy (2004-07)

Professional Service

- APSA Law and Courts Section Best Paper Award Committee (2020-2021)
- APSA Elections, Public Opinion, and Voting Behavior Executive Committee (2020-2023)
- General Social Survey Board of Overseers (2020-2025)
- APSA Kammerer Prize Committee (2017)
- Associate Editor, Political Behavior (2015-2019)
- APSA Law and Courts Section, Lifetime Achievement Award Prize Committee (20142015)
- Law and Society Association, Kalven Prize Committee (2013-2014)
- American Political Science Association, Urban Politics Section Dissertation Prize Committee (2012-13)
- American Political Science Association, Urban Politics Section Executive Committee (2012-13)
- Law and Society Association Diversity Committee, (2012-2013)
- American Political Science Association, Urban Politics Section Program Co-Chair (2011)
- Associate Editor, Law and Social Inquiry
- American Political Science Association, Urban Politics Section Book Prize Committee (2009)
- Reviewer for The American Political Science Review, Public Opinion Quarterly, American Politics Research, and Time-Sharing Experiments in the Social Sciences.

Presentations and Invited Talks

- University of Pennsylvania. Virtual. "Voice and Representation in American Politics." April 2021.
- University of Michigan. Virtual. "Which Lives Matter? Factors Affecting Mobilization in Response to Officer-Involved Killings." February 2021.
- University of Pittsburgh. Virtual. "Policing and Participation." November 2020.
- Hamilton College Constitution Day Seminar. Virtual. "Racial Protests and the Constitution." September 2020.
- New York Fellows of the American Bar Foundation. New York, NY. "Police Shootings and Political Participation." March 2020.
- Pennsylvania State University, State College, PA. "Effect of Officer Involved Killings on Protest. November 2019.
- Princeton University. Princeton NJ. "Effects of Police Shootings on Protest among Young Blacks." November 2019.
- Missouri Fellows of the American Bar Foundation. Branson, MO. Police Shootings and Political Participation in Chicago. September 2019.
- Northwestern University. "Police Shootings and Political Participation." November, 2018.
- Princeton University. Princeton, NJ. "Police Shootings and Political Participation." September, 2018.
- University of California at Los Angeles. Los Angeles, CA. "Police Shootings and Political Participation." August, 2018.
- American Bar Association Annual Meeting. Chicago, IL. "Police Shootings and Political Participation." August 2018.
- American Bar Endowment Annual Meeting. Lexington, KY. "Effects of Police Shooting in Chicago on Political Participation." June 2018.
- Vanderbilt University. "Effects of Police Shootings in Chicago on Political Participation." April 2018.
- Washington University in St. Louis. "Effects of Pedestrian and Auto Stops on Voter Turnout in St. Louis." February 2018.
- Fellows of the American Bar Foundation, Los Angeles. "Assaulting Democracy." January 2018.
- Northwestern University Reviving American Democracy Conference. Panel presentation. "Barriers to Voting." January 2018.
- University of Illinois at Chicago. "Effects of Police Shootings in Chicago on Political Participation." October, 2017.
- Chico State University. "Constitution Day Address: Policing and Political Participation." September, 2017.
- Fellows of the American Bar Foundation, Atlanta, Georgia. "Policing in Georgia." May 2017.
- United States Commission on Civil Rights. Testimony. "Collateral Consequences of Mass Incarceration." May 2017.
- Northwestern University Pritzker School of Law. "Effects of Police Stops of Cars and Pedestrians on Voter Turnout in St. Louis." April 2017.
- University of California at Los Angeles. Race and Ethnic Politics Workshop. "Effects of Police Stops of Cars and Pedestrians on Voter Turnout in St. Louis." March 2017.
- University of North Carolina at Chapel Hill. American Politics Workshop. "Effects of Police Stops of Cars and Pedestrians on Voter Turnout in St. Louis." February 2017.
- National Bar Association, St. Louis MO. "Political Effects of Mass Incarceration." July 2016.
- Harvard University, Edmond J. Safra Center for Ethics. Inequalities/Equalities in Cities Workshop. April 2016.
- American Political Science Association Annual Meeting. September 2015. "Responsibility for Racial Justice." Discussant.
- St. Olaf College. April 2015. "The Collateral Consequences of Mass Incarceration."
- Northwestern University. Institute for Policy Research. February 2015. "The Civic Culture Structure."
- Texas A\&M University. Race, Ethnicity, and Politics Workshop. September 2014. "Trading Democracy for Justice."
- Columbia University Teachers College. The Suburban Promise of Brown Conference. May 2014. "Can We All Get Along, Revisited: Racial Attitudes, the Tolerance for Diversity, and the Prospects for Integration in the $21^{\text {st }}$ Century."
- University of Kentucky. Reversing Trajectories: Incarceration, Violence, and Political Consequences Conference. April 2014. "Trading Democracy for Justice."
- University of Chicago. American Politics Workshop. March 2014. "How Geographic Differences in Neighborhood Civic Capacity Affect Voter Turnout."
- Kennedy School of Government, Harvard University. February 2014. "Trading Democracy for Justice.
- University of Michigan. American Politics Workshop. December 2013. "Trading Democracy for Justice."
- Yale University. American Politics and Public Policy Workshop. September 2013. "Trading Democracy for Justice."
- American Political Science Association Annual Meeting. August 2013. "The Heavenly Chorus Is Even Louder: The Growth and Changing Composition of the Washington Pressure System." With Kay Lehman Schlozman, Sidney Verba, Henry Brady, and Phillip Jones.
- National Bar Association, Miami Florida, July 2013. "The Collateral Consequences of Mass Imprisonment."
- Loyola University. American Politics Workshop. December 2012. "Mass Imprisonment and Neighborhood Voter Turnout."
- Marquette University School of Law. November 2012. "The Collateral Consequences of Mass Imprisonment."
- Yale University. Detaining Democracy Conference. November 2012. "The Effects of Imprisonment and Community Supervision on Political Participation."
- Brown University. American Politics Workshop. October 2012. "Mass Imprisonment and Neighborhood Voter Turnout."
- American Bar Association National Meeting, August 2012. "Mass Imprisonment: Consequences for Society and Politics."
- University of Madison-Wisconsin. American Politics Workshop. March 2012. "The Spatial Concentration of Imprisonment and Racial Political Inequality."
- American Political Science Association Annual Meeting. 2011. "Theme Panel: How Can Political Science Help Us Understand the Politics of Decarceration?"
- University of Pennsylvania. Democracy, Citizenship, and Constitutionalism Conference. April, 2011. "Vicarious Imprisonment and Neighborhood Political Inequality."
- University of Chicago School of Law. Public Laws Colloquium. Chicago, IL. November, 2010. ""'The Effects of Neighborhood Incarceration Rates on Individual Political Efficacy and Perceptions of Discrimination."
- Pomona College. November, 2010. "Incarceration Nation."
- University of Washington. Surveying Social Marginality Workshop. October 2010. "Using Government Data to Study Current and Former Felons."
- American Bar Foundation, Chicago, IL, September 2010. "The Effects of Neighborhood Incarceration Rates on Individual Political Attitudes."
- Northwestern University. Chicago Area Behavior Conference. May 2010. "Trading Democracy for Justice: The Spillover Effects of Incarceration on Voter Turnout in Charlotte and Atlanta."
- Annual Meeting of the Law and Society Association, Chicago, IL, May 2010. "Neighborhood Criminal Justice Involvement and Voter Turnout in the 2008 General Election."
- Annual Meeting of the Southern Political Science Association, Atlanta, GA, January 2010. "The Art and Science of Voter Mobilization: Grassroots Perspectives on Registration and GOTV from Charlotte, Atlanta, and Chicago."
- University of Illinois at Chicago. Institute for Government and Public Affairs. November 2009. "Turnout and Party Registration among Convicted Offenders during the 2008 Presidential Election."
- Annual Meeting of the American Political Science Association, Toronto, Ontario, Canada, September 2009. "'I Wanted to Vote for History:' Turnout and Party Registration among Convicted Offenders during the 2008 Presidential Election."
- Harris School of Public Policy, University of Chicago. American Politics Workshop. December 2008. "Trading Democracy for Justice? The Spillover Effects of Imprisonment on Neighborhood Voter Participation."
- Northwestern University School of Law. Law and Political Economy Colloquium. November 2008. "Did Disfranchisement Laws Help Elect President Bush? New Evidence on the Turnout Rates and Candidate Preferences of Florida's Ex-Felons."
- University of California, Berkeley. Center for the Study of Law and Society. October 2008. "Trading Democracy for Justice? The Spillover Effects of Imprisonment on Neighborhood Voter Participation."
- Law and Society Association Annual Meeting, Montreal, Canada, May 2008. "Did Disfranchisement Laws Help Elect President Bush? New Evidence on the Turnout Rates and Candidate Preferences of Florida's Ex-Felons."
- Law and Society Association Annual Meeting, Montreal, Canada, May 2008. "Trading Democracy for Justice? The Spillover Effects of Imprisonment on Neighborhood Voter Participation."
- Midwest Political Science Association Conference, Chicago, IL, April 2007. Paper: "Concentrated Incarceration: How Neighborhood Incarceration Decreases Voter Registration."

Working Papers Under Review

- "Introduction" (with Jenn Jackson and Periloux Peay) in Freedom Dreams: A Symposium on Abolition. Eds. Jenn Jackson, Periloux Peay, and Traci Burch. Social Science Quarterly.
- "The Effects of Community Police Performance on Protest in Chicago" (For Symposium Honoring John Hagan)
- "How Police Departments Frame Low-Threat Victims of Officer-Involved Killings"
- Which Lives Matter?

Additional Activities

- Expert witness in Kelvin Jones vs. Ron DeSantis, etc. et al. (U.S. District Court for the Northern District of Florida Consolidated Case No. 4:19-cv-00).
- Expert witness in Community Success Initiative, et al., Plaintiffs v. Timothy K. Moore (Superior Court, Wake County, NC Case No. 19-cv-15941).
- Expert witness in People First of Alabama v. Merrill (U.S. District Court in Birmingham, Alabama, Case No. 2: 20-cv-00619-AKK)
- Expert witness in Florida State Conference of the NAACP v. Lee (U.S. District Court in the Northern District of Florida, Case No. 4:21-cv-00187-MW-MAF)
- Expert witness in One Wisconsin Institute Inc. v. Jacobs (U.S. District Court in the Western District of Wisconsin, Case No. 15-CV-324-JDP).
- Expert witness in Alpha Phi Alpha Fraternity Inc., et al. v. Raffensperger (U.S. District Court for the Northern District of Georgia, Case No. 1:21-cv-05337-SCJ)
- Expert witness in Robinson, et al. v. Ardoin (U.S. District Court for the Middle District of Louisiana, Civil Action No. 22-cv-00211).
- Expert witness in Nairne, et al. v. Ardoin (U.S. District Court for the Middle District of Louisiana, Civil Action No. 3:22-cv-00178 SDD-SDJ).

IN THE UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF MISSISSIPPI
 GREENVILLE DIVISION

DECLARATION OF TRACI BURCH

I, Traci Burch, make the following declaration based on personal knowledge:

I have been retained by the Plaintiffs in the above referenced matter as an expert. I submit that the foregoing report from me is a true and accurate copy of the report I provided to Plaintiffs in this matter. I declare that the information and opinions contained in the report are true and correct to the best of my knowledge.

I declare under penalty of perjury that the foregoing is true and correct. 28 U.S.C. § 1746.

$$
\text { Dated: } 10 / 1 / 2022
$$

Scope of Report and Summary of Conclusions

I was asked to address Dr. Swanson's report, in particular his analysis regarding racial disparities in voter participation and disparities in proximity to polling places.

My conclusions are as follows:

- First, Dr. Swanson overestimates both Black and White turnout in Mississippi. His estimates of Black turnout are further biased because he fails to account for racial differences in the extent to which people overreport voting in surveys. The unreliability of Dr. Swanson's estimates is easily established because his overall turnout estimates imply that there were hundreds of thousands more voters participating than the vote counts reported by the Mississippi Secretary of State.
- Second, in light of Dr. Swanson's analyses and criticisms, I conducted additional analyses that do not rely on self-reports of voter turnout, which confirm that Black voter turnout in Mississippi is in fact lower than White voter turnout. These analyses yield estimates of turnout for Black and White voters that are similar to each other despite the use of multiple data sources and methods of estimation, which is evidence that they are reliable. These estimates also are closer to the true turnout numbers based on actual vote counts reported by the Mississippi Secretary of State than Dr. Swanson's, which further shows that these estimates are more reliable.
- Third, polling place distance in isolation, as reported by Dr. Swanson, is a poor indicator of Black voter turnout or relative ease of access to the voting process. Among other things, scholarly studies of polling place distance typically account for access to a vehicle, among other factors, because the effects of polling place distance are different depending on whether a person has a car. However, Dr. Swanson fails to consider access to a vehicle in his analysis. As I note, Black people in Mississippi are more than three times as likely to lack access to a car than White people. The increased difficulty in accessing polling places that results from this disparity in access to a car is far more salient than the minor purported "advantage" Black Mississippians have in terms of polling place distance, assuming Dr. Swanson's analysis of relative polling place distance is correct.
- Fourth, there are many aspects of polling place experience that could discourage voting apart from polling place distance. Considering wait times, for instance, shows that Black people have longer wait times in Mississippi than White people.
- Finally, with respect to Senate Factor 5 overall, Black people in Mississippi face discrimination in education, income, housing, employment, and criminal justice that dramatically affect life outcomes, including voting. In both my initial report
and again here, I have provided evidence to demonstrate the existence and effects of long-term and contemporary discrimination on the ability of Black Mississippians to participate in the political process.

Dr. Swanson's Estimates of Voter Turnout by Race

Dr. Swanson's estimates of voter turnout by race are based on his analysis of the Current Population Survey Voting and Registration Supplement (CPS). Dr. Swanson estimates based on the CPS that 69.8% of White non-Hispanic Mississippi residents and 72.9% of Black alone or in combination Mississippi residents voted in the 2020 General Election. In total, Dr. Swanson estimates that 1,531,000 Mississippians voted in the November 2020 General Election, a turnout rate of 70.3%. ${ }^{1}$

However, the official vote counts certified by the Mississippi Secretary of State show that only $1,313,759$ votes 2 were cast for President (the highest participation race) in Mississippi in the November 2020 general election, which represents 58.7% of the citizen voting age population of Mississippi. ${ }^{3}$ Dr. Swanson's estimate is nearly 12 percentage points higher than the true turnout rate based on actual votes cast and overestimates the vote total by more than 200,000 votes. This 12% overestimation shows that CPS is not reliable as a benchmark for voter turnout. As I discuss below, neither is it a reliable benchmark for voter turnout by race.

As noted above, by race, Dr. Swanson estimates based on the CPS that 69.8% of White non-Hispanic Mississippi residents and 72.9% of Black alone or in combination Mississippi residents voted in the 2020 General Election. Similarly, he concludes in his report that, based on his analysis of a Mississippi State University Poll, in 2020 reported voter "frequency," or the number of people in Mississippi who say that they always vote, was " 68.22% for Whites and 72.1% for Blacks" ${ }^{4}$-rates close to those estimated from the CPS. However, based on my research into the matter, Dr. Swanson's analysis is flawed because his analysis of both surveys suffers from the same problem: he fails to adjust or otherwise account for overreporting generally, and for differential overreporting of voter turnout by race in particular.

Dr. Swanson acknowledges the issue of overreporting in his report when positing that the purported advantage he claims Black Mississippians have in terms of proximity to polling places "may offset to some degree the likelihood of over-reporting." ${ }^{5}$ This supposition is incorrect, as I will show below. But for now, this statement shows that Dr. Swanson and I agree that overreporting of voting in surveys is a known issue. However, new research shows that not only

[^98]does the CPS overestimate turnout for all groups, it does so differentially by race, such that it consistently overestimates Black turnout even more so than White turnout. ${ }^{6}$ This research finds that it is not appropriate to conclude that there is no gap in turnout between Black and White Mississippi voters based on the CPS.

In their 2022 article, which was published recently in a peer-reviewed political science journal, Ansolabehere, Fraga, and Schaffner compare estimates of voter turnout by race from the CPS for multiple states to the Cooperative Election Study as well as to statewide voter files for those states where race is recorded. They find systematic overreporting of voting in the CPS for all racial groups. However, they also show that overreporting is more pronounced among Black voters. Ansolabehere, Fraga, and Schaffner find that the tendency to overreport voting differently by race leads the CPS to underestimate the size of the racial gap in turnout between Black and White voters in multiple states. The bias may stem from problems with the CPS sample, such as a difference in attrition from the survey, or from differences in the tendency to overreport voting. ${ }^{7}$ As a result of these problems with the CPS, researchers should "use caution when making inferences about variation in turnout rates by racial and ethnic groups" ${ }^{8}$ based on the CPS alone.

In sum, Dr. Swanson's opinion that 69.8% of White non-Hispanic Mississippi residents and 72.9% of Black alone or in combination Mississippi residents voted in the 2020 General Election, as well as his similar opinions about turnout in other elections, is not correct.

Dr. Swanson's Criticisms of My Analysis

In my initial report, I used CPS data to estimate 56\% White and 53\% Black turnout in Mississippi for the November 2020 General Election. These estimates are relatively close to the observed turnout rate of 58.7% based on Secretary of State data, and substantially closer than the over 70\% turnout figure Dr. Swanson presents.

However, Dr. Swanson is correct that the estimates in my initial report reflect a calculation error. When I was working with the table of CPS data I used, I thought that the educational attainment variable that I was using excluded children. However, it actually reports educational attainment for people ages 15 and older, so for each educational level, the total includes teens aged 15-17. There are no children younger than that in the "Less than High School" category, as evidenced by the fact that cells F10, F11,F12 are 0. Dr. Swanson correctly points out that primarily, this error affects the "Less than High School" calculations and not the other educational levels. ${ }^{9}$ I also calculated total turnout for both racial groups incorrectly. When

[^99]Column F is subtracted from the denominator, the turnout figures calculated using CPS are consistent with those presented in Dr. Swanson's report.

When I wrote my initial report, I relied on the CPS to estimate turnout by education because the estimates that I produced were in line with turnout based on the actual vote count and thus did not lead me to believe that something was amiss. I also was unaware of the Ansolabehere et al. article that was published right before I wrote this report-- I last researched turnout and the CPS only a few weeks before that article was published. I found the new article when reviewing the literature again in response to the estimates of turnout in Dr. Swanson's report, which I found surprising. I now think, based on the strong evidence of bias in the CPS, it makes sense to "use caution when making inferences about variation in turnout rates by racial and ethnic groups, ${ }^{10}$ and therefore that the CPS really should be considered only in comparison with estimates from other data sources that estimate voter turnout by race in ways that do not rely on self-reporting.

Methodology and Analysis of Validated Voter Turnout: Cooperative Election Study

Because, as discussed above, turnout estimates in the CPS are unreliable not just because of overreporting in general, but because of differences in overreporting by race in particular, I conducted additional analyses which employed alternative methods of looking at turnout by race that do not rely on self-reported voter turnout. These additional analyses also are consistent with my conclusion that Black voter turnout is lower than white turnout and inconsistent with those produced by Dr. Swanson.

Because much of the bias in turnout estimates based on the CPS has to do with differential overreporting of voting by race, ${ }^{11}$ it is necessary to examine alternative sources that do not depend on self-reporting of turnout to estimate turnout by race in Mississippi. First, I examine the 2020 Cooperative Election Study (CES), which contains a sample of 462^{12}
education level by state are not readily available in official published tables ..." Swanson Report, p. 75. In fact, I downloaded a table from the census website using their online table generator; I have included that table in the Appendix. I did not conduct "an analysis and interpretation of the CPS "raw data" (or CPS "PUMS") data alluded to earlier" and my error was not in working with the raw data or writing software code. Swanson Report, p. 76. Instead, I calculated turnout from this table, dividing the numerator, column G, over the denominator, column B. That was incorrect. I also should have subtracted Column F, not in universe, from the denominator as well.
${ }^{10}$ Ansolabehere et al. 2022: 1854.
${ }^{11}$ Ansolabehere et al. 2022; see also Enamorado, Ted, and Kosuke Imai. "Validating selfreported turnout by linking public opinion surveys with administrative records." Public Opinion Quarterly 83.4 (2019): 723-748.
${ }^{12}$ This number is above the minimum sample size to detect small effects (Cohen's $d=.2$) with a standard level of statistical power (=.8) and significance level of .05. See Singh, Ajay S., and Micah B. Masuku. "Sampling techniques \& determination of sample size in applied statistics research: An overview." International Journal of economics, commerce and management 2.11 (2014): 1-22.

Mississippi adults (unweighted). ${ }^{13}$ The CES, although it is a survey, independently validates voter registration and turnout for respondents by attempting to match respondents to a database of registered voters maintained by Catalist, a corporation that maintains a national database of voters. ${ }^{14}$ Catalist updates their information on voter registration and history with data directly from states. ${ }^{15}$ In my analysis, I use the measure of validated voter turnout rather than selfreported voter turnout to estimate racial gaps in turnout, distinguishing this survey from the unvalidated self-reported turnout from CPS or Mississippi State University analyzed by Dr. Swanson.

To analyze the survey, I employ logit regression analysis. Generally, regression analysis is a statistical technique that is designed to look for relationships between an independent variable and a dependent variable. ${ }^{16}$ Multiple regression analysis also may involve the use of control variables, which would allow for the analysis of the relationship between an independent variable and a dependent variable after accounting for these additional factors. ${ }^{17}$ I examine the relationship between a respondent's race and their validated voter turnout. Because the dependent variable, validated voter turnout, is dichotomous, I use logit rather than ordinary-leastsquares regression. ${ }^{18}$ However, because logit coefficients are difficult to interpret for lay readers, I include the regression tables of my results in the Appendix and report the results graphically in Figures 1 and 2 below. ${ }^{19}$

In the Mississippi sample of the CES, ${ }^{20}$ the CES team was able to validate that 53% of Mississippi respondents voted in the 2020 General Election. This estimate, while lower than the 58.7% benchmark, is still much closer to the actual turnout than the 70.3% number estimated by

[^100]Dr. Swanson from the CPS. Breaking the CES data down further by race, ${ }^{21} 60 \%$ of White respondents and 46% of Black respondents voted in Mississippi in the 2020 General Election. My regression analysis of validated turnout by race in the CES confirms these percentages, finding the same large, statistically significant gap between Black and White Mississippi voters. As I report in Figure 1, calculating the probability of voting in the 2020 General Election (based on the regression coefficients in the first column of Table 2 in the appendix) shows that 60% of White respondents voted in the 2020 General Election, compared with 46% of Black Mississippi respondents.

Figure 1: Probability of voting by race in Mississippi. Source: Author's analysis of 2020 CES included in column 1 of table 2 in the appendix.

It is also worth noting that the CES allows us to examine overreporting of voting. Comparing self-reported voter turnout to validated voter turnout shows substantial overreporting of voting. The CES team was able to validate in Catalist that 74% of the White Mississippi respondents who said they voted actually did so, but were only able to validate that 57% of the Black Mississippi respondents who said they voted did so. ${ }^{22}$ Thus, as the CES shows, corroborating the recent work of Ansolabehere et al. discussed supra, differential over-reporting of voter turnout by race is an important phenomenon that affects estimates of voter turnout in Mississippi and demonstrates the problems with relying only on self-reported voting to estimate racial differences in turnout.

[^101]
Effects of Educational Discrimination on Black Voter Turnout

In his report, Dr. Swanson argued that Black Mississippians vote at higher rates than White Mississippians at every educational level and thus argued that educational attainment does not detrimentally affect Black voter turnout. This conclusion is inaccurate because it relies on the CPS, which I have shown to produce biased estimates, and because it ignores the point that I make in my original report with respect to differences in educational attainment by race in Mississippi. I discuss these two points below.

My original purpose for including the CPS analysis in my first report was to show the importance of education and socioeconomic status, arenas in which Black Mississippians face discrimination, to shaping the racial gap in voter turnout. Due to the problems with reliance on CPS discussed above, for this report, I seek to reinforce and corroborate my conclusions regarding the effects of educational discrimination on Black voter turnout by deploying multiple regression analysis on the CES to examine the relationship between race and validated voter turnout while holding educational attainment constant. Multiple regression allows us to begin to compare apples to apples-for instance, comparing turnout between Black and White people with the same educational level. As I note earlier, there is a large and statistically significant gap in voter turnout overall between Black and White Mississippi residents: White turnout in the 2020 General Election is estimated to be 60%, while Black turnout is estimated to be 46%.

Further analysis shows that this large, 14 percentage point gap in turnout mostly comes from the distribution of racial groups across educational levels, rather than from differential voter turnout within each educational level. In other words, the racial gap comes less from the fact that Black people with college degrees vote less than White people with college degrees, but rather from the fact that there are proportionally fewer Black people in Mississippi with college degrees than White people.

We can see this phenomenon in Figure 2, which calculates the probability of having a validated vote for men born in 1972 by race and education among CES respondents in Mississippi using the regression coefficients reported in the second column of Appendix Table 2. In the figure, the probability of voting increases with educational attainment for both racial groups. Within each educational level, there is a small racial disparity in turnout, such that White respondents appear more likely to vote than Black respondents. However, in this multivariate analysis, the Black-White racial disparity is not statistically significant while educational attainment is, again pointing to the large racial disparity across educational levels as the driver of the overall gap in Black and White voter turnout in Mississippi. If education were not operating through race to affect validated voter turnout, including educational attainment in the regression would not have such a big effect on the size or statistical significance of the coefficient on race and turnout as shown in Appendix Table 2. ${ }^{23}$

[^102]

Figure 2 Probability of voting by race and education in Mississippi. Estimated probability of voting calculated for men born in 1972 by race and educational attainment. Source: Author's analysis of 2020 CES included in column 2 of table 2 in the appendix.

Dr. Swanson's conclusion that differences in educational attainment do not disadvantage Black Mississippians is based on a fundamental misunderstanding: he argues (based on faulty data) that because Black people and White people in Mississippi with similar educational levels vote similarly, that race does not matter for voter turnout. This logic ignores my original conclusion, which is borne out by the analysis here, that Black Mississippians have faced and are facing educational discrimination throughout the state. The state has maintained many aspects of educational segregation and under-investment in public education for Black students in both the historical and the contemporary period, as I note in my initial report.

This educational discrimination has led to gaps in literacy and educational attainment, with Black Mississippi residents having lower literacy and educational attainment than White Mississippi residents. This discrimination has allowed and continues to allow fewer Black Mississippians to reach educational parity with White Mississippians. As I have shown above, in line with decades of political science research, educational attainment has a strong, positive relationship to voter turnout. People with higher educational attainment are more likely to vote. Educational attainment in Mississippi thus is shaped by race in the ways that I highlight in my original report. I include those data from my original report again here as Figure 3 to clearly show the differences in educational attainment by race in Mississippi.

Figure 3: Educational Attainment by Race in Mississippi. Source: 2019 American Community Survey 1-Year Estimates

To summarize the discussion, analyzing validated voter turnout from the Mississippi sample of the CES clearly shows that White Mississippians were more likely to turn out in the 2020 General Election than Black Mississippians. This large racial gap is statistically significant. My analysis shows that educational attainment is an important factor in shaping this racial gap: accounting for educational attainment and other factors shows that while Black and White people with similar educational backgrounds vote similarly, people with lower educational attainment vote at lower rates overall than people with higher educational attainment. Because of the historical and contemporary discrimination in education faced by Black people that I highlight in my report, Black Mississippians are more likely to have lower educational attainment, and thus lower voter turnout, than White Mississippians.

Methodology and Analysis of Voter File Turnout: Ecological Inference

To further bolster the CES analysis, I turn to a second method of estimating the racial gap in turnout that avoids overreporting bias: ecological inference (EI). EI is a method of "inferring individual behavior from aggregate data" ${ }^{24}$ that has been used as a standard statistical tool to estimate voting behavior in vote dilution cases. ${ }^{25}$ Lewis describes "inferring the rate of voter

[^103]turnout among two racial groups in a set of electoral precincts from observations on the racial composition and total voter turnout in each precinct" as I will do here, as "the canonical ecological inference problem. ${ }^{י 26}$ EI takes information on vote totals and racial demographics in geographic units and uses Bayesian statistical methods to estimate voting behavior-in this case, turnout by race.

EI requires data on the percent of each racial group in the geographic area and data on the overall voter turnout in the geographic area. I calculate block group voter turnout by geocoding ${ }^{27}$ the Mississippi voter registration file to census block groups, ${ }^{28}$ then aggregating up to produce counts of votes from each block group for the November 2020 General election. I use census block group data on the citizen voting age population by race, distinguishing nonHispanic white population from the non-White population. ${ }^{29}$ I also break out the data for the block groups in the counties of the Supreme Court District 1 (Central District) ${ }^{30}$ and perform EI separately.

The estimates obtained using ecological inference show that there is a statistically significant racial gap in turnout in Mississippi: White Mississippi citizens are far more likely to vote than non-White Mississippi citizens. Based on the statewide EI analysis shown in Figure 4, the weighted mean of the proportion of non-White people who voted is 42%, while the weighted mean of the proportion of White people who voted is 58%. In the Central District, where turnout was slightly higher than the state overall, the weighted mean proportion of non-White people

Gary, Ori Rosen and Martin A. Tanner, eds. Cambridge: Cambridge University Press, 2004; 97122.
${ }^{26}$ Lewis 2004: 97.
${ }^{27}$ Prener, Christopher, Branson Fox and Christopher Kenny. "Censusxy: Access the U.S. Census Bureau's Geocoding API System." Available from https://chrisprener.github.io/censusxy/. Accessed 20 Jan 2023. I used benchmarks and vintages from the 2020 Census.
${ }^{28}$ See Lewis 2004: 97: EI may be performed for any "aggregate groupings of votes for which the racial composition is known." I was unable to match 240,527 registered voters to 2020 census block groups, and an additional 8,991 were not matched because they did not have a state listed in the voter file. 144, $175(60 \%)$ of the unmatched people voted statewide. 78,898 of the unmatched were from the Central District, of which 46,418 (59\%) voted in the 2020 General election. I deleted some block groups with 0 population.
${ }^{29}$ U.S. Census Bureau. "Citizen Voting Age Population by Race and Ethnicity." Available online from https://www.census.gov/programs-surveys/decennial-census/about/votingrights/cvap.html. Accessed 20 Jan 2023. The final sample size was 2,438 block groups for the statewide analysis and 773 for the Central District analysis.
${ }^{30}$ Bolivar, Claiborne, Copiah, Hinds, Holmes, Humphreys, Issaquena, Jefferson, Kemper, Lauderdale, Leake, Madison, Neshoba, Newton, Noxubee, Rankin, Scott, Sharkey, Sunflower, Warren, Washington, and Yazoo Counties. State of Mississippi Judiciary. "Mississippi Supreme Court Judicial Map." Available online from https://courts.ms.gov/appellatecourts/sc/scdistricts.php; accessed 20 Jan 2023.
who voted is 44%, while the weighted mean proportion of White people who voted is $62 \% .^{31}$ More importantly, the statewide and Central District estimates for each racial group produced using EI and the CES are realistic given what we know about the actual voter participation statewide and the Central District from the Mississippi Secretary of State.

Figure 4: 2020 Voter Turnout by Race in Mississippi. Turnout by race estimated using EI on block group data from the census bureau on citizen voting age population by race, merged with turnout data from the Mississippi voter file. Results also reported in Table 1 below.

To summarize, all methods of estimating voter turnout by race in Mississippi that are not biased by racialized differential overreporting of turnout show that White people have a statistically significant advantage in voter turnout. Table 1 summarizes all the estimates of statewide voter turnout and voter turnout by race obtained from the different methods that I have discussed here. As shown in the table, the estimates of White and non-White voter turnout produced by EI are remarkably similar to those produced by my regression analysis of Black and White turnout in the CES, even though these estimates come from two different methods and sources of data. Both the regression analysis of the CES and the EI analysis using the Mississippi voter file, both of which avoid issues of differential over-reporting of voting, show large turnout gaps of between 13 to 15 percentage points statewide, and the EI analysis predicts a turnout gap of 18 points in the Central District. Both the regression analysis and the EI analysis predict White voter turnout at a rate close to 60 percent. In contrast, the CES predicts Black

[^104]turnout in the mid-forty percent range statewide, while the EI analysis similarly predicts nonWhite turnout in the low forty percent rage statewide. The estimates of turnout by race, and of turnout overall, that are based on my CES and EI analysis also are closer to the benchmark turnout rates that are based on vote counts from the Mississippi Secretary of State. Dr. Swanson fails to account for differential overreporting of turnout by race, and overreporting of turnout generally, which is why his estimates of turnout are unreasonable.

Black Voter Suppression and Experiences with In-Person Voting

There are many factors that affect voter turnout generally, and Black voter turnout in particular. However, in his report, Dr. Swanson says that he looks for Black voter suppression efforts along just one "causal" dimension: polling place distance. He hypothesizes:

My hypothesis for this question was that if the Black voting age population were being systematically disenfranchised by the state of Mississippi, a symptomatic indicator of that would be seeing fewer of them close to polling places, and more of them a great distance from polling places. ${ }^{32}$

Dr. Swanson provides no literature or studies to support this supposition. Meanwhile, my examination of the literature on polling place distance finds that distance overall has a small effect on turnout, but that effect primarily has to do with access to transportation. ${ }^{33}$ For instance, Haspel and Knotts (2005) find that voters with cars are relatively insensitive to polling place distance, while voters without cars are more sensitive. Hence, as Haspel and Knotts show, with respect to polling place distance, the actual distance from the polling place overall matters less than the availability of a car. As I show in Figure 6 of my initial report, 3.5% of White Mississippi households have no access to a car, compared to 11.3% of Black Mississippi households. ${ }^{34}$ Considering polling place distance without accounting for racial differences in access to transportation, as Dr. Swanson does in his report, is inconsistent with published scholarly research in this area that controls for access to vehicles.

It is also important to note that Dr. Swanson ignores other aspects of the in-person voting experience that also affect turnout. For instance, long wait times at polling places may discourage voters. ${ }^{35}$ Further analysis of the CES, which I report in Figure 5, shows that among validated Mississippi voters, 18.9% of white voters report that they waited more than 30 minutes to vote in the 2020 General Election, compared with 40.7% of black voters. ${ }^{36}$ Consistent with

[^105]these estimates from the CES, an analysis of cell phone data also shows a racial disparity in wait times in Mississippi's 2 nd congressional district. ${ }^{37}$

Figure 5: Percent of Mississippi Voters Reporting Wait Times Greater than 30 Minutes in 2020. Source: author's analysis of 2020 CES. Data on wait times reported for validated voters only.

Conclusion

Dr. Swanson's report does not rebut my conclusion or change my opinion that Black Mississippians' ability to participate effectively in the political process is hindered because of the discrimination they face. As I show conclusively here through the analysis of several different data sets using different methods, in Mississippi, White people vote at higher rates than Black people. This difference is partly the result of racial differences in educational attainment, which I already have shown is the result of years of racial discrimination by state actors.

Dr. Swanson points out that more White people in Mississippi live more than a mile from their polling place than Black people as further evidence that Black people do not face discrimination in voting; as I have shown, this argument ignores the fact that polling place distance really matters only for people who lack access to transportation, another arena in which Black people are disadvantaged in Mississippi relative to White people. Finally, when we consider additional aspects of the in-person voting experience in Mississippi, such as wait times, there is clear evidence that Black people are disadvantaged relative to White people.

[^106]Table 1 Estimates of Mississippi Voter Turnout, by Race, 2020 General Election. Estimates of voter turnout from different sources. Confidence intervals in parentheses.

Universe	Method/Source	Turnout Estimates:					
Statewide	Current Population Survey 2020 (Dr. Swanson) ${ }^{38}$	White	$\begin{gathered} 69.8 \% \\ (65.7 \% \text { to } \\ 73.9 \%) \end{gathered}$	$\begin{gathered} \text { Black } \\ \text { Turnout: } \end{gathered}$	$\begin{gathered} 72.8 \% \\ (67.9 \% \text { to } \\ 77.7 \%) \end{gathered}$	Total Turnout:	$\begin{gathered} \hline 70.3 \% \\ (67.1 \% \text { to } 73.5 \%) \end{gathered}$
Statewide (Benchmark)	MS Secretary of State (2020 Presidential General) ${ }^{39}$	N/A		N/A		Total Turnout:	58.7\%
Statewide	CES 2020 ${ }^{40}$	White Turnout:	59.6\%	$\begin{aligned} & \text { Black } \\ & \text { Turnout: } \end{aligned}$	46.1\%	Total Turnout:	53.3\%
Statewide	Ecological Inference (MS Voter File)	White Turnout:	$\begin{gathered} 58 \% \\ (57 \% \text { to } 59 \%) \end{gathered}$	Non-White Turnout:	$\begin{gathered} 42 \% \\ (33 \% \text { to } 51 \%) \end{gathered}$	Total Turnout:	$58 \%{ }^{41}$
Central District (Benchmark)	MS Secretary of State (2020 Presidential General) ${ }^{42}$	N/A		N/A		Total Turnout:	59.4\%
Central District	Ecological Inference (MS Voter File)	White Turnout:	$\begin{gathered} 62 \% \\ (61 \% \text { to } 64 \%) \end{gathered}$	Non-White Turnout:	$\begin{gathered} 44 \% \\ (29 \% \text { to } 58 \%) \end{gathered}$	Total Turnout:	$58 \%{ }^{43}$

[^107]
Appendix

Table 1: Custom CPS 2020 Voting Supplement Table

Table 2 Estimates of Mississippi Voter Turnout, by Race, 2020 General Election. Models estimated using Logistic Regression. Data from 2020 Cooperative Election Survey. Validated vote in 2020 General Election is the dependent variable. White is the reference racial category. ${ }^{* * * P<001, ~ * * P<01, * P<05 . ~ S t a n d a r d ~ e r r o r s ~ b e l o w ~ i n ~ p a r e n t h e s e s . ~}$

	Model 1	Model 2
Black	$-0.545^{* *}$	-0.207
	(0.180)	(0.200)
Other Race	-1.246	-0.757
	(0.649)	(0.697)
Education		$0.334^{* * *}$
		(0.069)
Birth Year		$-0.040^{* * *}$
		(0.006)
Gender		0.167
		(0.196)
Constant	$0.388^{* * *}$	$77.210^{* * *}$
	(0.118)	(11.740)

Table 3: EI Estimates of Voter Turnout in Mississippi in the 2020 General Election. Analysis adjusts the block group data for unmatched registered voters by decreasing the total citizen voting age population of each block group by 11\%.

	White Turnout	Non-White Turnout
Statewide	64%	52%
	$(63 \%$ to $65 \%)$	$(36 \%$ to $69 \%)$
Central District	70%	53%
	$(68 \%$ to $71 \%)$	$(23 \%$ to $83 \%)$

IN THE UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF MISSISSIPPI
 GREENVILLE DIVISION

DYAMONE WHITE, et al., Plaintiffs, v.

STATE BOARD OF ELECTION COMMISSIONERS, et al.,
)
) No. 4:22-cv-00062-SA-JMV)
) Declaration of Traci Burch)

Defendant.

DECLARATION OF TRACI BURCH

I, Traci Burch, make the following declaration based on personal knowledge:

I have been retained by the Plaintiffs in the above referenced matter as an expert. I submit that the foregoing report from me is a true and accurate copy of the report I provided to Plaintiffs in this matter. I declare that the information and opinions contained in the report are true and correct to the best of my knowledge.

I declare under penalty of perjury that the foregoing is true and correct. 28 U.S.C. § 1746.

Dated: 2/6/2023

Traci Burch

Scope of Report and Summary of Conclusions

I was asked to address Dr. Swanson's report, in particular his analysis regarding racial disparities in voter participation and disparities in proximity to polling places.

My conclusions are as follows:

- First, Dr. Swanson overestimates both Black and White turnout in Mississippi. His estimates of Black turnout are further biased because he fails to account for racial differences in the extent to which people overreport voting in surveys. The unreliability of Dr. Swanson's estimates is easily established because his overall turnout estimates imply that there were hundreds of thousands more voters participating than the vote counts reported by the Mississippi Secretary of State.
- Second, in light of Dr. Swanson's analyses and criticisms, I conducted additional analyses that do not rely on self-reports of voter turnout, which confirm that Black voter turnout in Mississippi is in fact lower than White voter turnout. These analyses yield estimates of turnout for Black and White voters that are similar to each other despite the use of multiple data sources and methods of estimation, which is evidence that they are reliable. These estimates also are closer to the true turnout numbers based on actual vote counts reported by the Mississippi Secretary of State than Dr. Swanson's, which further shows that these estimates are more reliable.
- Third, polling place distance in isolation, as reported by Dr. Swanson, is a poor indicator of Black voter turnout or relative ease of access to the voting process. Among other things, scholarly studies of polling place distance typically account for access to a vehicle, among other factors, because the effects of polling place distance are different depending on whether a person has a car. However, Dr. Swanson fails to consider access to a vehicle in his analysis. As I note, Black people in Mississippi are more than three times as likely to lack access to a car than White people. The increased difficulty in accessing polling places that results from this disparity in access to a car is far more salient than the minor purported "advantage" Black Mississippians have in terms of polling place distance, assuming Dr. Swanson's analysis of relative polling place distance is correct.
- Fourth, there are many aspects of polling place experience that could discourage voting apart from polling place distance. Considering wait times, for instance, shows that Black people have longer wait times in Mississippi than White people.
- Finally, with respect to Senate Factor 5 overall, Black people in Mississippi face discrimination in education, income, housing, employment, and criminal justice that dramatically affect life outcomes, including voting. In both my initial report
and again here, I have provided evidence to demonstrate the existence and effects of long-term and contemporary discrimination on the ability of Black Mississippians to participate in the political process.

Dr. Swanson's Estimates of Voter Turnout by Race

Dr. Swanson's estimates of voter turnout by race are based on his analysis of the Current Population Survey Voting and Registration Supplement (CPS). Dr. Swanson estimates based on the CPS that 69.8% of White non-Hispanic Mississippi residents and 72.9% of Black alone or in combination Mississippi residents voted in the 2020 General Election. In total, Dr. Swanson estimates that 1,531,000 Mississippians voted in the November 2020 General Election, a turnout rate of 70.3%. ${ }^{1}$

However, the official vote counts certified by the Mississippi Secretary of State show that only $1,313,759$ votes 2 were cast for President (the highest participation race) in Mississippi in the November 2020 general election, which represents 58.7% of the citizen voting age population of Mississippi. ${ }^{3}$ Dr. Swanson's estimate is nearly 12 percentage points higher than the true turnout rate based on actual votes cast and overestimates the vote total by more than 200,000 votes. This 12% overestimation shows that CPS is not reliable as a benchmark for voter turnout. As I discuss below, neither is it a reliable benchmark for voter turnout by race.

As noted above, by race, Dr. Swanson estimates based on the CPS that 69.8% of White non-Hispanic Mississippi residents and 72.9% of Black alone or in combination Mississippi residents voted in the 2020 General Election. Similarly, he concludes in his report that, based on his analysis of a Mississippi State University Poll, in 2020 reported voter "frequency," or the number of people in Mississippi who say that they always vote, was " 68.22% for Whites and 72.1% for Blacks" ${ }^{4}$-rates close to those estimated from the CPS. However, based on my research into the matter, Dr. Swanson's analysis is flawed because his analysis of both surveys suffers from the same problem: he fails to adjust or otherwise account for overreporting generally, and for differential overreporting of voter turnout by race in particular.

Dr. Swanson acknowledges the issue of overreporting in his report when positing that the purported advantage he claims Black Mississippians have in terms of proximity to polling places "may offset to some degree the likelihood of over-reporting." ${ }^{5}$ This supposition is incorrect, as I will show below. But for now, this statement shows that Dr. Swanson and I agree that overreporting of voting in surveys is a known issue. However, new research shows that not only

[^108]does the CPS overestimate turnout for all groups, it does so differentially by race, such that it consistently overestimates Black turnout even more so than White turnout. ${ }^{6}$ This research finds that it is not appropriate to conclude that there is no gap in turnout between Black and White Mississippi voters based on the CPS.

In their 2022 article, which was published recently in a peer-reviewed political science journal, Ansolabehere, Fraga, and Schaffner compare estimates of voter turnout by race from the CPS for multiple states to the Cooperative Election Study as well as to statewide voter files for those states where race is recorded. They find systematic overreporting of voting in the CPS for all racial groups. However, they also show that overreporting is more pronounced among Black voters. Ansolabehere, Fraga, and Schaffner find that the tendency to overreport voting differently by race leads the CPS to underestimate the size of the racial gap in turnout between Black and White voters in multiple states. The bias may stem from problems with the CPS sample, such as a difference in attrition from the survey, or from differences in the tendency to overreport voting. ${ }^{7}$ As a result of these problems with the CPS, researchers should "use caution when making inferences about variation in turnout rates by racial and ethnic groups" ${ }^{8}$ based on the CPS alone.

In sum, Dr. Swanson's opinion that 69.8% of White non-Hispanic Mississippi residents and 72.9% of Black alone or in combination Mississippi residents voted in the 2020 General Election, as well as his similar opinions about turnout in other elections, is not correct.

Dr. Swanson's Criticisms of My Analysis

In my initial report, I used CPS data to estimate 56\% White and 53\% Black turnout in Mississippi for the November 2020 General Election. These estimates are relatively close to the observed turnout rate of 58.7% based on Secretary of State data, and substantially closer than the over 70\% turnout figure Dr. Swanson presents.

However, Dr. Swanson is correct that the estimates in my initial report reflect a calculation error. When I was working with the table of CPS data I used, I thought that the educational attainment variable that I was using excluded children. However, it actually reports educational attainment for people ages 15 and older, so for each educational level, the total includes teens aged 15-17. There are no children younger than that in the "Less than High School" category, as evidenced by the fact that cells F10, F11,F12 are 0. Dr. Swanson correctly points out that primarily, this error affects the "Less than High School" calculations and not the other educational levels. ${ }^{9}$ I also calculated total turnout for both racial groups incorrectly. When

[^109]Column F is subtracted from the denominator, the turnout figures calculated using CPS are consistent with those presented in Dr. Swanson's report.

When I wrote my initial report, I relied on the CPS to estimate turnout by education because the estimates that I produced were in line with turnout based on the actual vote count and thus did not lead me to believe that something was amiss. I also was unaware of the Ansolabehere et al. article that was published right before I wrote this report-- I last researched turnout and the CPS only a few weeks before that article was published. I found the new article when reviewing the literature again in response to the estimates of turnout in Dr. Swanson's report, which I found surprising. I now think, based on the strong evidence of bias in the CPS, it makes sense to "use caution when making inferences about variation in turnout rates by racial and ethnic groups, ${ }^{10}$ and therefore that the CPS really should be considered only in comparison with estimates from other data sources that estimate voter turnout by race in ways that do not rely on self-reporting.

Methodology and Analysis of Validated Voter Turnout: Cooperative Election Study

Because, as discussed above, turnout estimates in the CPS are unreliable not just because of overreporting in general, but because of differences in overreporting by race in particular, I conducted additional analyses which employed alternative methods of looking at turnout by race that do not rely on self-reported voter turnout. These additional analyses also are consistent with my conclusion that Black voter turnout is lower than white turnout and inconsistent with those produced by Dr. Swanson.

Because much of the bias in turnout estimates based on the CPS has to do with differential overreporting of voting by race, ${ }^{11}$ it is necessary to examine alternative sources that do not depend on self-reporting of turnout to estimate turnout by race in Mississippi. First, I examine the 2020 Cooperative Election Study (CES), which contains a sample of 462^{12}
education level by state are not readily available in official published tables ..." Swanson Report, p. 75. In fact, I downloaded a table from the census website using their online table generator; I have included that table in the Appendix. I did not conduct "an analysis and interpretation of the CPS "raw data" (or CPS "PUMS") data alluded to earlier" and my error was not in working with the raw data or writing software code. Swanson Report, p. 76. Instead, I calculated turnout from this table, dividing the numerator, column G, over the denominator, column B. That was incorrect. I also should have subtracted Column F, not in universe, from the denominator as well.
${ }^{10}$ Ansolabehere et al. 2022: 1854.
${ }^{11}$ Ansolabehere et al. 2022; see also Enamorado, Ted, and Kosuke Imai. "Validating selfreported turnout by linking public opinion surveys with administrative records." Public Opinion Quarterly 83.4 (2019): 723-748.
${ }^{12}$ This number is above the minimum sample size to detect small effects (Cohen's $d=.2$) with a standard level of statistical power (=.8) and significance level of .05. See Singh, Ajay S., and Micah B. Masuku. "Sampling techniques \& determination of sample size in applied statistics research: An overview." International Journal of economics, commerce and management 2.11 (2014): 1-22.

Mississippi adults (unweighted). ${ }^{13}$ The CES, although it is a survey, independently validates voter registration and turnout for respondents by attempting to match respondents to a database of registered voters maintained by Catalist, a corporation that maintains a national database of voters. ${ }^{14}$ Catalist updates their information on voter registration and history with data directly from states. ${ }^{15}$ In my analysis, I use the measure of validated voter turnout rather than selfreported voter turnout to estimate racial gaps in turnout, distinguishing this survey from the unvalidated self-reported turnout from CPS or Mississippi State University analyzed by Dr. Swanson.

To analyze the survey, I employ logit regression analysis. Generally, regression analysis is a statistical technique that is designed to look for relationships between an independent variable and a dependent variable. ${ }^{16}$ Multiple regression analysis also may involve the use of control variables, which would allow for the analysis of the relationship between an independent variable and a dependent variable after accounting for these additional factors. ${ }^{17}$ I examine the relationship between a respondent's race and their validated voter turnout. Because the dependent variable, validated voter turnout, is dichotomous, I use logit rather than ordinary-leastsquares regression. ${ }^{18}$ However, because logit coefficients are difficult to interpret for lay readers, I include the regression tables of my results in the Appendix and report the results graphically in Figures 1 and 2 below. ${ }^{19}$

In the Mississippi sample of the CES, ${ }^{20}$ the CES team was able to validate that 53% of Mississippi respondents voted in the 2020 General Election. This estimate, while lower than the 58.7% benchmark, is still much closer to the actual turnout than the 70.3% number estimated by

[^110]Dr. Swanson from the CPS. Breaking the CES data down further by race, ${ }^{21} 60 \%$ of White respondents and 46% of Black respondents voted in Mississippi in the 2020 General Election. My regression analysis of validated turnout by race in the CES confirms these percentages, finding the same large, statistically significant gap between Black and White Mississippi voters. As I report in Figure 1, calculating the probability of voting in the 2020 General Election (based on the regression coefficients in the first column of Table 2 in the appendix) shows that 60% of White respondents voted in the 2020 General Election, compared with 46% of Black Mississippi respondents.

Figure 1: Probability of voting by race in Mississippi. Source: Author's analysis of 2020 CES included in column 1 of table 2 in the appendix.

It is also worth noting that the CES allows us to examine overreporting of voting. Comparing self-reported voter turnout to validated voter turnout shows substantial overreporting of voting. The CES team was able to validate in Catalist that 74% of the White Mississippi respondents who said they voted actually did so, but were only able to validate that 57% of the Black Mississippi respondents who said they voted did so. ${ }^{22}$ Thus, as the CES shows, corroborating the recent work of Ansolabehere et al. discussed supra, differential over-reporting of voter turnout by race is an important phenomenon that affects estimates of voter turnout in Mississippi and demonstrates the problems with relying only on self-reported voting to estimate racial differences in turnout.

[^111]
Effects of Educational Discrimination on Black Voter Turnout

In his report, Dr. Swanson argued that Black Mississippians vote at higher rates than White Mississippians at every educational level and thus argued that educational attainment does not detrimentally affect Black voter turnout. This conclusion is inaccurate because it relies on the CPS, which I have shown to produce biased estimates, and because it ignores the point that I make in my original report with respect to differences in educational attainment by race in Mississippi. I discuss these two points below.

My original purpose for including the CPS analysis in my first report was to show the importance of education and socioeconomic status, arenas in which Black Mississippians face discrimination, to shaping the racial gap in voter turnout. Due to the problems with reliance on CPS discussed above, for this report, I seek to reinforce and corroborate my conclusions regarding the effects of educational discrimination on Black voter turnout by deploying multiple regression analysis on the CES to examine the relationship between race and validated voter turnout while holding educational attainment constant. Multiple regression allows us to begin to compare apples to apples-for instance, comparing turnout between Black and White people with the same educational level. As I note earlier, there is a large and statistically significant gap in voter turnout overall between Black and White Mississippi residents: White turnout in the 2020 General Election is estimated to be 60%, while Black turnout is estimated to be 46%.

Further analysis shows that this large, 14 percentage point gap in turnout mostly comes from the distribution of racial groups across educational levels, rather than from differential voter turnout within each educational level. In other words, the racial gap comes less from the fact that Black people with college degrees vote less than White people with college degrees, but rather from the fact that there are proportionally fewer Black people in Mississippi with college degrees than White people.

We can see this phenomenon in Figure 2, which calculates the probability of having a validated vote for men born in 1972 by race and education among CES respondents in Mississippi using the regression coefficients reported in the second column of Appendix Table 2. In the figure, the probability of voting increases with educational attainment for both racial groups. Within each educational level, there is a small racial disparity in turnout, such that White respondents appear more likely to vote than Black respondents. However, in this multivariate analysis, the Black-White racial disparity is not statistically significant while educational attainment is, again pointing to the large racial disparity across educational levels as the driver of the overall gap in Black and White voter turnout in Mississippi. If education were not operating through race to affect validated voter turnout, including educational attainment in the regression would not have such a big effect on the size or statistical significance of the coefficient on race and turnout as shown in Appendix Table 2. ${ }^{23}$

[^112]

Figure 2 Probability of voting by race and education in Mississippi. Estimated probability of voting calculated for men born in 1972 by race and educational attainment. Source: Author's analysis of 2020 CES included in column 2 of table 2 in the appendix.

Dr. Swanson's conclusion that differences in educational attainment do not disadvantage Black Mississippians is based on a fundamental misunderstanding: he argues (based on faulty data) that because Black people and White people in Mississippi with similar educational levels vote similarly, that race does not matter for voter turnout. This logic ignores my original conclusion, which is borne out by the analysis here, that Black Mississippians have faced and are facing educational discrimination throughout the state. The state has maintained many aspects of educational segregation and under-investment in public education for Black students in both the historical and the contemporary period, as I note in my initial report.

This educational discrimination has led to gaps in literacy and educational attainment, with Black Mississippi residents having lower literacy and educational attainment than White Mississippi residents. This discrimination has allowed and continues to allow fewer Black Mississippians to reach educational parity with White Mississippians. As I have shown above, in line with decades of political science research, educational attainment has a strong, positive relationship to voter turnout. People with higher educational attainment are more likely to vote. Educational attainment in Mississippi thus is shaped by race in the ways that I highlight in my original report. I include those data from my original report again here as Figure 3 to clearly show the differences in educational attainment by race in Mississippi.

Figure 3: Educational Attainment by Race in Mississippi. Source: 2019 American Community Survey 1-Year Estimates

To summarize the discussion, analyzing validated voter turnout from the Mississippi sample of the CES clearly shows that White Mississippians were more likely to turn out in the 2020 General Election than Black Mississippians. This large racial gap is statistically significant. My analysis shows that educational attainment is an important factor in shaping this racial gap: accounting for educational attainment and other factors shows that while Black and White people with similar educational backgrounds vote similarly, people with lower educational attainment vote at lower rates overall than people with higher educational attainment. Because of the historical and contemporary discrimination in education faced by Black people that I highlight in my report, Black Mississippians are more likely to have lower educational attainment, and thus lower voter turnout, than White Mississippians.

Methodology and Analysis of Voter File Turnout: Ecological Inference

To further bolster the CES analysis, I turn to a second method of estimating the racial gap in turnout that avoids overreporting bias: ecological inference (EI). EI is a method of "inferring individual behavior from aggregate data" ${ }^{24}$ that has been used as a standard statistical tool to estimate voting behavior in vote dilution cases. ${ }^{25}$ Lewis describes "inferring the rate of voter

[^113]turnout among two racial groups in a set of electoral precincts from observations on the racial composition and total voter turnout in each precinct" as I will do here, as "the canonical ecological inference problem. ${ }^{י 26}$ EI takes information on vote totals and racial demographics in geographic units and uses Bayesian statistical methods to estimate voting behavior-in this case, turnout by race.

EI requires data on the percent of each racial group in the geographic area and data on the overall voter turnout in the geographic area. I calculate block group voter turnout by geocoding ${ }^{27}$ the Mississippi voter registration file to census block groups, ${ }^{28}$ then aggregating up to produce counts of votes from each block group for the November 2020 General election. I use census block group data on the citizen voting age population by race, distinguishing nonHispanic white population from the non-White population. ${ }^{29}$ I also break out the data for the block groups in the counties of the Supreme Court District 1 (Central District) ${ }^{30}$ and perform EI separately.

The estimates obtained using ecological inference show that there is a statistically significant racial gap in turnout in Mississippi: White Mississippi citizens are far more likely to vote than non-White Mississippi citizens. Based on the statewide EI analysis shown in Figure 4, the weighted mean of the proportion of non-White people who voted is 42%, while the weighted mean of the proportion of White people who voted is 58%. In the Central District, where turnout was slightly higher than the state overall, the weighted mean proportion of non-White people

Gary, Ori Rosen and Martin A. Tanner, eds. Cambridge: Cambridge University Press, 2004; 97122.
${ }^{26}$ Lewis 2004: 97.
${ }^{27}$ Prener, Christopher, Branson Fox and Christopher Kenny. "Censusxy: Access the U.S. Census Bureau's Geocoding API System." Available from https://chrisprener.github.io/censusxy/. Accessed 20 Jan 2023. I used benchmarks and vintages from the 2020 Census.
${ }^{28}$ See Lewis 2004: 97: EI may be performed for any "aggregate groupings of votes for which the racial composition is known." I was unable to match 240,527 registered voters to 2020 census block groups, and an additional 8,991 were not matched because they did not have a state listed in the voter file. 144, $175(60 \%)$ of the unmatched people voted statewide. 78,898 of the unmatched were from the Central District, of which 46,418 (59\%) voted in the 2020 General election. I deleted some block groups with 0 population.
${ }^{29}$ U.S. Census Bureau. "Citizen Voting Age Population by Race and Ethnicity." Available online from https://www.census.gov/programs-surveys/decennial-census/about/votingrights/cvap.html. Accessed 20 Jan 2023. The final sample size was 2,438 block groups for the statewide analysis and 773 for the Central District analysis.
${ }^{30}$ Bolivar, Claiborne, Copiah, Hinds, Holmes, Humphreys, Issaquena, Jefferson, Kemper, Lauderdale, Leake, Madison, Neshoba, Newton, Noxubee, Rankin, Scott, Sharkey, Sunflower, Warren, Washington, and Yazoo Counties. State of Mississippi Judiciary. "Mississippi Supreme Court Judicial Map." Available online from https://courts.ms.gov/appellatecourts/sc/scdistricts.php; accessed 20 Jan 2023.
who voted is 44%, while the weighted mean proportion of White people who voted is $62 \% .^{31}$ More importantly, the statewide and Central District estimates for each racial group produced using EI and the CES are realistic given what we know about the actual voter participation statewide and the Central District from the Mississippi Secretary of State.

Figure 4: 2020 Voter Turnout by Race in Mississippi. Turnout by race estimated using EI on block group data from the census bureau on citizen voting age population by race, merged with turnout data from the Mississippi voter file. Results also reported in Table 1 below.

To summarize, all methods of estimating voter turnout by race in Mississippi that are not biased by racialized differential overreporting of turnout show that White people have a statistically significant advantage in voter turnout. Table 1 summarizes all the estimates of statewide voter turnout and voter turnout by race obtained from the different methods that I have discussed here. As shown in the table, the estimates of White and non-White voter turnout produced by EI are remarkably similar to those produced by my regression analysis of Black and White turnout in the CES, even though these estimates come from two different methods and sources of data. Both the regression analysis of the CES and the EI analysis using the Mississippi voter file, both of which avoid issues of differential over-reporting of voting, show large turnout gaps of between 13 to 15 percentage points statewide, and the EI analysis predicts a turnout gap of 18 points in the Central District. Both the regression analysis and the EI analysis predict White voter turnout at a rate close to 60 percent. In contrast, the CES predicts Black

[^114]turnout in the mid-forty percent range statewide, while the EI analysis similarly predicts nonWhite turnout in the low forty percent rage statewide. The estimates of turnout by race, and of turnout overall, that are based on my CES and EI analysis also are closer to the benchmark turnout rates that are based on vote counts from the Mississippi Secretary of State. Dr. Swanson fails to account for differential overreporting of turnout by race, and overreporting of turnout generally, which is why his estimates of turnout are unreasonable.

Black Voter Suppression and Experiences with In-Person Voting

There are many factors that affect voter turnout generally, and Black voter turnout in particular. However, in his report, Dr. Swanson says that he looks for Black voter suppression efforts along just one "causal" dimension: polling place distance. He hypothesizes:

My hypothesis for this question was that if the Black voting age population were being systematically disenfranchised by the state of Mississippi, a symptomatic indicator of that would be seeing fewer of them close to polling places, and more of them a great distance from polling places. ${ }^{32}$

Dr. Swanson provides no literature or studies to support this supposition. Meanwhile, my examination of the literature on polling place distance finds that distance overall has a small effect on turnout, but that effect primarily has to do with access to transportation. ${ }^{33}$ For instance, Haspel and Knotts (2005) find that voters with cars are relatively insensitive to polling place distance, while voters without cars are more sensitive. Hence, as Haspel and Knotts show, with respect to polling place distance, the actual distance from the polling place overall matters less than the availability of a car. As I show in Figure 6 of my initial report, 3.5% of White Mississippi households have no access to a car, compared to 11.3% of Black Mississippi households. ${ }^{34}$ Considering polling place distance without accounting for racial differences in access to transportation, as Dr. Swanson does in his report, is inconsistent with published scholarly research in this area that controls for access to vehicles.

It is also important to note that Dr. Swanson ignores other aspects of the in-person voting experience that also affect turnout. For instance, long wait times at polling places may discourage voters. ${ }^{35}$ Further analysis of the CES, which I report in Figure 5, shows that among validated Mississippi voters, 18.9% of white voters report that they waited more than 30 minutes to vote in the 2020 General Election, compared with 40.7% of black voters. ${ }^{36}$ Consistent with

[^115]these estimates from the CES, an analysis of cell phone data also shows a racial disparity in wait times in Mississippi's 2 nd congressional district. ${ }^{37}$

Figure 5: Percent of Mississippi Voters Reporting Wait Times Greater than 30 Minutes in 2020. Source: author's analysis of 2020 CES. Data on wait times reported for validated voters only.

Conclusion

Dr. Swanson's report does not rebut my conclusion or change my opinion that Black Mississippians' ability to participate effectively in the political process is hindered because of the discrimination they face. As I show conclusively here through the analysis of several different data sets using different methods, in Mississippi, White people vote at higher rates than Black people. This difference is partly the result of racial differences in educational attainment, which I already have shown is the result of years of racial discrimination by state actors.

Dr. Swanson points out that more White people in Mississippi live more than a mile from their polling place than Black people as further evidence that Black people do not face discrimination in voting; as I have shown, this argument ignores the fact that polling place distance really matters only for people who lack access to transportation, another arena in which Black people are disadvantaged in Mississippi relative to White people. Finally, when we consider additional aspects of the in-person voting experience in Mississippi, such as wait times, there is clear evidence that Black people are disadvantaged relative to White people.

[^116]Table 1 Estimates of Mississippi Voter Turnout, by Race, 2020 General Election. Estimates of voter turnout from different sources. Confidence intervals in parentheses.

Universe	Method/Source	Turnout Estimates:					
Statewide	Current Population Survey 2020 (Dr. Swanson) ${ }^{38}$	White	$\begin{gathered} 69.8 \% \\ (65.7 \% \text { to } \\ 73.9 \%) \end{gathered}$	$\begin{gathered} \text { Black } \\ \text { Turnout: } \end{gathered}$	$\begin{gathered} 72.8 \% \\ (67.9 \% \text { to } \\ 77.7 \%) \end{gathered}$	Total Turnout:	$\begin{gathered} \hline 70.3 \% \\ (67.1 \% \text { to } 73.5 \%) \end{gathered}$
Statewide (Benchmark)	MS Secretary of State (2020 Presidential General) ${ }^{39}$	N/A		N/A		Total Turnout:	58.7\%
Statewide	CES 2020 ${ }^{40}$	White Turnout:	59.6\%	$\begin{aligned} & \text { Black } \\ & \text { Turnout: } \end{aligned}$	46.1\%	Total Turnout:	53.3\%
Statewide	Ecological Inference (MS Voter File)	White Turnout:	$\begin{gathered} 58 \% \\ (57 \% \text { to } 59 \%) \end{gathered}$	Non-White Turnout:	$\begin{gathered} 42 \% \\ (33 \% \text { to } 51 \%) \end{gathered}$	Total Turnout:	$58 \%{ }^{41}$
Central District (Benchmark)	MS Secretary of State (2020 Presidential General) ${ }^{42}$	N/A		N/A		Total Turnout:	59.4\%
Central District	Ecological Inference (MS Voter File)	White Turnout:	$\begin{gathered} 62 \% \\ (61 \% \text { to } 64 \%) \end{gathered}$	Non-White Turnout:	$\begin{gathered} 44 \% \\ (29 \% \text { to } 58 \%) \end{gathered}$	Total Turnout:	$58 \%{ }^{43}$

[^117]
Appendix

Table 1: Custom CPS 2020 Voting Supplement Table

Table 2 Estimates of Mississippi Voter Turnout, by Race, 2020 General Election. Models estimated using Logistic Regression. Data from 2020 Cooperative Election Survey. Validated vote in 2020 General Election is the dependent variable. White is the reference racial category. ${ }^{* * * P<001, ~ * * P<01, * P<05 . ~ S t a n d a r d ~ e r r o r s ~ b e l o w ~ i n ~ p a r e n t h e s e s . ~}$

	Model 1	Model 2
Black	$-0.545^{* *}$	-0.207
	(0.180)	(0.200)
Other Race	-1.246	-0.757
	(0.649)	(0.697)
Education		$0.334^{* * *}$
		(0.069)
Birth Year		$-0.040^{* * *}$
		(0.006)
Gender		0.167
		(0.196)
Constant	$0.388^{* * *}$	$77.210^{* * *}$
	(0.118)	(11.740)

Table 3: EI Estimates of Voter Turnout in Mississippi in the 2020 General Election. Analysis adjusts the block group data for unmatched registered voters by decreasing the total citizen voting age population of each block group by 11\%.

	White Turnout	Non-White Turnout
Statewide	64%	52%
	$(63 \%$ to $65 \%)$	$(36 \%$ to $69 \%)$
Central District	70%	53%
	$(68 \%$ to $71 \%)$	$(23 \%$ to $83 \%)$

IN THE UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF MISSISSIPPI
 GREENVILLE DIVISION

DYAMONE WHITE, et al., Plaintiffs, v.

STATE BOARD OF ELECTION COMMISSIONERS, et al.,
)
) No. 4:22-cv-00062-SA-JMV)
) Declaration of Traci Burch)

Defendant.

DECLARATION OF TRACI BURCH

I, Traci Burch, make the following declaration based on personal knowledge:

I have been retained by the Plaintiffs in the above referenced matter as an expert. I submit that the foregoing report from me is a true and accurate copy of the report I provided to Plaintiffs in this matter. I declare that the information and opinions contained in the report are true and correct to the best of my knowledge.

I declare under penalty of perjury that the foregoing is true and correct. 28 U.S.C. § 1746.

Dated: 2/6/2023

Traci Burch

Dyamone White, et al. v. State Board of Election Commissioners, et al.

Christopher Bonneau

September 29, 2023

All depositions \& exhibits are available for downloading at <<www.brookscourtreporting.com>>
Please call or e-mail depo@brookscourtreporting.com if you need a Username and Password.

Christopher Bonneau 9/29/2023

Page 1

IN THE UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF MISSISSIPPI GREENVILLE DIVISION

DYAMONE WHITE, ET AL.
PLAINTIFFS
V.

NO. 4:22-CV-00062-SA-JMV

STATE BOARD OF ELECTION COMMISSIONERS, ET AL.

DEFENDANTS

DEPOSITION OF CHRISTOPHER BONNEAU

Taken at the instance of the Plaintiffs at Wise, Carter, Child \& Caraway, 401 E Capitol, Suite 600 Jackson, Mississippi 39201-2688, on Friday,

September 29, 2023,
beginning at 9:00 a.m.

REPORTED BY:
ROBIN G. BURWELL, CCR \#1651

Christopher Bonneau 9/29/2023

	Page 6		Page 8
1	here for the defendants.	1	A. No.
2	MR. KUCIA: Gerald Kucia with the	2	MR. CHEUNG: I think someone might have
3	Mississippi Attorney General's Office for the	3	jumped into the Zoom just now.
4	defendants.	4	MR. SOUSSI: Hi, this is Ahmed Soussi
5	Q. (By Mr. Cheung) So, Dr. Bonneau, I	5	with SPLC.
6	believe you've been deposed before, but just in	6	Q. (By Mr. Cheung) Dr. Bonneau, I just
7	case I'd like to spend a minute going over some	7	have a few questions about sort of your
8	ground rules. Your attorney might object to some	8	preparation for the deposition today. How did you
9	of the questions I ask, but in general unless he	9	prepare for this deposition?
10	instructs you not to answer on the basis of	10	A. I read over my reports. I met with the
11	privilege you still have to answer even if there	11	lawyers for the state and I read over the reports,
12	is an objection. Do you understand that?	12	particularly, the report by Dr. Orey.
13	A. I do.	13	Q. And how much time would you say you
14	Q. Thank you. Do you understand that your	14	spent preparing for this deposition?
15	answers today are under oath?	15	A. So depends what you mean by preparing.
16	A. I do.	16	I would say that I've spent probably three hours
17	Q. And that means you must tell the truth	17	preparing, just reading over reports and talking
18	just as if you were testifying in court?	18	and meetings and so on. If you consider
19	A. Yes.	19	everything before this in the last two days, I
20	Q. Is there any reason you cannot provide	20	mean, it's obviously more. But that's a good
21	complete and accurate testimony today?	21	ballpark.
22	A. Not that I'm aware of.	22	Q. What else did you spend time on?
23	Q. And because the court reporter can only	23	A. Well, as I was preparing my rebuttal
24	take down verbal responses, do you understand that	24	report, as well as my original report, I spent a
25	you have to answer verbally instead of nodding or	25	lot of time. So if that counts as preparation for
	Page 7		Page 9
1	shaking your head?	1	the deposition. But in terms of since the report
2	A. I do.	2	has been filed to today, I would estimate about
3	Q. Thank you. And I'm going to try not to	3	three hours.
4	interrupt you today during your answers, you know,	4	Q. Okay. Other than your reports and
5	so that we have a clean transcript. I would also	5	Dr. Orey's report, did you review any other
6	appreciate you if you wait until I ask a -- finish	6	documents to prepare for the deposition?
7	asking a question before providing your response.	7	A. Not that I -- no, not since I filed my
8	A. Sounds good.	8	rebuttal report.
9	Q. Thank you. And if you don't understand	9	Q. Okay. Did you jot down any notes while
10	a question, please let me know and I can try to	10	preparing for the deposition?
11	ask a better question.	11	A. No.
12	A. Okay.	12	Q. Apart from this case, how many times
13	Q. All my questions are great from the	13	have you been retained as an expert in a case?
14	beginning.	14	A. I have been retained twice besides this
15	If you need to take a break, please feel	15	case.
16	to ask. I would just ask you to finish answering	16	Q. Which cases are those?
17	the question pending before you -- before we take	17	A. One was the NAACP versus Alabama case.
18	a break, if that's okay.	18	And the other one is a pending case in Colorado,
19	A. Sure.	19	Lopez versus The State of Colorado, I believe is
20	Q. I'd also ask you not to discuss your	20	the title of that case.
21	testimony with your attorneys during breaks unless	21	Q. Lopez versus Griswold, does that sound
22	it's about the scope of privilege in your	22	right?
23	responses. Is that okay?	23	A. Yeah, that's it.
24	A. Sure.	24	Q. So let's go through each one of those.
25	Q. Any questions before we begin?	25	In the Alabama case, do you recall what opinions

	Page 10		Page 12
1	you offered?	1	that's a good summary. I mean, there were some
2	A. I do.	2	differences between this case and the Alabama
3	Q. What did you conclude in that case?	3	case, but yes.
4	A. I concluded that in the Alabama State	4	Q. And let's talk about the Colorado case.
5	Supreme Court elections there was not a violation	5	What was that case about?
6	of the Voting Right Act, that, in fact, African	6	A. So in that case political candidates are
7	American candidates performed better --	7	suing the State of Colorado over their campaign
8	particularly African American Democratic	8	finance restrictions, specifically the amount of
9	candidates performed better than white Democratic	9	money that individuals can donate to political
10	candidates. Unfortunately there were no African	10	campaigns.
11	American Republican candidates in there so we	11	Q. And what opinions did you offer in that
12	couldn't do that comparison. And so my conclusion	12	case?
13	was it was party more so than race.	13	A. I offered that the -- so my analysis
14	Q. Were you deposed in that case?	14	showed that Colorado has one of the lowest
15	A. I was.	15	campaign finance limits in the country, and that
16	Q. Did you testify in court?	16	these limits impede the ability of challengers to
17	A. I did.	17	successfully compete against incumbents.
18	Q. And were you qualified as an expert on	18	Q. Were you deposed in that case?
19	racially polarized voting?	19	A. Yes.
20	A. I was.	20	Q. Did you testify in court?
21	Q. And specifically, were you qualified to	21	A. It's pending. I'm supposed to, yes.
22	testify about whether racially polarized voting,	22	Q. Okay.
23	or RPV, whether it exists or what the causes were?	23	A. The case has not gone to trial yet.
24	A. So I did not conduct any independent	24	Q. But that case did not involve racially
25	analysis of racially polarized voting. I	25	polarized voting?
	Page 11		Page 13
1	stipulated that the analysis that the plaintiffs	1	A. It did not.
2	have done was correct. And the question was what	2	Q. Thank you.
3	were the reasons why behind the patterns they	3	Have you ever performed a racially
4	observed.	4	polarized voting analysis yourself?
5	Q. And I know it's been -- it may have been	5	A. No.
6	a couple of years since that case, but I pulled up	6	Q. Just to drill down on that, have you
7	the Court's order related to your report. I'm	7	ever conducted a homogenous precinct analysis?
8	going to read you a sentence from that order and	8	A. Not independently, no.
9	you can let me know if it sounds about right. The	9	Q. What about an ecological regression
10	Court in the order wrote: Dr. Bonneau was opining	10	analysis?
11	that party not race leads to a defeat of African	11	A. Not in the context of voting rights
12	American candidates. He's not opining that	12	cases, no.
13	African American voters do or do not vote	13	Q. And ecological inference?
14	cohesively.	14	A. So I mean, not in any published
15	Does that sound like an accurate summary	15	articles. So we're going back now to when I was
16	of your report?	16	in graduate school 25 years ago. I have
17	A. It does.	17	recollections of performing that as part of like a
18	Q. Does that accurately describe your work	18	class assignment in a methods class -- a political
19	in this case?	19	research methods class, but nothing that I've ever
20	A. Can you read it again?	20	done my own research on or anything else.
21	Q. Dr. Bonneau is opining a party not race	21	Q. So no publications on any of the three
22	leads to defeat of African American candidates.	22	methods that we just discussed?
23	He is not opining that African American voters do	23	A. Correct.
24	or do not vote cohesively.	24	Q. And not as part of any expert work
25	A. Yes, I mean the difference -- yes,	25	you've done on a case?

	Page 14		Page 16
1	A. Correct.	1	Q. Would you mind giving us some highlights
2	Q. And not part of any coursework that	2	of the updates?
3	you've taught?	3	A. I am now chair of the Spanish and
4	A. That I've taught? I've taught the	4	Portuguese department.
5	theoretical concept of -- so the ecological	5	Q. Oh, how did that come about?
6	fallacies of pretty standard topic in political	6	A. How much time do we have? So the
7	methodology courses, so I teach graduate students	7	department was placed into receivership by the
8	methods courses or philosophy of science courses.	8	Dean, meaning they were no longer able to govern
9	We do talk about that theoretically. But I've not	9	themselves due to a variety of longstanding policy
10	taught the mechanics behind it, no.	10	violations and disputes. And so the Dean tasked
11	Q. Got it. So let's turn to the reports in	11	me with going in for a couple of years to run the
12	this case. Did you prepare two reports?	12	Spanish and Portuguese department.
13	A. I did.	13	Q. Any other updates?
14	Q. The first one was from January 2nd of	14	A. I've got an article forthcoming about
15	this year?	15	teaching in prison and prison education that's
16	A. That sounds correct.	16	coming in an edited book. But I think those are
17	Q. And then the most recent one a	17	the only things that have really changed since
18	surrebuttal report from September 12th of this	18	January.
19	year?	19	Q. Okay. So no updates related to judicial
20	A. That sounds correct.	20	elections?
21	Q. I'm going to give you a copy of that	21	A. No, I've been busy with Spanish and
22	report just so you have it in front of you.	22	Portuguese.
23	A. Great.	23	Q. And, Dr. Bonneau, are you familiar with
24	Q. I'm not trying to quiz you on anything	24	the Gingles preconditions in voting rights cases?
25	in it.	25	A. I am.
	Page 15		Page 17
1	A. That's fine.	1	Q. What is your understanding of the
2	(Exhibit 1 marked for identification.)	2	Gingles factors?
3	Q. (By Mr. Cheung) That's now been marked	3	A. So my understanding is there are three
4	as Exhibit 1. Dr. Bonneau, can you look at it and	4	factors that are required. One has to do with
5	confirm if that's your January report?	5	racially polarized voting, such that African
6	A. It appears to be the case.	6	Americans are not able to elect candidates of
7	Q. Thank you. Also handing your	7	their choice -- or generally able to elect
8	surrebuttal report to Ms. Burwell for marking.	8	candidates of their choice.
9	(Exhibit 2 marked for identification.)	9	There's a factor about the totality of
10	Q. (By Mr. Cheung) Dr. Bonneau, does that	10	circumstances that even if you establish racially
11	look like your September report, Plaintiff's	11	polarized voting, that doesn't necessarily mean
12	Exhibit 2?	12	that there's a violation of the Voting Rights Act.
13	A. It does.	13	In fact, this has to lead to certain kinds of
14	Q. Do those reports accurately reflect your	14	outcomes.
15	opinions in this case?	15	And there's another factor that I --
16	A. They do.	16	escapes me at this moment.
17	Q. Do those reports omit any analysis that	17	Q. You're not a lawyer?
18	you've conducted for this case?	18	A. No, I am not.
19	A. They do not.	19	Q. So not expecting a perfect recall of the
20	Q. Are there any corrections you're aware	20	language from Gingles. But if I could read to you
21	of that you would like to make to the report?	21	some of the language from Gingles and you tell me
22	A. Not at this time.	22	if that's consistent with your understanding.
23	Q . Are there any updates to your CV since	23	A. That would be great.
24	January 2023?	24	Q. So Gingles one, the first factor, the
25	A. There are.	25	Court said: First, the minority group must be

.
able to demonstrate that it is sufficiently large and geographically compact to constitute a majority in a single-member district.

Does that sound right?
A. That does sound right.
Q. Gingles two, second: The minority group mush be able to show that it is politically cohesive.

Does that sound right?
A. Yes.
Q. And third: The minority must be able to demonstrate that the white majority of votes sufficiently as a block to enable it usually to defeat the minority's preferred candidate.

Does that sound right?
A. Correct.
Q. And in your view, does "usually" in the third condition mean most of the time?
A. Well, I mean I wouldn't a percentage on it. I mean, you know, I think usually means usually. So if I say I usually do something, it means more often than not. I don't know if it necessarily has to be -- if there's a certain percentage threshold. But, yeah, more often than not.
high degree, such that in this case, that black voters would not be able to elect their preferred candidate because of the presence of white voters.
Q. Is that the definition that you use in your reports for this case?
A. I don't think I give a definition in the reports for this case.
Q. Is that definition the one that you're operating under as you're analyzing the facts of this case?
A. Well, in my report I don't really talk much about the determinants of racially polarized voting. I take Orey's analysis as factual. What I do in this report is argue that even if it's present, it does not lead to black preferred candidates usually losing their elections.
Q. Got it. Thank you.

What do you think is the purpose of assessing racially polarized voting in districting cases?

MR. WALLACE: If that's asking for a legal opinion, I object to the form, but he may respond as best he can.

THE WITNESS: What do you mean, what is the purpose?

Page 21
Q. Were you asked to assess any particular one of the Gingles factors for your report?
A. No.
Q. In paragraph 53 of your January report you say, quote: This does not support the third precondition of Thornburg versus Gingles(1986). Is that right?
A. It does.

MR. WALLACE: Which page is that?
THE WITNESS: 15.
Q. (By Mr. Cheung) Is it fair to say that your reports do not dispute the existence of Gingles' precondition one in this case?
A. Correct.
Q. And is it also fair to say that you do not dispute the existence of Gingles two precondition in this case?
A. Remind me of what precondition two was.
Q. The minority group must be able to show that it is politically cohesive.
A. That's correct.
Q. And what is your understanding of racially polarized voting?
A. That voting is determined -- voting breaks down on racial lines to a significantly
Q. (By Mr. Cheung) Why do you think racially polarized voting is relevant in voting rights cases?

MR. WALLACE: That is a legal opinion. I object to the form, and he can answer.

THE WITNESS: Why is it relevant as a practical matter or as a --
Q. (By Mr. Cheung) A practical matter, yeah.
A. So why is racially polarized voting -well, so if you believe that individuals should have -- that elections should allow for a fair contest, the individuals have different beliefs that if you have racially polarized voting it could be a way, right, for disenfranchisement to occur among a minority group.
Q. Thank you.

I just have a few questions about the sources that you use in your report. Your January report has an Appendix A of election results; is that right? That's on page 44.
A. I'm not seeing the Appendix A. On my January report?
Q. Yes.

MR. WALLACE: Page 19.

