## IN THE UNITED STATES DISTRICT COURT FOR THE MIDDLE DISTRICT OF LOUISIANA

DR. DOROTHY NAIRNE, JARRETT
LOFTON, REV. CLEE EARNEST LOWE, DR. ALICE WASHINGTON, STEVEN HARRIS, ALEXIS CALHOUN, BLACK VOTERS
MATTER CAPACITY BUILDING INSTITUTE, and THE LOUISIANA STATE CONFERENCE OF THE NAACP,

## Plaintiffs,

## V.

R. KYLE ARDOIN, in his official capacity as Secretary of State of Louisiana,

Defendant.

CIVIL ACTION NO. 3:22-cv-00178
SDD-SDJ

## PLAINTIFFS' EXHIBIT LIST IN SUPPORT OF MOTION TO EXCLUDE PROPOSED EXPERT TESTIMONY

In support of Plaintiffs' motion to exclude the proposed expert testimony of Sean Trende,
Dr. Douglas Johnson, and Dr. Tumulesh K.S. Solanky, Plaintiffs attach the following exhibits:

- Exhibit A: Report of Sean Trende
- Exhibit B: Transcript of Deposition of Sean Trende
- Exhibit C: J. Chen \& J. Rodden, Unintentional Gerrymandering: Political Geography and Electoral Bias in Legislatures, 8 Quarterly Journal of Political Science 239-69 (2013)
- Exhibit D: Reply Report of Sean Trende
- Exhibit E: Surrebuttal Report of Dr. Douglas Johnson
- Exhibit F: Report of Dr. Douglas Johnson
- Exhibit G: Transcript of Deposition of Dr. Douglas Johnson
- Exhibit H: Rebuttal Report of Willliam Cooper
- Exhibit I: Common Cause v. Lewis Decision
- Exhibit J: Covington v. North Carolina Decision
- Exhibit K: Rebuttal Report of Dr. Craig Colten
- Exhibit L: Report of Willliam Cooper
- Exhibit M: Transcript of Deposition of Dr. Tumulesh Solanky
- Exhibit N: Report of Dr. Tumulesh Solanky
- Exhibit O: Rebuttal Report of Dr. Lisa Handley
- Exhibit P: Report of Dr. John Alford
- Exhibit Q: Report of Dr. Jeffrey Lewis
- Exhibit R: Rebuttal Report of Dr. Tumulesh Solanky
- Exhibit S: Report of Dr. Lisa Handley

DATED: October 10, 2023

Leah Aden*
Stuart Naifeh*
Victoria Wenger*
NAACP Legal Defense \& Educational Fund
40 Rector Street, 5th Floor
New York, NY 10006
laden@naacpldf.org
snaifeh@naacpldf.org
vwenger@naacpldf.org
I. Sara Rohani*

NAACP Legal Defense \& Educational Fund
700 14th Street, Suite 600
Washington, DC 20005
srohani@naacpldf.org
John Adcock (La. Bar No. 30372)
Adcock Law LLC
Louisiana Bar No. 30372
3110 Canal Street
New Orleans, LA 701119
jnadcock@gmail.com

Respectfully submitted,
/s/Sarah Brannon
Sarah Brannon*
Megan C. Keenan*
American Civil Liberties Union Foundation 915 15th St. NW
Washington, DC 20005
sbrannon@aclu.org
mkeenan@aclu.org
Sophia Lin Lakin*
Dayton Campbell-Harris*
American Civil Liberties Union Foundation
125 Broad Street, 18th Floor
New York, NY 10004
slakin@aclu.org
dcampbell-harris@aclu.org
lroman@aclu.org
T. Alora Thomas-Lundborg*

Daniel J. Hessel*
Election Law Clinic
Harvard Law School
6 Everett Street, Ste. 4105

Michael de Leeuw*
Amanda Giglio*
Cozen O'Connor
3 WTC, 175 Greenwich St., 55th Floor
New York, NY 10007
MdeLeeuw@cozen.com
AGiglio@cozen.com
Josephine Bahn**
Cozen O'Connor
1200 19th Street NW
Washington, D.C. 20036
JBahn@cozen.com

Cambridge, MA 02138
tthomaslundborg@law.harvard.edu
dhessel@law.harvard.edu
Nora Ahmed (N.Y. Bar. No. 5092374)
ACLU Foundation of Louisiana
1340 Poydras St., Suite 2160
New Orleans, LA 70112
NAhmed@laaclu.org
Ron Wilson (La. Bar No. 13575)
701 Poydras Street, Suite 4100
New Orleans, LA 70139
cabral2@aol.com

Attorneys for Plaintiffs<br>*Admitted Pro Hac Vice<br>**Pro Hac Vice Motion Forthcoming

## CERTIFICATE OF SERVICE

I hereby certify that on October 10, 2023, a copy of the foregoing motion was filed electronically with the Clerk of Court via the CM/ECF system. Notice of this filing will be sent to all counsel of record by operation of the court's electronic filing system.
/s/ Sarah Brannon
Sarah Brannon*

## Expert Report of Sean P. Trende

 in Nairne, et al. v. Ardoin, et al.July 28, 2023

## Table of Contents

1 Expert Qualifications ..... 1
1.1 Career ..... 1
1.2 Publications and Speaking Engagements ..... 1
1.3 Education ..... 2
1.4 Prior Engagements and Court Appointments ..... 3
2 Scope of Engagement ..... 4
3 Summary of Opinions ..... 4
4 Data Relied Upon and Construction of Datasets ..... 5
5 Discussion of Additional Cooper House Districts ..... 6
5.1 Shreveport Area ..... 6
5.1.1 Cooper Illustrative District 1 ..... 10
5.1.2 Cooper Illustrative District 2 ..... 20
5.1.3 Cooper Illustrative District 3 ..... 23
5.1.4 Cooper Illustrative District 4 ..... 28
5.2 Natchitoches Area ..... 34
5.2.1 Cooper Illustrative District 23 ..... 34
5.3 St. Charles Area ..... 40
5.3.1 Cooper Illustrative Districts 34 and 38 ..... 42
5.4 Baton Rouge Area ..... 54
5.4.1 Cooper Illustrative District 29 ..... 57
5.4.2 Cooper Illustrative District 61 ..... 61
5.4.3 Cooper Illustrative District 63 ..... 65
5.4.4 Cooper Illustrative District 60 ..... 69
5.4.5 Cooper Illustrative District 65 ..... 74
5.4.6 Cooper Illustrative District 67 ..... 79
5.4.7 Cooper Illustrative District 69 ..... 84
5.4.8 Cooper Illustrative District 101 ..... 89
6 Discussion of Additional Cooper Senate Districts ..... 94
6.1 Shreveport Area ..... 94
6.1.1 Cooper Illustrative District 38 ..... 97
6.1.2 Cooper Illustrative District 39 ..... 103
6.2 East/West Baton Rouge Area ..... 109
6.2.1 Cooper Illustrative District 17 ..... 112
6.3 New Orleans Area ..... 118
6.3.1 Cooper Illustrative District 4 ..... 121
6.3.2 Cooper Illustrative District 3 ..... 123
6.3.3 Cooper Illustrative District 19 ..... 129
7 Conclusion ..... 135

## 1 