	Page 22		Page 24
1	THE WITNESS: Yes, it does.	1	So I have complete data from '90 to 2016. I have
2	Q. (By Mr. Cheung) And what sources did	2	partial data before 1990, but a lot of stuff is
3	you use to collect the data that you used for	3	missing from it because it was so long ago. And
4	Appendix A?	4	around 2016 I started doing some administrative
5	A. That's just public data from the	5	work. And the nature of my career has shifted,
6	Mississippi Secretary of State's website.	6	and so I haven't been as diligent on updating it
7	Q. Nothing else?	7	since then. But I did update it for this case.
8	A. Well, to determine, you know, which	8	So the elections post 2016 here and 2020, I went
9	candidates were African American, you know, I	9	and collected that information, you know, for the
10	Googled and looked at, you know, news stories and	10	purposes of this case.
11	other things about that.	11	Q. Got it. So it would have a complete set
12	Q. And in your academic work, do you	12	of Mississippi Supreme Court elections starting
13	maintain any kind of database pertaining to state	13	from 1990?
14	court elections that you may have relied on for	14	A. Yes.
15	reports here?	15	Q. What sources do you use for that
16	A. I do maintain that database and it's --	16	dataset?
17	so I do have, like, a document with every State	17	A. So, variety of sources. Obviously the
18	Supreme Court election over the past 30 years. So	18	best source is the Secretary of State's website
19	it's possible that I use that to identify, like,	19	because it's official returns. I use newspaper
20	what years to look at, because elections don't	20	articles about -- so if I can't tell if a
21	occur every year in Mississippi. So that's	21	candidate, you know, what race or gender is,
22	certainly possible.	22	newspaper articles often do that. Sometimes you
23	Q. So I think in paragraph 6 of your	23	can go to Judge PDO which is a website that has a
24	January report you reference a dataset, is that	24	bunch of facts about judges. So a variety of
25	dataset the one that you maintain in your academic	25	public information sources. Because all this data
	Page 23		Page 25
1	work?	1	is public data.
2	A. Yes.	2	Q. Is the dataset itself public?
3	Q. And what kinds of information is in that	3	A. Parts of it are. I mean, certainly I
4	dataset?	4	can make it so. I mean, I've -- so if you go to
5	A. Well, that dataset has a bunch of stuff.	5	my data verse page, I've released datasets for all
6	So, it has characteristics about the candidates.	6	of the articles I have published, which includes
7	So race, gender, incumbency, non-incumbency,	7	both the dataset and the code book and the
8	whether or not the candidate was originally	8	instructions for running, rerunning analysis for
9	appointed to the bench versus originally elected	9	replication purposes. But I've never done
10	to the bench. It has results from primaries, has	10	anything with, like, the full data, so the whole
11	results from general elections. It has campaign	11	thing is not --
12	spending where available, the amount of money	12	Q. Would you be able to provide that
13	spent and raised by individuals. It has the	13	dataset to us?
14	partisanship. So was the race was a partisan,	14	A. Of course.
15	nonpartisan race; was it a district race versus	15	Q. Thank you.
16	state wide race. So it basically has -- so if you	16	A. Do you want just for the Mississippi
17	look at any of my previous articles, any of those	17	part or do you want -- you'd have to be clear
18	variables that are in those articles are in that	18	about what you wanted. I can easily do that.
19	dataset.	19	Q. Just the Mississippi part will be fine.
20	Q. Yeah, I did try to make it through your	20	Thank you. I think you nodded. Is that
21	articles but you have quite a few of them.	21	okay?
22	A. Thank you.	22	A. Yes, that is fine. Sorry.
23	Q. What time period does your dataset	23	Q. Have you received any facts or sources
24	cover?	24	from your attorneys in this case?
25	A. So most of it is from '90 to about 2016.	25	A. Yes, I've been directed occasionally,

	Page 26		Page 28
1	you know, because I'm not an expert in	1	A. That's a hard question to answer. Do I
2	Mississippi, generally, of something -- sometimes	2	evaluate? So, yes, in a sense. So when I'm asked
3	some leads to pursue that would not have been	3	to review journal articles, my part of the job of
4	apparent to somebody from the outside.	4	me as a peer reviewer is to evaluate, you know, do
5	Q. Have you been asked to assume any fact	5	the scholars or does the article, the submission,
6	to be true in the preparation of your reports?	6	is it reliable, does it answer the question.
7	A. I have not.	7	When I was editor of a journal for six
8	Q. In paragraph 1 of your January report,	8	years part of the decisions that we made, you
9	you mention having used voter registration data.	9	know, whether or not we would accept an article
10	Do you see that?	10	for publication or not was the quality of the
11	A. In paragraph 1. So meaning the first	11	empirical analysis, was the research design done
12	paragraph on Page 1.	12	properly, were the methods used to analyze and
13	Q. Yes.	13	arrive at the conclusions the proper ones. And so
14	A. I was retained -- based on Mississippi	14	in that sense, yes.
15	state voter registration and election data. Yes.	15	Q. And so when you review articles for the
16	Q. Did you receive that voter registration	16	reliability of the empirical analyses, what are
17	data from the Secretary of State's website or some	17	the indicators that you tend to look at?
18	other source?	18	A. So there are a couple of things. The
19	A. I don't recall, but I'm pretty sure it	19	first question is, is the design suitable to
20	was the Secretary of State's website. That would	20	answer the question. That is, so if you want to
21	be usually where I would go.	21	answer a question about -- I'll give you an
22	Q. Do you recall what you used the	22	example -- of voters' perceptions on the economy
23	registration data for?	23	on the likelihood of voting for the president.
24	A. Well, I don't know if I -- no, I don't.	24	You've got to make sure that the data being used
25	But if I read my report again, I probably could	25	in the way this study is designed actually allows
	Page 27		Page 29
1	find out if I used it at all or what I used it	1	you to answer that question.
2	for. But off the top, no. I probably used it	2	The second thing is given the
3	for -- I don't know what I would have used it for.	3	distribution and nature of the data, are the
4	I would have used it -- I would have	4	techniques used appropriate. So if you have a
5	used voter data to calculate roll-off. Right?	5	dichotomous dependent variable, a variable where
6	Sometimes the people who voted versus those who	6	it's between zero and one, and you're using
7	voted for State Supreme Court so when we look at	7	regression, that's not appropriate. That won't
8	rates. But I don't recall using the voter	8	give you bias results. You have to use a
9	registration data. But I'm happy to be corrected	9	different technique. So those kind of things.
10	on that.	10	I don't go in, though, and like look at
11	Q. I didn't see anything in your report,	11	the dataset and make sure -- that's not part of
12	which is why I'm asking about it. Because you	12	the peer review thing. But it's basically, is the
13	cite the data, but I don't see any actual analysis	13	design suitable to answer the question and then do
14	of voter registration in your reports. Does that	14	the results -- do the methods used to analyze the
15	sound right to you?	15	data, are they appropriate given how the data is
16	A. It does, makes me gratified I'm not	16	distributed and the nature of the data.
17	missing something.	17	Q. And so do you look at things like
18	Q. So as best as you recall you did not	18	whether the sample is representative?
19	performing any analysis of voter registration	19	A. Sure.
20	rates?	20	Q. What about sample size?
21	A. That's a fair statement.	21	A. Sure.
22	Q. I have a few questions about statistical	22	Q. How do you determine what the requisite
23	methods, generally. In your academic work, do you	23	sample size is for reliability?
24	evaluate statistical analyses performed by other	24	A. Yeah, so that's -- I mean, that's a good
25	scholars?	25	question. I'm happy to talk about it. So it

	Page 30		Page 32
1	depends on the population, right, that you're	1	A. Yeah.
2	trying to make inferences about. And so generally	2	Q. What methods would you use to establish
3	speaking for a nationwide survey or whatever,	3	causation?
4	you're looking at sample size of, like, 1500 or	4	A. So, there's another one. Causation is
5	so. It usually gives you pretty good results,	5	really, really hard in social sciences. Because
6	within plus or minus 3 percent margin of error,	6	isolating an independent fact requires
7	assuming it's done randomly, a randomized sample.	7	manipulation of an independent variable that you
8	But you can't always get a randomized sample.	8	can't always manipulate. So if I wanted to
9	What that means is, if you can't get a randomized	9	establish a causation between, say, gender and
10	sample, you have to be very careful about the	10	vote choice, I need to do that experimentally and
11	inferences you're making from that sample. It	11	-- so the gold standard would be to do it
12	doesn't mean it's useless but it does mean that	12	experimentally. But you can't randomly assign
13	your inferences are necessarily going to be more	13	somebody gender. And so if you can't have random
14	imprecise.	14	assignment, then you can't do a real experiment.
15	So, you know, sample size is always --	15	So you can try and get at it -- there are some
16	obviously more is always better to a certain	16	statistical techniques to try and get at. You
17	point, then you get diminishable marginal returns.	17	know, isolating causal factors through certain
18	But those are the kind of the general things. I	18	designs. I tend to be skeptical of those, I
19	would not reject something because -- on the basis	19	think. And I don't think it's always necessary to
20	of the fact that they only have a sample size of,	20	show causality. I think when we can get causality
21	say, 500 people. It just means their estimates	21	it's great, but a lot of times causality is
22	are going to be less precise, which means you're	22	allusive because there are multiple causes to
23	going to be less likely to find statistical	23	things.
24	significance because your standard hours are going	24	And I could show you, maybe, that gender
25	to be larger. But you still actually can gain	25	causes vote choice, but I can't tell you how that
	Page 31		Page 33
1	some good knowledge there and you still can, you	1	is relative to other causes. Because no one will
2	know, learn something.	2	argue that it's the only cause. And so
3	Q. And do you have a specific view on what	3	experiments will allow us to isolate a cause, but
4	a sample size should be when evaluating	4	not necessarily assess the relative importance of
5	Mississippi elections?	5	that cause relative to other things. That
6	A. No. I mean, Mississippi is hard because	6	requires more observational data.
7	you only have elections every eight years, for	7	And so saying all this to say that
8	example, for State Supreme Court and there are	8	establishing causality when possible is
9	only, like, nine seats. So when you're looking at	9	allottable, it's not always possible. And just
10	eight years, basically every judge is up once a	10	because we can't establish it doesn't mean that we
11	decade. And so you're always going to have a	11	can't advance knowledge.
12	small sample size when you look within the state.	12	Q. So in that example you just gave, how
13	The same is true for any statewide office in any	13	would you demonstrate that gender is one of the
14	state, actually.	14	factors causing voter choice?
15	I mean, if you look at state legislative	15	A. Well, see, I mean, it depends on what
16	elections, okay, those are every couple of years.	16	you mean by cause. There's this big debate as to
17	Right? You'll get good samples. You've got to	17	whether or not you can actually use the word cause
18	work with the data that you've got. You can't	18	outside of an experiment, within the discipline.
19	just make up elections that don't exist.	19	So you have what I would call the causal inference
20	Q. And I think you mentioned earlier you	20	mafia who argue that if you don't have an
21	would look at error size?	21	experiment, you can't say anything about
22	A. Sure.	22	causation. You can have that position. It's not
23	Q. Competence intervals?	23	a majority position. It's an extreme position,
24	A. Sure.	24	but it's intellectually defensible. Or you can
25	Q. Statistical significance?	25	use observational data and try and isolate the

effects of other factors and talk about genders' relative contribution to the vote choice. Now, does that mean it causes it, no, but, you know, if you control enough of the factors you can get to a point where -- you can establish a relationship, and then you can be pretty sure that there's something, you know, going on there. And so I think that sometimes is the best we can do. If that makes sense.
Q. Yes, thank you.

I have a few questions about incumbency.
A. Sure.
Q. In your academic work, I think you've studied the effect of incumbency on judicial elections and election outcomes?
A. Correct.
Q. What advantages are generally associated with incumbency?
A. In judicial elections specifically or in elections generally?
Q. Let's talk generally and then judicial.
A. So generally incumbents have an advantage for several reasons. One is they have an established fundraising network. One is they have increased name recognition. One is they can
majority opinion or you get overruled by the US Supreme Court, other things that will get the public's attention. And in some states they'll actually put whether you're an incumbent on the ballot. And so when voters go into the ballot booth it will say your name, and the next one will be, like, incumbent or current judge. In other states they don't. So that could potentially signal to individuals, you know, which one is the incumbent and give them an advantage.
Q. Is there an advantage to being able to rely on prior experience on the job?
A. Yes, so -- but that's not unique to incumbents, right? So in one of my articles we showed that voter -- so if you're a lower court judge running for the State Supreme Court, you have an advantage over a candidate who has never been a judge. And so there's no necessarily increase by the fact that it's an incumbent, but rather you'll do better with any kind of prior judicial experience.
Q. Is there some kind of inherent appeal to being an incumbent?
A. What do you mean by "inherent appeal"?
Q. Some comfort that voters might have that

Page 35
call a press conference or send mail, write to their constituents to get their names out there about policy positions they're doing or they can position take. They have all kinds of perks like that about --

And so for the incumbents there tends to be -- you know, it's one of those paradoxes, right, that everybody hates Congress but everyone loves their congressperson. You see a congressional reelection rate of 95 percent and Congress's approval rating is, what, 19 or 18 , and honestly, that seems a bit high to me.

Now, in the State Supreme Court case the incumbency advantage can improve a couple of different ways. One is, again, you have an established network, you've run statewide before, presumably, or district-wide before. And because of that you've got name recognition and you've run a campaign. So you already have some donors lined up, you already are able to tap into those funds. While you can't, you know, call press conferences and talk about how you'll decide on a case, you can get your name out there by certain positions you take. For example, if you write a themed decent in a case or something like that or

Page 37
they're already doing the job, for example?
A. Sure.

MR. WALLACE: You mean lawyers might have or voters might have?

MR. CHEUNG: Voters.
MR. WALLACE: I thought you said lawyers. Did I hear it wrong? I'm sorry.

THE WITNESS: Yes, assuming the voters approve of the incumbent.
Q. (By Mr. Cheung) So I know we were talking about, first, incumbency generally and then judicial candidates. What about Mississippi Supreme Court candidates. What advantages do you see in being an incumbent on the Mississippi Supreme Court?
A. I don't see any differences on the Mississippi Supreme Court compared to other courts. I have no reason to think that incumbency functions different here than it does otherwise.
Q. And generally it seems you're saying incumbents are more likely to prevail compared to challengers?
A. Correct, that's a fact.
Q. Have you done any empirical analysis to determine the likelihood of judicial incumbents to

	Page 38		Page 40
1	get reelected?	1	A. Yeah, I think there were two. I think
2	A. I have.	2	there was a chief justice in 2008 and -- well, I
3	Q. How strong is incumbency in judicial	3	can tell you from Table 1. So since 2000 the only
4	elections?	4	loser, right, was Smith in 2008 in this district
5	A. So I think the last time I looked at	5	here.
6	that was probably 15 years ago. So 15 years	6	Q. Thank you.
7	ago-ish, if my memory is correct, the incumbent --	7	We've touched on this before, but, you
8	about 85 percent of State Supreme Court incumbents	8	know, based on the prior academic work you've
9	won reelection compared to 80 percent of	9	done, do you believe that Mississippi system for
10	governors, 87 percent of US senators, and like 94	10	electing Supreme Court Justice creates an
11	percent of US House of Representatives. I'm	11	incumbency advantage?
12	pretty sure those are the numbers. It's in my	12	A. Do I believe that creates incumbency?
13	2005 article in American Politics Research. Since	13	No, I believe there is an incumbency advantage in
14	then, just, you know, eyeballing the data, those	14	these elections just like any other elections.
15	trends seem to be the same in State Supreme Court	15	Q. Do you think that incumbency is a strong
16	races that incumbents overwhelmingly win.	16	advantage for candidates running for Mississippi
17	Q. That 2005 article, is that entitled	17	Supreme Court?
18	Electoral Verdicts Incumbent Defeats at State	18	A. Yes.
19	Supreme Court Elections?	19	Q. In the history of Mississippi, do you
20	A. That's the one.	20	know if any black candidate has been able to get
21	Q. I think I pulled a sentence from there	21	elected to the Mississippi Supreme Court without
22	where you say: Incumbents in partisan district	22	an incumbency advantage?
23	state election have 55.6 chance of defeat compared	23	A. Without an incumbency advantage, I do
24	to 7.2 percent chance in a nonpartisan district	24	not know the answer to that question.
25	state.	25	Q. But you're not aware of any black
	Page 39		Page 41
1	Does that sound right?	1	candidate who has been able to win without being
2	A. That does. What I would caution you	2	an incumbent?
3	there is those aren't artifact or virtue	3	A. Again, I don't have any recollection.
4	elections. So who are the states that are	4	So if you tell me yes, then I would believe you.
5	partisan district states? Louisiana and Illinois,	5	If you tell me no, I would believe you. I don't
6	that's it. And in nonpartisan district states	6	know.
7	you've got Kentucky and Mississippi. So you don't	7	Q. Do you know if any white candidates have
8	have a lot of states, right? So those numbers --	8	been able to get elected to the Mississippi
9	it's a one defeat where I can throw out the	9	Supreme Court without being an incumbent first?
10	predictive probabilities significantly, right,	10	A. Well, I do know at least Jim Kitchens
11	when you have a small number of cases.	11	because I just told you he defeated Smith in 2008.
12	Q. And so you're saying that the sample of	12	Q. Anyone else?
13	nonpartisan district states consists only of	13	A. I think that's the last incumbent who
14	Kentucky and Mississippi; is that right?	14	was defeated, at least in this district. Yeah,
15	A. Of contested -- let me make sure.	15	that was the last incumbent who was defeated. So
16	Because Louisiana is partisan. Who else -- those	16	one time in 20 years.
17	are the only ones that have districts. That is	17	Q. What about open seat elections?
18	correct.	18	A. In District One, I don't see any open
19	Q. Based on the data that you do have, you	19	seat elections.
20	would say that Mississippi judicial incumbents	20	Q. Mississippi Supreme Court, generally?
21	almost never lose?	21	A. I only looked at District One for this
22	A. That's right. I think if you look over	22	case.
23	the past 20 years there are two that have lost to	23	Q. I'd like to point you to paragraph 18 of
24	the Mississippi Supreme Court.	24	your January report.
25	Q. If that's your recollection.	25	A. Yes.

	Page 42		Page 44
1	Q. I think it's the third sentence where	1	think the further back in time we go, you know, if
2	you say: Currently, six of the nine justices on	2	the demographics of the districts have changed
3	the Mississippi Supreme Court obtained their	3	since '92 and '96, right, it may be a completely
4	position by gubinatorial appointment.	4	different electorate. I don't know what the
5	A. Correct.	5	population of the district was in terms of racial
6	Q. Would that mean that the remaining three	6	breakdown before then. I don't know how many
7	first ascended to the bench through election?	7	African American candidates ran for open seats.
8	A. Through open seat elections, that	8	And so it could be that only white candidates have
9	would -- yes, that would be a reasonable	9	won open seats because African American candidates
10	conclusion.	10	have not run in these open seats. And certainly
11	Q. And those three would consist of Jim	11	there haven't been a lot of open seats, right. So
12	Kitchens, Josiah Coleman and Robert Chamberlain?	12	we're talking about three seats since 1994. There
13	MR. WALLACE: Objection, assumes facts	13	are a whole host of things, right. So it tells
14	not in evidence. You say Jim Kitchens got on with	14	me, I mean, I'd want to know more. But it
15	an open seat election?	15	wouldn't cause me to make any kind of firm
16	MR. CHEUNG: Without a prior	16	conclusion on the basis of those numbers.
17	appointment.	17	Q. So understanding that there are several
18	MR. WALLACE: Okay. That's a different	18	possible conclusions that you could draw from this
19	thing. That's why I objected.	19	fact, would one reasonable suggestion be that
20	Q. (By Mr. Cheung) I can rephrase. So the	20	white candidates are able to win without
21	three justices that obtained their position on	21	incumbency advantage, does that suggest that
22	Mississippi Supreme Court without a prior	22	they're generally in a stronger position than
23	appointment to the Court would be Jim Kitchens,	23	black candidates?
24	Josiah Coleman and Robert Chamberlain. Does that	24	A. I think it depends. Because if you look
25	sound right?	25	at like the Jim Kitchens race, my understanding
	Page 43		Page 45
1	A. That sounds right. And only Kitchens is	1	for whatever it is, is he was endorsed by Benny
2	with District One, if I remember correctly.	2	Thompson and so he was actually the black
3	Q. Do you know of any other justices who	3	preferred candidate in that race. And he defeated
4	won election to the Mississippi Supreme Court	4	another white candidate. And I don't know the
5	without prior appointment?	5	specifics of the Waller case or anything else.
6	A. Do I know of any other justices? Not	6	If those white candidates were actually
7	that I can recall off the top of my head. It's	7	preferred by black voters, then that would tell me
8	certainly possible in other districts. But,	8	something different than if that candidate was not
9	again, I am limiting my analysis to District One.	9	preferred. So at this point I don't have enough
10	Q. In terms of District One, does it sound	10	information.
11	right that Chief Justice James Smith was elected	11	Q. Yeah. I understand that there's a
12	in 1992 without prior appointment?	12	distinction between black candidates and black
13	A. In '92. So would be '92, eight-year	13	preferred candidates because the two are not
14	term -- yes, that sounds like it could be right.	14	necessarily the same. But looking exclusively at
15	Q. And William Waller was elected in '96 in	15	the ability of black candidates to get elected to
16	District One without prior appointment?	16	the Mississippi Supreme Court, is it a
17	A. It's possible, sure.	17	reasonable -- is it one of the reasonable
18	Q. So assuming that's right, does the fact	18	explanations to say that black candidates
19	that only white candidates have been able to win	19	typically need incumbency advantage, while white
20	elections without first being an incumbent tell	20	candidates do not, to get elected to Mississippi
21	you anything about the overall ability of black	21	Supreme Court?
22	candidates to get elected to Mississippi Supreme	22	A. I wouldn't say typically. I would say
23	Court?	23	that that's possible. I would want to how many
24	A. Well, it tells me a couple of things. I	24	black candidates ran for those open seats and
25	mean, I'd want to do some more research. I do	25	everything before I concluded. If all we have is

	Page 46		Page 48
1	white candidates running for a seat, then we don't	1	Supreme Court has decided, eh, we're not going to
2	know if blacks can win without incumbency. So,	2	really do that anymore.
3	it's possible. Again, I think we would need to	3	Elections allow for voters to
4	learn more.	4	participate and for voters to have a hand in how
5	Q. Okay. And if it's a fact that very few	5	the law is interpreted in their states. And so
6	black candidates even run for these seats, what	6	giving the voters a choice increases political
7	could be some explanations for that?	7	efficacy, increases the legitimacy of the
8	A. Well, there's several explanations about	8	institution, and it allows voters to have a direct
9	why. One might be they don't think they could	9	say in the people who are making decisions that
10	one. One might be, you know, they're not	10	affect the legal life in the state.
11	interested. One might be that the incumbent	11	So there are problems as well and no
12	already is doing a good job and so they feel like	12	system is perfect. But it's not clear to me
13	there's no need to try and unseat an incumbent.	13	that -- I mean, the debate has tended to be that
14	So there are a number of reasons why a	14	elections are just these awful things. And it's
15	candidate may decide. It may be the wrong time in	15	not clear to me from the data that that's the
16	their life. They may have serious headwinds,	16	case. That in fact voters do know what they're
17	right? If you are a candidate running in a	17	doing, they do participate meaningfully, and they
18	presidential election here and you're a Democrat,	18	are able to make choices. And so this seems like
19	it's probably not a good time to run here in	19	an option that a state could want to have.
20	Mississippi. So there are a lot of factors, race	20	I mean, if I were a design institution I
21	being one of them. But party and incumbent size	21	would not design what y'all have here. I think
22	(inaudible) and everything else would also be	22	nonpartisan elections are awful, right? But I
23	factors.	23	don't live here. So y'all want to do that, go
24	Q. I have a few questions about your work	24	ahead.
25	around the design of judicial election and	25	Q. Why are nonpartisan elections awful?
	Page 47		Page 49
1	election systems.	1	A. Because they're ineffective. They're
2	A. Sure.	2	removing a meaningful queue from the voters. And
3	Q. In your work have you studied advantages	3	so what you're doing is your unnecessarily shaving
4	of electing versus appointing judges?	4	off voter participation. And so nonpartisan
5	A. Well, there's no way to quantify -- yes,	5	elections you have people roll off because they
6	I have spoken about the relative advantages of	6	don't feel informed, right? And we know that
7	elections versus appointments.	7	Democratic judges view the law differently than
8	Q. And what are those relative advantages?	8	Republican judges. Lawyers know this, right? You
9	A. So you start with the presumption that	9	go in a courtroom, you know you're either happy or
10	there is no perfect system, right? And so when	10	you're, like, this is going to be a tough one. We
11	you're designing institutions, there are a number	11	know at the US Supreme Court level, we can predict
12	of considerations to balance, one of them being	12	outcomes of cases really well. Why would we tell
13	accountability versus independence, right? So you	13	voters they can't have that information? It seems
14	could design a system like the US federal system	14	silly.
15	where judges are maximally independent, right?	15	Q. I can't confirm the reaction I have
16	And for everyone who thinks judges should be	16	walking into court, but...
17	independent, I ask them how that's going because	17	A. No. This is the big difference between
18	it doesn't seem to be going too well.	18	political scientists and lawyers, right? I can
19	So there are advantages to being	19	say these things.
20	independent, right? But being too independent,	20	Q. When you say remove a meaningful queue,
21	actually, is bad because it means you can do	21	are you referring to the partisan designation on
22	whatever the hell you want and you're not	22	the ballot?
23	constrained by the law or by anything else. And	23	A. I am.
24	we can give all kind of examples from both sides	24	Q. And you say voters do participate
25	of the political aisle of the times, well, the US	25	meaningfully in judicial elections?

	Page 50		Page 52
1	A. Yes.	1	officeholders are to the voters?
2	Q. What do you mean by that?	2	A. No, without efficacy is referring to how
3	A. Some people think voters don't know what	3	legitimate the voters feel the court is and how
4	they're doing. Voters know enough. So for	4	much trust they have in the court. And so Jim
5	example, voters, you know, can tell that they're	5	Gibson did a series of studies looking at dual
6	seeing a quality challenger, right, one with prior	6	elections in (inaudible) legitimacy of the court.
7	judicial experience and one without. So if a	7	And what he found is actually, you know, there are
8	challenger between incumbent has prior judicial	8	some costs to contested elections, but there are
9	experience, they do about five points better than	9	also a lot of benefits. When you look at the
10	challengers without such experience.	10	whole cost benefit thing, it actually turns out
11	If you take party ID out and you -- so	11	that elections are legitimacy enhancing. That is,
12	we did some experiments on this where we, you	12	voters feel more positive about courts on average
13	know, manipulated whether or not party ID was	13	after elections than they do in the absence of
14	shown or not. I'm going to get the numbers here a	14	elections. Again, it's not no say it's all
15	little bit, not precise. But in partisan races,	15	positives, but the positives outweigh the
16	like Republicans went for the Republican candidate	16	negatives.
17	that we told was the Republican 94 percent of the	17	Q. But is responsiveness to voters, one of
18	time, and Democrats voted for the Democrat	18	the values that you think should be promoted by
19	candidate, like, 85 percent of the time. In that	19	judicial elections?
20	scenario where we removed party ID by the same	20	A. Well, responsiveness is hard. Because
21	descriptions of real ads that candidates have run,	21	what does that mean, responsiveness. And I want
22	what happens is Republicans voted for Republicans	22	to distinguish responsiveness from accountability.
23	70 percent of the time and Democrats were about	23	Accountability means that, you know, voters will
24	65. So you would expect without party ID those	24	decide, you know, when a judge is up for election
25	things should be close to 50/50. That is, if	25	if that judge should be returned to office. And
	Page 51		Page 53
1	party ID wasn't meaningful, if candidates were	1	overwhelmingly the answer is yes.
2	running these ads, right, and there was no	2	Responsiveness implies that outside of
3	partisanship to them and voters couldn't tell,	3	that, that judges should be like, you know,
4	Republicans shouldn't be able to identify the	4	figuring out what the public wants in terms of
5	Republican candidate about 70 percent of the time.	5	decisions. And that kind of more, like, constant
6	So what does a nonpartisan election do?	6	update or constant evaluation, I think one can
7	It increases errors, right? It increases the fact	7	argue is not a part of courts. I think one could
8	that Republicans would actually vote for the	8	argue it could be. I don't take position on that.
9	non-republican even though if you gave them party	9	That's outside -- I stick to the empirical data
10	ID they would vote for the Republican, right?	10	and I really don't have anything to -- yeah.
11	It's what the manipulation allowed us to do. And	11	Q. Got it.
12	so you have fewer voters participating, and the	12	So you mentioned that you wouldn't do
13	ones who do participate make more errors, that is	13	things the way that things are done in
14	they vote for the candidate who they don't intend	14	Mississippi. Is that purely referring to the
15	to vote for. Who they wouldn't vote for if they	15	nonpartisan valence of these elections or is there
16	had the party ID. That seems like not a good way	16	something else?
17	to have elections. But that's, you know, again,	17	A. I think there are -- again, if I were
18	not my state.	18	designing an ideal system, would I have districts,
19	Q. So those percentages you just cited, I	19	I would not, at least not this way. Because I
20	don't think they're in your report.	20	think the Supreme Court deals with all
21	A. That's my book. The Voters' Verdicts	21	Mississippians and all Mississippians should have
22	Book, 2015. I think it's chapter 4 or 5	22	a chance to vote on the Supreme Court, as opposed
23	something.	23	to carving it up into districts.
24	Q. Okay. And you also mentioned efficacy	24	You know, I think -- so I would do that.
25	earlier. Is that referring to how responsive the	25	I think the terms of office are good. I might,

	Page 54		Page 56
1	for example, in an ideal situation not allow for	1	up down state. Even though that's still not
2	reelection. I might allow for a single term but	2	exactly with population because Chicago is more
3	not reelection. So if you're worried about the	3	than three-sevenths of the population of Illinois.
4	corrupting effects of donors and everything else,	4	So they're still outweighed. It gives them a
5	one way to do that, right, is not allow judges to	5	little bit of a bonus but not as much as it
6	run for reelection. I'd probably publicly finance	6	should.
7	elections. Again, if you want to get rid of the	7	You could do what Mississippi does and
8	stink of private contributions, go to public	8	have basically three districts and have three from
9	financing. So there are things like that that I	9	each. I don't have any opinion as to which is,
10	think, you know, are -- no one does it that way.	10	you know, better or worse. You know, that's -- I
11	So really, a hypothetical exercise. You	11	haven't seen any anything -- I haven't seen any
12	know, if Mississippi wants, you know, my advice on	12	research that's looked at the effects of those
13	that.	13	different kinds of district elections on outcomes
14	Q. When you say, you know, you would prefer	14	or on -- I mean, you can't really look at
15	no districts or at least not this way, what do you	15	incumbency anywhere else because everything is
16	mean?	16	unique. You have one case of this, one case of
17	A. I think that districts for statewide	17	that, one case of this.
18	offices to -- so if you live in any district, you	18	Louisiana has partisan elections in
19	can only vote for one-third of the justices on the	19	districts. Kentucky, which does it the same,
20	Mississippi Supreme Court. I think that's a	20	right, but they're nonpartisan. So every case is
21	problem. But that's just my -- I mean, you know,	21	unique. And so it's hard to make any kind of
22	Kentucky has districts. Illinois has districts.	22	comparisons about across states because you have
23	Of course, Illinois, Chicago has three of the	23	no variation.
24	seven and the other four split down state. That's	24	Q. What do you think are the consequences
25	problematic.	25	of having three judges coming from a single
	Page 55		Page 57
1	In general, I think that having	1	district as opposed to nine districts with nine
2	district-based elections for statewide offices is	2	judges?
3	suboptimal. But, again, that's just from a purely	3	A. It could be nothing. I don't know. I
4	theoretical design standpoint.	4	don't think anyone knows.
5	My local school board elects regions,	5	Q. So in terms of the benefits of electing
6	right? We have nine members of the school board,	6	judges, we talked about earlier, I think you
7	and there were three people from each region.	7	mentioned transparency, legitimacy,
8	Which means when I vote for people for my school	8	accountability. Is that right?
9	board, I can't vote for two-thirds of them. Well,	9	A. Yes.
10	if the other two regions are nuts, and they are,	10	Q. Would those values be better served by
11	like I can only ever hope to have a third of	11	competitive elections versus noncompetitive
12	reasonable common sense, you know, pro-teacher	12	elections?
13	school board members. So, again, that's a -- I	13	A. Yes.
14	think most political scientists would agree that	14	Q. Which one would better serve?
15	from a design perspective it's suboptimal.	15	A. Competitive elections.
16	Q. But if you were to use districts, what	16	Q. Why is that?
17	district design would you have?	17	A. Competitive elections allow for
18	A. There are a number of different ways. I	18	meaningful choice. Competitive elections allow
19	have no opinions as to which way is better. You	19	voters to actually, you know -- when you have
20	could carve it out into nine independent districts	20	competitive elections it shows that candidates
21	and each district elects one. That's the Kentucky	21	have to be more accountable. They have to be more
22	model. You could do what Illinois does and	22	aware. If you're never worried about losing, then
23	concentrate, like, based on population, not	23	you're basically independent, right, and there's
24	necessarily geography. So Chicago gets three, or	24	no accountability mechanism. So in general
25	Cook County gets three, and the others are split	25	elections, right, to serve their functions should

	Page 58		Page 60
1	be contested and competitive.	1	or electoral threats does influence State Supreme
2	Q. Does the competitiveness of a district	2	Court Justices' decision making?
3	affect how responsive an officeholder is to their	3	A. I think it should. Whether it does or
4	constituents?	4	not, right, I think is -- I think there's some
5	MR. WALLACE: You're talking about	5	evidence that it does. How strong that is and has
6	judicial officeholders or generally? Object to	6	it changed over time, I don't know. But yeah.
7	the form for that reason.	7	Q. Thank you.
8	Q. (By Mr. Cheung) I would say generally	8	Do you think it's important for the
9	and then judicially.	9	judiciary to reflect the racial diversity of the
10	A. Generally, absolutely. There's a lot of	10	jurisdiction?
11	evidence of that. In fact, you can see it now.	11	A. So what do you mean by "important"?
12	Why has the US Congress gone off the rails? Well,	12	Q. Generally in terms of the values we just
13	you've seen a decline of competitive elections.	13	discussed.
14	You know, there's no one in the middle anymore.	14	MR. WALLACE: And I'll object to the
15	And so you've got people who don't have to worry	15	form until you define "reflect".
16	about actually being defeated. They're more	16	THE WITNESS: So I'll answer. I think
17	worried about being defeated in the primary than	17	in a representative democracy it is better for our
18	in general election.	18	institutions to reflect the makeup of their
19	So when you have an increase in one	19	constituents. So I think we have evidence that,
20	party districts, it leads to increased	20	you know, if you're looking at how legitimate
21	polarization.	21	individuals feel their government is, if you look
22	In judicial elections, I don't know of	22	at how perceptions in terms of role models and
23	any evidence one way or the other. I do -- so it	23	everything else, it absolutely is.
24	is true that there have been some studies in the	24	Like, for example, we know that, you
25	early '90s to show that judges change their	25	know, when African American students come to a
	Page 59		Page 61
1	behavior as they approached an election, right?	1	university and see all white professors, right,
2	So (inaudible) and Melinda Gann Hall did	2	that doesn't send a signal that that path is open.
3	a series of studies looking at how judges vote on	3	So yes, I do. I think descriptive representation
4	death penalty cases as an election approach. What	4	is incredibly important. I also think substantive
5	she found is that judges were more likely to	5	representation is important as well.
6	uphold death sentences as they approached their	6	I would submit that people who are
7	reelection than otherwise. But that -- what that	7	concerned with issues of race and social justice
8	interpretation is, right, matters. Is it that	8	would be better off with a liberal justice on the
9	judges are panning to elector or does it mean that	9	US Supreme Court compared to Clarence Thomas.
10	in fact, you know, they weren't doing their job	10	That's not to minimize the descriptive importance
11	all along and this is finally reigning them in.	11	of Clarence Thomas on there, but he's also not
12	So we do have some evidence of that, but that	12	advancing the policy goals that one would think he
13	doesn't say anything about partisanship, doesn't	13	would advance.
14	say anything about districts. It's the presence	14	But yes, descriptive representation is
15	of elections more generally.	15	important.
16	Q. Thank you.	16	Q. (By Mr. Cheung) Thank you. So we
17	I'd like to point you to the 2005	17	talked before about how the difference between
18	article we talked about earlier entitled Electoral	18	nonpartisan and partisan judicial elections is the
19	Verdicts. I think you have a quote there that	19	designation of a party on a ballot. Is that
20	says: The more serious the electoral threat, the	20	right?
21	more constraints you will feel. The same should	21	A. It is.
22	hold true for State Supreme Court incumbents.	22	Q. Are there any other differences in terms
23	Does that sound right?	23	of how the elections are run between partisan and
24	A. It does.	24	nonpartisan elections?
25	Q. So is it your view that competitiveness	25	A. Well, in terms of how they are run -- so

	Page 62		Page 64
1	we have -- there are nonpartisan elections and	1	two are that, one, fewer voters participate so you
2	then there are partisan elections. So partisan	2	have higher ballot roll-off. People don't vote
3	elections are pretty consistent. The party ID is	3	for those elections. They leave it blank. And
4	on the ballot, you know what they are.	4	the other is they tend to make more mistakes. So
5	Nonpartisan elections oftentimes are coded, right,	5	those who do vote, most of them are still able to
6	in a sense that you can tell which candidate is	6	identify their co-partisan, the partisan. Because
7	which. And I'll point you to my 2015 book which	7	most candidates who are running in these
8	showed that, in fact, even when you remove the	8	nonpartisan elections are clearly endorsed by a
9	party ID from the ballot and you just show voters	9	party, and that's pretty clear from their ads and
10	ads that are run, like, real ads, they can tell	10	everything else, also the things they say. But
11	which candidate is a Democrat and which candidate	11	you'll have some low information voters who don't
12	is a Republican. And so nonpartisan elections do	12	get those queues and who still participate and
13	not remove partisan considerations from the	13	they vote what I would term incorrectly.
14	voters' minds. In fact, in some ways they're just	14	Incorrectly in the sense that they're voting
15	as partisan. Again, with more errors and lower	15	against the candidate that best reflects their
16	voter participation.	16	values and their interest.
17	Q. So those ads that you talked about, how	17	Q. They're not voting for the candidates
18	do you know if the voter is picking up on a	18	that they would have vote for if they had full
19	partisan queue as opposed to a policy queue or a	19	information?
20	race queue or some other queue?	20	A. That is correct.
21	A. Well, it wouldn't be a race queue. I	21	Q. Do you know if nonpartisan elections are
22	mean there was nothing in there about race. These	22	more or less likely to be contested?
23	were vignettes that we gave -- we give them to	23	A. Nonpartisan -- let me think,
24	people not in the state they were in. It	24	historically. Historically I think nonpartisan
25	wasn't -- there was no way for voters to look up	25	elections were more likely to be uncontested, but
	Page 63		Page 65
1	or whatever else.	1	that difference has gone away in recent years.
2	Because the only difference is the	2	Now every seat is contested just about. I mean,
3	partisan. Everything else is the same. And so if	3	on average.
4	I give you a paragraph and Mike a paragraph, and	4	Q. In paragraph 10 of your January report
5	everything in that paragraph is the same, except	5	you say that: Elections in nonpartisan states are
6	in yours I say it's a Republican and in Mike's I	6	less likely to be contested than elections in
7	say nothing, and there's a difference, well,	7	partisan states.
8	that's why there's a difference. That's what the	8	A. Correct.
9	experiment does. It controls everything else. So	9	Q. Is that still your position?
10	if it was a policy, you're both responding to that	10	A. Well, that's my position in those
11	queue. And so when you see these kinds of	11	articles which are older. My looking at recent
12	differences, right, it's because of the	12	elections, you know, just my off the top
13	experimental manipulation. It really allows us to	13	recollection is that that difference has shrunk if
14	get a handle on what is going on.	14	not disappeared entirely. My recollection, I
15	Q. I see. And so I think I understand	15	could be wrong. It certainly was true at the time
16	better now. That study was based on ads that you	16	those articles were written looking at older
17	created and not real-world ads?	17	elections. But in the past decade we've seen a
18	A. Correct, yes.	18	huge increase in both attention to and
19	Q. And so your study did not look at the	19	contentiousness of State Supreme Court elections.
20	effect of the race on voter behavior?	20	Q. So the increased contestation, do you
21	A. Correct.	21	know if that applies to Mississippi?
22	Q. What are some of the differences, if	22	A. It applies certainly to District One
23	any, in terms of voter behavior in nonpartisan	23	based on Table 1, right, where every race was, in
24	elections versus partisan elections?	24	fact, contested except for Justice Kent.
25	A. I think we've talked about them. The	25	Q. Do you know if the incumbency advantage

	Page 66		Page 68
1	is stronger or weaker in nonpartisan elections?	1	out some of them, that's unusual, right, and so
2	A. I know incumbents are more likely	2	then you have to ask why, you know, are we
3	defeated in partisan elections, historically. So	3	signaling out some and not others and where the
4	that would suggest that in nonpartisan elections	4	criteria end and why is one method of selection
5	they're more likely to lose. In fact, I say in	5	good for some areas of the state and not for
6	paragraph 11 incumbent justices are more likely to	6	others. That's unusual. You don't see that a
7	lose in nonpartisan district-based elections than	7	lot, if at all.
8	they are. So in a system like Mississippi, the	8	Q. So I think the title of that article
9	incumbent justice is really more likely to lose,	9	that you were quoted in was: Mississippi House
10	based on my 2005 article.	10	Bill Will Create White Appointed Court System for
11	Q. Sorry, more or less likely to lose?	11	Blackest City in America.
12	A. Incumbent justices are more likely to	12	Does that sound right to you?
13	lose in nonpartisan district-based elections than	13	A. It might. I mean, I will say I did not
14	they are in nonpartisan statewide elections, yes.	14	write the headline.
15	Q. Are you familiar with a recent law that	15	Q. Do you have a view on the headline?
16	was passed in Mississippi, HB1020, concerning	16	A. Do I have a view on the headline? The
17	selection of judges in Jackson?	17	headline is provocative.
18	A. I read something about it like when it	18	Q. Do you agree with it, factually?
19	was on New York Times or NBC News. But I don't	19	A. Do I agree with it? House Bill Would
20	recall the specifics. I do remember it was a	20	Create -- that sounds consistent with the
21	controversy about changing the way judges are	21	objections that were raised by local officials in
22	selected in Jackson, but that's the best of my	22	Jackson. So I'm not -- I don't live in Jackson.
23	recollection.	23	I don't follow the thing in the ground. But that
24	Q. You gave a quote about that law to Yahoo	24	is consistent with what I read about the
25	News and Digital Journal. Do you recall that?	25	objections to this bill.
	Page 67		Page 69
1	A. Oh. I do now. I'm sure I did. What	1	Q. Do you have any reason to disagree with
2	did I say?	2	those objections or characterizations?
3	Q. Would it help to show you the article?	3	A. I have no reason to opine. If that's
4	A. If you want or you can just read me what	4	how the local officials feel, and I certainly can
5	I said.	5	see why they feel that way.
6	Q. So this is an article from February 15th	6	Q. Thank you.
7	of this year. Your quote was: But what makes	7	Is there anything else that you would
8	this Mississippi situation abnormal is that the	8	find notable about HB1020?
9	legislature is proposing a different way of	9	A. Not that comes to the top of my head.
10	selecting prosecutors and judges but only for one	10	If we can get a chance, I'd like a
11	area of the state and all the local	11	drink/bathroom break. Whenever you get done with
12	representatives in that area object to it.	12	this line of questioning.
13	A. Yes. Yeah, I said that.	13	Q. Now is a great time for a break.
14	Q. Is that still your opinion?	14	(Off the record.)
15	A. Yes, unless the bill has changed. I	15	Q. (By Mr. Cheung) Dr. Bonneau, have you
16	haven't obviously thought about it since I gave	16	conducted any empirical studies of the levels of
17	that quote. But yeah, that's -- yeah, that sounds	17	racial diversity on state courts?
18	like me.	18	A. The levels of racial diversity. Yes, I
19	Q. Could you say more about why this	19	think I have.
20	situation is unusual or abnormal?	20	Q. I think that was a 2000 article titled:
21	A. Well, yeah, because it's not -- when	21	Composition of State Supreme Courts.
22	you -- if you think there's a problem with the way	22	A. Yeah, that was my first journal article.
23	judges are selected or prosecutors are selected,	23	Q. Do you recall what you did in that
24	that's fine, right, and the legislature certainly	24	article?
25	can change that. But when you're only signaling	25	A. I believe in that article I simply

	Page 70		Page 72
1	compared how many justices, like, were black or	1	are advocated by a lot of women and so -- but you
2	women or nonwhite by selection type.	2	can have men who do. And so that's a more
3	Q. Is there a reason why you have studied	3	substantive representation.
4	the level of racial representation on state	4	So substantive representation gets into
5	courts?	5	policy, gets into are the policies reflective of
6	MR. WALLACE: Object to the form. I	6	the different groups. Whereas descriptive
7	don't think he said anything about racial	7	representation is simply when you look out, does
8	representation the way you talked about it	8	it look like, you know, the population.
9	previously, but go ahead.	9	Q. And have you looked at using judicial
10	Q. (By Mr. Cheung) Or racial diversity.	10	evaluations in the context of selecting judges?
11	A. Yeah, I mean I was in graduate school at	11	MR. WALLACE: Object to the form, until
12	the time and I was, like, oh, this will be	12	you explain what judicial evaluations mean.
13	interesting to see if there are any differences.	13	THE WITNESS: Yeah, can you tell me what
14	Because one of the allegations is that, you know,	14	you mean by judicial evaluations?
15	to get a more diverse bench then elections will	15	Q. (By Mr. Cheung) I believe in your past
16	lead you to have a less diverse bench. And so	16	work you've analyzed a system of electing judges
17	it's an empirical question and it's an important	17	by using assessments or evaluations of judicial
18	question so, you know, I collected some data and	18	performance. Do you recall that?
19	just did a little descriptive piece.	19	A. I don't.
20	Q. Why do you think it's an important	20	Q. Okay.
21	question?	21	A. What article was that?
22	A. Well, we talked earlier about	22	Q. I'm not sure if it's a published article
23	descriptive representation, right, and how	23	but I think you've spoken about the topic of using
24	descriptive representation is important. And so	24	judicial evaluations.
25	if it's true that one method of selection	25	A. I've spoken about judicial performance
	Page 71		Page 73
1	systematically gives you less diversity than other	1	evaluations and certainly I think in one of my
2	methods, that's something that should be part of	2	edited books there was a chapter by a colleague
3	the conversation. That's something that should go	3	talking about some of her work on judicial
4	into the decision about should you change your	4	performance evaluations. But it's not something
5	method of selection, should you not, whatever.	5	that I've conducted independent research on.
6	It's an important piece. And if it's not true,	6	Q. Okay. Got it. And what do you know
7	then we don't need to worry about that when we're	7	about judicial performance evaluations?
8	talking about best practices.	8	A. So judicial performance evaluations vary
9	Q. And I know earlier we used the terms	9	across states. Sometimes they're just simple
10	"descriptive representation" and "substantive	10	surveys of the bar, sometimes they also involve
11	representation." What do you mean by those terms?	11	litigants, sometimes the involve whatever, right.
12	A. Sure. So descriptive representation is	12	And in some places they're published, right, and
13	simply you look out and you see, oh, it's a	13	so whether a judge is -- there are scores on
14	diverse bench, right? And you see, oh, if there's	14	certain things like temperament or fairness and so
15	30 percent women in a state and you have a state	15	on. And they can be given to voters in advance of
16	legislature is 30 percent female, then you're	16	elections. In other areas it's much more of than
17	like, okay, that's pretty good descriptive	17	internal thing that's done by the bar. So there
18	representation. That is it's properly reflective	18	are a lot of variations about, you know, how they
19	of the demographics, the characteristics of the	19	are.
20	population.	20	Q. Are you aware of any literature about
21	Substantive means, though, that you	21	biases in judicial elections?
22	represent the dominant interest of that group in	22	A. Judicial elections?
23	your behavior. So for example, you can have	23	Q. Judicial evaluations, I'm sorry.
24	female legislatures who don't support women's	24	A. Yes.
25	rights or don't support some of the causes that	25	Q. And what do you know about those?

	Page 74		Page 76
1	A. So one of my colleagues at UNLV has done	1	But I'm not going to tell him not to answer it.
2	a lot of studies, Rebecca Gill, on that. And	2	MR. CHEUNG: Okay. Your objection has
3	basically it's similar to what you see in student	3	been noted. Thank you, Mike.
4	performance evaluations, like when you survey	4	THE WITNESS: Can you please repeat the
5	students in class. Women tend to be judged more	5	question?
6	harshly, white men are perceived as being more	6	Q. (By Mr. Cheung) Is it important to
7	competent. And so the same kinds of things you	7	redistrict after each census?
8	see in nonlegal circles, right, from what I've	8	A. What do you mean by "important"?
9	read are also present in these judicial	9	Q. Well, why do you think redistricting
10	evaluations as well.	10	occurs after a census?
11	Q. Are racial biases present in judicial	11	A. Well, it's required by the Constitution.
12	evaluations?	12	Q. Does that make sense to you?
13	A. I don't recall that specifically, but	13	A. Does that make sense to me? Well, sure,
14	I'm not saying no. I don't recall from my	14	it makes sense because it's required by the
15	reading.	15	Constitution. Does the Constitution make sense to
16	Q. A few questions about redistricting.	16	me on that front? I've never really thought about
17	From what you know, when does redistricting	17	it. I mean, I would say that sure, that if
18	typically occur?	18	populations change or things shift significantly
19	A. After -- well, the federal level, after	19	then, you know, if we believe that one person's
20	a census.	20	vote should equal as much as another, it should.
21	Q. And what about at the state level?	21	Now, it doesn't make a lot of sense in
22	A. I think it depends on the state	22	context of the Constitution because our electoral
23	constitution, right? In some states -- I mean, it	23	system with its electoral college ensures that, in
24	depends on the office too, right? So if it's a	24	fact, one person's vote doesn't equal the same as
25	federal office, right, like US House,	25	another's. But, you know, I don't know if you
	Page 75		Page 77
1	redistricting has to occur every 10 years after	1	want to go down that path.
2	the census. If it's a state district, I suspect	2	Q. But you would agree that it's important
3	it varies based on the state, but I have not done	3	for districts to reflect the existing population
4	any work on that.	4	of the jurisdiction?
5	Q. Do you think it's important to	5	A. Yeah, generally, that's right. Among --
6	redistrict after each census?	6	I will say there are other factors, too. Like,
7	MR. WALLACE: At this point I think I'm	7	you know, for example, not splitting up towns or
8	going to object. The order authorizes you to talk	8	historical -- the general redistricting principles
9	about his surrebuttal report, and I know you're	9	that the US Supreme Court has set out about
10	entitled to go into his background as a scholar,	10	compactness and continuity and communities of
11	but if he hasn't done any scholarship on that,	11	interest and whatever else. I mean, yeah, that's
12	what's the relevance to what the Court is allowing	12	reasonable.
13	you to do today?	13	Q. Yeah. I just mean in the broad sense
14	MR. CHEUNG: Are you asking him not to	14	that redistricting should occur on the basis of
15	answer the question?	15	the most updated population data that we have.
16	MR. WALLACE: I'm asking you to explain	16	Would you agree?
17	why you think you're entitled to ask it.	17	A. Within certain limits, yes.
18	MR. CHEUNG: Well, Mike, I think you're	18	Q. Do you know the last time redistricting
19	entitled to ask him not to answer it if you think	19	occurred with the Mississippi Supreme Court
20	the question is privileged.	20	districts?
21	MR. WALLACE: I'm not going to tell him	21	A. I do not.
22	not to answer it, but the judge has given you a	22	Q. I can represent to you that the last
23	limited authority here, and pulling out political	23	time it happened was 1987. Do you know how many
24	science questions from thin air to ask him about	24	times the census has been taken since 1987?
25	is I would think outside the scope of her order.	25	A. Well, it's every 10 years, so that would

black, and so there's a lot of agricultural interest. And it tended to be heavily nonwhite communities now because of the history of the soil and the farming.
Q. Do you know if the Black Belt extends into Mississippi?
A. I don't.
Q. Are you familiar with the Mississippi Delta as a region?
A. I am. That's the part down by the -- in the south, right, by the Gulf -- no. I guess I'm not.

MR. SHANNON: You're not.
Q. (By Mr. Cheung) As a political scientist, have you considered the extent to which black voters might have similar interests due to a shared history?
A. Have I personally considered, no, but that's a pretty common finding among others.
Q. I think you have an article from 2009 titled: Impartial Judges, Race, Institutional Context. Does that sound right?
A. Yes.
Q. You have a quote here that says: Given the history of African Americans in the United
representations of the state, right, and there's
not been meaningful deviations then, yeah, those would be the ones that come to mind off the top.
Q. Do you know if there has been or has not been population change in Mississippi since 1987?
A. Since '87? I'm trying to think of my electoral map. I want to say y'all have increased one electoral vote since ' 87 , but I'm not sure. I defer to people who -- I mean, ' 87 is a long time ago. I wasn't even able to vote then.
Q. I wasn't born then.
A. I don't -- I can't answer that. I don't
know. You can tell me anything and I'd believe it.
Q. In your work as a political scientist, have you become familiar with what people refer to as the Black Belt?
A. I refer to Black Belt -- yeah, in Alabama particularly, yes.
Q. What is your understanding of the Black Belt?
A. So my understanding of the Black Belt, is really interesting. That basically it's the part -- at least in Alabama -- of like the middle of the state where the soil was rich, the soil was

States, African American judges might be more sympathetic to less fortunate people.
A. Yes.
Q. Do you agree with that assessment?
A. Yes, and I think I have a bunch of citations after that, too. Because that's not something I would have said without citation. But, yes.
Q. You also said: Since most criminal defendants are either poor or racial minorities, it is not hard to imagine that African American judges would be more sympathetic to defendants because of their own negative experiences in society.
A. Correct.
Q. What is that history and that negative experience referring to?
A. Well, I think it's referring to the fact that for years African Americans were not treated as full citizens of this country. For years they weren't citizens at all. Then they were, you know, partial citizens. And then, you know, even after, you know, the Civil War and the passages of 13th, 14th and 15th amendments, we still had institutionalized oppression where individuals,

	Page 82		Page 84
1	African Americans, were not treated the same as	1	voters supporting Democrats that you mentioned
2	whites, until we got to the Civil Rights Act and	2	earlier, do you know if that pattern is true in
3	Voting Rights Act. Those vestiges are still	3	Mississippi?
4	there. That's not all that long ago. You know,	4	A. I have no reason to think it's not.
5	that's my parents' generation. And so I think	5	Q. Do you know if the contrast between
6	it's -- you know, I think it's naive to assume,	6	white and black voters is more or less stark in
7	right, that those vestiges don't still permeate	7	Mississippi compared to other states?
8	throughout in terms of available opportunities, in	8	A. I do not.
9	terms of a whole bunch of things.	9	Q. In your review, what makes African
10	Q. So I'd like to turn to racially	10	Americans more likely to be Democratic voters?
11	polarized voting. In your work as a political	11	A. Well, I think the Democratic party is
12	scientist, have you observed any patterns in terms	12	the party that helped pass the Civil Rights Acts
13	of which parties or candidates black and white	13	and the Voting Rights Act and also tends to
14	voters tend to support?	14	promote bigger government, more social policies
15	A. Oh, yeah, I think everyone knows. Yes,	15	that help individuals, right, who need social
16	black voters support the Democratic party.	16	services, who improve education, you know, for all
17	Q. When you say everyone knows that, are	17	kinds of reasons.
18	you referring to political scientists or what are	18	And the Democratic party, I think, is
19	you referring to?	19	not -- has been much more open in terms of
20	A. Everyone. I think if you walk out in	20	nominating and electing African American
21	the street and ask five people they would tell you	21	officials. And so I think there are historical
22	that. So it's been established by scholars but	22	reasons and also current reasons, policy reasons.
23	it's also -- I mean, you can look at, like, any	23	Q. So you mentioned the Civil Rights Act,
24	graph, you know, in any newspaper or anything	24	the Voting Rights Act. At the risk of asking a
25	else.	25	very obvious question, but why would those laws be
	Page 83		Page 85
1	Q. Roughly speaking, do you know what	1	relevant to you by Democrats -- why black lawyers
2	percent of black voters tend to vote for	2	support the Democratic party?
3	Democrats?	3	A. Sure. Well, the Civil Rights Acts
4	A. It's upwards of 90.	4	allowed -- ended public discrimination in places
5	Q. 90 percent?	5	of accommodation. So all of a sudden now, you
6	A. Yeah.	6	know, you couldn't discriminate in hotels,
7	Q. What about the percent of white voters	7	restaurants, other things, right, against black
8	that vote for Republicans?	8	citizens. Voting Rights Act removed a lot of the
9	A. Well, that varies based on state. It's	9	impediments to black voters registering to vote
10	not 90 percent. But I don't have a hand --	10	and actually exercising their right to vote.
11	there's a lot more variations too, in terms of	11	And so those kinds of policies, right,
12	college-educated whites versus noncollege-educated	12	that improved the lives of black Americans, you
13	whites. So a lot more factors, right, among white	13	know -- it wasn't just the Democrats who did that.
14	voters that help predict voter turnout that aren't	14	Obviously, as you know, we had party realignment
15	as present with black voters.	15	and whatever else. But it was -- the way things
16	Q. And what about white Mississippians?	16	have sorted out is Democrats now.
17	A. What about white Mississippians?	17	Q. What is that partisan realignment that
18	Q. In terms of their level of support for	18	you're referring to?
19	Republican party candidates?	19	A. Well, so in the -- I mean, right, the
20	A. Well, I'm assuming it's pretty high	20	Democrats, right, in the south, right, are
21	because Republicans always win the elections in	21	different than Democrats in the north back then.
22	Mississippi. At least in statewide elections,	22	Same thing with Republicans. And so it was a
23	right. Presidential elections, Senate elections.	23	time, right, where you'd have, you know, southern
24	So yeah, that's my assumption.	24	Democrats voting much more so with southern
25	Q. In the upwards of 90 percent of black	25	Republicans, and northern Republicans and northern

	Page 86		Page 88
1	Democrats. But now those have aligned. So just	1	as Plaintiff's Exhibit 3, I believe.
2	like the -- you know, the Democrats and Democratic	2	Dr. Bonneau, can you confirm that that's
3	party in the south has largely been diminished,	3	the initial report from Dr. Orey that you reviewed
4	the same thing is true with the Republicans in the	4	and responded to?
5	northeast, right? I mean, you don't have	5	A. It looks to be the case.
6	northeast Republicans anymore. I mean,	6	Q. Let's turn to Pages 12 through 14 of the
7	occasionally you'll get someone like a Charlie	7	report, and if you wouldn't mind taking a moment
8	Baker in Massachusetts, but that's, you know, the	8	to review those pages.
9	exception not the rule. I'd say that's sorting.	9	A. Okay.
10	Q. What caused that realignment?	10	Q. So I think your testimony earlier was
11	A. A number of factors caused that	11	that you have concerns about the inferences that
12	realignment. I think preferences of individuals.	12	Dr. Orey can draw from these results, but you take
13	I think political parties, right, and so seeing	13	his factual findings or his results to be true.
14	opportunities. I mean, in the northeast, right,	14	Is that right?
15	you see some Republicans who vote for you, you	15	A. I take the estimates that he has using
16	know, maybe 50 percent of the time and Democratic	16	the ecological inference, yes.
17	parties -- again, we get a Democrat in here would	17	Q. So your reports do not dispute
18	vote 80 percent of the time. So you start	18	Dr. Orey's implementation of ecological inference
19	targeting those individuals and electing more	19	in terms of the accuracy of its code?
20	co-partisans and the American electorate become	20	A. Correct.
21	much more polarized. There are a number of causes	21	Q. You don't dispute the accuracy of the
22	that have led to that.	22	data that he uses?
23	Q. Did the passage of the Civil Rights Act	23	A. Correct.
24	and the Voting Rights Act contribute to the	24	Q. And you don't dispute the accuracy of
25	realignment?	25	his computations?
	Page 87		Page 89
1	A. I think without question.	1	A. Correct.
2	Q. And in your view what makes white people	2	Q. Based on those tables on pages 12 to 14,
3	more likely to be Republican voters?	3	did Dr. Orey find that black voters typically
4	A. What makes white people more likely to	4	support the black candidate about 90 percent of
5	be Republican voters? Well, again, there are a	5	the time?
6	number of things. I think white people tend to --	6	A. That's fair.
7	I think the Republican party has done a really	7	Q. For example, I think in Table 1 if we
8	good job of appealing to a time where white people	8	look at the Westbrooks election, Dr. Orey
9	were, I say, more prominent, right, and had better	9	estimated that Ms. Latrice Westbrooks earned about
10	economic fortunes than they do now, where you	10	90.46 of the black vote in 2020; is that right?
11	didn't need a college education to have a good	11	A. That is correct.
12	middle class life and so on. So I do think	12	Q. And white support, according to
13	there's a economic interest. This is particularly	13	Dr. Orey's estimates, for black candidates was
14	true for lower income, lower educated whites. You	14	typically below 15 percent?
15	know, and the Republican party does a good job of	15	A. Typically, that's correct.
16	appealing to these individuals. Religion is part	16	Q. And in the, again, the Westbrooks'
17	of it, you know. I mean, there are a lot of	17	example from 2020, she received less than
18	things.	18	10 percent of the white vote?
19	Q. Let's move on to Dr. Orey's report. I	19	A. Correct.
20	can give you a copy of that.	20	Q. Are those estimates consistent with your
21	A. Sure.	21	understanding of voting patterns among black and
22	Q. I'm handing you a copy of the October	22	white voters?
23	report, 2022.	23	A. Yes.
24	(Exhibit 3 marked for identification.)	24	Q. In paragraph 37 of your January report
25	Q. (By Mr. Cheung) That's now been marked	25	you said that it is highly unlikely these

	Page 90		Page 92
1	candidates lost because they are African American?	1	is that correct?
2	A. Correct.	2	A. Well, and then there were incumbents
3	Q. Would it be fair to say that those	3	after that, like Justice King.
4	African American candidates lost because the	4	Q. Right. But at the time of their
5	majority of white voters voted for a different	5	election, they had already been in office?
6	candidate?	6	A. I think I said earlier that I wasn't
7	MR. WALLACE: I'm going to object to any	7	sure if any African American candidate had ever
8	questioning on paragraph 37. It's outside the	8	successfully run not as an appointee, so I will
9	scope of the order. I will not tell him not to	9	stick to that. But certainly the ones I looked at
10	answer, but we'll deal with it if you ever offer	10	for my report, that is true.
11	it in court. Proceed.	11	Q. Your view is that District One, as
12	THE WITNESS: Please repeat the	12	currently configured, black voters can already
13	question.	13	elect their preferred candidate?
14	Q. (By Mr. Cheung) Would it be fair to say	14	A. Correct.
15	that those African American candidates lost	15	Q. Is that in most cases, in some cases?
16	because the majority of white voters voted for a	16	A. I would say -- in most cases, I would
17	different candidate?	17	say two of the three justices in District One are
18	A. Because of the white -- I would say it	18	the black preferred candidates.
19	differently.	19	Q. Based on your understanding of these
20	Q. How would you say it?	20	voting patterns, would you agree that a district
21	A. I would say that those African American	21	that has a majority African American population
22	candidates lost because -- because they didn't get	22	has a greater chance of electing someone preferred
23	enough votes, likely because they were Democrats.	23	by African American voters than a district that is
24	Q. And they were Democrats, and they lost	24	minority African Americans?
25	because they did not earn the votes of more white	25	A. Sure.
	Page 91		Page 93
1	voters?	1	Q. Do you know what percentage of the
2	A. Of more Republicans, or as their	2	voting age population of District One is black?
3	opponents. I mean, so they could have, right,	3	A. I do not.
4	gotten more black voters, as well. So they didn't	4	Q. I can represent to you that it's about
5	lose -- like, if they lost because -- they could	5	49 percent --
6	have lost because they didn't get more white	6	MR. WALLACE: I'm going to object to the
7	voters; they could have lost because they didn't	7	form of the question, assumes facts not in
8	get more black voters. They could have lost	8	evidence.
9	because they were Democrats.	9	Q. (By Mr. Cheung) Can you assume that
10	Q. Do you know if there were enough black	10	fact to be true for purposes of this deposition?
11	voters in the district to put them over the top,	11	A. I've -- can I assume that fact to be
12	given that, you know, someone like Ms. Westbrook	12	true? I mean, if we're talking about
13	is already earning over 90 percent of the black	13	hypotheticals, we can talk about a hypothetical
14	vote?	14	district where blacks are 49 percent of the vote,
15	A. I don't know how many black voters voted	15	sure, I can stipulate that for the next few
16	in that election.	16	questions.
17	Q. And overall as to District One, is it	17	Q. Thank you. Let's turn to Appendix A of
18	your conclusion that racial polarization exists	18	your report. In Appendix A did you identify
19	but not to the extent that black candidates are	19	Ms. Westbrooks as a black candidate who lost her
20	unable to win election to Mississippi Supreme	20	election in District One in 2020?
21	Court?	21	A. I did.
22	A. I think, yeah, I stipulate to that.	22	Q. Based on your table, did Ms. Westbrooks
23	Q. Those black candidates that did win	23	win about 48-and-a-half percent of the vote?
24	election to Mississippi Supreme Court, they're all	24	A. Yes.
25	appointees running with an incumbency advantage;	25	Q. Given that the district is 49 percent

	Page 94		Page 96
1	black voting age population, as we assumed, and	1	Q. And so do you have any reason to think
2	that Ms. Westbrooks won 48-and-a-half percent of	2	that other black voters would react to incumbency
3	the vote, do you think it's a fair estimate to say	3	differently if they were added to District One?
4	that if we added another point of black voting age	4	A. No, I mean -- no, but, again, I mean,
5	population to a district it's likely to increase	5	you're assuming, again, the same kinds of turnout
6	her vote share by a little bit less than	6	rate and participation rate and everything else,
7	one percent?	7	yes.
8	A. Yes, and also if you added more	8	Q. Right. So if we assume the same turnout
9	Democrats as well.	9	and participation rate, do you think that if the
10	Q. As we discussed earlier, Ms. Westbrooks,	10	black voting age population of District One had
11	according to Dr. Orey's estimates earned about	11	been 3 to 4 percentage points higher,
12	90 percent of the black vote?	12	Ms. Westbrooks likely would have won in 2020?
13	A. Correct.	13	A. What I'm saying is if you added 3 to 4
14	Q. Given that she's earned 48-and-a-half	14	percent of black voters to District One and these
15	percent of the vote shared, she's about 1.6	15	voters behaved the same way as the voters who are
16	percent short of winning the majority of the	16	already in District One, then that likely would
17	election in 2020?	17	have led to Ms. Westbrooks winning her race.
18	A. Correct.	18	Q. Just to sum up. In 2020, Ms. Westbrooks
19	Q. And taking the fact that she's earned	19	lost even though District One had 49 percent black
20	about 90 percent of the black vote, would you	20	voting age population and she had 90 percent of
21	agree that if the black voting age population in	21	that black support.
22	District One had been three to four points higher,	22	MR. WALLACE: Once again, object to the
23	she likely would have won in 2020?	23	making of assumptions with facts not in evidence.
24	A. I don't know if I can say that because I	24	THE WITNESS: And I would also point
25	don't know what the voting turnout was. I don't	25	that Justice King won with 100 percent of the
	Page 95		Page 97
1	know if that extra percentage would have turned	1	vote, black and white.
2	out to vote or -- so I can't say that.	2	Q. (By Mr. Cheung) Justice King was not
3	Q. What if we assume that voter turnout	3	contested in his reelection?
4	remains as it is in District One?	4	A. Correct, which I would argue is
5	A. Well, I think it's -- I mean, it's hard	5	important, but we can talk about that later.
6	to say, right, because again, right, she was going	6	Q. We'll get to that later. Appreciate
7	up against an incumbent, and we've already talked	7	your answers, Dr. Bonneau.
8	about how incumbents overwhelmingly win. And	8	So I'd like to turn to paragraph 49 of
9	there was another incumbent in 2020, Justice King,	9	your January report. Point out the fact that
10	who no one even bothered to challenge. And so	10	Ceola James came in third place even though she
11	it's hard to say if adding that extra percentage	11	was the only African American candidate in that
12	of the vote would have been enough to overcome the	12	race?
13	incumbency advantage. You're assuming that extra	13	MR. WALLACE: Same as the prior
14	percent of vote would have voted in the same	14	objection. It's outside the scope of the court
15	percentages as the population of the vote that's	15	order. I will not tell him he can't answer it.
16	already there. I mean, yeah, it's possible. It's	16	THE WITNESS: Correct.
17	possible you might need to add 10 percent. I	17	Q. (By Mr. Cheung) What is the
18	don't know. But I think there are a lot of -- I	18	significance of the fact that James was not the
19	think concluding that would require a lot of	19	preferred candidate of black voters?
20	assumptions that I don't think the data support	20	A. Well, she might have been, I don't know.
21	make it.	21	What I said was if she was the preferred candidate
22	Q. The point about an incumbency, that did	22	of black voters and there was a three-person race,
23	not prevent 90 percent of the black voters from	23	given what you've just described as demographics
24	supporting Westbrooks in that election?	24	of that district, she would have advanced to the
25	A. Correct.	25	runoff, with the two white canceling the white

	Page 98		Page 100
1	vote. But, in fact, it turns out she probably	1	Q. Similarly, I think in your September
2	wasn't the preferred candidate of -- so just	2	report in paragraph 7 you point out that a black
3	because, you know, you have a black candidate does	3	Democrat, Cecil Brown -- you point out that a
4	not mean that candidate is the black preferred	4	black Democrat lost to the white Democrat in the
5	candidate. Which I think is the assumption that	5	2015 primary for public service commissioner.
6	is made in a lot of Orey's.	6	A. Correct.
7	Q. So you're not sure if Ms. James was the	7	Q. And is the significance of the fact the
8	black preferred candidate or not?	8	same as what we just discussed?
9	A. It's hard for me to think that she was	9	A. Correct. That if Brown was the
10	if she only got 10 percent of the vote.	10	preferred candidate to black voters in the
11	Q. Okay. So your conclusion is that she	11	primary, which again, which is likely given the
12	likely was not the preferred black candidate in	12	margin of his victory, even holding a political
13	this case?	13	party of that candidates' constant, black voters
14	A. Correct. Well, if 49 percent of the	14	don't necessarily favor black candidates.
15	district is African American and you have three	15	Q. And so your view is that because black
16	candidates, to only get 10 percent would suggest	16	voters did not necessarily prefer the black
17	that she was not the preferred candidate of	17	candidate, black voters, at least in the
18	African Americans.	18	Democratic primary, are not being driven by racial
19	Q. What is the significance of that fact?	19	bias?
20	A. That black candidates are not	20	A. Correct.
21	necessarily black preferred candidates.	21	Q. Are you aware of any similar evidence
22	Q. Why is that relevant to your analysis?	22	showing that white voters are not being driven by
23	A. Well, it's relevant, right, because in	23	racial bias in their choice of candidates?
24	the Orey report, right, he talked a lot about the	24	A. I don't think that's been analyzed. I
25	black candidate, right? So if you look at	25	mean, I haven't seen anything in either Orey's
	Page 99		Page 101
1	Table 1, black candidate. Table 2, black	1	report or -- that looked at that.
2	candidate. A black candidate is not synonymous	2	Q. But there's nothing in your report that
3	with black preferred candidate. A black preferred	3	goes to that?
4	candidate could be Jim Kitchens, could in fact be	4	A. Correct.
5	a white candidate. And so we can't simply look	5	Q. Would you agree that in the Democratic
6	and see how African American candidates do, we	6	primary context that partisan affiliation cannot
7	have to look at how African American preferred	7	explain why black and white Democrats choose
8	candidates do.	8	different candidates?
9	Q. And so in this particular race in 2008,	9	A. Well, yes, because the party is held
10	were black voters voting cohesively for Kitchens?	10	constant as I say in paragraph 7.
11	A. I don't have that -- I don't know. I	11	Q. If black voters don't have a stronger
12	don't see that in -- I don't know if they were or	12	preference for black Democrats over white
13	not. I can tell you they almost certainly were	13	Democrats, in your view does that preclude a
14	not voting cohesively for James.	14	finding of racially polarized voting?
15	Q. And what do you think white voters	15	MR. WALLACE: Would you repeat that? I
16	were -- who white voters were voting for?	16	think you're asking him for a legal opinion.
17	A. My assumption is they were voting for	17	Q. (By Mr. Cheung) If black voters don't
18	the Republican incumbent, Smith, but, again, I	18	have a stronger preference for black Democrats
19	don't know.	19	over white Democrats in your view does that
20	Q. And in that election, Kitchens won?	20	preclude a finding of racially polarized voting?
21	A. Correct.	21	MR. WALLACE: I think that's probably
22	Q. And so do you think in all likelihood	22	not a legal opinion so I think you can answer it.
23	Mr. Kitchens was the preferred candidate of black	23	THE WITNESS: Does it preclude it no,
24	voters?	24	but it makes it more difficult because it suggests
25	A. I do.	25	that party is what's really working here, not

	Page 102		Page 104
1	racial analyst.	1	factors that the candidate ends up being the
2	Q. (By Mr. Cheung) Is it possible that	2	candidate preferred by blacks. So the black
3	black voters supported the white Democrat for	3	preferred candidate, the race of that candidate is
4	reasons related to race?	4	one factor among several others that go into that
5	A. Is it -- sure, it's possible that black	5	calculation for people.
6	Democrats supported a white Democrat, sure.	6	Q. And so you agree that just because that
7	Q. What are some reasons that would fit	7	the race of the candidate does not determine who
8	that pattern?	8	black voters vote for does not mean that those
9	A. Well, if they thought that the white	9	voters are making decisions independently of race?
10	Democratic candidate was more aligned with their	10	A. Making decisions independently. Say
11	views, with the voters' views on certain issues.	11	that again, please.
12	Q. And by issues you mean issues that have	12	Q. Would you agree that the fact that black
13	a racial component to them?	13	voters are not choosing candidates on the basis of
14	A. Yeah, issues that are salient to the	14	race, that does not preclude black voters from
15	black community. I mean, they may not have a	15	selecting candidates for reasons related to race?
16	racial component to them, but they may be of	16	A. Yes, that does not preclude that. They
17	interest, or of higher interest.	17	certainly could be doing that as well.
18	Q. Is it possible that black voters	18	Q. And so in your reports here you do not
19	nominate white Democrats because they view white	19	conduct any analysis to rule out the possibility
20	Democrats as being more electable in the general	20	that black voters support candidates because of
21	election compared to black candidates?	21	their views on race issues?
22	A. That's possible, sure.	22	A. Correct.
23	Q. Is it possible that a white Democrat is	23	Q. I have a few questions about your
24	better aligned with black voters on issues of	24	experience with racially polarized voting, which
25	racial equality as opposed to a black candidate	25	we talked a little bit about earlier. Could you
	Page 103		Page 105
1	elected in a primary?	1	give me a brief overview of the experience you
2	A. Yeah, in a given primary, sure, it's	2	have with the subject of racially polarized
3	possible.	3	voting?
4	Q. Is it possible that black voters think	4	A. My experience as a professor?
5	that the white Democratic is a better messenger on	5	Q. As a professor or as an expert.
6	issues of racial equality as compared to a black	6	A. Sure. So my experience is I have read
7	candidate?	7	the articles that have used or have examined
8	A. Possibly.	8	racially polarized voting. I'm familiar with the
9	Q. Is it possible that black voters support	9	reason those analyses are conducted, and -- yeah,
10	a white Democrat over a black Democrat because the	10	I have consumed scholarship.
11	white Democrat is endorsed by prominent black	11	Q. Have you taught courses about racially
12	individuals?	12	polarized voting?
13	A. Sure.	13	A. Racially polarized voting would not be
14	Q. Did you consider those possibilities	14	the topic of a class. It might be something
15	when reaching a conclusion that black voters	15	that's done in a class. And, no.
16	support white Democrats and therefore their vote	16	Q. Have you discussed it as a topic within
17	preference is non-basis of race?	17	a class?
18	A. Well, I think those things confirm what	18	A. Not that I recall.
19	I said, right, that they're making this choice,	19	Q. And have you written any articles about
20	this strategic choice, as opposed to based on any	20	racially polarized voting?
21	number of factors. I have no -- unless we go out	21	A. No. Unless you tell me I did.
22	and we have survey data of what these voters, you	22	Q. Have you given any talks about racially
23	know, what they said their preferences were in	23	polarized voting?
24	these elections, I don't think we can eliminate	24	A. No.
25	anything. But certainly I think there are more	25	Q. Have you ever done any racially

Page 107

Q. Have you spoke to him before?
A. Sure, I've spoken to him.
Q. Have you spoken to him about this case?
A. No, but so -- we were both at a conference together in March and we ran into each other on the elevator, and he said something like, oh, I see we're going up against each other. I said, oh, yeah. And that was basically the extent of it. It was a very casual -- I didn't mention anything. He just brought it up kind of like to break the tension, I guess or whatever. Then I ran into him at the hotel bar later on and just had conversation about how he's doing, his health, the great undergraduate program he's running at Jackson State.
Q. Did you say anything to him about this case?
A. Not besides what I just told you.
Q. Did you discuss racially polarized voting analyses?
A. No.
Q. Anything else you can think of from that conference encounter?
A. Not that I can recall.
Q. Okay. I'd like to turn to ecological

Page 109
That does not mean the ecological inference, though, is the right way to approach the analyses in this case or in all cases, and it also does not, you know, mitigate any of the criticisms of ecological inference that other scholars have noted.
Q. Do you know of any empirical methods that would be better at generating racially polarized voting estimates compared to ecological inference?
A. I do not.
Q. So in your September report you identify some general concerns with EI -- with ecological inference as a method in the racially polarized voting context; is that right?
A. That is right.
Q. Did you raise those methodological concerns in your January report?
A. In my January report I did not do any work regarding ecological inference.
Q. Dr. Orey also used ecological inference in his original October 2022 report; is that right?
A. I believe that's correct.
Q. Is there a reason why your January

	Page 110		Page 112
1	report didn't address methodological concerns with	1	because you can't test the key assumption.
2	ecological inference?	2	Q. So you said a lot there and I just want
3	A. I wasn't focused on that. I was focused	3	to break it down.
4	on other things.	4	In paragraph 14, like you said, Dr. Orey
5	Q. In paragraph 13 of your September	5	said that King's solution overcomes this
6	report, you discuss a concern with ecological	6	limitation about variation across precincts?
7	inference methods because they assume that	7	A. Correct.
8	minority voters behave similarly across different	8	Q. Do you agree that EI overcomes this
9	precincts; is that right?	9	precinct variation issue, at least King's method
10	A. Correct.	10	of EI?
11	Q. You then go on to say that that	11	A. I'm not sure. I have correspondence
12	assumption is, quote, untenable; is that right?	12	from one of the authors of the criticism that says
13	A. Correct.	13	that that assumption still applies to King's
14	Q. Do you cite any authority for that	14	method as well. But I'm not -- I'm not
15	conclusion?	15	methodologically sophisticated enough to dig under
16	A. That it's untenable?	16	the hood and determine that for myself.
17	Q. Yes.	17	Q. Do you know -- if the precinct variation
18	A. That minorities are relatively	18	assumption is problematic, do you know what effect
19	affluently racially integrated precincts and	19	that has on the estimates here?
20	treated as distinguishable -- that assumption is a	20	A. Sure, because if it's -- if the precinct
21	fact, right? So no, -- so my conclusion that it's	21	assumption is -- it invalidates the estimates
22	an untenable assumption is that the proportion of	22	because you're making assumptions about voters and
23	white and minority voters who support each	23	you're implying that a voter in a district here in
24	candidate is the same at each precinct. We can	24	Jackson, the same factors, you have the same
25	debate whether or not that's a tenable	25	percentage of the precinct here in Jackson as you
	Page 111		Page 113
1	consumption. In my opinion that's a completely	1	would a precinct down in the suburbs. That
2	untenable assumption at each precinct. Are there	2	assumption would lead to biased estimates.
3	no differences between precincts, right, regarding	3	Q. Do you know if that bias leads to an
4	the minority and white support? I don't know	4	overestimate or an underestimate?
5	anybody who would argue that that's a tenable	5	A. I do not.
6	assumption.	6	Q. You did not perform any analysis in your
7	Q. Then in paragraph 14 of your September	7	report to determine whether the bias would be an
8	report you discuss an issue about using Ordinary	8	underestimate or an overestimate?
9	Least Squares regression in question to estimate	9	A. Correct.
10	vote shares. Do you see that?	10	Q. In paragraphs 14 and 15 you cite this
11	A. I do.	11	1998 article from Wendy Cho; is that right?
12	Q. Do you know if Dr. Orey used Ordinary	12	A. I do.
13	Least Squares in his analysis?	13	Q. Could you walk me through what Dr. Cho's
14	A. My understanding is he used King's	14	critique of ecological inference?
15	ecological inference.	15	A. Sure. Dr. Cho's critique is that in
16	So the Ordinary Least Squares, right, is	16	order for ecological inference to be correct and
17	a way to show -- a way to show how the ecological	17	appropriate, right, the specification has to be
18	inference technique run by King, which is based on	18	correct. That is the model specification has to
19	some of the same assumptions is -- can lead to	19	be spot on. Because otherwise what will happen --
20	biased parameters. The conclusion that the	20	I give an example that she gives. The parameters,
21	solution addresses the limitation. But assumes	21	once again, right, are biased. So the big
22	that the distribution in unimodel, but the data,	22	problem, though, is we don't really know if we
23	of course, are bimodel. So that undermines one of	23	have a specification proper -- proper
24	the key assumptions. So EI might work, but	24	specification. We don't know whether or not the
25	there's no way you asses whether or not it works	25	model we're estimating is actually the true model.

	Page 114		Page 116
1	And so given that, it's hard to evaluate whether	1	so I would say it's -- you know, that would be
2	or not the model we estimate is accurate or not.	2	kind of external validity for the kind of
3	Q. And so Dr. Cho's discussion in paragraph	3	measures.
4	14, that's based on a hypothetical dataset where	4	I want to point out that neither of my
5	she set some level of precinct level variation; is	5	reports really hangs on this ecological inference
6	that correct?	6	issue, but yes.
7	A. That's correct, right, to see what the	7	Q. Okay. I'd like to show you one of those
8	bias would be. So in a simulation, she knows the	8	articles.
9	true values. What we're trying to do with data,	9	A. Sure.
10	is recover the true values, right, recover data we	10	(Exhibit 4 marked for identification.)
11	don't have from data we have. But one way to test	11	Q. (By Mr. Cheung) Do you have what's now
12	whether or not we can do that accurately is to	12	been marked as Exhibit 4?
13	generate our own data and run simulations and then	13	A. I do.
14	we can do comparisons, which is what she does.	14	MR. WALLACE: Is it 4 or is it 5? I
15	Q. But for your report, you did not look at	15	thought we had two reports from him, two reports
16	the underlying data to test the assumption?	16	from Orey. This should be 5?
17	A. Correct.	17	MR. CHEUNG: We only showed him the
18	Q. And so you wouldn't know if -- to the	18	first Orey report. We didn't show him the second
19	extent that there is a bias, whether that results	19	one.
20	in an underestimate versus an overestimate of	20	MR. WALLACE: We have not marked the
21	racially polarized voting?	21	second. Thank you.
22	A. Correct.	22	Q. (By Mr. Cheung) Would you like to take
23	Q. On this unimodel assumption point, does	23	a moment to review that article?
24	your report cite any academic publications after	24	MR. WALLACE: A moment or a week?
25	1998?	25	THE WITNESS: I will skim it.
	Page 115		Page 117
1	A. It does not.	1	Q. (By Mr. Cheung) Let me know when you're
2	Q. Is there a reason for that?	2	ready to talk about it.
3	A. I didn't see any.	3	A. All right.
4	Q. Do you know if ecological inference has	4	Q. Thank you for reviewing for the pop
5	continued to be used to estimate racially	5	quiz.
6	polarized voting since 1998?	6	I'd like to turn to page 274 of that
7	A. It has.	7	article, which I think is where the first
8	Q. Do you know whether ecological inference	8	highlighting is.
9	has been accepted by courts as a reliable method	9	A. Yes.
10	since 1998?	10	Q. Do you see the first highlight where it
11	A. My understanding is it has.	11	says: There is no convincing evidence that either
12	Q. Are you familiar with recent scholarship	12	iterative EI or RxC is biased toward or against
13	showing that ecological inference estimates of	13	findings of RPV.
14	racially polarized voting could generate results	14	A. I do.
15	that are similar to that of exit polls?	15	Q. Do you have any reason to disagree with
16	MR. WALLACE: Similar to what?	16	that finding?
17	MR. CHEUNG: Results from exit polls.	17	A. No.
18	MR. WALLACE: Oh, okay.	18	Q. If we turn to the next highlight at the
19	THE WITNESS: I'm vaguely aware of that,	19	bottom of that page going to the top of 275, could
20	yes. Not specifics, but yes.	20	you read that sentence for us?
21	Q. (By Mr. Cheung) Does that tell you	21	A. "For social scientists and legal
22	anything about the accuracy of EI as a method in	22	scholars interested in analyzing RPV when only
23	racially polarized voting context?	23	ecological data are present, both approaches can
24	A. Well, I think it -- I think that's	24	be relied upon as they lead to substantively
25	evidence that you give as some consolation. And	25	similar conclusions about the presence or absence

	Page 118		Page 120
1	of RPV."	1	A. I don't recall.
2	Q. Do you have any reason to disagree with	2	Q. Can you turn to Appendix 2 of Dr. Orey's
3	that sentence?	3	report, I think is page 44, to confirm.
4	A. No.	4	A. Yes, it appears he did use both EI and
5	Q. And if I could trouble you to read the	5	RxC.
6	next highlighted sentence on 275.	6	Q. And in terms of that article I just
7	A. Here we go. "Beyond this, we	7	showed you of Plaintiff's Exhibit 4, do you know
8	demonstrate that both the iterative EI and the RxC	8	the authors of this article?
9	methods produce results in line with individual	9	A. I've met Barreto and Collingwood I think
10	level exit poll data."	10	maybe once, but it was a very, like, in passing at
11	Q. I'd like to turn to the next page, 276.	11	a conference thing. I don't know them, know them.
12	I think I may have missed the highlight in here.	12	Q. Are you familiar with their work?
13	Do you see this first complete sentence of that	13	A. I am.
14	first paragraph beginning with: Since the late	14	Q. Do you know if those authors are
15	'90s?	15	reputable in the field?
16	A. I do.	16	A. They are.
17	Q. Could you read that sentence for us?	17	Q. In paragraph 4 of your September report,
18	A. "Since the late 1990s, EI has been the	18	I think you identify a different issue that you
19	benchmark method courts rely upon to evaluate RPV	19	say can have serious implications for any analysis
20	patterns in voting rights lawsuits."	20	using ecological inference. Do you see that?
21	Q. Is that consistent with your	21	A. I do.
22	understanding of the use of EI?	22	Q. You include a quote here. Would you
23	A. It is.	23	mind reading that to us?
24	Q. And I believe I may have forgotten to	24	A. Sure. "For example, if white voters
25	ask you on 275, that sentence that begins with:	25	tend to be conservative and most potential
	Page 119		Page 121
1	Beyond this we demonstrate that both...	1	minority candidates are very liberal, strong
2	A. I read that.	2	minority candidates may elect not to run because
3	Q. Do you agree with that sentence?	3	they are ideologically out of step. A court that
4	MR. WALLACE: Agree with? Object to the	4	inferred disparate treatment from white voters'
5	form of that.	5	lack of support for minority Democrats relative to
6	THE WITNESS: I agree it's what it says,	6	white Democrats would be doubly in error: White
7	yeah.	7	voting patterns may reflect ideological as well as
8	Q. (By Mr. Cheung) Do you have any reason	8	valence differences between minority candidates
9	to disagree with that conclusion?	9	and the white candidates whom the court treats as
10	A. I do not.	10	counterfactuals."
11	Q. Thank you. Just one more on 283. Can	11	Q. Thank you.
12	you read that highlighted sentence on 283?	12	And that quote is from a 2016 article by
13	A. "We also did not find any convincing	13	Elmendorf?
14	evidence that EI will lead analysts to reach	14	A. Correct.
15	conclusions in favor of RPV."	15	Q. Do you consider that Elmendorf article
16	Q. Do you disagree with that sentence?	16	to be a reliable source?
17	A. No.	17	A. I do.
18	Q. And so just to sum up here of the	18	Q. So taking a look at the first part of
19	highlighted -- of the sentences that you've read	19	that quote about minority candidates electing not
20	from this article, you don't have any reason to	20	to run because they may be ideologically out of
21	disagree with those findings?	21	step. Could you explain why a strong black
22	A. Correct.	22	minority candidate who is a conservative would
23	Q. Do you know if Dr. Orey's report used	23	decide not to run in Mississippi?
24	the two EI methods, iterative and RxC, described	24	A. Who's a conservative?
25	in this article?	25	Q. Uh-huh. (Affirmative response.)

	Page 122		Page 124
1	A. No.	1	Q. Are you aware of any black conservatives
2	Q. And so if racially polarized voting did	2	being elected to the Mississippi Supreme Court?
3	not exist, a black conservative likely would	3	A. No.
4	choose to run because they can win the white	4	Q. Are you aware of conservative black
5	conservative votes?	5	candidates winning elections in Mississippi,
6	A. Maybe. But also if there was no	6	generally?
7	incumbent, if there was an open seat, my hunch is	7	A. Winning elections, I don't know about
8	that a black conservative against any Democrat	8	generally. I can tell you not in District One.
9	would win regardless -- regardless of -- with the	9	Q. Is it also possible that candidate's
10	incumbency advantage no open seats. I'd love to	10	strategic decision making might result in an
11	see that election.	11	underestimation of the level of racially polarized
12	Q. And so do you disagree with this quote	12	voting?
13	that says: Strong minority candidates may elect	13	A. Well, I don't know, I mean, because if
14	not to run if white voters tend to be	14	they're not on the ballot they can't be voted for.
15	conservative?	15	So I don't know how you estimate voting without
16	A. Strong minority candidates may elect not	16	voting. So I don't know how to answer that.
17	to run if -- can you say that again?	17	Q. Is it possible that candidate's
18	Q. Yeah, please take a look at the first	18	strategic decision making, such as electing not to
19	sentence of that quote.	19	run, might result in an underestimation of the
20	A. "If white voters tend to be conservative	20	level of white voter discrimination?
21	and most potential minority candidates are very	21	A. Well, again, if they're not running --
22	liberal, strong minority candidates may elect not	22	MR. WALLACE: Object to the form. I'm
23	to run because of their ideological --	23	not sure that white voter discrimination is a term
24	So what you're asking, then, is what?	24	that's been used in this deposition so far. So I
25	Q. Do you agree with that sentence or do	25	believe it's vague.
	Page 123		Page 125
1	you disagree with it?	1	THE WITNESS: Sure, please clarify the
2	A. Yeah, I agree with that sentence.	2	vagueness.
3	Q. And so why would strong minority	3	Q. (By Mr. Cheung) Sure. Is it possible
4	candidates elect not to run if white voters are	4	that candidate's strategic decision making such as
5	conservative and minority candidates are liberal?	5	electing not to run might result in an
6	I don't understand that. I'd like for you to	6	underestimation of the level of racial bias among
7	explain the sort of causation or the thinking	7	white voters?
8	behind this quote.	8	A. I'm not aware of -- I'm not aware of
9	A. Because they're not likely to win. And	9	evidence that shows racial bias among white
10	so the assumption is that the white voters are	10	voters, so I don't know how to answer that
11	conservative and aren't going to vote for a black	11	question.
12	candidate. And so the -- and so they're going to	12	Q. Okay. I have a copy of the Elmendorf
13	take a pass because they know they have no chance	13	article. I can provide you a copy of it if you'd
14	of winning.	14	like to see it, or I can read you a quote from it.
15	Q. Why would a black conservative candidate	15	A. You can read me a quote.
16	not have a chance of winning?	16	Q. In that Elmendorf article it says:
17	A. A black conservative candidate would	17	Candidate's strategic behavior in anticipation of
18	have a chance of winning, sure. But this is	18	white voter discrimination may lead courts to make
19	talking about if white voters are conservative in	19	grave errors about who is a high quality or low
20	most potential minority candidates are very	20	quality candidate and then consequence to badly
21	liberal. Strong minority candidates may elect not	21	understate white voter discrimination.
22	to run.	22	A. Okay.
23	Q. And so the assumption here is that the	23	Q. Do you have any reason to disagree with
24	minority candidate would be liberal?	24	that statement?
25	A. That's the assumption in the quote.	25	A. No.

Q. So you would agree that strategic
behavior by candidates may lead to an underestimate of racial bias among voters?
A. May lead.
Q. In work that you've done outside of this case, have you used regressions or other statistical methods?
A. Like in my scholarly research?
Q. Yes.
A. Yes.
Q. And in reports you've prepared for other cases?
A. I'm trying to think. I used -- did I do regression in Alabama? I don't think so. In Colorado, I think we did do some analysis in Colorado but that was the campaign finance case.
Q. Do your reports in this case utilize regressions or any other statistical methods?
A. I don't believe I do, no.
Q. Did you perform any statistical analyses that you've omitted from the report?
A. I did not.
Q. I'd like to turn to sort of the partisan balance, if any, of nonpartisan elections?
A. Can I use the bathroom first?

Page 127
Q. Sure.
(Off the record.)
Q. (By Mr. Cheung) Dr. Bonneau, we mentioned earlier that the ballots for Mississippi Supreme Court elections don't identify the partisan affiliation of Supreme Court Justice candidates; is that right?
A. That is correct.
Q. You also testified earlier about how that omission of partisan information may lead to some voters misidentifying the candidate and voting for the wrong candidate; is that right?
A. Correct.
Q. And so in your January report, you
include a quote that says -- I think paragraph 41:
Folks who tend to vote Republican have found a way to learn the identity of judicial candidates
favored by Republicans, and the same has been true for Democratic voters.

Do you see that?
A. That's a quote from Salter, yes.
Q. Salter 2017 is an op-ed, right?
A. Correct.
Q. Do you know what evidence Salter uses to back up that claim?
A. I do not. But that quote is consistent with my research, right, which I talked about earlier, that even though voters make more mistakes in nonpartisan elections, they're still able, overwhelmingly, to identify the correct candidate.
Q. That research you just mentioned, that's not cited in your report?
A. It is. It's paragraph 40.
Q. That's the Bonneau and Cann source for 2015?
A. Correct. And so the Salter paragraph just says that the general thing that my co-author and I found in that book is also a perception that happens in this state as well.
Q. And so your 2015 piece does not look at Mississippi in particular?
A. It looks at all states that have elections. So Mississippi is part of it.
Q. That's the same source that we discussed earlier in which you ran an experiment using ads that you created?
A. Well, it wasn't a -- yes, that's a
book -- so there are several chapters in that book. So we embedded surveys into -- we embedded
Page 127

Page 129
experiments into national surveys, and so we have a nationwide survey that we bought time on to insert our own questions. And so there are Mississippians in that survey. How many, I can't tell you.
Q. So you don't know the sample size of the Mississippians in that study?
A. Correct.
Q. Okay. And in that study you did not look at voters' awareness of the partisan affiliations of candidates running for the Mississippi Supreme Court?
A. Not specifically that, no.
Q. In paragraph 3 of your September report you discuss some efforts by Latrice Westbrooks' campaign to associate herself with Benny Thompson, Joe Biden and Mike Espy; is that right?
A. I do.

MR. WALLACE: Paragraph what?
MR. CHEUNG: Three of the September report.
Q. (By Mr. Cheung) You then conclude that it was clear to those following the race that Judge Westbrooks was a member of the Democratic party and her campaign was assisted by high

	Page 130		Page 132
1	profile Mississippi Democrats. Do you see that?	1	voters, which I think is a given. But four years
2	A. I do.	2	prior, Posey ran as a Democratic candidate and
3	Q. Is that conclusion based on those	3	defeated Haley Barbour's nephew, and he won as a
4	campaign materials that you identify or is there	4	Democrat each time he served in the State Senate.
5	something else to that?	5	So if Orey had analyzed the 2007 race,
6	A. No, my conclusion about how she tried to	6	he probably would have found that Posey was the
7	align herself with high profile Democrats is based	7	black preferred candidate. But then four years
8	on the evidence cited there how she associated	8	later, all of a sudden, Posey is not the black
9	with high profile Democrats.	9	preferred candidate. Same dude, same preferences,
10	Q. Do you agree that there are voters who	10	the only difference is one year he was a Democrat,
11	cast a ballot in the 2020 election who may not	11	the other year he was a Republican. Which, to me,
12	have seen that messaging?	12	shows the importance of political party, when you
13	A. Sure.	13	have somebody who's no different except the party
14	Q. But every voter who receives a ballot	14	ID after their name.
15	sees the omission of a party affiliation next to	15	Q. And so you're saying that because Posey
16	the candidate's name.	16	was a black preferred candidate in '07 as a
17	A. Correct.	17	Democrat and then he suddenly lost black voter
18	Q. And in terms of the Mississippi	18	support in 2011 as a Republican, partisanship must
19	Democrats that you identified Ms. Westbrooks as	19	be the reason. Why?
20	associating herself with, were they themselves the	20	A. It's the most likely reason.
21	preferred candidate for black voters in their	21	Q. You stand by your conclusion that the
22	races?	22	only difference in the two elections was his
23	A. I don't know that. I'm assuming, but I	23	political party?
24	don't know.	24	A. As far as I know, unless someone can
25	Q. Do you have any reason to doubt that?	25	tell me there was another difference between the
	Page 131		Page 133
1	A. I do not.	1	two elections.
2	Q. One thing earlier, I think you mentioned	2	Q. Is Posey a white candidate?
3	some correspondence you had with someone about	3	A. Yes.
4	whether or not there are criticisms of the EI	4	Q. In 2007, his opponent, Charles Barbour,
5	method that persist?	5	was he white?
6	A. Correct.	6	A. Yes.
7	Q. Are you able to provide that	7	Q. In 2011, Addie Green, was she black?
8	correspondence to us?	8	A. Yes.
9	A. I think I can, yeah. I e-mailed --	9	Q. So the races of the candidates, of the
10	MR. WALLACE: We will take it under	10	opponent, also changed between 2007 and 2011?
11	consideration. I think you're probably entitled	11	A. Correct.
12	to have it but we need to talk about that.	12	Q. Can you rule out the possibility that
13	MR. CHEUNG: Okay. Thanks, Mike.	13	black voters voted for Addie Green because she was
14	Q. (By Mr. Cheung) I'd like to turn to	14	a black candidate?
15	paragraph 5 of your September report. I think	15	A. Well, that would have to assume that the
16	there you discuss an example of a candidate named	16	black preferred candidate, Posey, all of a sudden
17	Lynn Posey. Do you see that?	17	would not have been black preferred, right? So
18	A. I do.	18	what would cause him to lose that preference. I
19	Q. What is the significance of this	19	would argue, right, that it's party. That had
20	example?	20	Posey run as a Democrat in 2011, he would have
21	A. Well, to me this shows how it's -- how	21	been the black preferred candidate. But because
22	party is a pretty important factor. So if we take	22	he ran as a Republican, he was not.
23	this race here. We have Lynn Posey who defeated	23	Q. Do you have any reason to think that if
24	Addie Green. And Professor Orey talked about how	24	it were a primary race between Green and Posey,
25	Green was the preferred candidate of the black	25	that Posey would have won the votes of black

	Page 134		Page 136
1	voters?	1	necessarily assume that. You know, I think that's
2	A. Well, he did in 2007. So unless you can	2	a -- I think party changes like that, voters tend
3	tell a story why he would all of a sudden lose	3	to be pretty cynical about. If Joe Manchin would
4	them. I mean, to me, this gets into the whole	4	have changed, right, people would be like, oh,
5	black candidate versus black preferred. Posey was	5	yeah. Well, he's already that anyway.
6	a white candidate. He was the black preferred	6	So I don't know if I -- I mean, it's
7	candidate in 2007. If he were running in a	7	possible for some voters, sure, but I don't know
8	Democratic primary, my assumption would be he	8	if that's a widespread thing.
9	would still be the black preferred candidate.	9	Q. So your view is that if Joe Manchin
10	This is akin, I think, to the Ceola James	10	became a Republican, he wouldn't lose any
11	situation, where she was a black candidate but she	11	Democratic votes?
12	was not the black preferred candidate. Again,	12	A. He would lose some Democratic votes,
13	it's hypothetical. We don't know. But what we do	13	sure. But he'd do it, right, because he knows he
14	know is Posey had a history of being a member of	14	can't win as a Democrat so he wouldn't care.
15	the Democratic party, of winning as a Democrat,	15	Q. In paragraph 7 of your September report,
16	winning with black support, then all of a sudden	16	you note that racial polarization did not prevent
17	now he loses in.	17	a black candidate from winning the Democratic
18	Q. And so between 2007 and 2011, Posey's	18	primary?
19	party affiliation changed?	19	A. Correct.
20	A. Correct.	20	Q. But winning the Democratic primary
21	Q. You would also agree that the race of	21	doesn't mean that the candidate ultimately wins
22	his opponent also changed?	22	elected office, right?
23	A. Well, no, the race of his opponent	23	A. Correct.
24	stayed the same. But he was running against a	24	Q. And so a black preferred candidate can
25	black candidate in 2011 rather than a white	25	win the Democratic primary and still ultimately be
	Page 135		Page 137
1	candidate in 2007.	1	unsuccessful because of opposition from white
2	Q. All right.	2	voters in the general election?
3	A. But Addie Green's race did not change	3	A. Yes.
4	between '07 and '11.	4	Q. In paragraph 8 you have a quote about
5	Q. And when candidates switch parties, do	5	racial polarization in the primary. Can you
6	their positions on policy issues typically change?	6	explain the significance of that quote, please?
7	A. You know, not really. I mean, the	7	A. Sure. So what that quote does, is it
8	evidence that I've read suggests that basically	8	talks about how -- you're talking about preference
9	it's a -- they're just realigning, right, to be	9	for one candidate relative to the other, so it's
10	either more similar, right, to the party that	10	all relational. It's not necessarily about any
11	represents their views or because they think it's	11	kind of absolute support. So it's not a signal of
12	an electoral advantage.	12	how much minority voters like the preferred
13	But, you know, when Jim Jeffreys went	13	candidates, it's just how much do they like the
14	from a Republican independent, his party positions	14	preferred candidate relative to who that preferred
15	didn't change. If Joe Manchin would change from	15	candidate is running against.
16	Democrat to an independent Republican, his	16	Q. Why is that fact relevant to your
17	position wouldn't change. He would just feel like	17	report?
18	it was either, A, to his electoral advantage to do	18	A. Well, I think that it's relevant to
19	that, or because he feels that the new party that	19	report because it suggests that the candidates
20	he changed into better reflects his views.	20	matter, that it's not just some kind of racial
21	Q. So even if the candidate's actual policy	21	signal, right? So it's not just whether or not
22	views don't change, does the change in party	22	you have a black candidate, right, but it's about
23	affiliation signal to voters that their policy	23	who it is relative to their opponents.
24	positions may have changed?	24	Q. But that point about relative preference
25	A. It might. I don't think we can	25	is true of all elections, right, not just

Christopher Bonneau 9/29/2023

	Page 138		Page 140
1	primaries?	1	Q. Okay. And since 1960, as we discussed
2	A. True.	2	earlier, black and white voters have essentially
3	Q. I just want to make sure I'm	3	switched parties and affiliation?
4	understanding. Are you suggesting that we	4	A. They have.
5	shouldn't look at election results to measure	5	Q. And after that switch in party
6	racial polarized voting?	6	identification, black and white voters continued
7	A. No.	7	to vote in separate blocks; is that right?
8	Q. I'd like to turn to your January report	8	A. For different political parties. Well,
9	for a moment, in paragraph 38 in particular.	9	blacks overwhelmingly vote for the Democratic
10	A. Okay.	10	party, whites are more split, yes.
11	Q. You cite a source from 1960 for the	11	Q. Does that history tell you anything
12	proposition that one of the best predictors of how	12	about why the parties are split along racial lines
13	individuals will vote is partisan identification.	13	today?
14	Do you see that?	14	MR. WALLACE: I think it's asked and
15	A. I do.	15	answered, but go ahead.
16	Q. Do you know how the authors of that 1960	16	THE WITNESS: Does what history tell me?
17	source reached that conclusion?	17	Q. (By Mr. Cheung) The fact that the
18	MR. WALLACE: All right. I'm going to	18	parties are still divided by race despite the
19	interpose the same objection as being outside the	19	change in party identification.
20	scope of the Court's order, but he may respond.	20	A. I don't know that I would say the
21	THE WITNESS: Let me just say, it's an	21	parties are divided by race. I would say that
22	EG, right? So, for example, this is as a	22	blacks are overwhelmingly members of and vote for
23	canonical study of voting, right, of the American	23	the Democratic party and whites are more mixed. I
24	voter was done through survey research, was a	24	think that's consistent.
25	large national survey. Everything that's come	25	Q. I'd like to turn back to Dr. Orey's
	Page 139		Page 141
1	since that canonical site has found the same	1	report again, pages 12 to 14 that you reviewed
2	thing. So it looks weird because it's 1960. When	2	earlier.
3	I was writing the report it was a convenient	3	A. Okay.
4	citation that I had off the top of my head as	4	Q. I think you testified earlier that you
5	opposed to saying what the newest one was that	5	don't dispute Dr. Orey's calculations and his
6	found that same that they did in 1960.	6	data; is that correct?
7	Q. (By Mr. Cheung) Thank you. Appreciate	7	A. Correct.
8	that. But do you know how the authors came to	8	Q. Do you agree that in these by biracial
9	that conclusion?	9	general elections that Dr. Orey sampled, he
10	A. Surveys.	10	correctly identified which candidates were black?
11	Q. Surveys asking who?	11	A. Yes.
12	A. Of voters, right, of asking voters like	12	Q. And do you agree that he correctly
13	party ID, who did you vote for, things like that.	13	identified the candidates that were preferred by
14	Q. Do you know if the authors considered	14	black voters?
15	the possibility that partisan identification	15	A. Yes.
16	itself is related to a voters race?	16	Q. And do you agree that in these general
17	A. Partisan -- I'm sure they did. I can't	17	elections in which a black candidate ran against a
18	remember the specifics.	18	white candidate, black voters generally prefer the
19	Q. Do you know if the authors of that	19	black candidate?
20	survey compared the strength of partisanship	20	MR. WALLACE: Object to the form
21	versus race as a predictor?	21	generally as vague, but he may answer.
22	A. No, I mean, they wouldn't have done	22	THE WITNESS: Yes.
23	that. If they did, it would have been, you know,	23	Q. (By Mr. Cheung) Black voters usually
24	using data that is now 70 years old. So, of	24	preferred the black candidate?
25	limited utility.	25	A. Yes.

	Page 142		Page 144
1	Q. Did white voters usually prefer the	1	A. Well, if they're satisfied with the
2	white candidate?	2	incumbent.
3	A. Yes.	3	Q. Any other considerations?
4	Q. And in most of these elections involving	4	A. Not that I can think of off the top.
5	black and white candidates, did the candidate	5	Usually if you have an incumbent who's vulnerable,
6	preferred by black voters lose?	6	they will be challenged. And what makes an
7	A. In which tables?	7	incumbent vulnerable could be an incumbent who's
8	Q. Looking at all three tables, Tables 1,	8	out of step with the electorate, an incumbent who
9	2 , and 3.	9	can't do their job well or anything else.
10	A. Well, in Tables 1 and 2, yes. But in	10	Q. But it's not because the incumbent is
11	Table 3, it's much more split.	11	black that there wouldn't be a challenge.
12	Q. What if we look at all three tables in	12	A. I don't understand how that would work.
13	the aggregate?	13	Q. Right. I'm just trying to understand
14	A. Well, in the aggregate -- so we have two	14	your answer that black incumbents are not at risk
15	elections, then we have five, so it's seven. So	15	of losing their seats?
16	we have one and seven there.	16	A. Not in District One, at least they
17	So 5 out of 10 and 1 out of 7 , so that's	17	haven't been.
18	a total of 6 out of 17 .	18	Q. So your view is that black incumbents in
19	Q. Could you do that count for me again?	19	District One have no risk of being challenged?
20	A. Sure. In Table 1 we have 0 out of 2 .	20	A. Well, there's always a risk of being
21	Q. Right.	21	challenged, they just have never been challenged.
22	A. In Table 2 we have 1 out of five, so 1	22	Q. And that's based on a sample of how many
23	out of 7. In Table 3 we have 10 elections and I	23	elections?
24	count 5 out of 10 .	24	A. Three or four.
25	Q. And that's the number of instances of --	25	Q. Would you agree that unopposed judicial
	Page 143		Page 145
1	A. The black candidate winning.	1	elections are not that unusual?
2	Q. So in most of the 17 elections, the	2	A. Would I agree -- yes, I would.
3	black candidate lost?	3	Q. And it's especially --
4	A. In more than half, yes.	4	A. No, no, sorry, I would disagree with
5	Q. In paragraph 28 of your January report	5	that, that uncontested races are not the --
6	you say that incumbents overwhelmingly win their	6	contested races are the norm.
7	seats and it's only the white judges who could	7	Q. What about specifically in the context
8	potentially lose their seats because they're being	8	of nonpartisan elections in which there's an
9	challenged. You see that?	9	incumbent?
10	A. I do.	10	A. I believe contested races are still the
11	Q. Is that conclusion based on Justice King	11	norm.
12	running unopposed in his reelections?	12	Q. So in a 2006 article that you wrote
13	A. Yes.	13	titled Does Quality Matter, you provide the rate
14	Q. Is there any other fact you're relying	14	of uncontested elections from 1990 to 2000. And
15	on for that conclusion?	15	you say that the rate for uncontested nonpartisan
16	A. Well, no, because only the white judges	16	elections is 42.02 percent. Does that sound right
17	are being challenged. So if you're not challenged	17	to you?
18	you can't lose your seat.	18	A. Yes. That data is 22 years old.
19	Q. Is your view that black incumbents have	19	Q. Now talking about Justice King,
20	no electoral risk?	20	specifically. We talked about the fact that he
21	A. If they do, I haven't seen it.	21	didn't draw a challenger, maybe in part because a
22	Q. What are some factors that influence	22	challenger thought they would lose, right?
23	whether or not a challenger emerges?	23	A. He's never drawn a challenger.
24	A. Whether or not they can win.	24	Q. Could part of that be because Justice
25	Q. Anything else?	25	King is perceived as a strong candidate?

	Page 146		Page 148
1	A. Yes.	1	2012 Justice Waller drew a challenge, and in 2020,
2	Q. Also potentially because he's an	2	Justice Griffis drew a challenge.
3	incumbent?	3	Q. And those candidates who drew a
4	A. Sure, just as Justice Griffis was.	4	challenge, they still won, right?
5	Q. When he was up for reelection, was	5	A. Yes.
6	Justice King always the only black justice on	6	Q. Okay. But are there differences between
7	Mississippi's Supreme Court?	7	2008, 2012 and 2020 that could influence whether
8	A. I believe that's true.	8	or not a challenger emerges?
9	Q. Is it possible that there was a	9	A. Sure, yeah.
10	reluctance to be perceived as mounting a campaign	10	Q. Some of that might be candidate-specific
11	to make the Mississippi Supreme Court an all white	11	characteristics, because we're talking about
12	court?	12	different incumbents?
13	MR. WALLACE: Object to the form.	13	A. Sure.
14	Reluctance by whom?	14	Q. Macro-environment conditions like crime
15	THE WITNESS: That was going to be my	15	rates might be different?
16	question.	16	A. Yep.
17	Q. (By Mr. Cheung) By candidates or	17	Q. You did not control for those
18	parties endorsing candidates, relevant political	18	differences in your comparison of Justice King to
19	actors.	19	Justice Smith?
20	A. No. If you think you can win you run.	20	A. No. But again, we also have Justice
21	I don't -- if I'm a lower court judge or I want to	21	Waller and Justice Griffis who were the same
22	be on the Mississippi Supreme Court and I think I	22	years. So those things would be the same. The
23	can win, then I'm going to win. I'm going to go	23	only difference is the candidates.
24	run and win.	24	Q. We talked earlier about, you know, the
25	Q. You testified earlier that a judicial	25	issue of sample size. Do you have a view on how
	Page 147		Page 149
1	candidate, although nonpartisan, often receives	1	many elections to look at would be a sufficient
2	the backing of a political party.	2	sample size for you to be able to draw conclusions
3	A. Correct.	3	from these patterns?
4	Q. And so is it possible that a political	4	A. I would like to -- I mean, I analyzed
5	party might be reluctant to support a campaign	5	all of the elections. I would love there to have
6	that makes the Supreme Court an all white court?	6	been more elections, but I can't analyze elections
7	A. Well, maybe the party of Justice King,	7	that aren't there.
8	the Democratic party would be, but I don't	8	Q. But with the elections that you do have,
9	understand why a Republican party would care about	9	in terms of Justice King's reelections not drawing
10	that. It's about winning elections. It's not	10	a challenger, the fact that we're only talking
11	about how it looks.	11	about three, maybe four elections, does that
12	Q. You use the Justice King example, the	12	affect the confidence you have in the patterns
13	contrast with Justice Smith who lost his	13	that you're noticing?
14	reelection in 2008, right?	14	A. No, because it's the only patterns I can
15	A. Correct.	15	observe. So I -- you know, if we have another 10
16	Q. Justice King's elections were in 2012	16	years of data might my conclusions change, sure.
17	and 2020.	17	I mean that's what happens when you get more data
18	A. Correct.	18	and you get more elections. But, you know, when
19	Q. In terms of the likelihood of there	19	you're looking at Appendix A, what you see is
20	being a challenger emerging, could be there some	20	every incumbent wins except for one, and every
21	meaningful differences between 2008, 2012 and	21	incumbent is challenged except for Justice King.
22	2020?	22	Now, I think that's informative.
23	A. Sure, but when Justice King was on the	23	Q. You testified earlier that you were
24	ballot in 2012 and 2020, he was on the ballot with	24	deposed in the Alabama case?
25	another person who did draw a challenge. So in	25	A. I was.

	Page 150		Page 152
1	Q. Do you recall testifying in that case,	1	patterns with conclusiveness. So, again, if I had
2	quote: When we are dealing with a small number of	2	10 more years of data and we had this case 10
3	elections, many of which can be decided on	3	years from now, might my conclusions be different,
4	idiosyncratic factors, I don't think we can make a	4	sure.
5	conclusion like that.	5	Q. Do you know if apart from Justice King
6	A. Well, I don't know what "like that"	6	other black justices on the Mississippi Supreme
7	meant, what that's referring to. In general, that	7	Court have been challenged on their reelection
8	is something I would say depending upon what the	8	campaigns?
9	conclusion is.	9	A. Yeah, Justice Graves was challenged in
10	Q. I'm happy to show you the transcript if	10	2004.
11	you would like for you to see the context.	11	Q. And what about before that?
12	A. If you want to, that's up to you.	12	A. I only go back to 2000 in this report.
13	(Exhibit 5 marked for identification.)	13	I mean, I have data going back further than that,
14	Q. (By Mr. Cheung) So that's now	14	but I didn't use it for this report, so I can't --
15	Plaintiffs' Exhibit 5. I'd like to point you to	15	Q. In preparing your reports in this case,
16	page 37 of the transcript. Starting from line 16	16	did you also review the report prepared by Justice
17	and going down to page 38, line 11.	17	Diaz?
18	A. Okay.	18	A. I did.
19	Q. Would you agree in the Alabama case you	19	Q. In his report he noted that Justice Fred
20	concluded that there wasn't enough information to	20	Banks ran in contested elections in '91 and '96.
21	draw a conclusion about patterns in a small sample	21	Does that sound right to you?
22	size of elections?	22	A. Yes.
23	A. In that case -- hold on. I've got to go	23	Q. So you mentioned Justice Graves drawing
24	back further here. So the question is: Does	24	a challenger in 2004; is that right?
25	that -- taken in isolation, does that suggest that	25	A. Yes.
	Page 151		Page 153
1	the differential in that particular race was not	1	Q. I think in paragraph 3 of your January
2	party because they were in the same party, but the	2	report you said that a black justice has not been
3	differentiator or one differentiator was race?	3	challenged since 2000.
4	I said: I don't think we have enough	4	A. That should be 2004. That is a typo.
5	information to conclude.	5	Q. Okay. Thank you. And then in the
6	I don't think we have enough information	6	paragraph after that, in paragraph 31 of the
7	to conclude what the differentiator is.	7	January report, you say that black candidates
8	Q. What do you see as a difference between	8	challenging an incumbent receive an average of
9	the Alabama example and your ability to draw	9	46-and-a-half percent of the vote while white
10	conclusions about Justice King's reelection?	10	challengers receive an average of 42-and-a-half
11	A. Well, I believe we have one -- we're	11	percent. Do you see that?
12	looking at one election, or in the Alabama case at	12	A. Uh-huh. (Affirmative response.)
13	this part -- we have an example of race where	13	Q. Just for clarity of the record, which
14	there are four candidates. So I think there are	14	elections did you draw those numbers from?
15	fewer elections when I made that there.	15	A. That is from the 2000 and 2020.
16	And, again, that's right, it could be	16	Q. Did you perform any statistical analysis
17	any number of things. I think I say the same	17	here to determine whether that difference is
18	thing in the report here. It could be any number	18	statistically significant?
19	of things that differentiates candidates. I think	19	A. I did not.
20	the evidence is the most consistent with party.	20	Q. You did not run a T test or any other
21	But, yeah, I mean, given the small number of	21	type of test?
22	elections it's impossible to say. Just like it's	22	A. No, my hunch is that there's not enough
23	impossible to say it's race, it's impossible to	23	cases to get any kind of precision.
24	say it's gender. The smaller the number of races	24	Q. And so you're saying given the sample
25	we have the more difficult it is to establish	25	size if you had run a test on the difference, the

	Page 154		Page 156
1	result likely would not be statistically	1	assigned to it.
2	significant?	2	A. But there can't be a statistical test
3	A. Well, I mean, so we can talk about	3	assigned to it. So it's notable because it's, I
4	statistical significance in the context of	4	guess -- you could say 4 percent is not notable.
5	universe of cases. So statistical significance is	5	That's -- okay. We can quibble about that, that,
6	used, right, to make inferences from a sample to a	6	that's fine. But you can't say that, like, this
7	population. How likely is it that the data we	7	difference isn't real, because it is real.
8	have in our sample is reflective of the broader	8	Q. I guess my question is how do you
9	population. Here we have the full population. We	9	determine whether or not that difference is real?
10	have every election in District One. So we don't	10	A. Because it's all the cases we have. So
11	need use an inferential statistic like statistical	11	let me -- all right. So let me back up here. All
12	significance because we observe all the data, and	12	right. So let's think about -- thought this was a
13	so that is a true data point. We're not trying to	13	nonteaching day.
14	take these elections and say how reflective are	14	So let's think about when we sample
15	they of this larger thing. So that does not -- so	15	things. We use T tests and inferential
16	statistical significance doesn't really apply here	16	statistics, right, when we're trying to take
17	because it is significant because it is true.	17	things from a sample to the broad population,
18	Q. So how do you know the difference here	18	which I've said. So I'm trying to understand --
19	is not just random noise?	19	I'm going to ask 100 people a question, you know,
20	A. Well, it can't be random noise because	20	is the country on the right track or wrong track.
21	I'm not making -- I'm not inferring from a sample	21	And I'm going to get some data, and that data is
22	of elections to a larger population. That's when	22	going to be 56 percent say wrong track, 40 percent
23	you're worried about random noise, right, when	23	say right track, 4 percent say off track or
24	you're trying to do -- I've got 100 people here.	24	whatever. Now, my question is, I know that's the
25	I want to know are these 100 people reflective of	25	rate among these 100 people, because I've asked
	Page 155		Page 157
1	1,000 people. We have eight elections, or however	1	them and I've calculated that. That's what I've
2	many elections we have here. That's all we have.	2	got here, right, with these data. Now if I want
3	We're not trying to generalize to other elections.	3	to infer to a national sample or to the State of
4	And so it's actual data. It can't be random	4	Mississippi or to something outside that, now I
5	noise.	5	need to know how representative are these 100
6	Now, the causes -- we can talk about the	6	people of that population. And if they're
7	causes. But the fact that African Americans	7	representative, then we can make an inference. If
8	states with (inaudible) candidates in District One	8	they're not representative, then we can't or we'll
9	received this percentage of the vote and white	9	have a less precise inference. These election
10	candidates received that percentage of vote is	10	results are those 100 people. Like, we know the
11	true. It's fact. There's nothing to infer.	11	differences there. That 58 percent I get applies
12	Q. But you would agree that there would be	12	to those 100 people without question. It's a real
13	some natural variation in results even if it's the	13	number. It's a real difference.
14	same candidates running against each other?	14	So because we're dealing here with the
15	A. Sure, but that doesn't change the fact	15	population where I've done every election over
16	that these are true figures. Sure, over time or	16	this time period, there's no statistical test
17	over different elections vote totals vary. They	17	because this difference is an actual difference.
18	go up, they go down. But from 2000 to 2020, the	18	You can say it's small, you can say it's not
19	fact is that African American candidates who	19	relevant, but you can't say it's not true. Does
20	challenge incumbents do better than white	20	that make sense?
21	candidates who challenge incumbents.	21	Q. And so -- I feel like part of what
22	Q. We may be talking in circles here. I'm	22	you're saying here is that you think this
23	trying to understand here why you think this	23	difference is predicative of future elections?
24	difference is of a sufficient magnitude to be	24	A. No.
25	notable when there's not a statistical test	25	Q. Are you saying that?

Christopher Bonneau 9/29/2023

	Page 158		Page 160
1	A. No. What I'm saying is that exactly	1	4 percent difference to variations or differences
2	what I said, in the elections in these districts,	2	in other elections to assessment magnitude?
3	African American candidates who challenge	3	A. No.
4	incumbents do four points better than white	4	Q. Okay. I think in the paragraph after
5	candidates who challenge incumbents. So if the	5	that, paragraph 32, you say that you compared the
6	argument is that incumbents have such a huge	6	vote share, I think, of similarly situated African
7	advantage, right, and we would agree there's an	7	American candidates to white candidates.
8	incumbency advantage, what ends up happening is	8	A. That's just a summary of paragraph 31.
9	actually a black candidate challenging an	9	Q. Okay. How did you determine that the
10	incumbent does better than a white candidate	10	African American candidates were similarly
11	challenging an incumbent.	11	situated?
12	Which shows, one, that incumbency is	12	A. They were all challenging incumbents.
13	powerful. But it also shows that, you know, race	13	Q. But you did not control for other
14	probably isn't as powerful.	14	differences in their elections?
15	Q. And so you're now relying on this	15	A. No, they were all challenging
16	difference to make a judgment about the likelihood	16	incumbents.
17	of black candidates winning in District One in the	17	Q. So by similarly situated -- I just want
18	future.	18	to confirm, similarly situated just means the fact
19	A. I didn't say that, no.	19	that they were challenging the incumbent?
20	Q. And about sort of the size of the	20	A. Correct.
21	difference, are you saying that this difference is	21	Q. I'd like to turn to paragraph 50 of the
22	notable, of 4 percent?	22	January report. You note that Banks and
23	A. Yes.	23	Westbrooks lost even though Obama and Espy won the
24	Q. How do you determine whether or not the	24	majority of the vote in District One. Do you see
25	difference is notable?	25	that?
	Page 159		Page 161
1	A. It's 4 percent. Again, we can quibble.	1	A. I do.
2	It's just the opinion. But you can say 4 percent,	2	Q. Would you agree that in general for
3	whatever, that's nothing. But you've going from	3	purposes of measuring racially polarized voting,
4	42 to 46, who cares. I would say, well, the	4	it's more useful to look at election data
5	standard for competitive elections in political	5	pertaining to the actual office being challenged?
6	science tends to be elections that are decided by	6	A. State that again.
7	55 percent or less. And so what you're doing here	7	Q. In general, would you agree with the
8	is you're going from an election that's less	8	view that for purposes of measuring racially
9	competitive to election that's more competitive.	9	polarized voting, election data from the actual
10	When you have a more competitive election, that	10	office being challenged is more useful than
11	gives the challenger a better chance of winning	11	election data from other races?
12	than in a less competitive election. And if you	12	A. Paragraph 50 doesn't talk about racially
13	look at over time when you see competitive	13	polarized voting. It talks about just election
14	elections, competitive elections beget other	14	results and how people perform. So I don't have
15	competitive elections. So if you have a history	15	an opinion on racially polarized voting and the
16	of competitive elections in a district, you're	16	offices looked at.
17	more likely to see competitive elections in the	17	Q. Would you agree that in terms of
18	future, right? Because it signals other	18	elections for different offices there may be
19	candidates that there's actually a shot of taking	19	different political dynamics that affect voter
20	this person. We might be able to win. You don't	20	behavior?
21	get that, right, when you always are in the area	21	A. Yes.
22	where you're not getting competitive elections	22	Q. And so Obama was running nationally and
23	where the challenge of the incumbents is getting	23	statewide in Mississippi?
24	their butt kicked.	24	A. Correct.
25	Q. In your report you did not compare that	25	Q. And Espy was running statewide?

	Page 162		Page 164
1	A. Correct. But you know there's a great	1	conclusion about the Gingles case. He may answer
2	literature about coattails and about how the top	2	if he understands it.
3	of the ticket can influence down ballot races.	3	THE WITNESS: Well, I say in paragraph
4	Particularly, presidential coattails. And so the	4	53, the evidence does not support the third
5	fact that in District One that President Obama won	5	precondition that the majority group does not vote
6	53.9 percent of the vote, you would have expected,	6	as a block such that likely -- such that will
7	right, that he would have helped down ballot	7	usually defeat the minority group's preferred
8	tickets. The same thing with Mike Espy.	8	candidate. In fact the mixed success of African
9	So there are different dynamics in those	9	American candidates in District One elections
10	races, but you have a lot of people who come in	10	strongly suggest that voters, both white and
11	and -- you know, a rising tide lifts all boats.	11	black, are making decisions based on suitability
12	Q. You also testified earlier that because	12	of the candidates themselves.
13	the Supreme Court races are nonpartisan, there is	13	Q. (By Mr. Cheung) And I'm saying
14	a ballot dropoff effect?	14	underlying that conclusion in paragraph 53, are
15	A. There is.	15	you relying on the fact that Justice King was not
16	MR. WALLACE: Object to the form as	16	challenged in his reelections and the fact that
17	mischaracterizing. I don't think he said that	17	Justice Graves won his reelection?
18	before, but I may be wrong.	18	A. I rely on the fact that African American
19	THE WITNESS: Well, there is ballot	19	candidates in District One elections for the State
20	roll-off. There is ballot roll-off. And you do	20	Supreme Court win and sometimes aren't even
21	have more ballot roll-off in nonpartisan elections	21	challenged.
22	compared to partisan elections. But what the --	22	Q. And so your view is that in evaluating
23	the effect of that, right, I think I would quibble	23	Gingles three, we have to take into account the
24	with because you don't necessarily know, like, is	24	fact that Justice King was not challenged in his
25	it 20 percent of one party or certain demographics	25	two reelections?
	Page 163		Page 165
1	or not. That we don't know.	1	MR. WALLACE: Again, that's a legal
2	Q. (By Mr. Cheung) And you would agree	2	question -- a legal opinion. I may object to the
3	that Obama, Espy, Banks, Westbrooks, they're all	3	form. He may answer.
4	different candidates in terms of name recognition?	4	THE WITNESS: I would say that when you
5	A. Yes.	5	have a competitive legal environment and you have
6	Q. They likely differ in terms of	6	justices challenged all the time, except for one
7	fundraising capacity as well?	7	justice, that suggests that that justice is doing
8	A. Yes.	8	something right. And I'm not aware of a story
9	Q. They also differ in terms of incumbency	9	that one can tell that you'd have a political
10	advantage?	10	party or candidate say oh, you know, I'd love to
11	A. Obama in '12 was an incumbent, Banks was	11	have that seat, but I'm not going to do it because
12	an incumbent -- no, that was a different Banks.	12	it would look bad. That's just not how politics
13	MR. WALLACE: Different Banks.	13	works in the way that I'm familiar with. And so
14	THE WITNESS: Different Banks, okay.	14	the fact that, yeah, he's not even challenged and
15	Espy was not an incumbent and neither was	15	that he's winning is, I think, really important.
16	Westbrooks. So the only incumbent was Obama.	16	Because he might -- you know, District One, right,
17	Q. (By Mr. Cheung) So going back to how we	17	Justice Kitchens is a Democrat, too. So Justice
18	defined the third Gingles precondition about white	18	King if he were challenged would likely win. No
19	block voting overcoming black block voting. Is it	19	one is even bothering.
20	your conclusion that Gingles three is not	20	Q. (By Mr. Cheung) Do you agree that
21	satisfied in this case in part because black	21	Justice Graves won in part because he was an
22	incumbents like Justice Graves and Justice King	22	incumbent at the time?
23	have won in District One?	23	A. Well, if you look at Appendix A, then
24	MR. WALLACE: I'm going to object to the	24	yeah, we only have one incumbent who lost. So
25	form of that because it does ask for a legal	25	looking at those elections, I would say that him

being an incumbent was certainly helpful.
Q. And so would it change your conclusion if I told you that in the Gingles case the Supreme Court ruled that we should disregard special circumstances such as victories by black candidates when they run unopposed or when they have an incumbency advantage?

MR. WALLACE: Object to the form, since you're asking him about a Supreme Court opinion, but he may respond.

THE WITNESS: Would it change my conclusion? No. I would say that that -- I mean, that may be their conclusion, but as a matter of, like, social science or whatever, that's nonvalid.
Q. (By Mr. Cheung) Okay.
A. I mean at that point we're eliminating useful information.
Q. But in paragraph 53 where you cite the third precondition of Gingles, are you purporting to faithfully apply the Gingles factor?
A. I'm purporting to say that based on the data, African American candidates in District One elections win. That's what I'm saying.
Q. You don't have an opinion on whether or not your data disproves the existence of the third

Page 167
Gingles precondition?
A. I do not.
Q. Okay. All right. I'm done with my questions for now.
(Off the record.)
MR. WALLACE: We're back on the record.
What worried us is tendering the witness "for now." I have a very few questions about questions that you asked earlier. And if any of these questions cause you to come back with anything about these questions, I think you've got a right to do it. But I don't think you've got a right to come back and ask anything else. And if you were intending to suggest you may have other questions later, then I would ask you to go ahead and ask them now. I've got two or three questions about what he's already said and then we're done.

MR. CHEUNG: Okay. Appreciate that, Mike.

MS. JONES: I think we're done.
MR. WALLACE: You're done as far as --
MR. CHEUNG: Yes.
MR. WALLACE: If any of this sets you
off, you have a right to --
EXAMINATION BY MR. WALLACE:
Q. Dr. Bonneau, you were asked a few questions some time ago about House Bill 1020 because you talked to Yahoo News. Do you have any personal knowledge regarding the enactment of House Bill 1020?
A. I do not.
Q. Have you undertaken any study or analysis regarding the enactment of House Bill 1020?
A. I have not.
Q. And are you here today to offer any expert opinions regarding the enactment of House Bill 1020?
A. Not that I'm aware of.

MR. WALLACE: We've got nothing further.
(Time Noted: 12:39 p.m.)
SIGNATURE/NOT WAIVED
ORIGINAL: MR. CHEUNG, ESQ.
COPY: MR. WALLACE, ESQ.
4

Page 169
CERTIFICATE OF DEPONENT
CERTIFICATE OF DEPONENT
DEPONENT: CHRISTOPHER BONNEAU DATE: September 29, 2023
3 CASE STYLE: DYAMONE WHITE, ET AL. vs. STATE BOARD OF ELECTION COMMISSIONERS, ET AL. ORIGINAL TO: MR. CHEUNG, ESQ.
1, the above-named deponesition taken in the herein styled and numbered cause, certify that I have examined the deposition
taken on the date above as to the correctness thereof, and that after reading said pages, I find
them to contain a full and true transcript of the testimony as given by me.

Subject to those corrections listed below, if any, I find the transcript to be the correct testimony I gave at the aforestated time and place. Page Line Comments

Christopher Bonneau 9/29/2023

Dyamone White, et al. v. State Board of Election Commissioners, et al.

Christopher Bonneau

September 29, 2023

All depositions \& exhibits are available for downloading at <<www.brookscourtreporting.com>>
Please call or e-mail depo@brookscourtreporting.com if you need a Username and Password.

Christopher Bonneau 9/29/2023

Page 1

IN THE UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF MISSISSIPPI GREENVILLE DIVISION

DYAMONE WHITE, ET AL.
PLAINTIFFS
V.

NO. 4:22-CV-00062-SA-JMV

STATE BOARD OF ELECTION COMMISSIONERS, ET AL.

DEFENDANTS

DEPOSITION OF CHRISTOPHER BONNEAU

Taken at the instance of the Plaintiffs at Wise, Carter, Child \& Caraway, 401 E Capitol, Suite 600 Jackson, Mississippi 39201-2688, on Friday,

September 29, 2023,
beginning at 9:00 a.m.

REPORTED BY:
ROBIN G. BURWELL, CCR \#1651

Christopher Bonneau 9/29/2023

	Page 6		Page 8
1	here for the defendants.	1	A. No.
2	MR. KUCIA: Gerald Kucia with the	2	MR. CHEUNG: I think someone might have
3	Mississippi Attorney General's Office for the	3	jumped into the Zoom just now.
4	defendants.	4	MR. SOUSSI: Hi, this is Ahmed Soussi
5	Q. (By Mr. Cheung) So, Dr. Bonneau, I	5	with SPLC.
6	believe you've been deposed before, but just in	6	Q. (By Mr. Cheung) Dr. Bonneau, I just
7	case I'd like to spend a minute going over some	7	have a few questions about sort of your
8	ground rules. Your attorney might object to some	8	preparation for the deposition today. How did you
9	of the questions I ask, but in general unless he	9	prepare for this deposition?
10	instructs you not to answer on the basis of	10	A. I read over my reports. I met with the
11	privilege you still have to answer even if there	11	lawyers for the state and I read over the reports,
12	is an objection. Do you understand that?	12	particularly, the report by Dr. Orey.
13	A. I do.	13	Q. And how much time would you say you
14	Q. Thank you. Do you understand that your	14	spent preparing for this deposition?
15	answers today are under oath?	15	A. So depends what you mean by preparing.
16	A. I do.	16	I would say that I've spent probably three hours
17	Q. And that means you must tell the truth	17	preparing, just reading over reports and talking
18	just as if you were testifying in court?	18	and meetings and so on. If you consider
19	A. Yes.	19	everything before this in the last two days, I
20	Q. Is there any reason you cannot provide	20	mean, it's obviously more. But that's a good
21	complete and accurate testimony today?	21	ballpark.
22	A. Not that I'm aware of.	22	Q. What else did you spend time on?
23	Q. And because the court reporter can only	23	A. Well, as I was preparing my rebuttal
24	take down verbal responses, do you understand that	24	report, as well as my original report, I spent a
25	you have to answer verbally instead of nodding or	25	lot of time. So if that counts as preparation for
	Page 7		Page 9
1	shaking your head?	1	the deposition. But in terms of since the report
2	A. I do.	2	has been filed to today, I would estimate about
3	Q. Thank you. And I'm going to try not to	3	three hours.
4	interrupt you today during your answers, you know,	4	Q. Okay. Other than your reports and
5	so that we have a clean transcript. I would also	5	Dr. Orey's report, did you review any other
6	appreciate you if you wait until I ask a -- finish	6	documents to prepare for the deposition?
7	asking a question before providing your response.	7	A. Not that I -- no, not since I filed my
8	A. Sounds good.	8	rebuttal report.
9	Q. Thank you. And if you don't understand	9	Q. Okay. Did you jot down any notes while
10	a question, please let me know and I can try to	10	preparing for the deposition?
11	ask a better question.	11	A. No.
12	A. Okay.	12	Q. Apart from this case, how many times
13	Q. All my questions are great from the	13	have you been retained as an expert in a case?
14	beginning.	14	A. I have been retained twice besides this
15	If you need to take a break, please feel	15	case.
16	to ask. I would just ask you to finish answering	16	Q. Which cases are those?
17	the question pending before you -- before we take	17	A. One was the NAACP versus Alabama case.
18	a break, if that's okay.	18	And the other one is a pending case in Colorado,
19	A. Sure.	19	Lopez versus The State of Colorado, I believe is
20	Q. I'd also ask you not to discuss your	20	the title of that case.
21	testimony with your attorneys during breaks unless	21	Q. Lopez versus Griswold, does that sound
22	it's about the scope of privilege in your	22	right?
23	responses. Is that okay?	23	A. Yeah, that's it.
24	A. Sure.	24	Q. So let's go through each one of those.
25	Q. Any questions before we begin?	25	In the Alabama case, do you recall what opinions

	Page 10		Page 12
1	you offered?	1	that's a good summary. I mean, there were some
2	A. I do.	2	differences between this case and the Alabama
3	Q. What did you conclude in that case?	3	case, but yes.
4	A. I concluded that in the Alabama State	4	Q. And let's talk about the Colorado case.
5	Supreme Court elections there was not a violation	5	What was that case about?
6	of the Voting Right Act, that, in fact, African	6	A. So in that case political candidates are
7	American candidates performed better --	7	suing the State of Colorado over their campaign
8	particularly African American Democratic	8	finance restrictions, specifically the amount of
9	candidates performed better than white Democratic	9	money that individuals can donate to political
10	candidates. Unfortunately there were no African	10	campaigns.
11	American Republican candidates in there so we	11	Q. And what opinions did you offer in that
12	couldn't do that comparison. And so my conclusion	12	case?
13	was it was party more so than race.	13	A. I offered that the -- so my analysis
14	Q. Were you deposed in that case?	14	showed that Colorado has one of the lowest
15	A. I was.	15	campaign finance limits in the country, and that
16	Q. Did you testify in court?	16	these limits impede the ability of challengers to
17	A. I did.	17	successfully compete against incumbents.
18	Q. And were you qualified as an expert on	18	Q. Were you deposed in that case?
19	racially polarized voting?	19	A. Yes.
20	A. I was.	20	Q. Did you testify in court?
21	Q. And specifically, were you qualified to	21	A. It's pending. I'm supposed to, yes.
22	testify about whether racially polarized voting,	22	Q. Okay.
23	or RPV, whether it exists or what the causes were?	23	A. The case has not gone to trial yet.
24	A. So I did not conduct any independent	24	Q. But that case did not involve racially
25	analysis of racially polarized voting. I	25	polarized voting?
	Page 11		Page 13
1	stipulated that the analysis that the plaintiffs	1	A. It did not.
2	have done was correct. And the question was what	2	Q. Thank you.
3	were the reasons why behind the patterns they	3	Have you ever performed a racially
4	observed.	4	polarized voting analysis yourself?
5	Q. And I know it's been -- it may have been	5	A. No.
6	a couple of years since that case, but I pulled up	6	Q. Just to drill down on that, have you
7	the Court's order related to your report. I'm	7	ever conducted a homogenous precinct analysis?
8	going to read you a sentence from that order and	8	A. Not independently, no.
9	you can let me know if it sounds about right. The	9	Q. What about an ecological regression
10	Court in the order wrote: Dr. Bonneau was opining	10	analysis?
11	that party not race leads to a defeat of African	11	A. Not in the context of voting rights
12	American candidates. He's not opining that	12	cases, no.
13	African American voters do or do not vote	13	Q. And ecological inference?
14	cohesively.	14	A. So I mean, not in any published
15	Does that sound like an accurate summary	15	articles. So we're going back now to when I was
16	of your report?	16	in graduate school 25 years ago. I have
17	A. It does.	17	recollections of performing that as part of like a
18	Q. Does that accurately describe your work	18	class assignment in a methods class -- a political
19	in this case?	19	research methods class, but nothing that I've ever
20	A. Can you read it again?	20	done my own research on or anything else.
21	Q. Dr. Bonneau is opining a party not race	21	Q. So no publications on any of the three
22	leads to defeat of African American candidates.	22	methods that we just discussed?
23	He is not opining that African American voters do	23	A. Correct.
24	or do not vote cohesively.	24	Q. And not as part of any expert work
25	A. Yes, I mean the difference -- yes,	25	you've done on a case?

	Page 14		Page 16
1	A. Correct.	1	Q. Would you mind giving us some highlights
2	Q. And not part of any coursework that	2	of the updates?
3	you've taught?	3	A. I am now chair of the Spanish and
4	A. That I've taught? I've taught the	4	Portuguese department.
5	theoretical concept of -- so the ecological	5	Q. Oh, how did that come about?
6	fallacies of pretty standard topic in political	6	A. How much time do we have? So the
7	methodology courses, so I teach graduate students	7	department was placed into receivership by the
8	methods courses or philosophy of science courses.	8	Dean, meaning they were no longer able to govern
9	We do talk about that theoretically. But I've not	9	themselves due to a variety of longstanding policy
10	taught the mechanics behind it, no.	10	violations and disputes. And so the Dean tasked
11	Q. Got it. So let's turn to the reports in	11	me with going in for a couple of years to run the
12	this case. Did you prepare two reports?	12	Spanish and Portuguese department.
13	A. I did.	13	Q. Any other updates?
14	Q. The first one was from January 2nd of	14	A. I've got an article forthcoming about
15	this year?	15	teaching in prison and prison education that's
16	A. That sounds correct.	16	coming in an edited book. But I think those are
17	Q. And then the most recent one a	17	the only things that have really changed since
18	surrebuttal report from September 12th of this	18	January.
19	year?	19	Q. Okay. So no updates related to judicial
20	A. That sounds correct.	20	elections?
21	Q. I'm going to give you a copy of that	21	A. No, I've been busy with Spanish and
22	report just so you have it in front of you.	22	Portuguese.
23	A. Great.	23	Q. And, Dr. Bonneau, are you familiar with
24	Q. I'm not trying to quiz you on anything	24	the Gingles preconditions in voting rights cases?
25	in it.	25	A. I am.
	Page 15		Page 17
1	A. That's fine.	1	Q. What is your understanding of the
2	(Exhibit 1 marked for identification.)	2	Gingles factors?
3	Q. (By Mr. Cheung) That's now been marked	3	A. So my understanding is there are three
4	as Exhibit 1. Dr. Bonneau, can you look at it and	4	factors that are required. One has to do with
5	confirm if that's your January report?	5	racially polarized voting, such that African
6	A. It appears to be the case.	6	Americans are not able to elect candidates of
7	Q. Thank you. Also handing your	7	their choice -- or generally able to elect
8	surrebuttal report to Ms. Burwell for marking.	8	candidates of their choice.
9	(Exhibit 2 marked for identification.)	9	There's a factor about the totality of
10	Q. (By Mr. Cheung) Dr. Bonneau, does that	10	circumstances that even if you establish racially
11	look like your September report, Plaintiff's	11	polarized voting, that doesn't necessarily mean
12	Exhibit 2?	12	that there's a violation of the Voting Rights Act.
13	A. It does.	13	In fact, this has to lead to certain kinds of
14	Q. Do those reports accurately reflect your	14	outcomes.
15	opinions in this case?	15	And there's another factor that I --
16	A. They do.	16	escapes me at this moment.
17	Q. Do those reports omit any analysis that	17	Q. You're not a lawyer?
18	you've conducted for this case?	18	A. No, I am not.
19	A. They do not.	19	Q. So not expecting a perfect recall of the
20	Q. Are there any corrections you're aware	20	language from Gingles. But if I could read to you
21	of that you would like to make to the report?	21	some of the language from Gingles and you tell me
22	A. Not at this time.	22	if that's consistent with your understanding.
23	Q . Are there any updates to your CV since	23	A. That would be great.
24	January 2023?	24	Q. So Gingles one, the first factor, the
25	A. There are.	25	Court said: First, the minority group must be

.
able to demonstrate that it is sufficiently large and geographically compact to constitute a majority in a single-member district.

Does that sound right?
A. That does sound right.
Q. Gingles two, second: The minority group mush be able to show that it is politically cohesive.

Does that sound right?
A. Yes.
Q. And third: The minority must be able to demonstrate that the white majority of votes sufficiently as a block to enable it usually to defeat the minority's preferred candidate.

Does that sound right?
A. Correct.
Q. And in your view, does "usually" in the third condition mean most of the time?
A. Well, I mean I wouldn't a percentage on it. I mean, you know, I think usually means usually. So if I say I usually do something, it means more often than not. I don't know if it necessarily has to be -- if there's a certain percentage threshold. But, yeah, more often than not.
high degree, such that in this case, that black voters would not be able to elect their preferred candidate because of the presence of white voters.
Q. Is that the definition that you use in your reports for this case?
A. I don't think I give a definition in the reports for this case.
Q. Is that definition the one that you're operating under as you're analyzing the facts of this case?
A. Well, in my report I don't really talk much about the determinants of racially polarized voting. I take Orey's analysis as factual. What I do in this report is argue that even if it's present, it does not lead to black preferred candidates usually losing their elections.
Q. Got it. Thank you.

What do you think is the purpose of assessing racially polarized voting in districting cases?

MR. WALLACE: If that's asking for a legal opinion, I object to the form, but he may respond as best he can.

THE WITNESS: What do you mean, what is the purpose?

Page 21
Q. Were you asked to assess any particular one of the Gingles factors for your report?
A. No.
Q. In paragraph 53 of your January report you say, quote: This does not support the third precondition of Thornburg versus Gingles(1986). Is that right?
A. It does.

MR. WALLACE: Which page is that?
THE WITNESS: 15.
Q. (By Mr. Cheung) Is it fair to say that your reports do not dispute the existence of Gingles' precondition one in this case?
A. Correct.
Q. And is it also fair to say that you do not dispute the existence of Gingles two precondition in this case?
A. Remind me of what precondition two was.
Q. The minority group must be able to show that it is politically cohesive.
A. That's correct.
Q. And what is your understanding of racially polarized voting?
A. That voting is determined -- voting breaks down on racial lines to a significantly
Q. (By Mr. Cheung) Why do you think racially polarized voting is relevant in voting rights cases?

MR. WALLACE: That is a legal opinion. I object to the form, and he can answer.

THE WITNESS: Why is it relevant as a practical matter or as a --
Q. (By Mr. Cheung) A practical matter, yeah.
A. So why is racially polarized voting -well, so if you believe that individuals should have -- that elections should allow for a fair contest, the individuals have different beliefs that if you have racially polarized voting it could be a way, right, for disenfranchisement to occur among a minority group.
Q. Thank you.

I just have a few questions about the sources that you use in your report. Your January report has an Appendix A of election results; is that right? That's on page 44.
A. I'm not seeing the Appendix A. On my January report?
Q. Yes.

MR. WALLACE: Page 19.

	Page 22		Page 24
1	THE WITNESS: Yes, it does.	1	So I have complete data from '90 to 2016. I have
2	Q. (By Mr. Cheung) And what sources did	2	partial data before 1990, but a lot of stuff is
3	you use to collect the data that you used for	3	missing from it because it was so long ago. And
4	Appendix A?	4	around 2016 I started doing some administrative
5	A. That's just public data from the	5	work. And the nature of my career has shifted,
6	Mississippi Secretary of State's website.	6	and so I haven't been as diligent on updating it
7	Q. Nothing else?	7	since then. But I did update it for this case.
8	A. Well, to determine, you know, which	8	So the elections post 2016 here and 2020, I went
9	candidates were African American, you know, I	9	and collected that information, you know, for the
10	Googled and looked at, you know, news stories and	10	purposes of this case.
11	other things about that.	11	Q. Got it. So it would have a complete set
12	Q. And in your academic work, do you	12	of Mississippi Supreme Court elections starting
13	maintain any kind of database pertaining to state	13	from 1990?
14	court elections that you may have relied on for	14	A. Yes.
15	reports here?	15	Q. What sources do you use for that
16	A. I do maintain that database and it's --	16	dataset?
17	so I do have, like, a document with every State	17	A. So, variety of sources. Obviously the
18	Supreme Court election over the past 30 years. So	18	best source is the Secretary of State's website
19	it's possible that I use that to identify, like,	19	because it's official returns. I use newspaper
20	what years to look at, because elections don't	20	articles about -- so if I can't tell if a
21	occur every year in Mississippi. So that's	21	candidate, you know, what race or gender is,
22	certainly possible.	22	newspaper articles often do that. Sometimes you
23	Q. So I think in paragraph 6 of your	23	can go to Judge PDO which is a website that has a
24	January report you reference a dataset, is that	24	bunch of facts about judges. So a variety of
25	dataset the one that you maintain in your academic	25	public information sources. Because all this data
	Page 23		Page 25
1	work?	1	is public data.
2	A. Yes.	2	Q. Is the dataset itself public?
3	Q. And what kinds of information is in that	3	A. Parts of it are. I mean, certainly I
4	dataset?	4	can make it so. I mean, I've -- so if you go to
5	A. Well, that dataset has a bunch of stuff.	5	my data verse page, I've released datasets for all
6	So, it has characteristics about the candidates.	6	of the articles I have published, which includes
7	So race, gender, incumbency, non-incumbency,	7	both the dataset and the code book and the
8	whether or not the candidate was originally	8	instructions for running, rerunning analysis for
9	appointed to the bench versus originally elected	9	replication purposes. But I've never done
10	to the bench. It has results from primaries, has	10	anything with, like, the full data, so the whole
11	results from general elections. It has campaign	11	thing is not --
12	spending where available, the amount of money	12	Q. Would you be able to provide that
13	spent and raised by individuals. It has the	13	dataset to us?
14	partisanship. So was the race was a partisan,	14	A. Of course.
15	nonpartisan race; was it a district race versus	15	Q. Thank you.
16	state wide race. So it basically has -- so if you	16	A. Do you want just for the Mississippi
17	look at any of my previous articles, any of those	17	part or do you want -- you'd have to be clear
18	variables that are in those articles are in that	18	about what you wanted. I can easily do that.
19	dataset.	19	Q. Just the Mississippi part will be fine.
20	Q. Yeah, I did try to make it through your	20	Thank you. I think you nodded. Is that
21	articles but you have quite a few of them.	21	okay?
22	A. Thank you.	22	A. Yes, that is fine. Sorry.
23	Q. What time period does your dataset	23	Q. Have you received any facts or sources
24	cover?	24	from your attorneys in this case?
25	A. So most of it is from '90 to about 2016.	25	A. Yes, I've been directed occasionally,

	Page 26		Page 28
1	you know, because I'm not an expert in	1	A. That's a hard question to answer. Do I
2	Mississippi, generally, of something -- sometimes	2	evaluate? So, yes, in a sense. So when I'm asked
3	some leads to pursue that would not have been	3	to review journal articles, my part of the job of
4	apparent to somebody from the outside.	4	me as a peer reviewer is to evaluate, you know, do
5	Q. Have you been asked to assume any fact	5	the scholars or does the article, the submission,
6	to be true in the preparation of your reports?	6	is it reliable, does it answer the question.
7	A. I have not.	7	When I was editor of a journal for six
8	Q. In paragraph 1 of your January report,	8	years part of the decisions that we made, you
9	you mention having used voter registration data.	9	know, whether or not we would accept an article
10	Do you see that?	10	for publication or not was the quality of the
11	A. In paragraph 1. So meaning the first	11	empirical analysis, was the research design done
12	paragraph on Page 1.	12	properly, were the methods used to analyze and
13	Q. Yes.	13	arrive at the conclusions the proper ones. And so
14	A. I was retained -- based on Mississippi	14	in that sense, yes.
15	state voter registration and election data. Yes.	15	Q. And so when you review articles for the
16	Q. Did you receive that voter registration	16	reliability of the empirical analyses, what are
17	data from the Secretary of State's website or some	17	the indicators that you tend to look at?
18	other source?	18	A. So there are a couple of things. The
19	A. I don't recall, but I'm pretty sure it	19	first question is, is the design suitable to
20	was the Secretary of State's website. That would	20	answer the question. That is, so if you want to
21	be usually where I would go.	21	answer a question about -- I'll give you an
22	Q. Do you recall what you used the	22	example -- of voters' perceptions on the economy
23	registration data for?	23	on the likelihood of voting for the president.
24	A. Well, I don't know if I -- no, I don't.	24	You've got to make sure that the data being used
25	But if I read my report again, I probably could	25	in the way this study is designed actually allows
	Page 27		Page 29
1	find out if I used it at all or what I used it	1	you to answer that question.
2	for. But off the top, no. I probably used it	2	The second thing is given the
3	for -- I don't know what I would have used it for.	3	distribution and nature of the data, are the
4	I would have used it -- I would have	4	techniques used appropriate. So if you have a
5	used voter data to calculate roll-off. Right?	5	dichotomous dependent variable, a variable where
6	Sometimes the people who voted versus those who	6	it's between zero and one, and you're using
7	voted for State Supreme Court so when we look at	7	regression, that's not appropriate. That won't
8	rates. But I don't recall using the voter	8	give you bias results. You have to use a
9	registration data. But I'm happy to be corrected	9	different technique. So those kind of things.
10	on that.	10	I don't go in, though, and like look at
11	Q. I didn't see anything in your report,	11	the dataset and make sure -- that's not part of
12	which is why I'm asking about it. Because you	12	the peer review thing. But it's basically, is the
13	cite the data, but I don't see any actual analysis	13	design suitable to answer the question and then do
14	of voter registration in your reports. Does that	14	the results -- do the methods used to analyze the
15	sound right to you?	15	data, are they appropriate given how the data is
16	A. It does, makes me gratified I'm not	16	distributed and the nature of the data.
17	missing something.	17	Q. And so do you look at things like
18	Q. So as best as you recall you did not	18	whether the sample is representative?
19	performing any analysis of voter registration	19	A. Sure.
20	rates?	20	Q. What about sample size?
21	A. That's a fair statement.	21	A. Sure.
22	Q. I have a few questions about statistical	22	Q. How do you determine what the requisite
23	methods, generally. In your academic work, do you	23	sample size is for reliability?
24	evaluate statistical analyses performed by other	24	A. Yeah, so that's -- I mean, that's a good
25	scholars?	25	question. I'm happy to talk about it. So it

	Page 30		Page 32
1	depends on the population, right, that you're	1	A. Yeah.
2	trying to make inferences about. And so generally	2	Q. What methods would you use to establish
3	speaking for a nationwide survey or whatever,	3	causation?
4	you're looking at sample size of, like, 1500 or	4	A. So, there's another one. Causation is
5	so. It usually gives you pretty good results,	5	really, really hard in social sciences. Because
6	within plus or minus 3 percent margin of error,	6	isolating an independent fact requires
7	assuming it's done randomly, a randomized sample.	7	manipulation of an independent variable that you
8	But you can't always get a randomized sample.	8	can't always manipulate. So if I wanted to
9	What that means is, if you can't get a randomized	9	establish a causation between, say, gender and
10	sample, you have to be very careful about the	10	vote choice, I need to do that experimentally and
11	inferences you're making from that sample. It	11	-- so the gold standard would be to do it
12	doesn't mean it's useless but it does mean that	12	experimentally. But you can't randomly assign
13	your inferences are necessarily going to be more	13	somebody gender. And so if you can't have random
14	imprecise.	14	assignment, then you can't do a real experiment.
15	So, you know, sample size is always --	15	So you can try and get at it -- there are some
16	obviously more is always better to a certain	16	statistical techniques to try and get at. You
17	point, then you get diminishable marginal returns.	17	know, isolating causal factors through certain
18	But those are the kind of the general things. I	18	designs. I tend to be skeptical of those, I
19	would not reject something because -- on the basis	19	think. And I don't think it's always necessary to
20	of the fact that they only have a sample size of,	20	show causality. I think when we can get causality
21	say, 500 people. It just means their estimates	21	it's great, but a lot of times causality is
22	are going to be less precise, which means you're	22	allusive because there are multiple causes to
23	going to be less likely to find statistical	23	things.
24	significance because your standard hours are going	24	And I could show you, maybe, that gender
25	to be larger. But you still actually can gain	25	causes vote choice, but I can't tell you how that
	Page 31		Page 33
1	some good knowledge there and you still can, you	1	is relative to other causes. Because no one will
2	know, learn something.	2	argue that it's the only cause. And so
3	Q. And do you have a specific view on what	3	experiments will allow us to isolate a cause, but
4	a sample size should be when evaluating	4	not necessarily assess the relative importance of
5	Mississippi elections?	5	that cause relative to other things. That
6	A. No. I mean, Mississippi is hard because	6	requires more observational data.
7	you only have elections every eight years, for	7	And so saying all this to say that
8	example, for State Supreme Court and there are	8	establishing causality when possible is
9	only, like, nine seats. So when you're looking at	9	allottable, it's not always possible. And just
10	eight years, basically every judge is up once a	10	because we can't establish it doesn't mean that we
11	decade. And so you're always going to have a	11	can't advance knowledge.
12	small sample size when you look within the state.	12	Q. So in that example you just gave, how
13	The same is true for any statewide office in any	13	would you demonstrate that gender is one of the
14	state, actually.	14	factors causing voter choice?
15	I mean, if you look at state legislative	15	A. Well, see, I mean, it depends on what
16	elections, okay, those are every couple of years.	16	you mean by cause. There's this big debate as to
17	Right? You'll get good samples. You've got to	17	whether or not you can actually use the word cause
18	work with the data that you've got. You can't	18	outside of an experiment, within the discipline.
19	just make up elections that don't exist.	19	So you have what I would call the causal inference
20	Q. And I think you mentioned earlier you	20	mafia who argue that if you don't have an
21	would look at error size?	21	experiment, you can't say anything about
22	A. Sure.	22	causation. You can have that position. It's not
23	Q. Competence intervals?	23	a majority position. It's an extreme position,
24	A. Sure.	24	but it's intellectually defensible. Or you can
25	Q. Statistical significance?	25	use observational data and try and isolate the

effects of other factors and talk about genders' relative contribution to the vote choice. Now, does that mean it causes it, no, but, you know, if you control enough of the factors you can get to a point where -- you can establish a relationship, and then you can be pretty sure that there's something, you know, going on there. And so I think that sometimes is the best we can do. If that makes sense.
Q. Yes, thank you.

I have a few questions about incumbency.
A. Sure.
Q. In your academic work, I think you've studied the effect of incumbency on judicial elections and election outcomes?
A. Correct.
Q. What advantages are generally associated with incumbency?
A. In judicial elections specifically or in elections generally?
Q. Let's talk generally and then judicial.
A. So generally incumbents have an advantage for several reasons. One is they have an established fundraising network. One is they have increased name recognition. One is they can
majority opinion or you get overruled by the US Supreme Court, other things that will get the public's attention. And in some states they'll actually put whether you're an incumbent on the ballot. And so when voters go into the ballot booth it will say your name, and the next one will be, like, incumbent or current judge. In other states they don't. So that could potentially signal to individuals, you know, which one is the incumbent and give them an advantage.
Q. Is there an advantage to being able to rely on prior experience on the job?
A. Yes, so -- but that's not unique to incumbents, right? So in one of my articles we showed that voter -- so if you're a lower court judge running for the State Supreme Court, you have an advantage over a candidate who has never been a judge. And so there's no necessarily increase by the fact that it's an incumbent, but rather you'll do better with any kind of prior judicial experience.
Q. Is there some kind of inherent appeal to being an incumbent?
A. What do you mean by "inherent appeal"?
Q. Some comfort that voters might have that

Page 35
call a press conference or send mail, write to their constituents to get their names out there about policy positions they're doing or they can position take. They have all kinds of perks like that about --

And so for the incumbents there tends to be -- you know, it's one of those paradoxes, right, that everybody hates Congress but everyone loves their congressperson. You see a congressional reelection rate of 95 percent and Congress's approval rating is, what, 19 or 18 , and honestly, that seems a bit high to me.

Now, in the State Supreme Court case the incumbency advantage can improve a couple of different ways. One is, again, you have an established network, you've run statewide before, presumably, or district-wide before. And because of that you've got name recognition and you've run a campaign. So you already have some donors lined up, you already are able to tap into those funds. While you can't, you know, call press conferences and talk about how you'll decide on a case, you can get your name out there by certain positions you take. For example, if you write a themed decent in a case or something like that or

Page 37
they're already doing the job, for example?
A. Sure.

MR. WALLACE: You mean lawyers might have or voters might have?

MR. CHEUNG: Voters.
MR. WALLACE: I thought you said lawyers. Did I hear it wrong? I'm sorry.

THE WITNESS: Yes, assuming the voters approve of the incumbent.
Q. (By Mr. Cheung) So I know we were talking about, first, incumbency generally and then judicial candidates. What about Mississippi Supreme Court candidates. What advantages do you see in being an incumbent on the Mississippi Supreme Court?
A. I don't see any differences on the Mississippi Supreme Court compared to other courts. I have no reason to think that incumbency functions different here than it does otherwise.
Q. And generally it seems you're saying incumbents are more likely to prevail compared to challengers?
A. Correct, that's a fact.
Q. Have you done any empirical analysis to determine the likelihood of judicial incumbents to

	Page 38		Page 40
1	get reelected?	1	A. Yeah, I think there were two. I think
2	A. I have.	2	there was a chief justice in 2008 and -- well, I
3	Q. How strong is incumbency in judicial	3	can tell you from Table 1. So since 2000 the only
4	elections?	4	loser, right, was Smith in 2008 in this district
5	A. So I think the last time I looked at	5	here.
6	that was probably 15 years ago. So 15 years	6	Q. Thank you.
7	ago-ish, if my memory is correct, the incumbent --	7	We've touched on this before, but, you
8	about 85 percent of State Supreme Court incumbents	8	know, based on the prior academic work you've
9	won reelection compared to 80 percent of	9	done, do you believe that Mississippi system for
10	governors, 87 percent of US senators, and like 94	10	electing Supreme Court Justice creates an
11	percent of US House of Representatives. I'm	11	incumbency advantage?
12	pretty sure those are the numbers. It's in my	12	A. Do I believe that creates incumbency?
13	2005 article in American Politics Research. Since	13	No, I believe there is an incumbency advantage in
14	then, just, you know, eyeballing the data, those	14	these elections just like any other elections.
15	trends seem to be the same in State Supreme Court	15	Q. Do you think that incumbency is a strong
16	races that incumbents overwhelmingly win.	16	advantage for candidates running for Mississippi
17	Q. That 2005 article, is that entitled	17	Supreme Court?
18	Electoral Verdicts Incumbent Defeats at State	18	A. Yes.
19	Supreme Court Elections?	19	Q. In the history of Mississippi, do you
20	A. That's the one.	20	know if any black candidate has been able to get
21	Q. I think I pulled a sentence from there	21	elected to the Mississippi Supreme Court without
22	where you say: Incumbents in partisan district	22	an incumbency advantage?
23	state election have 55.6 chance of defeat compared	23	A. Without an incumbency advantage, I do
24	to 7.2 percent chance in a nonpartisan district	24	not know the answer to that question.
25	state.	25	Q. But you're not aware of any black
	Page 39		Page 41
1	Does that sound right?	1	candidate who has been able to win without being
2	A. That does. What I would caution you	2	an incumbent?
3	there is those aren't artifact or virtue	3	A. Again, I don't have any recollection.
4	elections. So who are the states that are	4	So if you tell me yes, then I would believe you.
5	partisan district states? Louisiana and Illinois,	5	If you tell me no, I would believe you. I don't
6	that's it. And in nonpartisan district states	6	know.
7	you've got Kentucky and Mississippi. So you don't	7	Q. Do you know if any white candidates have
8	have a lot of states, right? So those numbers --	8	been able to get elected to the Mississippi
9	it's a one defeat where I can throw out the	9	Supreme Court without being an incumbent first?
10	predictive probabilities significantly, right,	10	A. Well, I do know at least Jim Kitchens
11	when you have a small number of cases.	11	because I just told you he defeated Smith in 2008.
12	Q. And so you're saying that the sample of	12	Q. Anyone else?
13	nonpartisan district states consists only of	13	A. I think that's the last incumbent who
14	Kentucky and Mississippi; is that right?	14	was defeated, at least in this district. Yeah,
15	A. Of contested -- let me make sure.	15	that was the last incumbent who was defeated. So
16	Because Louisiana is partisan. Who else -- those	16	one time in 20 years.
17	are the only ones that have districts. That is	17	Q. What about open seat elections?
18	correct.	18	A. In District One, I don't see any open
19	Q. Based on the data that you do have, you	19	seat elections.
20	would say that Mississippi judicial incumbents	20	Q. Mississippi Supreme Court, generally?
21	almost never lose?	21	A. I only looked at District One for this
22	A. That's right. I think if you look over	22	case.
23	the past 20 years there are two that have lost to	23	Q. I'd like to point you to paragraph 18 of
24	the Mississippi Supreme Court.	24	your January report.
25	Q. If that's your recollection.	25	A. Yes.

	Page 42		Page 44
1	Q. I think it's the third sentence where	1	think the further back in time we go, you know, if
2	you say: Currently, six of the nine justices on	2	the demographics of the districts have changed
3	the Mississippi Supreme Court obtained their	3	since '92 and '96, right, it may be a completely
4	position by gubinatorial appointment.	4	different electorate. I don't know what the
5	A. Correct.	5	population of the district was in terms of racial
6	Q. Would that mean that the remaining three	6	breakdown before then. I don't know how many
7	first ascended to the bench through election?	7	African American candidates ran for open seats.
8	A. Through open seat elections, that	8	And so it could be that only white candidates have
9	would -- yes, that would be a reasonable	9	won open seats because African American candidates
10	conclusion.	10	have not run in these open seats. And certainly
11	Q. And those three would consist of Jim	11	there haven't been a lot of open seats, right. So
12	Kitchens, Josiah Coleman and Robert Chamberlain?	12	we're talking about three seats since 1994. There
13	MR. WALLACE: Objection, assumes facts	13	are a whole host of things, right. So it tells
14	not in evidence. You say Jim Kitchens got on with	14	me, I mean, I'd want to know more. But it
15	an open seat election?	15	wouldn't cause me to make any kind of firm
16	MR. CHEUNG: Without a prior	16	conclusion on the basis of those numbers.
17	appointment.	17	Q. So understanding that there are several
18	MR. WALLACE: Okay. That's a different	18	possible conclusions that you could draw from this
19	thing. That's why I objected.	19	fact, would one reasonable suggestion be that
20	Q. (By Mr. Cheung) I can rephrase. So the	20	white candidates are able to win without
21	three justices that obtained their position on	21	incumbency advantage, does that suggest that
22	Mississippi Supreme Court without a prior	22	they're generally in a stronger position than
23	appointment to the Court would be Jim Kitchens,	23	black candidates?
24	Josiah Coleman and Robert Chamberlain. Does that	24	A. I think it depends. Because if you look
25	sound right?	25	at like the Jim Kitchens race, my understanding
	Page 43		Page 45
1	A. That sounds right. And only Kitchens is	1	for whatever it is, is he was endorsed by Benny
2	with District One, if I remember correctly.	2	Thompson and so he was actually the black
3	Q. Do you know of any other justices who	3	preferred candidate in that race. And he defeated
4	won election to the Mississippi Supreme Court	4	another white candidate. And I don't know the
5	without prior appointment?	5	specifics of the Waller case or anything else.
6	A. Do I know of any other justices? Not	6	If those white candidates were actually
7	that I can recall off the top of my head. It's	7	preferred by black voters, then that would tell me
8	certainly possible in other districts. But,	8	something different than if that candidate was not
9	again, I am limiting my analysis to District One.	9	preferred. So at this point I don't have enough
10	Q. In terms of District One, does it sound	10	information.
11	right that Chief Justice James Smith was elected	11	Q. Yeah. I understand that there's a
12	in 1992 without prior appointment?	12	distinction between black candidates and black
13	A. In '92. So would be '92, eight-year	13	preferred candidates because the two are not
14	term -- yes, that sounds like it could be right.	14	necessarily the same. But looking exclusively at
15	Q. And William Waller was elected in '96 in	15	the ability of black candidates to get elected to
16	District One without prior appointment?	16	the Mississippi Supreme Court, is it a
17	A. It's possible, sure.	17	reasonable -- is it one of the reasonable
18	Q. So assuming that's right, does the fact	18	explanations to say that black candidates
19	that only white candidates have been able to win	19	typically need incumbency advantage, while white
20	elections without first being an incumbent tell	20	candidates do not, to get elected to Mississippi
21	you anything about the overall ability of black	21	Supreme Court?
22	candidates to get elected to Mississippi Supreme	22	A. I wouldn't say typically. I would say
23	Court?	23	that that's possible. I would want to how many
24	A. Well, it tells me a couple of things. I	24	black candidates ran for those open seats and
25	mean, I'd want to do some more research. I do	25	everything before I concluded. If all we have is

	Page 46		Page 48
1	white candidates running for a seat, then we don't	1	Supreme Court has decided, eh, we're not going to
2	know if blacks can win without incumbency. So,	2	really do that anymore.
3	it's possible. Again, I think we would need to	3	Elections allow for voters to
4	learn more.	4	participate and for voters to have a hand in how
5	Q. Okay. And if it's a fact that very few	5	the law is interpreted in their states. And so
6	black candidates even run for these seats, what	6	giving the voters a choice increases political
7	could be some explanations for that?	7	efficacy, increases the legitimacy of the
8	A. Well, there's several explanations about	8	institution, and it allows voters to have a direct
9	why. One might be they don't think they could	9	say in the people who are making decisions that
10	one. One might be, you know, they're not	10	affect the legal life in the state.
11	interested. One might be that the incumbent	11	So there are problems as well and no
12	already is doing a good job and so they feel like	12	system is perfect. But it's not clear to me
13	there's no need to try and unseat an incumbent.	13	that -- I mean, the debate has tended to be that
14	So there are a number of reasons why a	14	elections are just these awful things. And it's
15	candidate may decide. It may be the wrong time in	15	not clear to me from the data that that's the
16	their life. They may have serious headwinds,	16	case. That in fact voters do know what they're
17	right? If you are a candidate running in a	17	doing, they do participate meaningfully, and they
18	presidential election here and you're a Democrat,	18	are able to make choices. And so this seems like
19	it's probably not a good time to run here in	19	an option that a state could want to have.
20	Mississippi. So there are a lot of factors, race	20	I mean, if I were a design institution I
21	being one of them. But party and incumbent size	21	would not design what y'all have here. I think
22	(inaudible) and everything else would also be	22	nonpartisan elections are awful, right? But I
23	factors.	23	don't live here. So y'all want to do that, go
24	Q. I have a few questions about your work	24	ahead.
25	around the design of judicial election and	25	Q. Why are nonpartisan elections awful?
	Page 47		Page 49
1	election systems.	1	A. Because they're ineffective. They're
2	A. Sure.	2	removing a meaningful queue from the voters. And
3	Q. In your work have you studied advantages	3	so what you're doing is your unnecessarily shaving
4	of electing versus appointing judges?	4	off voter participation. And so nonpartisan
5	A. Well, there's no way to quantify -- yes,	5	elections you have people roll off because they
6	I have spoken about the relative advantages of	6	don't feel informed, right? And we know that
7	elections versus appointments.	7	Democratic judges view the law differently than
8	Q. And what are those relative advantages?	8	Republican judges. Lawyers know this, right? You
9	A. So you start with the presumption that	9	go in a courtroom, you know you're either happy or
10	there is no perfect system, right? And so when	10	you're, like, this is going to be a tough one. We
11	you're designing institutions, there are a number	11	know at the US Supreme Court level, we can predict
12	of considerations to balance, one of them being	12	outcomes of cases really well. Why would we tell
13	accountability versus independence, right? So you	13	voters they can't have that information? It seems
14	could design a system like the US federal system	14	silly.
15	where judges are maximally independent, right?	15	Q. I can't confirm the reaction I have
16	And for everyone who thinks judges should be	16	walking into court, but...
17	independent, I ask them how that's going because	17	A. No. This is the big difference between
18	it doesn't seem to be going too well.	18	political scientists and lawyers, right? I can
19	So there are advantages to being	19	say these things.
20	independent, right? But being too independent,	20	Q. When you say remove a meaningful queue,
21	actually, is bad because it means you can do	21	are you referring to the partisan designation on
22	whatever the hell you want and you're not	22	the ballot?
23	constrained by the law or by anything else. And	23	A. I am.
24	we can give all kind of examples from both sides	24	Q. And you say voters do participate
25	of the political aisle of the times, well, the US	25	meaningfully in judicial elections?

	Page 50		Page 52
1	A. Yes.	1	officeholders are to the voters?
2	Q. What do you mean by that?	2	A. No, without efficacy is referring to how
3	A. Some people think voters don't know what	3	legitimate the voters feel the court is and how
4	they're doing. Voters know enough. So for	4	much trust they have in the court. And so Jim
5	example, voters, you know, can tell that they're	5	Gibson did a series of studies looking at dual
6	seeing a quality challenger, right, one with prior	6	elections in (inaudible) legitimacy of the court.
7	judicial experience and one without. So if a	7	And what he found is actually, you know, there are
8	challenger between incumbent has prior judicial	8	some costs to contested elections, but there are
9	experience, they do about five points better than	9	also a lot of benefits. When you look at the
10	challengers without such experience.	10	whole cost benefit thing, it actually turns out
11	If you take party ID out and you -- so	11	that elections are legitimacy enhancing. That is,
12	we did some experiments on this where we, you	12	voters feel more positive about courts on average
13	know, manipulated whether or not party ID was	13	after elections than they do in the absence of
14	shown or not. I'm going to get the numbers here a	14	elections. Again, it's not no say it's all
15	little bit, not precise. But in partisan races,	15	positives, but the positives outweigh the
16	like Republicans went for the Republican candidate	16	negatives.
17	that we told was the Republican 94 percent of the	17	Q. But is responsiveness to voters, one of
18	time, and Democrats voted for the Democrat	18	the values that you think should be promoted by
19	candidate, like, 85 percent of the time. In that	19	judicial elections?
20	scenario where we removed party ID by the same	20	A. Well, responsiveness is hard. Because
21	descriptions of real ads that candidates have run,	21	what does that mean, responsiveness. And I want
22	what happens is Republicans voted for Republicans	22	to distinguish responsiveness from accountability.
23	70 percent of the time and Democrats were about	23	Accountability means that, you know, voters will
24	65. So you would expect without party ID those	24	decide, you know, when a judge is up for election
25	things should be close to 50/50. That is, if	25	if that judge should be returned to office. And
	Page 51		Page 53
1	party ID wasn't meaningful, if candidates were	1	overwhelmingly the answer is yes.
2	running these ads, right, and there was no	2	Responsiveness implies that outside of
3	partisanship to them and voters couldn't tell,	3	that, that judges should be like, you know,
4	Republicans shouldn't be able to identify the	4	figuring out what the public wants in terms of
5	Republican candidate about 70 percent of the time.	5	decisions. And that kind of more, like, constant
6	So what does a nonpartisan election do?	6	update or constant evaluation, I think one can
7	It increases errors, right? It increases the fact	7	argue is not a part of courts. I think one could
8	that Republicans would actually vote for the	8	argue it could be. I don't take position on that.
9	non-republican even though if you gave them party	9	That's outside -- I stick to the empirical data
10	ID they would vote for the Republican, right?	10	and I really don't have anything to -- yeah.
11	It's what the manipulation allowed us to do. And	11	Q. Got it.
12	so you have fewer voters participating, and the	12	So you mentioned that you wouldn't do
13	ones who do participate make more errors, that is	13	things the way that things are done in
14	they vote for the candidate who they don't intend	14	Mississippi. Is that purely referring to the
15	to vote for. Who they wouldn't vote for if they	15	nonpartisan valence of these elections or is there
16	had the party ID. That seems like not a good way	16	something else?
17	to have elections. But that's, you know, again,	17	A. I think there are -- again, if I were
18	not my state.	18	designing an ideal system, would I have districts,
19	Q. So those percentages you just cited, I	19	I would not, at least not this way. Because I
20	don't think they're in your report.	20	think the Supreme Court deals with all
21	A. That's my book. The Voters' Verdicts	21	Mississippians and all Mississippians should have
22	Book, 2015. I think it's chapter 4 or 5	22	a chance to vote on the Supreme Court, as opposed
23	something.	23	to carving it up into districts.
24	Q. Okay. And you also mentioned efficacy	24	You know, I think -- so I would do that.
25	earlier. Is that referring to how responsive the	25	I think the terms of office are good. I might,

	Page 54		Page 56
1	for example, in an ideal situation not allow for	1	up down state. Even though that's still not
2	reelection. I might allow for a single term but	2	exactly with population because Chicago is more
3	not reelection. So if you're worried about the	3	than three-sevenths of the population of Illinois.
4	corrupting effects of donors and everything else,	4	So they're still outweighed. It gives them a
5	one way to do that, right, is not allow judges to	5	little bit of a bonus but not as much as it
6	run for reelection. I'd probably publicly finance	6	should.
7	elections. Again, if you want to get rid of the	7	You could do what Mississippi does and
8	stink of private contributions, go to public	8	have basically three districts and have three from
9	financing. So there are things like that that I	9	each. I don't have any opinion as to which is,
10	think, you know, are -- no one does it that way.	10	you know, better or worse. You know, that's -- I
11	So really, a hypothetical exercise. You	11	haven't seen any anything -- I haven't seen any
12	know, if Mississippi wants, you know, my advice on	12	research that's looked at the effects of those
13	that.	13	different kinds of district elections on outcomes
14	Q. When you say, you know, you would prefer	14	or on -- I mean, you can't really look at
15	no districts or at least not this way, what do you	15	incumbency anywhere else because everything is
16	mean?	16	unique. You have one case of this, one case of
17	A. I think that districts for statewide	17	that, one case of this.
18	offices to -- so if you live in any district, you	18	Louisiana has partisan elections in
19	can only vote for one-third of the justices on the	19	districts. Kentucky, which does it the same,
20	Mississippi Supreme Court. I think that's a	20	right, but they're nonpartisan. So every case is
21	problem. But that's just my -- I mean, you know,	21	unique. And so it's hard to make any kind of
22	Kentucky has districts. Illinois has districts.	22	comparisons about across states because you have
23	Of course, Illinois, Chicago has three of the	23	no variation.
24	seven and the other four split down state. That's	24	Q. What do you think are the consequences
25	problematic.	25	of having three judges coming from a single
	Page 55		Page 57
1	In general, I think that having	1	district as opposed to nine districts with nine
2	district-based elections for statewide offices is	2	judges?
3	suboptimal. But, again, that's just from a purely	3	A. It could be nothing. I don't know. I
4	theoretical design standpoint.	4	don't think anyone knows.
5	My local school board elects regions,	5	Q. So in terms of the benefits of electing
6	right? We have nine members of the school board,	6	judges, we talked about earlier, I think you
7	and there were three people from each region.	7	mentioned transparency, legitimacy,
8	Which means when I vote for people for my school	8	accountability. Is that right?
9	board, I can't vote for two-thirds of them. Well,	9	A. Yes.
10	if the other two regions are nuts, and they are,	10	Q. Would those values be better served by
11	like I can only ever hope to have a third of	11	competitive elections versus noncompetitive
12	reasonable common sense, you know, pro-teacher	12	elections?
13	school board members. So, again, that's a -- I	13	A. Yes.
14	think most political scientists would agree that	14	Q. Which one would better serve?
15	from a design perspective it's suboptimal.	15	A. Competitive elections.
16	Q. But if you were to use districts, what	16	Q. Why is that?
17	district design would you have?	17	A. Competitive elections allow for
18	A. There are a number of different ways. I	18	meaningful choice. Competitive elections allow
19	have no opinions as to which way is better. You	19	voters to actually, you know -- when you have
20	could carve it out into nine independent districts	20	competitive elections it shows that candidates
21	and each district elects one. That's the Kentucky	21	have to be more accountable. They have to be more
22	model. You could do what Illinois does and	22	aware. If you're never worried about losing, then
23	concentrate, like, based on population, not	23	you're basically independent, right, and there's
24	necessarily geography. So Chicago gets three, or	24	no accountability mechanism. So in general
25	Cook County gets three, and the others are split	25	elections, right, to serve their functions should

	Page 58		Page 60
1	be contested and competitive.	1	or electoral threats does influence State Supreme
2	Q. Does the competitiveness of a district	2	Court Justices' decision making?
3	affect how responsive an officeholder is to their	3	A. I think it should. Whether it does or
4	constituents?	4	not, right, I think is -- I think there's some
5	MR. WALLACE: You're talking about	5	evidence that it does. How strong that is and has
6	judicial officeholders or generally? Object to	6	it changed over time, I don't know. But yeah.
7	the form for that reason.	7	Q. Thank you.
8	Q. (By Mr. Cheung) I would say generally	8	Do you think it's important for the
9	and then judicially.	9	judiciary to reflect the racial diversity of the
10	A. Generally, absolutely. There's a lot of	10	jurisdiction?
11	evidence of that. In fact, you can see it now.	11	A. So what do you mean by "important"?
12	Why has the US Congress gone off the rails? Well,	12	Q. Generally in terms of the values we just
13	you've seen a decline of competitive elections.	13	discussed.
14	You know, there's no one in the middle anymore.	14	MR. WALLACE: And I'll object to the
15	And so you've got people who don't have to worry	15	form until you define "reflect".
16	about actually being defeated. They're more	16	THE WITNESS: So I'll answer. I think
17	worried about being defeated in the primary than	17	in a representative democracy it is better for our
18	in general election.	18	institutions to reflect the makeup of their
19	So when you have an increase in one	19	constituents. So I think we have evidence that,
20	party districts, it leads to increased	20	you know, if you're looking at how legitimate
21	polarization.	21	individuals feel their government is, if you look
22	In judicial elections, I don't know of	22	at how perceptions in terms of role models and
23	any evidence one way or the other. I do -- so it	23	everything else, it absolutely is.
24	is true that there have been some studies in the	24	Like, for example, we know that, you
25	early '90s to show that judges change their	25	know, when African American students come to a
	Page 59		Page 61
1	behavior as they approached an election, right?	1	university and see all white professors, right,
2	So (inaudible) and Melinda Gann Hall did	2	that doesn't send a signal that that path is open.
3	a series of studies looking at how judges vote on	3	So yes, I do. I think descriptive representation
4	death penalty cases as an election approach. What	4	is incredibly important. I also think substantive
5	she found is that judges were more likely to	5	representation is important as well.
6	uphold death sentences as they approached their	6	I would submit that people who are
7	reelection than otherwise. But that -- what that	7	concerned with issues of race and social justice
8	interpretation is, right, matters. Is it that	8	would be better off with a liberal justice on the
9	judges are panning to elector or does it mean that	9	US Supreme Court compared to Clarence Thomas.
10	in fact, you know, they weren't doing their job	10	That's not to minimize the descriptive importance
11	all along and this is finally reigning them in.	11	of Clarence Thomas on there, but he's also not
12	So we do have some evidence of that, but that	12	advancing the policy goals that one would think he
13	doesn't say anything about partisanship, doesn't	13	would advance.
14	say anything about districts. It's the presence	14	But yes, descriptive representation is
15	of elections more generally.	15	important.
16	Q. Thank you.	16	Q. (By Mr. Cheung) Thank you. So we
17	I'd like to point you to the 2005	17	talked before about how the difference between
18	article we talked about earlier entitled Electoral	18	nonpartisan and partisan judicial elections is the
19	Verdicts. I think you have a quote there that	19	designation of a party on a ballot. Is that
20	says: The more serious the electoral threat, the	20	right?
21	more constraints you will feel. The same should	21	A. It is.
22	hold true for State Supreme Court incumbents.	22	Q. Are there any other differences in terms
23	Does that sound right?	23	of how the elections are run between partisan and
24	A. It does.	24	nonpartisan elections?
25	Q. So is it your view that competitiveness	25	A. Well, in terms of how they are run -- so

	Page 62		Page 64
1	we have -- there are nonpartisan elections and	1	two are that, one, fewer voters participate so you
2	then there are partisan elections. So partisan	2	have higher ballot roll-off. People don't vote
3	elections are pretty consistent. The party ID is	3	for those elections. They leave it blank. And
4	on the ballot, you know what they are.	4	the other is they tend to make more mistakes. So
5	Nonpartisan elections oftentimes are coded, right,	5	those who do vote, most of them are still able to
6	in a sense that you can tell which candidate is	6	identify their co-partisan, the partisan. Because
7	which. And I'll point you to my 2015 book which	7	most candidates who are running in these
8	showed that, in fact, even when you remove the	8	nonpartisan elections are clearly endorsed by a
9	party ID from the ballot and you just show voters	9	party, and that's pretty clear from their ads and
10	ads that are run, like, real ads, they can tell	10	everything else, also the things they say. But
11	which candidate is a Democrat and which candidate	11	you'll have some low information voters who don't
12	is a Republican. And so nonpartisan elections do	12	get those queues and who still participate and
13	not remove partisan considerations from the	13	they vote what I would term incorrectly.
14	voters' minds. In fact, in some ways they're just	14	Incorrectly in the sense that they're voting
15	as partisan. Again, with more errors and lower	15	against the candidate that best reflects their
16	voter participation.	16	values and their interest.
17	Q. So those ads that you talked about, how	17	Q. They're not voting for the candidates
18	do you know if the voter is picking up on a	18	that they would have vote for if they had full
19	partisan queue as opposed to a policy queue or a	19	information?
20	race queue or some other queue?	20	A. That is correct.
21	A. Well, it wouldn't be a race queue. I	21	Q. Do you know if nonpartisan elections are
22	mean there was nothing in there about race. These	22	more or less likely to be contested?
23	were vignettes that we gave -- we give them to	23	A. Nonpartisan -- let me think,
24	people not in the state they were in. It	24	historically. Historically I think nonpartisan
25	wasn't -- there was no way for voters to look up	25	elections were more likely to be uncontested, but
	Page 63		Page 65
1	or whatever else.	1	that difference has gone away in recent years.
2	Because the only difference is the	2	Now every seat is contested just about. I mean,
3	partisan. Everything else is the same. And so if	3	on average.
4	I give you a paragraph and Mike a paragraph, and	4	Q. In paragraph 10 of your January report
5	everything in that paragraph is the same, except	5	you say that: Elections in nonpartisan states are
6	in yours I say it's a Republican and in Mike's I	6	less likely to be contested than elections in
7	say nothing, and there's a difference, well,	7	partisan states.
8	that's why there's a difference. That's what the	8	A. Correct.
9	experiment does. It controls everything else. So	9	Q. Is that still your position?
10	if it was a policy, you're both responding to that	10	A. Well, that's my position in those
11	queue. And so when you see these kinds of	11	articles which are older. My looking at recent
12	differences, right, it's because of the	12	elections, you know, just my off the top
13	experimental manipulation. It really allows us to	13	recollection is that that difference has shrunk if
14	get a handle on what is going on.	14	not disappeared entirely. My recollection, I
15	Q. I see. And so I think I understand	15	could be wrong. It certainly was true at the time
16	better now. That study was based on ads that you	16	those articles were written looking at older
17	created and not real-world ads?	17	elections. But in the past decade we've seen a
18	A. Correct, yes.	18	huge increase in both attention to and
19	Q. And so your study did not look at the	19	contentiousness of State Supreme Court elections.
20	effect of the race on voter behavior?	20	Q. So the increased contestation, do you
21	A. Correct.	21	know if that applies to Mississippi?
22	Q. What are some of the differences, if	22	A. It applies certainly to District One
23	any, in terms of voter behavior in nonpartisan	23	based on Table 1, right, where every race was, in
24	elections versus partisan elections?	24	fact, contested except for Justice Kent.
25	A. I think we've talked about them. The	25	Q. Do you know if the incumbency advantage

	Page 66		Page 68
1	is stronger or weaker in nonpartisan elections?	1	out some of them, that's unusual, right, and so
2	A. I know incumbents are more likely	2	then you have to ask why, you know, are we
3	defeated in partisan elections, historically. So	3	signaling out some and not others and where the
4	that would suggest that in nonpartisan elections	4	criteria end and why is one method of selection
5	they're more likely to lose. In fact, I say in	5	good for some areas of the state and not for
6	paragraph 11 incumbent justices are more likely to	6	others. That's unusual. You don't see that a
7	lose in nonpartisan district-based elections than	7	lot, if at all.
8	they are. So in a system like Mississippi, the	8	Q. So I think the title of that article
9	incumbent justice is really more likely to lose,	9	that you were quoted in was: Mississippi House
10	based on my 2005 article.	10	Bill Will Create White Appointed Court System for
11	Q. Sorry, more or less likely to lose?	11	Blackest City in America.
12	A. Incumbent justices are more likely to	12	Does that sound right to you?
13	lose in nonpartisan district-based elections than	13	A. It might. I mean, I will say I did not
14	they are in nonpartisan statewide elections, yes.	14	write the headline.
15	Q. Are you familiar with a recent law that	15	Q. Do you have a view on the headline?
16	was passed in Mississippi, HB1020, concerning	16	A. Do I have a view on the headline? The
17	selection of judges in Jackson?	17	headline is provocative.
18	A. I read something about it like when it	18	Q. Do you agree with it, factually?
19	was on New York Times or NBC News. But I don't	19	A. Do I agree with it? House Bill Would
20	recall the specifics. I do remember it was a	20	Create -- that sounds consistent with the
21	controversy about changing the way judges are	21	objections that were raised by local officials in
22	selected in Jackson, but that's the best of my	22	Jackson. So I'm not -- I don't live in Jackson.
23	recollection.	23	I don't follow the thing in the ground. But that
24	Q. You gave a quote about that law to Yahoo	24	is consistent with what I read about the
25	News and Digital Journal. Do you recall that?	25	objections to this bill.
	Page 67		Page 69
1	A. Oh. I do now. I'm sure I did. What	1	Q. Do you have any reason to disagree with
2	did I say?	2	those objections or characterizations?
3	Q. Would it help to show you the article?	3	A. I have no reason to opine. If that's
4	A. If you want or you can just read me what	4	how the local officials feel, and I certainly can
5	I said.	5	see why they feel that way.
6	Q. So this is an article from February 15th	6	Q. Thank you.
7	of this year. Your quote was: But what makes	7	Is there anything else that you would
8	this Mississippi situation abnormal is that the	8	find notable about HB1020?
9	legislature is proposing a different way of	9	A. Not that comes to the top of my head.
10	selecting prosecutors and judges but only for one	10	If we can get a chance, I'd like a
11	area of the state and all the local	11	drink/bathroom break. Whenever you get done with
12	representatives in that area object to it.	12	this line of questioning.
13	A. Yes. Yeah, I said that.	13	Q. Now is a great time for a break.
14	Q. Is that still your opinion?	14	(Off the record.)
15	A. Yes, unless the bill has changed. I	15	Q. (By Mr. Cheung) Dr. Bonneau, have you
16	haven't obviously thought about it since I gave	16	conducted any empirical studies of the levels of
17	that quote. But yeah, that's -- yeah, that sounds	17	racial diversity on state courts?
18	like me.	18	A. The levels of racial diversity. Yes, I
19	Q. Could you say more about why this	19	think I have.
20	situation is unusual or abnormal?	20	Q. I think that was a 2000 article titled:
21	A. Well, yeah, because it's not -- when	21	Composition of State Supreme Courts.
22	you -- if you think there's a problem with the way	22	A. Yeah, that was my first journal article.
23	judges are selected or prosecutors are selected,	23	Q. Do you recall what you did in that
24	that's fine, right, and the legislature certainly	24	article?
25	can change that. But when you're only signaling	25	A. I believe in that article I simply

	Page 70		Page 72
1	compared how many justices, like, were black or	1	are advocated by a lot of women and so -- but you
2	women or nonwhite by selection type.	2	can have men who do. And so that's a more
3	Q. Is there a reason why you have studied	3	substantive representation.
4	the level of racial representation on state	4	So substantive representation gets into
5	courts?	5	policy, gets into are the policies reflective of
6	MR. WALLACE: Object to the form. I	6	the different groups. Whereas descriptive
7	don't think he said anything about racial	7	representation is simply when you look out, does
8	representation the way you talked about it	8	it look like, you know, the population.
9	previously, but go ahead.	9	Q. And have you looked at using judicial
10	Q. (By Mr. Cheung) Or racial diversity.	10	evaluations in the context of selecting judges?
11	A. Yeah, I mean I was in graduate school at	11	MR. WALLACE: Object to the form, until
12	the time and I was, like, oh, this will be	12	you explain what judicial evaluations mean.
13	interesting to see if there are any differences.	13	THE WITNESS: Yeah, can you tell me what
14	Because one of the allegations is that, you know,	14	you mean by judicial evaluations?
15	to get a more diverse bench then elections will	15	Q. (By Mr. Cheung) I believe in your past
16	lead you to have a less diverse bench. And so	16	work you've analyzed a system of electing judges
17	it's an empirical question and it's an important	17	by using assessments or evaluations of judicial
18	question so, you know, I collected some data and	18	performance. Do you recall that?
19	just did a little descriptive piece.	19	A. I don't.
20	Q. Why do you think it's an important	20	Q. Okay.
21	question?	21	A. What article was that?
22	A. Well, we talked earlier about	22	Q. I'm not sure if it's a published article
23	descriptive representation, right, and how	23	but I think you've spoken about the topic of using
24	descriptive representation is important. And so	24	judicial evaluations.
25	if it's true that one method of selection	25	A. I've spoken about judicial performance
	Page 71		Page 73
1	systematically gives you less diversity than other	1	evaluations and certainly I think in one of my
2	methods, that's something that should be part of	2	edited books there was a chapter by a colleague
3	the conversation. That's something that should go	3	talking about some of her work on judicial
4	into the decision about should you change your	4	performance evaluations. But it's not something
5	method of selection, should you not, whatever.	5	that I've conducted independent research on.
6	It's an important piece. And if it's not true,	6	Q. Okay. Got it. And what do you know
7	then we don't need to worry about that when we're	7	about judicial performance evaluations?
8	talking about best practices.	8	A. So judicial performance evaluations vary
9	Q. And I know earlier we used the terms	9	across states. Sometimes they're just simple
10	"descriptive representation" and "substantive	10	surveys of the bar, sometimes they also involve
11	representation." What do you mean by those terms?	11	litigants, sometimes the involve whatever, right.
12	A. Sure. So descriptive representation is	12	And in some places they're published, right, and
13	simply you look out and you see, oh, it's a	13	so whether a judge is -- there are scores on
14	diverse bench, right? And you see, oh, if there's	14	certain things like temperament or fairness and so
15	30 percent women in a state and you have a state	15	on. And they can be given to voters in advance of
16	legislature is 30 percent female, then you're	16	elections. In other areas it's much more of than
17	like, okay, that's pretty good descriptive	17	internal thing that's done by the bar. So there
18	representation. That is it's properly reflective	18	are a lot of variations about, you know, how they
19	of the demographics, the characteristics of the	19	are.
20	population.	20	Q. Are you aware of any literature about
21	Substantive means, though, that you	21	biases in judicial elections?
22	represent the dominant interest of that group in	22	A. Judicial elections?
23	your behavior. So for example, you can have	23	Q. Judicial evaluations, I'm sorry.
24	female legislatures who don't support women's	24	A. Yes.
25	rights or don't support some of the causes that	25	Q. And what do you know about those?

	Page 74		Page 76
1	A. So one of my colleagues at UNLV has done	1	But I'm not going to tell him not to answer it.
2	a lot of studies, Rebecca Gill, on that. And	2	MR. CHEUNG: Okay. Your objection has
3	basically it's similar to what you see in student	3	been noted. Thank you, Mike.
4	performance evaluations, like when you survey	4	THE WITNESS: Can you please repeat the
5	students in class. Women tend to be judged more	5	question?
6	harshly, white men are perceived as being more	6	Q. (By Mr. Cheung) Is it important to
7	competent. And so the same kinds of things you	7	redistrict after each census?
8	see in nonlegal circles, right, from what I've	8	A. What do you mean by "important"?
9	read are also present in these judicial	9	Q. Well, why do you think redistricting
10	evaluations as well.	10	occurs after a census?
11	Q. Are racial biases present in judicial	11	A. Well, it's required by the Constitution.
12	evaluations?	12	Q. Does that make sense to you?
13	A. I don't recall that specifically, but	13	A. Does that make sense to me? Well, sure,
14	I'm not saying no. I don't recall from my	14	it makes sense because it's required by the
15	reading.	15	Constitution. Does the Constitution make sense to
16	Q. A few questions about redistricting.	16	me on that front? I've never really thought about
17	From what you know, when does redistricting	17	it. I mean, I would say that sure, that if
18	typically occur?	18	populations change or things shift significantly
19	A. After -- well, the federal level, after	19	then, you know, if we believe that one person's
20	a census.	20	vote should equal as much as another, it should.
21	Q. And what about at the state level?	21	Now, it doesn't make a lot of sense in
22	A. I think it depends on the state	22	context of the Constitution because our electoral
23	constitution, right? In some states -- I mean, it	23	system with its electoral college ensures that, in
24	depends on the office too, right? So if it's a	24	fact, one person's vote doesn't equal the same as
25	federal office, right, like US House,	25	another's. But, you know, I don't know if you
	Page 75		Page 77
1	redistricting has to occur every 10 years after	1	want to go down that path.
2	the census. If it's a state district, I suspect	2	Q. But you would agree that it's important
3	it varies based on the state, but I have not done	3	for districts to reflect the existing population
4	any work on that.	4	of the jurisdiction?
5	Q. Do you think it's important to	5	A. Yeah, generally, that's right. Among --
6	redistrict after each census?	6	I will say there are other factors, too. Like,
7	MR. WALLACE: At this point I think I'm	7	you know, for example, not splitting up towns or
8	going to object. The order authorizes you to talk	8	historical -- the general redistricting principles
9	about his surrebuttal report, and I know you're	9	that the US Supreme Court has set out about
10	entitled to go into his background as a scholar,	10	compactness and continuity and communities of
11	but if he hasn't done any scholarship on that,	11	interest and whatever else. I mean, yeah, that's
12	what's the relevance to what the Court is allowing	12	reasonable.
13	you to do today?	13	Q. Yeah. I just mean in the broad sense
14	MR. CHEUNG: Are you asking him not to	14	that redistricting should occur on the basis of
15	answer the question?	15	the most updated population data that we have.
16	MR. WALLACE: I'm asking you to explain	16	Would you agree?
17	why you think you're entitled to ask it.	17	A. Within certain limits, yes.
18	MR. CHEUNG: Well, Mike, I think you're	18	Q. Do you know the last time redistricting
19	entitled to ask him not to answer it if you think	19	occurred with the Mississippi Supreme Court
20	the question is privileged.	20	districts?
21	MR. WALLACE: I'm not going to tell him	21	A. I do not.
22	not to answer it, but the judge has given you a	22	Q. I can represent to you that the last
23	limited authority here, and pulling out political	23	time it happened was 1987. Do you know how many
24	science questions from thin air to ask him about	24	times the census has been taken since 1987?
25	is I would think outside the scope of her order.	25	A. Well, it's every 10 years, so that would

black, and so there's a lot of agricultural interest. And it tended to be heavily nonwhite communities now because of the history of the soil and the farming.
Q. Do you know if the Black Belt extends into Mississippi?
A. I don't.
Q. Are you familiar with the Mississippi Delta as a region?
A. I am. That's the part down by the -- in the south, right, by the Gulf -- no. I guess I'm not.

MR. SHANNON: You're not.
Q. (By Mr. Cheung) As a political scientist, have you considered the extent to which black voters might have similar interests due to a shared history?
A. Have I personally considered, no, but that's a pretty common finding among others.
Q. I think you have an article from 2009 titled: Impartial Judges, Race, Institutional Context. Does that sound right?
A. Yes.
Q. You have a quote here that says: Given the history of African Americans in the United
representations of the state, right, and there's
not been meaningful deviations then, yeah, those would be the ones that come to mind off the top.
Q. Do you know if there has been or has not been population change in Mississippi since 1987?
A. Since '87? I'm trying to think of my electoral map. I want to say y'all have increased one electoral vote since ' 87 , but I'm not sure. I defer to people who -- I mean, ' 87 is a long time ago. I wasn't even able to vote then.
Q. I wasn't born then.
A. I don't -- I can't answer that. I don't
know. You can tell me anything and I'd believe it.
Q. In your work as a political scientist, have you become familiar with what people refer to as the Black Belt?
A. I refer to Black Belt -- yeah, in Alabama particularly, yes.
Q. What is your understanding of the Black Belt?
A. So my understanding of the Black Belt, is really interesting. That basically it's the part -- at least in Alabama -- of like the middle of the state where the soil was rich, the soil was

States, African American judges might be more sympathetic to less fortunate people.
A. Yes.
Q. Do you agree with that assessment?
A. Yes, and I think I have a bunch of citations after that, too. Because that's not something I would have said without citation. But, yes.
Q. You also said: Since most criminal defendants are either poor or racial minorities, it is not hard to imagine that African American judges would be more sympathetic to defendants because of their own negative experiences in society.
A. Correct.
Q. What is that history and that negative experience referring to?
A. Well, I think it's referring to the fact that for years African Americans were not treated as full citizens of this country. For years they weren't citizens at all. Then they were, you know, partial citizens. And then, you know, even after, you know, the Civil War and the passages of 13th, 14th and 15th amendments, we still had institutionalized oppression where individuals,

	Page 82		Page 84
1	African Americans, were not treated the same as	1	voters supporting Democrats that you mentioned
2	whites, until we got to the Civil Rights Act and	2	earlier, do you know if that pattern is true in
3	Voting Rights Act. Those vestiges are still	3	Mississippi?
4	there. That's not all that long ago. You know,	4	A. I have no reason to think it's not.
5	that's my parents' generation. And so I think	5	Q. Do you know if the contrast between
6	it's -- you know, I think it's naive to assume,	6	white and black voters is more or less stark in
7	right, that those vestiges don't still permeate	7	Mississippi compared to other states?
8	throughout in terms of available opportunities, in	8	A. I do not.
9	terms of a whole bunch of things.	9	Q. In your review, what makes African
10	Q. So I'd like to turn to racially	10	Americans more likely to be Democratic voters?
11	polarized voting. In your work as a political	11	A. Well, I think the Democratic party is
12	scientist, have you observed any patterns in terms	12	the party that helped pass the Civil Rights Acts
13	of which parties or candidates black and white	13	and the Voting Rights Act and also tends to
14	voters tend to support?	14	promote bigger government, more social policies
15	A. Oh, yeah, I think everyone knows. Yes,	15	that help individuals, right, who need social
16	black voters support the Democratic party.	16	services, who improve education, you know, for all
17	Q. When you say everyone knows that, are	17	kinds of reasons.
18	you referring to political scientists or what are	18	And the Democratic party, I think, is
19	you referring to?	19	not -- has been much more open in terms of
20	A. Everyone. I think if you walk out in	20	nominating and electing African American
21	the street and ask five people they would tell you	21	officials. And so I think there are historical
22	that. So it's been established by scholars but	22	reasons and also current reasons, policy reasons.
23	it's also -- I mean, you can look at, like, any	23	Q. So you mentioned the Civil Rights Act,
24	graph, you know, in any newspaper or anything	24	the Voting Rights Act. At the risk of asking a
25	else.	25	very obvious question, but why would those laws be
	Page 83		Page 85
1	Q. Roughly speaking, do you know what	1	relevant to you by Democrats -- why black lawyers
2	percent of black voters tend to vote for	2	support the Democratic party?
3	Democrats?	3	A. Sure. Well, the Civil Rights Acts
4	A. It's upwards of 90.	4	allowed -- ended public discrimination in places
5	Q. 90 percent?	5	of accommodation. So all of a sudden now, you
6	A. Yeah.	6	know, you couldn't discriminate in hotels,
7	Q. What about the percent of white voters	7	restaurants, other things, right, against black
8	that vote for Republicans?	8	citizens. Voting Rights Act removed a lot of the
9	A. Well, that varies based on state. It's	9	impediments to black voters registering to vote
10	not 90 percent. But I don't have a hand --	10	and actually exercising their right to vote.
11	there's a lot more variations too, in terms of	11	And so those kinds of policies, right,
12	college-educated whites versus noncollege-educated	12	that improved the lives of black Americans, you
13	whites. So a lot more factors, right, among white	13	know -- it wasn't just the Democrats who did that.
14	voters that help predict voter turnout that aren't	14	Obviously, as you know, we had party realignment
15	as present with black voters.	15	and whatever else. But it was -- the way things
16	Q. And what about white Mississippians?	16	have sorted out is Democrats now.
17	A. What about white Mississippians?	17	Q. What is that partisan realignment that
18	Q. In terms of their level of support for	18	you're referring to?
19	Republican party candidates?	19	A. Well, so in the -- I mean, right, the
20	A. Well, I'm assuming it's pretty high	20	Democrats, right, in the south, right, are
21	because Republicans always win the elections in	21	different than Democrats in the north back then.
22	Mississippi. At least in statewide elections,	22	Same thing with Republicans. And so it was a
23	right. Presidential elections, Senate elections.	23	time, right, where you'd have, you know, southern
24	So yeah, that's my assumption.	24	Democrats voting much more so with southern
25	Q. In the upwards of 90 percent of black	25	Republicans, and northern Republicans and northern

	Page 86		Page 88
1	Democrats. But now those have aligned. So just	1	as Plaintiff's Exhibit 3, I believe.
2	like the -- you know, the Democrats and Democratic	2	Dr. Bonneau, can you confirm that that's
3	party in the south has largely been diminished,	3	the initial report from Dr. Orey that you reviewed
4	the same thing is true with the Republicans in the	4	and responded to?
5	northeast, right? I mean, you don't have	5	A. It looks to be the case.
6	northeast Republicans anymore. I mean,	6	Q. Let's turn to Pages 12 through 14 of the
7	occasionally you'll get someone like a Charlie	7	report, and if you wouldn't mind taking a moment
8	Baker in Massachusetts, but that's, you know, the	8	to review those pages.
9	exception not the rule. I'd say that's sorting.	9	A. Okay.
10	Q. What caused that realignment?	10	Q. So I think your testimony earlier was
11	A. A number of factors caused that	11	that you have concerns about the inferences that
12	realignment. I think preferences of individuals.	12	Dr. Orey can draw from these results, but you take
13	I think political parties, right, and so seeing	13	his factual findings or his results to be true.
14	opportunities. I mean, in the northeast, right,	14	Is that right?
15	you see some Republicans who vote for you, you	15	A. I take the estimates that he has using
16	know, maybe 50 percent of the time and Democratic	16	the ecological inference, yes.
17	parties -- again, we get a Democrat in here would	17	Q. So your reports do not dispute
18	vote 80 percent of the time. So you start	18	Dr. Orey's implementation of ecological inference
19	targeting those individuals and electing more	19	in terms of the accuracy of its code?
20	co-partisans and the American electorate become	20	A. Correct.
21	much more polarized. There are a number of causes	21	Q. You don't dispute the accuracy of the
22	that have led to that.	22	data that he uses?
23	Q. Did the passage of the Civil Rights Act	23	A. Correct.
24	and the Voting Rights Act contribute to the	24	Q. And you don't dispute the accuracy of
25	realignment?	25	his computations?
	Page 87		Page 89
1	A. I think without question.	1	A. Correct.
2	Q. And in your view what makes white people	2	Q. Based on those tables on pages 12 to 14,
3	more likely to be Republican voters?	3	did Dr. Orey find that black voters typically
4	A. What makes white people more likely to	4	support the black candidate about 90 percent of
5	be Republican voters? Well, again, there are a	5	the time?
6	number of things. I think white people tend to --	6	A. That's fair.
7	I think the Republican party has done a really	7	Q. For example, I think in Table 1 if we
8	good job of appealing to a time where white people	8	look at the Westbrooks election, Dr. Orey
9	were, I say, more prominent, right, and had better	9	estimated that Ms. Latrice Westbrooks earned about
10	economic fortunes than they do now, where you	10	90.46 of the black vote in 2020; is that right?
11	didn't need a college education to have a good	11	A. That is correct.
12	middle class life and so on. So I do think	12	Q. And white support, according to
13	there's a economic interest. This is particularly	13	Dr. Orey's estimates, for black candidates was
14	true for lower income, lower educated whites. You	14	typically below 15 percent?
15	know, and the Republican party does a good job of	15	A. Typically, that's correct.
16	appealing to these individuals. Religion is part	16	Q. And in the, again, the Westbrooks'
17	of it, you know. I mean, there are a lot of	17	example from 2020, she received less than
18	things.	18	10 percent of the white vote?
19	Q. Let's move on to Dr. Orey's report. I	19	A. Correct.
20	can give you a copy of that.	20	Q. Are those estimates consistent with your
21	A. Sure.	21	understanding of voting patterns among black and
22	Q. I'm handing you a copy of the October	22	white voters?
23	report, 2022.	23	A. Yes.
24	(Exhibit 3 marked for identification.)	24	Q. In paragraph 37 of your January report
25	Q. (By Mr. Cheung) That's now been marked	25	you said that it is highly unlikely these

	Page 90		Page 92
1	candidates lost because they are African American?	1	is that correct?
2	A. Correct.	2	A. Well, and then there were incumbents
3	Q. Would it be fair to say that those	3	after that, like Justice King.
4	African American candidates lost because the	4	Q. Right. But at the time of their
5	majority of white voters voted for a different	5	election, they had already been in office?
6	candidate?	6	A. I think I said earlier that I wasn't
7	MR. WALLACE: I'm going to object to any	7	sure if any African American candidate had ever
8	questioning on paragraph 37. It's outside the	8	successfully run not as an appointee, so I will
9	scope of the order. I will not tell him not to	9	stick to that. But certainly the ones I looked at
10	answer, but we'll deal with it if you ever offer	10	for my report, that is true.
11	it in court. Proceed.	11	Q. Your view is that District One, as
12	THE WITNESS: Please repeat the	12	currently configured, black voters can already
13	question.	13	elect their preferred candidate?
14	Q. (By Mr. Cheung) Would it be fair to say	14	A. Correct.
15	that those African American candidates lost	15	Q. Is that in most cases, in some cases?
16	because the majority of white voters voted for a	16	A. I would say -- in most cases, I would
17	different candidate?	17	say two of the three justices in District One are
18	A. Because of the white -- I would say it	18	the black preferred candidates.
19	differently.	19	Q. Based on your understanding of these
20	Q. How would you say it?	20	voting patterns, would you agree that a district
21	A. I would say that those African American	21	that has a majority African American population
22	candidates lost because -- because they didn't get	22	has a greater chance of electing someone preferred
23	enough votes, likely because they were Democrats.	23	by African American voters than a district that is
24	Q. And they were Democrats, and they lost	24	minority African Americans?
25	because they did not earn the votes of more white	25	A. Sure.
	Page 91		Page 93
1	voters?	1	Q. Do you know what percentage of the
2	A. Of more Republicans, or as their	2	voting age population of District One is black?
3	opponents. I mean, so they could have, right,	3	A. I do not.
4	gotten more black voters, as well. So they didn't	4	Q. I can represent to you that it's about
5	lose -- like, if they lost because -- they could	5	49 percent --
6	have lost because they didn't get more white	6	MR. WALLACE: I'm going to object to the
7	voters; they could have lost because they didn't	7	form of the question, assumes facts not in
8	get more black voters. They could have lost	8	evidence.
9	because they were Democrats.	9	Q. (By Mr. Cheung) Can you assume that
10	Q. Do you know if there were enough black	10	fact to be true for purposes of this deposition?
11	voters in the district to put them over the top,	11	A. I've -- can I assume that fact to be
12	given that, you know, someone like Ms. Westbrook	12	true? I mean, if we're talking about
13	is already earning over 90 percent of the black	13	hypotheticals, we can talk about a hypothetical
14	vote?	14	district where blacks are 49 percent of the vote,
15	A. I don't know how many black voters voted	15	sure, I can stipulate that for the next few
16	in that election.	16	questions.
17	Q. And overall as to District One, is it	17	Q. Thank you. Let's turn to Appendix A of
18	your conclusion that racial polarization exists	18	your report. In Appendix A did you identify
19	but not to the extent that black candidates are	19	Ms. Westbrooks as a black candidate who lost her
20	unable to win election to Mississippi Supreme	20	election in District One in 2020?
21	Court?	21	A. I did.
22	A. I think, yeah, I stipulate to that.	22	Q. Based on your table, did Ms. Westbrooks
23	Q. Those black candidates that did win	23	win about 48-and-a-half percent of the vote?
24	election to Mississippi Supreme Court, they're all	24	A. Yes.
25	appointees running with an incumbency advantage;	25	Q. Given that the district is 49 percent

	Page 94		Page 96
1	black voting age population, as we assumed, and	1	Q. And so do you have any reason to think
2	that Ms. Westbrooks won 48-and-a-half percent of	2	that other black voters would react to incumbency
3	the vote, do you think it's a fair estimate to say	3	differently if they were added to District One?
4	that if we added another point of black voting age	4	A. No, I mean -- no, but, again, I mean,
5	population to a district it's likely to increase	5	you're assuming, again, the same kinds of turnout
6	her vote share by a little bit less than	6	rate and participation rate and everything else,
7	one percent?	7	yes.
8	A. Yes, and also if you added more	8	Q. Right. So if we assume the same turnout
9	Democrats as well.	9	and participation rate, do you think that if the
10	Q. As we discussed earlier, Ms. Westbrooks,	10	black voting age population of District One had
11	according to Dr. Orey's estimates earned about	11	been 3 to 4 percentage points higher,
12	90 percent of the black vote?	12	Ms. Westbrooks likely would have won in 2020?
13	A. Correct.	13	A. What I'm saying is if you added 3 to 4
14	Q. Given that she's earned 48-and-a-half	14	percent of black voters to District One and these
15	percent of the vote shared, she's about 1.6	15	voters behaved the same way as the voters who are
16	percent short of winning the majority of the	16	already in District One, then that likely would
17	election in 2020?	17	have led to Ms. Westbrooks winning her race.
18	A. Correct.	18	Q. Just to sum up. In 2020, Ms. Westbrooks
19	Q. And taking the fact that she's earned	19	lost even though District One had 49 percent black
20	about 90 percent of the black vote, would you	20	voting age population and she had 90 percent of
21	agree that if the black voting age population in	21	that black support.
22	District One had been three to four points higher,	22	MR. WALLACE: Once again, object to the
23	she likely would have won in 2020?	23	making of assumptions with facts not in evidence.
24	A. I don't know if I can say that because I	24	THE WITNESS: And I would also point
25	don't know what the voting turnout was. I don't	25	that Justice King won with 100 percent of the
	Page 95		Page 97
1	know if that extra percentage would have turned	1	vote, black and white.
2	out to vote or -- so I can't say that.	2	Q. (By Mr. Cheung) Justice King was not
3	Q. What if we assume that voter turnout	3	contested in his reelection?
4	remains as it is in District One?	4	A. Correct, which I would argue is
5	A. Well, I think it's -- I mean, it's hard	5	important, but we can talk about that later.
6	to say, right, because again, right, she was going	6	Q. We'll get to that later. Appreciate
7	up against an incumbent, and we've already talked	7	your answers, Dr. Bonneau.
8	about how incumbents overwhelmingly win. And	8	So I'd like to turn to paragraph 49 of
9	there was another incumbent in 2020, Justice King,	9	your January report. Point out the fact that
10	who no one even bothered to challenge. And so	10	Ceola James came in third place even though she
11	it's hard to say if adding that extra percentage	11	was the only African American candidate in that
12	of the vote would have been enough to overcome the	12	race?
13	incumbency advantage. You're assuming that extra	13	MR. WALLACE: Same as the prior
14	percent of vote would have voted in the same	14	objection. It's outside the scope of the court
15	percentages as the population of the vote that's	15	order. I will not tell him he can't answer it.
16	already there. I mean, yeah, it's possible. It's	16	THE WITNESS: Correct.
17	possible you might need to add 10 percent. I	17	Q. (By Mr. Cheung) What is the
18	don't know. But I think there are a lot of -- I	18	significance of the fact that James was not the
19	think concluding that would require a lot of	19	preferred candidate of black voters?
20	assumptions that I don't think the data support	20	A. Well, she might have been, I don't know.
21	make it.	21	What I said was if she was the preferred candidate
22	Q. The point about an incumbency, that did	22	of black voters and there was a three-person race,
23	not prevent 90 percent of the black voters from	23	given what you've just described as demographics
24	supporting Westbrooks in that election?	24	of that district, she would have advanced to the
25	A. Correct.	25	runoff, with the two white canceling the white

	Page 98		Page 100
1	vote. But, in fact, it turns out she probably	1	Q. Similarly, I think in your September
2	wasn't the preferred candidate of -- so just	2	report in paragraph 7 you point out that a black
3	because, you know, you have a black candidate does	3	Democrat, Cecil Brown -- you point out that a
4	not mean that candidate is the black preferred	4	black Democrat lost to the white Democrat in the
5	candidate. Which I think is the assumption that	5	2015 primary for public service commissioner.
6	is made in a lot of Orey's.	6	A. Correct.
7	Q. So you're not sure if Ms. James was the	7	Q. And is the significance of the fact the
8	black preferred candidate or not?	8	same as what we just discussed?
9	A. It's hard for me to think that she was	9	A. Correct. That if Brown was the
10	if she only got 10 percent of the vote.	10	preferred candidate to black voters in the
11	Q. Okay. So your conclusion is that she	11	primary, which again, which is likely given the
12	likely was not the preferred black candidate in	12	margin of his victory, even holding a political
13	this case?	13	party of that candidates' constant, black voters
14	A. Correct. Well, if 49 percent of the	14	don't necessarily favor black candidates.
15	district is African American and you have three	15	Q. And so your view is that because black
16	candidates, to only get 10 percent would suggest	16	voters did not necessarily prefer the black
17	that she was not the preferred candidate of	17	candidate, black voters, at least in the
18	African Americans.	18	Democratic primary, are not being driven by racial
19	Q. What is the significance of that fact?	19	bias?
20	A. That black candidates are not	20	A. Correct.
21	necessarily black preferred candidates.	21	Q. Are you aware of any similar evidence
22	Q. Why is that relevant to your analysis?	22	showing that white voters are not being driven by
23	A. Well, it's relevant, right, because in	23	racial bias in their choice of candidates?
24	the Orey report, right, he talked a lot about the	24	A. I don't think that's been analyzed. I
25	black candidate, right? So if you look at	25	mean, I haven't seen anything in either Orey's
	Page 99		Page 101
1	Table 1, black candidate. Table 2, black	1	report or -- that looked at that.
2	candidate. A black candidate is not synonymous	2	Q. But there's nothing in your report that
3	with black preferred candidate. A black preferred	3	goes to that?
4	candidate could be Jim Kitchens, could in fact be	4	A. Correct.
5	a white candidate. And so we can't simply look	5	Q. Would you agree that in the Democratic
6	and see how African American candidates do, we	6	primary context that partisan affiliation cannot
7	have to look at how African American preferred	7	explain why black and white Democrats choose
8	candidates do.	8	different candidates?
9	Q. And so in this particular race in 2008,	9	A. Well, yes, because the party is held
10	were black voters voting cohesively for Kitchens?	10	constant as I say in paragraph 7.
11	A. I don't have that -- I don't know. I	11	Q. If black voters don't have a stronger
12	don't see that in -- I don't know if they were or	12	preference for black Democrats over white
13	not. I can tell you they almost certainly were	13	Democrats, in your view does that preclude a
14	not voting cohesively for James.	14	finding of racially polarized voting?
15	Q. And what do you think white voters	15	MR. WALLACE: Would you repeat that? I
16	were -- who white voters were voting for?	16	think you're asking him for a legal opinion.
17	A. My assumption is they were voting for	17	Q. (By Mr. Cheung) If black voters don't
18	the Republican incumbent, Smith, but, again, I	18	have a stronger preference for black Democrats
19	don't know.	19	over white Democrats in your view does that
20	Q. And in that election, Kitchens won?	20	preclude a finding of racially polarized voting?
21	A. Correct.	21	MR. WALLACE: I think that's probably
22	Q. And so do you think in all likelihood	22	not a legal opinion so I think you can answer it.
23	Mr. Kitchens was the preferred candidate of black	23	THE WITNESS: Does it preclude it no,
24	voters?	24	but it makes it more difficult because it suggests
25	A. I do.	25	that party is what's really working here, not

	Page 102		Page 104
1	racial analyst.	1	factors that the candidate ends up being the
2	Q. (By Mr. Cheung) Is it possible that	2	candidate preferred by blacks. So the black
3	black voters supported the white Democrat for	3	preferred candidate, the race of that candidate is
4	reasons related to race?	4	one factor among several others that go into that
5	A. Is it -- sure, it's possible that black	5	calculation for people.
6	Democrats supported a white Democrat, sure.	6	Q. And so you agree that just because that
7	Q. What are some reasons that would fit	7	the race of the candidate does not determine who
8	that pattern?	8	black voters vote for does not mean that those
9	A. Well, if they thought that the white	9	voters are making decisions independently of race?
10	Democratic candidate was more aligned with their	10	A. Making decisions independently. Say
11	views, with the voters' views on certain issues.	11	that again, please.
12	Q. And by issues you mean issues that have	12	Q. Would you agree that the fact that black
13	a racial component to them?	13	voters are not choosing candidates on the basis of
14	A. Yeah, issues that are salient to the	14	race, that does not preclude black voters from
15	black community. I mean, they may not have a	15	selecting candidates for reasons related to race?
16	racial component to them, but they may be of	16	A. Yes, that does not preclude that. They
17	interest, or of higher interest.	17	certainly could be doing that as well.
18	Q. Is it possible that black voters	18	Q. And so in your reports here you do not
19	nominate white Democrats because they view white	19	conduct any analysis to rule out the possibility
20	Democrats as being more electable in the general	20	that black voters support candidates because of
21	election compared to black candidates?	21	their views on race issues?
22	A. That's possible, sure.	22	A. Correct.
23	Q. Is it possible that a white Democrat is	23	Q. I have a few questions about your
24	better aligned with black voters on issues of	24	experience with racially polarized voting, which
25	racial equality as opposed to a black candidate	25	we talked a little bit about earlier. Could you
	Page 103		Page 105
1	elected in a primary?	1	give me a brief overview of the experience you
2	A. Yeah, in a given primary, sure, it's	2	have with the subject of racially polarized
3	possible.	3	voting?
4	Q. Is it possible that black voters think	4	A. My experience as a professor?
5	that the white Democratic is a better messenger on	5	Q. As a professor or as an expert.
6	issues of racial equality as compared to a black	6	A. Sure. So my experience is I have read
7	candidate?	7	the articles that have used or have examined
8	A. Possibly.	8	racially polarized voting. I'm familiar with the
9	Q. Is it possible that black voters support	9	reason those analyses are conducted, and -- yeah,
10	a white Democrat over a black Democrat because the	10	I have consumed scholarship.
11	white Democrat is endorsed by prominent black	11	Q. Have you taught courses about racially
12	individuals?	12	polarized voting?
13	A. Sure.	13	A. Racially polarized voting would not be
14	Q. Did you consider those possibilities	14	the topic of a class. It might be something
15	when reaching a conclusion that black voters	15	that's done in a class. And, no.
16	support white Democrats and therefore their vote	16	Q. Have you discussed it as a topic within
17	preference is non-basis of race?	17	a class?
18	A. Well, I think those things confirm what	18	A. Not that I recall.
19	I said, right, that they're making this choice,	19	Q. And have you written any articles about
20	this strategic choice, as opposed to based on any	20	racially polarized voting?
21	number of factors. I have no -- unless we go out	21	A. No. Unless you tell me I did.
22	and we have survey data of what these voters, you	22	Q. Have you given any talks about racially
23	know, what they said their preferences were in	23	polarized voting?
24	these elections, I don't think we can eliminate	24	A. No.
25	anything. But certainly I think there are more	25	Q. Have you ever done any racially

Page 107

Q. Have you spoke to him before?
A. Sure, I've spoken to him.
Q. Have you spoken to him about this case?
A. No, but so -- we were both at a conference together in March and we ran into each other on the elevator, and he said something like, oh, I see we're going up against each other. I said, oh, yeah. And that was basically the extent of it. It was a very casual -- I didn't mention anything. He just brought it up kind of like to break the tension, I guess or whatever. Then I ran into him at the hotel bar later on and just had conversation about how he's doing, his health, the great undergraduate program he's running at Jackson State.
Q. Did you say anything to him about this case?
A. Not besides what I just told you.
Q. Did you discuss racially polarized voting analyses?
A. No.
Q. Anything else you can think of from that conference encounter?
A. Not that I can recall.
Q. Okay. I'd like to turn to ecological

Page 109
That does not mean the ecological inference, though, is the right way to approach the analyses in this case or in all cases, and it also does not, you know, mitigate any of the criticisms of ecological inference that other scholars have noted.
Q. Do you know of any empirical methods that would be better at generating racially polarized voting estimates compared to ecological inference?
A. I do not.
Q. So in your September report you identify some general concerns with EI -- with ecological inference as a method in the racially polarized voting context; is that right?
A. That is right.
Q. Did you raise those methodological concerns in your January report?
A. In my January report I did not do any work regarding ecological inference.
Q. Dr. Orey also used ecological inference in his original October 2022 report; is that right?
A. I believe that's correct.
Q. Is there a reason why your January

	Page 110		Page 112
1	report didn't address methodological concerns with	1	because you can't test the key assumption.
2	ecological inference?	2	Q. So you said a lot there and I just want
3	A. I wasn't focused on that. I was focused	3	to break it down.
4	on other things.	4	In paragraph 14, like you said, Dr. Orey
5	Q. In paragraph 13 of your September	5	said that King's solution overcomes this
6	report, you discuss a concern with ecological	6	limitation about variation across precincts?
7	inference methods because they assume that	7	A. Correct.
8	minority voters behave similarly across different	8	Q. Do you agree that EI overcomes this
9	precincts; is that right?	9	precinct variation issue, at least King's method
10	A. Correct.	10	of EI?
11	Q. You then go on to say that that	11	A. I'm not sure. I have correspondence
12	assumption is, quote, untenable; is that right?	12	from one of the authors of the criticism that says
13	A. Correct.	13	that that assumption still applies to King's
14	Q. Do you cite any authority for that	14	method as well. But I'm not -- I'm not
15	conclusion?	15	methodologically sophisticated enough to dig under
16	A. That it's untenable?	16	the hood and determine that for myself.
17	Q. Yes.	17	Q. Do you know -- if the precinct variation
18	A. That minorities are relatively	18	assumption is problematic, do you know what effect
19	affluently racially integrated precincts and	19	that has on the estimates here?
20	treated as distinguishable -- that assumption is a	20	A. Sure, because if it's -- if the precinct
21	fact, right? So no, -- so my conclusion that it's	21	assumption is -- it invalidates the estimates
22	an untenable assumption is that the proportion of	22	because you're making assumptions about voters and
23	white and minority voters who support each	23	you're implying that a voter in a district here in
24	candidate is the same at each precinct. We can	24	Jackson, the same factors, you have the same
25	debate whether or not that's a tenable	25	percentage of the precinct here in Jackson as you
	Page 111		Page 113
1	consumption. In my opinion that's a completely	1	would a precinct down in the suburbs. That
2	untenable assumption at each precinct. Are there	2	assumption would lead to biased estimates.
3	no differences between precincts, right, regarding	3	Q. Do you know if that bias leads to an
4	the minority and white support? I don't know	4	overestimate or an underestimate?
5	anybody who would argue that that's a tenable	5	A. I do not.
6	assumption.	6	Q. You did not perform any analysis in your
7	Q. Then in paragraph 14 of your September	7	report to determine whether the bias would be an
8	report you discuss an issue about using Ordinary	8	underestimate or an overestimate?
9	Least Squares regression in question to estimate	9	A. Correct.
10	vote shares. Do you see that?	10	Q. In paragraphs 14 and 15 you cite this
11	A. I do.	11	1998 article from Wendy Cho; is that right?
12	Q. Do you know if Dr. Orey used Ordinary	12	A. I do.
13	Least Squares in his analysis?	13	Q. Could you walk me through what Dr. Cho's
14	A. My understanding is he used King's	14	critique of ecological inference?
15	ecological inference.	15	A. Sure. Dr. Cho's critique is that in
16	So the Ordinary Least Squares, right, is	16	order for ecological inference to be correct and
17	a way to show -- a way to show how the ecological	17	appropriate, right, the specification has to be
18	inference technique run by King, which is based on	18	correct. That is the model specification has to
19	some of the same assumptions is -- can lead to	19	be spot on. Because otherwise what will happen --
20	biased parameters. The conclusion that the	20	I give an example that she gives. The parameters,
21	solution addresses the limitation. But assumes	21	once again, right, are biased. So the big
22	that the distribution in unimodel, but the data,	22	problem, though, is we don't really know if we
23	of course, are bimodel. So that undermines one of	23	have a specification proper -- proper
24	the key assumptions. So EI might work, but	24	specification. We don't know whether or not the
25	there's no way you asses whether or not it works	25	model we're estimating is actually the true model.

	Page 114		Page 116
1	And so given that, it's hard to evaluate whether	1	so I would say it's -- you know, that would be
2	or not the model we estimate is accurate or not.	2	kind of external validity for the kind of
3	Q. And so Dr. Cho's discussion in paragraph	3	measures.
4	14, that's based on a hypothetical dataset where	4	I want to point out that neither of my
5	she set some level of precinct level variation; is	5	reports really hangs on this ecological inference
6	that correct?	6	issue, but yes.
7	A. That's correct, right, to see what the	7	Q. Okay. I'd like to show you one of those
8	bias would be. So in a simulation, she knows the	8	articles.
9	true values. What we're trying to do with data,	9	A. Sure.
10	is recover the true values, right, recover data we	10	(Exhibit 4 marked for identification.)
11	don't have from data we have. But one way to test	11	Q. (By Mr. Cheung) Do you have what's now
12	whether or not we can do that accurately is to	12	been marked as Exhibit 4?
13	generate our own data and run simulations and then	13	A. I do.
14	we can do comparisons, which is what she does.	14	MR. WALLACE: Is it 4 or is it 5? I
15	Q. But for your report, you did not look at	15	thought we had two reports from him, two reports
16	the underlying data to test the assumption?	16	from Orey. This should be 5?
17	A. Correct.	17	MR. CHEUNG: We only showed him the
18	Q. And so you wouldn't know if -- to the	18	first Orey report. We didn't show him the second
19	extent that there is a bias, whether that results	19	one.
20	in an underestimate versus an overestimate of	20	MR. WALLACE: We have not marked the
21	racially polarized voting?	21	second. Thank you.
22	A. Correct.	22	Q. (By Mr. Cheung) Would you like to take
23	Q. On this unimodel assumption point, does	23	a moment to review that article?
24	your report cite any academic publications after	24	MR. WALLACE: A moment or a week?
25	1998?	25	THE WITNESS: I will skim it.
	Page 115		Page 117
1	A. It does not.	1	Q. (By Mr. Cheung) Let me know when you're
2	Q. Is there a reason for that?	2	ready to talk about it.
3	A. I didn't see any.	3	A. All right.
4	Q. Do you know if ecological inference has	4	Q. Thank you for reviewing for the pop
5	continued to be used to estimate racially	5	quiz.
6	polarized voting since 1998?	6	I'd like to turn to page 274 of that
7	A. It has.	7	article, which I think is where the first
8	Q. Do you know whether ecological inference	8	highlighting is.
9	has been accepted by courts as a reliable method	9	A. Yes.
10	since 1998?	10	Q. Do you see the first highlight where it
11	A. My understanding is it has.	11	says: There is no convincing evidence that either
12	Q. Are you familiar with recent scholarship	12	iterative EI or RxC is biased toward or against
13	showing that ecological inference estimates of	13	findings of RPV.
14	racially polarized voting could generate results	14	A. I do.
15	that are similar to that of exit polls?	15	Q. Do you have any reason to disagree with
16	MR. WALLACE: Similar to what?	16	that finding?
17	MR. CHEUNG: Results from exit polls.	17	A. No.
18	MR. WALLACE: Oh, okay.	18	Q. If we turn to the next highlight at the
19	THE WITNESS: I'm vaguely aware of that,	19	bottom of that page going to the top of 275, could
20	yes. Not specifics, but yes.	20	you read that sentence for us?
21	Q. (By Mr. Cheung) Does that tell you	21	A. "For social scientists and legal
22	anything about the accuracy of EI as a method in	22	scholars interested in analyzing RPV when only
23	racially polarized voting context?	23	ecological data are present, both approaches can
24	A. Well, I think it -- I think that's	24	be relied upon as they lead to substantively
25	evidence that you give as some consolation. And	25	similar conclusions about the presence or absence

	Page 118		Page 120
1	of RPV."	1	A. I don't recall.
2	Q. Do you have any reason to disagree with	2	Q. Can you turn to Appendix 2 of Dr. Orey's
3	that sentence?	3	report, I think is page 44, to confirm.
4	A. No.	4	A. Yes, it appears he did use both EI and
5	Q. And if I could trouble you to read the	5	RxC.
6	next highlighted sentence on 275.	6	Q. And in terms of that article I just
7	A. Here we go. "Beyond this, we	7	showed you of Plaintiff's Exhibit 4, do you know
8	demonstrate that both the iterative EI and the RxC	8	the authors of this article?
9	methods produce results in line with individual	9	A. I've met Barreto and Collingwood I think
10	level exit poll data."	10	maybe once, but it was a very, like, in passing at
11	Q. I'd like to turn to the next page, 276.	11	a conference thing. I don't know them, know them.
12	I think I may have missed the highlight in here.	12	Q. Are you familiar with their work?
13	Do you see this first complete sentence of that	13	A. I am.
14	first paragraph beginning with: Since the late	14	Q. Do you know if those authors are
15	'90s?	15	reputable in the field?
16	A. I do.	16	A. They are.
17	Q. Could you read that sentence for us?	17	Q. In paragraph 4 of your September report,
18	A. "Since the late 1990s, EI has been the	18	I think you identify a different issue that you
19	benchmark method courts rely upon to evaluate RPV	19	say can have serious implications for any analysis
20	patterns in voting rights lawsuits."	20	using ecological inference. Do you see that?
21	Q. Is that consistent with your	21	A. I do.
22	understanding of the use of EI?	22	Q. You include a quote here. Would you
23	A. It is.	23	mind reading that to us?
24	Q. And I believe I may have forgotten to	24	A. Sure. "For example, if white voters
25	ask you on 275, that sentence that begins with:	25	tend to be conservative and most potential
	Page 119		Page 121
1	Beyond this we demonstrate that both...	1	minority candidates are very liberal, strong
2	A. I read that.	2	minority candidates may elect not to run because
3	Q. Do you agree with that sentence?	3	they are ideologically out of step. A court that
4	MR. WALLACE: Agree with? Object to the	4	inferred disparate treatment from white voters'
5	form of that.	5	lack of support for minority Democrats relative to
6	THE WITNESS: I agree it's what it says,	6	white Democrats would be doubly in error: White
7	yeah.	7	voting patterns may reflect ideological as well as
8	Q. (By Mr. Cheung) Do you have any reason	8	valence differences between minority candidates
9	to disagree with that conclusion?	9	and the white candidates whom the court treats as
10	A. I do not.	10	counterfactuals."
11	Q. Thank you. Just one more on 283. Can	11	Q. Thank you.
12	you read that highlighted sentence on 283?	12	And that quote is from a 2016 article by
13	A. "We also did not find any convincing	13	Elmendorf?
14	evidence that EI will lead analysts to reach	14	A. Correct.
15	conclusions in favor of RPV."	15	Q. Do you consider that Elmendorf article
16	Q. Do you disagree with that sentence?	16	to be a reliable source?
17	A. No.	17	A. I do.
18	Q. And so just to sum up here of the	18	Q. So taking a look at the first part of
19	highlighted -- of the sentences that you've read	19	that quote about minority candidates electing not
20	from this article, you don't have any reason to	20	to run because they may be ideologically out of
21	disagree with those findings?	21	step. Could you explain why a strong black
22	A. Correct.	22	minority candidate who is a conservative would
23	Q. Do you know if Dr. Orey's report used	23	decide not to run in Mississippi?
24	the two EI methods, iterative and RxC, described	24	A. Who's a conservative?
25	in this article?	25	Q. Uh-huh. (Affirmative response.)

	Page 122		Page 124
1	A. No.	1	Q. Are you aware of any black conservatives
2	Q. And so if racially polarized voting did	2	being elected to the Mississippi Supreme Court?
3	not exist, a black conservative likely would	3	A. No.
4	choose to run because they can win the white	4	Q. Are you aware of conservative black
5	conservative votes?	5	candidates winning elections in Mississippi,
6	A. Maybe. But also if there was no	6	generally?
7	incumbent, if there was an open seat, my hunch is	7	A. Winning elections, I don't know about
8	that a black conservative against any Democrat	8	generally. I can tell you not in District One.
9	would win regardless -- regardless of -- with the	9	Q. Is it also possible that candidate's
10	incumbency advantage no open seats. I'd love to	10	strategic decision making might result in an
11	see that election.	11	underestimation of the level of racially polarized
12	Q. And so do you disagree with this quote	12	voting?
13	that says: Strong minority candidates may elect	13	A. Well, I don't know, I mean, because if
14	not to run if white voters tend to be	14	they're not on the ballot they can't be voted for.
15	conservative?	15	So I don't know how you estimate voting without
16	A. Strong minority candidates may elect not	16	voting. So I don't know how to answer that.
17	to run if -- can you say that again?	17	Q. Is it possible that candidate's
18	Q. Yeah, please take a look at the first	18	strategic decision making, such as electing not to
19	sentence of that quote.	19	run, might result in an underestimation of the
20	A. "If white voters tend to be conservative	20	level of white voter discrimination?
21	and most potential minority candidates are very	21	A. Well, again, if they're not running --
22	liberal, strong minority candidates may elect not	22	MR. WALLACE: Object to the form. I'm
23	to run because of their ideological --	23	not sure that white voter discrimination is a term
24	So what you're asking, then, is what?	24	that's been used in this deposition so far. So I
25	Q. Do you agree with that sentence or do	25	believe it's vague.
	Page 123		Page 125
1	you disagree with it?	1	THE WITNESS: Sure, please clarify the
2	A. Yeah, I agree with that sentence.	2	vagueness.
3	Q. And so why would strong minority	3	Q. (By Mr. Cheung) Sure. Is it possible
4	candidates elect not to run if white voters are	4	that candidate's strategic decision making such as
5	conservative and minority candidates are liberal?	5	electing not to run might result in an
6	I don't understand that. I'd like for you to	6	underestimation of the level of racial bias among
7	explain the sort of causation or the thinking	7	white voters?
8	behind this quote.	8	A. I'm not aware of -- I'm not aware of
9	A. Because they're not likely to win. And	9	evidence that shows racial bias among white
10	so the assumption is that the white voters are	10	voters, so I don't know how to answer that
11	conservative and aren't going to vote for a black	11	question.
12	candidate. And so the -- and so they're going to	12	Q. Okay. I have a copy of the Elmendorf
13	take a pass because they know they have no chance	13	article. I can provide you a copy of it if you'd
14	of winning.	14	like to see it, or I can read you a quote from it.
15	Q. Why would a black conservative candidate	15	A. You can read me a quote.
16	not have a chance of winning?	16	Q. In that Elmendorf article it says:
17	A. A black conservative candidate would	17	Candidate's strategic behavior in anticipation of
18	have a chance of winning, sure. But this is	18	white voter discrimination may lead courts to make
19	talking about if white voters are conservative in	19	grave errors about who is a high quality or low
20	most potential minority candidates are very	20	quality candidate and then consequence to badly
21	liberal. Strong minority candidates may elect not	21	understate white voter discrimination.
22	to run.	22	A. Okay.
23	Q. And so the assumption here is that the	23	Q. Do you have any reason to disagree with
24	minority candidate would be liberal?	24	that statement?
25	A. That's the assumption in the quote.	25	A. No.

Q. So you would agree that strategic
behavior by candidates may lead to an underestimate of racial bias among voters?
A. May lead.
Q. In work that you've done outside of this case, have you used regressions or other statistical methods?
A. Like in my scholarly research?
Q. Yes.
A. Yes.
Q. And in reports you've prepared for other cases?
A. I'm trying to think. I used -- did I do regression in Alabama? I don't think so. In Colorado, I think we did do some analysis in Colorado but that was the campaign finance case.
Q. Do your reports in this case utilize regressions or any other statistical methods?
A. I don't believe I do, no.
Q. Did you perform any statistical analyses that you've omitted from the report?
A. I did not.
Q. I'd like to turn to sort of the partisan balance, if any, of nonpartisan elections?
A. Can I use the bathroom first?

Page 127
Q. Sure.
(Off the record.)
Q. (By Mr. Cheung) Dr. Bonneau, we mentioned earlier that the ballots for Mississippi Supreme Court elections don't identify the partisan affiliation of Supreme Court Justice candidates; is that right?
A. That is correct.
Q. You also testified earlier about how that omission of partisan information may lead to some voters misidentifying the candidate and voting for the wrong candidate; is that right?
A. Correct.
Q. And so in your January report, you
include a quote that says -- I think paragraph 41:
Folks who tend to vote Republican have found a way to learn the identity of judicial candidates
favored by Republicans, and the same has been true for Democratic voters.

Do you see that?
A. That's a quote from Salter, yes.
Q. Salter 2017 is an op-ed, right?
A. Correct.
Q. Do you know what evidence Salter uses to back up that claim?
A. I do not. But that quote is consistent with my research, right, which I talked about earlier, that even though voters make more mistakes in nonpartisan elections, they're still able, overwhelmingly, to identify the correct candidate.
Q. That research you just mentioned, that's not cited in your report?
A. It is. It's paragraph 40.
Q. That's the Bonneau and Cann source for 2015?
A. Correct. And so the Salter paragraph just says that the general thing that my co-author and I found in that book is also a perception that happens in this state as well.
Q. And so your 2015 piece does not look at Mississippi in particular?
A. It looks at all states that have elections. So Mississippi is part of it.
Q. That's the same source that we discussed earlier in which you ran an experiment using ads that you created?
A. Well, it wasn't a -- yes, that's a
book -- so there are several chapters in that book. So we embedded surveys into -- we embedded
Page 127

Page 129
experiments into national surveys, and so we have a nationwide survey that we bought time on to insert our own questions. And so there are Mississippians in that survey. How many, I can't tell you.
Q. So you don't know the sample size of the Mississippians in that study?
A. Correct.
Q. Okay. And in that study you did not look at voters' awareness of the partisan affiliations of candidates running for the Mississippi Supreme Court?
A. Not specifically that, no.
Q. In paragraph 3 of your September report you discuss some efforts by Latrice Westbrooks' campaign to associate herself with Benny Thompson, Joe Biden and Mike Espy; is that right?
A. I do.

MR. WALLACE: Paragraph what?
MR. CHEUNG: Three of the September report.
Q. (By Mr. Cheung) You then conclude that it was clear to those following the race that Judge Westbrooks was a member of the Democratic party and her campaign was assisted by high

	Page 130		Page 132
1	profile Mississippi Democrats. Do you see that?	1	voters, which I think is a given. But four years
2	A. I do.	2	prior, Posey ran as a Democratic candidate and
3	Q. Is that conclusion based on those	3	defeated Haley Barbour's nephew, and he won as a
4	campaign materials that you identify or is there	4	Democrat each time he served in the State Senate.
5	something else to that?	5	So if Orey had analyzed the 2007 race,
6	A. No, my conclusion about how she tried to	6	he probably would have found that Posey was the
7	align herself with high profile Democrats is based	7	black preferred candidate. But then four years
8	on the evidence cited there how she associated	8	later, all of a sudden, Posey is not the black
9	with high profile Democrats.	9	preferred candidate. Same dude, same preferences,
10	Q. Do you agree that there are voters who	10	the only difference is one year he was a Democrat,
11	cast a ballot in the 2020 election who may not	11	the other year he was a Republican. Which, to me,
12	have seen that messaging?	12	shows the importance of political party, when you
13	A. Sure.	13	have somebody who's no different except the party
14	Q. But every voter who receives a ballot	14	ID after their name.
15	sees the omission of a party affiliation next to	15	Q. And so you're saying that because Posey
16	the candidate's name.	16	was a black preferred candidate in '07 as a
17	A. Correct.	17	Democrat and then he suddenly lost black voter
18	Q. And in terms of the Mississippi	18	support in 2011 as a Republican, partisanship must
19	Democrats that you identified Ms. Westbrooks as	19	be the reason. Why?
20	associating herself with, were they themselves the	20	A. It's the most likely reason.
21	preferred candidate for black voters in their	21	Q. You stand by your conclusion that the
22	races?	22	only difference in the two elections was his
23	A. I don't know that. I'm assuming, but I	23	political party?
24	don't know.	24	A. As far as I know, unless someone can
25	Q. Do you have any reason to doubt that?	25	tell me there was another difference between the
	Page 131		Page 133
1	A. I do not.	1	two elections.
2	Q. One thing earlier, I think you mentioned	2	Q. Is Posey a white candidate?
3	some correspondence you had with someone about	3	A. Yes.
4	whether or not there are criticisms of the EI	4	Q. In 2007, his opponent, Charles Barbour,
5	method that persist?	5	was he white?
6	A. Correct.	6	A. Yes.
7	Q. Are you able to provide that	7	Q. In 2011, Addie Green, was she black?
8	correspondence to us?	8	A. Yes.
9	A. I think I can, yeah. I e-mailed --	9	Q. So the races of the candidates, of the
10	MR. WALLACE: We will take it under	10	opponent, also changed between 2007 and 2011?
11	consideration. I think you're probably entitled	11	A. Correct.
12	to have it but we need to talk about that.	12	Q. Can you rule out the possibility that
13	MR. CHEUNG: Okay. Thanks, Mike.	13	black voters voted for Addie Green because she was
14	Q. (By Mr. Cheung) I'd like to turn to	14	a black candidate?
15	paragraph 5 of your September report. I think	15	A. Well, that would have to assume that the
16	there you discuss an example of a candidate named	16	black preferred candidate, Posey, all of a sudden
17	Lynn Posey. Do you see that?	17	would not have been black preferred, right? So
18	A. I do.	18	what would cause him to lose that preference. I
19	Q. What is the significance of this	19	would argue, right, that it's party. That had
20	example?	20	Posey run as a Democrat in 2011, he would have
21	A. Well, to me this shows how it's -- how	21	been the black preferred candidate. But because
22	party is a pretty important factor. So if we take	22	he ran as a Republican, he was not.
23	this race here. We have Lynn Posey who defeated	23	Q. Do you have any reason to think that if
24	Addie Green. And Professor Orey talked about how	24	it were a primary race between Green and Posey,
25	Green was the preferred candidate of the black	25	that Posey would have won the votes of black

	Page 134		Page 136
1	voters?	1	necessarily assume that. You know, I think that's
2	A. Well, he did in 2007. So unless you can	2	a -- I think party changes like that, voters tend
3	tell a story why he would all of a sudden lose	3	to be pretty cynical about. If Joe Manchin would
4	them. I mean, to me, this gets into the whole	4	have changed, right, people would be like, oh,
5	black candidate versus black preferred. Posey was	5	yeah. Well, he's already that anyway.
6	a white candidate. He was the black preferred	6	So I don't know if I -- I mean, it's
7	candidate in 2007. If he were running in a	7	possible for some voters, sure, but I don't know
8	Democratic primary, my assumption would be he	8	if that's a widespread thing.
9	would still be the black preferred candidate.	9	Q. So your view is that if Joe Manchin
10	This is akin, I think, to the Ceola James	10	became a Republican, he wouldn't lose any
11	situation, where she was a black candidate but she	11	Democratic votes?
12	was not the black preferred candidate. Again,	12	A. He would lose some Democratic votes,
13	it's hypothetical. We don't know. But what we do	13	sure. But he'd do it, right, because he knows he
14	know is Posey had a history of being a member of	14	can't win as a Democrat so he wouldn't care.
15	the Democratic party, of winning as a Democrat,	15	Q. In paragraph 7 of your September report,
16	winning with black support, then all of a sudden	16	you note that racial polarization did not prevent
17	now he loses in.	17	a black candidate from winning the Democratic
18	Q. And so between 2007 and 2011, Posey's	18	primary?
19	party affiliation changed?	19	A. Correct.
20	A. Correct.	20	Q. But winning the Democratic primary
21	Q. You would also agree that the race of	21	doesn't mean that the candidate ultimately wins
22	his opponent also changed?	22	elected office, right?
23	A. Well, no, the race of his opponent	23	A. Correct.
24	stayed the same. But he was running against a	24	Q. And so a black preferred candidate can
25	black candidate in 2011 rather than a white	25	win the Democratic primary and still ultimately be
	Page 135		Page 137
1	candidate in 2007.	1	unsuccessful because of opposition from white
2	Q. All right.	2	voters in the general election?
3	A. But Addie Green's race did not change	3	A. Yes.
4	between '07 and '11.	4	Q. In paragraph 8 you have a quote about
5	Q. And when candidates switch parties, do	5	racial polarization in the primary. Can you
6	their positions on policy issues typically change?	6	explain the significance of that quote, please?
7	A. You know, not really. I mean, the	7	A. Sure. So what that quote does, is it
8	evidence that I've read suggests that basically	8	talks about how -- you're talking about preference
9	it's a -- they're just realigning, right, to be	9	for one candidate relative to the other, so it's
10	either more similar, right, to the party that	10	all relational. It's not necessarily about any
11	represents their views or because they think it's	11	kind of absolute support. So it's not a signal of
12	an electoral advantage.	12	how much minority voters like the preferred
13	But, you know, when Jim Jeffreys went	13	candidates, it's just how much do they like the
14	from a Republican independent, his party positions	14	preferred candidate relative to who that preferred
15	didn't change. If Joe Manchin would change from	15	candidate is running against.
16	Democrat to an independent Republican, his	16	Q. Why is that fact relevant to your
17	position wouldn't change. He would just feel like	17	report?
18	it was either, A, to his electoral advantage to do	18	A. Well, I think that it's relevant to
19	that, or because he feels that the new party that	19	report because it suggests that the candidates
20	he changed into better reflects his views.	20	matter, that it's not just some kind of racial
21	Q. So even if the candidate's actual policy	21	signal, right? So it's not just whether or not
22	views don't change, does the change in party	22	you have a black candidate, right, but it's about
23	affiliation signal to voters that their policy	23	who it is relative to their opponents.
24	positions may have changed?	24	Q. But that point about relative preference
25	A. It might. I don't think we can	25	is true of all elections, right, not just

Christopher Bonneau 9/29/2023

	Page 138		Page 140
1	primaries?	1	Q. Okay. And since 1960, as we discussed
2	A. True.	2	earlier, black and white voters have essentially
3	Q. I just want to make sure I'm	3	switched parties and affiliation?
4	understanding. Are you suggesting that we	4	A. They have.
5	shouldn't look at election results to measure	5	Q. And after that switch in party
6	racial polarized voting?	6	identification, black and white voters continued
7	A. No.	7	to vote in separate blocks; is that right?
8	Q. I'd like to turn to your January report	8	A. For different political parties. Well,
9	for a moment, in paragraph 38 in particular.	9	blacks overwhelmingly vote for the Democratic
10	A. Okay.	10	party, whites are more split, yes.
11	Q. You cite a source from 1960 for the	11	Q. Does that history tell you anything
12	proposition that one of the best predictors of how	12	about why the parties are split along racial lines
13	individuals will vote is partisan identification.	13	today?
14	Do you see that?	14	MR. WALLACE: I think it's asked and
15	A. I do.	15	answered, but go ahead.
16	Q. Do you know how the authors of that 1960	16	THE WITNESS: Does what history tell me?
17	source reached that conclusion?	17	Q. (By Mr. Cheung) The fact that the
18	MR. WALLACE: All right. I'm going to	18	parties are still divided by race despite the
19	interpose the same objection as being outside the	19	change in party identification.
20	scope of the Court's order, but he may respond.	20	A. I don't know that I would say the
21	THE WITNESS: Let me just say, it's an	21	parties are divided by race. I would say that
22	EG, right? So, for example, this is as a	22	blacks are overwhelmingly members of and vote for
23	canonical study of voting, right, of the American	23	the Democratic party and whites are more mixed. I
24	voter was done through survey research, was a	24	think that's consistent.
25	large national survey. Everything that's come	25	Q. I'd like to turn back to Dr. Orey's
	Page 139		Page 141
1	since that canonical site has found the same	1	report again, pages 12 to 14 that you reviewed
2	thing. So it looks weird because it's 1960. When	2	earlier.
3	I was writing the report it was a convenient	3	A. Okay.
4	citation that I had off the top of my head as	4	Q. I think you testified earlier that you
5	opposed to saying what the newest one was that	5	don't dispute Dr. Orey's calculations and his
6	found that same that they did in 1960.	6	data; is that correct?
7	Q. (By Mr. Cheung) Thank you. Appreciate	7	A. Correct.
8	that. But do you know how the authors came to	8	Q. Do you agree that in these by biracial
9	that conclusion?	9	general elections that Dr. Orey sampled, he
10	A. Surveys.	10	correctly identified which candidates were black?
11	Q. Surveys asking who?	11	A. Yes.
12	A. Of voters, right, of asking voters like	12	Q. And do you agree that he correctly
13	party ID, who did you vote for, things like that.	13	identified the candidates that were preferred by
14	Q. Do you know if the authors considered	14	black voters?
15	the possibility that partisan identification	15	A. Yes.
16	itself is related to a voters race?	16	Q. And do you agree that in these general
17	A. Partisan -- I'm sure they did. I can't	17	elections in which a black candidate ran against a
18	remember the specifics.	18	white candidate, black voters generally prefer the
19	Q. Do you know if the authors of that	19	black candidate?
20	survey compared the strength of partisanship	20	MR. WALLACE: Object to the form
21	versus race as a predictor?	21	generally as vague, but he may answer.
22	A. No, I mean, they wouldn't have done	22	THE WITNESS: Yes.
23	that. If they did, it would have been, you know,	23	Q. (By Mr. Cheung) Black voters usually
24	using data that is now 70 years old. So, of	24	preferred the black candidate?
25	limited utility.	25	A. Yes.

	Page 142		Page 144
1	Q. Did white voters usually prefer the	1	A. Well, if they're satisfied with the
2	white candidate?	2	incumbent.
3	A. Yes.	3	Q. Any other considerations?
4	Q. And in most of these elections involving	4	A. Not that I can think of off the top.
5	black and white candidates, did the candidate	5	Usually if you have an incumbent who's vulnerable,
6	preferred by black voters lose?	6	they will be challenged. And what makes an
7	A. In which tables?	7	incumbent vulnerable could be an incumbent who's
8	Q. Looking at all three tables, Tables 1,	8	out of step with the electorate, an incumbent who
9	2 , and 3.	9	can't do their job well or anything else.
10	A. Well, in Tables 1 and 2, yes. But in	10	Q. But it's not because the incumbent is
11	Table 3, it's much more split.	11	black that there wouldn't be a challenge.
12	Q. What if we look at all three tables in	12	A. I don't understand how that would work.
13	the aggregate?	13	Q. Right. I'm just trying to understand
14	A. Well, in the aggregate -- so we have two	14	your answer that black incumbents are not at risk
15	elections, then we have five, so it's seven. So	15	of losing their seats?
16	we have one and seven there.	16	A. Not in District One, at least they
17	So 5 out of 10 and 1 out of 7 , so that's	17	haven't been.
18	a total of 6 out of 17 .	18	Q. So your view is that black incumbents in
19	Q. Could you do that count for me again?	19	District One have no risk of being challenged?
20	A. Sure. In Table 1 we have 0 out of 2 .	20	A. Well, there's always a risk of being
21	Q. Right.	21	challenged, they just have never been challenged.
22	A. In Table 2 we have 1 out of five, so 1	22	Q. And that's based on a sample of how many
23	out of 7. In Table 3 we have 10 elections and I	23	elections?
24	count 5 out of 10 .	24	A. Three or four.
25	Q. And that's the number of instances of --	25	Q. Would you agree that unopposed judicial
	Page 143		Page 145
1	A. The black candidate winning.	1	elections are not that unusual?
2	Q. So in most of the 17 elections, the	2	A. Would I agree -- yes, I would.
3	black candidate lost?	3	Q. And it's especially --
4	A. In more than half, yes.	4	A. No, no, sorry, I would disagree with
5	Q. In paragraph 28 of your January report	5	that, that uncontested races are not the --
6	you say that incumbents overwhelmingly win their	6	contested races are the norm.
7	seats and it's only the white judges who could	7	Q. What about specifically in the context
8	potentially lose their seats because they're being	8	of nonpartisan elections in which there's an
9	challenged. You see that?	9	incumbent?
10	A. I do.	10	A. I believe contested races are still the
11	Q. Is that conclusion based on Justice King	11	norm.
12	running unopposed in his reelections?	12	Q. So in a 2006 article that you wrote
13	A. Yes.	13	titled Does Quality Matter, you provide the rate
14	Q. Is there any other fact you're relying	14	of uncontested elections from 1990 to 2000. And
15	on for that conclusion?	15	you say that the rate for uncontested nonpartisan
16	A. Well, no, because only the white judges	16	elections is 42.02 percent. Does that sound right
17	are being challenged. So if you're not challenged	17	to you?
18	you can't lose your seat.	18	A. Yes. That data is 22 years old.
19	Q. Is your view that black incumbents have	19	Q. Now talking about Justice King,
20	no electoral risk?	20	specifically. We talked about the fact that he
21	A. If they do, I haven't seen it.	21	didn't draw a challenger, maybe in part because a
22	Q. What are some factors that influence	22	challenger thought they would lose, right?
23	whether or not a challenger emerges?	23	A. He's never drawn a challenger.
24	A. Whether or not they can win.	24	Q. Could part of that be because Justice
25	Q. Anything else?	25	King is perceived as a strong candidate?

	Page 146		Page 148
1	A. Yes.	1	2012 Justice Waller drew a challenge, and in 2020,
2	Q. Also potentially because he's an	2	Justice Griffis drew a challenge.
3	incumbent?	3	Q. And those candidates who drew a
4	A. Sure, just as Justice Griffis was.	4	challenge, they still won, right?
5	Q. When he was up for reelection, was	5	A. Yes.
6	Justice King always the only black justice on	6	Q. Okay. But are there differences between
7	Mississippi's Supreme Court?	7	2008, 2012 and 2020 that could influence whether
8	A. I believe that's true.	8	or not a challenger emerges?
9	Q. Is it possible that there was a	9	A. Sure, yeah.
10	reluctance to be perceived as mounting a campaign	10	Q. Some of that might be candidate-specific
11	to make the Mississippi Supreme Court an all white	11	characteristics, because we're talking about
12	court?	12	different incumbents?
13	MR. WALLACE: Object to the form.	13	A. Sure.
14	Reluctance by whom?	14	Q. Macro-environment conditions like crime
15	THE WITNESS: That was going to be my	15	rates might be different?
16	question.	16	A. Yep.
17	Q. (By Mr. Cheung) By candidates or	17	Q. You did not control for those
18	parties endorsing candidates, relevant political	18	differences in your comparison of Justice King to
19	actors.	19	Justice Smith?
20	A. No. If you think you can win you run.	20	A. No. But again, we also have Justice
21	I don't -- if I'm a lower court judge or I want to	21	Waller and Justice Griffis who were the same
22	be on the Mississippi Supreme Court and I think I	22	years. So those things would be the same. The
23	can win, then I'm going to win. I'm going to go	23	only difference is the candidates.
24	run and win.	24	Q. We talked earlier about, you know, the
25	Q. You testified earlier that a judicial	25	issue of sample size. Do you have a view on how
	Page 147		Page 149
1	candidate, although nonpartisan, often receives	1	many elections to look at would be a sufficient
2	the backing of a political party.	2	sample size for you to be able to draw conclusions
3	A. Correct.	3	from these patterns?
4	Q. And so is it possible that a political	4	A. I would like to -- I mean, I analyzed
5	party might be reluctant to support a campaign	5	all of the elections. I would love there to have
6	that makes the Supreme Court an all white court?	6	been more elections, but I can't analyze elections
7	A. Well, maybe the party of Justice King,	7	that aren't there.
8	the Democratic party would be, but I don't	8	Q. But with the elections that you do have,
9	understand why a Republican party would care about	9	in terms of Justice King's reelections not drawing
10	that. It's about winning elections. It's not	10	a challenger, the fact that we're only talking
11	about how it looks.	11	about three, maybe four elections, does that
12	Q. You use the Justice King example, the	12	affect the confidence you have in the patterns
13	contrast with Justice Smith who lost his	13	that you're noticing?
14	reelection in 2008, right?	14	A. No, because it's the only patterns I can
15	A. Correct.	15	observe. So I -- you know, if we have another 10
16	Q. Justice King's elections were in 2012	16	years of data might my conclusions change, sure.
17	and 2020.	17	I mean that's what happens when you get more data
18	A. Correct.	18	and you get more elections. But, you know, when
19	Q. In terms of the likelihood of there	19	you're looking at Appendix A, what you see is
20	being a challenger emerging, could be there some	20	every incumbent wins except for one, and every
21	meaningful differences between 2008, 2012 and	21	incumbent is challenged except for Justice King.
22	2020?	22	Now, I think that's informative.
23	A. Sure, but when Justice King was on the	23	Q. You testified earlier that you were
24	ballot in 2012 and 2020, he was on the ballot with	24	deposed in the Alabama case?
25	another person who did draw a challenge. So in	25	A. I was.

	Page 150		Page 152
1	Q. Do you recall testifying in that case,	1	patterns with conclusiveness. So, again, if I had
2	quote: When we are dealing with a small number of	2	10 more years of data and we had this case 10
3	elections, many of which can be decided on	3	years from now, might my conclusions be different,
4	idiosyncratic factors, I don't think we can make a	4	sure.
5	conclusion like that.	5	Q. Do you know if apart from Justice King
6	A. Well, I don't know what "like that"	6	other black justices on the Mississippi Supreme
7	meant, what that's referring to. In general, that	7	Court have been challenged on their reelection
8	is something I would say depending upon what the	8	campaigns?
9	conclusion is.	9	A. Yeah, Justice Graves was challenged in
10	Q. I'm happy to show you the transcript if	10	2004.
11	you would like for you to see the context.	11	Q. And what about before that?
12	A. If you want to, that's up to you.	12	A. I only go back to 2000 in this report.
13	(Exhibit 5 marked for identification.)	13	I mean, I have data going back further than that,
14	Q. (By Mr. Cheung) So that's now	14	but I didn't use it for this report, so I can't --
15	Plaintiffs' Exhibit 5. I'd like to point you to	15	Q. In preparing your reports in this case,
16	page 37 of the transcript. Starting from line 16	16	did you also review the report prepared by Justice
17	and going down to page 38, line 11.	17	Diaz?
18	A. Okay.	18	A. I did.
19	Q. Would you agree in the Alabama case you	19	Q. In his report he noted that Justice Fred
20	concluded that there wasn't enough information to	20	Banks ran in contested elections in '91 and '96.
21	draw a conclusion about patterns in a small sample	21	Does that sound right to you?
22	size of elections?	22	A. Yes.
23	A. In that case -- hold on. I've got to go	23	Q. So you mentioned Justice Graves drawing
24	back further here. So the question is: Does	24	a challenger in 2004; is that right?
25	that -- taken in isolation, does that suggest that	25	A. Yes.
	Page 151		Page 153
1	the differential in that particular race was not	1	Q. I think in paragraph 3 of your January
2	party because they were in the same party, but the	2	report you said that a black justice has not been
3	differentiator or one differentiator was race?	3	challenged since 2000.
4	I said: I don't think we have enough	4	A. That should be 2004. That is a typo.
5	information to conclude.	5	Q. Okay. Thank you. And then in the
6	I don't think we have enough information	6	paragraph after that, in paragraph 31 of the
7	to conclude what the differentiator is.	7	January report, you say that black candidates
8	Q. What do you see as a difference between	8	challenging an incumbent receive an average of
9	the Alabama example and your ability to draw	9	46-and-a-half percent of the vote while white
10	conclusions about Justice King's reelection?	10	challengers receive an average of 42-and-a-half
11	A. Well, I believe we have one -- we're	11	percent. Do you see that?
12	looking at one election, or in the Alabama case at	12	A. Uh-huh. (Affirmative response.)
13	this part -- we have an example of race where	13	Q. Just for clarity of the record, which
14	there are four candidates. So I think there are	14	elections did you draw those numbers from?
15	fewer elections when I made that there.	15	A. That is from the 2000 and 2020.
16	And, again, that's right, it could be	16	Q. Did you perform any statistical analysis
17	any number of things. I think I say the same	17	here to determine whether that difference is
18	thing in the report here. It could be any number	18	statistically significant?
19	of things that differentiates candidates. I think	19	A. I did not.
20	the evidence is the most consistent with party.	20	Q. You did not run a T test or any other
21	But, yeah, I mean, given the small number of	21	type of test?
22	elections it's impossible to say. Just like it's	22	A. No, my hunch is that there's not enough
23	impossible to say it's race, it's impossible to	23	cases to get any kind of precision.
24	say it's gender. The smaller the number of races	24	Q. And so you're saying given the sample
25	we have the more difficult it is to establish	25	size if you had run a test on the difference, the

	Page 154		Page 156
1	result likely would not be statistically	1	assigned to it.
2	significant?	2	A. But there can't be a statistical test
3	A. Well, I mean, so we can talk about	3	assigned to it. So it's notable because it's, I
4	statistical significance in the context of	4	guess -- you could say 4 percent is not notable.
5	universe of cases. So statistical significance is	5	That's -- okay. We can quibble about that, that,
6	used, right, to make inferences from a sample to a	6	that's fine. But you can't say that, like, this
7	population. How likely is it that the data we	7	difference isn't real, because it is real.
8	have in our sample is reflective of the broader	8	Q. I guess my question is how do you
9	population. Here we have the full population. We	9	determine whether or not that difference is real?
10	have every election in District One. So we don't	10	A. Because it's all the cases we have. So
11	need use an inferential statistic like statistical	11	let me -- all right. So let me back up here. All
12	significance because we observe all the data, and	12	right. So let's think about -- thought this was a
13	so that is a true data point. We're not trying to	13	nonteaching day.
14	take these elections and say how reflective are	14	So let's think about when we sample
15	they of this larger thing. So that does not -- so	15	things. We use T tests and inferential
16	statistical significance doesn't really apply here	16	statistics, right, when we're trying to take
17	because it is significant because it is true.	17	things from a sample to the broad population,
18	Q. So how do you know the difference here	18	which I've said. So I'm trying to understand --
19	is not just random noise?	19	I'm going to ask 100 people a question, you know,
20	A. Well, it can't be random noise because	20	is the country on the right track or wrong track.
21	I'm not making -- I'm not inferring from a sample	21	And I'm going to get some data, and that data is
22	of elections to a larger population. That's when	22	going to be 56 percent say wrong track, 40 percent
23	you're worried about random noise, right, when	23	say right track, 4 percent say off track or
24	you're trying to do -- I've got 100 people here.	24	whatever. Now, my question is, I know that's the
25	I want to know are these 100 people reflective of	25	rate among these 100 people, because I've asked
	Page 155		Page 157
1	1,000 people. We have eight elections, or however	1	them and I've calculated that. That's what I've
2	many elections we have here. That's all we have.	2	got here, right, with these data. Now if I want
3	We're not trying to generalize to other elections.	3	to infer to a national sample or to the State of
4	And so it's actual data. It can't be random	4	Mississippi or to something outside that, now I
5	noise.	5	need to know how representative are these 100
6	Now, the causes -- we can talk about the	6	people of that population. And if they're
7	causes. But the fact that African Americans	7	representative, then we can make an inference. If
8	states with (inaudible) candidates in District One	8	they're not representative, then we can't or we'll
9	received this percentage of the vote and white	9	have a less precise inference. These election
10	candidates received that percentage of vote is	10	results are those 100 people. Like, we know the
11	true. It's fact. There's nothing to infer.	11	differences there. That 58 percent I get applies
12	Q. But you would agree that there would be	12	to those 100 people without question. It's a real
13	some natural variation in results even if it's the	13	number. It's a real difference.
14	same candidates running against each other?	14	So because we're dealing here with the
15	A. Sure, but that doesn't change the fact	15	population where I've done every election over
16	that these are true figures. Sure, over time or	16	this time period, there's no statistical test
17	over different elections vote totals vary. They	17	because this difference is an actual difference.
18	go up, they go down. But from 2000 to 2020, the	18	You can say it's small, you can say it's not
19	fact is that African American candidates who	19	relevant, but you can't say it's not true. Does
20	challenge incumbents do better than white	20	that make sense?
21	candidates who challenge incumbents.	21	Q. And so -- I feel like part of what
22	Q. We may be talking in circles here. I'm	22	you're saying here is that you think this
23	trying to understand here why you think this	23	difference is predicative of future elections?
24	difference is of a sufficient magnitude to be	24	A. No.
25	notable when there's not a statistical test	25	Q. Are you saying that?

Christopher Bonneau 9/29/2023

	Page 158		Page 160
1	A. No. What I'm saying is that exactly	1	4 percent difference to variations or differences
2	what I said, in the elections in these districts,	2	in other elections to assessment magnitude?
3	African American candidates who challenge	3	A. No.
4	incumbents do four points better than white	4	Q. Okay. I think in the paragraph after
5	candidates who challenge incumbents. So if the	5	that, paragraph 32, you say that you compared the
6	argument is that incumbents have such a huge	6	vote share, I think, of similarly situated African
7	advantage, right, and we would agree there's an	7	American candidates to white candidates.
8	incumbency advantage, what ends up happening is	8	A. That's just a summary of paragraph 31.
9	actually a black candidate challenging an	9	Q. Okay. How did you determine that the
10	incumbent does better than a white candidate	10	African American candidates were similarly
11	challenging an incumbent.	11	situated?
12	Which shows, one, that incumbency is	12	A. They were all challenging incumbents.
13	powerful. But it also shows that, you know, race	13	Q. But you did not control for other
14	probably isn't as powerful.	14	differences in their elections?
15	Q. And so you're now relying on this	15	A. No, they were all challenging
16	difference to make a judgment about the likelihood	16	incumbents.
17	of black candidates winning in District One in the	17	Q. So by similarly situated -- I just want
18	future.	18	to confirm, similarly situated just means the fact
19	A. I didn't say that, no.	19	that they were challenging the incumbent?
20	Q. And about sort of the size of the	20	A. Correct.
21	difference, are you saying that this difference is	21	Q. I'd like to turn to paragraph 50 of the
22	notable, of 4 percent?	22	January report. You note that Banks and
23	A. Yes.	23	Westbrooks lost even though Obama and Espy won the
24	Q. How do you determine whether or not the	24	majority of the vote in District One. Do you see
25	difference is notable?	25	that?
	Page 159		Page 161
1	A. It's 4 percent. Again, we can quibble.	1	A. I do.
2	It's just the opinion. But you can say 4 percent,	2	Q. Would you agree that in general for
3	whatever, that's nothing. But you've going from	3	purposes of measuring racially polarized voting,
4	42 to 46, who cares. I would say, well, the	4	it's more useful to look at election data
5	standard for competitive elections in political	5	pertaining to the actual office being challenged?
6	science tends to be elections that are decided by	6	A. State that again.
7	55 percent or less. And so what you're doing here	7	Q. In general, would you agree with the
8	is you're going from an election that's less	8	view that for purposes of measuring racially
9	competitive to election that's more competitive.	9	polarized voting, election data from the actual
10	When you have a more competitive election, that	10	office being challenged is more useful than
11	gives the challenger a better chance of winning	11	election data from other races?
12	than in a less competitive election. And if you	12	A. Paragraph 50 doesn't talk about racially
13	look at over time when you see competitive	13	polarized voting. It talks about just election
14	elections, competitive elections beget other	14	results and how people perform. So I don't have
15	competitive elections. So if you have a history	15	an opinion on racially polarized voting and the
16	of competitive elections in a district, you're	16	offices looked at.
17	more likely to see competitive elections in the	17	Q. Would you agree that in terms of
18	future, right? Because it signals other	18	elections for different offices there may be
19	candidates that there's actually a shot of taking	19	different political dynamics that affect voter
20	this person. We might be able to win. You don't	20	behavior?
21	get that, right, when you always are in the area	21	A. Yes.
22	where you're not getting competitive elections	22	Q. And so Obama was running nationally and
23	where the challenge of the incumbents is getting	23	statewide in Mississippi?
24	their butt kicked.	24	A. Correct.
25	Q. In your report you did not compare that	25	Q. And Espy was running statewide?

	Page 162		Page 164
1	A. Correct. But you know there's a great	1	conclusion about the Gingles case. He may answer
2	literature about coattails and about how the top	2	if he understands it.
3	of the ticket can influence down ballot races.	3	THE WITNESS: Well, I say in paragraph
4	Particularly, presidential coattails. And so the	4	53, the evidence does not support the third
5	fact that in District One that President Obama won	5	precondition that the majority group does not vote
6	53.9 percent of the vote, you would have expected,	6	as a block such that likely -- such that will
7	right, that he would have helped down ballot	7	usually defeat the minority group's preferred
8	tickets. The same thing with Mike Espy.	8	candidate. In fact the mixed success of African
9	So there are different dynamics in those	9	American candidates in District One elections
10	races, but you have a lot of people who come in	10	strongly suggest that voters, both white and
11	and -- you know, a rising tide lifts all boats.	11	black, are making decisions based on suitability
12	Q. You also testified earlier that because	12	of the candidates themselves.
13	the Supreme Court races are nonpartisan, there is	13	Q. (By Mr. Cheung) And I'm saying
14	a ballot dropoff effect?	14	underlying that conclusion in paragraph 53, are
15	A. There is.	15	you relying on the fact that Justice King was not
16	MR. WALLACE: Object to the form as	16	challenged in his reelections and the fact that
17	mischaracterizing. I don't think he said that	17	Justice Graves won his reelection?
18	before, but I may be wrong.	18	A. I rely on the fact that African American
19	THE WITNESS: Well, there is ballot	19	candidates in District One elections for the State
20	roll-off. There is ballot roll-off. And you do	20	Supreme Court win and sometimes aren't even
21	have more ballot roll-off in nonpartisan elections	21	challenged.
22	compared to partisan elections. But what the --	22	Q. And so your view is that in evaluating
23	the effect of that, right, I think I would quibble	23	Gingles three, we have to take into account the
24	with because you don't necessarily know, like, is	24	fact that Justice King was not challenged in his
25	it 20 percent of one party or certain demographics	25	two reelections?
	Page 163		Page 165
1	or not. That we don't know.	1	MR. WALLACE: Again, that's a legal
2	Q. (By Mr. Cheung) And you would agree	2	question -- a legal opinion. I may object to the
3	that Obama, Espy, Banks, Westbrooks, they're all	3	form. He may answer.
4	different candidates in terms of name recognition?	4	THE WITNESS: I would say that when you
5	A. Yes.	5	have a competitive legal environment and you have
6	Q. They likely differ in terms of	6	justices challenged all the time, except for one
7	fundraising capacity as well?	7	justice, that suggests that that justice is doing
8	A. Yes.	8	something right. And I'm not aware of a story
9	Q. They also differ in terms of incumbency	9	that one can tell that you'd have a political
10	advantage?	10	party or candidate say oh, you know, I'd love to
11	A. Obama in '12 was an incumbent, Banks was	11	have that seat, but I'm not going to do it because
12	an incumbent -- no, that was a different Banks.	12	it would look bad. That's just not how politics
13	MR. WALLACE: Different Banks.	13	works in the way that I'm familiar with. And so
14	THE WITNESS: Different Banks, okay.	14	the fact that, yeah, he's not even challenged and
15	Espy was not an incumbent and neither was	15	that he's winning is, I think, really important.
16	Westbrooks. So the only incumbent was Obama.	16	Because he might -- you know, District One, right,
17	Q. (By Mr. Cheung) So going back to how we	17	Justice Kitchens is a Democrat, too. So Justice
18	defined the third Gingles precondition about white	18	King if he were challenged would likely win. No
19	block voting overcoming black block voting. Is it	19	one is even bothering.
20	your conclusion that Gingles three is not	20	Q. (By Mr. Cheung) Do you agree that
21	satisfied in this case in part because black	21	Justice Graves won in part because he was an
22	incumbents like Justice Graves and Justice King	22	incumbent at the time?
23	have won in District One?	23	A. Well, if you look at Appendix A, then
24	MR. WALLACE: I'm going to object to the	24	yeah, we only have one incumbent who lost. So
25	form of that because it does ask for a legal	25	looking at those elections, I would say that him

being an incumbent was certainly helpful.
Q. And so would it change your conclusion if I told you that in the Gingles case the Supreme Court ruled that we should disregard special circumstances such as victories by black candidates when they run unopposed or when they have an incumbency advantage?

MR. WALLACE: Object to the form, since you're asking him about a Supreme Court opinion, but he may respond.

THE WITNESS: Would it change my conclusion? No. I would say that that -- I mean, that may be their conclusion, but as a matter of, like, social science or whatever, that's nonvalid.
Q. (By Mr. Cheung) Okay.
A. I mean at that point we're eliminating useful information.
Q. But in paragraph 53 where you cite the third precondition of Gingles, are you purporting to faithfully apply the Gingles factor?
A. I'm purporting to say that based on the data, African American candidates in District One elections win. That's what I'm saying.
Q. You don't have an opinion on whether or not your data disproves the existence of the third

Page 167
Gingles precondition?
A. I do not.
Q. Okay. All right. I'm done with my questions for now.
(Off the record.)
MR. WALLACE: We're back on the record.
What worried us is tendering the witness "for now." I have a very few questions about questions that you asked earlier. And if any of these questions cause you to come back with anything about these questions, I think you've got a right to do it. But I don't think you've got a right to come back and ask anything else. And if you were intending to suggest you may have other questions later, then I would ask you to go ahead and ask them now. I've got two or three questions about what he's already said and then we're done.

MR. CHEUNG: Okay. Appreciate that, Mike.

MS. JONES: I think we're done.
MR. WALLACE: You're done as far as --
MR. CHEUNG: Yes.
MR. WALLACE: If any of this sets you
off, you have a right to --
EXAMINATION BY MR. WALLACE:
Q. Dr. Bonneau, you were asked a few questions some time ago about House Bill 1020 because you talked to Yahoo News. Do you have any personal knowledge regarding the enactment of House Bill 1020?
A. I do not.
Q. Have you undertaken any study or analysis regarding the enactment of House Bill 1020?
A. I have not.
Q. And are you here today to offer any expert opinions regarding the enactment of House Bill 1020?
A. Not that I'm aware of.

MR. WALLACE: We've got nothing further.
(Time Noted: 12:39 p.m.)
SIGNATURE/NOT WAIVED
ORIGINAL: MR. CHEUNG, ESQ.
COPY: MR. WALLACE, ESQ.
4

Page 169
CERTIFICATE OF DEPONENT
CERTIFICATE OF DEPONENT
DEPONENT: CHRISTOPHER BONNEAU DATE: September 29, 2023
3 CASE STYLE: DYAMONE WHITE, ET AL. vs. STATE BOARD OF ELECTION COMMISSIONERS, ET AL. ORIGINAL TO: MR. CHEUNG, ESQ.
1, the above-named deponesition taken in the herein styled and numbered cause, certify that I have examined the deposition
taken on the date above as to the correctness thereof, and that after reading said pages, I find
them to contain a full and true transcript of the testimony as given by me.

Subject to those corrections listed below, if any, I find the transcript to be the correct testimony I gave at the aforestated time and place. Page Line Comments

Christopher Bonneau 9/29/2023

Expert Report for Byron D'Andra Orey, Ph.D.

October 3, 2022

I. Introduction

I have prepared this report pursuant to Federal Rule of Civil Procedure 26(a)(2)(B). I have been asked to express opinions on whether racially polarized voting (RPV) exists in Mississippi and in particular in Mississippi Supreme Court District 1, and whether or not RPV has resulted in the defeats of Black-preferred candidates in Mississippi Supreme Court District 1. I have also been asked to consider whether RPV exists independent of polarization on the basis of partisan affiliation. I am being compensated at $\$ 200$ per hour for my work on this case. My compensation is not contingent on or affected by the substance of my opinions or the outcome of this litigation. My work in this matter is ongoing, and I reserve the right to amend, modify, or supplement my analysis and opinions.

II. Background on Racially Polarized Voting

In the landmark Thornburg v. Gingles case, the Supreme Court set forth a three-prong test for assessing minority vote dilution in litigation arising under Section 2 of the Voting Rights Act (VRA). The Gingles test asks whether: 1) the racial or language minority group is "sufficiently large and geographically compact to constitute a majority in a single-member district"; 2) the minority group is "politically cohesive" (meaning its members tend to vote for the same candidate); and 3) the "majority votes sufficiently as a bloc to enable it ... usually to defeat the minority's preferred candidate." ${ }^{1}$ In particular, the second and the third preconditions

[^118]under the Gingles test have become the legal definition of RPV. Moreover, one of the so-called "Senate Factors" that courts consider in evaluating the presence of unlawful minority vote dilution under Section 2 of the Voting Rights Act is "the extent to which voting in the elections of the state or political subdivision is racially polarized.,"

III. Summary of Professional Qualifications

I am a full professor with tenure in the Department of Political Science at Jackson State University and a former chair of the Department of Political Science. I have conducted significant research in the area of racial polarized voting. This research has been presented at professional conferences and published in peer reviewed scholarly journals. These journals include, but are not limited to, Social Science Quarterly, PS: Political Science and Politics, American Politics Research, Politics and Policy, Race and Policy and State Politics and Policy Quarterly. I have also served on the executive committees for the American Political Science Association, the Southern Political Science Association, and the National Conference of Black Political Scientists. I have served as Vice President for the Southern Political Science Association and served on the Editorial Board for the American Political Science Review and State Politics and Policy Quarterly. Commentary related to my work has appeared in several media outlets, including National Public Radio, Al Jazeera, MSNBC, CNN, the Daily Beast, and the News Hour (PBS).

Attached as Appendix 1 is a curriculum vitae setting forth my professional background, which includes a list of all publications I have authored or co-authored. I have also testified, at trial, as an expert trial witness Johnson v. Hamrick, No. 2:91-CV-02-WCO (N.D. Ga.), a

[^119]redistricting case involving city council elections in Gainesville, Georgia. I have served as an expert in numerous other cases where I have given depositions but did not testify. These include Lewis, et al. v. Alamance County, et al., No. 2:92-cv-00614 (M.D. N.C.) and Jackson v. Nassau County Board of Supervisors, No. CV 91-3720 (E.D. N.Y.). I have also provided consultation related to the electoral structure for the City of Hampton, Virginia.

IV. Opinions

I have formed the following opinions: Based on the data available at the time of writing this report, voting in Mississippi (and in particular in Supreme Court District 1) since 2011 is racially polarized. In particular, in 17 of the 17 biracial elections analyzed, Black voters expressed a clear preference for the same candidate and voted cohesively for that candidate, typically at a rate of more than 90%. Furthermore, this preference was not shared by the White voters, who provided very low support for the Black-preferred candidates, and typically voted against Black-preferred candidates at a rate of more than 90%. As a result, the Black preferred candidates were usually defeated due to White bloc voting in the elections analyzed. I identified all biracial statewide and Supreme Court District 1 general election contests (including Public Service Commission and Transportation Commission Central District) from the 2011 election cycle through 2020. Notably, the dataset includes two biracial endogenous contests, consisting of the 2012 and 2020 contests for Supreme Court Justice in Supreme Court District 1. Endogenous elections are elections held using the challenged district at issue (here, the Supreme Court district lines at issue). The dataset also includes five "quasi-endogenous" contests whereby the districts consist of the same lines as Supreme Court District 1, but the position sought is Public Service Commissioner or Transportation Commissioner. In addition to those five "quasi-endogenous," I
also identified and reviewed 10 exogenous biracial elections. Exogenous elections are elections that do not utilize the particular district lines at issue. ${ }^{3}$ It should be noted here that estimates for all racial polarized voting analyses are derived only from the precincts contained in Supreme Court District 1. All of those contests exhibited very high levels of racially polarized voting, and the Black-preferred candidate was defeated in Supreme Court District 1 by White bloc voting in 11 contests, including both of the biracial elections for Supreme Court justice, which were nonpartisan races in which party affiliation cannot have driven the results.

In sum, it is my opinion that the data demonstrates a high degree of racial polarization and that the second and third Gingles criteria are met in this case.

V. Elections Analyzed

The attorneys for the plaintiffs in this case have asked me to analyze whether and to what extent voters' candidate preferences reveal the presence of racially polarized voting. I am aware of case law stating that endogenous elections and biracial elections are generally considered the most probative for assessing RPV. ${ }^{4}$

[^120]In total, seventeen biracial elections of recent vintage were identified for this report. Two of these elections were Supreme Court contests held in 2012 and 2020. The 2012 election involved the unsuccessful bid by Earle Banks to win a Supreme Court District 1 seat and the 2020 election involved the unsuccessful effort of Latrice Westbrooks to win a Supreme Court District 1 seat. Both of those elections were non-partisan (that is, candidates not appear on the ballot with any partisan affiliation). In addition to these two contests, there have been five biracial general election contests for Public Service Commission and Transportation Commission in 2011, 2015, and 2019. These contests are noted as "quasi-endogenous" contests because they utilize the same lines as Supreme Court District 1. Another 10 exogenous statewide contests were also examined.

My focus on biracial elections is consistent with scholarly research, which finds that minority voters are particularly mobilized in elections involving a minority candidate running against White candidates. ${ }^{5}$ Biracial elections are particularly salient because, in the contest of potential racial polarization, these elections are more likely to satisfy the necessary conditions in which Black voters and non-Black voters had a realistic opportunity to vote for the candidate of their choice, which is not necessarily available in uni-racial elections involving only White candidates (or involving only Black candidates). In addition to elections from the Central District, elections included in this report consist of all biracial statewide contests for U.S. President, U.S. Senator, and various statewide offices (e.g., Governor or Secretary of State) since 2011. For those statewide contests, I analyzed RPV by examining election results in those precincts that are within Supreme Court District 1 lines. There is a total of ten such contests. I

[^121]focused on elections since 2011 because more recent contests are more relevant in determining the presence of racial polarization in the here and now.

VI. Data

To analyze voting patterns by race using aggregate level information, a database that combines election results with demographic information is required. This database is almost always constructed using election precincts as the unit of analysis. The demographic composition of the precincts is based on voter registration or turnout by race/ethnicity if this information is available; if it is not, then voting age population is used. Here, Mississippi does not collect voter registration data by race and therefore voting age population (VAP) by race and ethnicity as reported in the PL 94-171 U.S. Census redistricting data was used for ascertaining the demographic composition of the precincts.

In particular, VAP by race and ethnicity for each precinct and year was calculated by aggregating Census block-level population data to the precinct level. For 2020 and 2010, VAP by race and ethnicity for each precinct and year was calculated by aggregating 2020 and 2010 Census block-level population data to the precinct level. For years between 2010 and 2020, population for each precinct was calculated according to the following interpolation procedure:
(a) the total population change between 2010 and 2020 for each racial group was calculated for each Census Block by subtracting 2010 population from 2020 population, with 2010 and 2020 Census Blocks matched using the U.S. Census Bureau's Block Relationship files; ${ }^{6}$

[^122](b) the resulting total change number for each Block was then multiplied by the fraction of the decade that had passed (e.g., the 2010-2020 change number was multiplied by $6 / 10$ or .6 for the year $2016,5 / 10$ or .5 for 2015 , etc.);
(c) that product, representing the marginal increase in population for a particular group in each Census Block at a given point of time, was then added to the 2010 baseline population for each Census Block to yield the block-level population in a given year;
(d) the block-level data for each year was then aggregated to the precinct level.

Analyzing voting patterns by race requires a database that combines population data by race (or registration or turnout by race if it is available) with election returns. To build the dataset in this instance, 2010 and 2020 official voting tabulation district (VTD) shapefiles were acquired from the U.S Census Bureau as part of the P.L. 94-171 file. In years near the decennial Census, VTDs are a close approximation to voting precincts. In addition, in-cycle precinct-level shapefile datasets for 2016, 2018, and 2019 were acquired from the Harvard dataverse website. ${ }^{7}$ These shapefiles were joined to precinct-level election returns, which were obtained from the Mississippi State Secretary of State's Office, processed, and cleaned (i.e., rendered in a machinereadable format) by More Equitable Democracy, a consultant for the attorneys in this case, with review by counsel. The precinct-level results were then joined with the precinct-level population data described above.

[^123]The complete dataset used for this report, including the interpolated U.S. Census population data described above, was prepared and provided to me by counsel, and is being made available to Defendants.

VII. Analysis of Voting Patterns by Race

An analysis of voting patterns by race serves as the foundation of two of the three threshold elements of the "results test" as outlined in Thornburg v. Gingles: a racial bloc voting analysis is needed to determine whether the minority group is politically cohesive; and the analysis is required to determine if Whites are voting sufficiently as a bloc to usually defeat the candidates preferred by minority voters. The voting patterns of White and minority voters must be estimated using statistical techniques because direct information about the race of the voters is not, of course, available on the ballots cast.

To carry out an analysis of voting patterns by race, an aggregate level database must be constructed, usually employing election precincts as the units of observation. Information relating to the demographic composition and election results in these precincts is collected, combined, and statistically analyzed to determine if there is a relationship between the racial composition of the precincts and support for specific candidates across the precincts.

I used the following two-step operational rules to measure whether a particular election is racially polarized: First, I estimated the Black and White group support for the Black candidate in a given biracial election; and second, I further analyzed the extent of racial polarization by considering the gap between the level of Black support for Black preferred candidates, and the level of White support for Black-preferred candidates. Since voting in the United States takes place in privacy, the only way to determine the levels of Black and White group support is
through statistical procedures. In this report, I analyzed the set of biracial elections described above using the Ecological Inference (EI) method developed by Professor Gary King of Harvard University. ${ }^{8}$ EI is a statistical procedure for estimating voting results of voter groups (in this case racial groups).

Here, I use a more recently developed version of ecological inference software known as
EI Compare to run the EI model. EI Compare software provides the results from estimates of the
King EI model and a comparison estimate in what is known as the EI RxC model. EI RxC
expands the analysis so that more than two racial/ethnic groups can be considered
simultaneously. In the next section, I report estimates calculated using a two-group version of the
King EI model, which is well suited to estimating voter results where the electorate is divided
between two groups. ${ }^{9}$ That analysis is appropriate here because Mississippi's racial population

[^124]is highly binary, i.e., Black and White. I also separately generated three-group (White, Black, and Other) King EI and EI RxC analyses using the EI Compare software, both of which produced similar estimates of racial group support (i.e., similarly high levels of racial polarization) which corroborate the results of the two-group King EI model. ${ }^{10}$ The full results of these analyses are reported in a summary table in Appendix 2 and the raw results are included in Appendix 3 and Appendix 4 along with the scripts that were run to produce the results.

The methods employed here not only provide a specific, or point, estimate of a group's support for a particular candidate, but also provide confidence intervals for that estimate. These intervals identify the range of estimates within which we can be 95 percent confident, statistically, of where the actual value of a group's support for a candidate falls. The point estimate is the best estimate, in that it is most likely to be the actual value. EI has been widely
al. (2016). eiCompare: Comparing Ecological Inference Estimates across EI and EI:RC. The R Journal. 92-101, I reduced the number of race variables to two to employ a two-group EI model. The two-group EI estimates set forth in the body of this report were derived in the following manner: First, I estimated the Black vote by running the EI model with a Black VAP variable and a combined White VAP and Other VAP variable (i.e., I combined the White VAP and Other VAP data to create one variable). Second, I similarly estimated the White vote by running the EI model with a White VAP variable and a combined Black VAP and "Other VAP" variable. The scripts used to generate the two-group King EI analysis described above are included in Appendix 3.

As noted in text, and set forth in the Appendix 2 summary table, running the King EI model using all three groups, rather than reducing to two, produced nearly identical results to the two-group procedure.
${ }^{10}$ Because the EI RxC method is designed to allow for the simultaneous estimation of support by more than two groups, the EI RxC analysis included in the Appendix 2 summary table and in Appendix 4 raw data estimates levels of candidate support for each of the three racial groups reflected in the demographic data (Black VAP, White VAP, and Other VAP). The scripts used to generate the RxC estimates are also included in Appendix 4. While the EI RxC analysis also shows racial polarization across the board, and generally produces estimates of Black support for Black candidates that are very close to the EI model estimates, the EI RxC analysis in a number of cases estimates levels of White support for Black candidates that are even lower than the estimates produced by the King EI models.
used as the most advanced and reliable statistical procedure for RPV estimates in not only academic research but also voting rights cases. To estimate support for candidates from different racial groups using an EI operation, precinct-level election return data for a given election is matched against demographic data regarding the voting-age population (VAP) of various racial groups (here, White, Black, and "all other" racial groups) typically also at the precinct level from the time of the election. These data are used to calculate coefficient estimates to determine racial bloc voting.

VIII. The Findings ${ }^{11}$

As explained above, the selection of the elections for my RPV analysis is based on three criteria: (1) biracial elections involving at least one Black major candidate and one white major candidate ${ }^{12}$; (2) since 2011; (3) which are endogenous elections supplemented by "quasiendogenous" elections and exogenous statewide elections. As set forth in Table 1, the two endogenous Supreme Court District 1 elections reveal high levels of racial polarized voting.

In particular, in the 2012 Supreme Court contest in that district, according to the table using 95% confidence limits around the estimated coefficients, we can expect the "true" value of the estimated Black support for Candidate Banks to lie between 80.80 and 81.80 percent, with 81.26 being our best estimate, while the 95% confidence limits around White support are such that we expect the "true" value of the estimate for the White vote to lie between 5.01 and 5.83 percent, with 5.44 being our best estimate. Likewise, for the 2020 Supreme Court election, when

[^125]estimating the support for Candidate Westbrooks by race, we can expect the "true" value of the estimated Black support for Westbrooks to lie between 89.97 and 91.03 percent, with 90.46 being the best estimate. The best estimate for White support for Westbrooks is 6.43%. As is indicated by the estimated coefficients, each of the Black candidates in these endogenous, nonpartisan races received substantial Black support, but less than 10% of the White vote, leading to the defeat of Black voters' candidates of choice. Notably, both of those biracial Supreme Court District 1 contests were non-partisan elections, and thus the high levels of racial polarization in those races cannot have been driven by political party affiliation.

Table 1. Estimated Racial Support for Black Candidates in Endogenous Elections

Election	Black Candidate	White Candidate	\% Vote Black Candidate	Black Vote Black Candidate (CI)	White Vote Black Candidate (CI)	Black Candidate Won	RPV
Supreme Court	Banks	Waller	44.4	81.26 $(80.80-81.80)$	5.44 $(5.01-5.83)$	No	Yes
Supreme Sun Court	Westbrooks	Griffis	48.5	$(89.97-91.03)$	$(5.89-6.88)$	No	Yes

As set forth in Table 2, five additional "quasi-endogenous" biracial elections in Supreme Court District 1 corroborate the existence of high levels of racial polarization in that district, and corroborate that such polarization usually leads to the defeat of Black-preferred candidates. In each of those races, Black voters typically supported Black candidates at rates of around 90% or more, while White voters supported the Black candidate with less than 10% of the vote (typically around 8%). In four of the five elections, this high level of White bloc voting led to the defeat of the Black-preferred candidate despite high levels of Black support.

[^126]Table 2. Quasi-Endogenous Elections

Election	White Candidate	Black Candidate	\% Black Candidate	Black Vote Black Candidate (CI)	White Vote Black Candidate (CI)	Black Candidate Won	RPV
2011 Central Public Service Commission	Posey	Green	44	90.94 $(90.27-91.50)$	8.16 $(7.47-8.80)$	No	Yes
2011 Central Transportation Commission	Hall	Crisler	47	91.04 $(90.44-91.42)$	8.29 $(7.80-8.76)$	No	Yes
2015 Central Transportation Commission	Hall	Coleman	45	89.36 $(88.90-89.83)$	4.87 $(4.42-5.38)$	No	Yes
2019 Central Public Service Commission	Bailey	Stamps	49	91.36 $(91.52-92.83)$	7.60 $(7.07-8.51)$	No	Yes
2019 Central Transportation Commission	Lee	Simmons	51	93.97 $(93.33-94.44)$	$(8.12-9.79)$	Yes	Yes

Finally, the results in Table 3, which shows exogenous statewide biracial contests since 2011, again reveal high levels of racially polarized voting, with Blacks overwhelmingly supporting the Black candidate with approximately 90% or more of their vote and Whites supporting the Black candidate with typically 15% or less of their vote (sometimes much less). Based on the data, even in these partisan statewide contests, half of the Black candidates were defeated in Supreme Court District 1, despite Black support in the high 80 s or 90 s due to the level of White bloc voting.

Table 3. Exogenous Elections

Election	White Candidate	Black Candidate	Percent Black Candidate	Black Vote Black Candidate	White Vote Black Candidate	Black Candidate Won	RPV
2011 Governor	Bryant	DuPree	53	$\begin{gathered} 90.94 \\ (90.20-91.51) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.11 \\ (7.45-8.71) \\ \hline \end{gathered}$	No	Yes
2012 President	Romney	Obama	54	$\begin{gathered} 92.72 \\ (92.13-93.32) \end{gathered}$	$\begin{gathered} 12.12 \\ (11.13-13.38) \end{gathered}$	Yes	Yes
2015 Governor	Bryant	Gray	41	$\begin{gathered} 87.76 \\ (87.06-88.17) \\ \hline \end{gathered}$	$\begin{gathered} 4.44 \\ (4.04-5.01) \\ \hline \end{gathered}$	No	Yes
2015 Secretary of State	Hosemann	Graham	44	$\begin{gathered} 87.58 \\ (87.12-87.97) \\ \hline \end{gathered}$	$\begin{gathered} 4.67 \\ (4.11-5.21) \\ \hline \end{gathered}$	No	Yes
$2018 \text { U.S. }$ Senate	Hyde-Smith	Espy	57	$\begin{gathered} 94.91 \\ (94.27-95.49) \end{gathered}$	$\begin{gathered} 16.42 \\ (15.70-17.36) \end{gathered}$	Yes	Yes
2019 Treasurer	McRae	Green	49	$\begin{gathered} 92.38 \\ (92.20-93.49) \\ \hline \end{gathered}$	$\begin{gathered} 7.16 \\ (6.48-7.76) \\ \hline \end{gathered}$	No	Yes
2019 Sec. of State	Watson	DuPree	51	$\begin{gathered} 94.35 \\ (93.81-94.84) \end{gathered}$	$\begin{gathered} 8.73 \\ (8.24-9.51) \\ \hline \end{gathered}$	Yes	Yes
2019 Insurance Commission	Chaney	Amos	49	$\begin{gathered} 92.08 \\ (91.52-92.62) \\ \hline \end{gathered}$	$\begin{gathered} 6.66 \\ (6.08-7.26) \\ \hline \end{gathered}$	No	Yes
2019 Attorney General	Fitch	Collins	53	$\begin{gathered} 94.54 \\ (93.87-95.08) \end{gathered}$	$\begin{gathered} 10.82 \\ (10.13-11.51) \end{gathered}$	Yes	Yes
$2020 \text { U.S. }$ Senate	Hyde- Smith	Espy	55	$\begin{gathered} 96.34 \\ (95.94-96.68) \\ \hline \end{gathered}$	$\begin{gathered} 13.5 \\ (12.71-14.30) \\ \hline \end{gathered}$	Yes	Yes

IX. Conclusion

The empirical analyses clearly reveal that in 17 of 17 biracial elections in the last decade, Black voters expressed a strong, cohesive preference for Black candidates, but that preference was not shared by White voters, who voted cohesively against Black-preferred candidates every time. This clear RPV pattern is demonstrated by two endogenous biracial Supreme Court elections, which are non-partisan races and thus cannot be explained by party affiliation, as well as five additional quasi-endogenous contests, Transportation and Public Service Commissioner races, and ten more statewide biracial elections during the last decade. Despite Black voters uniting cohesively behind their preferred candidates, the White majority typically voted sufficiently as a bloc to defeat the Black candidates in these elections, including in both endogenous biracial Supreme Court elections, and four out of five "quasi endogenous" commissioner races.

Based on my empirical analysis of Mississippi's recent elections, I conclude that Mississippi's elections, particularly in Supreme Court District 1, exhibit a high level of polarization, and that the second and third threshold criteria involving racial polarization as set forth in Gingles are met.

As noted, I reserve the right to amend, modify, or supplement my analysis and opinions.
Pursuant to 28 U.S.C. § 1746, I declare under penalty of perjury that the information and opinions contained in this report are true and correct to the best of my knowledge.

October 3, 2022
Dr. B. D'Andra Orey, Ph. D

APPENDIX 1: CURRICULUM VITAE

B. D'Andra Orey, PhD
 Curriculum Vitae

Office:

Department of Political Science
Jackson State University
1400 John R. Lynch St.
Jackson, MS 39217
(601) 979-2737
byron.d.orey@jsums.edu

Education

University of New Orleans

Ph. D., Political Science, 1999
State University of New York at Stony Brook,
M.A., Political Science, 1993

University of Mississippi, Oxford, MS
Master of Public Administration, August 1990
Mississippi Valley State University, Itta Bena, MS
B.S., Business Administration, May 1988

Continuing

Education

International Workshop on Statistical Genetic Methods for Human Complex
Traits. March 3 -March 7, 2014. Boulder, Colorado
International Workshop on Statistical Genetics and Methodology of Twin and Family Studies. February 28-March 6, 2010. Boulder, Colorado
-Received training in the area of structural equation modeling, using R and Mx using twin data

Inter-University Consortium of Political and Social Research, University of Michigan, 2006, Course: "Empirical Summer Program in Applied MultiEthnic Research"

Institute for Professional Education, Virginia Tech University, 1995. Linear and Nonlinear Regression with Applications

Inter-University Consortium of Political and Social Research, University of Michigan, 1993, Courses: Logit and Log-Linear Models; Regression Analysis, Maximum Likelihood Estimation; and Structural Equations (Causal) Models

Professional Training

Duke University Community Census and Redistricting Institute, August 2010.
-Received training to prepare redistricting plans using Geographical Information Systems.

Southern Regional Council, Voting Rights Expert Witness Training.
January-December 1993
-Received training in the areas of ecological regression and homogenous case analysis. Mentors included: James Loewen, Ph.D. University of Vermont, Bernard Grofman, Ph.. D. University of California Irvine and Alan Lichtman, Ph.D., The American University, Washington D.C.

Southern Regional Council, Voting Rights Expert Witness Training.

January-December 1994
-Received training to prepare redistricting plans using Geographical Information Systems.

Academic Positions

Jackson State University, Jackson, MS
Professor, Political Science (Fall 2008-Present)
Jackson State University, Jackson, MS
Professor and Chair, Political Science (Fall 2008-2012)
The University of Nebraska, Lincoln, NE
Associate Professor, Political Science (Spring 2007-Spring 2008).
The University of Nebraska, Lincoln, NE
Assistant Professor, Political Science (Fall 2001-Spring 2007).
University of Mississippi, Oxford, MS
Assistant Professor, Political Science and Afro American Studies (1999-2001).

Professional Publications (Peer-Reviewed Articles)

"Racial Differences in Feelings of Distress during the COVID-19 Pandemic and John Henryism Active Coping in the United States: Results from a National

Survey." 2022. Social Science Quarterly. (Jas Sullivan, Samaah Sullivan, Byron D'Andra Orey and Najja Baptist).
"Racial Identity and Emotional Responses to Confederate Symbols." 2021. Social Science Quarterly. (Byron D'Andra Orey, Najja Baptist and Valeria Sinclair- Chapman).
"Melanated Millennials and the Politics of Black Hair." 2019. Social Science Quarterly. (Byron D'Andra Orey and Yu Zhang)
"Race and Wellbeing in the US: The Psychological Toll of a Broken System." 2019 Byron D’Andra Orey Scientia.
"Implicit Black Identification and Stereotype Threat Among African American Students." 2017. Social Science Research. (Thomas Cramer and Byron D'Andra Orey).
"Mississippi and the Great White Switheroo." April 2016, PS Political Science and Politics. (Byron D'Andra Orey and Ernest Dupree)
"The $50^{\text {th }}$ Anniversary of the Voting Rights Act and the Quiet Revolution." 2015, National Political Science Review (Byron D'Andra Orey, Gloria Billingsly and Athena King).
"Professional Conferences and the Challenges of Studying Black Politics." April 2015, PS Political Science and Politics (Nikol Alexander-Floyd, Byron D'Andra Orey and Khalilah Brown-Dean)
"Black Women State Legislators: Electoral Trend Data 1995-2011." 2014 National Political Science Review 2014 (Byron D’Andra Orey and Nadia Brown) Volume 16: 143-149.
"Black Opposition to Welfare in the Age of Obama" Race, Gender, and Class. 2013 (Byron D’Andra Orey Athena King, Shonda Lawrence and Brian E. Anderson)
"Using Black Samples to Conduct Implicit Racial Attitudes Research" PS: Political Science and Politics (July 2013) (Byron D’Andra Orey, Thomas Craemer and Melanye Price)
"Black Opposition to Progressive Racial Policies and the "Double (Non)Consciousness" Thesis. 2012 Race \& Policy 8: 52-66. (Byron D’Andra Orey, Athena King, Leniece Titani-Smith)
"Nature, Nurture, and Ethnocentrism in the Minnesota Twin Study" (Byron D'Andra Orey and Hyung Park). Twin Research and Human Genetics. Volume 15, Number 1. 2012
"White Support for Racial Referenda in the South" Politics \& Policy (Byron D'Andra Orey, Marvin Overby, Peter Hatemi and Baodong Liu). August 2011
"The Politics of Race, Gender, Ethnicity and Representation in the Texas Legislature." Race \& Policy (Jessica L. Lavariega Monforti, Byron D'Andra Orey and Andrew Conroy) Spring/Summer 2009
"Church Attendance, Social Capital, and Black Voting Participation." Social Science Quarterly (Paul Liu, Sharon Austin and Byron D'Andra Orey) September 2009
"Racial Threat Republicanism and the Rebel Flag: Trent Lott and the 2006 Mississippi Senate Race." Byron D'Andra Orey National Political Science Review, Vol. 12, 2009
"The Role of Race, Gender and Structure in State Policymaking." Race \& Policy (Byron D'Andra Orey and Chris Larimer) Spring/Summer 2008
"The Politics of AIDS in the Black Community." Forum on Public Policy (Oxford University) Summer 2007
"African Americans in the State Legislative Power Structure: Committee Chairs." Byron D'Andra Orey, Marvin Overby and Chris Larimer. Social Science Quarterly, September 2007
"Accounting for "Racism: Responses to Political Predicaments in Two States." Byron D'Andra Orey and Marvin Overby with Barbara J. Walkosz and Kimberly Walker. State Politics and Policy Quarterly, Fall 2007: 235-255
"A Systematic Analysis of the Deracialization Concept." Byron D'Andra Orey and Boris Ricks. The National Political Science Review. January 2007: 325-334
"Deracialization or Racialization: The Making of a Black Mayor in Jackson, Mississippi" Byron D'Andra Orey, Politics and Policy. December 2006: 814836
"Race and Gender Matter: Refining Models of Legislative Policy Making in State Legislatures." 2006. Byron D'Andra Orey, Wendy Smooth with Kimberly Adams and Kish Harris-Clark. Journal of Women, Politics and Policy 28: 97119
"Framing the Issue, When the Issue is Race." Byron D'Andra Orey International Journal of Africana Studies. January 2005: 209-223
"Explaining Black Conservatives: Racial Uplift or Racial Resentment." Byron D'Andra Orey The Black Scholar. 2004: 18-22.
"A Research Note on White Racial Attitudes and Support for the Mississippi State Flag." Byron D'Andra Orey American Politics Research. January 2004: 102116
"A New Racial Threat in the New South? (A Conditional) Yes!" Byron D'Andra Orey American Review of Politics, Summer 2001: 233-255
"Symbolic Racism in the 1995 Louisiana Gubernatorial Election," Jonathan Knuckey and Byron D'Andra Orey. Social Science Quarterly, December 2000: 1027-1035
"Black Legislative Politics in Mississippi," Byron D'Andra Orey Journal of Black Studies, July 2000.
"The Race Race in Black and White: An analysis of the 1995 Louisiana Gubernatorial Election," Byron D'Andra Orey Southeastern Political Review, December 1998
Books \quad Mississippi Conflict and Change (forthcoming) 2023. Contracted with the
University of Mississippi Press. James Loewen, Charles Sallis and Byron
D'Andra Orey).

Professional Publications (Book Chapters)

"Learning the Lessons of History" in Robert Wood Johnson Foundation's Culture of Health. (forthcoming) 2022. Cambridge Press. Madeline England, Cristy Johnston Limon, Byron D'Andra Orey, Jason Reece and Geoff K. Ward.
"The Liberal Arts Faculty and Writing Bootcamp" in Redefining Liberal Arts Education in the $21^{\text {st }}$ Century Edited by Robert Luckett. University of Mississippi Press. (Preselfanie McDaniels, Byron D'Andra Orey Rico Chapman and Monica Flippin-Wynn.
"The Evolution of Racial Attitudes from Martin Luther King to Barack Obama" in Assessing Public Policy and Contemporary Social Developments: Through the Prism of Dr. Martin Luther King's Dream. Edited by Michael Clemmons. University Press, 2017. (Byron D'Andra Orey, Lakeyta Bonnette and Athena King)
"Evolution and Devolution of the Voting Rights Act? Black Descriptive and Substantive Representation" Byron D'Andra Orey In Minority Voting in the United States. August 2015. Editors: Kyle Kreider and Thomas Balidino (Praeger).
"The Ascendency of Black Political Power in Mississippi." Byron D’Andra Orey In The Civil Rights Movement in Mississippi, University of Mississippi Press, 2013. Edited by Ted Ownby
"Course Portfolio for POLS 100: Power and Politics." In Inquiry into the Classroom: A Practical Guide for the Scholarship of Teaching and Learning, Byron D’Andra Orey Edited by Paul Savory, Amy Goodburn, and Amy Burnett Nelson. Boston: Anker Publishing, 2007
"Race and Gender Matter: Refining Models of Legislative Policy Making in State Legislatures." 2006, Reprinted in Intersectionality and Politics Recent Research on Gender, Race, and Political Representation in the United States, Edited by Carol Hardy-Fanta
"Black and Brown Conflict? Intergroup Attitudes and their Impact on Policy Preferences." Byron D’Andra Orey and Jessica Monfort 2006. In Jessica Perez-Monforti and William Nelson's Black And Latina/o Politics: Issues In Political Development In The United States Barnhardt \& Ashe Publishing Company
"Teaching the Politics of Race in a Majority White Institution." Byron D'Andra Orey 2006. In C.A. Stanley (Ed.), Faculty of color teaching in predominantly white colleges and universities. Bolton, MA: Anker Publishing Company (2006)
"Participation in Electoral Politics", Byron D'Andra Orey 2004. In African Americans and Political Participation, edited by K.C. Morrison (ABC-CLIO Press) with Reginald Vance

On-Line Publications

"Understanding the Important Role of Support Staff." American Political Science Association.

Non-Peer Reviewed Articles/Manuscripts

"The Ascendency to Black Power: Mississippi State Legislators," in Who’s Who in Black Mississippi. Mississippi Press. 2012
"The Cross-Cutting Issue of AIDS in the Black Community." Oracle, Winter 2008

Newspaper Articles

"Is Black History Still Relevancy" Jackson Free Press, March 6, 2013. http://www.jacksonfreepress.com/news/2013/mar/06/relevance-blackhistory/

Courses Taught

Undergraduate: Power and Politics (honors); Power and Politics; Public Issues The Black Experience; Minority Politics; Political Participation Polls, Politics, and Public Opinion; Elections; Blacks and the American Political System; and Political Parties and Interest Groups; Research, Scope and Methods; The Legislative Process

Graduate: \quad Race and the U.S. Political System; Blacks in the American Political System; Research Scopes and Methods; Political Inquiry \& Research

Personal Awards/Grants/Fellowships

Kellogg Foundation, $\$ 500,000$ Emmett Till Interpretative Center, Tougaloo College, B. D'Andra Orey and James Loewen. This grant will allow the PIs to disseminate their textbook, Mississippi Conflict and Change and to conduct a social justice institute at Tougaloo College in Summer 2023.

National Science Foundation, "The Intersection of Race, Exposure to Trauma, and Politics." \$500,000. Grant \#: 2128198 Pending Negotiation (2021).

University of Michigan, Minority Serving Institutions Outreach and Collaboration Grant $\$ 30,000$. This award will help build collaborations between faculty and students at Jackson State University and the University of Michigan. Received 2020

National Science Foundation Intern Grant, \$47,000. This grant is a supplement to NSF grant \#1649960. It will provide an opportunity for two graduate students to conduct internships that will help them develop professional work skills related to their field of study. 2020

National Park Service, \$27,569 This grant provides funding for an oral history project. It includes one graduate assistant. 2019

National Science Foundation Intern Grant, \$35,000. This grant is a supplement to NSF grant \#1649960. It will provide an opportunity for a graduate student to conduct an internship that would help her develop her professional skills. 2019

University of Michigan, \$8,000. This award will help build collaborations between faculty and students at Jackson State University and the University of Michigan. Received 2019
W. K. Kellogg Foundation Community Leadership Network Fellowship, \$25,000. Nominated and awarded out of 800 applicants only 80 were accepted. 2019

Anna Julia Cooper Teacher of the Year National Conference of Black Political Scientists. 2019

National Science Foundation. $\$ 35,000$. This award is a supplement to NSF grant \#1649960.

Alpha Kappa Alpha. Teacher of the Year. 2017
National Science Foundation Grant, \$179,000. Awarded August 2016. Title: "Racial Biases and Physiological Responses." \# 1649960

National Science Foundation Grant, \$170,000. Awarded May 2015. Title: "The Impact of Racially Traumatic Events on African Americans? Physiological, Psychological and Political Reponses." \#1541562

Academic Exchange Fellowship, August 2 - August 10, 2015—This is an invitation-only fellowship. I was nominated by Professor Judith Kelley, the Stephan Haggard, Krause Distinguished Professor at Duke University. This purpose of the program is to invite Political Scientists to Israel to attend meetings with prominent Israeli and Palestinian policymakers, scholars and opinion leaders, covering a wide range of topics and political perspectives on domestic, foreign policy and security issues. I attended the law section of the program.

Center for Undergraduate Research, Awarded 2014-2015—Received a grant in the amount of $\$ 7,000$ to conduct research in collaborations with a team of undergraduates on physiological responses to racially traumatic events.
Experimental research will be conducted with students who will conduct the experiments and analyze the data. Students presented their findings at the Mississippi Political Science Association and the National Conference of Black Political Scientists.

2014 Jackson State University Faculty Excellence Award

2014 Liberal Art's Outstanding Researcher Award

Center for Undergraduate Research, Awarded 2013-2014—Received a grant in the amount of $\$ 7,000$ to conduct research with undergraduate students in the area of experimental research. Students will conduct experiments and analyze data to examining the impact of hair texture on African-American political attitudes. Students will present their findings at three national, regional and local conferences.

Jackson State University Creative Arts Award, 2014-2015. "The Study of Hairtexture and Candidate Evaluation." This award in the amount of $\$ 5,000$ was presented by the President of Jackson State University to provide seed money for innovative research.

Palestinian American Research Center Fellow, 2013

- The fellowship provided full funding to investigate Palestinian in-group subconscious attitudes. This project compares African-American attitudes in the United States to Palestinian attitudes (Travel Dates: May 15-May 27, 2013).

Center for Undergraduate Research, Awarded 2012-2013—Received a grant in the amount of $\$ 7,000$ to conduct research with undergraduate students in the area of survey research. Students conducted a random digit dialing survey of respondents from various counties in Mississippi using "landline only telephone numbers." The results revealed that a bias existed due to the failure of employing cell phones. Students used this project to present at three conferences, including a national conference.

UC-HBCU Initiative, Awarded 2012-2013- Awarded \$28,090 grant from the University of California-Historically Black Colleges and Universities Initiative (UC-HBCU) for 2012-13, Belinda Robnett and Katherine Tate, co-PIs. The HBCU partners are Byron Orey (Jackson State University) and Desiree Pedescleaux (Spelman College).

Diamond Award for Outstanding Teaching-Undergraduate Chapter of Kappa Alpha Psi, Jackson State University Awarded 2012.
"Who's Who in Black Mississippi." 2012. Recognized for achievements in the field of education.

Service Learning Faculty Fellow, Jackson State University Service Learning, \$2,500, 2011-2012

Jewel Limar Prestage Mentorship Award, National Conference of Black Political Scientists, March $2011(\$ 1,000)$

Global Inquiry Faculty Teaching Seminar Fellow, Jackson State University. \$5,000. July 2011

Advisor of the Year, Jackson State University Political Science Club. 2011
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University. Was invited to participate in a working Group using Minnesota Twin Data, August 2010 (Travel Grant)

Fellow, Community Census and Redistricting Institute, Duke University. \$2,000. August 2010

Global Inquiry Faculty Teaching Seminar Fellow, Jackson State University. $\$ 5,000$. July 2010

Help America Vote Act, \$2,500. "Teaching students about Poll Working." Fall 2010

International Workshop on Statistical Genetics and Methodology of Twin and Family Studies. February 28-March 6, 2010. Boulder, Colorado (Travel Grant plus tuition waiver)

TESS: Time Sharing Experiments for the Social Sciences (2009): Winner of a competition to collect data for the following project: "Trusted Sources and Racial Attitudes" (with Lester Spence)

National Science Foundation Grant, \$69,000. "The 2008 Presidential Election." 1/09-12/31/09. SES-0905629

Mississippi Humanities Council, "Oral History Interviews of Members of the Legislative Black Caucus." \$2,000, September 2008

Anna Julia Cooper National Teaching Award 2008, National Conference of Black Political Scientists

Research Council, Visiting Scholar Grant, 2007 (\$800): Received funds to assist in defraying the cost for the guest speaker of the Annual MLK Banquet sponsored by the Afrikan People Union (student organization)

Senning Summer Faculty Fellowship. "African-American Legislative Chairs." (2007): \$10,000

Initiative for Teaching and Learning Excellence III, UNL. "Sankofa: Challenging Racial Mythologies Here and Abroad" (2006: \$16,500, Denied)

Emerging Scholars Summer Fellow, University of Michigan, 2006, "Empirical Summer Program in Applied Multi-Ethnic Research at the Inter-University consortium for Political and Social Research" \$2,500

Layman Fund Award 2006, "Black Intra-Cultural Attitudes Toward Race-based Policies." (2006-2007): \$9,500

Senning Summer Faculty Fellowship, "The Intersection of Race and Gender in examining descriptive and substantive representation." (2006): \$6,500

Department of Labor, Broad Agency Small Contract, "Race and the Uninsured," with Tina Mueller. (2006, $\$ 25,000$, denied)

Initiative for Teaching and Learning Excellence II, UNL. "Sankofa, a Return to the Middle Passage." (2005): \$15,000, denied

Senning Summer Faculty Fellowship, 2005, "Race, Gender and Structure Matter: Descriptive versus Substantive Representation." (2005): \$6,500

Summer Grant Writing Institute, 2005, "Opposition to Racially-Targeted Redistributive Programs." (\$2,750)

National Science Foundation, 2004, "Black Racial Conservatives: Racial Uplift or Racial Resentment?" (Denied, \$204,000)

Maude Hammond Fellowship, 2004, Research Council, University of Nebraska, Lincoln, "Black Conservatives and Intra-group resentment." (2004): \$10,000

Senning Summer Faculty Fellowship, "African Americans in the State Legislative Power Structure: Committee Chairs." (Summer 2004): \$6,500

Gallup Research Professorship 2003-2004, "Explaining Black Conservatives: Racial Resentment or Racial Uplift?" (Summer 2003): \$4,600

Faculty Research Small Grant, "Deracialization or Racialization: The Making of a Black Mayor," University of Mississippi, (Summer 2000): \$3,500

National Science Foundation/Quality Education for Minority Network (January 1993) Amount: $\$ 2,500$
-To conduct research on the Federal Government's financial contributions to Historically Black Colleges and Universities

Conference Participation

[^127]"African Americans' Emotional Responses to the Mississippi State Flag." Southern Political Science Association, San Juan Puerto Rico. January 9-11, 2020, Caribe Hilton Hotel, San Juan Puerto Rico.
"Intersection of Political Science and Other Disciplines." College Day. Jackson State University, Student Center. April 15, 2019.

Roundtable, 'NCOBPS History: An Overview of Presidential Administrations." National Conference of Black Political Scientists, Baton Rouge, LA. 2019.
"African Americans Emotional Responses to Trump, the Confederate Flag and Police." American Political Science Association. Boston, MA. September 2018.
"African Americans Physiological Responses to Confederate Symbols." Midwestern Political Science Association, Chicago, Illinois, April 7, 2017.
"Environmental Justice Policy, Intersectionality and Racial Context," National Conference of Black Political Scientists, March 16, 2017.
"Understanding Black Political Attitudes and the Intersection of Hair Texture and Colorism," Annual Conference of the Mississippi Political Science Association, Jackson, MS, February 10, 2017.
"The 50th Anniversary of the Voting Rights Act and the Quiet Revolution," Mississippi Political Science Association, Jackson, MS. Gloria Billingsley, B. D'Andra Orey and Athena M. King. February 10, 2017.
"Accountability, Customization, Sustainability, \& Production: The Interdisciplinary Faculty Writing Boot Camp" Mississippi Philological Association Annual Conference. February 11, 2017. Mississippi Valley State University, Itta Bena, MS.
"Author Meets Critics: Robert Mickey’s Paths Out of Dixie," Southern Political Science Association, New Orleans, LA, January 14, 2017
"Accountability, Customization, Sustainability, \& Production: Reflecting on Our Liberal Arts Faculty Writing Boot Camp." College of Liberal Arts Conference, Jackson, MS. October 8, 2016.
"Teaching about Mississippi in Trying Times." Roundtable, College of Liberal Arts Conference, Jackson, MS. October 7, 2016.

Paper: "HBCUs to Conduct Research on Black Political Attitudes and Behavior." (Students: Kiescia Dickinson, Courtney Viverette and Jauan Knight). National

Conference of Black Political Scientist conference (March 17-19 2016). Hilton Garden Inn. Jackson, Mississippi.

Paper: "Southern White Legislative backlash to the Voting Rights Act of 1965." (Student: Ernest DuPree). Southern Political Science Association conference. (January 7-9, 2016 at the Caribe Hilton, San Juan Puerto Rico.

Round Table: "Reflections on Voting Rights in the South in the Age of Shelby v. Holder. " Southern Political Science Association Southern Political Science Association conference. (January 7-9, 2016 at the Caribe Hilton, San Juan Puerto Rico.
"Blacks' Political Attitudes and Psychological Responses to Racially Traumatic Stressful Events." Southern Political Science Association Southern Political Science Association conference. (January 7-9, 2016 at the Caribe Hilton, San Juan Puerto Rico.

Paper: "Black Strategic Voting or Genuine Republican Support: The 2014 Mississippi Senate." (Student: Nafessa Edges). National Conference of Black Political Scientists conference (March 17-21, 2015). Double Tree Hotel. Atlanta, GA.

Paper: "Psychological and Physiological Responses to Traumatic Events: The Case of Ferguson, Missouri." (Students: Kyler Lee and Jasmine Jackson). Paper presented at the National Conference of Black Political Scientists conference (March 17-21, 2015). Double Tree Hotel, Atlanta, GA.

Paper: "The Evolution and Devolution of the Voting Rights Act (19652014). National Conference of Black Political Scientists Conference (March 1721, 2015). Double Tree Hotel, Atlanta, GA.

Paper: "Sources We Can Believe In: The Effect of Elite Level Cueing on Black Attributions of Inequality." Mississippi Political Science Association (February 13, 2015). Jackson State University, Jackson, MS.

Roundtable: "(Non)Traditional Methods in the Study of Black Politics: Voices from the Field." American Political Science Association: Roundtable (August 30, 2014). Washington, D.C. Hilton.

Paper: "Candidate Evaluation of Black Women Candidates’ Hair Style and Texture," (with Nadia Brown). Paper presented at the Southern Political Science Association's annual meeting. (January 9-11, 2014) New Orleans, Louisiana.

Paper: "Moving Beyond Race and Gender: An Intersectional Analysis of Bill Sponsorship in State Legislatures," (with Nadia Brown). Paper to be presented
at the Southern Political Science Association's annual meeting (January 9-11, 2014) New Orleans, Louisiana

Round Table: "The Status of the APSA Task Force on Political Science in the 21st Century." The Southern Political Science Association's annual meeting, (January 9-11, 2014) New Orleans, Louisiana

Panel: Author Meets Critics: "Black Mayors White Majorities The Balancing Act of Racial Politics." Ravi Perry Author. ." The Southern Political Science Association's annual meeting, (January 9-11, 2014) New Orleans, Louisiana

Moderator: "New Mayor’s Perspective of the First 100 Days." Mississippi Legislative Black Caucus Mayor's Summit (September 26, 2013), Jackson State University, Jackson, MS

Paper: "Environmental Justice Policy, Intersectionality and Racial Context" (with Athena King). Paper presented at the Midwestern Political Science Association's annual meeting, (April 11-13, 2013) Chicago, Illinois

Paper: "Intersectionality: Race, Gender and Party." Paper presented at the National Conference of Black Political Scientists, (March 14-16, 2013) Oak Brook, Illinois

Roundtable Participant: "Research Opportunities at Historically Black Colleges and Universities." National Conference of Black Political Scientists, (March 1416, 2013) Oak Brook, Illinois

Paper: "Revisiting Black Racial Identity Using Subconscious Measures" Byron D’Andra Orey, Thomas Craemer and Melanye Price. Southern Political Science Association, (January 3-5, 2013) Orlando, FL

Roundtable: Using ICPSR Data in Undergraduate Research, Southern Political Science Association, (January 3-5, 2013) Orlando, FL

Invited Panelists: Conference within a Conference--Gender, Race, \& Intersectionality, Southern Political Science Association, (January 3-5, 2013) Orlando, FL

Discussant: "The Representation and Presentation of Race and Gender" Southern Political Science Association, (January 3-5, 2013) Orlando, FL

Paper: "Using Black Samples to Investigate the Validity of Implicit Racial Attitude Measures" (Paper nominated for Best Paper for Race and Ethnicity Section) (Paper written, however, Conference Cancelled), (September 2013), American Political Science Association, New Orleans, LA

Paper: Invited Participant: APSA Working Group on Implicit Attitudes, "Comparing AMP, IATs, Subliminal Priming and Black Identity" (Paper written, however, Conference Cancelled) Byron D'Andra Orey and Thomas Craemer, American Political Science Association, (September 2013) New Orleans, LA

Paper: "The Intersectionality of Race and Gender in State Legislatures," Women for Progress Conference, (September 2012) Jackson, MS.
Paper: "Validating Implicit Racial Attitude Measures in Black HBCU Samples," Midwestern Political Science Association, (April 12-15, 2012), Chicago, Illinois

Paper: "Black Conservatism and Opposition to Racial Policies," National Conference of Black Political Scientist, (March 14-17, 2012, Las Vegas, Nevada

Paper: "Black Legislative Politics in Mississippi," (with Rhonda Cooper), Southern Political Science Association, (January 11-14, 2012), New Orleans, LA

Chair, Panel: "Status of African Americans in the South," Southern
Political Science Association, (January 11-14, 2012), New Orleans, LA
Participant: "SPSA 2013 Program Committee," Southern Political
Science Association, (January 11-14, 2012), New Orleans, LA
Paper: "Intersections, Interactions, and Legislative Behavior," (with Shoronda Wofford), Mississippi Political Science Association, Millsaps College, (November 11-12, 2011), Jackson, MS

Discussant: Local Politics in Mississippi, Mississippi Political Science Association, Millsaps College, (November 11-12, 2011), Jackson, MS

Invited Panelist: Chairs Luncheon and Workshop: "Unwitting Leader: How to be an Effective Department Chair, and Live to Tell About It" (Departmental Services Committee), American Political Science Association, (September 14, 2011), Washington State Convention Center, Seattle Washington

Paper: "Genetic Similarity, Ethnocentrism, and Political Attitudes." American Political Science Association, (September 1-4, 2011), Washington State Convention Center, Seattle Washington

Chair, Panel: Race, Immigration and Public Opinion, American Political Science Association, (September 1-4, 2011), Washington State Convention Center Seattle Washington

Chair, Panel: "Racial Attitudes and the Role of Race in Electoral Politics." Southern Political Science Association (January 6-8, 2011), Intercontinental Hotel, New Orleans, LA

Paper: "Black Support for Racial Policies and The Double (Non)-Consciousness Thesis." Southern Political Science Association (January 6-8, 2011), Intercontinental Hotel. (with Leniece Davis and Byron Williams)

Paper: "Pro-Black Political Opinions, Participation and Stereotype Threat Among African-American College Students." American Political Science Association, (September 2010), Washington, D.C. (with Thomas Craemer and Hyung Park)

Paper: "Implicit Black Group-Identification and Stereotype Threat in the Age of Obama." International Society of Political Psychology, (July 2010), San Francisco, CA. (with Thomas Craemer)

Paper: "Implicit Racial Attitudes, Stereotype Threat, and Political Behavior among Young African Americans in the Age of Obama," Midwestern Political Science Association's Annual Meeting, (April 22, 2010), Chicago, IL, Palmer House. (with Thomas Cramer and Hyung Park)

Paper: "Black Elite Rhetoric and System Justification Ideology." American Political Science Association's Annual Meeting. Toronto, (September 5, 2009), Ontario, Canada, (with Hyung Park)

Paper: "American Patriotism and the Reverend Wrights of the World." National Conference of Black Political Scientists. Houston, TX (March 2009). (with Najja Baptist)

Paper: "American Identity and Disillusioned Liberalism Among African Americans." Midwestern Political Science Association's Annual Meeting. Chicago, IL, Palmer House. (April 2-5, 2009). (with Najja Baptist)

Paper: "Public Opinion and Substantive Representation." Discussant Midwestern Political Science Association’s Annual Meeting. (April 2-5, 2009), Chicago, IL, Palmer House

Paper: "Political Socialization and Racial Conservatism." Southern Political Science Association's Annual Meeting, (January 9, 2009) New Orleans, LA Intercontinental Hotel

Paper: "System Justification Ideology and Black Opposition to Affirmative Action." (March 2007), National Conference of Black Political Scientists, San Francisco, CA

Paper: "When Race, Party and Gender Matter: State Legislative Behavior." Western Political Science Association, (March 2007), Las Vegas, Nevada

Chair, "Race and Fear." Hendricks Conference on Biology and Political Behavior, (October 13-14, 2006), Lincoln, Nebraska

Paper: "Roundtable: A Retro and Prospective: The $10^{\text {th }}$ Anniversary of Robert Smith's We Have No Leaders." The National Conference of Black Political Scientists' Annual Conference," (March 22-25, 2006), Atlanta, GA

Paper: "Roundtable: Representation and the Intersections of Gender, Race and Ethnicity." The Southern Political Science Association's Annual Meeting, (January 6-8, 2006), Atlanta, GA

Paper: "Mentoring Task Force Panel: Finding Mentors and Advocates in the Ivory Tower." American Political Science Association, (September 2005,) Washington, D.C.

Paper: "A Tale of Two Flags: The Mississippi and Georgia Flag Referenda." Midwestern Political Science Association, (April 7-9, 2005), Chicago, IL

Paper: "Explaining Black Conservatives." Western Political Science Association, (March 17-20, 2005), Oakland, CA

Paper: "Not Exactly What We Had in Mind for Inclusion: The Impact of Racial Resentment on Latinos" (with Jessica Perez-Monforti). Western Political Science Association, (March 17-20, 2005), Oakland, CA

Discussant: "Perspectives on Race and Ethnicity," (January 6-8, 2005), Southern Political Science Association

Paper: "Teaching Race in a Majority White Place." People of Color at Traditional White Institutions, (November 15-16, 2004), University of Nebraska, Lincoln, Lincoln, Nebraska

Paper: "Black Conservatives and Black Nationalists: Convergence or Divergence." National Conference of Black Political Science, (March 25-27, 2004), Chicago, Illinois, Hyatt- Mcormick Place

Paper: "African American Racial Conservatives and Intra-group Resentment." Southern Political Science Association, (January 2004), New Orleans, LA (with LeKesha Harris)

Paper: "Race and Gender Matter: Black Legislative Politics in Mississippi" (with Wendy Smooth), National Conference of Black Political Science, (March 2527, 2004), Chicago, Illinois, Hyatt- Mcormick Place

Roundtable Participant: "The Role of College Faculty in AP Success." National AP Equity Colloquium, (March 20-21, 2004), Houston, TX, Houston Intercontinental Marriott

Paper: "Black Conservatives: A Systematic Analysis." African and Latino Conference, (January 2003), Lincoln, Nebraska

Paper: "Measuring Deracialization: A Systematic Analysis of the Deracialization Concept." Western Political Science Association, March 27-29, 2003

Paper: "Explaining Black Conservatives: Racial Uplift or Racial Resentment?" National Conference of Black Political Scientists, Oakland, California

Discussant, Southern Political Science Association, (November 6-10, 2002), Savannah, GA

Paper: "Black Legislative Politics in Mississippi: Gender Matters," Southern Political Science Association, (November 6-10, 2002), Savannah, GA

Paper: "Racial Uplift or Racial Resentment," Midwest Political Science Association, (April 2002), Chicago, IL

Paper: "Racial Attitudes toward the Confederate Flag," Southern Political Science Association, (November 7-10, 2001) Atlanta, GA, with Khalilah Brown

Paper: "White Opposition to Affirmative Action," Southern Political Science Association, (November 7-10, 2001) Atlanta, GA

Paper: "The New Black Conservative: Rhetoric or Reality?" National Conference of Black Political Scientists, (March 8-10, 2001)

Paper: "New Racial Attitudes in the New South." Race in America (Hendricks Symposium), University of Nebraska, (November 2-3, 2000) Lincoln, NE

Paper: "African Americans in the State Legislative Power Structure: Committee Chairs," American Political Science Association, (August 2000, Washington, D.C.)

Paper: "One Person-N Votes: An empirical analysis of Proportional representation in Cincinnati, Ohio," Midwest Political Science Association, (April 2000, Chicago, Illinois), with Kimberly Adams

Paper: "From Protest to Politics: A look at the success of black legislators in Mississippi," Midwest Political Science Association, (April 2000, Chicago, Illinois), with Kimberly Adams

Paper: "Framing the Issue, When the Issue is Race." American Political Science Association, (September 2-5, 1999), Atlanta, GA

Poster: ARacialization or Deracialization: The Making of a Black Mayor in Jackson, Mississippi," American Political Science Association, (September 2-6, 1998), Boston, MA

Paper: "The Race Race in Black and White: The 1995 Louisiana Gubernatorial Election," Southwest Political Science Association, (March 26-29, 1997), New Orleans, LA

Paper: "Mississippi Legislative Politics in Mississippi," Southern Political Science Association, (November 7-9,1996), Atlanta, GA.

Paper: "Dispelling the Myth and Revealing the Truth: the Overrepresentation of Whites on City Councils," American Political Science Association, (September 1996) San Francisco, CA.

Roundtable Participant: "The Impact of Alternative Voting Systems" National Conference of Black Political Scientists, (March 1996), Norfolk, VA.

Paper: "Mississippi Black Legislators," National Conference of Black Political Scientists, (March 1996) Savannah, GA.

Paper: "Black Representation in the South," The Southern Regional Council=s Annual Voting Rights Seminar, Fall 1995 New Orleans, LA.

Paper: "One Person, N-Votes: In Search of a Remedy for Vote Dilution Claims in the Absence of Geographical Compactness," American Political Science Association, (September 1995) Chicago, Ill.

Paper: "Status Crow Politics and the Under-Representation of Black Women on the Bench" Southern Political Science Association, (November 3-5, 1994) Atlanta, GA

Paper: "One Person, N-Votes: Minority Representation on the Bench," The National Conference of Black Political Scientists (March 1994) Hampton, VA

Panel Chair: "The Politics of Electoral Reform," American Political Science Association, (September, 1994) New York, NY.

Discussant: Race and Reapportionment after Shaw v. Reno, Southern Political Science Association, (November 3-5, 1994) Atlanta, GA.

Participant: Mock Voting Rights Trial, The Southern Regional Council, Annual Voting Rights Seminar (October 1993), Peachtree City, Georgia

Paper: "When Excess Creates Progress: An Assessment of the Federal Government's Financial Contribution to HBCUs," The Southern Political Science Association (Fall 1993) Savannah, GA.

Paper: "When Excess Creates Progress: An Assessment of the National Science Foundation's Financial Contribution to HBCUs," The National Black Graduate Student Association's Annual Conference (May 1993) University of Minnesota

Paper: "The Disparity of Federal Expenditures received by Historically Black Colleges and Universities (HBCUs) compared to Non-HBCUs," The Quality Education for Minority Network's Annual Education Conference (August 1992), Georgetown University, Washington, D.C.

Paper: "The Purpose of Cognitive Inventories for Secondary Students," Southern Association for Educational Opportunity Program Personnel (1990), Tupelo, MS

Invited Presentations

"Mississippi Conflict and Change," University of Michigan, May 10, 2022.
"The Power of Perseverance: Black Politics of American Democracy Workshop, Facilitator. Princeton University, March 31, 2022.

Intersectionality and Intersections: Race, Gender and Legislative Behavior. Princeton University, March 30, 2022.

Trusted Sources, University of Tennessee, Knoxville, March 82022
MLK Convocation, Creighton University, January 18, 2022.
"Does the Confederate Flag Make You Sick?" University of Mississippi, April 12, 2017.
"The Impact of Race and Gender on the 2016 Presidential Election," Metropolitan Community College, Omaha, Nebraska. February 2, 2017.
"The Strange Career of Black Politics," Florida State University, January 26, 2017.
"New Developments in the Study of Race and Politics," Buffalo State University, November 1, 2016.
"Contemporary Topics in the Study of Race and Politics," Annual Joseph T. Taylor Symposium at Indiana University, Purdue University Indiana (IUPUI), February 25, 2014
"A Dare to Be Great: Honoring our Ancestors." National Association for the Advancement of Colored People's Annual Banquet. Lincoln, Nebraska. November 9, 2013.
"Alumni Given at HBCUs." The Douglas T. Porter Athletic Scholarship Banquet. October 25, 2013. Mississippi Valley State University, Itta Bena, MS.
"One Man's Journey to African, the Middle East and the Caribbean." Metropolitan Community College September 12, 2013.
"Reflecting on the Life and Work of Attorney Isaiah Madison." Isaiah Madison Memorial Symposium on Higher Education, April 18, 2013
"Voter Suppression in the United States," Mississippi Valley State University’s Pi Sigma Alpha Honor Society April 8, 2013
"Research Opportunities at Historically Black Colleges and Universities." University of California, Irvine February 27, 2013

Roundtable discussion, "Has the Dream Been Fulfilled?" February 19, 2013, Jackson State University Political Science Club, Jackson, MS

Mississippi Valley State University Black History Month Convocation, Guest Speaker February 18, 2013
"New Developments in Race and Politics." St Andrews High School, December 12, 2013
"Voting and Democracy," St. Andrews High School, Ridgeland, MS, November 15, 2011

Robert Clark Symposium, "2011 Election Day: Implication and Analysis, What does it Really Mean?" Jackson State University, November 9, 2011

Emerging Scholars Conference, (with mentee JaLisa Jorden). "Black Political Attitudes and Obama as a Trusted Source: Is it the Message or the Messenger?" University of Michigan, September 29-October 1, 2011
"Mentoring Graduate Assistants." Workshop: Activity 7 Program, May 18, 2011. Jackson State University Student Center

Conference on Laboratory Experiments in Political Science, Stereotype Threat Among African-American College Students, Vanderbilt University, May 4-6, 2011

University Development Foundation Board Meeting. Invited by the President of the University to make a presentation on the research agenda in the Department of Political Science, MS e-Center, December 10, 2010

Hendrick's Symposium (with mentees JaLisa Jorden and Ebou Sowe). "Elites as Trusted Sources: Do Blacks Believe Everything President Obama Says?" November 3-5, 2010. University of Nebraska, Lincoln

Terry High School. "To Thine Own Self Be True." October 19, 2010. Terry Mississippi

Porter L. Fortune, History Symposium: Future of the South Conference.
"Substantive Representation and the Mississippi Legislative Black Caucus." University of Mississippi, Oxford, MS. February 18, 2010
"Obama Administration: One Year Later." Roundtable Participant. Medgar Evers/Ella Baker Lecture Series, Tougaloo College, Tougaloo, MS. November 16, 2009
"Presidential Approval Ratings." Lecture at St. Andrews High School’s Advanced Placement U.S. Government course, November 10, 2009

Matthew Holden, Jr. Symposium Lecture. "A Response to Glen Loury." November 5, 2009. Jackson State University

University of Nebraska, Lincoln. Keynote Speaker: Hurricane Katrina: A
Remembrance in Three Acts, September 25, 2007

New York University, John Jost's Psychology Laboratory. "System Justification and Black Opposition to Affirmative Action." September 13, 2007

Oxford University (Oxford, England), Oxford Roundtable, "Religion and Politics." July 2007

Williams College, Voting Rights Roundtable, February 9-10, 2007
Emory University School of Law Public Interest Committee, "Annual Public Interest Conference." October 7, 2006

Yale University, Presenter: "Lessons from the Past, Prospects for the Future: A Conference in honor the Fortieth Anniversary of the Voting Rights Act of 1965." April 21-23, 2005

University of Nebraska, Lincoln. "From Selma to Washington," April 18, 2005
University of Nebraska, Lincoln. "Martin Luther King Forum on Reparations." (January 20, 2005)

University of Mississippi. "Race and the Mississippi State Flag." February, 2005
University of Southern Illinois. "Explaining Black Racial Conservatives." December 9, 2004

Middle Tennessee State University. "The Year of the Ballot or the Bullet." April 22, 2004

The College Board, Arranged a Panel on "The Role of College Faculty in AP Success." National AP Equity Colloquium. March 20-21, 2004

Washington University, Lecture: "Racial Uplift or Racial Resentment: Explaining Black Conservatives?" February 6, 2004

University of Winneba, Winneba, Ghana (West Africa). June 2004
University of Mississippi, "Retaining Black Faculty and about Tenure," Panelist. January 23, 2004

University of Nebraska, Lincoln. "What does it take to get elected in the United States?" Round Table, sponsored by Pi Sigma Alpha. February 20, 2003

Southern Association for College Student Affairs, Panelists: "Town Hall Meeting on Symbols," November 2002

University of Nebraska, Lincoln. "Post Election Roundtable Panelists," sponsored by Pi Sigma Alpha. November 2002

November 2-3, 2000. "New Racial Attitudes in the New South" Hendricks Symposium on Race, University of Nebraska

September 2000. Lecture, "A New Racism in the New South." Center for the Study of Southern Culture, University of Mississippi

Ph. D. Committees

Rob Denne, Jackson State University, Department of Education
Ronella Gollman, Jackson State University, Department of Psychology

Princeton Smith, Jackson State University, Department of Psychology
Daphine Foster, Public Policy, Jackson State University (member)
Peter Hatemi, Political Science, University of Nebraska, Lincoln. Defense: Spring 2007 (member)
Reginald Vance, Southern University, Baton Rouge, Defense: December 2006 (Chair)
James H. Moore, Howard University (Economics), Defense: December 2004 (member)
Kimberly Adams, University of Mississippi, Defense: Spring 2003 (outside member)
Mitch Herring, University of Nebraska, Lincoln Defense: Spring 2008 (Political Science, member)
Yolanda Johnson, University of Nebraska, Lincoln (Sociology, member)
Eric Whitaker, University of Nebraska, Lincoln (Political Science, member)

Master's Theses:

Communications

Janeya Smith, Jackson State University, Department of Political Science (Chair, Completion date: December 2018)
Spencer McClenty, Jackson State University, Department of Communication (Completion October 2018)
Caleb Smith, Jackson State University, Department of History (Completion date: October 2017)
Sharonda Woodford, Jackson State University, Department of Political Science (Completion date: summer 2013)
Alfonso Franklin, Jackson State University, Department of History (Completion date: May 2013)
Emmitt Riley, Jackson State University (Chair, Completion date: May 2010)
Najja Baptist, Jackson State University (Chair, Completion: August 2010)
Matthew Hastings, University of Nebraska, Lincoln. (Chair, Thesis Completion: Spring 2007)

Honor's Thesis:

Andy Conroy (Co-Advisor), Completed: Spring, 2006

University Services

Promotion and Tenure Committee Psychology 2018
Mentor, Ronald E. McNair Summer Program, Jackson State University (Mentee: Keirrah Wheeler)
Promotion and Tenure Committee Psychology 2017
Political Science Club Advisor, 2014-2015
Pi Sigma Alpha Advisor, 2017-Present
Pi Sigma Alpha Advisor, 2014-2015
Member of the Faculty Senate, 2014-2015

Faculty Third Year Review, Department of Political Science, Chair Spring of 2015
Faculty Third Year Review, Department of Political Science, Chair Fall of 2014
Faculty Third Year Review, Department of History Fall 2013
Search Committee for the Bachelor of Social Work and Masters of Social Work Program Directors. Fall 2013
University Think Tank Committee, Jackson State University (appointed Fall 2013)

Advisory Board, Center for Excellence in Minority Health and Health Disparities (appointed Spring 2013)
Tenure Committee, Department of History Fall 2012
Promotion Committee, Department of Public Policy Fall 2012
Conference Coordinator for the National Bar Association-Served as the
Coordinator in hosting the NBA's annual meeting at Jackson State University. September 2012
Promotion Committee, Department of Music Fall 2011
College of Liberal Arts Promotion and Tenure Committee. 2011-2012 (elected position)
Jackson State University, Advisory Board, Advance Project (National Science Foundation Grant), appointed by PI. 2011-present
Symposia Subcommittee of the Presidential Inaugural Planning Committee Fall 2011
Research Advisory Council, 2011-present, appointed by Vice President for Research
Employment/Hiring Committee Public Policy Spring 2011
Search Committee for Office of Student Life, January 2011
Promotion Committee, Department of Business Fall 2010
Promotion Committee, Department of Psychology Fall 2010
Promotion Committee, Department of Public Health Fall 2010
College of Liberal Arts Promotion and Tenure Committee. 2010-2011 (elected position)
Quality Enhancement Plan, Jackson State University, 2008-2011
$40^{\text {th }}$ Gibbs-Green Anniversary Observance Planning Committee, Jackson State University, 2010
Executive Committee, University of Nebraska, Division of Arts and Sciences, 2007-2008
Diversity Committee, University of Nebraska, 2007-2008
Executive Committee, University of Nebraska, Department of Political Science, 2006-2007 and 2002-2003
Undergraduate Creative Activities and Research Experiences (UCARE), Student Advisor, University of Nebraska, 2006 (Amanda Ponce)
Mentor, Ronald E. McNair Summer Program, University of Nebraska, Lincoln, Summer, 2006 (Mentee: Amanda Ponce)
Graduate Committee, Department of Political Science, (2005-2006) Political Science Unit Review Committee, University of Nebraska (2005-2008)

University of Nebraska Marshal Corp: Appointed by the dean of Arts and Sciences (Summer 2004-Present)
Member, Undergraduate Committee (2003-Present)
Mentor, Ronald E. McNair Summer Program, University of Nebraska, Lincoln, 2003 (Mentees: Donald McCauley and Potso Byndon)
Member, Executive Committee, University of Nebraska, Department of Political Science, 2002-present
Mentor, Ronald E. McNair Summer Program, University of Mississippi, 1999 (Mentee: Kimberly Walker, Alcorn State University)

Professional Services and Activities

Conference Program Chair, Southern Political Science Association, 2023
Vice President, Southern Political Science Association. 2022
Commissioner, Mississippi Civil Rights Education Commission
Executive Council, Southern Political Science Association 2014-2015
American Political Science Association: Committee for Best Book in the Race, Ethnicity and Politics section. 2014
American Political Science Association's Minority Fellows Program Selection Committee 2013
Dianne Blair Award Committee, Southern Political Science Association. 2013
Section Chair, Professional and Career Development, Midwestern Political Science Association. 2013 (Conference to be held in 2014).
External Reviewer, Tenure and Promotion, Southern Illinois University, Fall 2013.

Section Chair, National Conference of Black Political Scientists: Undergraduate Research 2013.
Section Chair: Teaching Political Science, Southern Political Science Association, Orlando, Florida January 3-5, 2013
Member of the Status of Blacks in the Discipline, American Political Science Association (appointed 2012-present)
Section Chair, Southern Political Science Association: Teaching Political Science, 2012
Member of the Membership Committee for the Southern Political Science Association (appointed 2012)
External Reviewer, Tenure and Promotion Committee, September 2012, University of Houston, Clearwater
External Reviewer, Third Year Review, Clark University, November 2011
External Reviewer, Tenure and Promotion Committee, Rutgers University, Newark, September 2011
Section Chair: The Status of Blacks in the South, Southern Political Science Association, 2012
Section Chair: Public Opinion, Midwestern Political Science Association, 2009
Lucius Barker Award Committee, 2008 Midwestern Political Science Association.

Executive Committee (member), National Conference of Political Science (20072010)

Section Chair: Identity Politics: Gender, Class, Ethnicity, Sexuality, and
Religion, National Conference of Black Political Scientists, 2007.
Section Chair: Race and Politics, National Conference of Black Political Scientists 2005.
Jewell Prestage Awards Committee, Southwestern Political Science Association 2004.

Section Chair: Race and Ethnicity, Southwest Political Science Association. 2004.
Section Chair: Race and Ethnicity, Midwestern Political Science Association, 2002.

University of Nebraska, Lincoln. "What does it take to get elected in the United States?" Round Table, sponsored by Pi Sigma Alpha. February 20, 2003.
Southern Association for College Student Affairs, Panelists: "Town Hall Meeting on Symbols," Biloxi, Mississippi. November 2002.
University of Nebraska, Lincoln. "Post Election Roundtable Panelists," sponsored by Pi Sigma Alpha. November 2002.

Other Professional Activities

Education Consultation:
Testing Development Committee (member) 2008-2011, Education Testing Services (Princeton, New Jersey): Assist in writing objective questions for the Advanced Placement Exam (Government and Politics).

College Board Consultant - Conduct workshops to High School Government Instructors on teaching Advanced Placement Government and Politics (April 2002-Present).

Question Leader for the Advance Placement Exam, in U.S. Government and Politics (Summers 2007-Present).

Table Leader for the Advance Placement Exam, in American Government, Educational Testing Services (Summers 1996-2003).

Reader for the Advance Placement Exam, in American Government, Educational Testing Services (Summers 1996-1998).

Expert Witness Work:

Mark A. Anderson v. City of McComb, Mississippi, Gregory Martin and John Does 1-5.

Voting Rights Expert Witness Work:

Cecil Cantrell v. Monroe County, Mississippi (Deposition given)
Testified before the Mississippi Legislative Reapportionment Committee (April 2001)

Lewis, et al. v. Alamance County, et al. (Deposition given).

Rose Johnson, et al. v. The City of Gainesville, GA (Testified)
Jackson v. Nassau County Board of Supervisors
City of Hampton, Virginia

Editorial

Review
Boards
American Political Science Review
The Ralph Bunche Journal of Public Affairs
Journal of Race and Policy
Pi Sigma Alpha Undergraduate Journal (Faculty Advisory Board)
State Politics and Policy Quarterly

Reviewer

American Political Science Review; Journal of Politics; American Journal of Political Science; Legislative Studies Quarterly; Women, Politics and Policy; National Political Science Review; American Politics Research; Political Research Quarterly; Politics and Policy; Oxford University Press; Lynne Rienner Publishers; Journal of Race and Policy; Social Science Quarterly; Urban Affairs Quarterly; SUNY PRESS; Political Communication, University of Michigan Press; TESS (Time-Sharing Experiences for the Social Sciences); National Science Foundation; the Social Science Journal; Routledge Press; Journal of African American Studies; Social Psychological and Personality Science; Pi Sigma Alpha Undergraduate Journal.

Community Services

Mentor, Empowering Males to Build Opportunities for Developing Independence (EMBODI)
Mentor, New Focus for Youth after-school program
Board of Directors of the PERICO Institute for Youth Development and
Entrepreneurship (PRIYDE), Jackson, MS (November 1, 2011-Present)
Member, Charter Revision Commission, Lincoln, Nebraska 2002-2006
Member, Nebraska's Help America Vote Act (Secretary of State's Office) 20022006

Professional Organizations

American Political Science Association
National Conference of Black Political Scientists
Southern Political Science Association
Midwestern Political Science Association
Mississippi Political Science Association

APPENDIX 2: Summary Table of Two Group EI and Three-Group EI and EI RxC

	Two-Group EI (Black vs. White and Others)	Two-Group EI (White vs. Black and Others)	EI Compare ThreeGroup EI	EI Compare ThreeGroup EI	EI Compare ThreeGroup EI RxC	EI Compare ThreeGroup EI RxC
Election	Black Support for Black Candidate	White Support for Black Candidate	Black Support for Black Candidate	White Support for Black Candidate	Black Support for Black Candidate	White Support for Black Candidate
Westbrooks 2020	90.46	6.43	90.46	6.36	90.22	6.37
Espy 2020	96.34	13.5	96.38	13.39	98	10.99
Amos 2019	92.08	6.66	92.05	6.66	94.43	4.6
DuPree 2019	94.35	8.73	94.31	8.7	96.46	6.24
Collins 2019	94.54	10.82	94.55	10.76	96.81	8.27
$\begin{aligned} & \text { Simmons } \\ & 2019 \\ & \hline \end{aligned}$	93.97	8.81	94.05	8.59	96.67	6.01
Stamps 2019	92.22	7.6	93.3	7.65	94.96	5.52
Green 2019	92.83	7.16	92.82	6.9	95.42	4.89
Espy 2018	94.91	16.42	94.89	16.31	97.6	12.48
$\begin{array}{\|l\|} \hline \text { Graham } \\ \hline 2015 \\ \hline \end{array}$	87.58	4.67	87.7	4.49	89.78	2.69
$\begin{array}{\|l\|l\|} \hline \text { Coleman } \\ \hline 2015 \\ \hline \end{array}$	89.36	4.87	89.38	4.85	91.16	3.15
Gray 2015	87.76	4.44	87.74	4.52	89.88	2.72
Banks 2012	81.26	5.44	81.34	5.45	79.92	7.27
Obama 2012	92.72	12.12	92.72	12.14	93.65	5.53
Crisler 2011	91.04	8.29	90.98	8.37	92.35	7.52

DuPree $\mathbf{2 0 1 1}$	90.88	8.11	90.89	8.12	93.65	5.53
Green 2011	90.94	8.16	90.88	8.08	93.67	5.56

APPENDIX 3: TWO-GROUP EI RAW RESULTS AND SCRIPT

Raw Results

```
Westbrooks
2020
$pBlackVAP
    mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.El
\begin{tabular}{lccl} 
pVoteA & 90.46 & 0.27 & 89.97 \\
pVoteB & 9.53 & 0.24 & 9.09
\end{tabular}
    ci_95_upper_Iterative.EI
pVoteA 91.03
pVoteB 10.01
$pWhite_Other
    mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.El
pVoteA 10.64 0.20
pVoteB 89.38 0.24
88.88
```

 ci_95_upper_Iterative.EI
 pVoteA 11.06
pVoteB 89.76

Espy 2020
\$pBlackVAP
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI

pVoteA	96.34	0.20	95.94

pVoteB	3.65	0.21	3.18

ci_95_upper_Iterative.EI
pVoteA 96.68
pVoteB 4.02
\$pWhite_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

pVoteA	18.15	0.23	17.77

$\begin{array}{llll}\text { pVoteB } & 81.87 & 0.18 & 81.52\end{array}$
ci_95_upper_Iterative.EI
pVoteA
18.67
pVoteB
82.20

Collins 2019
\$pBlackVAP
\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

pVoteA	6.43	0.25	5.89
pVoteB	93.59	0.28	92.95

ci_95_upper_Iterative.EI
pVoteA 6.88
pVoteB 94.03
\$pBlack_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 87.39 & 0.26 & 86.91\end{array}$
$\begin{array}{llll}\text { pVoteB } & 12.56 & 0.21 & 12.22\end{array}$
ci_95_upper_Iterative.EI
pVoteA 87.97
pVoteB 13.08
\$pWhiteVAP
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 13.50 & 0.37 & 12.71\end{array}$
$\begin{array}{lll}\text { pVoteB } & 86.51 & 0.36\end{array}$
85.84
ci_95_upper_Iterative.EI
pVoteA 14.30
pVoteB 87.21
\$pBlack_Other
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI

pVoteA	93.88	0.30	93.30
pVoteB	6.09	0.29	5.56

ci_95_upper_Iterative.EI
pVoteA 94.44
pVoteB 6.68
\$pWhiteVAP

DuPree2019			
\$pBlackVAP mean Iterative.EI sd Iterat			
ci_95_lower_Iterative.EI			
pVoteA	94.31	0.28	93.77
pVoteB	5.67	0.24	5.19
ci_95_upper_Iterative.EI			
pVoteA 94.81			
pVoteB 6.18			
\$pWhite_Other mean_Iterative.El sd_Iterative.EI			
ci_95_lower_Iterative.El			
pVoteA	12.89	0.25	12.48
pVoteB	87.11	0.21	86.71
ci_95_upper_Iterative.EI			
pVoteA 13.44			
pVoteB			

Amos 2019
\$pBlackVAP
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.El

pVoteA	92.04	0.30	91.39
pVoteB	7.94	0.33	7.30

\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI

ci_95_lower_Iterative.EI			
pVoteA	6.63	0.38	5.71
pVoteB	93.34	0.38	92.80

ci_95_upper_Iterative.El	
pVoteA	92.52
pVoteB	8.59

\$pWhite_Other
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI

pVoteA	9.69	0.25	9.20

$\begin{array}{lll}\text { pVoteB } & 90.21 \quad 0.25\end{array}$
ci_95_upper_Iterative.EI
pVoteA 10.25
pVoteB 90.79

Green 2019

mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 92.83 & 0.31 & 92.20\end{array}$
$\begin{array}{llll}\text { pVoteB } & 7.64 & 0.36 & 6.88\end{array}$
ci_95_upper_Iterative.EI
pVoteA 93.49
pVoteB 8.35
\$pWhite_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 11.55 & 0.29 & 11.03\end{array}$
$\begin{array}{lll}\text { pVoteB } & 88.23 & 0.27\end{array}$
ci_95_upper_Iterative.EI
pVoteA
12.20
pVoteB
88.77

Simmons
2019
\$pBlackVAP
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 93.97 & 0.30 & 93.33\end{array}$
$\begin{array}{lll}\text { pVoteB } & 6.10 & 0.28\end{array}$
ci_95_upper_Iterative.EI
pVoteA 94.44
pVoteB 6.56
\$pWhite_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

ci_95_upper_Iterative.El	
pVoteA	7.27
pVoteB	93.98

\$pBlack_Other
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 88.13 & 0.34 & 87.49\end{array}$
$\begin{array}{lll}\text { pVoteB } & 11.88 & 0.33\end{array}$
11.21
ci_95_upper_Iterative.EI
pVoteA 88.77
pVoteB 12.49
mean_Iterative.EI sd_Iterative.EI ci_95_lower_Iterative.EI

pVoteA	7.16	0.33	6.48

92.24
ci_95_upper_Iterative.EI
pVoteA 7.76
pVoteB 93.44
\$pBlack_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 87.68 & 0.26 & 87.09\end{array}$
$\begin{array}{llll}\text { pVoteB } & 12.40 & 0.29 & 11.84\end{array}$
ci_95_upper_Iterative.EI
pVoteA 88.12
pVoteB 12.98
\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

pVoteA	8.81	0.44	8.12

$\begin{array}{lll}\text { pVoteB } & 91.21 & 0.37\end{array}$
90.56
ci_95_upper_Iterative.EI
pVoteA 9.79
pVoteB 91.97
\$pBlack_Other
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI

pVoteA	13.56	0.27
pVoteB	86.42	0.25
ci_95_upper_Iterative.EI		
pVoteA	14.23	
pVoteB	86.85	
Stamps		
2019		
\$pBlackVAP mean_Iterative.EI sd_Iterative.EI		
ci_95_lower_Iterative.EI		
pVoteA	92.22	0.33
pVoteB	7.64	0.30
ci_95_upper_Iterative.EI		
pVoteA	92.83	
pVoteB	8.30	
\$pWhite_Other mean_Iterative.El sd_Iterative.EI		
ci_95_lower_Iterative.El		
pVoteA	12.39	0.25
pVoteB	87.62	0.28
ci_95_upper_Iterative.EI		
pVoteA	12.89	
pVoteB	88.16	

Espy 2018
\$pBlackVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.El

pVoteA	94.91	0.29	94.27

pVoteB	5.04	0.30	4.46

ci_95_upper_Iterative.EI
pVoteA 95.49
pVoteB 5.64
\$pWhite_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

pVoteA	19.83	0.26	19.40

pVoteB	80.17	0.29	79.53

ci_95_upper_Iterative.EI
pVoteA 20.28
pVoteB 80.67

```
13.13
85.82
l
```

11.86
87.13
4.46
79.53

Graham 2015			
Black mean	rative.El	Iterativ	
ci_95_lower_Iterative.EI			
pVoteA	87.58	0.22	87.12
pVoteB	12.42	0.26	11.83
ci_95_upper_Iterative.EI			
pVoteA	87.		
pVoteB	12.		
\$pWhite_Other mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI			
pVoteA	5.91	0.25	5.39
pVoteB	94.11	0.23	93.61
ci_95_upper_Iterative.EI			
pVoteA 6.44			
pVoteB 94.52			
Coleman 2015			
\$pBlackVAP mean_Iterative.El sd_Iterative.EI ci 95 lower Iterative.El			
pVoteA	89.36	0.26	88.90
pVoteB	10.61	0.25	10.16
ci_95_upper_Iterative.EI			
pVoteA 89.83			
pVoteB 11.06			
\$pWhite_Other mean_Iterative.EI sd_Iterative.EI ci_95_lower_Iterative.EI			
pVoteA	6.18	0.20	5.79
pVoteB	93.83	0.18	93.43
ci_95_upper_Iterative.EI			
pVoteA 6.54			
pVoteB 94.16			
Gray 2015			
\$pBlackVAP mean_Iterative.El sd_Iterative.EI			
pVoteA	87.76	0.25	87.06

pVoteB	12.21	0.25
ci_95_upper_Iterative.EI		
pVoteA	88.17	
pVoteB	12.75	
\$pWhite_Other		
mean_Iterative.El sd_Iterative.EI		
ci_95_lower_Iterative.EI		
pVoteA	5.80	0.25
pVoteB	94.17	0.25
ci_95_upper_Iterative.EI		
pVoteA	6.34	
pVoteB	94.62	

Banks 2012
\$pBlackVAP
mean_Iterative.EI sd_Iterative.EI ci_95_lower_Iterative.EI

pVoteA	81.26	0.26	80.80

| pVoteB | $18.66 \quad 0.26$ |
| :--- | :--- | :--- |

11.66

93.39

pVoteB	95.55	0.26	94.95
ci_95_upper_Iterative.EI			
pVoteA	5.01		
pVoteB	96.06		
\$pBlack_Other			
ci_95_lower_Iterative.EI			
pVoteA	83.38	0.26	82.86
pVoteB	16.61	0.25	16.16
ci_95_upper_Iterative.EI			
pVoteA	83		
pVoteB	17.		

\$pWhiteVAP
mean_Iterative.EI sd_Iterative.EI ci_95_lower_Iterative.EI

pVoteA	5.44	0.21	5.01
pVoteB	94.58	0.25	94.08

ci_95_upper_Iterative.EI pVoteA 5.83
pVoteB 95.03
\$pBlack_Other
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI
8.94
89.91

pVoteA	80.53	0.24	80.06

$\begin{array}{lll}\text { pVoteB } & 19.47 & 0.29\end{array}$
18.89

\$pWhiteVAP

mean_Iterative.EI sd_Iterative.EI ci_95_lower_Iterative.EI

pVoteA	12.12	0.58	11.13
pVoteB	87.27	0.51	86.31

ci_95_upper_Iterative.EI
pVoteA 13.38
pVoteB 88.40

\$pWhite_Other mean Iterative.El sd Iterative.EI		
ci_95_lower_Iterative.El		
pVoteA	15.30	0.29
pVoteB	83.88	0.30
ci_95_upper_Iterative.EI		
pVoteA		
pVoteB		

Crisler 2011

\$pBlackVAP
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.El

pVoteA	91.04	0.26	90.44

pVoteB	8.93	0.28	8.36

ci_95_upper_Iterative.EI
pVoteA 91.42
pVoteB 9.39
\$pWhite_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

pVoteA	10.56	0.26	10.03

$\begin{array}{llll}\text { pVoteB } & 89.41 & 0.23 & 88.94\end{array}$
ci_95_upper_Iterative.EI
pVoteA 11.04
pVoteB 89.91

DuPree
 2011

\$pBlackVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

pVoteA	90.88	0.33	90.20

pVoteB	9.14	0.29	8.57

ci_95_upper_Iterative.EI
pVoteA 91.51
pVoteB 9.76
\$pWhite_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

pVoteA	9.76	0.21	9.38

$\begin{array}{llll}\text { pVoteB } & 90.18 & 0.26 & 89.62\end{array}$

\$pBlack_Other	
mean_Iterative.El sd_Iterativer	
ci_95_lower_Iterative.EI	
pVoteA 87.16 0.42 pVoteB 11.99 0.39 ci_95_upper_Iterative.EI pVoteA 87.90 pVoteB 12.88	

\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

pVoteA	8.29	0.27	7.80

$\begin{array}{llll}\text { pVoteB } & 91.69 & 0.31 & 91.06\end{array}$
ci_95_upper_Iterative.EI
pVoteA 8.76
pVoteB 92.23
\$pBlack_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

pVoteA	88.86	0.27	88.24

$\begin{array}{llll}\text { pVoteB } & 11.21 & 0.28 & 10.68\end{array}$
ci_95_upper_Iterative.EI
pVoteA 89.34
pVoteB 11.67
\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

pVoteA	8.11	0.34	7.45

pVoteB	91.87	0.33	91.25

ci_95_upper_Iterative.EI
pVoteA 8.71
pVoteB 92.48
\$pBlack_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 88.00 & 0.38 & 87.12\end{array}$
$\begin{array}{lll}\text { pVoteB } & 11.97 & 0.35\end{array}$

ci_95_upper_Iterative.EI	ci_95_upper_Iterative.EI				
pVoteA 10.22		pVoteA	88.67		
pVoteB 90.61		pVoteB	12.75		
Green 2011					
\$pBlackVAP mean_Iterative.EI sd_Iterative.EI		\$pWhiteVAP mean_Iterative.El sd_Iterative.EI			
ci_95_lower_Iterative.EI		ci_95_lower_Iterative.EI			
$\begin{array}{lll}\text { pVoteA } & 90.94 & 0.32\end{array}$	90.27	pVoteA	8.16	0.34	7.47
$\begin{array}{lll}\text { pVoteB } & 9.09 & 0.31\end{array}$	8.47	pVoteB	91.91	0.25	91.23
ci_95_upper_Iterative.EI		ci_95_upper_Iterative.El			
pVoteA 91.50		pVoteA 8.80			
pVoteB 9.62		pVoteB 92.37			
\$pWhite_Other mean_Iterative.EI sd_Iterative.EI		\$pBlack_Other mean_Iterative.EI sd_Iterative.EI			
ci_95_lower_Iterative.El		ci_95_lower_Iterative.EI			
$\begin{array}{lll}\text { pVoteA } & 9.72 & 0.23\end{array}$	9.36	pVoteA	87.96	0.30	87.42
$\begin{array}{lll}\text { pVoteB } & 90.31 & 0.27\end{array}$	89.89	pVoteB	11.97	0.33	11.35
ci_95_upper_Iterative.EI ci_95_upper_Iterative.El		ci_95_upper_Iterative.EI			
pVoteA 10.18		pVoteA	88		
pVoteB 90.87		pVoteB			

Script

```
## Ecological Inference Analyses
##USE this one
# Outline:
# Loading libraries & importing data
# King's iterative EI
# Row by Columns (RxC) EI
# Summarizing results
# DataVis
# Data files:
# Libraries and Data
library(eiCompare) # Use from latest release, which was summer 2020
dat <- read.csv("C:/Users/J00584364/Downloads/Simmons2019_b.csv", sep=",")
dat$pVoteA <- dat$pVoteA/100
dat$pVoteB <- dat$pVoteB/100
#dat$pBlackVAP <- dat$pBlackVAP/100
dat$pWhiteVAP <- dat$pWhiteVAP/100
#dat$pWhite_Other <- dat$pWhite_Other/100
dat$pBlack_Other <- dat$pBlack_Other/100
```

```
# Iterative EI (King's EI)
iter <- ei iter(
    data = dat,
    cand_cols = c("pVoteA", "pVoteB"),
# race_cols = c("pBlackVAP", "pWhite_Other"),
race_cols = c("pWhiteVAP", "pBlack_Other"),
    totals_col = "total_votes",
    name = "Iterative E EI"
)
#summary(iter)
summary(iter)
```


APPENDIX 4: THREE-GROUP EI COMPARE RAW RESULTS AND SCRIPT

Raw Results

	$>$ dat <-
$\mathbf{2 0 2 0}$	read.csv("C:/Users/J00584364/Downloads/Westbrook2020BW.csv",
Westbrooks	sep=",")

mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

pVoteA	90.46	0.26

89.98
$\begin{array}{lll}\text { pVoteB } & 9.52 \quad 0.23\end{array}$
9.04
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI

pVoteA	91.01	90.22	0.32	89.55

$\begin{array}{llll}\text { pVoteB } & 9.90 & 9.78 & 0.32\end{array}$
9.14
ci_95_upper_RxC.EI
pVoteA 90.86
pVoteB $\quad 10.45$
\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI
$\begin{array}{lll}\text { pVoteA } & 6.36 & 0.27\end{array}$
5.87
$\begin{array}{lll}\text { pVoteB } & 93.61 \quad 0.25\end{array}$
93.21
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI

pVoteA	6.95	6.37	0.43

5.59
$\begin{array}{lllll}\text { pVoteB } & 94.20 & 93.63 & 0.43 & 92.70\end{array}$
ci_95_upper_RxC.EI
pVoteA 7.30
pVoteB 94.41
\$pOtherVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA $47.43 \quad 3.96$
39.67
$\begin{array}{lll}\text { pVoteB } & 52.26 \quad 4.22\end{array}$
44.38
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
$\begin{array}{lllll}\text { pVoteA } & 55.44 & 58.73 & 4.68 & 48.56\end{array}$
$\begin{array}{lllll}\text { pVoteB } & 60.11 & 41.27 & 4.68 & 32.33\end{array}$
ci_95_upper_RxC.EI
pVoteA 67.67
pVoteB 51.44

2012 Banks

```
dat <- read.csv("C:/Users/J00584364/Downloads/BanksGW1.csv", sep=",")
```

\$pBlackVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

```
pVoteA 81.34 0.27
```

80.89
$\begin{array}{lll}\text { pVoteB } & 18.64 \quad 0.26\end{array}$
18.18
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI

pVoteA	81.91	79.92	0.43	79.03

pVoteB	19.24	20.08	0.43	19.23

ci_95_upper_RxC.EI
pVoteA 80.77
pVoteB 20.97
\$pWhiteVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI

pVoteA	5.45	0.26

4.99
$\begin{array}{lll}\text { pVoteB } & 94.58 \quad 0.25\end{array}$
94.10
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI

pVoteA	6.00	7.27	0.51

6.19
$\begin{array}{lllll}\text { pVoteB } & 95.11 & 92.73 & 0.51 & 91.75\end{array}$
ci_95_upper_RxC.EI
pVoteA 8.25
pVoteB 93.81
\$pOtherVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

```
pVoteA 44.35 4.52
```

34.67
$\begin{array}{lll}\text { pVoteB } & 56.01 \quad 3.68\end{array}$
48.12
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI

pVoteA	51.95	33.68	4.48	25.35

$\begin{array}{lllll}\text { pVoteB } & 62.20 & 66.32 & 4.48 & 56.45\end{array}$
ci_95_upper_RxC.EI
pVoteA 43.55
pVoteB 74.65

```
2011 Green dat <- read.csv("C:/Users/J00584364/Downloads/Green2011.csv", sep=",")
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
pVoteA 90.88 0.29
90.31
pVoteB 9.06 0.30
8.52
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
5 . 7 4
    ci_95_upper_RxC.EI
pVoteA 94.26
pVoteB 6.98
$pWhiteVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 8.08 0.32
7.48
pVoteB 91.93 0.28
91.49
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
5.01
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 6.17
pVoteB 94.99
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
pVoteA 46.97 5.66
37.51
pVoteB 51.54 3.98
4 3 . 4 5
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 52.40
pVoteB 66.82
```

```
2011 Crisler dat <- read.csv("C:/Users/J00584364/Downloads/Crisler2011b.csv", sep=",")
```

2011 Crisler dat <- read.csv("C:/Users/J00584364/Downloads/Crisler2011b.csv", sep=",")
\$pBlackVAP
\$pBlackVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI

```
```

pVoteA 90.98 0.27
90.46
pVoteB 8.99 0.30
8.46
ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 91.54 92.35
pVoteB
6.99
ci_95_upper_RxC.EI
pVoteA 93.01
pVoteB 8.37
\$pWhiteVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 8.37 0.31
7.77
pVoteB 91.62 0.28
91.04
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA
6 . 8 0
pVoteB
ci_95_upper_RxC.EI
pVoteA 8.26
pVoteB 93.20
\$pOtherVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
pVoteA 46.05 18.35
3.13
pVoteB 52.75 6.89
4 0 . 4 1
ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI

pVoteA	75.96	46.39	5.44	35.20

pVoteB	68.60	53.61	5.44	42.32

 ci_95_upper_RxC.EI
 pVoteA 57.68
pVoteB 64.80
Coleman
2015
dat <- read.csv("C:/Users/J00584364/Downloads/Coleman2015.csv", sep=",")
\$pBlackVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 89.38 0.27
88.86

```
```

pVoteB 10.66 0.26
10.16
ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 89.94 91.16 0.3 90.55
pVoteB 11.14 8.84 0.3
8.27
ci_95_upper_RxC.EI
pVoteA 91.73
pVoteB 9.45
\$pWhiteVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 4.85 0.28
4.41
pVoteB 95.13 0.29
94.66
ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA
2.65
pVoteB }$$
\begin{array}{lllll}{95.63}&{96.85}&{0.26}&{96.30}
 ci_95_upper_RxC.EI
pVoteA 3.70
pVoteB 97.35
$pOtherVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA }36.90\quad6.2
25.89
pVoteB 62.14 5.76
50.18
 ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA
pVoteB
 ci_95_upper_RxC.EI
pVoteA 35.38
pVoteB }80.1
```
```
Stamps 2019 dat <- read.csv("C:/Users/J00584364/Downloads/Stamps20191.csv", sep=",")
```
Stamps 2019 dat <- read.csv("C:/Users/J00584364/Downloads/Stamps20191.csv", sep=",")
$pBlackVAP
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
pVoteA }02.30\quad0.3
pVoteA }02.30\quad0.3
91.62
91.62
pVoteB 7.67 0.35
pVoteB 7.67 0.35
6.96
6.96
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA 
```
pVoteA
```
```
pVoteB
4.41
 ci_95_upper_RxC.EI
pVoteA 95.59
pVoteB 5.75
$pWhiteVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA
6 . 9 4
pVoteB 92.36 0.36
91.69
 ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA
4.76
pVoteB
 ci_95_upper_RxC.EI
pVoteA 6.35
pVoteB 95.24
$pOtherVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 54.87 3.56
4 8 . 1 3
pVoteB 45.26 3.19
38.36
 ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.El ci_95_lower_RxC.EI
pVoteA
pVoteB
 ci_95_upper_RxC.EI
pVoteA 54.34
pVoteB 59.75
Simmons
2019
dat <- read.csv("C:/Users/J00584364/Downloads/Simmons20191.csv", sep=",")
$pBlackVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 94.05 0.3
93.41
pVoteB 6.00 0.3
5 . 3 7
 ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA
```
```
pVoteB
2.81
 ci_95_upper_RxC.EI
pVoteA 97.19
pVoteB 3.99
$pWhiteVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 8.59 0.35
7.97
pVoteB 91.45 0.36
90.61
 ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA
5.29
pVoteB }\begin{array}{lllll}{92.03}&{93.99}&{0.37}&{93.22}
 ci_95_upper_RxC.EI
pVoteA 6.78
pVoteB 94.71
$pOtherVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA
4 8 . 7 1
pVoteB 41.22 4.62
33.74
 ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA
pVoteB
 ci_95_upper_RxC.EI
pVoteA 58.21
pVoteB 54.83
DuPree 2011
dat <- read.csv("C:/Users/J00584364/Downloads/DuPree2011.csv", sep=",")
$pBlackVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 90.89 0.34
90.25
pVoteB 9.14 0.35
8.55
 ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA
pVoteB
5 . 7 9
```
```
 ci_95_upper_RxC.EI
pVoteA 94.21
pVoteB 6.99
$pWhiteVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA
7.53
pVoteB 91.80 0.29
91.19
 ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA
5 . 0 0
pVoteB }\begin{array}{lllll}{92.33}&{94.47}&{0.28}&{93.89}
 ci_95_upper_RxC.EI
pVoteA 6.11
pVoteB 95.00
$pOtherVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 47.76 6.19
37.32
pVoteB 52.88 5.23
4 3 . 7 2
 ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA
pVoteB
 ci_95_upper_RxC.EI
pVoteA 54.35
pVoteB 65.95
```
Obama 2012 dat <- read.csv("C:/Users/J00584364/Downloads/Obama2012.csv", sep=",")
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
\(\begin{array}{lll}\text { pVoteA } & 92.72 \quad 0.28\end{array}\)
92.25
\(\begin{array}{lll}\text { pVoteB } & 6.59 \quad 0.31\end{array}\)
6.06
    ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
\(\begin{array}{lllll}\text { pVoteA } & 93.37 & 93.65 & 0.3 & 93.01\end{array}\)
\(\begin{array}{llll}\text { pVoteB } & 7.24 & 6.35 & 0.3\end{array}
$$\)
5.79
ci_95_upper_RxC.EI
pVoteA 94.21
```pVoteB 6.99 $pWhiteVAP     mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI pVoteA 12.14 0.49 11.22 pVoteB 87.34 0.51 86.37     ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI pVoteA  pVoteB      ci_95_upper_RxC.EI pVoteA 6.11 pVoteB 95.00 $pOtherVAP     mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI pVoteA  76.26 pVoteB 14.55 1.70 11.72     ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI pVoteA  pVoteB      ci_95_upper_RxC.EI pVoteA 54.35 pVoteB 65.95```

Gray 2015

```
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
pVoteA 87.74 0.30
87.10
pVoteB 12.24 0.28
11.73
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 90.46
pVoteB 10.77
$pWhiteVAP
    mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI
```

```
pVoteA 4.52 0.26
4 . 0 4
pVoteB 95.48 0.22
95.12
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 4.96 2.72 0.23
2.28
pVoteB }\begin{array}{lllll}{95.95}&{97.28}&{0.23}&{96.80}
    ci_95_upper_RxC.EI
pVoteA 3.20
pVoteB 97.72
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 44.31 5.24
35.10
pVoteB 56.17 4.38
4 7 . 2 1
    ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
\begin{tabular}{lllll} 
pVoteA & 53.75 & 23.75 & 3.23 & 17.78 \\
pVV保 & 64.56 & 76.25 & 3.23 & 69.19
\end{tabular}
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 30.81
pVoteB 82.22
```

Espy 2018
dat <- read.csv("C:/Users/J00584364/Downloads/Espy20182.csv", sep=",")
\$pBlackVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

| pVoteA | 94.89 | 0.30 |
| :--- | :--- | :--- |

94.31
$\begin{array}{lll}\text { pVoteB } & 5.05 & 0.29\end{array}$
4.47
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
$\begin{array}{lllll}\text { pVoteA } & 95.42 & 97.6 & 0.33 & 96.83\end{array}$
$\begin{array}{llll}\text { pVoteB } & 5.63 & 2.4 & 0.33\end{array}$
1.79
ci_95_upper_RxC.EI
pVoteA 98.21
pVoteB 3.17
\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI
$\begin{array}{lll}\text { pVoteA } & 16.31 & 0.40\end{array}$
15.42

```
pVoteB 83.76 0.41
82.90
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 13.36
pVoteB 88.27
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 68.38 0.25
6 7 . 8 4
pVoteB 31.66 0.22
31.18
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA 68.98 69.01
pVoteB
    ci_95_upper_RxC.EI
pVoteA 77.27
pVoteB 39.83
Graham
2015 <- read.csv("C:/Users/J00584364/Downloads/Graham20151.csv", sep=",")
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 87.70 0.28
87.17
pVoteB 12.29 0.27
11.83
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 90.34
pVoteB 10.83
$pWhiteVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 4.49 0.26
4 . 0 3
pVoteB 95.52 0.25
95.04
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
```

```
pVoteA 4.97 2.69 0.22
2.28
pVoteB }\begin{array}{lllll}{96.03}&{97.31}&{0.22}&{96.84}
    ci_95_upper_RxC.EI
pVoteA 3.16
pVoteB 97.72
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
pVoteA 44.32 4.76
35.59
pVoteB 55.47 4.39
4 8 . 1 0
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 30.92
pVoteB 81.45
```


Green 2019

```
            dat <- read.csv("C:/Users/J00584364/Downloads/Green20191.csv", sep=",")
```

\$pBlackVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI
$\begin{array}{lll}\text { pVoteA } & 92.82 \quad 0.30\end{array}$
92.27
$\begin{array}{lll}\text { pVoteB } & 7.24 & 0.31\end{array}$
6.48
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
$\begin{array}{lllll}\text { pVoteA } & 93.47 & 95.42 & 0.31 & 94.76\end{array}$
$\begin{array}{llll}\text { pVoteB } & 7.71 & 4.58 & 0.31\end{array}$
4.00
ci_95_upper_RxC.EI
pVoteA 96.00
pVoteB 5.24
\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

| pVoteA | 6.90 | 0.35 |
| :--- | :--- | :--- |

6.21
$\begin{array}{lll}\text { pVoteB } & 93.09 & 0.34\end{array}$
92.39
ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
$\begin{array}{llll}\text { pVoteA } & 7.54 & 4.89 & 0.35\end{array}$
4.21
$\begin{array}{lllll}\text { pVoteB } & 93.75 & 95.11 & 0.35 & 94.37\end{array}$

```
    ci_95_upper_RxC.EI
pVoteA 5.63
pVoteB 95.79
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 
4 5 . 0 8
pVoteB 47.93 4.08
39.40
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 50.95
pVoteB 61.65
```


DuPree 2019

```
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 94.31 0.30
93.72
pVoteB 5.64 0.25
5 . 1 4
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA 
pVoteB 
3.04
    ci_95_upper_RxC.EI
pVoteA 96.96
pVoteB 4.08
$pWhiteVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 8.70 0.32
8.16
pVoteB 91.27 0.32
90.60
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
5 . 5 4
pVoteB }\begin{array}{lllll}{91.88}&{93.76}&{0.37}&{92.97}
    ci_95_upper_RxC.EI
pVoteA 7.03
```

```
pVoteB 94.46
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 52.35 5.03
4 3 . 1 8
pVoteB 46.61 6.04
36.67
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 71.41
pVoteB 44.45
Amos 2019
dat <- read.csv("C:/Users/J00584364/Downloads/Amos20191.csv", sep=",")
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 92.05 0.30
91.48
pVoteB 
7.43
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.El ci_95_lower_RxC.EI
pVoteA 92.63 94.43 0.29 93.83
pVoteB 
5 . 0 0
    ci_95_upper_RxC.EI
pVoteA 95.00
pVoteB 6.17
$pWhiteVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 6.66 0.34
5.93
pVoteB 93.37 0.33
92.77
    ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA 
3.91
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 5.31
pVoteB 96.09
```

```
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 45.38 5.73
34.50
pVoteB 52.84 4.68
4 2 . 4 7
    ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 50.85
pVoteB 65.46
```

Collins 2019
collins20191

mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

| pVoteA | 60.19 | 6.11 |
| :--- | :--- | :--- |

48.64
$\begin{array}{lll}\text { pVoteB } & 40.28 & 6.58\end{array}$
28.13
ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.El ci_95_lower_RxC.EI

| pVoteA | 71.87 | 66.92 | 3.84 | 58.77 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}\text { pVoteB } & 52.42 & 33.08 & 3.84 & 25.86\end{array}$
ci_95_upper_RxC.EI
pVoteA $\quad 74.14$
pVoteB 41.23

Espy 2020

```
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 96.38 0.18
96.05
pVoteB 3.63 0.23
3.14
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
1.57
    ci_95_upper_RxC.EI
pVoteA 98.43
pVoteB 2.52
$pWhiteVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 13.39 0.28
12.79
pVoteB 86.60 0.28
85.90
    ci_95_upper_Iterative.EI mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 11.79
pVoteB 89.74
$pOtherVAP
    mean_Iterative.EI sd_Iterative.EI ci_95_lower_Iterative.EI
```

| pVoteA | 72.78 | 5.24 | | |
| :---: | :---: | :---: | :---: | :---: |
| 61.98 | | | | |
| pVoteB | 27.67 | 4.09 | | |
| 18.81 | | | | |
| ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI | | | | |
| pVoteA | 80.88 | 75.91 | 3.53 | 68.79 |
| pVoteB | 34.54 | 24.09 | 3.53 | 17.16 |
| ci_95_upper_RxC.EI | | | | |
| pVoteA | 82.84 | | | |
| pVoteB | 31.21 | | | |

Script

```
## Ecological Inference Analyses
##USE this one
# Outline:
# Loading libraries & importing data
# King's iterative EI
# Row by Columns (RxC) EI
# Summarizing results
# DataVis
```

\# Data files:
\# Libraries and Data
library(eiCompare) \# Use from latest release, which was summer 2020
\#\#\#dat <- read.csv("C:/Users/J00584364/Downloads/PracticeData-ReCoded.csv", sep=",")\#\#\#
dat <- read.csv("C:/Users/J00584364/Downloads/Espy2020.csv", sep=",")
summary(dat\$Espy)
dat\$pVoteA $<-$ dat $\$ p$ VoteA/100
dat\$pVoteB <- dat\$pVoteB/100
dat\$pBlackVAP $<-$ dat\$pBlackVAP/100
dat\$pWhiteVAP $<-$ dat\$pWhiteVAP/100
dat\$pOtherVAP <- dat\$pOtherVAP/100
\# Iterative EI (King's EI)
iter <- ei_iter
data $=$ dat,
\#cand_cols = c("pVoteA", "pVoteB"),
cand_cols = c("pVoteA", "pVoteB"),
race_cols = c("pBlackVAP", "pWhiteVAP", "pOtherVAP"),
\#race_cols = c("pBlackVAP", "pWhiteVAP" , "pOtherVAP"),
totals_col = "total_votes",
name = "Iterative EI"
)

```
# Rows by Columns (RxC) -----------------------------------------------------
rxc}<\mathrm{ - ei rxc(
    data = dat,
    cand_cols = c("pVoteA", "pVoteB"),
    race_cols = c("pBlackVAP", "pWhiteVAP", "pOtherVAP"),
    totals_col = "total_votes",
    name = "RxC EI",
)
# Summary Table ---------------------------------------------------------------
summary(iter, rxc)
\# Plot out Results
plot(iter, rxc)
```

IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF MISSISSIPPI GREENVILLE DIVISION

DYAMONE WHITE, et al.,

Plaintiffs, vs.
STATE BOARD OF ELECTION COMMISSIONERS, et al.,

Defendants.
No. 4:22cv62-MPM-JMV

DECLARATION OF BYRON D'ANDRA OREY

I, Byron D'Andra Orey, make the following declaration based on personal knowledge:

1. I have been retained by the Plaintiffs in the above referenced matter as expert.
2. I submit that the foregoing report from me dated October 3, 2022 is a true and accurate copy of the report I provided to Plaintiffs in this matter. I declare that the information and opinions contained in the report are true and correct to the best of my knowledge.

Pursuant to 28 U.S.C. § 1746, I declare under penalty of perjury that the foregoing is true and correct.

October 3, 2022

Expert Report for Byron D'Andra Orey, Ph.D.

October 3, 2022

I. Introduction

I have prepared this report pursuant to Federal Rule of Civil Procedure 26(a)(2)(B). I have been asked to express opinions on whether racially polarized voting (RPV) exists in Mississippi and in particular in Mississippi Supreme Court District 1, and whether or not RPV has resulted in the defeats of Black-preferred candidates in Mississippi Supreme Court District 1. I have also been asked to consider whether RPV exists independent of polarization on the basis of partisan affiliation. I am being compensated at $\$ 200$ per hour for my work on this case. My compensation is not contingent on or affected by the substance of my opinions or the outcome of this litigation. My work in this matter is ongoing, and I reserve the right to amend, modify, or supplement my analysis and opinions.

II. Background on Racially Polarized Voting

In the landmark Thornburg v. Gingles case, the Supreme Court set forth a three-prong test for assessing minority vote dilution in litigation arising under Section 2 of the Voting Rights Act (VRA). The Gingles test asks whether: 1) the racial or language minority group is "sufficiently large and geographically compact to constitute a majority in a single-member district"; 2) the minority group is "politically cohesive" (meaning its members tend to vote for the same candidate); and 3) the "majority votes sufficiently as a bloc to enable it ... usually to defeat the minority's preferred candidate." ${ }^{1}$ In particular, the second and the third preconditions

[^128]under the Gingles test have become the legal definition of RPV. Moreover, one of the so-called "Senate Factors" that courts consider in evaluating the presence of unlawful minority vote dilution under Section 2 of the Voting Rights Act is "the extent to which voting in the elections of the state or political subdivision is racially polarized.,"

III. Summary of Professional Qualifications

I am a full professor with tenure in the Department of Political Science at Jackson State University and a former chair of the Department of Political Science. I have conducted significant research in the area of racial polarized voting. This research has been presented at professional conferences and published in peer reviewed scholarly journals. These journals include, but are not limited to, Social Science Quarterly, PS: Political Science and Politics, American Politics Research, Politics and Policy, Race and Policy and State Politics and Policy Quarterly. I have also served on the executive committees for the American Political Science Association, the Southern Political Science Association, and the National Conference of Black Political Scientists. I have served as Vice President for the Southern Political Science Association and served on the Editorial Board for the American Political Science Review and State Politics and Policy Quarterly. Commentary related to my work has appeared in several media outlets, including National Public Radio, Al Jazeera, MSNBC, CNN, the Daily Beast, and the News Hour (PBS).

Attached as Appendix 1 is a curriculum vitae setting forth my professional background, which includes a list of all publications I have authored or co-authored. I have also testified, at trial, as an expert trial witness Johnson v. Hamrick, No. 2:91-CV-02-WCO (N.D. Ga.), a

[^129]redistricting case involving city council elections in Gainesville, Georgia. I have served as an expert in numerous other cases where I have given depositions but did not testify. These include Lewis, et al. v. Alamance County, et al., No. 2:92-cv-00614 (M.D. N.C.) and Jackson v. Nassau County Board of Supervisors, No. CV 91-3720 (E.D. N.Y.). I have also provided consultation related to the electoral structure for the City of Hampton, Virginia.

IV. Opinions

I have formed the following opinions: Based on the data available at the time of writing this report, voting in Mississippi (and in particular in Supreme Court District 1) since 2011 is racially polarized. In particular, in 17 of the 17 biracial elections analyzed, Black voters expressed a clear preference for the same candidate and voted cohesively for that candidate, typically at a rate of more than 90%. Furthermore, this preference was not shared by the White voters, who provided very low support for the Black-preferred candidates, and typically voted against Black-preferred candidates at a rate of more than 90%. As a result, the Black preferred candidates were usually defeated due to White bloc voting in the elections analyzed. I identified all biracial statewide and Supreme Court District 1 general election contests (including Public Service Commission and Transportation Commission Central District) from the 2011 election cycle through 2020. Notably, the dataset includes two biracial endogenous contests, consisting of the 2012 and 2020 contests for Supreme Court Justice in Supreme Court District 1. Endogenous elections are elections held using the challenged district at issue (here, the Supreme Court district lines at issue). The dataset also includes five "quasi-endogenous" contests whereby the districts consist of the same lines as Supreme Court District 1, but the position sought is Public Service Commissioner or Transportation Commissioner. In addition to those five "quasi-endogenous," I
also identified and reviewed 10 exogenous biracial elections. Exogenous elections are elections that do not utilize the particular district lines at issue. ${ }^{3}$ It should be noted here that estimates for all racial polarized voting analyses are derived only from the precincts contained in Supreme Court District 1. All of those contests exhibited very high levels of racially polarized voting, and the Black-preferred candidate was defeated in Supreme Court District 1 by White bloc voting in 11 contests, including both of the biracial elections for Supreme Court justice, which were nonpartisan races in which party affiliation cannot have driven the results.

In sum, it is my opinion that the data demonstrates a high degree of racial polarization and that the second and third Gingles criteria are met in this case.

V. Elections Analyzed

The attorneys for the plaintiffs in this case have asked me to analyze whether and to what extent voters' candidate preferences reveal the presence of racially polarized voting. I am aware of case law stating that endogenous elections and biracial elections are generally considered the most probative for assessing RPV. ${ }^{4}$

[^130]In total, seventeen biracial elections of recent vintage were identified for this report. Two of these elections were Supreme Court contests held in 2012 and 2020. The 2012 election involved the unsuccessful bid by Earle Banks to win a Supreme Court District 1 seat and the 2020 election involved the unsuccessful effort of Latrice Westbrooks to win a Supreme Court District 1 seat. Both of those elections were non-partisan (that is, candidates not appear on the ballot with any partisan affiliation). In addition to these two contests, there have been five biracial general election contests for Public Service Commission and Transportation Commission in 2011, 2015, and 2019. These contests are noted as "quasi-endogenous" contests because they utilize the same lines as Supreme Court District 1. Another 10 exogenous statewide contests were also examined.

My focus on biracial elections is consistent with scholarly research, which finds that minority voters are particularly mobilized in elections involving a minority candidate running against White candidates. ${ }^{5}$ Biracial elections are particularly salient because, in the contest of potential racial polarization, these elections are more likely to satisfy the necessary conditions in which Black voters and non-Black voters had a realistic opportunity to vote for the candidate of their choice, which is not necessarily available in uni-racial elections involving only White candidates (or involving only Black candidates). In addition to elections from the Central District, elections included in this report consist of all biracial statewide contests for U.S. President, U.S. Senator, and various statewide offices (e.g., Governor or Secretary of State) since 2011. For those statewide contests, I analyzed RPV by examining election results in those precincts that are within Supreme Court District 1 lines. There is a total of ten such contests. I

[^131]focused on elections since 2011 because more recent contests are more relevant in determining the presence of racial polarization in the here and now.

VI. Data

To analyze voting patterns by race using aggregate level information, a database that combines election results with demographic information is required. This database is almost always constructed using election precincts as the unit of analysis. The demographic composition of the precincts is based on voter registration or turnout by race/ethnicity if this information is available; if it is not, then voting age population is used. Here, Mississippi does not collect voter registration data by race and therefore voting age population (VAP) by race and ethnicity as reported in the PL 94-171 U.S. Census redistricting data was used for ascertaining the demographic composition of the precincts.

In particular, VAP by race and ethnicity for each precinct and year was calculated by aggregating Census block-level population data to the precinct level. For 2020 and 2010, VAP by race and ethnicity for each precinct and year was calculated by aggregating 2020 and 2010 Census block-level population data to the precinct level. For years between 2010 and 2020, population for each precinct was calculated according to the following interpolation procedure:
(a) the total population change between 2010 and 2020 for each racial group was calculated for each Census Block by subtracting 2010 population from 2020 population, with 2010 and 2020 Census Blocks matched using the U.S. Census Bureau's Block Relationship files; ${ }^{6}$

[^132](b) the resulting total change number for each Block was then multiplied by the fraction of the decade that had passed (e.g., the 2010-2020 change number was multiplied by $6 / 10$ or .6 for the year $2016,5 / 10$ or .5 for 2015 , etc.);
(c) that product, representing the marginal increase in population for a particular group in each Census Block at a given point of time, was then added to the 2010 baseline population for each Census Block to yield the block-level population in a given year;
(d) the block-level data for each year was then aggregated to the precinct level.

Analyzing voting patterns by race requires a database that combines population data by race (or registration or turnout by race if it is available) with election returns. To build the dataset in this instance, 2010 and 2020 official voting tabulation district (VTD) shapefiles were acquired from the U.S Census Bureau as part of the P.L. 94-171 file. In years near the decennial Census, VTDs are a close approximation to voting precincts. In addition, in-cycle precinct-level shapefile datasets for 2016, 2018, and 2019 were acquired from the Harvard dataverse website. ${ }^{7}$ These shapefiles were joined to precinct-level election returns, which were obtained from the Mississippi State Secretary of State's Office, processed, and cleaned (i.e., rendered in a machinereadable format) by More Equitable Democracy, a consultant for the attorneys in this case, with review by counsel. The precinct-level results were then joined with the precinct-level population data described above.

[^133]The complete dataset used for this report, including the interpolated U.S. Census population data described above, was prepared and provided to me by counsel, and is being made available to Defendants.

VII. Analysis of Voting Patterns by Race

An analysis of voting patterns by race serves as the foundation of two of the three threshold elements of the "results test" as outlined in Thornburg v. Gingles: a racial bloc voting analysis is needed to determine whether the minority group is politically cohesive; and the analysis is required to determine if Whites are voting sufficiently as a bloc to usually defeat the candidates preferred by minority voters. The voting patterns of White and minority voters must be estimated using statistical techniques because direct information about the race of the voters is not, of course, available on the ballots cast.

To carry out an analysis of voting patterns by race, an aggregate level database must be constructed, usually employing election precincts as the units of observation. Information relating to the demographic composition and election results in these precincts is collected, combined, and statistically analyzed to determine if there is a relationship between the racial composition of the precincts and support for specific candidates across the precincts.

I used the following two-step operational rules to measure whether a particular election is racially polarized: First, I estimated the Black and White group support for the Black candidate in a given biracial election; and second, I further analyzed the extent of racial polarization by considering the gap between the level of Black support for Black preferred candidates, and the level of White support for Black-preferred candidates. Since voting in the United States takes place in privacy, the only way to determine the levels of Black and White group support is
through statistical procedures. In this report, I analyzed the set of biracial elections described above using the Ecological Inference (EI) method developed by Professor Gary King of Harvard University. ${ }^{8}$ EI is a statistical procedure for estimating voting results of voter groups (in this case racial groups).

Here, I use a more recently developed version of ecological inference software known as
EI Compare to run the EI model. EI Compare software provides the results from estimates of the
King EI model and a comparison estimate in what is known as the EI RxC model. EI RxC
expands the analysis so that more than two racial/ethnic groups can be considered
simultaneously. In the next section, I report estimates calculated using a two-group version of the
King EI model, which is well suited to estimating voter results where the electorate is divided
between two groups. ${ }^{9}$ That analysis is appropriate here because Mississippi's racial population

[^134]is highly binary, i.e., Black and White. I also separately generated three-group (White, Black, and Other) King EI and EI RxC analyses using the EI Compare software, both of which produced similar estimates of racial group support (i.e., similarly high levels of racial polarization) which corroborate the results of the two-group King EI model. ${ }^{10}$ The full results of these analyses are reported in a summary table in Appendix 2 and the raw results are included in Appendix 3 and Appendix 4 along with the scripts that were run to produce the results.

The methods employed here not only provide a specific, or point, estimate of a group's support for a particular candidate, but also provide confidence intervals for that estimate. These intervals identify the range of estimates within which we can be 95 percent confident, statistically, of where the actual value of a group's support for a candidate falls. The point estimate is the best estimate, in that it is most likely to be the actual value. EI has been widely
al. (2016). eiCompare: Comparing Ecological Inference Estimates across EI and EI:RC. The R Journal. 92-101, I reduced the number of race variables to two to employ a two-group EI model. The two-group EI estimates set forth in the body of this report were derived in the following manner: First, I estimated the Black vote by running the EI model with a Black VAP variable and a combined White VAP and Other VAP variable (i.e., I combined the White VAP and Other VAP data to create one variable). Second, I similarly estimated the White vote by running the EI model with a White VAP variable and a combined Black VAP and "Other VAP" variable. The scripts used to generate the two-group King EI analysis described above are included in Appendix 3.

As noted in text, and set forth in the Appendix 2 summary table, running the King EI model using all three groups, rather than reducing to two, produced nearly identical results to the two-group procedure.
${ }^{10}$ Because the EI RxC method is designed to allow for the simultaneous estimation of support by more than two groups, the EI RxC analysis included in the Appendix 2 summary table and in Appendix 4 raw data estimates levels of candidate support for each of the three racial groups reflected in the demographic data (Black VAP, White VAP, and Other VAP). The scripts used to generate the RxC estimates are also included in Appendix 4. While the EI RxC analysis also shows racial polarization across the board, and generally produces estimates of Black support for Black candidates that are very close to the EI model estimates, the EI RxC analysis in a number of cases estimates levels of White support for Black candidates that are even lower than the estimates produced by the King EI models.
used as the most advanced and reliable statistical procedure for RPV estimates in not only academic research but also voting rights cases. To estimate support for candidates from different racial groups using an EI operation, precinct-level election return data for a given election is matched against demographic data regarding the voting-age population (VAP) of various racial groups (here, White, Black, and "all other" racial groups) typically also at the precinct level from the time of the election. These data are used to calculate coefficient estimates to determine racial bloc voting.

VIII. The Findings ${ }^{11}$

As explained above, the selection of the elections for my RPV analysis is based on three criteria: (1) biracial elections involving at least one Black major candidate and one white major candidate ${ }^{12}$; (2) since 2011; (3) which are endogenous elections supplemented by "quasiendogenous" elections and exogenous statewide elections. As set forth in Table 1, the two endogenous Supreme Court District 1 elections reveal high levels of racial polarized voting.

In particular, in the 2012 Supreme Court contest in that district, according to the table using 95% confidence limits around the estimated coefficients, we can expect the "true" value of the estimated Black support for Candidate Banks to lie between 80.80 and 81.80 percent, with 81.26 being our best estimate, while the 95% confidence limits around White support are such that we expect the "true" value of the estimate for the White vote to lie between 5.01 and 5.83 percent, with 5.44 being our best estimate. Likewise, for the 2020 Supreme Court election, when

[^135]estimating the support for Candidate Westbrooks by race, we can expect the "true" value of the estimated Black support for Westbrooks to lie between 89.97 and 91.03 percent, with 90.46 being the best estimate. The best estimate for White support for Westbrooks is 6.43%. As is indicated by the estimated coefficients, each of the Black candidates in these endogenous, nonpartisan races received substantial Black support, but less than 10% of the White vote, leading to the defeat of Black voters' candidates of choice. Notably, both of those biracial Supreme Court District 1 contests were non-partisan elections, and thus the high levels of racial polarization in those races cannot have been driven by political party affiliation.

Table 1. Estimated Racial Support for Black Candidates in Endogenous Elections

| Election | Black
 Candidate | White
 Candidate | \% Vote
 Black
 Candidate | Black Vote
 Black Candidate
 (CI) | White Vote
 Black Candidate
 (CI) | Black
 Candidate
 Won | RPV |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Supreme
 Court | Banks | Waller | 44.4 | 81.26
 $(80.80-81.80)$ | 5.44
 $(5.01-5.83)$ | No | Yes |
| Supreme
 Sun
 Court | Westbrooks | Griffis | 48.5 | $(89.97-91.03)$ | $(5.89-6.88)$ | No | Yes |

As set forth in Table 2, five additional "quasi-endogenous" biracial elections in Supreme Court District 1 corroborate the existence of high levels of racial polarization in that district, and corroborate that such polarization usually leads to the defeat of Black-preferred candidates. In each of those races, Black voters typically supported Black candidates at rates of around 90% or more, while White voters supported the Black candidate with less than 10% of the vote (typically around 8%). In four of the five elections, this high level of White bloc voting led to the defeat of the Black-preferred candidate despite high levels of Black support.

[^136]Table 2. Quasi-Endogenous Elections

| Election | White
 Candidate | Black
 Candidate | \% Black
 Candidate | Black Vote Black
 Candidate (CI) | White Vote Black
 Candidate (CI) | Black
 Candidate
 Won | RPV |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2011 Central Public
 Service Commission | Posey | Green | 44 | 90.94
 $(90.27-91.50)$ | 8.16
 $(7.47-8.80)$ | No | Yes |
| 2011 Central
 Transportation
 Commission | Hall | Crisler | 47 | 91.04
 $(90.44-91.42)$ | 8.29
 $(7.80-8.76)$ | No | Yes |
| 2015 Central
 Transportation
 Commission | Hall | Coleman | 45 | 89.36
 $(88.90-89.83)$ | 4.87
 $(4.42-5.38)$ | No | Yes |
| 2019 Central Public
 Service Commission | Bailey | Stamps | 49 | 91.36
 $(91.52-92.83)$ | 7.60
 $(7.07-8.51)$ | No | Yes |
| 2019 Central
 Transportation
 Commission | Lee | Simmons | 51 | 93.97
 $(93.33-94.44)$ | $(8.12-9.79)$ | Yes | Yes |

Finally, the results in Table 3, which shows exogenous statewide biracial contests since 2011, again reveal high levels of racially polarized voting, with Blacks overwhelmingly supporting the Black candidate with approximately 90% or more of their vote and Whites supporting the Black candidate with typically 15% or less of their vote (sometimes much less). Based on the data, even in these partisan statewide contests, half of the Black candidates were defeated in Supreme Court District 1, despite Black support in the high 80 s or 90 s due to the level of White bloc voting.

Table 3. Exogenous Elections

| Election | White Candidate | Black Candidate | Percent
 Black
 Candidate | Black Vote Black Candidate | White Vote Black Candidate | Black Candidate Won | RPV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2011 Governor | Bryant | DuPree | 53 | $\begin{gathered} 90.94 \\ (90.20-91.51) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 8.11 \\ (7.45-8.71) \\ \hline \end{gathered}$ | No | Yes |
| 2012 President | Romney | Obama | 54 | $\begin{gathered} 92.72 \\ (92.13-93.32) \end{gathered}$ | $\begin{gathered} 12.12 \\ (11.13-13.38) \end{gathered}$ | Yes | Yes |
| 2015 Governor | Bryant | Gray | 41 | $\begin{gathered} 87.76 \\ (87.06-88.17) \\ \hline \end{gathered}$ | $\begin{gathered} 4.44 \\ (4.04-5.01) \\ \hline \end{gathered}$ | No | Yes |
| 2015 Secretary of State | Hosemann | Graham | 44 | $\begin{gathered} 87.58 \\ (87.12-87.97) \\ \hline \end{gathered}$ | $\begin{gathered} 4.67 \\ (4.11-5.21) \\ \hline \end{gathered}$ | No | Yes |
| $2018 \text { U.S. }$
 Senate | Hyde-Smith | Espy | 57 | $\begin{gathered} 94.91 \\ (94.27-95.49) \end{gathered}$ | $\begin{gathered} 16.42 \\ (15.70-17.36) \end{gathered}$ | Yes | Yes |
| 2019 Treasurer | McRae | Green | 49 | $\begin{gathered} 92.38 \\ (92.20-93.49) \\ \hline \end{gathered}$ | $\begin{gathered} 7.16 \\ (6.48-7.76) \\ \hline \end{gathered}$ | No | Yes |
| 2019 Sec. of State | Watson | DuPree | 51 | $\begin{gathered} 94.35 \\ (93.81-94.84) \end{gathered}$ | $\begin{gathered} 8.73 \\ (8.24-9.51) \\ \hline \end{gathered}$ | Yes | Yes |
| 2019 Insurance Commission | Chaney | Amos | 49 | $\begin{gathered} 92.08 \\ (91.52-92.62) \\ \hline \end{gathered}$ | $\begin{gathered} 6.66 \\ (6.08-7.26) \\ \hline \end{gathered}$ | No | Yes |
| 2019 Attorney
 General | Fitch | Collins | 53 | $\begin{gathered} 94.54 \\ (93.87-95.08) \end{gathered}$ | $\begin{gathered} 10.82 \\ (10.13-11.51) \end{gathered}$ | Yes | Yes |
| $2020 \text { U.S. }$
 Senate | Hyde- Smith | Espy | 55 | $\begin{gathered} 96.34 \\ (95.94-96.68) \\ \hline \end{gathered}$ | $\begin{gathered} 13.5 \\ (12.71-14.30) \\ \hline \end{gathered}$ | Yes | Yes |

IX. Conclusion

The empirical analyses clearly reveal that in 17 of 17 biracial elections in the last decade, Black voters expressed a strong, cohesive preference for Black candidates, but that preference was not shared by White voters, who voted cohesively against Black-preferred candidates every time. This clear RPV pattern is demonstrated by two endogenous biracial Supreme Court elections, which are non-partisan races and thus cannot be explained by party affiliation, as well as five additional quasi-endogenous contests, Transportation and Public Service Commissioner races, and ten more statewide biracial elections during the last decade. Despite Black voters uniting cohesively behind their preferred candidates, the White majority typically voted sufficiently as a bloc to defeat the Black candidates in these elections, including in both endogenous biracial Supreme Court elections, and four out of five "quasi endogenous" commissioner races.

Based on my empirical analysis of Mississippi's recent elections, I conclude that Mississippi's elections, particularly in Supreme Court District 1, exhibit a high level of polarization, and that the second and third threshold criteria involving racial polarization as set forth in Gingles are met.

As noted, I reserve the right to amend, modify, or supplement my analysis and opinions.
Pursuant to 28 U.S.C. § 1746, I declare under penalty of perjury that the information and opinions contained in this report are true and correct to the best of my knowledge.

October 3, 2022
Dr. B. D'Andra Orey, Ph. D

APPENDIX 1: CURRICULUM VITAE

B. D'Andra Orey, PhD
 Curriculum Vitae

Office:

Department of Political Science
Jackson State University
1400 John R. Lynch St.
Jackson, MS 39217
(601) 979-2737
byron.d.orey@jsums.edu

Education

University of New Orleans

Ph. D., Political Science, 1999
State University of New York at Stony Brook,
M.A., Political Science, 1993

University of Mississippi, Oxford, MS
Master of Public Administration, August 1990
Mississippi Valley State University, Itta Bena, MS
B.S., Business Administration, May 1988

Continuing

Education

International Workshop on Statistical Genetic Methods for Human Complex
Traits. March 3 -March 7, 2014. Boulder, Colorado
International Workshop on Statistical Genetics and Methodology of Twin and Family Studies. February 28-March 6, 2010. Boulder, Colorado
-Received training in the area of structural equation modeling, using R and Mx using twin data

Inter-University Consortium of Political and Social Research, University of Michigan, 2006, Course: "Empirical Summer Program in Applied MultiEthnic Research"

Institute for Professional Education, Virginia Tech University, 1995. Linear and Nonlinear Regression with Applications

Inter-University Consortium of Political and Social Research, University of Michigan, 1993, Courses: Logit and Log-Linear Models; Regression Analysis, Maximum Likelihood Estimation; and Structural Equations (Causal) Models

Professional Training

Duke University Community Census and Redistricting Institute, August 2010.
-Received training to prepare redistricting plans using Geographical Information Systems.

Southern Regional Council, Voting Rights Expert Witness Training.
January-December 1993
-Received training in the areas of ecological regression and homogenous case analysis. Mentors included: James Loewen, Ph.D. University of Vermont, Bernard Grofman, Ph.. D. University of California Irvine and Alan Lichtman, Ph.D., The American University, Washington D.C.

Southern Regional Council, Voting Rights Expert Witness Training.

January-December 1994
-Received training to prepare redistricting plans using Geographical Information Systems.

Academic Positions

Jackson State University, Jackson, MS
Professor, Political Science (Fall 2008-Present)
Jackson State University, Jackson, MS
Professor and Chair, Political Science (Fall 2008-2012)
The University of Nebraska, Lincoln, NE
Associate Professor, Political Science (Spring 2007-Spring 2008).
The University of Nebraska, Lincoln, NE
Assistant Professor, Political Science (Fall 2001-Spring 2007).
University of Mississippi, Oxford, MS
Assistant Professor, Political Science and Afro American Studies (1999-2001).

Professional Publications (Peer-Reviewed Articles)

"Racial Differences in Feelings of Distress during the COVID-19 Pandemic and John Henryism Active Coping in the United States: Results from a National

Survey." 2022. Social Science Quarterly. (Jas Sullivan, Samaah Sullivan, Byron D'Andra Orey and Najja Baptist).
"Racial Identity and Emotional Responses to Confederate Symbols." 2021. Social Science Quarterly. (Byron D'Andra Orey, Najja Baptist and Valeria Sinclair- Chapman).
"Melanated Millennials and the Politics of Black Hair." 2019. Social Science Quarterly. (Byron D'Andra Orey and Yu Zhang)
"Race and Wellbeing in the US: The Psychological Toll of a Broken System." 2019 Byron D’Andra Orey Scientia.
"Implicit Black Identification and Stereotype Threat Among African American Students." 2017. Social Science Research. (Thomas Cramer and Byron D'Andra Orey).
"Mississippi and the Great White Switheroo." April 2016, PS Political Science and Politics. (Byron D'Andra Orey and Ernest Dupree)
"The $50^{\text {th }}$ Anniversary of the Voting Rights Act and the Quiet Revolution." 2015, National Political Science Review (Byron D'Andra Orey, Gloria Billingsly and Athena King).
"Professional Conferences and the Challenges of Studying Black Politics." April 2015, PS Political Science and Politics (Nikol Alexander-Floyd, Byron D'Andra Orey and Khalilah Brown-Dean)
"Black Women State Legislators: Electoral Trend Data 1995-2011." 2014 National Political Science Review 2014 (Byron D’Andra Orey and Nadia Brown) Volume 16: 143-149.
"Black Opposition to Welfare in the Age of Obama" Race, Gender, and Class. 2013 (Byron D’Andra Orey Athena King, Shonda Lawrence and Brian E. Anderson)
"Using Black Samples to Conduct Implicit Racial Attitudes Research" PS: Political Science and Politics (July 2013) (Byron D’Andra Orey, Thomas Craemer and Melanye Price)
"Black Opposition to Progressive Racial Policies and the "Double (Non)Consciousness" Thesis. 2012 Race \& Policy 8: 52-66. (Byron D’Andra Orey, Athena King, Leniece Titani-Smith)
"Nature, Nurture, and Ethnocentrism in the Minnesota Twin Study" (Byron D'Andra Orey and Hyung Park). Twin Research and Human Genetics. Volume 15, Number 1. 2012
"White Support for Racial Referenda in the South" Politics \& Policy (Byron D'Andra Orey, Marvin Overby, Peter Hatemi and Baodong Liu). August 2011
"The Politics of Race, Gender, Ethnicity and Representation in the Texas Legislature." Race \& Policy (Jessica L. Lavariega Monforti, Byron D'Andra Orey and Andrew Conroy) Spring/Summer 2009
"Church Attendance, Social Capital, and Black Voting Participation." Social Science Quarterly (Paul Liu, Sharon Austin and Byron D'Andra Orey) September 2009
"Racial Threat Republicanism and the Rebel Flag: Trent Lott and the 2006 Mississippi Senate Race." Byron D'Andra Orey National Political Science Review, Vol. 12, 2009
"The Role of Race, Gender and Structure in State Policymaking." Race \& Policy (Byron D'Andra Orey and Chris Larimer) Spring/Summer 2008
"The Politics of AIDS in the Black Community." Forum on Public Policy (Oxford University) Summer 2007
"African Americans in the State Legislative Power Structure: Committee Chairs." Byron D'Andra Orey, Marvin Overby and Chris Larimer. Social Science Quarterly, September 2007
"Accounting for "Racism: Responses to Political Predicaments in Two States." Byron D'Andra Orey and Marvin Overby with Barbara J. Walkosz and Kimberly Walker. State Politics and Policy Quarterly, Fall 2007: 235-255
"A Systematic Analysis of the Deracialization Concept." Byron D'Andra Orey and Boris Ricks. The National Political Science Review. January 2007: 325-334
"Deracialization or Racialization: The Making of a Black Mayor in Jackson, Mississippi" Byron D'Andra Orey, Politics and Policy. December 2006: 814836
"Race and Gender Matter: Refining Models of Legislative Policy Making in State Legislatures." 2006. Byron D'Andra Orey, Wendy Smooth with Kimberly Adams and Kish Harris-Clark. Journal of Women, Politics and Policy 28: 97119
"Framing the Issue, When the Issue is Race." Byron D'Andra Orey International Journal of Africana Studies. January 2005: 209-223
"Explaining Black Conservatives: Racial Uplift or Racial Resentment." Byron D'Andra Orey The Black Scholar. 2004: 18-22.
"A Research Note on White Racial Attitudes and Support for the Mississippi State Flag." Byron D'Andra Orey American Politics Research. January 2004: 102116
"A New Racial Threat in the New South? (A Conditional) Yes!" Byron D'Andra Orey American Review of Politics, Summer 2001: 233-255
"Symbolic Racism in the 1995 Louisiana Gubernatorial Election," Jonathan Knuckey and Byron D'Andra Orey. Social Science Quarterly, December 2000: 1027-1035
"Black Legislative Politics in Mississippi," Byron D'Andra Orey Journal of Black Studies, July 2000.
"The Race Race in Black and White: An analysis of the 1995 Louisiana Gubernatorial Election," Byron D'Andra Orey Southeastern Political Review, December 1998
Books \quad Mississippi Conflict and Change (forthcoming) 2023. Contracted with the
University of Mississippi Press. James Loewen, Charles Sallis and Byron
D'Andra Orey).

Professional Publications (Book Chapters)

"Learning the Lessons of History" in Robert Wood Johnson Foundation's Culture of Health. (forthcoming) 2022. Cambridge Press. Madeline England, Cristy Johnston Limon, Byron D'Andra Orey, Jason Reece and Geoff K. Ward.
"The Liberal Arts Faculty and Writing Bootcamp" in Redefining Liberal Arts Education in the $21^{\text {st }}$ Century Edited by Robert Luckett. University of Mississippi Press. (Preselfanie McDaniels, Byron D'Andra Orey Rico Chapman and Monica Flippin-Wynn.
"The Evolution of Racial Attitudes from Martin Luther King to Barack Obama" in Assessing Public Policy and Contemporary Social Developments: Through the Prism of Dr. Martin Luther King's Dream. Edited by Michael Clemmons. University Press, 2017. (Byron D'Andra Orey, Lakeyta Bonnette and Athena King)
"Evolution and Devolution of the Voting Rights Act? Black Descriptive and Substantive Representation" Byron D'Andra Orey In Minority Voting in the United States. August 2015. Editors: Kyle Kreider and Thomas Balidino (Praeger).
"The Ascendency of Black Political Power in Mississippi." Byron D’Andra Orey In The Civil Rights Movement in Mississippi, University of Mississippi Press, 2013. Edited by Ted Ownby
"Course Portfolio for POLS 100: Power and Politics." In Inquiry into the Classroom: A Practical Guide for the Scholarship of Teaching and Learning, Byron D’Andra Orey Edited by Paul Savory, Amy Goodburn, and Amy Burnett Nelson. Boston: Anker Publishing, 2007
"Race and Gender Matter: Refining Models of Legislative Policy Making in State Legislatures." 2006, Reprinted in Intersectionality and Politics Recent Research on Gender, Race, and Political Representation in the United States, Edited by Carol Hardy-Fanta
"Black and Brown Conflict? Intergroup Attitudes and their Impact on Policy Preferences." Byron D’Andra Orey and Jessica Monfort 2006. In Jessica Perez-Monforti and William Nelson's Black And Latina/o Politics: Issues In Political Development In The United States Barnhardt \& Ashe Publishing Company
"Teaching the Politics of Race in a Majority White Institution." Byron D'Andra Orey 2006. In C.A. Stanley (Ed.), Faculty of color teaching in predominantly white colleges and universities. Bolton, MA: Anker Publishing Company (2006)
"Participation in Electoral Politics", Byron D'Andra Orey 2004. In African Americans and Political Participation, edited by K.C. Morrison (ABC-CLIO Press) with Reginald Vance

On-Line Publications

"Understanding the Important Role of Support Staff." American Political Science Association.

Non-Peer Reviewed Articles/Manuscripts

"The Ascendency to Black Power: Mississippi State Legislators," in Who’s Who in Black Mississippi. Mississippi Press. 2012
"The Cross-Cutting Issue of AIDS in the Black Community." Oracle, Winter 2008

Newspaper Articles

"Is Black History Still Relevancy" Jackson Free Press, March 6, 2013. http://www.jacksonfreepress.com/news/2013/mar/06/relevance-blackhistory/

Courses Taught

Undergraduate: Power and Politics (honors); Power and Politics; Public Issues The Black Experience; Minority Politics; Political Participation Polls, Politics, and Public Opinion; Elections; Blacks and the American Political System; and Political Parties and Interest Groups; Research, Scope and Methods; The Legislative Process

Graduate: \quad Race and the U.S. Political System; Blacks in the American Political System; Research Scopes and Methods; Political Inquiry \& Research

Personal Awards/Grants/Fellowships

Kellogg Foundation, $\$ 500,000$ Emmett Till Interpretative Center, Tougaloo College, B. D'Andra Orey and James Loewen. This grant will allow the PIs to disseminate their textbook, Mississippi Conflict and Change and to conduct a social justice institute at Tougaloo College in Summer 2023.

National Science Foundation, "The Intersection of Race, Exposure to Trauma, and Politics." \$500,000. Grant \#: 2128198 Pending Negotiation (2021).

University of Michigan, Minority Serving Institutions Outreach and Collaboration Grant $\$ 30,000$. This award will help build collaborations between faculty and students at Jackson State University and the University of Michigan. Received 2020

National Science Foundation Intern Grant, \$47,000. This grant is a supplement to NSF grant \#1649960. It will provide an opportunity for two graduate students to conduct internships that will help them develop professional work skills related to their field of study. 2020

National Park Service, \$27,569 This grant provides funding for an oral history project. It includes one graduate assistant. 2019

National Science Foundation Intern Grant, \$35,000. This grant is a supplement to NSF grant \#1649960. It will provide an opportunity for a graduate student to conduct an internship that would help her develop her professional skills. 2019

University of Michigan, \$8,000. This award will help build collaborations between faculty and students at Jackson State University and the University of Michigan. Received 2019
W. K. Kellogg Foundation Community Leadership Network Fellowship, \$25,000. Nominated and awarded out of 800 applicants only 80 were accepted. 2019

Anna Julia Cooper Teacher of the Year National Conference of Black Political Scientists. 2019

National Science Foundation. $\$ 35,000$. This award is a supplement to NSF grant \#1649960.

Alpha Kappa Alpha. Teacher of the Year. 2017
National Science Foundation Grant, \$179,000. Awarded August 2016. Title: "Racial Biases and Physiological Responses." \# 1649960

National Science Foundation Grant, \$170,000. Awarded May 2015. Title: "The Impact of Racially Traumatic Events on African Americans? Physiological, Psychological and Political Reponses." \#1541562

Academic Exchange Fellowship, August 2 - August 10, 2015—This is an invitation-only fellowship. I was nominated by Professor Judith Kelley, the Stephan Haggard, Krause Distinguished Professor at Duke University. This purpose of the program is to invite Political Scientists to Israel to attend meetings with prominent Israeli and Palestinian policymakers, scholars and opinion leaders, covering a wide range of topics and political perspectives on domestic, foreign policy and security issues. I attended the law section of the program.

Center for Undergraduate Research, Awarded 2014-2015—Received a grant in the amount of $\$ 7,000$ to conduct research in collaborations with a team of undergraduates on physiological responses to racially traumatic events.
Experimental research will be conducted with students who will conduct the experiments and analyze the data. Students presented their findings at the Mississippi Political Science Association and the National Conference of Black Political Scientists.

2014 Jackson State University Faculty Excellence Award

2014 Liberal Art's Outstanding Researcher Award

Center for Undergraduate Research, Awarded 2013-2014—Received a grant in the amount of $\$ 7,000$ to conduct research with undergraduate students in the area of experimental research. Students will conduct experiments and analyze data to examining the impact of hair texture on African-American political attitudes. Students will present their findings at three national, regional and local conferences.

Jackson State University Creative Arts Award, 2014-2015. "The Study of Hairtexture and Candidate Evaluation." This award in the amount of $\$ 5,000$ was presented by the President of Jackson State University to provide seed money for innovative research.

Palestinian American Research Center Fellow, 2013

- The fellowship provided full funding to investigate Palestinian in-group subconscious attitudes. This project compares African-American attitudes in the United States to Palestinian attitudes (Travel Dates: May 15-May 27, 2013).

Center for Undergraduate Research, Awarded 2012-2013—Received a grant in the amount of $\$ 7,000$ to conduct research with undergraduate students in the area of survey research. Students conducted a random digit dialing survey of respondents from various counties in Mississippi using "landline only telephone numbers." The results revealed that a bias existed due to the failure of employing cell phones. Students used this project to present at three conferences, including a national conference.

UC-HBCU Initiative, Awarded 2012-2013- Awarded \$28,090 grant from the University of California-Historically Black Colleges and Universities Initiative (UC-HBCU) for 2012-13, Belinda Robnett and Katherine Tate, co-PIs. The HBCU partners are Byron Orey (Jackson State University) and Desiree Pedescleaux (Spelman College).

Diamond Award for Outstanding Teaching-Undergraduate Chapter of Kappa Alpha Psi, Jackson State University Awarded 2012.
"Who's Who in Black Mississippi." 2012. Recognized for achievements in the field of education.

Service Learning Faculty Fellow, Jackson State University Service Learning, \$2,500, 2011-2012

Jewel Limar Prestage Mentorship Award, National Conference of Black Political Scientists, March $2011(\$ 1,000)$

Global Inquiry Faculty Teaching Seminar Fellow, Jackson State University. \$5,000. July 2011

Advisor of the Year, Jackson State University Political Science Club. 2011
Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University. Was invited to participate in a working Group using Minnesota Twin Data, August 2010 (Travel Grant)

Fellow, Community Census and Redistricting Institute, Duke University. \$2,000. August 2010

Global Inquiry Faculty Teaching Seminar Fellow, Jackson State University. $\$ 5,000$. July 2010

Help America Vote Act, \$2,500. "Teaching students about Poll Working." Fall 2010

International Workshop on Statistical Genetics and Methodology of Twin and Family Studies. February 28-March 6, 2010. Boulder, Colorado (Travel Grant plus tuition waiver)

TESS: Time Sharing Experiments for the Social Sciences (2009): Winner of a competition to collect data for the following project: "Trusted Sources and Racial Attitudes" (with Lester Spence)

National Science Foundation Grant, \$69,000. "The 2008 Presidential Election." 1/09-12/31/09. SES-0905629

Mississippi Humanities Council, "Oral History Interviews of Members of the Legislative Black Caucus." \$2,000, September 2008

Anna Julia Cooper National Teaching Award 2008, National Conference of Black Political Scientists

Research Council, Visiting Scholar Grant, 2007 (\$800): Received funds to assist in defraying the cost for the guest speaker of the Annual MLK Banquet sponsored by the Afrikan People Union (student organization)

Senning Summer Faculty Fellowship. "African-American Legislative Chairs." (2007): \$10,000

Initiative for Teaching and Learning Excellence III, UNL. "Sankofa: Challenging Racial Mythologies Here and Abroad" (2006: \$16,500, Denied)

Emerging Scholars Summer Fellow, University of Michigan, 2006, "Empirical Summer Program in Applied Multi-Ethnic Research at the Inter-University consortium for Political and Social Research" \$2,500

Layman Fund Award 2006, "Black Intra-Cultural Attitudes Toward Race-based Policies." (2006-2007): \$9,500

Senning Summer Faculty Fellowship, "The Intersection of Race and Gender in examining descriptive and substantive representation." (2006): \$6,500

Department of Labor, Broad Agency Small Contract, "Race and the Uninsured," with Tina Mueller. (2006, $\$ 25,000$, denied)

Initiative for Teaching and Learning Excellence II, UNL. "Sankofa, a Return to the Middle Passage." (2005): \$15,000, denied

Senning Summer Faculty Fellowship, 2005, "Race, Gender and Structure Matter: Descriptive versus Substantive Representation." (2005): \$6,500

Summer Grant Writing Institute, 2005, "Opposition to Racially-Targeted Redistributive Programs." (\$2,750)

National Science Foundation, 2004, "Black Racial Conservatives: Racial Uplift or Racial Resentment?" (Denied, \$204,000)

Maude Hammond Fellowship, 2004, Research Council, University of Nebraska, Lincoln, "Black Conservatives and Intra-group resentment." (2004): \$10,000

Senning Summer Faculty Fellowship, "African Americans in the State Legislative Power Structure: Committee Chairs." (Summer 2004): \$6,500

Gallup Research Professorship 2003-2004, "Explaining Black Conservatives: Racial Resentment or Racial Uplift?" (Summer 2003): \$4,600

Faculty Research Small Grant, "Deracialization or Racialization: The Making of a Black Mayor," University of Mississippi, (Summer 2000): \$3,500

National Science Foundation/Quality Education for Minority Network (January 1993) Amount: $\$ 2,500$
-To conduct research on the Federal Government's financial contributions to Historically Black Colleges and Universities

Conference Participation

[^137]"African Americans' Emotional Responses to the Mississippi State Flag." Southern Political Science Association, San Juan Puerto Rico. January 9-11, 2020, Caribe Hilton Hotel, San Juan Puerto Rico.
"Intersection of Political Science and Other Disciplines." College Day. Jackson State University, Student Center. April 15, 2019.

Roundtable, 'NCOBPS History: An Overview of Presidential Administrations." National Conference of Black Political Scientists, Baton Rouge, LA. 2019.
"African Americans Emotional Responses to Trump, the Confederate Flag and Police." American Political Science Association. Boston, MA. September 2018.
"African Americans Physiological Responses to Confederate Symbols." Midwestern Political Science Association, Chicago, Illinois, April 7, 2017.
"Environmental Justice Policy, Intersectionality and Racial Context," National Conference of Black Political Scientists, March 16, 2017.
"Understanding Black Political Attitudes and the Intersection of Hair Texture and Colorism," Annual Conference of the Mississippi Political Science Association, Jackson, MS, February 10, 2017.
"The 50th Anniversary of the Voting Rights Act and the Quiet Revolution," Mississippi Political Science Association, Jackson, MS. Gloria Billingsley, B. D'Andra Orey and Athena M. King. February 10, 2017.
"Accountability, Customization, Sustainability, \& Production: The Interdisciplinary Faculty Writing Boot Camp" Mississippi Philological Association Annual Conference. February 11, 2017. Mississippi Valley State University, Itta Bena, MS.
"Author Meets Critics: Robert Mickey’s Paths Out of Dixie," Southern Political Science Association, New Orleans, LA, January 14, 2017
"Accountability, Customization, Sustainability, \& Production: Reflecting on Our Liberal Arts Faculty Writing Boot Camp." College of Liberal Arts Conference, Jackson, MS. October 8, 2016.
"Teaching about Mississippi in Trying Times." Roundtable, College of Liberal Arts Conference, Jackson, MS. October 7, 2016.

Paper: "HBCUs to Conduct Research on Black Political Attitudes and Behavior." (Students: Kiescia Dickinson, Courtney Viverette and Jauan Knight). National

Conference of Black Political Scientist conference (March 17-19 2016). Hilton Garden Inn. Jackson, Mississippi.

Paper: "Southern White Legislative backlash to the Voting Rights Act of 1965." (Student: Ernest DuPree). Southern Political Science Association conference. (January 7-9, 2016 at the Caribe Hilton, San Juan Puerto Rico.

Round Table: "Reflections on Voting Rights in the South in the Age of Shelby v. Holder. " Southern Political Science Association Southern Political Science Association conference. (January 7-9, 2016 at the Caribe Hilton, San Juan Puerto Rico.
"Blacks' Political Attitudes and Psychological Responses to Racially Traumatic Stressful Events." Southern Political Science Association Southern Political Science Association conference. (January 7-9, 2016 at the Caribe Hilton, San Juan Puerto Rico.

Paper: "Black Strategic Voting or Genuine Republican Support: The 2014 Mississippi Senate." (Student: Nafessa Edges). National Conference of Black Political Scientists conference (March 17-21, 2015). Double Tree Hotel. Atlanta, GA.

Paper: "Psychological and Physiological Responses to Traumatic Events: The Case of Ferguson, Missouri." (Students: Kyler Lee and Jasmine Jackson). Paper presented at the National Conference of Black Political Scientists conference (March 17-21, 2015). Double Tree Hotel, Atlanta, GA.

Paper: "The Evolution and Devolution of the Voting Rights Act (19652014). National Conference of Black Political Scientists Conference (March 1721, 2015). Double Tree Hotel, Atlanta, GA.

Paper: "Sources We Can Believe In: The Effect of Elite Level Cueing on Black Attributions of Inequality." Mississippi Political Science Association (February 13, 2015). Jackson State University, Jackson, MS.

Roundtable: "(Non)Traditional Methods in the Study of Black Politics: Voices from the Field." American Political Science Association: Roundtable (August 30, 2014). Washington, D.C. Hilton.

Paper: "Candidate Evaluation of Black Women Candidates’ Hair Style and Texture," (with Nadia Brown). Paper presented at the Southern Political Science Association's annual meeting. (January 9-11, 2014) New Orleans, Louisiana.

Paper: "Moving Beyond Race and Gender: An Intersectional Analysis of Bill Sponsorship in State Legislatures," (with Nadia Brown). Paper to be presented
at the Southern Political Science Association's annual meeting (January 9-11, 2014) New Orleans, Louisiana

Round Table: "The Status of the APSA Task Force on Political Science in the 21st Century." The Southern Political Science Association's annual meeting, (January 9-11, 2014) New Orleans, Louisiana

Panel: Author Meets Critics: "Black Mayors White Majorities The Balancing Act of Racial Politics." Ravi Perry Author. ." The Southern Political Science Association's annual meeting, (January 9-11, 2014) New Orleans, Louisiana

Moderator: "New Mayor’s Perspective of the First 100 Days." Mississippi Legislative Black Caucus Mayor's Summit (September 26, 2013), Jackson State University, Jackson, MS

Paper: "Environmental Justice Policy, Intersectionality and Racial Context" (with Athena King). Paper presented at the Midwestern Political Science Association's annual meeting, (April 11-13, 2013) Chicago, Illinois

Paper: "Intersectionality: Race, Gender and Party." Paper presented at the National Conference of Black Political Scientists, (March 14-16, 2013) Oak Brook, Illinois

Roundtable Participant: "Research Opportunities at Historically Black Colleges and Universities." National Conference of Black Political Scientists, (March 1416, 2013) Oak Brook, Illinois

Paper: "Revisiting Black Racial Identity Using Subconscious Measures" Byron D’Andra Orey, Thomas Craemer and Melanye Price. Southern Political Science Association, (January 3-5, 2013) Orlando, FL

Roundtable: Using ICPSR Data in Undergraduate Research, Southern Political Science Association, (January 3-5, 2013) Orlando, FL

Invited Panelists: Conference within a Conference--Gender, Race, \& Intersectionality, Southern Political Science Association, (January 3-5, 2013) Orlando, FL

Discussant: "The Representation and Presentation of Race and Gender" Southern Political Science Association, (January 3-5, 2013) Orlando, FL

Paper: "Using Black Samples to Investigate the Validity of Implicit Racial Attitude Measures" (Paper nominated for Best Paper for Race and Ethnicity Section) (Paper written, however, Conference Cancelled), (September 2013), American Political Science Association, New Orleans, LA

Paper: Invited Participant: APSA Working Group on Implicit Attitudes, "Comparing AMP, IATs, Subliminal Priming and Black Identity" (Paper written, however, Conference Cancelled) Byron D'Andra Orey and Thomas Craemer, American Political Science Association, (September 2013) New Orleans, LA

Paper: "The Intersectionality of Race and Gender in State Legislatures," Women for Progress Conference, (September 2012) Jackson, MS.
Paper: "Validating Implicit Racial Attitude Measures in Black HBCU Samples," Midwestern Political Science Association, (April 12-15, 2012), Chicago, Illinois

Paper: "Black Conservatism and Opposition to Racial Policies," National Conference of Black Political Scientist, (March 14-17, 2012, Las Vegas, Nevada

Paper: "Black Legislative Politics in Mississippi," (with Rhonda Cooper), Southern Political Science Association, (January 11-14, 2012), New Orleans, LA

Chair, Panel: "Status of African Americans in the South," Southern
Political Science Association, (January 11-14, 2012), New Orleans, LA
Participant: "SPSA 2013 Program Committee," Southern Political
Science Association, (January 11-14, 2012), New Orleans, LA
Paper: "Intersections, Interactions, and Legislative Behavior," (with Shoronda Wofford), Mississippi Political Science Association, Millsaps College, (November 11-12, 2011), Jackson, MS

Discussant: Local Politics in Mississippi, Mississippi Political Science Association, Millsaps College, (November 11-12, 2011), Jackson, MS

Invited Panelist: Chairs Luncheon and Workshop: "Unwitting Leader: How to be an Effective Department Chair, and Live to Tell About It" (Departmental Services Committee), American Political Science Association, (September 14, 2011), Washington State Convention Center, Seattle Washington

Paper: "Genetic Similarity, Ethnocentrism, and Political Attitudes." American Political Science Association, (September 1-4, 2011), Washington State Convention Center, Seattle Washington

Chair, Panel: Race, Immigration and Public Opinion, American Political Science Association, (September 1-4, 2011), Washington State Convention Center Seattle Washington

Chair, Panel: "Racial Attitudes and the Role of Race in Electoral Politics." Southern Political Science Association (January 6-8, 2011), Intercontinental Hotel, New Orleans, LA

Paper: "Black Support for Racial Policies and The Double (Non)-Consciousness Thesis." Southern Political Science Association (January 6-8, 2011), Intercontinental Hotel. (with Leniece Davis and Byron Williams)

Paper: "Pro-Black Political Opinions, Participation and Stereotype Threat Among African-American College Students." American Political Science Association, (September 2010), Washington, D.C. (with Thomas Craemer and Hyung Park)

Paper: "Implicit Black Group-Identification and Stereotype Threat in the Age of Obama." International Society of Political Psychology, (July 2010), San Francisco, CA. (with Thomas Craemer)

Paper: "Implicit Racial Attitudes, Stereotype Threat, and Political Behavior among Young African Americans in the Age of Obama," Midwestern Political Science Association's Annual Meeting, (April 22, 2010), Chicago, IL, Palmer House. (with Thomas Cramer and Hyung Park)

Paper: "Black Elite Rhetoric and System Justification Ideology." American Political Science Association's Annual Meeting. Toronto, (September 5, 2009), Ontario, Canada, (with Hyung Park)

Paper: "American Patriotism and the Reverend Wrights of the World." National Conference of Black Political Scientists. Houston, TX (March 2009). (with Najja Baptist)

Paper: "American Identity and Disillusioned Liberalism Among African Americans." Midwestern Political Science Association's Annual Meeting. Chicago, IL, Palmer House. (April 2-5, 2009). (with Najja Baptist)

Paper: "Public Opinion and Substantive Representation." Discussant Midwestern Political Science Association’s Annual Meeting. (April 2-5, 2009), Chicago, IL, Palmer House

Paper: "Political Socialization and Racial Conservatism." Southern Political Science Association's Annual Meeting, (January 9, 2009) New Orleans, LA Intercontinental Hotel

Paper: "System Justification Ideology and Black Opposition to Affirmative Action." (March 2007), National Conference of Black Political Scientists, San Francisco, CA

Paper: "When Race, Party and Gender Matter: State Legislative Behavior." Western Political Science Association, (March 2007), Las Vegas, Nevada

Chair, "Race and Fear." Hendricks Conference on Biology and Political Behavior, (October 13-14, 2006), Lincoln, Nebraska

Paper: "Roundtable: A Retro and Prospective: The $10^{\text {th }}$ Anniversary of Robert Smith's We Have No Leaders." The National Conference of Black Political Scientists' Annual Conference," (March 22-25, 2006), Atlanta, GA

Paper: "Roundtable: Representation and the Intersections of Gender, Race and Ethnicity." The Southern Political Science Association's Annual Meeting, (January 6-8, 2006), Atlanta, GA

Paper: "Mentoring Task Force Panel: Finding Mentors and Advocates in the Ivory Tower." American Political Science Association, (September 2005,) Washington, D.C.

Paper: "A Tale of Two Flags: The Mississippi and Georgia Flag Referenda." Midwestern Political Science Association, (April 7-9, 2005), Chicago, IL

Paper: "Explaining Black Conservatives." Western Political Science Association, (March 17-20, 2005), Oakland, CA

Paper: "Not Exactly What We Had in Mind for Inclusion: The Impact of Racial Resentment on Latinos" (with Jessica Perez-Monforti). Western Political Science Association, (March 17-20, 2005), Oakland, CA

Discussant: "Perspectives on Race and Ethnicity," (January 6-8, 2005), Southern Political Science Association

Paper: "Teaching Race in a Majority White Place." People of Color at Traditional White Institutions, (November 15-16, 2004), University of Nebraska, Lincoln, Lincoln, Nebraska

Paper: "Black Conservatives and Black Nationalists: Convergence or Divergence." National Conference of Black Political Science, (March 25-27, 2004), Chicago, Illinois, Hyatt- Mcormick Place

Paper: "African American Racial Conservatives and Intra-group Resentment." Southern Political Science Association, (January 2004), New Orleans, LA (with LeKesha Harris)

Paper: "Race and Gender Matter: Black Legislative Politics in Mississippi" (with Wendy Smooth), National Conference of Black Political Science, (March 2527, 2004), Chicago, Illinois, Hyatt- Mcormick Place

Roundtable Participant: "The Role of College Faculty in AP Success." National AP Equity Colloquium, (March 20-21, 2004), Houston, TX, Houston Intercontinental Marriott

Paper: "Black Conservatives: A Systematic Analysis." African and Latino Conference, (January 2003), Lincoln, Nebraska

Paper: "Measuring Deracialization: A Systematic Analysis of the Deracialization Concept." Western Political Science Association, March 27-29, 2003

Paper: "Explaining Black Conservatives: Racial Uplift or Racial Resentment?" National Conference of Black Political Scientists, Oakland, California

Discussant, Southern Political Science Association, (November 6-10, 2002), Savannah, GA

Paper: "Black Legislative Politics in Mississippi: Gender Matters," Southern Political Science Association, (November 6-10, 2002), Savannah, GA

Paper: "Racial Uplift or Racial Resentment," Midwest Political Science Association, (April 2002), Chicago, IL

Paper: "Racial Attitudes toward the Confederate Flag," Southern Political Science Association, (November 7-10, 2001) Atlanta, GA, with Khalilah Brown

Paper: "White Opposition to Affirmative Action," Southern Political Science Association, (November 7-10, 2001) Atlanta, GA

Paper: "The New Black Conservative: Rhetoric or Reality?" National Conference of Black Political Scientists, (March 8-10, 2001)

Paper: "New Racial Attitudes in the New South." Race in America (Hendricks Symposium), University of Nebraska, (November 2-3, 2000) Lincoln, NE

Paper: "African Americans in the State Legislative Power Structure: Committee Chairs," American Political Science Association, (August 2000, Washington, D.C.)

Paper: "One Person-N Votes: An empirical analysis of Proportional representation in Cincinnati, Ohio," Midwest Political Science Association, (April 2000, Chicago, Illinois), with Kimberly Adams

Paper: "From Protest to Politics: A look at the success of black legislators in Mississippi," Midwest Political Science Association, (April 2000, Chicago, Illinois), with Kimberly Adams

Paper: "Framing the Issue, When the Issue is Race." American Political Science Association, (September 2-5, 1999), Atlanta, GA

Poster: ARacialization or Deracialization: The Making of a Black Mayor in Jackson, Mississippi," American Political Science Association, (September 2-6, 1998), Boston, MA

Paper: "The Race Race in Black and White: The 1995 Louisiana Gubernatorial Election," Southwest Political Science Association, (March 26-29, 1997), New Orleans, LA

Paper: "Mississippi Legislative Politics in Mississippi," Southern Political Science Association, (November 7-9,1996), Atlanta, GA.

Paper: "Dispelling the Myth and Revealing the Truth: the Overrepresentation of Whites on City Councils," American Political Science Association, (September 1996) San Francisco, CA.

Roundtable Participant: "The Impact of Alternative Voting Systems" National Conference of Black Political Scientists, (March 1996), Norfolk, VA.

Paper: "Mississippi Black Legislators," National Conference of Black Political Scientists, (March 1996) Savannah, GA.

Paper: "Black Representation in the South," The Southern Regional Council=s Annual Voting Rights Seminar, Fall 1995 New Orleans, LA.

Paper: "One Person, N-Votes: In Search of a Remedy for Vote Dilution Claims in the Absence of Geographical Compactness," American Political Science Association, (September 1995) Chicago, Ill.

Paper: "Status Crow Politics and the Under-Representation of Black Women on the Bench" Southern Political Science Association, (November 3-5, 1994) Atlanta, GA

Paper: "One Person, N-Votes: Minority Representation on the Bench," The National Conference of Black Political Scientists (March 1994) Hampton, VA

Panel Chair: "The Politics of Electoral Reform," American Political Science Association, (September, 1994) New York, NY.

Discussant: Race and Reapportionment after Shaw v. Reno, Southern Political Science Association, (November 3-5, 1994) Atlanta, GA.

Participant: Mock Voting Rights Trial, The Southern Regional Council, Annual Voting Rights Seminar (October 1993), Peachtree City, Georgia

Paper: "When Excess Creates Progress: An Assessment of the Federal Government's Financial Contribution to HBCUs," The Southern Political Science Association (Fall 1993) Savannah, GA.

Paper: "When Excess Creates Progress: An Assessment of the National Science Foundation's Financial Contribution to HBCUs," The National Black Graduate Student Association's Annual Conference (May 1993) University of Minnesota

Paper: "The Disparity of Federal Expenditures received by Historically Black Colleges and Universities (HBCUs) compared to Non-HBCUs," The Quality Education for Minority Network's Annual Education Conference (August 1992), Georgetown University, Washington, D.C.

Paper: "The Purpose of Cognitive Inventories for Secondary Students," Southern Association for Educational Opportunity Program Personnel (1990), Tupelo, MS

Invited Presentations

"Mississippi Conflict and Change," University of Michigan, May 10, 2022.
"The Power of Perseverance: Black Politics of American Democracy Workshop, Facilitator. Princeton University, March 31, 2022.

Intersectionality and Intersections: Race, Gender and Legislative Behavior. Princeton University, March 30, 2022.

Trusted Sources, University of Tennessee, Knoxville, March 82022
MLK Convocation, Creighton University, January 18, 2022.
"Does the Confederate Flag Make You Sick?" University of Mississippi, April 12, 2017.
"The Impact of Race and Gender on the 2016 Presidential Election," Metropolitan Community College, Omaha, Nebraska. February 2, 2017.
"The Strange Career of Black Politics," Florida State University, January 26, 2017.
"New Developments in the Study of Race and Politics," Buffalo State University, November 1, 2016.
"Contemporary Topics in the Study of Race and Politics," Annual Joseph T. Taylor Symposium at Indiana University, Purdue University Indiana (IUPUI), February 25, 2014
"A Dare to Be Great: Honoring our Ancestors." National Association for the Advancement of Colored People's Annual Banquet. Lincoln, Nebraska. November 9, 2013.
"Alumni Given at HBCUs." The Douglas T. Porter Athletic Scholarship Banquet. October 25, 2013. Mississippi Valley State University, Itta Bena, MS.
"One Man's Journey to African, the Middle East and the Caribbean." Metropolitan Community College September 12, 2013.
"Reflecting on the Life and Work of Attorney Isaiah Madison." Isaiah Madison Memorial Symposium on Higher Education, April 18, 2013
"Voter Suppression in the United States," Mississippi Valley State University’s Pi Sigma Alpha Honor Society April 8, 2013
"Research Opportunities at Historically Black Colleges and Universities." University of California, Irvine February 27, 2013

Roundtable discussion, "Has the Dream Been Fulfilled?" February 19, 2013, Jackson State University Political Science Club, Jackson, MS

Mississippi Valley State University Black History Month Convocation, Guest Speaker February 18, 2013
"New Developments in Race and Politics." St Andrews High School, December 12, 2013
"Voting and Democracy," St. Andrews High School, Ridgeland, MS, November 15, 2011

Robert Clark Symposium, "2011 Election Day: Implication and Analysis, What does it Really Mean?" Jackson State University, November 9, 2011

Emerging Scholars Conference, (with mentee JaLisa Jorden). "Black Political Attitudes and Obama as a Trusted Source: Is it the Message or the Messenger?" University of Michigan, September 29-October 1, 2011
"Mentoring Graduate Assistants." Workshop: Activity 7 Program, May 18, 2011. Jackson State University Student Center

Conference on Laboratory Experiments in Political Science, Stereotype Threat Among African-American College Students, Vanderbilt University, May 4-6, 2011

University Development Foundation Board Meeting. Invited by the President of the University to make a presentation on the research agenda in the Department of Political Science, MS e-Center, December 10, 2010

Hendrick's Symposium (with mentees JaLisa Jorden and Ebou Sowe). "Elites as Trusted Sources: Do Blacks Believe Everything President Obama Says?" November 3-5, 2010. University of Nebraska, Lincoln

Terry High School. "To Thine Own Self Be True." October 19, 2010. Terry Mississippi

Porter L. Fortune, History Symposium: Future of the South Conference.
"Substantive Representation and the Mississippi Legislative Black Caucus." University of Mississippi, Oxford, MS. February 18, 2010
"Obama Administration: One Year Later." Roundtable Participant. Medgar Evers/Ella Baker Lecture Series, Tougaloo College, Tougaloo, MS. November 16, 2009
"Presidential Approval Ratings." Lecture at St. Andrews High School’s Advanced Placement U.S. Government course, November 10, 2009

Matthew Holden, Jr. Symposium Lecture. "A Response to Glen Loury." November 5, 2009. Jackson State University

University of Nebraska, Lincoln. Keynote Speaker: Hurricane Katrina: A
Remembrance in Three Acts, September 25, 2007

New York University, John Jost's Psychology Laboratory. "System Justification and Black Opposition to Affirmative Action." September 13, 2007

Oxford University (Oxford, England), Oxford Roundtable, "Religion and Politics." July 2007

Williams College, Voting Rights Roundtable, February 9-10, 2007
Emory University School of Law Public Interest Committee, "Annual Public Interest Conference." October 7, 2006

Yale University, Presenter: "Lessons from the Past, Prospects for the Future: A Conference in honor the Fortieth Anniversary of the Voting Rights Act of 1965." April 21-23, 2005

University of Nebraska, Lincoln. "From Selma to Washington," April 18, 2005
University of Nebraska, Lincoln. "Martin Luther King Forum on Reparations." (January 20, 2005)

University of Mississippi. "Race and the Mississippi State Flag." February, 2005
University of Southern Illinois. "Explaining Black Racial Conservatives." December 9, 2004

Middle Tennessee State University. "The Year of the Ballot or the Bullet." April 22, 2004

The College Board, Arranged a Panel on "The Role of College Faculty in AP Success." National AP Equity Colloquium. March 20-21, 2004

Washington University, Lecture: "Racial Uplift or Racial Resentment: Explaining Black Conservatives?" February 6, 2004

University of Winneba, Winneba, Ghana (West Africa). June 2004
University of Mississippi, "Retaining Black Faculty and about Tenure," Panelist. January 23, 2004

University of Nebraska, Lincoln. "What does it take to get elected in the United States?" Round Table, sponsored by Pi Sigma Alpha. February 20, 2003

Southern Association for College Student Affairs, Panelists: "Town Hall Meeting on Symbols," November 2002

University of Nebraska, Lincoln. "Post Election Roundtable Panelists," sponsored by Pi Sigma Alpha. November 2002

November 2-3, 2000. "New Racial Attitudes in the New South" Hendricks Symposium on Race, University of Nebraska

September 2000. Lecture, "A New Racism in the New South." Center for the Study of Southern Culture, University of Mississippi

Ph. D. Committees

Rob Denne, Jackson State University, Department of Education
Ronella Gollman, Jackson State University, Department of Psychology

Princeton Smith, Jackson State University, Department of Psychology
Daphine Foster, Public Policy, Jackson State University (member)
Peter Hatemi, Political Science, University of Nebraska, Lincoln. Defense: Spring 2007 (member)
Reginald Vance, Southern University, Baton Rouge, Defense: December 2006 (Chair)
James H. Moore, Howard University (Economics), Defense: December 2004 (member)
Kimberly Adams, University of Mississippi, Defense: Spring 2003 (outside member)
Mitch Herring, University of Nebraska, Lincoln Defense: Spring 2008 (Political Science, member)
Yolanda Johnson, University of Nebraska, Lincoln (Sociology, member)
Eric Whitaker, University of Nebraska, Lincoln (Political Science, member)

Master's Theses:

Communications

Janeya Smith, Jackson State University, Department of Political Science (Chair, Completion date: December 2018)
Spencer McClenty, Jackson State University, Department of Communication (Completion October 2018)
Caleb Smith, Jackson State University, Department of History (Completion date: October 2017)
Sharonda Woodford, Jackson State University, Department of Political Science (Completion date: summer 2013)
Alfonso Franklin, Jackson State University, Department of History (Completion date: May 2013)
Emmitt Riley, Jackson State University (Chair, Completion date: May 2010)
Najja Baptist, Jackson State University (Chair, Completion: August 2010)
Matthew Hastings, University of Nebraska, Lincoln. (Chair, Thesis Completion: Spring 2007)

Honor's Thesis:

Andy Conroy (Co-Advisor), Completed: Spring, 2006

University Services

Promotion and Tenure Committee Psychology 2018
Mentor, Ronald E. McNair Summer Program, Jackson State University (Mentee: Keirrah Wheeler)
Promotion and Tenure Committee Psychology 2017
Political Science Club Advisor, 2014-2015
Pi Sigma Alpha Advisor, 2017-Present
Pi Sigma Alpha Advisor, 2014-2015
Member of the Faculty Senate, 2014-2015

Faculty Third Year Review, Department of Political Science, Chair Spring of 2015
Faculty Third Year Review, Department of Political Science, Chair Fall of 2014
Faculty Third Year Review, Department of History Fall 2013
Search Committee for the Bachelor of Social Work and Masters of Social Work Program Directors. Fall 2013
University Think Tank Committee, Jackson State University (appointed Fall 2013)

Advisory Board, Center for Excellence in Minority Health and Health Disparities (appointed Spring 2013)
Tenure Committee, Department of History Fall 2012
Promotion Committee, Department of Public Policy Fall 2012
Conference Coordinator for the National Bar Association-Served as the
Coordinator in hosting the NBA's annual meeting at Jackson State University. September 2012
Promotion Committee, Department of Music Fall 2011
College of Liberal Arts Promotion and Tenure Committee. 2011-2012 (elected position)
Jackson State University, Advisory Board, Advance Project (National Science Foundation Grant), appointed by PI. 2011-present
Symposia Subcommittee of the Presidential Inaugural Planning Committee Fall 2011
Research Advisory Council, 2011-present, appointed by Vice President for Research
Employment/Hiring Committee Public Policy Spring 2011
Search Committee for Office of Student Life, January 2011
Promotion Committee, Department of Business Fall 2010
Promotion Committee, Department of Psychology Fall 2010
Promotion Committee, Department of Public Health Fall 2010
College of Liberal Arts Promotion and Tenure Committee. 2010-2011 (elected position)
Quality Enhancement Plan, Jackson State University, 2008-2011
$40^{\text {th }}$ Gibbs-Green Anniversary Observance Planning Committee, Jackson State University, 2010
Executive Committee, University of Nebraska, Division of Arts and Sciences, 2007-2008
Diversity Committee, University of Nebraska, 2007-2008
Executive Committee, University of Nebraska, Department of Political Science, 2006-2007 and 2002-2003
Undergraduate Creative Activities and Research Experiences (UCARE), Student Advisor, University of Nebraska, 2006 (Amanda Ponce)
Mentor, Ronald E. McNair Summer Program, University of Nebraska, Lincoln, Summer, 2006 (Mentee: Amanda Ponce)
Graduate Committee, Department of Political Science, (2005-2006) Political Science Unit Review Committee, University of Nebraska (2005-2008)

University of Nebraska Marshal Corp: Appointed by the dean of Arts and Sciences (Summer 2004-Present)
Member, Undergraduate Committee (2003-Present)
Mentor, Ronald E. McNair Summer Program, University of Nebraska, Lincoln, 2003 (Mentees: Donald McCauley and Potso Byndon)
Member, Executive Committee, University of Nebraska, Department of Political Science, 2002-present
Mentor, Ronald E. McNair Summer Program, University of Mississippi, 1999 (Mentee: Kimberly Walker, Alcorn State University)

Professional Services and Activities

Conference Program Chair, Southern Political Science Association, 2023
Vice President, Southern Political Science Association. 2022
Commissioner, Mississippi Civil Rights Education Commission
Executive Council, Southern Political Science Association 2014-2015
American Political Science Association: Committee for Best Book in the Race, Ethnicity and Politics section. 2014
American Political Science Association's Minority Fellows Program Selection Committee 2013
Dianne Blair Award Committee, Southern Political Science Association. 2013
Section Chair, Professional and Career Development, Midwestern Political Science Association. 2013 (Conference to be held in 2014).
External Reviewer, Tenure and Promotion, Southern Illinois University, Fall 2013.

Section Chair, National Conference of Black Political Scientists: Undergraduate Research 2013.
Section Chair: Teaching Political Science, Southern Political Science Association, Orlando, Florida January 3-5, 2013
Member of the Status of Blacks in the Discipline, American Political Science Association (appointed 2012-present)
Section Chair, Southern Political Science Association: Teaching Political Science, 2012
Member of the Membership Committee for the Southern Political Science Association (appointed 2012)
External Reviewer, Tenure and Promotion Committee, September 2012, University of Houston, Clearwater
External Reviewer, Third Year Review, Clark University, November 2011
External Reviewer, Tenure and Promotion Committee, Rutgers University, Newark, September 2011
Section Chair: The Status of Blacks in the South, Southern Political Science Association, 2012
Section Chair: Public Opinion, Midwestern Political Science Association, 2009
Lucius Barker Award Committee, 2008 Midwestern Political Science Association.

Executive Committee (member), National Conference of Political Science (20072010)

Section Chair: Identity Politics: Gender, Class, Ethnicity, Sexuality, and
Religion, National Conference of Black Political Scientists, 2007.
Section Chair: Race and Politics, National Conference of Black Political Scientists 2005.
Jewell Prestage Awards Committee, Southwestern Political Science Association 2004.

Section Chair: Race and Ethnicity, Southwest Political Science Association. 2004.
Section Chair: Race and Ethnicity, Midwestern Political Science Association, 2002.

University of Nebraska, Lincoln. "What does it take to get elected in the United States?" Round Table, sponsored by Pi Sigma Alpha. February 20, 2003.
Southern Association for College Student Affairs, Panelists: "Town Hall Meeting on Symbols," Biloxi, Mississippi. November 2002.
University of Nebraska, Lincoln. "Post Election Roundtable Panelists," sponsored by Pi Sigma Alpha. November 2002.

Other Professional Activities

Education Consultation:
Testing Development Committee (member) 2008-2011, Education Testing Services (Princeton, New Jersey): Assist in writing objective questions for the Advanced Placement Exam (Government and Politics).

College Board Consultant - Conduct workshops to High School Government Instructors on teaching Advanced Placement Government and Politics (April 2002-Present).

Question Leader for the Advance Placement Exam, in U.S. Government and Politics (Summers 2007-Present).

Table Leader for the Advance Placement Exam, in American Government, Educational Testing Services (Summers 1996-2003).

Reader for the Advance Placement Exam, in American Government, Educational Testing Services (Summers 1996-1998).

Expert Witness Work:

Mark A. Anderson v. City of McComb, Mississippi, Gregory Martin and John Does 1-5.

Voting Rights Expert Witness Work:

Cecil Cantrell v. Monroe County, Mississippi (Deposition given)
Testified before the Mississippi Legislative Reapportionment Committee (April 2001)

Lewis, et al. v. Alamance County, et al. (Deposition given).

Rose Johnson, et al. v. The City of Gainesville, GA (Testified)
Jackson v. Nassau County Board of Supervisors
City of Hampton, Virginia

Editorial

Review
Boards
American Political Science Review
The Ralph Bunche Journal of Public Affairs
Journal of Race and Policy
Pi Sigma Alpha Undergraduate Journal (Faculty Advisory Board)
State Politics and Policy Quarterly

Reviewer

American Political Science Review; Journal of Politics; American Journal of Political Science; Legislative Studies Quarterly; Women, Politics and Policy; National Political Science Review; American Politics Research; Political Research Quarterly; Politics and Policy; Oxford University Press; Lynne Rienner Publishers; Journal of Race and Policy; Social Science Quarterly; Urban Affairs Quarterly; SUNY PRESS; Political Communication, University of Michigan Press; TESS (Time-Sharing Experiences for the Social Sciences); National Science Foundation; the Social Science Journal; Routledge Press; Journal of African American Studies; Social Psychological and Personality Science; Pi Sigma Alpha Undergraduate Journal.

Community Services

Mentor, Empowering Males to Build Opportunities for Developing Independence (EMBODI)
Mentor, New Focus for Youth after-school program
Board of Directors of the PERICO Institute for Youth Development and
Entrepreneurship (PRIYDE), Jackson, MS (November 1, 2011-Present)
Member, Charter Revision Commission, Lincoln, Nebraska 2002-2006
Member, Nebraska's Help America Vote Act (Secretary of State's Office) 20022006

Professional Organizations

American Political Science Association
National Conference of Black Political Scientists
Southern Political Science Association
Midwestern Political Science Association
Mississippi Political Science Association

APPENDIX 2: Summary Table of Two Group EI and Three-Group EI and EI RxC

| | Two-Group EI (Black vs. White and Others) | Two-Group EI (White vs. Black and Others) | EI Compare ThreeGroup EI | EI Compare ThreeGroup EI | EI Compare ThreeGroup EI RxC | EI Compare ThreeGroup EI RxC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Election | Black
 Support for
 Black
 Candidate | White
 Support for
 Black
 Candidate | Black
 Support for
 Black
 Candidate | White
 Support for
 Black
 Candidate | Black
 Support for
 Black
 Candidate | White
 Support for
 Black
 Candidate |
| Westbrooks 2020 | 90.46 | 6.43 | 90.46 | 6.36 | 90.22 | 6.37 |
| Espy 2020 | 96.34 | 13.5 | 96.38 | 13.39 | 98 | 10.99 |
| Amos 2019 | 92.08 | 6.66 | 92.05 | 6.66 | 94.43 | 4.6 |
| DuPree 2019 | 94.35 | 8.73 | 94.31 | 8.7 | 96.46 | 6.24 |
| Collins 2019 | 94.54 | 10.82 | 94.55 | 10.76 | 96.81 | 8.27 |
| $\begin{aligned} & \text { Simmons } \\ & 2019 \\ & \hline \end{aligned}$ | 93.97 | 8.81 | 94.05 | 8.59 | 96.67 | 6.01 |
| Stamps 2019 | 92.22 | 7.6 | 93.3 | 7.65 | 94.96 | 5.52 |
| Green 2019 | 92.83 | 7.16 | 92.82 | 6.9 | 95.42 | 4.89 |
| Espy 2018 | 94.91 | 16.42 | 94.89 | 16.31 | 97.6 | 12.48 |
| $\begin{array}{\|l\|} \hline \text { Graham } \\ \hline 2015 \\ \hline \end{array}$ | 87.58 | 4.67 | 87.7 | 4.49 | 89.78 | 2.69 |
| $\begin{array}{\|l\|l\|} \hline \text { Coleman } \\ \hline 2015 \\ \hline \end{array}$ | 89.36 | 4.87 | 89.38 | 4.85 | 91.16 | 3.15 |
| Gray 2015 | 87.76 | 4.44 | 87.74 | 4.52 | 89.88 | 2.72 |
| Banks 2012 | 81.26 | 5.44 | 81.34 | 5.45 | 79.92 | 7.27 |
| Obama 2012 | 92.72 | 12.12 | 92.72 | 12.14 | 93.65 | 5.53 |
| Crisler 2011 | 91.04 | 8.29 | 90.98 | 8.37 | 92.35 | 7.52 |

| DuPree
 $\mathbf{2 0 1 1}$ | 90.88 | 8.11 | 90.89 | 8.12 | 93.65 | 5.53 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | |
| Green 2011 | 90.94 | 8.16 | 90.88 | 8.08 | 93.67 | 5.56 |

APPENDIX 3: TWO-GROUP EI RAW RESULTS AND SCRIPT

Raw Results

```
Westbrooks
2020
$pBlackVAP
    mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.El
\begin{tabular}{lccl} 
pVoteA & 90.46 & 0.27 & 89.97 \\
pVoteB & 9.53 & 0.24 & 9.09
\end{tabular}
    ci_95_upper_Iterative.EI
pVoteA 91.03
pVoteB 10.01
$pWhite_Other
    mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.El
pVoteA 10.64 0.20
pVoteB 89.38 0.24
88.88
```

 ci_95_upper_Iterative.EI
 pVoteA 11.06
pVoteB 89.76

Espy 2020
\$pBlackVAP
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI

| pVoteA | 96.34 | 0.20 | 95.94 |
| :--- | :--- | :--- | :--- |

| pVoteB | 3.65 | 0.21 | 3.18 |
| :--- | :--- | :--- | :--- |

ci_95_upper_Iterative.EI
pVoteA 96.68
pVoteB 4.02
\$pWhite_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

| pVoteA | 18.15 | 0.23 | 17.77 |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}\text { pVoteB } & 81.87 & 0.18 & 81.52\end{array}$
ci_95_upper_Iterative.EI
pVoteA
18.67
pVoteB
82.20

Collins 2019
\$pBlackVAP
\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

| pVoteA | 6.43 | 0.25 | 5.89 |
| :--- | :---: | :---: | :--- |
| pVoteB | 93.59 | 0.28 | 92.95 |

ci_95_upper_Iterative.EI
pVoteA 6.88
pVoteB 94.03
\$pBlack_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 87.39 & 0.26 & 86.91\end{array}$
$\begin{array}{llll}\text { pVoteB } & 12.56 & 0.21 & 12.22\end{array}$
ci_95_upper_Iterative.EI
pVoteA 87.97
pVoteB 13.08
\$pWhiteVAP
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 13.50 & 0.37 & 12.71\end{array}$
$\begin{array}{lll}\text { pVoteB } & 86.51 & 0.36\end{array}$
85.84
ci_95_upper_Iterative.EI
pVoteA 14.30
pVoteB 87.21
\$pBlack_Other
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI

| pVoteA | 93.88 | 0.30 | 93.30 |
| :--- | :---: | :---: | :--- |
| pVoteB | 6.09 | 0.29 | 5.56 |

ci_95_upper_Iterative.EI
pVoteA 94.44
pVoteB 6.68
\$pWhiteVAP

| DuPree2019 | | | |
| :---: | :---: | :---: | :---: |
| \$pBlackVAP
 mean Iterative.EI sd Iterat | | | |
| ci_95_lower_Iterative.EI | | | |
| pVoteA | 94.31 | 0.28 | 93.77 |
| pVoteB | 5.67 | 0.24 | 5.19 |
| ci_95_upper_Iterative.EI | | | |
| pVoteA 94.81 | | | |
| pVoteB 6.18 | | | |
| \$pWhite_Other mean_Iterative.El sd_Iterative.EI | | | |
| ci_95_lower_Iterative.El | | | |
| pVoteA | 12.89 | 0.25 | 12.48 |
| pVoteB | 87.11 | 0.21 | 86.71 |
| ci_95_upper_Iterative.EI | | | |
| pVoteA 13.44 | | | |
| pVoteB | | | |

Amos 2019
\$pBlackVAP
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.El

| pVoteA | 92.04 | 0.30 | 91.39 |
| :--- | :---: | :---: | :--- |
| pVoteB | 7.94 | 0.33 | 7.30 |

| \$pWhiteVAP |
| :--- |
| mean_Iterative.El sd_Iterative.EI |

| ci_95_lower_Iterative.EI | | | |
| :--- | :---: | :---: | :--- |
| pVoteA | 6.63 | 0.38 | 5.71 |
| pVoteB | 93.34 | 0.38 | 92.80 |

| ci_95_upper_Iterative.El | |
| :--- | :---: |
| pVoteA | 92.52 |
| pVoteB | 8.59 |

\$pWhite_Other
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI

| pVoteA | 9.69 | 0.25 | 9.20 |
| :--- | :--- | :--- | :--- |

$\begin{array}{lll}\text { pVoteB } & 90.21 \quad 0.25\end{array}$
ci_95_upper_Iterative.EI
pVoteA 10.25
pVoteB 90.79

Green 2019

mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 92.83 & 0.31 & 92.20\end{array}$
$\begin{array}{llll}\text { pVoteB } & 7.64 & 0.36 & 6.88\end{array}$
ci_95_upper_Iterative.EI
pVoteA 93.49
pVoteB 8.35
\$pWhite_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 11.55 & 0.29 & 11.03\end{array}$
$\begin{array}{lll}\text { pVoteB } & 88.23 & 0.27\end{array}$
ci_95_upper_Iterative.EI
pVoteA
12.20
pVoteB
88.77

Simmons
2019
\$pBlackVAP
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 93.97 & 0.30 & 93.33\end{array}$
$\begin{array}{lll}\text { pVoteB } & 6.10 & 0.28\end{array}$
ci_95_upper_Iterative.EI
pVoteA 94.44
pVoteB 6.56
\$pWhite_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

| ci_95_upper_Iterative.El | |
| :--- | :---: |
| pVoteA | 7.27 |
| pVoteB | 93.98 |

\$pBlack_Other
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 88.13 & 0.34 & 87.49\end{array}$
$\begin{array}{lll}\text { pVoteB } & 11.88 & 0.33\end{array}$
11.21
ci_95_upper_Iterative.EI
pVoteA 88.77
pVoteB 12.49
mean_Iterative.EI sd_Iterative.EI ci_95_lower_Iterative.EI

| pVoteA | 7.16 | 0.33 | 6.48 |
| :--- | :--- | :--- | :--- |

92.24
ci_95_upper_Iterative.EI
pVoteA 7.76
pVoteB 93.44
\$pBlack_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 87.68 & 0.26 & 87.09\end{array}$
$\begin{array}{llll}\text { pVoteB } & 12.40 & 0.29 & 11.84\end{array}$
ci_95_upper_Iterative.EI
pVoteA 88.12
pVoteB 12.98
\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

| pVoteA | 8.81 | 0.44 | 8.12 |
| :--- | :--- | :--- | :--- |

$\begin{array}{lll}\text { pVoteB } & 91.21 & 0.37\end{array}$
90.56
ci_95_upper_Iterative.EI
pVoteA 9.79
pVoteB 91.97
\$pBlack_Other
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI

| pVoteA | 13.56 | 0.27 |
| :---: | :---: | :---: |
| pVoteB | 86.42 | 0.25 |
| ci_95_upper_Iterative.EI | | |
| pVoteA | 14.23 | |
| pVoteB | 86.85 | |
| Stamps | | |
| 2019 | | |
| \$pBlackVAP mean_Iterative.EI sd_Iterative.EI | | |
| ci_95_lower_Iterative.EI | | |
| pVoteA | 92.22 | 0.33 |
| pVoteB | 7.64 | 0.30 |
| ci_95_upper_Iterative.EI | | |
| pVoteA | 92.83 | |
| pVoteB | 8.30 | |
| \$pWhite_Other mean_Iterative.El sd_Iterative.EI | | |
| ci_95_lower_Iterative.El | | |
| pVoteA | 12.39 | 0.25 |
| pVoteB | 87.62 | 0.28 |
| ci_95_upper_Iterative.EI | | |
| pVoteA | 12.89 | |
| pVoteB | 88.16 | |

Espy 2018
\$pBlackVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.El

| pVoteA | 94.91 | 0.29 | 94.27 |
| :--- | :--- | :--- | :--- |

| pVoteB | 5.04 | 0.30 | 4.46 |
| :--- | :--- | :--- | :--- |

ci_95_upper_Iterative.EI
pVoteA 95.49
pVoteB 5.64
\$pWhite_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

| pVoteA | 19.83 | 0.26 | 19.40 |
| :--- | :--- | :--- | :--- |

| pVoteB | 80.17 | 0.29 | 79.53 |
| :--- | :--- | :--- | :--- |

ci_95_upper_Iterative.EI
pVoteA 20.28
pVoteB 80.67

```
13.13
85.82
l
```

11.86
87.13
4.46
79.53

| Graham 2015 | | | |
| :---: | :---: | :---: | :---: |
| Black mean | rative.El | Iterativ | |
| ci_95_lower_Iterative.EI | | | |
| pVoteA | 87.58 | 0.22 | 87.12 |
| pVoteB | 12.42 | 0.26 | 11.83 |
| ci_95_upper_Iterative.EI | | | |
| pVoteA | 87. | | |
| pVoteB | 12. | | |
| \$pWhite_Other mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI | | | |
| pVoteA | 5.91 | 0.25 | 5.39 |
| pVoteB | 94.11 | 0.23 | 93.61 |
| ci_95_upper_Iterative.EI | | | |
| pVoteA 6.44 | | | |
| pVoteB 94.52 | | | |
| Coleman 2015 | | | |
| \$pBlackVAP mean_Iterative.El sd_Iterative.EI ci 95 lower Iterative.El | | | |
| | | | |
| pVoteA | 89.36 | 0.26 | 88.90 |
| pVoteB | 10.61 | 0.25 | 10.16 |
| ci_95_upper_Iterative.EI | | | |
| pVoteA 89.83 | | | |
| pVoteB 11.06 | | | |
| \$pWhite_Other mean_Iterative.EI sd_Iterative.EI ci_95_lower_Iterative.EI | | | |
| pVoteA | 6.18 | 0.20 | 5.79 |
| pVoteB | 93.83 | 0.18 | 93.43 |
| ci_95_upper_Iterative.EI | | | |
| pVoteA 6.54 | | | |
| pVoteB 94.16 | | | |
| Gray 2015 | | | |
| \$pBlackVAP mean_Iterative.El sd_Iterative.EI | | | |
| | | | |
| pVoteA | 87.76 | 0.25 | 87.06 |

| pVoteB | 12.21 | 0.25 |
| :--- | :---: | :---: |
| ci_95_upper_Iterative.EI | | |
| pVoteA | 88.17 | |
| pVoteB | 12.75 | |
| | | |
| \$pWhite_Other | | |
| mean_Iterative.El sd_Iterative.EI | | |
| ci_95_lower_Iterative.EI | | |
| pVoteA | 5.80 | 0.25 |
| pVoteB | 94.17 | 0.25 |
| ci_95_upper_Iterative.EI | | |
| pVoteA | 6.34 | |
| pVoteB | 94.62 | |

Banks 2012
\$pBlackVAP
mean_Iterative.EI sd_Iterative.EI ci_95_lower_Iterative.EI

| pVoteA | 81.26 | 0.26 | 80.80 |
| :--- | :--- | :--- | :--- |

| pVoteB | $18.66 \quad 0.26$ |
| :--- | :--- | :--- |

11.66

93.39

| pVoteB | 95.55 | 0.26 | 94.95 |
| :---: | :---: | :---: | :---: |
| ci_95_upper_Iterative.EI | | | |
| pVoteA | 5.01 | | |
| pVoteB | 96.06 | | |
| \$pBlack_Other | | | |
| ci_95_lower_Iterative.EI | | | |
| pVoteA | 83.38 | 0.26 | 82.86 |
| pVoteB | 16.61 | 0.25 | 16.16 |
| ci_95_upper_Iterative.EI | | | |
| pVoteA | 83 | | |
| pVoteB | 17. | | |

\$pWhiteVAP
mean_Iterative.EI sd_Iterative.EI ci_95_lower_Iterative.EI

| pVoteA | 5.44 | 0.21 | 5.01 |
| :--- | :---: | :---: | :--- |
| pVoteB | 94.58 | 0.25 | 94.08 |

ci_95_upper_Iterative.EI pVoteA 5.83
pVoteB 95.03
\$pBlack_Other
mean_Iterative.EI sd_Iterative.EI
ci_95_lower_Iterative.EI
8.94
89.91

| pVoteA | 80.53 | 0.24 | 80.06 |
| :--- | :--- | :--- | :--- |

$\begin{array}{lll}\text { pVoteB } & 19.47 & 0.29\end{array}$
18.89

\$pWhiteVAP

mean_Iterative.EI sd_Iterative.EI ci_95_lower_Iterative.EI

| pVoteA | 12.12 | 0.58 | 11.13 |
| :--- | :--- | :--- | :--- |
| pVoteB | 87.27 | 0.51 | 86.31 |

ci_95_upper_Iterative.EI
pVoteA 13.38
pVoteB 88.40

| \$pWhite_Other mean Iterative.El sd Iterative.EI | | |
| :---: | :---: | :---: |
| ci_95_lower_Iterative.El | | |
| pVoteA | 15.30 | 0.29 |
| pVoteB | 83.88 | 0.30 |
| ci_95_upper_Iterative.EI | | |
| pVoteA | | |
| pVoteB | | |

Crisler 2011

\$pBlackVAP
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.El

| pVoteA | 91.04 | 0.26 | 90.44 |
| :--- | :--- | :--- | :--- |

| pVoteB | 8.93 | 0.28 | 8.36 |
| :--- | :--- | :--- | :--- |

ci_95_upper_Iterative.EI
pVoteA 91.42
pVoteB 9.39
\$pWhite_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

| pVoteA | 10.56 | 0.26 | 10.03 |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}\text { pVoteB } & 89.41 & 0.23 & 88.94\end{array}$
ci_95_upper_Iterative.EI
pVoteA 11.04
pVoteB 89.91

DuPree
 2011

\$pBlackVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

| pVoteA | 90.88 | 0.33 | 90.20 |
| :--- | :--- | :--- | :--- |

| pVoteB | 9.14 | 0.29 | 8.57 |
| :--- | :--- | :--- | :--- |

ci_95_upper_Iterative.EI
pVoteA 91.51
pVoteB 9.76
\$pWhite_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

| pVoteA | 9.76 | 0.21 | 9.38 |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}\text { pVoteB } & 90.18 & 0.26 & 89.62\end{array}$

| \$pBlack_Other | |
| :--- | :---: |
| mean_Iterative.El sd_Iterativer | |
| ci_95_lower_Iterative.EI | |
| pVoteA 87.16 0.42
 pVoteB 11.99 0.39
 ci_95_upper_Iterative.EI
 pVoteA 87.90
 pVoteB 12.88 | |

\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

| pVoteA | 8.29 | 0.27 | 7.80 |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}\text { pVoteB } & 91.69 & 0.31 & 91.06\end{array}$
ci_95_upper_Iterative.EI
pVoteA 8.76
pVoteB 92.23
\$pBlack_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI

| pVoteA | 88.86 | 0.27 | 88.24 |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}\text { pVoteB } & 11.21 & 0.28 & 10.68\end{array}$
ci_95_upper_Iterative.EI
pVoteA 89.34
pVoteB 11.67
\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

| pVoteA | 8.11 | 0.34 | 7.45 |
| :--- | :--- | :--- | :--- |

| pVoteB | 91.87 | 0.33 | 91.25 |
| :--- | :--- | :--- | :--- |

ci_95_upper_Iterative.EI
pVoteA 8.71
pVoteB 92.48
\$pBlack_Other
mean_Iterative.El sd_Iterative.EI
ci_95_lower_Iterative.EI
$\begin{array}{llll}\text { pVoteA } & 88.00 & 0.38 & 87.12\end{array}$
$\begin{array}{lll}\text { pVoteB } & 11.97 & 0.35\end{array}$

| ci_95_upper_Iterative.EI | ci_95_upper_Iterative.EI | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| pVoteA 10.22 | | pVoteA | 88.67 | | |
| pVoteB 90.61 | | pVoteB | 12.75 | | |
| Green 2011 | | | | | |
| \$pBlackVAP mean_Iterative.EI sd_Iterative.EI | | \$pWhiteVAP mean_Iterative.El sd_Iterative.EI | | | |
| ci_95_lower_Iterative.EI | | ci_95_lower_Iterative.EI | | | |
| $\begin{array}{lll}\text { pVoteA } & 90.94 & 0.32\end{array}$ | 90.27 | pVoteA | 8.16 | 0.34 | 7.47 |
| $\begin{array}{lll}\text { pVoteB } & 9.09 & 0.31\end{array}$ | 8.47 | pVoteB | 91.91 | 0.25 | 91.23 |
| ci_95_upper_Iterative.EI | | ci_95_upper_Iterative.El | | | |
| pVoteA 91.50 | | pVoteA 8.80 | | | |
| pVoteB 9.62 | | pVoteB 92.37 | | | |
| \$pWhite_Other mean_Iterative.EI sd_Iterative.EI | | \$pBlack_Other mean_Iterative.EI sd_Iterative.EI | | | |
| ci_95_lower_Iterative.El | | ci_95_lower_Iterative.EI | | | |
| $\begin{array}{lll}\text { pVoteA } & 9.72 & 0.23\end{array}$ | 9.36 | pVoteA | 87.96 | 0.30 | 87.42 |
| $\begin{array}{lll}\text { pVoteB } & 90.31 & 0.27\end{array}$ | 89.89 | pVoteB | 11.97 | 0.33 | 11.35 |
| ci_95_upper_Iterative.EI ci_95_upper_Iterative.El | | ci_95_upper_Iterative.EI | | | |
| pVoteA 10.18 | | pVoteA | 88 | | |
| pVoteB 90.87 | | pVoteB | | | |

Script

```
## Ecological Inference Analyses
##USE this one
# Outline:
# Loading libraries & importing data
# King's iterative EI
# Row by Columns (RxC) EI
# Summarizing results
# DataVis
# Data files:
# Libraries and Data
library(eiCompare) # Use from latest release, which was summer 2020
dat <- read.csv("C:/Users/J00584364/Downloads/Simmons2019_b.csv", sep=",")
dat$pVoteA <- dat$pVoteA/100
dat$pVoteB <- dat$pVoteB/100
#dat$pBlackVAP <- dat$pBlackVAP/100
dat$pWhiteVAP <- dat$pWhiteVAP/100
#dat$pWhite_Other <- dat$pWhite_Other/100
dat$pBlack_Other <- dat$pBlack_Other/100
```

```
# Iterative EI (King's EI)
iter <- ei iter(
    data = dat,
    cand_cols = c("pVoteA", "pVoteB"),
# race_cols = c("pBlackVAP", "pWhite_Other"),
race_cols = c("pWhiteVAP", "pBlack_Other"),
    totals_col = "total_votes",
    name = "Iterative E EI"
)
#summary(iter)
summary(iter)
```


APPENDIX 4: THREE-GROUP EI COMPARE RAW RESULTS AND SCRIPT

Raw Results

| | $>$ dat <- |
| :--- | :--- |
| $\mathbf{2 0 2 0}$ | read.csv("C:/Users/J00584364/Downloads/Westbrook2020BW.csv", |
| Westbrooks | sep=",") |

mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

| pVoteA | 90.46 | 0.26 |
| :--- | :--- | :--- |

89.98
$\begin{array}{lll}\text { pVoteB } & 9.52 \quad 0.23\end{array}$
9.04
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI

| pVoteA | 91.01 | 90.22 | 0.32 | 89.55 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llll}\text { pVoteB } & 9.90 & 9.78 & 0.32\end{array}$
9.14
ci_95_upper_RxC.EI
pVoteA 90.86
pVoteB $\quad 10.45$
\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI
$\begin{array}{lll}\text { pVoteA } & 6.36 & 0.27\end{array}$
5.87
$\begin{array}{lll}\text { pVoteB } & 93.61 \quad 0.25\end{array}$
93.21
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI

| pVoteA | 6.95 | 6.37 | 0.43 |
| :--- | :--- | :--- | :--- |

5.59
$\begin{array}{lllll}\text { pVoteB } & 94.20 & 93.63 & 0.43 & 92.70\end{array}$
ci_95_upper_RxC.EI
pVoteA 7.30
pVoteB 94.41
\$pOtherVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA $47.43 \quad 3.96$
39.67
$\begin{array}{lll}\text { pVoteB } & 52.26 \quad 4.22\end{array}$
44.38
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
$\begin{array}{lllll}\text { pVoteA } & 55.44 & 58.73 & 4.68 & 48.56\end{array}$
$\begin{array}{lllll}\text { pVoteB } & 60.11 & 41.27 & 4.68 & 32.33\end{array}$
ci_95_upper_RxC.EI
pVoteA 67.67
pVoteB 51.44

2012 Banks

```
dat <- read.csv("C:/Users/J00584364/Downloads/BanksGW1.csv", sep=",")
```

\$pBlackVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

```
pVoteA 81.34 0.27
```

80.89
$\begin{array}{lll}\text { pVoteB } & 18.64 \quad 0.26\end{array}$
18.18
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI

| pVoteA | 81.91 | 79.92 | 0.43 | 79.03 |
| :--- | :--- | :--- | :--- | :--- |

| pVoteB | 19.24 | 20.08 | 0.43 | 19.23 |
| :--- | :--- | :--- | :--- | :--- |

ci_95_upper_RxC.EI
pVoteA 80.77
pVoteB 20.97
\$pWhiteVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI

| pVoteA | 5.45 | 0.26 |
| :--- | :--- | :--- |

4.99
$\begin{array}{lll}\text { pVoteB } & 94.58 \quad 0.25\end{array}$
94.10
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI

| pVoteA | 6.00 | 7.27 | 0.51 |
| :--- | :--- | :--- | :--- |

6.19
$\begin{array}{lllll}\text { pVoteB } & 95.11 & 92.73 & 0.51 & 91.75\end{array}$
ci_95_upper_RxC.EI
pVoteA 8.25
pVoteB 93.81
\$pOtherVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

```
pVoteA 44.35 4.52
```

34.67
$\begin{array}{lll}\text { pVoteB } & 56.01 \quad 3.68\end{array}$
48.12
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI

| pVoteA | 51.95 | 33.68 | 4.48 | 25.35 |
| :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllll}\text { pVoteB } & 62.20 & 66.32 & 4.48 & 56.45\end{array}$
ci_95_upper_RxC.EI
pVoteA 43.55
pVoteB 74.65

```
2011 Green dat <- read.csv("C:/Users/J00584364/Downloads/Green2011.csv", sep=",")
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
pVoteA 90.88 0.29
90.31
pVoteB 9.06 0.30
8.52
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
5 . 7 4
    ci_95_upper_RxC.EI
pVoteA 94.26
pVoteB 6.98
$pWhiteVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 8.08 0.32
7.48
pVoteB 91.93 0.28
91.49
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
5.01
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 6.17
pVoteB 94.99
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
pVoteA 46.97 5.66
37.51
pVoteB 51.54 3.98
4 3 . 4 5
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 52.40
pVoteB 66.82
```

```
2011 Crisler dat <- read.csv("C:/Users/J00584364/Downloads/Crisler2011b.csv", sep=",")
```

2011 Crisler dat <- read.csv("C:/Users/J00584364/Downloads/Crisler2011b.csv", sep=",")
\$pBlackVAP
\$pBlackVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI

```
```

pVoteA 90.98 0.27
90.46
pVoteB 8.99 0.30
8.46
ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 91.54 92.35
pVoteB
6.99
ci_95_upper_RxC.EI
pVoteA 93.01
pVoteB 8.37
\$pWhiteVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 8.37 0.31
7.77
pVoteB 91.62 0.28
91.04
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA
6 . 8 0
pVoteB
ci_95_upper_RxC.EI
pVoteA 8.26
pVoteB 93.20
\$pOtherVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
pVoteA 46.05 18.35
3.13
pVoteB 52.75 6.89
4 0 . 4 1
ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI

| pVoteA | 75.96 | 46.39 | 5.44 | 35.20 |
| :--- | :--- | :--- | :--- | :--- |

| pVoteB | 68.60 | 53.61 | 5.44 | 42.32 |
| :--- | :--- | :--- | :--- | :--- |

 ci_95_upper_RxC.EI
 pVoteA 57.68
pVoteB 64.80
Coleman
2015
dat <- read.csv("C:/Users/J00584364/Downloads/Coleman2015.csv", sep=",")
\$pBlackVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 89.38 0.27
88.86

```
```

pVoteB 10.66 0.26
10.16
ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 89.94 91.16 0.3 90.55
pVoteB 11.14 8.84 0.3
8.27
ci_95_upper_RxC.EI
pVoteA 91.73
pVoteB 9.45
\$pWhiteVAP
mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 4.85 0.28
4.41
pVoteB 95.13 0.29
94.66
ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA
2.65
pVoteB }$$
\begin{array}{lllll}{95.63}&{96.85}&{0.26}&{96.30}
 ci_95_upper_RxC.EI
pVoteA 3.70
pVoteB 97.35
$pOtherVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA }36.90\quad6.2
25.89
pVoteB 62.14 5.76
50.18
 ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA
pVoteB
 ci_95_upper_RxC.EI
pVoteA 35.38
pVoteB }80.1
```
```
Stamps 2019 dat <- read.csv("C:/Users/J00584364/Downloads/Stamps20191.csv", sep=",")
```
Stamps 2019 dat <- read.csv("C:/Users/J00584364/Downloads/Stamps20191.csv", sep=",")
$pBlackVAP
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
pVoteA }02.30\quad0.3
pVoteA }02.30\quad0.3
91.62
91.62
pVoteB 7.67 0.35
pVoteB 7.67 0.35
6.96
6.96
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA 
```
pVoteA
```
```
pVoteB
4.41
 ci_95_upper_RxC.EI
pVoteA 95.59
pVoteB 5.75
$pWhiteVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA
6 . 9 4
pVoteB 92.36 0.36
91.69
 ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA
4.76
pVoteB
 ci_95_upper_RxC.EI
pVoteA 6.35
pVoteB 95.24
$pOtherVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 54.87 3.56
4 8 . 1 3
pVoteB 45.26 3.19
38.36
 ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.El ci_95_lower_RxC.EI
pVoteA
pVoteB
 ci_95_upper_RxC.EI
pVoteA 54.34
pVoteB 59.75
Simmons
2019
dat <- read.csv("C:/Users/J00584364/Downloads/Simmons20191.csv", sep=",")
$pBlackVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 94.05 0.3
93.41
pVoteB 6.00 0.3
5 . 3 7
 ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA
```
```
pVoteB
2.81
 ci_95_upper_RxC.EI
pVoteA 97.19
pVoteB 3.99
$pWhiteVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 8.59 0.35
7.97
pVoteB 91.45 0.36
90.61
 ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA
5.29
pVoteB }\begin{array}{lllll}{92.03}&{93.99}&{0.37}&{93.22}
 ci_95_upper_RxC.EI
pVoteA 6.78
pVoteB 94.71
$pOtherVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA
4 8 . 7 1
pVoteB 41.22 4.62
33.74
 ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA
pVoteB
 ci_95_upper_RxC.EI
pVoteA 58.21
pVoteB 54.83
DuPree 2011
dat <- read.csv("C:/Users/J00584364/Downloads/DuPree2011.csv", sep=",")
$pBlackVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 90.89 0.34
90.25
pVoteB 9.14 0.35
8.55
 ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA
pVoteB
5 . 7 9
```
```
 ci_95_upper_RxC.EI
pVoteA 94.21
pVoteB 6.99
$pWhiteVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA
7.53
pVoteB 91.80 0.29
91.19
 ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA
5 . 0 0
pVoteB }\begin{array}{lllll}{92.33}&{94.47}&{0.28}&{93.89}
 ci_95_upper_RxC.EI
pVoteA 6.11
pVoteB 95.00
$pOtherVAP
 mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 47.76 6.19
37.32
pVoteB 52.88 5.23
4 3 . 7 2
 ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA
pVoteB
 ci_95_upper_RxC.EI
pVoteA 54.35
pVoteB 65.95
```
Obama 2012 dat <- read.csv("C:/Users/J00584364/Downloads/Obama2012.csv", sep=",")
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
\(\begin{array}{lll}\text { pVoteA } & 92.72 \quad 0.28\end{array}\)
92.25
\(\begin{array}{lll}\text { pVoteB } & 6.59 \quad 0.31\end{array}\)
6.06
    ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
\(\begin{array}{lllll}\text { pVoteA } & 93.37 & 93.65 & 0.3 & 93.01\end{array}\)
\(\begin{array}{llll}\text { pVoteB } & 7.24 & 6.35 & 0.3\end{array}
$$\)
5.79
ci_95_upper_RxC.EI
pVoteA 94.21
```pVoteB 6.99 $pWhiteVAP     mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI pVoteA 12.14 0.49 11.22 pVoteB 87.34 0.51 86.37     ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI pVoteA  pVoteB      ci_95_upper_RxC.EI pVoteA 6.11 pVoteB 95.00 $pOtherVAP     mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI pVoteA  76.26 pVoteB 14.55 1.70 11.72     ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI pVoteA  pVoteB      ci_95_upper_RxC.EI pVoteA 54.35 pVoteB 65.95```

Gray 2015

```
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
pVoteA 87.74 0.30
87.10
pVoteB 12.24 0.28
11.73
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 90.46
pVoteB 10.77
$pWhiteVAP
    mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI
```

```
pVoteA 4.52 0.26
4 . 0 4
pVoteB 95.48 0.22
95.12
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 4.96 2.72 0.23
2.28
pVoteB }\begin{array}{lllll}{95.95}&{97.28}&{0.23}&{96.80}
    ci_95_upper_RxC.EI
pVoteA 3.20
pVoteB 97.72
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 44.31 5.24
35.10
pVoteB 56.17 4.38
4 7 . 2 1
    ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
\begin{tabular}{lllll} 
pVoteA & 53.75 & 23.75 & 3.23 & 17.78 \\
pVV保 & 64.56 & 76.25 & 3.23 & 69.19
\end{tabular}
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 30.81
pVoteB 82.22
```

Espy 2018
dat <- read.csv("C:/Users/J00584364/Downloads/Espy20182.csv", sep=",")
\$pBlackVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

pVoteA	94.89	0.30

94.31
$\begin{array}{lll}\text { pVoteB } & 5.05 & 0.29\end{array}$
4.47
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
$\begin{array}{lllll}\text { pVoteA } & 95.42 & 97.6 & 0.33 & 96.83\end{array}$
$\begin{array}{llll}\text { pVoteB } & 5.63 & 2.4 & 0.33\end{array}$
1.79
ci_95_upper_RxC.EI
pVoteA 98.21
pVoteB 3.17
\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI
$\begin{array}{lll}\text { pVoteA } & 16.31 & 0.40\end{array}$
15.42

```
pVoteB 83.76 0.41
82.90
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 13.36
pVoteB 88.27
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 68.38 0.25
6 7 . 8 4
pVoteB 31.66 0.22
31.18
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA 68.98 69.01
pVoteB
    ci_95_upper_RxC.EI
pVoteA 77.27
pVoteB 39.83
Graham
2015 <- read.csv("C:/Users/J00584364/Downloads/Graham20151.csv", sep=",")
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 87.70 0.28
87.17
pVoteB 12.29 0.27
11.83
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 90.34
pVoteB 10.83
$pWhiteVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 4.49 0.26
4 . 0 3
pVoteB 95.52 0.25
95.04
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
```

```
pVoteA 4.97 2.69 0.22
2.28
pVoteB }\begin{array}{lllll}{96.03}&{97.31}&{0.22}&{96.84}
    ci_95_upper_RxC.EI
pVoteA 3.16
pVoteB 97.72
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.El
pVoteA 44.32 4.76
35.59
pVoteB 55.47 4.39
4 8 . 1 0
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 30.92
pVoteB 81.45
```


Green 2019

```
            dat <- read.csv("C:/Users/J00584364/Downloads/Green20191.csv", sep=",")
```

\$pBlackVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI
$\begin{array}{lll}\text { pVoteA } & 92.82 \quad 0.30\end{array}$
92.27
$\begin{array}{lll}\text { pVoteB } & 7.24 & 0.31\end{array}$
6.48
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
$\begin{array}{lllll}\text { pVoteA } & 93.47 & 95.42 & 0.31 & 94.76\end{array}$
$\begin{array}{llll}\text { pVoteB } & 7.71 & 4.58 & 0.31\end{array}$
4.00
ci_95_upper_RxC.EI
pVoteA 96.00
pVoteB 5.24
\$pWhiteVAP
mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

pVoteA	6.90	0.35

6.21
$\begin{array}{lll}\text { pVoteB } & 93.09 & 0.34\end{array}$
92.39
ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
$\begin{array}{llll}\text { pVoteA } & 7.54 & 4.89 & 0.35\end{array}$
4.21
$\begin{array}{lllll}\text { pVoteB } & 93.75 & 95.11 & 0.35 & 94.37\end{array}$

```
    ci_95_upper_RxC.EI
pVoteA 5.63
pVoteB 95.79
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 
4 5 . 0 8
pVoteB 47.93 4.08
39.40
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 50.95
pVoteB 61.65
```


DuPree 2019

```
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 94.31 0.30
93.72
pVoteB 5.64 0.25
5 . 1 4
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA 
pVoteB 
3.04
    ci_95_upper_RxC.EI
pVoteA 96.96
pVoteB 4.08
$pWhiteVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 8.70 0.32
8.16
pVoteB 91.27 0.32
90.60
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
5 . 5 4
pVoteB }\begin{array}{lllll}{91.88}&{93.76}&{0.37}&{92.97}
    ci_95_upper_RxC.EI
pVoteA 7.03
```

```
pVoteB 94.46
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 52.35 5.03
4 3 . 1 8
pVoteB 46.61 6.04
36.67
    ci_95_upper_Iterative.El mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 71.41
pVoteB 44.45
Amos 2019
dat <- read.csv("C:/Users/J00584364/Downloads/Amos20191.csv", sep=",")
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 92.05 0.30
91.48
pVoteB 
7.43
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.El ci_95_lower_RxC.EI
pVoteA 92.63 94.43 0.29 93.83
pVoteB 
5 . 0 0
    ci_95_upper_RxC.EI
pVoteA 95.00
pVoteB 6.17
$pWhiteVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 6.66 0.34
5.93
pVoteB 93.37 0.33
92.77
    ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA 
3.91
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 5.31
pVoteB 96.09
```

```
$pOtherVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 45.38 5.73
34.50
pVoteB 52.84 4.68
4 2 . 4 7
    ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 50.85
pVoteB 65.46
```

Collins 2019
collins20191

mean_Iterative.El sd_Iterative.EI ci_95_lower_Iterative.EI

pVoteA	60.19	6.11

48.64
$\begin{array}{lll}\text { pVoteB } & 40.28 & 6.58\end{array}$
28.13
ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.El ci_95_lower_RxC.EI

pVoteA	71.87	66.92	3.84	58.77

$\begin{array}{lllll}\text { pVoteB } & 52.42 & 33.08 & 3.84 & 25.86\end{array}$
ci_95_upper_RxC.EI
pVoteA $\quad 74.14$
pVoteB 41.23

Espy 2020

```
$pBlackVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 96.38 0.18
96.05
pVoteB 3.63 0.23
3.14
    ci_95_upper_Iterative.El mean_RxC.EI sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
1.57
    ci_95_upper_RxC.EI
pVoteA 98.43
pVoteB 2.52
$pWhiteVAP
    mean_Iterative.El sd_Iterative.El ci_95_lower_Iterative.EI
pVoteA 13.39 0.28
12.79
pVoteB 86.60 0.28
85.90
    ci_95_upper_Iterative.EI mean_RxC.El sd_RxC.El ci_95_lower_RxC.EI
pVoteA 
pVoteB 
    ci_95_upper_RxC.EI
pVoteA 11.79
pVoteB 89.74
$pOtherVAP
    mean_Iterative.EI sd_Iterative.EI ci_95_lower_Iterative.EI
```

pVoteA	72.78	5.24		
61.98				
pVoteB	27.67	4.09		
18.81				
ci_95_upper_Iterative.EI mean_RxC.EI sd_RxC.EI ci_95_lower_RxC.EI				
pVoteA	80.88	75.91	3.53	68.79
pVoteB	34.54	24.09	3.53	17.16
ci_95_upper_RxC.EI				
pVoteA	82.84			
pVoteB	31.21			

Script

```
## Ecological Inference Analyses
##USE this one
# Outline:
# Loading libraries & importing data
# King's iterative EI
# Row by Columns (RxC) EI
# Summarizing results
# DataVis
```

\# Data files:
\# Libraries and Data
library(eiCompare) \# Use from latest release, which was summer 2020
\#\#\#dat <- read.csv("C:/Users/J00584364/Downloads/PracticeData-ReCoded.csv", sep=",")\#\#\#
dat <- read.csv("C:/Users/J00584364/Downloads/Espy2020.csv", sep=",")
summary(dat\$Espy)
dat\$pVoteA $<-$ dat $\$ p$ VoteA/100
dat\$pVoteB <- dat\$pVoteB/100
dat\$pBlackVAP $<-$ dat\$pBlackVAP/100
dat\$pWhiteVAP $<-$ dat\$pWhiteVAP/100
dat\$pOtherVAP <- dat\$pOtherVAP/100
\# Iterative EI (King's EI)
iter <- ei_iter
data $=$ dat,
\#cand_cols = c("pVoteA", "pVoteB"),
cand_cols = c("pVoteA", "pVoteB"),
race_cols = c("pBlackVAP", "pWhiteVAP", "pOtherVAP"),
\#race_cols = c("pBlackVAP", "pWhiteVAP" , "pOtherVAP"),
totals_col = "total_votes",
name = "Iterative EI"
)

```
# Rows by Columns (RxC) -----------------------------------------------------
rxc}<\mathrm{ - ei rxc(
    data = dat,
    cand_cols = c("pVoteA", "pVoteB"),
    race_cols = c("pBlackVAP", "pWhiteVAP", "pOtherVAP"),
    totals_col = "total_votes",
    name = "RxC EI",
)
# Summary Table ---------------------------------------------------------------
summary(iter, rxc)
\# Plot out Results
plot(iter, rxc)
```

IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF MISSISSIPPI GREENVILLE DIVISION

DYAMONE WHITE, et al.,

Plaintiffs, vs.
STATE BOARD OF ELECTION COMMISSIONERS, et al.,

Defendants.
No. 4:22cv62-MPM-JMV

DECLARATION OF BYRON D'ANDRA OREY

I, Byron D'Andra Orey, make the following declaration based on personal knowledge:

1. I have been retained by the Plaintiffs in the above referenced matter as expert.
2. I submit that the foregoing report from me dated October 3, 2022 is a true and accurate copy of the report I provided to Plaintiffs in this matter. I declare that the information and opinions contained in the report are true and correct to the best of my knowledge.

Pursuant to 28 U.S.C. § 1746, I declare under penalty of perjury that the foregoing is true and correct.

October 3, 2022

IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF MISSISSIPPI GREENVILLE DIVISION

DYAMONE WHITE, et al.,

Plaintiffs,
vs.
STATE BOARD OF ELECTION COMMISSIONERS, et al.,

Defendants.

No. 4:22cv62-SA-JMV

RESPONSIVE DECLARATION OF WILLIAM S. COOPER

WILLIAM S. COOPER, acting in accordance with 28 U.S.C. § 1746,
Federal Rule of Civil Procedure 26(a) (2) (B), and Federal Rules of Evidence 702 and 703 , does hereby declare and say:

1. My name is William S. Cooper. I filed a declaration in this lawsuit on Oct. 3, 2022. I file this declaration in response to the Declaration of Dr. David Swanson dated January 6, 2023. I respond to Dr. Swanson's concerns in the order he has raised them: (A) Citizen voting age population ("CVAP"), (B) Core Retention (C) Compactness, (D) Polling place proximity, and (E) Diversity. In short, I find all of his concerns to be baseless.

A. Citizen Voting Age Population

2. Dr. Swanson's discussion of the voting-age-population (VAP) versus CVAP metrics only confirms my conclusion that the Black population in Mississippi is sufficiently numerous and compact to form a majority-Black district in a three-district system, thereby satisfying the first Gingles factor.
3. To start: Dr. Swanson claims that I rely on the use of the VAP metric to "argue that MS SCOMS District 1 is a minority Black district at 49.3\% [VAP]," citing page 19 of my initial report. Swanson Report at 9 (emphasis in original); see also id. at 21, 23. That is not what my report says. As I explain on the cited page, under the current lines, Supreme Court District 1 is "a 4 percentage-point plurality BVAP district."
4. Dr. Swanson does not disagree with my demographic analysis. Rather, Dr. Swanson's main opinion is that Enacted 1987 Supreme Court District 1 currently contains a Black CVAP ("BCVAP") majority, and that the various illustrative and least-change plans are also BCVAP-majority (ranging from 57.0\% to $53.8 \%) .{ }^{1}$ Based on the 5 -Year 2016-2020 ACS Supplemental Tabulation, from

[^138]which CVAP figures are derived, that is true, but it only confirms my ultimate conclusion. The fact that the Black population in the current district is large enough to constitute a BCVAP majority, and that all of the alternative, whole-county Supreme Court plans that I have drawn are also BCVAP majority, only cements the fact that Plaintiffs have satisfied the Gingles 1 precondition, which asks whether the Black population in Mississippi is sufficiently numerous and geographically compact to allow for the creation of at least one majority-Black district. It undoubtedly is. ${ }^{2}$
5. Whether Supreme District 1 is ultimately "in need of remediation" (as Dr.

Swanson puts it on page 21 of his report) is a larger question. It is my
understanding that other experts in this case have concluded that Supreme Court
District 1 also fails the racial bloc voting tests of Gingles 2 and Gingles 3, in that
Black-preferred candidates are typically defeated by high levels of bloc voting by white voters. That is not the subject of my report and it is not covered in Dr.

[^139]Swanson's either. Gingles 1 is one piece of the puzzle, and on that score Dr. Swanson's CVAP analysis doesn't change anything.
6. Dr. Swanson questions why I used the VAP rather than CVAP metric here. Notably, VAP is based on Census data, whereas CVAP is an estimate based on the ACS survey. For that reason, VAP is the traditional standard. I often use both in my Voting Rights Act work, but CVAP is typically more useful to consider where there may be larger non-citizen populations, or later in decennial Census cycle. As Dr. Swanson's own analysis shows, Mississippi does not have a large non-citizen population, and it is not late in the Census cycle. In a state like Mississippi, where the population is almost all either Black or white, the two metrics do not yield particularly different results, as Dr. Swanson's own analysis shows.
7. Dr. Swanson's prison-adjusted eligible voter would not change the bottom-line conclusion on Gingles 1 even if it were sound. However, the analysis is in any case deeply flawed. As I explained in my opening report (at pages 19 and 20) Black Mississippians are disproportionately disenfranchised on the basis of a felony conviction. Dr. Swanson does not contest that disproportionality. Rather, he minimizes it, adjusting his CVAP estimates to account for people who are rendered unable to vote because they are currently incarcerated, but omitting all of the thousands of people who have entered and left prison over the decades but remain
disenfranchised. See Swanson Report at 23 ("While it is widely recognized that Mississippi has numerous felons ineligible to vote who are not currently incarcerated, there is no practical way to measure or locate these demographically by district in a meaningful way.").
8. This omission results in a miscalculation that is an order of magnitude off the mark. Using current prison population statistics, Dr. Swanson's prison-adjusted eligible voter analysis subtracts a total of 7,003 people from the total citizen voting age population of the state because they are currently incarcerated. Swanson Report at 26-28.
9. A 2018 analysis of records from the State Administrative Office of Courts showed that the total number of persons ineligible to vote due to a felony conviction that occurred between 1994 and 2017 (i.e., a 23 -year subset of the actual total population that excludes anyone convicted prior to 1994 and since 2017) is over 56,000 , with Black Mississippians accounting for over 60% of that number. ${ }^{3}$ Dr. Swanson's conclusion that accounting for felon disenfranchisement does not affect voting eligible CVAP in the Supreme Court districts is not the product of any credible analysis.

[^140]10. It is clearly within the realm of possibility that, after factoring in felony convictions going back to 1948 (two additional 23-year periods), the adjusted eligible Black CVAP for voters in Supreme Court District 1 may drop below 50\%.

B. Core Retention

11. Dr. Swanson claims that I do not analyze the Supreme Court districts using the principle of "core retention." His assertions on that score are irrelevant.
12.First, and as a general matter, the very nature of a Section 2 lawsuit means that if the plaintiffs prevail, district boundaries will change from their existing lines. This often means that core-retention scores are lower for the proposed illustrative plans in Section 2 litigation. In my experience, core-retention is a non-issue in Section 2 litigation because if there is a finding of liability, the State has the opportunity to offer a remedial plan that would maximize core-retention within the constraints of the court's ruling.
13.Moreover, core retention, when it is considered at all, usually involves comparing both a newly enacted districting plan and an alternate illustrative plan to the prior benchmark plan, to see which plan retains more of the district cores from the prior benchmark. This might happen in the context of post-Census legislative redistricting. But here, the State has not redrawn the districts at issue since 1987, and there is no newly enacted plan to consider, so the core retention analysis is especially inapposite.
12. Core retention is also inapposite because Mississippi does not appear to consider it as a traditional districting consideration. According to the review of redistricting criteria for legislative redistricting by the National Conference of State Legislators that Dr. Swanson himself credits, core retention is mentioned in just 17 states-and Mississippi is not one of the 17.4
13. And if it mattered, Dr. Swanson's own analysis shows that Illustrative Plans 1 and 2 result in 74.3% and 66.8% voters remaining in their same Supreme Court districts, respectively-substantial majorities. Swanson Report at 37. Meanwhile, "Least Change" plans 1 and 2, which were offered precisely to demonstrate that whole-county Black-majority districts could be drawn while making more minimal changes to the existing lines, maintain 92.4% and 95.8% of voters in their existing Supreme Court districts, respectively. Swanson Report at 37.
14. I did not focus solely on core retention because, as I explained in my initial report, I drew the illustrative districts to follow whole counties and (to the extent possible) Mississippi Planning and Development district boundaries. These planning regions reflect county-level communities of interest that have been

[^141]expressly acknowledged and drawn into ten planning districts by the State of Mississippi.
17. Both Illustrative Plan 1 and Illustrative Plan 2 split fewer state-drawn Planning District boundaries than the 1987 Supreme Court Plan. Under the 1987 Plan (Exhibit A-1) five planning districts are whole, with ten planning district splits. Under Illustrative Plan 1 (Exhibit A-2) eight planning districts are whole, with four planning district splits. Under Illustrative Plan 2 (Exhibit A-3) seven planning districts are whole, with six planning district splits.

C. Compactness

18. Dr. Swanson also attempts to argue that the Illustrative Plans I have drawn are not compact. Swanson Report at 37-43. I reviewed compactness scores for the Illustrative Plans prior to filing my report. The scores are clearly within the norm. The plans are drawn at the county level, making it easy for candidates to run an election campaign and for voters to know the boundaries of the district they are in.
19. Apart from the use of compactness scores, redistricting experts and mapdrawers commonly employ an eyeball test to assess whether a plan is reasonably compact. Under that approach, there is no serious dispute that the illustrative plans and least change plans I have drawn are reasonably compact. Even in terms of
compactness scores, the plans are superior to many congressional redistricting plans drawn in the past decade. ${ }^{5}$
20. Compactness is typically balanced with other factors, and an illustrative district need not be the most compact to demonstrate Gingles 1. See Georgia State Conference of NAACP v. Fayette County Board of Commissioners, No. 3:11-cv-123-TCB (N.D. Ga), May, 21, 2013 at pp. 31-36). ${ }^{6}$ In my experience, the issue is whether the district drawn is reasonably compact. I am certain that these wholecounty districts are.
21. And if a head-to-head numeric analysis were required, Illustrative Plan 1 (which, as noted in my original report, is based on the State's own congressional lines) is just as compact as the current map. As shown in Figure 1, there is virtually no difference between the 1987 Supreme Court Plan and Illustrative Plan 1 overall.
[^142]Figure 1: Compactness Scores (1987 Plan vs. Illustrative Plan 1)

	Higher is better			Lower is better
	Polsby- Popper	Reock	Convex Hull	Original Schwartzberg7
1987 Supreme Court Plan	0.29	0.51	0.77	1.74
Illustrative Plan 1	0.28	0.36	0.78	1.74

22. Moreover, and as shown in Figure 2, there is no meaningful difference between the compactness scores for District 1 in the 1987 Supreme Court Plan versus Illustrative Plan 1.

Figure 2: Compactness Scores for District 1 (1987 Plan vs. Illustrative Plan 1)

	Higher is better			Lower is better
	Polsby- Popper	Reock	Convex Hull	Original Schwartzberg
1987 Supreme Court Plan	0.15	0.42	0.65	2.22
Illustrative Plan 1	0.15	0.32	0.74	2.15

7 Based on the original Schwartzberg compactness score. The original Schwartzberg measure is appropriate because it simplifies the complicated shorelines of the Mississippi River. Dr. Swanson uses the Alternative Schwartzberg measure, which ignores the simplification step.

From the Maptitude for Redistricting documentation:
"The Schwartzberg test is a perimeter-based measure that compares a simplified version of each district to a circle, which is considered to be the most compact shape possible. This test requires the base layer that was used to create the districts. The base layer is used to simplify each district to exclude complicated coastlines.

The alternate version of the Schwartzberg test is a perimeter-based measure that compares each district to a circle, ignoring the district simplification step used by the original test."

D. Polling Place Proximity

23. Dr. Swanson employs a flawed methodology to estimate voter proximity to polling places. See Swanson Report at 42-46. The number of active registered voters who live within a half mile of their polling place is much smaller than Dr. Swanson suggests.
24. As shown in Figure 3 and described in more detail infra, I estimate that 26.3% of active registered Black voters live within a half mile of their polling place - not 52% as Dr. Swanson asserts.

Figure 3: Estimated Voters Living within a Half-Mile of their Polling Place

Radii	Registered	$\%$ of Statewide Registered	Black Registered	\% Black Registered	$\%$ of Statewide Black Registered
$1 / 2$ mile or less	372,518	19.2\%	177,263	47.6\%	26.3\%
$>1 / 2$ mile	1,572,622	80.8\%	497,511	31.6\%	73.7\%
Statewide	1,945,140	100.0\%	674,774	34.7\%	100.0\%

25. Apparently, Dr. Swanson has erroneously counted the entire VAP living in any census block that is wholly or partly within a half mile radius of any polling place in his total of persons within the half-mile radius. That seems to be the only way to generate a VAP half-mile proximity number as high as 972,324 . See Swanson Report at 45, Table III.G.1.
26. In order to demonstrate the flaws in Dr. Swanson's analysis, I overlaid a statewide census block shapefile with Census 2020 data and created half-mile radii
around 1,762 polling place locations, the geocoded locations of which were provided by the Defendants.
27. Figure $\mathbf{4}$ shows that many of the census blocks (the light blue blotches) that are wholly or partly within the half-mile radii around the polling place (the small black circles) also extend well into outlying populations far outside the halfmile radii.

Figure 4: Half-mile Radii and Adjacent Blocks

28. By my count, the statewide VAP in the blue areas adds up to 970,535 , almost matching Dr. Swanson's statewide count of 972,324. Statewide, the light blue areas (partially depicted in Figure 4) cover a land area of 8,312 square miles about six times the land area encompassed by the 1,384 square miles taken up by 1,762 half-mile radii.
29. To properly estimate the number of active registered voters by race living within a half-mile of their polling place, I employed a 3-step methodology. Step 1: I geocoded a statewide voter file (dated June 6. 2022) with the Maptitude for Redistricting software. Of the 1,915,005 active voters listed in the voter file, the Maptitude software geocoded with precision 1,845,035 active voters (96.3\%). Step 2: To estimate active Black voters, I assigned a weight to each voter based on the 2020 BVAP percentage of the census block where they reside. Step 3: To avoid over-counting voters who live within a half-mile of one or more polling places other than their own (a fairly common occurrence in urbanized areas), I assigned voters in each radius only to the VTD where they actually vote.
30. The bottom line estimate shown in Figure 3 supra is that 47.6% of active voters living within a half mile of their polling place are Black, which is a minority of voters living within a half-mile of their polling place. These half-mile radii Black voters represent just 26.3% of active Black voters.
31. Stepping back, the presumption that polling place proximity translates into greater participation is in any case flawed, because numerous socio-economic factors contribute to the ease of access of one's polling place.
32. For example, a number of voters (of all races) have a disability and may not be able to walk to their polling place at all. See Exhibit L-1- p.23, Cooper Declaration October 3, 2022.
33. Other voters may have responsibilities that make it impossible to walk (e.g., 51.4% of Black female-headed households with children live below poverty compared to 37.4% of their white counterparts). See Exhibit L-1- p.4, Cooper Declaration October 3, 2022.
34. More to the point, for voters who cannot walk to a polling place (whatever their geographic proximity as the crow flies), it helps to have a car. And that is where the small half-mile proximity advantage Black voters may hold in Mississippi evaporates. Statewide 10% of Black households do not have a car vs. 4.3\% of white households. See Exhibit L-1- p.17, Cooper Declaration October 3, 2022. And the racial disparity expands to 12% vs. 4.5% in the Delta region of the state (largely encompassed by Congressional District 2 in the 2010s). ${ }^{8}$ See Exhibit

[^143]M-1- p.17, Cooper Declaration October 3, 2022.

E. Diversity

35. Dr. Swanson's cluster analysis of county-level "diversity" has no place in the Section 2 context. ${ }^{9}$ See Swanson Report at 46-66. One necessary requirement in a Section 2 redistricting lawsuit is to be able to create a majority-minority district by including minority populations in a single district in a manner that satisfies the first prong of Gingles. But Dr. Swanson's cluster analysis necessarily prioritizes spreading (also known as "cracking") Black voters across three majority-white Supreme Court districts, ostensibly in the name of optimizing "diversity." That analysis is incompatible with the Gingles test. Indeed, optimizing for Dr.

Swanson's diversity cluster analysis score would run counter to a key, nonnegotiable traditional redistricting principle - avoiding the dilution of minority voting strength. In fact, I have never seen anyone attempt to analyze a districting map in this way in my decades of Voting Rights Act work.

[^144]The 2021 version relies on ACS 2015-2019 - the last ACS release unaffected by the COVID-19 pandemic years of 2020 and 2021.

For socio-economic contrast charts (Black, Latino, and NH White) that I prepared by county and municipality, based on the 5-Year 2015-2019 ACS see:
http://www.fairdata2000.com/ACS_2015_19/Mississippi/.
36. Moreover, Dr. Swanson never explicitly defines his use of the term "diversity," which appears to take on different meanings at various parts of his report, some of them highly unnatural. For instance, unrelated to his diversity cluster analysis, Dr. Swanson opines that Mississippi (which is a greater percentage Black than any other state in the country) is less diverse than the United States as a whole because 92% of Mississippi is either Black or white. Swanson Report at 1415. He does not address his own analysis showing that the majority ethnic group in Mississippi-the "White Alone" category"-is a smaller share of the State's population compared to the United States as a whole, and he implicitly (and severely) discounts Black Mississippians' contribution to the diversity of the State. As defined by the percentage of the state-level population that is not non-Hispanic White, Mississippi is the 12th most racially diverse state in the nation.

Executed on February 4, 2023.

IN THE UNITED STATES DISTRICT COURT FOR THE NORTHERN DISTRICT OF MISSISSIPPI GREENVILLE DIVISION

DYAMONE WHITE, et al.,

Plaintiffs,
vs.
STATE BOARD OF ELECTION COMMISSIONERS, et al.,

Defendants.

No. 4:22cv62-SA-JMV

RESPONSIVE DECLARATION OF WILLIAM S. COOPER

WILLIAM S. COOPER, acting in accordance with 28 U.S.C. § 1746,
Federal Rule of Civil Procedure 26(a) (2) (B), and Federal Rules of Evidence 702 and 703 , does hereby declare and say:

1. My name is William S. Cooper. I filed a declaration in this lawsuit on Oct. 3, 2022. I file this declaration in response to the Declaration of Dr. David Swanson dated January 6, 2023. I respond to Dr. Swanson's concerns in the order he has raised them: (A) Citizen voting age population ("CVAP"), (B) Core Retention (C) Compactness, (D) Polling place proximity, and (E) Diversity. In short, I find all of his concerns to be baseless.

A. Citizen Voting Age Population

2. Dr. Swanson's discussion of the voting-age-population (VAP) versus CVAP metrics only confirms my conclusion that the Black population in Mississippi is sufficiently numerous and compact to form a majority-Black district in a three-district system, thereby satisfying the first Gingles factor.
3. To start: Dr. Swanson claims that I rely on the use of the VAP metric to "argue that MS SCOMS District 1 is a minority Black district at 49.3\% [VAP]," citing page 19 of my initial report. Swanson Report at 9 (emphasis in original); see also id. at 21, 23. That is not what my report says. As I explain on the cited page, under the current lines, Supreme Court District 1 is "a 4 percentage-point plurality BVAP district."
4. Dr. Swanson does not disagree with my demographic analysis. Rather, Dr. Swanson's main opinion is that Enacted 1987 Supreme Court District 1 currently contains a Black CVAP ("BCVAP") majority, and that the various illustrative and least-change plans are also BCVAP-majority (ranging from 57.0\% to $53.8 \%) .{ }^{1}$ Based on the 5 -Year 2016-2020 ACS Supplemental Tabulation, from

[^145]which CVAP figures are derived, that is true, but it only confirms my ultimate conclusion. The fact that the Black population in the current district is large enough to constitute a BCVAP majority, and that all of the alternative, whole-county Supreme Court plans that I have drawn are also BCVAP majority, only cements the fact that Plaintiffs have satisfied the Gingles 1 precondition, which asks whether the Black population in Mississippi is sufficiently numerous and geographically compact to allow for the creation of at least one majority-Black district. It undoubtedly is. ${ }^{2}$
5. Whether Supreme District 1 is ultimately "in need of remediation" (as Dr.

Swanson puts it on page 21 of his report) is a larger question. It is my
understanding that other experts in this case have concluded that Supreme Court
District 1 also fails the racial bloc voting tests of Gingles 2 and Gingles 3, in that
Black-preferred candidates are typically defeated by high levels of bloc voting by white voters. That is not the subject of my report and it is not covered in Dr.

[^146]Swanson's either. Gingles 1 is one piece of the puzzle, and on that score Dr. Swanson's CVAP analysis doesn't change anything.
6. Dr. Swanson questions why I used the VAP rather than CVAP metric here. Notably, VAP is based on Census data, whereas CVAP is an estimate based on the ACS survey. For that reason, VAP is the traditional standard. I often use both in my Voting Rights Act work, but CVAP is typically more useful to consider where there may be larger non-citizen populations, or later in decennial Census cycle. As Dr. Swanson's own analysis shows, Mississippi does not have a large non-citizen population, and it is not late in the Census cycle. In a state like Mississippi, where the population is almost all either Black or white, the two metrics do not yield particularly different results, as Dr. Swanson's own analysis shows.
7. Dr. Swanson's prison-adjusted eligible voter would not change the bottom-line conclusion on Gingles 1 even if it were sound. However, the analysis is in any case deeply flawed. As I explained in my opening report (at pages 19 and 20) Black Mississippians are disproportionately disenfranchised on the basis of a felony conviction. Dr. Swanson does not contest that disproportionality. Rather, he minimizes it, adjusting his CVAP estimates to account for people who are rendered unable to vote because they are currently incarcerated, but omitting all of the thousands of people who have entered and left prison over the decades but remain
disenfranchised. See Swanson Report at 23 ("While it is widely recognized that Mississippi has numerous felons ineligible to vote who are not currently incarcerated, there is no practical way to measure or locate these demographically by district in a meaningful way.").
8. This omission results in a miscalculation that is an order of magnitude off the mark. Using current prison population statistics, Dr. Swanson's prison-adjusted eligible voter analysis subtracts a total of 7,003 people from the total citizen voting age population of the state because they are currently incarcerated. Swanson Report at 26-28.
9. A 2018 analysis of records from the State Administrative Office of Courts showed that the total number of persons ineligible to vote due to a felony conviction that occurred between 1994 and 2017 (i.e., a 23 -year subset of the actual total population that excludes anyone convicted prior to 1994 and since 2017) is over 56,000 , with Black Mississippians accounting for over 60% of that number. ${ }^{3}$ Dr. Swanson's conclusion that accounting for felon disenfranchisement does not affect voting eligible CVAP in the Supreme Court districts is not the product of any credible analysis.

[^147]10. It is clearly within the realm of possibility that, after factoring in felony convictions going back to 1948 (two additional 23-year periods), the adjusted eligible Black CVAP for voters in Supreme Court District 1 may drop below 50\%.

B. Core Retention

11. Dr. Swanson claims that I do not analyze the Supreme Court districts using the principle of "core retention." His assertions on that score are irrelevant.
12.First, and as a general matter, the very nature of a Section 2 lawsuit means that if the plaintiffs prevail, district boundaries will change from their existing lines. This often means that core-retention scores are lower for the proposed illustrative plans in Section 2 litigation. In my experience, core-retention is a non-issue in Section 2 litigation because if there is a finding of liability, the State has the opportunity to offer a remedial plan that would maximize core-retention within the constraints of the court's ruling.
13.Moreover, core retention, when it is considered at all, usually involves comparing both a newly enacted districting plan and an alternate illustrative plan to the prior benchmark plan, to see which plan retains more of the district cores from the prior benchmark. This might happen in the context of post-Census legislative redistricting. But here, the State has not redrawn the districts at issue since 1987, and there is no newly enacted plan to consider, so the core retention analysis is especially inapposite.
12. Core retention is also inapposite because Mississippi does not appear to consider it as a traditional districting consideration. According to the review of redistricting criteria for legislative redistricting by the National Conference of State Legislators that Dr. Swanson himself credits, core retention is mentioned in just 17 states-and Mississippi is not one of the 17.4
13. And if it mattered, Dr. Swanson's own analysis shows that Illustrative Plans 1 and 2 result in 74.3% and 66.8% voters remaining in their same Supreme Court districts, respectively-substantial majorities. Swanson Report at 37. Meanwhile, "Least Change" plans 1 and 2, which were offered precisely to demonstrate that whole-county Black-majority districts could be drawn while making more minimal changes to the existing lines, maintain 92.4% and 95.8% of voters in their existing Supreme Court districts, respectively. Swanson Report at 37.
14. I did not focus solely on core retention because, as I explained in my initial report, I drew the illustrative districts to follow whole counties and (to the extent possible) Mississippi Planning and Development district boundaries. These planning regions reflect county-level communities of interest that have been

[^148]expressly acknowledged and drawn into ten planning districts by the State of Mississippi.
17. Both Illustrative Plan 1 and Illustrative Plan 2 split fewer state-drawn Planning District boundaries than the 1987 Supreme Court Plan. Under the 1987 Plan (Exhibit A-1) five planning districts are whole, with ten planning district splits. Under Illustrative Plan 1 (Exhibit A-2) eight planning districts are whole, with four planning district splits. Under Illustrative Plan 2 (Exhibit A-3) seven planning districts are whole, with six planning district splits.

C. Compactness

18. Dr. Swanson also attempts to argue that the Illustrative Plans I have drawn are not compact. Swanson Report at 37-43. I reviewed compactness scores for the Illustrative Plans prior to filing my report. The scores are clearly within the norm. The plans are drawn at the county level, making it easy for candidates to run an election campaign and for voters to know the boundaries of the district they are in.
19. Apart from the use of compactness scores, redistricting experts and mapdrawers commonly employ an eyeball test to assess whether a plan is reasonably compact. Under that approach, there is no serious dispute that the illustrative plans and least change plans I have drawn are reasonably compact. Even in terms of
compactness scores, the plans are superior to many congressional redistricting plans drawn in the past decade. ${ }^{5}$
20. Compactness is typically balanced with other factors, and an illustrative district need not be the most compact to demonstrate Gingles 1. See Georgia State Conference of NAACP v. Fayette County Board of Commissioners, No. 3:11-cv-123-TCB (N.D. Ga), May, 21, 2013 at pp. 31-36). ${ }^{6}$ In my experience, the issue is whether the district drawn is reasonably compact. I am certain that these wholecounty districts are.
21. And if a head-to-head numeric analysis were required, Illustrative Plan 1 (which, as noted in my original report, is based on the State's own congressional lines) is just as compact as the current map. As shown in Figure 1, there is virtually no difference between the 1987 Supreme Court Plan and Illustrative Plan 1 overall.
[^149]Figure 1: Compactness Scores (1987 Plan vs. Illustrative Plan 1)

	Higher is better			Lower is better
	Polsby- Popper	Reock	Convex Hull	Original Schwartzberg7
1987 Supreme Court Plan	0.29	0.51	0.77	1.74
Illustrative Plan 1	0.28	0.36	0.78	1.74

22. Moreover, and as shown in Figure 2, there is no meaningful difference between the compactness scores for District 1 in the 1987 Supreme Court Plan versus Illustrative Plan 1.

Figure 2: Compactness Scores for District 1 (1987 Plan vs. Illustrative Plan 1)

	Higher is better			Lower is better
	Polsby- Popper	Reock	Convex Hull	Original Schwartzberg
1987 Supreme Court Plan	0.15	0.42	0.65	2.22
Illustrative Plan 1	0.15	0.32	0.74	2.15

7 Based on the original Schwartzberg compactness score. The original Schwartzberg measure is appropriate because it simplifies the complicated shorelines of the Mississippi River. Dr. Swanson uses the Alternative Schwartzberg measure, which ignores the simplification step.

From the Maptitude for Redistricting documentation:
"The Schwartzberg test is a perimeter-based measure that compares a simplified version of each district to a circle, which is considered to be the most compact shape possible. This test requires the base layer that was used to create the districts. The base layer is used to simplify each district to exclude complicated coastlines.

The alternate version of the Schwartzberg test is a perimeter-based measure that compares each district to a circle, ignoring the district simplification step used by the original test."

D. Polling Place Proximity

23. Dr. Swanson employs a flawed methodology to estimate voter proximity to polling places. See Swanson Report at 42-46. The number of active registered voters who live within a half mile of their polling place is much smaller than Dr. Swanson suggests.
24. As shown in Figure 3 and described in more detail infra, I estimate that 26.3% of active registered Black voters live within a half mile of their polling place - not 52% as Dr. Swanson asserts.

Figure 3: Estimated Voters Living within a Half-Mile of their Polling Place

Radii	Registered	$\%$ of Statewide Registered	Black Registered	\% Black Registered	$\%$ of Statewide Black Registered
$1 / 2$ mile or less	372,518	19.2\%	177,263	47.6\%	26.3\%
$>1 / 2$ mile	1,572,622	80.8\%	497,511	31.6\%	73.7\%
Statewide	1,945,140	100.0\%	674,774	34.7\%	100.0\%

25. Apparently, Dr. Swanson has erroneously counted the entire VAP living in any census block that is wholly or partly within a half mile radius of any polling place in his total of persons within the half-mile radius. That seems to be the only way to generate a VAP half-mile proximity number as high as 972,324 . See Swanson Report at 45, Table III.G.1.
26. In order to demonstrate the flaws in Dr. Swanson's analysis, I overlaid a statewide census block shapefile with Census 2020 data and created half-mile radii
around 1,762 polling place locations, the geocoded locations of which were provided by the Defendants.
27. Figure $\mathbf{4}$ shows that many of the census blocks (the light blue blotches) that are wholly or partly within the half-mile radii around the polling place (the small black circles) also extend well into outlying populations far outside the halfmile radii.

Figure 4: Half-mile Radii and Adjacent Blocks

28. By my count, the statewide VAP in the blue areas adds up to 970,535 , almost matching Dr. Swanson's statewide count of 972,324. Statewide, the light blue areas (partially depicted in Figure 4) cover a land area of 8,312 square miles about six times the land area encompassed by the 1,384 square miles taken up by 1,762 half-mile radii.
29. To properly estimate the number of active registered voters by race living within a half-mile of their polling place, I employed a 3-step methodology. Step 1: I geocoded a statewide voter file (dated June 6. 2022) with the Maptitude for Redistricting software. Of the 1,915,005 active voters listed in the voter file, the Maptitude software geocoded with precision 1,845,035 active voters (96.3\%). Step 2: To estimate active Black voters, I assigned a weight to each voter based on the 2020 BVAP percentage of the census block where they reside. Step 3: To avoid over-counting voters who live within a half-mile of one or more polling places other than their own (a fairly common occurrence in urbanized areas), I assigned voters in each radius only to the VTD where they actually vote.
30. The bottom line estimate shown in Figure 3 supra is that 47.6% of active voters living within a half mile of their polling place are Black, which is a minority of voters living within a half-mile of their polling place. These half-mile radii Black voters represent just 26.3% of active Black voters.
31. Stepping back, the presumption that polling place proximity translates into greater participation is in any case flawed, because numerous socio-economic factors contribute to the ease of access of one's polling place.
32. For example, a number of voters (of all races) have a disability and may not be able to walk to their polling place at all. See Exhibit L-1- p.23, Cooper Declaration October 3, 2022.
33. Other voters may have responsibilities that make it impossible to walk (e.g., 51.4% of Black female-headed households with children live below poverty compared to 37.4% of their white counterparts). See Exhibit L-1- p.4, Cooper Declaration October 3, 2022.
34. More to the point, for voters who cannot walk to a polling place (whatever their geographic proximity as the crow flies), it helps to have a car. And that is where the small half-mile proximity advantage Black voters may hold in Mississippi evaporates. Statewide 10% of Black households do not have a car vs. 4.3\% of white households. See Exhibit L-1- p.17, Cooper Declaration October 3, 2022. And the racial disparity expands to 12% vs. 4.5% in the Delta region of the state (largely encompassed by Congressional District 2 in the 2010s). ${ }^{8}$ See Exhibit

[^150]M-1- p.17, Cooper Declaration October 3, 2022.

E. Diversity

35. Dr. Swanson's cluster analysis of county-level "diversity" has no place in the Section 2 context. ${ }^{9}$ See Swanson Report at 46-66. One necessary requirement in a Section 2 redistricting lawsuit is to be able to create a majority-minority district by including minority populations in a single district in a manner that satisfies the first prong of Gingles. But Dr. Swanson's cluster analysis necessarily prioritizes spreading (also known as "cracking") Black voters across three majority-white Supreme Court districts, ostensibly in the name of optimizing "diversity." That analysis is incompatible with the Gingles test. Indeed, optimizing for Dr.

Swanson's diversity cluster analysis score would run counter to a key, nonnegotiable traditional redistricting principle - avoiding the dilution of minority voting strength. In fact, I have never seen anyone attempt to analyze a districting map in this way in my decades of Voting Rights Act work.

[^151]The 2021 version relies on ACS 2015-2019 - the last ACS release unaffected by the COVID-19 pandemic years of 2020 and 2021.

For socio-economic contrast charts (Black, Latino, and NH White) that I prepared by county and municipality, based on the 5-Year 2015-2019 ACS see:
http://www.fairdata2000.com/ACS_2015_19/Mississippi/.
36. Moreover, Dr. Swanson never explicitly defines his use of the term "diversity," which appears to take on different meanings at various parts of his report, some of them highly unnatural. For instance, unrelated to his diversity cluster analysis, Dr. Swanson opines that Mississippi (which is a greater percentage Black than any other state in the country) is less diverse than the United States as a whole because 92% of Mississippi is either Black or white. Swanson Report at 1415. He does not address his own analysis showing that the majority ethnic group in Mississippi-the "White Alone" category"-is a smaller share of the State's population compared to the United States as a whole, and he implicitly (and severely) discounts Black Mississippians' contribution to the diversity of the State. As defined by the percentage of the state-level population that is not non-Hispanic White, Mississippi is the 12th most racially diverse state in the nation.

Executed on February 4, 2023.

[^0]: "Under the circumstances prevailing in Mississippi today, and in light of the history from which those circumstances originate, it is my opinion that Black

[^1]: ${ }^{1}$ https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html
 ${ }^{2}$ https://data.census.gov/cedsci/profile/Mississippi?g=0400000US28

[^2]: ${ }^{3}$ https://www.mississippi-demographics.com/counties_by_population
 ${ }^{4}$ https://www.mssupervisors.org/mississippi-counties
 ${ }^{5}$ Provided by MS Attorney General's Office: a copy of "The Code of Mississippi, 1848, Article 11, An Act to Regulate the Districts for the Election of Judges of the High Court of Errors and Appeals and to Change the Terms of Said Court."
 ${ }^{6}$ https://courts.ms.gov/appellatecourts/sc/sc.php
 ${ }^{7}$ https://courts.ms.gov/news/2020/10.12.20Board\%20of\%20Bar\%20Admissions.php
 ${ }^{8}$ http://www.mississippi.edu/board/

[^3]: ${ }^{9}$ http://www.mississippi.edu/board/
 ${ }^{10}$ http://www.mississippi.edu/board/downloads/policiesandbylaws.pdf
 ${ }^{11} \mathrm{https}: / /$ data.census.gov/table? $q=\mathrm{p} 1 \& \mathrm{~g}=0400000 \mathrm{US} 28$
 ${ }^{12}$ https://www.justice.gov/opa/press-release/file/1429486/download

[^4]: 13 https://www.justice.gov/opa/pr/justice-department-issues-guidance-federal-statutes-regarding-redistricting-andmethods
 ${ }^{14}$ These statistics correspond in part to those presented in Mr. Cooper's expert declaration: Figure 2: Mississippi 1990 to 2020 Census Percent Voting Age Population by Race and Ethnicity on P.9.

[^5]: ${ }^{15} \mathrm{Mr}$. Cooper's expert declaration:

[^6]: ${ }^{16}$ See Second Declaration of William S. Cooper in Alabama Caster v. Merrill and Exhibit 1 - Decl. of William S. Cooper in Robinson v. Ardoin and Galmon v. Ardoin and related Louisiana redistricting litigation in 2022 both current SCOTUS cases where he reports and discusses CVAP alongside VAP and its importance in measuring minority populations.
 ${ }^{17}$ Morrison, P. and T. Bryan (2019). Redistricting: A Manual for Analysts, Practitioners, and Citizens. Springer. Cham, Switzerland

 tabulation/CVAP_2016-2020_ACS_documentation_v3.pdf

[^7]: ${ }^{20} \mathrm{https}: / /$ crsreports.congress.gov/product/pdf/R/R42831/3
 ${ }^{21} \mathrm{https}: / / \mathrm{www} . n c s l . o r g /$ aboutus/ncslservice/facts-about-ncsl.aspx:

 - NCSL is the only organization that advocates solely for states' interests in Washington, D.C.
 - NCSL is the only organization that provides support services to legislators and legislative staff.
 - NCSL is the only bipartisan organization of its kind with leadership and participation from both sides of the aisle.
 - NCSL presents all sides of the issues and provides information based on facts, not politics.
 - NCSL promotes the legislative institution as a whole and works to make it stronger and more efficient.
 - NCSL's legislator members vote on policy issues that direct the organization's activities on Capitol Hill.
 - NCSL's annual Legislative Summit is the largest and most important gathering of the year for legislators and legislative staff.

[^8]: ${ }^{22}$ https://www.ncsl.org/research/redistricting/redistricting-criteria.aspx
 ${ }^{23} \mathrm{https}: / / \mathrm{law} . j u s t i a . c o m / c o d e s / m i s s i s s i p p i / 2016 / t i t l e-5 / c h a p t e r-3 /$ standing-joint-legislative-committee-on-reapportionment/section-5-3-101

[^9]: ${ }^{24}$ https://www.ncsl.org/research/redistricting/redistricting-criteria.aspx
 ${ }^{25}$ See Cooper expert report at P. 10 .
 ${ }^{26}$ Abrams v. Johnson, 521 U.S. 74, 84 (1997).
 ${ }^{27}$ Bush v. Vera, 517 U.S. 952 (1996).

[^10]: ${ }^{28}$ See Second Declaration of William S. Cooper in Alabama Caster v. Merrill and Exhibit 1 - Decl. of William S. Cooper in Robinson v. Ardoin and Galmon v. Ardoin and related Louisiana redistricting litigation in 2022 both current SCOTUS cases where he reports and discusses CVAP alongside VAP and its importance in measuring minority populations.

 29 "How to Measure Legislative District Compactness If You Only Know it When You See it," https://gking.harvard.edu/presentations/how-measure-legislative-district-compactness-if-you-only-know-it-when-you-see-it-7.

[^11]: ${ }^{30}$ These measures are provided by the widely used professional redistricting software "Maptitude for Redistricting," for example, the software Mr. Cooper has used in the past in other cases such as in Alabama Caster v. Merrill. The Reock compactness score is computed by dividing the area of the voting district by the area of the smallest circle that would completely enclose it. Since the circle encloses the district, its area cannot be less than that of the district, and so the Reock compactness score will always be a number between 0 and 1 (which may be expressed as a percentage). The Area/Convex Hull test computes the ratio the district area to the area of the convex hull of the district (minimum convex polygon which completely contains the district). This measure is always between 0 and 1 , with 1 being the most compact. The Polsby-Popper (PP) measure is the ratio of the area of the district to the area of a circle whose circumference is equal to the perimeter of the district. This measure also is always between 0 and 1 , with 1 being the most compact. The Schwartzberg test (Schwartzberg, 1966) https://core.ac.uk/download/pdf/217207073.pdf is a perimeter-based measure that compares a simplified version of each district to a circle, which is considered to be the most compact shape possible. Unlike other measures, the scale of Schwartzberg values is above 1 , with lower values approaching 1 being most compact. The PolsbyPopper and Schwartzberg ratios place high importance on district perimeter. Thus, they are highly susceptible to bias due to "shoreline complexity." Therefore, districts that are trimmed around shorelines may end up with a low compactness score through no fault of the district's authors and may not necessarily be a true indicator of gerrymandering. This is precisely why it is important to use multiple compactness scores (in this case the PolsbyPopper, Schwartzberg, Reock and Convex Hull measures) and let the reader judge which one is a better fit based on the geography of the district and method of calculation each score uses. A higher score means more compact, but the scores using different measures cannot be directly compared to each other. See Azavea White Paper, "Redrawing the Map on Redistricting," (2012), https://cdn.azavea.com/com.redistrictingthenation/pdfs/Redistricting_The_Nation_Addendum.pdf.

[^12]: 31 https://www.clarionledger.com/in-depth/news/politics/elections/2022/08/23/mississippi-voter-access-roadblocks-vote-despite-voting-rights-act-1965/10201239002/
 https://publicintegrity.org/politics/elections/who-counts/more-than-15-of-black-mississippi-residents-permanently-barred-from-voting/
 https://dce.olemiss.edu/um-votes-exploring-the-history-of-voting-suppression-in-ms/
 https://www.fastcompany.com/90570476/how-voters-are-casting-their-ballot-in-the-state-thats-made-it-hardest-to-vote-in-2020

[^13]: ${ }^{32} \mathrm{https}: / / \mathrm{www}$. sos.ms.gov/press/op-ed-secretary-watson-election-reform-whats-best-mississippi; https://www.mississippifreepress.org/voting-2022

[^14]: ${ }^{33}$ http://www.mississippi.edu/board/downloads/policiesandbylaws.pdf

[^15]: Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculation, table and graph by author.

[^16]: Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.

[^17]: Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.

[^18]:
 ${ }^{35} \mathrm{https}: / /$ www.census.gov/programs-surveys/cps/about/supplemental-surveys.html
 ${ }^{36} \mathrm{https}: / / \mathrm{www} 2 . c e n s u s . g o v /$ programs-surveys/cps/techdocs/cpsnov20.pdf
 ${ }^{37}$ https://www.census.gov/data/tables/time-series/demo/voting-and-registration/p20-585.html

[^19]: ${ }^{38} \mathrm{https}: / /$ www2.census.gov/programs-surveys/cps/tables/p20/585/table04b.xlsx
 ${ }^{39} \mathrm{https}: / / \mathrm{www} 2 . c e n s u s . g o v /$ programs-surveys/cps/tables/p20/585/table04b.xlsx

[^20]: ${ }^{40}$ Note the numbers are in the table are the official reported. Percentages may vary slightly due to rounding.

[^21]: ${ }^{41}$ Dr. Traci Burch is an Associate Professor of Political Science at Northwestern University and Research Professor at the American Bar Foundation. She states in her qualifications that "I am widely regarded as an expert on political behavior, barriers to voting, and political participation. Dr. Burch has presented an expert report as part of this case.

[^22]: ${ }^{42}$ https://www2.census.gov/programs-surveys/cps/techdocs/cpsnov20.pdf

[^23]: ${ }^{44}$ I am uncertain why Dr. Burch excludes Black Hispanics, since the complaint states clearly that plaintiffs are considering "any part Black" - which includes Hispanics. Dr. Burch is not clear whether her White NonHispanic" is White Alone or in combination.
 ${ }^{45}$ All statistics are supported by an analytic table produced from the CPS PUMS file shown in Appendix 1

[^24]: ${ }^{46}$ https://www.ncss.com/software/ncss/analysis-of-two-way-tables-in-ncss/

[^25]: ${ }^{47}$ https://www.ncss.com/software/ncss/analysis-of-two-way-tables-in-ncss/

[^26]: "Under the circumstances prevailing in Mississippi today, and in light of the history from which those circumstances originate, it is my opinion that Black

[^27]: ${ }^{1}$ https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html
 ${ }^{2}$ https://data.census.gov/cedsci/profile/Mississippi?g=0400000US28

[^28]: ${ }^{3}$ https://www.mississippi-demographics.com/counties_by_population
 ${ }^{4}$ https://www.mssupervisors.org/mississippi-counties
 ${ }^{5}$ Provided by MS Attorney General's Office: a copy of "The Code of Mississippi, 1848, Article 11, An Act to Regulate the Districts for the Election of Judges of the High Court of Errors and Appeals and to Change the Terms of Said Court."
 ${ }^{6}$ https://courts.ms.gov/appellatecourts/sc/sc.php
 ${ }^{7}$ https://courts.ms.gov/news/2020/10.12.20Board\%20of\%20Bar\%20Admissions.php
 ${ }^{8}$ http://www.mississippi.edu/board/

[^29]: ${ }^{9}$ http://www.mississippi.edu/board/
 ${ }^{10}$ http://www.mississippi.edu/board/downloads/policiesandbylaws.pdf
 ${ }^{11} \mathrm{https}: / /$ data.census.gov/table? $q=\mathrm{p} 1 \& \mathrm{~g}=0400000 \mathrm{US} 28$
 ${ }^{12}$ https://www.justice.gov/opa/press-release/file/1429486/download

[^30]: 13 https://www.justice.gov/opa/pr/justice-department-issues-guidance-federal-statutes-regarding-redistricting-andmethods
 ${ }^{14}$ These statistics correspond in part to those presented in Mr. Cooper's expert declaration: Figure 2: Mississippi 1990 to 2020 Census Percent Voting Age Population by Race and Ethnicity on P.9.

[^31]: ${ }^{15} \mathrm{Mr}$. Cooper's expert declaration:

[^32]: ${ }^{16}$ See Second Declaration of William S. Cooper in Alabama Caster v. Merrill and Exhibit 1 - Decl. of William S. Cooper in Robinson v. Ardoin and Galmon v. Ardoin and related Louisiana redistricting litigation in 2022 both current SCOTUS cases where he reports and discusses CVAP alongside VAP and its importance in measuring minority populations.
 ${ }^{17}$ Morrison, P. and T. Bryan (2019). Redistricting: A Manual for Analysts, Practitioners, and Citizens. Springer. Cham, Switzerland

 tabulation/CVAP_2016-2020_ACS_documentation_v3.pdf

[^33]: ${ }^{20} \mathrm{https}: / /$ crsreports.congress.gov/product/pdf/R/R42831/3
 ${ }^{21} \mathrm{https}: / / \mathrm{www} . n c s l . o r g /$ aboutus/ncslservice/facts-about-ncsl.aspx:

 - NCSL is the only organization that advocates solely for states' interests in Washington, D.C.
 - NCSL is the only organization that provides support services to legislators and legislative staff.
 - NCSL is the only bipartisan organization of its kind with leadership and participation from both sides of the aisle.
 - NCSL presents all sides of the issues and provides information based on facts, not politics.
 - NCSL promotes the legislative institution as a whole and works to make it stronger and more efficient.
 - NCSL's legislator members vote on policy issues that direct the organization's activities on Capitol Hill.
 - NCSL's annual Legislative Summit is the largest and most important gathering of the year for legislators and legislative staff.

[^34]: ${ }^{22}$ https://www.ncsl.org/research/redistricting/redistricting-criteria.aspx
 ${ }^{23} \mathrm{https}: / / \mathrm{law} . j u s t i a . c o m / c o d e s / m i s s i s s i p p i / 2016 / t i t l e-5 / c h a p t e r-3 /$ standing-joint-legislative-committee-on-reapportionment/section-5-3-101

[^35]: ${ }^{24}$ https://www.ncsl.org/research/redistricting/redistricting-criteria.aspx
 ${ }^{25}$ See Cooper expert report at P. 10 .
 ${ }^{26}$ Abrams v. Johnson, 521 U.S. 74, 84 (1997).
 ${ }^{27}$ Bush v. Vera, 517 U.S. 952 (1996).

[^36]: ${ }^{28}$ See Second Declaration of William S. Cooper in Alabama Caster v. Merrill and Exhibit 1 - Decl. of William S. Cooper in Robinson v. Ardoin and Galmon v. Ardoin and related Louisiana redistricting litigation in 2022 both current SCOTUS cases where he reports and discusses CVAP alongside VAP and its importance in measuring minority populations.

 29 "How to Measure Legislative District Compactness If You Only Know it When You See it," https://gking.harvard.edu/presentations/how-measure-legislative-district-compactness-if-you-only-know-it-when-you-see-it-7.

[^37]: ${ }^{30}$ These measures are provided by the widely used professional redistricting software "Maptitude for Redistricting," for example, the software Mr. Cooper has used in the past in other cases such as in Alabama Caster v. Merrill. The Reock compactness score is computed by dividing the area of the voting district by the area of the smallest circle that would completely enclose it. Since the circle encloses the district, its area cannot be less than that of the district, and so the Reock compactness score will always be a number between 0 and 1 (which may be expressed as a percentage). The Area/Convex Hull test computes the ratio the district area to the area of the convex hull of the district (minimum convex polygon which completely contains the district). This measure is always between 0 and 1 , with 1 being the most compact. The Polsby-Popper (PP) measure is the ratio of the area of the district to the area of a circle whose circumference is equal to the perimeter of the district. This measure also is always between 0 and 1 , with 1 being the most compact. The Schwartzberg test (Schwartzberg, 1966) https://core.ac.uk/download/pdf/217207073.pdf is a perimeter-based measure that compares a simplified version of each district to a circle, which is considered to be the most compact shape possible. Unlike other measures, the scale of Schwartzberg values is above 1 , with lower values approaching 1 being most compact. The PolsbyPopper and Schwartzberg ratios place high importance on district perimeter. Thus, they are highly susceptible to bias due to "shoreline complexity." Therefore, districts that are trimmed around shorelines may end up with a low compactness score through no fault of the district's authors and may not necessarily be a true indicator of gerrymandering. This is precisely why it is important to use multiple compactness scores (in this case the PolsbyPopper, Schwartzberg, Reock and Convex Hull measures) and let the reader judge which one is a better fit based on the geography of the district and method of calculation each score uses. A higher score means more compact, but the scores using different measures cannot be directly compared to each other. See Azavea White Paper, "Redrawing the Map on Redistricting," (2012), https://cdn.azavea.com/com.redistrictingthenation/pdfs/Redistricting_The_Nation_Addendum.pdf.

[^38]: 31 https://www.clarionledger.com/in-depth/news/politics/elections/2022/08/23/mississippi-voter-access-roadblocks-vote-despite-voting-rights-act-1965/10201239002/
 https://publicintegrity.org/politics/elections/who-counts/more-than-15-of-black-mississippi-residents-permanently-barred-from-voting/
 https://dce.olemiss.edu/um-votes-exploring-the-history-of-voting-suppression-in-ms/
 https://www.fastcompany.com/90570476/how-voters-are-casting-their-ballot-in-the-state-thats-made-it-hardest-to-vote-in-2020

[^39]: ${ }^{32} \mathrm{https}: / / \mathrm{www}$. sos.ms.gov/press/op-ed-secretary-watson-election-reform-whats-best-mississippi; https://www.mississippifreepress.org/voting-2022

[^40]: ${ }^{33}$ http://www.mississippi.edu/board/downloads/policiesandbylaws.pdf

[^41]: Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculation, table and graph by author.

[^42]: Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.

[^43]: Source: Mississippi Health and Hunger Atlas, 2017. K-Means Cluster Analysis, calculations, table and graph by author.

[^44]:
 ${ }^{35} \mathrm{https}: / /$ www.census.gov/programs-surveys/cps/about/supplemental-surveys.html
 ${ }^{36} \mathrm{https}: / / \mathrm{www} 2 . c e n s u s . g o v /$ programs-surveys/cps/techdocs/cpsnov20.pdf
 ${ }^{37}$ https://www.census.gov/data/tables/time-series/demo/voting-and-registration/p20-585.html

[^45]: ${ }^{38} \mathrm{https}: / /$ www2.census.gov/programs-surveys/cps/tables/p20/585/table04b.xlsx
 ${ }^{39} \mathrm{https}: / / \mathrm{www} 2 . c e n s u s . g o v /$ programs-surveys/cps/tables/p20/585/table04b.xlsx

[^46]: ${ }^{40}$ Note the numbers are in the table are the official reported. Percentages may vary slightly due to rounding.

[^47]: ${ }^{41}$ Dr. Traci Burch is an Associate Professor of Political Science at Northwestern University and Research Professor at the American Bar Foundation. She states in her qualifications that "I am widely regarded as an expert on political behavior, barriers to voting, and political participation. Dr. Burch has presented an expert report as part of this case.

[^48]: ${ }^{42}$ https://www2.census.gov/programs-surveys/cps/techdocs/cpsnov20.pdf

[^49]: ${ }^{44}$ I am uncertain why Dr. Burch excludes Black Hispanics, since the complaint states clearly that plaintiffs are considering "any part Black" - which includes Hispanics. Dr. Burch is not clear whether her White NonHispanic" is White Alone or in combination.
 ${ }^{45}$ All statistics are supported by an analytic table produced from the CPS PUMS file shown in Appendix 1

[^50]: ${ }^{46}$ https://www.ncss.com/software/ncss/analysis-of-two-way-tables-in-ncss/

[^51]: ${ }^{47}$ https://www.ncss.com/software/ncss/analysis-of-two-way-tables-in-ncss/

[^52]: ${ }^{1}$ Burch rebuttal report, page 4: "Because, as discussed above, turnout estimates in the CPS are unreliable not just because of overreporting in general, but because of differences in overreporting by race in particular, I conducted additional analyses which employed alternative methods of looking at turnout by race that do not rely on self-reported voter turnout."

[^53]: ${ }^{2}$ See: https://pages.nyu.edu/jackson/design.of.social.research/Readings/Johnson\%20-
 \%20Introduction $\% 20$ to $\% 20$ survey $\% 20$ weights $\% 20 \% 28 \mathrm{PRI} \% 20$ version $\% 29$.pdf for a general discussion of sample survey weighting.

[^54]: ${ }^{3}$ Respondent 1236855389 has a weight of 10.1 , respondent 1247704425 has a weight of 11.3 , respondent 1248507989 has a weight of 14.3 and respondent 1259768185 has a weight of 15 . Combined - these four respondents count for 51.7.

[^55]: ${ }^{4}$ Emphasis added by the author

[^56]: ${ }^{1}$ Burch rebuttal report, page 4: "Because, as discussed above, turnout estimates in the CPS are unreliable not just because of overreporting in general, but because of differences in overreporting by race in particular, I conducted additional analyses which employed alternative methods of looking at turnout by race that do not rely on self-reported voter turnout."

[^57]: ${ }^{2}$ See: https://pages.nyu.edu/jackson/design.of.social.research/Readings/Johnson\%20-
 \%20Introduction $\% 20$ to $\% 20$ survey $\% 20$ weights $\% 20 \% 28 \mathrm{PRI} \% 20$ version $\% 29$.pdf for a general discussion of sample survey weighting.

[^58]: ${ }^{3}$ Respondent 1236855389 has a weight of 10.1 , respondent 1247704425 has a weight of 11.3 , respondent 1248507989 has a weight of 14.3 and respondent 1259768185 has a weight of 15 . Combined - these four respondents count for 51.7.

[^59]: ${ }^{4}$ Emphasis added by the author

[^60]: ${ }^{1}$ The five are Rural West Tennessee African-American Affairs Council, Inc. v. McWherter, No. $92-\mathrm{cv}-2407$ (W.D. Tenn.); Old Person v. Brown, No. 96-cv-0004 (D. Mont.); Bone Shirt v. Hazeltine, No. 01-cv-3032 (D.S.D.); Alabama Legislative Black Caucus v. Alabama, No. 12-cv-691 (M.D. Ala.); and Thomas v. Reeves, No. 18-cv-441 (S.D. Miss.). In Bone Shirt, the court also adopted the remedial plan I developed.
 ${ }^{2}$ I have also served as an expert witness on demographics in trials relating to issues other than voting and redistricting. For example, I served as an expert in Stout v. Jefferson County Board of Education, No. 2:65-cv-00396-MHH (N.D. Ala.), a school desegregation case involving the City of Gardendale, Alabama.

[^61]: ${ }^{3}$ See, e.g., Addy v. Newton County, No. 4:95cv39 (S.D. Miss.); Gunn v. Chickasaw County, No.87cv165 (N.D. Miss).
 ${ }^{4}$ See, e.g., Fairley v. Hattiesburg, No. 2:06cv167-KS-MTP (S.D. Miss.); Boddie v. Cleveland School District, No. 4:07cv63-M-B (N.D. Miss.).
 ${ }^{5}$ Fairley v. City of Hattiesburg, No. 2:13cv18-KS-MTP (S.D. Miss.).

[^62]: ${ }^{7}$ In this report, "Black" and "African American" are synonymous, as are "Latino" and "Hispanic," and "White" and "non-Hispanic White." Unless otherwise noted, beginning with the 2000 Census, "Black" refers to persons of all ages who are any part Black ("AP Black"), i.e., single-race Black or more than one race and some part Black. Prior to the 2000 Census, the AP Black count cannot be derived from the PL-94-171 file used for redistricting. The "AP Black" classification includes all persons who self-identified in the Census as single-race Black or some part Black, including Hispanic Black. It is my understanding that following the U.S. Supreme Court decision in Georgia v. Ashcroft, 539 U.S. 461 (2003), the "Any Part" definition is the appropriate Census classification to use in most Section 2 cases.

[^63]: ${ }^{8}$ See "Delta," Mississippi Encyclopedia, https://mississippiencyclopedia.org /entries/delta/. According to the Mississippi Encyclopedia: "The core counties of the Delta are Bolivar, Coahoma, Humphreys, Issaquena, Leflore, Quitman, Sharkey, Sunflower, Tunica, and Washington. The counties of Carroll, DeSoto, Grenada, Holmes, Panola, Tallahatchie, Tate, Warren, and Yazoo contain alluvial deposits as well and have been part of the Delta's human history."

[^64]: ${ }^{9}$ See, e.g., Miss. Assoc. of Planning and Dev. Districts, "2022 Directory," http://mspdds.org/directory/.
 ${ }^{10}$ Specifically, CD 2 excludes DeSoto and Tate Counties in the North Delta PD and excludes Lincoln, Pike, Lawrence, and Walthall Counties in the Southwest PD. On the other hand, CD 2 extends east of the Delta to include Leake County in the East Central PD.
 ${ }^{11}$ Miss. Assoc. of Planning and Dev. Districts, "What is a PDD," http://mspdds.org/what-is-a-pdd/.

[^65]: ${ }^{12} I d$.

[^66]: * SR BVAP

[^67]: ${ }^{13}$ "Cracking" is a term used by redistricting practitioners to identify election districts that unnecessarily fragment or divide the minority population, resulting in an overall dilution of minority voting strength in the voting plan
 ${ }^{14}$ Appalachian Regional Commission, "About the Appalachian Region," https://www.arc.gov/about-the-appalachian-region/.
 ${ }^{15}$ The counties in Mississippi that are part of the ARC include Alcorn, Benton, Calhoun, Chickasaw, Choctaw, Clay, Itawamba, Kemper, Lee, Lowndes, Marshall, Monroe, Montgomery, Noxubee, Oktibbeha, Panola, Pontotoc, Prentiss, Tippah, Tishomingo, Union, Webster, Winston, and Yalobusha. See Appalachian Regional Commission, "Mississippi," https://www.arc.gov/mississippi/.

[^68]: ${ }^{16}$ Voting age by race and ethnicity was not reported in the 1980 PL-94 171 file.

[^69]: ${ }^{17}$ Alex Rozier, Racial disparity conspicuous among Mississippians banned from voting, Mississippi Today (Feb. 22, 2018), https://mississippitoday.org/2018/02/22/racial-disparity-conspicuous-among-mississippians-banned-voting/.

[^70]: ${ }^{18}$ The expert reports submitted in the underlying litigation reached the same conclusion. See Report of Dov Rothman at 3, Harness v. Hosemann, No. 3:17-cv-00791-DPJ-FKB, Dkt. 651 (S.D. Miss. Oct. 4, 2018) ("A greater percentage of the Disenfranchised Individuals (59 percent) . . . are black compared to the percentage of the citizen voting-age population of Mississippi that are black (36 percent), as reported by the U.S. Census Bureau for 2017."); Declaration of Matthew A. Williams at 2, v. Hosemann, No. 3:17-cv-00791-DPJ-FKB, Dkt. 7512 (S.D. Miss. Oct. 4, 2018) ("[B]lack adults are 2.7 times more likely to have been convicted of a disfranchising crime than white adults.").
 ${ }^{19}$ Jerry Mitchell, 'Foolishly sticking with failed system': Mississippi leads the world in mass incarceration, Jackson Clarion-Ledger (Aug. 13, 2022), https://www.clarionledger.com/story/news/2022/08/13/mississippi-has-more-inmates-per-capita-than-any-state-nation/10317601002/.

[^71]: ${ }^{20}$ See Mississippi Automated Resource Information System, 1990 Voting Precincts, https://www.maris.state.ms.us/HTML/DATA/data_Political/1990VotingPrecincts.html\#gsc. The 1990 precinct boundaries were established by the Mississippi Standing Joint Legislative Committee on Reapportionment for use in 1991 legislative redistricting.
 ${ }^{21}$ In the redistricting context, "deviation" refers to the difference between the populations of electoral districts. A deviation metric is calculated by summing the absolute value of the most underpopulated district deviation (a negative value representing the percentage by which a district population falls below the ideal size) plus the value of the most overpopulated district deviation (a positive value representing the percentage by which a district population is above the ideal size). The resulting summation is usually referred to as "total deviation."
 ${ }^{22}$ The Census Bureau estimates that there was a 2.6% undercount of Black persons in the 1990 Census. Put differently, 33,990 Black persons in Mississippi were missed in the 1990 enumeration. See U.S. Census Bureau, Mississippi - Net Undercount and Undercount Rate for Counties (1990), https://www2.census.gov/programs-surveys/decennial/1990/data/ undercounts/mississippi.pdf.

[^72]: ${ }^{23}$ The flood-prone Pearl River cuts through the center of the state from Leake County to the Gulf. Its drainage area encompasses all three Supreme Court districts under the illustrative plans, as is the case with the 1987 Plan.

[^73]: ${ }^{24}$ U.S. Census Bureau, "Selected Population Profile in the United States," https://data.census.gov/cedsci/table?text=s0201\&t=001\%3A005\%3A451\&g=0400000US28\&y= 2021\&tid=ACSSPP1Y2021.S0201\&moe=false\&tp=false. For statistics from the 1-year ACS, as elsewhere in this declaration, "White" refers to NH White. "Black" or "African American" refers to Any Part Black.

[^74]: 25 Socioeconomic statistics for the 2022 Congressional Plan will not be available until the 1-year 2022 ACS is published in September 2023.
 ${ }^{26}$ These charts are from the 5-year 2015-2019 ACS. The 5-year ACS estimates are based on single-race Black (including Hispanic Black). Any Part Black estimates are not available in the 5 -year ACS. The charts and data tables I have prepared also report corresponding estimates for the Latino and NH White population.

[^75]: ${ }^{1}$ The five are Rural West Tennessee African-American Affairs Council, Inc. v. McWherter, No. $92-\mathrm{cv}-2407$ (W.D. Tenn.); Old Person v. Brown, No. 96-cv-0004 (D. Mont.); Bone Shirt v. Hazeltine, No. 01-cv-3032 (D.S.D.); Alabama Legislative Black Caucus v. Alabama, No. 12-cv-691 (M.D. Ala.); and Thomas v. Reeves, No. 18-cv-441 (S.D. Miss.). In Bone Shirt, the court also adopted the remedial plan I developed.
 ${ }^{2}$ I have also served as an expert witness on demographics in trials relating to issues other than voting and redistricting. For example, I served as an expert in Stout v. Jefferson County Board of Education, No. 2:65-cv-00396-MHH (N.D. Ala.), a school desegregation case involving the City of Gardendale, Alabama.

[^76]: ${ }^{3}$ See, e.g., Addy v. Newton County, No. 4:95cv39 (S.D. Miss.); Gunn v. Chickasaw County, No.87cv165 (N.D. Miss).
 ${ }^{4}$ See, e.g., Fairley v. Hattiesburg, No. 2:06cv167-KS-MTP (S.D. Miss.); Boddie v. Cleveland School District, No. 4:07cv63-M-B (N.D. Miss.).
 ${ }^{5}$ Fairley v. City of Hattiesburg, No. 2:13cv18-KS-MTP (S.D. Miss.).

[^77]: ${ }^{7}$ In this report, "Black" and "African American" are synonymous, as are "Latino" and "Hispanic," and "White" and "non-Hispanic White." Unless otherwise noted, beginning with the 2000 Census, "Black" refers to persons of all ages who are any part Black ("AP Black"), i.e., single-race Black or more than one race and some part Black. Prior to the 2000 Census, the AP Black count cannot be derived from the PL-94-171 file used for redistricting. The "AP Black" classification includes all persons who self-identified in the Census as single-race Black or some part Black, including Hispanic Black. It is my understanding that following the U.S. Supreme Court decision in Georgia v. Ashcroft, 539 U.S. 461 (2003), the "Any Part" definition is the appropriate Census classification to use in most Section 2 cases.

[^78]: ${ }^{8}$ See "Delta," Mississippi Encyclopedia, https://mississippiencyclopedia.org /entries/delta/. According to the Mississippi Encyclopedia: "The core counties of the Delta are Bolivar, Coahoma, Humphreys, Issaquena, Leflore, Quitman, Sharkey, Sunflower, Tunica, and Washington. The counties of Carroll, DeSoto, Grenada, Holmes, Panola, Tallahatchie, Tate, Warren, and Yazoo contain alluvial deposits as well and have been part of the Delta's human history."

[^79]: ${ }^{9}$ See, e.g., Miss. Assoc. of Planning and Dev. Districts, "2022 Directory," http://mspdds.org/directory/.
 ${ }^{10}$ Specifically, CD 2 excludes DeSoto and Tate Counties in the North Delta PD and excludes Lincoln, Pike, Lawrence, and Walthall Counties in the Southwest PD. On the other hand, CD 2 extends east of the Delta to include Leake County in the East Central PD.
 ${ }^{11}$ Miss. Assoc. of Planning and Dev. Districts, "What is a PDD," http://mspdds.org/what-is-a-pdd/.

[^80]: ${ }^{12} I d$.

[^81]: * SR BVAP

[^82]: ${ }^{13}$ "Cracking" is a term used by redistricting practitioners to identify election districts that unnecessarily fragment or divide the minority population, resulting in an overall dilution of minority voting strength in the voting plan
 ${ }^{14}$ Appalachian Regional Commission, "About the Appalachian Region," https://www.arc.gov/about-the-appalachian-region/.
 ${ }^{15}$ The counties in Mississippi that are part of the ARC include Alcorn, Benton, Calhoun, Chickasaw, Choctaw, Clay, Itawamba, Kemper, Lee, Lowndes, Marshall, Monroe, Montgomery, Noxubee, Oktibbeha, Panola, Pontotoc, Prentiss, Tippah, Tishomingo, Union, Webster, Winston, and Yalobusha. See Appalachian Regional Commission, "Mississippi," https://www.arc.gov/mississippi/.

[^83]: ${ }^{16}$ Voting age by race and ethnicity was not reported in the 1980 PL-94 171 file.

[^84]: ${ }^{17}$ Alex Rozier, Racial disparity conspicuous among Mississippians banned from voting, Mississippi Today (Feb. 22, 2018), https://mississippitoday.org/2018/02/22/racial-disparity-conspicuous-among-mississippians-banned-voting/.

[^85]: ${ }^{18}$ The expert reports submitted in the underlying litigation reached the same conclusion. See Report of Dov Rothman at 3, Harness v. Hosemann, No. 3:17-cv-00791-DPJ-FKB, Dkt. 651 (S.D. Miss. Oct. 4, 2018) ("A greater percentage of the Disenfranchised Individuals (59 percent) . . . are black compared to the percentage of the citizen voting-age population of Mississippi that are black (36 percent), as reported by the U.S. Census Bureau for 2017."); Declaration of Matthew A. Williams at 2, v. Hosemann, No. 3:17-cv-00791-DPJ-FKB, Dkt. 7512 (S.D. Miss. Oct. 4, 2018) ("[B]lack adults are 2.7 times more likely to have been convicted of a disfranchising crime than white adults.").
 ${ }^{19}$ Jerry Mitchell, 'Foolishly sticking with failed system': Mississippi leads the world in mass incarceration, Jackson Clarion-Ledger (Aug. 13, 2022), https://www.clarionledger.com/story/news/2022/08/13/mississippi-has-more-inmates-per-capita-than-any-state-nation/10317601002/.

[^86]: ${ }^{20}$ See Mississippi Automated Resource Information System, 1990 Voting Precincts, https://www.maris.state.ms.us/HTML/DATA/data_Political/1990VotingPrecincts.html\#gsc. The 1990 precinct boundaries were established by the Mississippi Standing Joint Legislative Committee on Reapportionment for use in 1991 legislative redistricting.
 ${ }^{21}$ In the redistricting context, "deviation" refers to the difference between the populations of electoral districts. A deviation metric is calculated by summing the absolute value of the most underpopulated district deviation (a negative value representing the percentage by which a district population falls below the ideal size) plus the value of the most overpopulated district deviation (a positive value representing the percentage by which a district population is above the ideal size). The resulting summation is usually referred to as "total deviation."
 ${ }^{22}$ The Census Bureau estimates that there was a 2.6% undercount of Black persons in the 1990 Census. Put differently, 33,990 Black persons in Mississippi were missed in the 1990 enumeration. See U.S. Census Bureau, Mississippi - Net Undercount and Undercount Rate for Counties (1990), https://www2.census.gov/programs-surveys/decennial/1990/data/ undercounts/mississippi.pdf.

[^87]: ${ }^{23}$ The flood-prone Pearl River cuts through the center of the state from Leake County to the Gulf. Its drainage area encompasses all three Supreme Court districts under the illustrative plans, as is the case with the 1987 Plan.

[^88]: ${ }^{24}$ U.S. Census Bureau, "Selected Population Profile in the United States," https://data.census.gov/cedsci/table?text=s0201\&t=001\%3A005\%3A451\&g=0400000US28\&y= 2021\&tid=ACSSPP1Y2021.S0201\&moe=false\&tp=false. For statistics from the 1-year ACS, as elsewhere in this declaration, "White" refers to NH White. "Black" or "African American" refers to Any Part Black.

[^89]: 25 Socioeconomic statistics for the 2022 Congressional Plan will not be available until the 1-year 2022 ACS is published in September 2023.
 ${ }^{26}$ These charts are from the 5-year 2015-2019 ACS. The 5-year ACS estimates are based on single-race Black (including Hispanic Black). Any Part Black estimates are not available in the 5 -year ACS. The charts and data tables I have prepared also report corresponding estimates for the Latino and NH White population.

[^90]: ${ }^{1} \mathrm{https}: / / \mathrm{www} . j u s t i c e . g o v /$ sites/default/files/crt/legacy/2013/01/17/wayneco2012order.pdf

[^91]: ${ }^{2}$ This analysis discards the Montgomery School District, which was closed in that year.

[^92]: ${ }^{3}$ The totals in the chart do not sum to 100% because people with associate degrees or some college are not depicted.
 4 "Adults at this level can be considered at risk for difficulties using or comprehending print material. Adults at the upper end of this level can read short texts, in print or online, and understand the meaning well enough to perform simple tasks, such as filling out a short form, but drawing inferences or combining multiple sources of text may be too difficult. Adults who are below Level 1 may only be able to understand very basic vocabulary or find very specific information on a familiar topic. Some adults below Level 1 may struggle even to do this and may be functionally illiterate." (National Center for Education Statistics 2022).

[^93]: ${ }^{5}$ Studies also have shown high racial residential segregation in Pascagoula (Athey et al. 2021) and moderate racial residential segregation in the Gulfport/Biloxi area (2021b, Athey et al. 2021).

[^94]: ${ }^{1} \mathrm{https}: / / \mathrm{www} . j u s t i c e . g o v /$ sites/default/files/crt/legacy/2013/01/17/wayneco2012order.pdf

[^95]: ${ }^{2}$ This analysis discards the Montgomery School District, which was closed in that year.

[^96]: ${ }^{3}$ The totals in the chart do not sum to 100% because people with associate degrees or some college are not depicted.
 4 "Adults at this level can be considered at risk for difficulties using or comprehending print material. Adults at the upper end of this level can read short texts, in print or online, and understand the meaning well enough to perform simple tasks, such as filling out a short form, but drawing inferences or combining multiple sources of text may be too difficult. Adults who are below Level 1 may only be able to understand very basic vocabulary or find very specific information on a familiar topic. Some adults below Level 1 may struggle even to do this and may be functionally illiterate." (National Center for Education Statistics 2022).

[^97]: ${ }^{5}$ Studies also have shown high racial residential segregation in Pascagoula (Athey et al. 2021) and moderate racial residential segregation in the Gulfport/Biloxi area (2021b, Athey et al. 2021).

[^98]: ${ }^{1}$ Swanson Report, p. 70.
 ${ }^{2}$ Mississippi Secretary of State. "Official Results." Available online from
 https://www.sos.ms.gov/elections/electionresults/2020\%20GE\%20Statewide\%20Recapitulation \%20Report.pdf. Accessed 20 Jan 2023.
 ${ }^{3}$ U.S. Census Bureau. "Citizen Voting Age Population by Race and Ethnicity." Available online from https://www.census.gov/programs-surveys/decennial-census/about/voting-rights/cvap.html. Accessed 20 Jan 2023.
 ${ }^{4}$ Swanson Report, p. 84.
 ${ }^{5}$ Swanson Report, p. 84.

[^99]: ${ }^{6}$ Ansolabehere, Stephen, Bernard L. Fraga, and Brian F. Schaffner. "The Current Population Survey Voting and Registration Supplement Overstates Minority Turnout." The Journal of Politics 84.3 (2022): 1850:1855.
 ${ }^{7}$ Ansolabehere et al. 2022: 1853-54.
 ${ }^{8}$ Ansolabehere et al. 2022: 1854.
 ${ }^{9}$ Dr. Swanson's assessment of the source of this error is not accurate. He writes "Here, Dr. Burch is vague about the source of the information she presents in the pre-ceding exhibit and does not describe the steps she undertook to produce it. Since these statistics of voting by

[^100]: ${ }^{13}$ Ansolabehere, Stephen, Brian F. Schaffner, and Sam Luks, COOPERATIVE ELECTION STUDY, 2020: COMMON CONTENT. [Computer File] Release 2: August 4th, 2021. Cambridge, MA: Harvard University [producer] http://cces.gov.harvard.edu.
 ${ }^{14}$ Ansolabehere, Stephen, Brian F. Schaffner, and Sam Luks, "Guide to the 2020 Cooperative Election Study." Release 2: August 4th, 2021. Cambridge, MA: Harvard University [producer] http://cces.gov.harvard.edu: 19.
 ${ }^{15}$ Ansolabehere et al., "Guide to the 2020 Cooperative Election Study," 2021.
 ${ }^{16}$ Chatterjee, Samprit, and Jeffrey S. Simonoff. Handbook of regression analysis. John Wiley \& Sons, 2013.
 ${ }^{17}$ Chatterjee and Simonoff 2013: 10.
 ${ }^{18}$ Logit regression is designed for predicting dependent variables that take on only two values, rather than ordinary-least-squares regression, which is for dependent variables that are continuous. Chatterjee and Simonoff 2013: 150.
 ${ }^{19}$ The columns in the figures report the estimated probability of voting and are calculated using the equation $\operatorname{pr}($ voting $)=\frac{1}{\left.1+\mathrm{e}^{-\left(B_{0}+x B_{1} \ldots\right)}\right)}$, where $B_{0}, B_{l} \ldots$ are the estimated coefficients in the models.
 ${ }^{20}$ Including only Mississippi U.S. Citizens in the analysis and weighting by the variable "commonweight." All CES respondents are adults.

[^101]: ${ }^{21}$ The CES race question analyzed in this report asks: "What racial or ethnic group best describes you?" and provides the following responses: White, Black, Hispanic, Asian, Native American, Middle Eastern, Two or More Races, Other.
 ${ }^{22}$ For this analysis, which includes reported voter turnout, I weighted the sample by the variable "commonpostweight."

[^102]: ${ }^{23}$ King, Gary, Robert O. Keohane, and Sidney Verba. Designing social inquiry: Scientific inference in qualitative research. Princeton university press, 2021.

[^103]: ${ }^{24}$ King, Gary and Margaret Roberts. "EI: A(n R) Program for Ecological Inference." Available from https://github.com/iqss-research/eir. Accessed 20 Jan 2023.
 ${ }^{25}$ Lewis, Jeffrey B. "Extending King's Ecological Inference Model to Multiple Elections Using Markov Chain Monte Carlo." In Ecological Inference: New Methodological Strategies. King,

[^104]: ${ }^{31}$ Performing the analysis with non-Hispanic Black alone or in combination and non-Black as the reference categories also produces estimates of lower Black voter turnout relative to nonBlack residents both statewide and in the Central District. Statewide, Black turnout was estimated to be 42% (41% to 43%), while non-Black turnout was 57% (50% to 64%). In the Central District, Black turnout was estimated to be 43% (42% to 44%) while non-Black turnout was estimated to be 63% (41% to 85%).

[^105]: ${ }^{32}$ Swanson Report, p. 43.
 ${ }^{33}$ Haspel, Moshe, and H. Gibbs Knotts. "Location, location, location: Precinct placement and the costs of voting." The Journal of Politics 67.2 (2005): 560-573. See also Bagwe, Gaurav, Juan Margitic, and Allison Stashko. Polling Place Location and the Costs of Voting. Working Paper, 2020, which finds that transportation affects the relationship between distance to the polls and turnout as well.
 ${ }^{34}$ Source: 2019 American Community Survey 1 Year Estimates.
 ${ }^{35}$ Chen, M. Keith, et al. "Racial disparities in voting wait times: evidence from smartphone data." Review of Economics and Statistics 104.6 (2022): 1341-1350.
 ${ }^{36}$ Here, I switch to using the post weight for validated voters.

[^106]: ${ }^{37}$ Chen et al. 2022.

[^107]: ${ }^{38}$ Swanson Report, p. 70.
 ${ }^{39}$ Mississippi Secretary of State. "Official Results" and U.S. Census Bureau. "Citizen Voting Age Population by Race and Ethnicity."
 ${ }^{40}$ Calculated based on Model 1 of Appendix Table 2.
 ${ }^{41}$ Total votes/citizen voting age population from the statewide block group data (after excluding people who were unmatched to block groups as discussed in Note 28). This estimated turnout rate is close to the actual turnout rate because the turnout rate among the missing voters is 59.9%. For EI estimates that decrease the total block group CVAP by 11% to account for missing data, see the appendix.
 ${ }^{42}$ Mississippi Secretary of State. "Official Results" and U.S. Census Bureau. "Citizen Voting Age Population by Race and Ethnicity."
 ${ }^{43}$ Total votes/citizen voting age population from the Central District block group data (after subtracting the people who were unmatched to block groups as discussed in Note 28). For EI estimates that decrease the total block group CVAP by 11% to account for missing data, see the appendix.

[^108]: ${ }^{1}$ Swanson Report, p. 70.
 ${ }^{2}$ Mississippi Secretary of State. "Official Results." Available online from
 https://www.sos.ms.gov/elections/electionresults/2020\%20GE\%20Statewide\%20Recapitulation \%20Report.pdf. Accessed 20 Jan 2023.
 ${ }^{3}$ U.S. Census Bureau. "Citizen Voting Age Population by Race and Ethnicity." Available online from https://www.census.gov/programs-surveys/decennial-census/about/voting-rights/cvap.html. Accessed 20 Jan 2023.
 ${ }^{4}$ Swanson Report, p. 84.
 ${ }^{5}$ Swanson Report, p. 84.

[^109]: ${ }^{6}$ Ansolabehere, Stephen, Bernard L. Fraga, and Brian F. Schaffner. "The Current Population Survey Voting and Registration Supplement Overstates Minority Turnout." The Journal of Politics 84.3 (2022): 1850:1855.
 ${ }^{7}$ Ansolabehere et al. 2022: 1853-54.
 ${ }^{8}$ Ansolabehere et al. 2022: 1854.
 ${ }^{9}$ Dr. Swanson's assessment of the source of this error is not accurate. He writes "Here, Dr. Burch is vague about the source of the information she presents in the pre-ceding exhibit and does not describe the steps she undertook to produce it. Since these statistics of voting by

[^110]: ${ }^{13}$ Ansolabehere, Stephen, Brian F. Schaffner, and Sam Luks, COOPERATIVE ELECTION STUDY, 2020: COMMON CONTENT. [Computer File] Release 2: August 4th, 2021. Cambridge, MA: Harvard University [producer] http://cces.gov.harvard.edu.
 ${ }^{14}$ Ansolabehere, Stephen, Brian F. Schaffner, and Sam Luks, "Guide to the 2020 Cooperative Election Study." Release 2: August 4th, 2021. Cambridge, MA: Harvard University [producer] http://cces.gov.harvard.edu: 19.
 ${ }^{15}$ Ansolabehere et al., "Guide to the 2020 Cooperative Election Study," 2021.
 ${ }^{16}$ Chatterjee, Samprit, and Jeffrey S. Simonoff. Handbook of regression analysis. John Wiley \& Sons, 2013.
 ${ }^{17}$ Chatterjee and Simonoff 2013: 10.
 ${ }^{18}$ Logit regression is designed for predicting dependent variables that take on only two values, rather than ordinary-least-squares regression, which is for dependent variables that are continuous. Chatterjee and Simonoff 2013: 150.
 ${ }^{19}$ The columns in the figures report the estimated probability of voting and are calculated using the equation $\operatorname{pr}($ voting $)=\frac{1}{\left.1+\mathrm{e}^{-\left(B_{0}+x B_{1} \ldots\right)}\right)}$, where $B_{0}, B_{l} \ldots$ are the estimated coefficients in the models.
 ${ }^{20}$ Including only Mississippi U.S. Citizens in the analysis and weighting by the variable "commonweight." All CES respondents are adults.

[^111]: ${ }^{21}$ The CES race question analyzed in this report asks: "What racial or ethnic group best describes you?" and provides the following responses: White, Black, Hispanic, Asian, Native American, Middle Eastern, Two or More Races, Other.
 ${ }^{22}$ For this analysis, which includes reported voter turnout, I weighted the sample by the variable "commonpostweight."

[^112]: ${ }^{23}$ King, Gary, Robert O. Keohane, and Sidney Verba. Designing social inquiry: Scientific inference in qualitative research. Princeton university press, 2021.

[^113]: ${ }^{24}$ King, Gary and Margaret Roberts. "EI: A(n R) Program for Ecological Inference." Available from https://github.com/iqss-research/eir. Accessed 20 Jan 2023.
 ${ }^{25}$ Lewis, Jeffrey B. "Extending King's Ecological Inference Model to Multiple Elections Using Markov Chain Monte Carlo." In Ecological Inference: New Methodological Strategies. King,

[^114]: ${ }^{31}$ Performing the analysis with non-Hispanic Black alone or in combination and non-Black as the reference categories also produces estimates of lower Black voter turnout relative to nonBlack residents both statewide and in the Central District. Statewide, Black turnout was estimated to be 42% (41% to 43%), while non-Black turnout was 57% (50% to 64%). In the Central District, Black turnout was estimated to be 43% (42% to 44%) while non-Black turnout was estimated to be 63% (41% to 85%).

[^115]: ${ }^{32}$ Swanson Report, p. 43.
 ${ }^{33}$ Haspel, Moshe, and H. Gibbs Knotts. "Location, location, location: Precinct placement and the costs of voting." The Journal of Politics 67.2 (2005): 560-573. See also Bagwe, Gaurav, Juan Margitic, and Allison Stashko. Polling Place Location and the Costs of Voting. Working Paper, 2020, which finds that transportation affects the relationship between distance to the polls and turnout as well.
 ${ }^{34}$ Source: 2019 American Community Survey 1 Year Estimates.
 ${ }^{35}$ Chen, M. Keith, et al. "Racial disparities in voting wait times: evidence from smartphone data." Review of Economics and Statistics 104.6 (2022): 1341-1350.
 ${ }^{36}$ Here, I switch to using the post weight for validated voters.

[^116]: ${ }^{37}$ Chen et al. 2022.

[^117]: ${ }^{38}$ Swanson Report, p. 70.
 ${ }^{39}$ Mississippi Secretary of State. "Official Results" and U.S. Census Bureau. "Citizen Voting Age Population by Race and Ethnicity."
 ${ }^{40}$ Calculated based on Model 1 of Appendix Table 2.
 ${ }^{41}$ Total votes/citizen voting age population from the statewide block group data (after excluding people who were unmatched to block groups as discussed in Note 28). This estimated turnout rate is close to the actual turnout rate because the turnout rate among the missing voters is 59.9%. For EI estimates that decrease the total block group CVAP by 11% to account for missing data, see the appendix.
 ${ }^{42}$ Mississippi Secretary of State. "Official Results" and U.S. Census Bureau. "Citizen Voting Age Population by Race and Ethnicity."
 ${ }^{43}$ Total votes/citizen voting age population from the Central District block group data (after subtracting the people who were unmatched to block groups as discussed in Note 28). For EI estimates that decrease the total block group CVAP by 11% to account for missing data, see the appendix.

[^118]: ${ }^{1}$ Thornburg v. Gingles, 478 U.S. 30, 50-51 (1986).

[^119]: ${ }^{2}$ Id. at 44-45.

[^120]: ${ }^{3}$ Evidence from exogenous elections can be used to supplement evidence from endogenous elections, particularly where there is little data from recent endogenous elections. The court premised its holding on Gingles's view of sparse data: "'[W]here a minority group has begun to sponsor candidates just recently the fact that statistics from only one or a few elections are available for examination does not foreclose a vote dilution claim.'" Citizens for a Better Gretna v. City of Gretna, 834 F.2d 496, 502 (5th Cir. 1987) quoting Gingles, 478 U.S. at 57 n.25).
 ${ }^{4}$ See Wright v. Sumter Cnty., 979 F. 3d 1282, 1292-93 (11th Cir. 2020) ("[E]vidence drawn from elections involving black candidates is more probative in Section Two cases"); Clark v. Calhoun Cnty., Miss., 88 F.3d 1393, 1397 (5th Cir. 1996) ("[E]xogenous elections-those not involving the particular office at issue are less probative than elections involving the specific office that is the subject of the litigation.").

[^121]: ${ }^{5}$ Matt A. Barreto. 2012. Ethnic Cues: The Role of Shared Ethnicity in Latino Political Participation. University of Michigan Press; Karen M. Kaufmann. 2004. The Urban Voter: Group Conflict and Mayoral Voting Behavior in American Cities. University of Michigan Press.

[^122]: ${ }^{6}$ See U.S. Census Bureau, Relationship Files, https://www.census.gov/geographies/reference-files/time-series/geo/relationship-files.html.

[^123]: ${ }^{7}$ Voting and Election Science Team, 2018, "2016 Precinct-Level Election Results," https://doi.org/10.7910/DVN/NH5S2I, Harvard Dataverse, V86; Voting and Election Science Team, 2019, "2018 Precinct-Level Election Results," https://doi.org/10.7910/DVN/UBKYRU, Harvard Dataverse, V61; Voting and Election Science Team, 2020, "2019 Precinct-Level Election Results," https://doi.org/10.7910/DVN/2AJUII, Harvard Dataverse, V5.

[^124]: ${ }^{8}$ See Gary King, A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from Aggregate Data (Princeton University Press, 1997). This procedure is superior to the methodologies relied upon in the Gingles case itself, which were homogeneous precinct analysis and ecological regression analyses. Homogenous Precinct Analyses simply report the percentage of the votes received by a candidate or set of candidates within the precincts in which a particular group, Blacks or Whites, constitutes over 90 percent of the people receiving ballots. Voters in such precincts might not vote in a similar way to that of voters residing in mixed precincts, however. Ecological Regression (ER) derives estimates, based on all of the precincts, through a linear model premised on the notion that the percentages of Blacks that vote for a particular candidate or candidates are the same in every precinct, and likewise that the percentages of Whites that vote for a candidate or set of candidates are the same in every precinct. EI also takes into account every precinct, but does not rely on an assumption of linearity. Instead, it employs a "maximum likelihood" model for deriving estimates. The EI procedure further incorporates the method of bounds in the analysis, which precludes group estimates from exceeding real-world limits, for example preventing a group's estimated support for a candidate or group of candidates from being above 100.0 percent or below 0.0 percent, as can happen with ER. EI, which can also be used for other purposes, is now used widely in racially polarized voting analyses.
 ${ }^{9}$ Here, the underlying demographic data functionally includes three racial groups: Black VAP, White VAP, and Other VAP, i.e., the difference between Total VAP and the sum of Black VAP and White VAP. The vast majority of voters fall into the Black VAP or White VAP categories, and the Other VAP number is small. However, because the EI model is sometimes said to be preferred when there are only two racial groups at issue, e.g., Collingwood, Loren et

[^125]: ${ }^{11}$ I used the eiCompare package from the library within the RStudio-software to derive the racial polarized voting estimates for EI.
 ${ }^{12}$ There was one other bi-racial contest that included a third party Black candidate. This contest was excluded because the Black candidate was not from a major party.

[^126]: ${ }^{13}$ C.I. is the confidence interval for each of the estimates.

[^127]: "Racial Bias and the Shooting of Unarmed Blacks." Invited Talk. Miniconference on inequality of public administration/policy, May 21-22, 2020. American University, Washington, D.C. CANCELED
 "A System of Bad Apples: When Racial Identity Trumps Resentment in the Shooting of Unarmed Blacks by Black Officers," with Periloux Peay. National Conference of Black Political Scientists, March 12-14, 2020. Buckhead, GA
 "How Culture Shapes Equity and Health." Invited Talk. 2020 Sharing Knowledge to Build a Culture of Health Conference. March 4-6, 2020 at the Jackson Convention Complex in Jackson, Mississippi.

[^128]: ${ }^{1}$ Thornburg v. Gingles, 478 U.S. 30, 50-51 (1986).

[^129]: ${ }^{2}$ Id. at 44-45.

[^130]: ${ }^{3}$ Evidence from exogenous elections can be used to supplement evidence from endogenous elections, particularly where there is little data from recent endogenous elections. The court premised its holding on Gingles's view of sparse data: "'[W]here a minority group has begun to sponsor candidates just recently the fact that statistics from only one or a few elections are available for examination does not foreclose a vote dilution claim.'" Citizens for a Better Gretna v. City of Gretna, 834 F.2d 496, 502 (5th Cir. 1987) quoting Gingles, 478 U.S. at 57 n.25).
 ${ }^{4}$ See Wright v. Sumter Cnty., 979 F. 3d 1282, 1292-93 (11th Cir. 2020) ("[E]vidence drawn from elections involving black candidates is more probative in Section Two cases"); Clark v. Calhoun Cnty., Miss., 88 F.3d 1393, 1397 (5th Cir. 1996) ("[E]xogenous elections-those not involving the particular office at issue are less probative than elections involving the specific office that is the subject of the litigation.").

[^131]: ${ }^{5}$ Matt A. Barreto. 2012. Ethnic Cues: The Role of Shared Ethnicity in Latino Political Participation. University of Michigan Press; Karen M. Kaufmann. 2004. The Urban Voter: Group Conflict and Mayoral Voting Behavior in American Cities. University of Michigan Press.

[^132]: ${ }^{6}$ See U.S. Census Bureau, Relationship Files, https://www.census.gov/geographies/reference-files/time-series/geo/relationship-files.html.

[^133]: ${ }^{7}$ Voting and Election Science Team, 2018, "2016 Precinct-Level Election Results," https://doi.org/10.7910/DVN/NH5S2I, Harvard Dataverse, V86; Voting and Election Science Team, 2019, "2018 Precinct-Level Election Results," https://doi.org/10.7910/DVN/UBKYRU, Harvard Dataverse, V61; Voting and Election Science Team, 2020, "2019 Precinct-Level Election Results," https://doi.org/10.7910/DVN/2AJUII, Harvard Dataverse, V5.

[^134]: ${ }^{8}$ See Gary King, A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from Aggregate Data (Princeton University Press, 1997). This procedure is superior to the methodologies relied upon in the Gingles case itself, which were homogeneous precinct analysis and ecological regression analyses. Homogenous Precinct Analyses simply report the percentage of the votes received by a candidate or set of candidates within the precincts in which a particular group, Blacks or Whites, constitutes over 90 percent of the people receiving ballots. Voters in such precincts might not vote in a similar way to that of voters residing in mixed precincts, however. Ecological Regression (ER) derives estimates, based on all of the precincts, through a linear model premised on the notion that the percentages of Blacks that vote for a particular candidate or candidates are the same in every precinct, and likewise that the percentages of Whites that vote for a candidate or set of candidates are the same in every precinct. EI also takes into account every precinct, but does not rely on an assumption of linearity. Instead, it employs a "maximum likelihood" model for deriving estimates. The EI procedure further incorporates the method of bounds in the analysis, which precludes group estimates from exceeding real-world limits, for example preventing a group's estimated support for a candidate or group of candidates from being above 100.0 percent or below 0.0 percent, as can happen with ER. EI, which can also be used for other purposes, is now used widely in racially polarized voting analyses.
 ${ }^{9}$ Here, the underlying demographic data functionally includes three racial groups: Black VAP, White VAP, and Other VAP, i.e., the difference between Total VAP and the sum of Black VAP and White VAP. The vast majority of voters fall into the Black VAP or White VAP categories, and the Other VAP number is small. However, because the EI model is sometimes said to be preferred when there are only two racial groups at issue, e.g., Collingwood, Loren et

[^135]: ${ }^{11}$ I used the eiCompare package from the library within the RStudio-software to derive the racial polarized voting estimates for EI.
 ${ }^{12}$ There was one other bi-racial contest that included a third party Black candidate. This contest was excluded because the Black candidate was not from a major party.

[^136]: ${ }^{13}$ C.I. is the confidence interval for each of the estimates.

[^137]: "Racial Bias and the Shooting of Unarmed Blacks." Invited Talk. Miniconference on inequality of public administration/policy, May 21-22, 2020. American University, Washington, D.C. CANCELED
 "A System of Bad Apples: When Racial Identity Trumps Resentment in the Shooting of Unarmed Blacks by Black Officers," with Periloux Peay. National Conference of Black Political Scientists, March 12-14, 2020. Buckhead, GA
 "How Culture Shapes Equity and Health." Invited Talk. 2020 Sharing Knowledge to Build a Culture of Health Conference. March 4-6, 2020 at the Jackson Convention Complex in Jackson, Mississippi.

[^138]: ${ }^{1}$ Dr. Swanson mistakenly reports NH DOJ BCVAP as AP BCVAP. The "NH DOJ Black CVAP" category includes voting age citizens who are either non-Hispanic single-race Black or NH Black and White. An "Any Part Black CVAP" category cannot be calculated from the 5 -Year ACS Census Bureau Special Tabulation. The most current 5-year ACS data available

[^139]: is from the 2016-2020 ACS Special Tabulation, with a survey midpoint of July 1, 2018. It is available at: https://www.census.gov/programs-surveys/decennial-census/about/votingrights/cvap.html.
 ${ }^{2}$ There is certainly no rule that I am aware of that Gingles 1 is not satisfied where the existing district is already majority-Black. To the contrary, in the Thomas v. Bryant Section 2 case where I was also the plaintiffs' map-drawing expert, the challenged state senate district in the Mississippi Delta was already over 50% BVAP (50.77\%). Nevertheless, the Court found that Gingles 1 was met, and ultimately found in the plaintiffs' favor on liability.

[^140]: 3 Alex Rozier, Racial disparity conspicuous among Mississippians banned from voting, Mississippi Today (Feb. 22, 2018), https://mississippitoday.org/2018/02/22/racial-disparity-conspicuous-among-mississippians-banned-voting/.

[^141]: ${ }^{4}$ National Conference of State Legislatures, "Redistricting criteria," https://www.ncsl.org/redistricting-and-census/redistricting-criteria

[^142]: 5 See Azavea White Paper, "Redrawing the Map on Redistricting," (2012), https://redistricting.azavea.com/assets/pdfs/Azavea_Redistricting-White-Paper-Addendum2012_sm.pdf.

 6 I served as the Gingles 1 expert for the Plaintiffs in the Fayette County, Georgia lawsuit.

[^143]: ${ }^{8}$ Corresponding statistics for the 2022 Enacted Congressional District 2 will not be available until the release of the 1-Year 2022 ACS in September 2023.

[^144]: 9 Dr. Swanson's cluster analysis is based on an outdated version of the Mississippi Health and Hunger Atlas (2017), which relies on ACS 2011-2015 ACS data. He does not explain why he chose to use old information rather than the more current 2021 Mississippi Health and Hunger Atlas available at: https://cps.olemiss.edu/wp-content/uploads/sites/183/2021/11/Mississippi-Health-and-Hunger-Atlas-2021.pdf/.

[^145]: ${ }^{1}$ Dr. Swanson mistakenly reports NH DOJ BCVAP as AP BCVAP. The "NH DOJ Black CVAP" category includes voting age citizens who are either non-Hispanic single-race Black or NH Black and White. An "Any Part Black CVAP" category cannot be calculated from the 5 -Year ACS Census Bureau Special Tabulation. The most current 5-year ACS data available

[^146]: is from the 2016-2020 ACS Special Tabulation, with a survey midpoint of July 1, 2018. It is available at: https://www.census.gov/programs-surveys/decennial-census/about/votingrights/cvap.html.
 ${ }^{2}$ There is certainly no rule that I am aware of that Gingles 1 is not satisfied where the existing district is already majority-Black. To the contrary, in the Thomas v. Bryant Section 2 case where I was also the plaintiffs' map-drawing expert, the challenged state senate district in the Mississippi Delta was already over 50% BVAP (50.77\%). Nevertheless, the Court found that Gingles 1 was met, and ultimately found in the plaintiffs' favor on liability.

[^147]: 3 Alex Rozier, Racial disparity conspicuous among Mississippians banned from voting, Mississippi Today (Feb. 22, 2018), https://mississippitoday.org/2018/02/22/racial-disparity-conspicuous-among-mississippians-banned-voting/.

[^148]: ${ }^{4}$ National Conference of State Legislatures, "Redistricting criteria," https://www.ncsl.org/redistricting-and-census/redistricting-criteria

[^149]: 5 See Azavea White Paper, "Redrawing the Map on Redistricting," (2012), https://redistricting.azavea.com/assets/pdfs/Azavea_Redistricting-White-Paper-Addendum2012_sm.pdf.

 6 I served as the Gingles 1 expert for the Plaintiffs in the Fayette County, Georgia lawsuit.

[^150]: ${ }^{8}$ Corresponding statistics for the 2022 Enacted Congressional District 2 will not be available until the release of the 1-Year 2022 ACS in September 2023.

[^151]: 9 Dr. Swanson's cluster analysis is based on an outdated version of the Mississippi Health and Hunger Atlas (2017), which relies on ACS 2011-2015 ACS data. He does not explain why he chose to use old information rather than the more current 2021 Mississippi Health and Hunger Atlas available at: https://cps.olemiss.edu/wp-content/uploads/sites/183/2021/11/Mississippi-Health-and-Hunger-Atlas-2021.pdf/.

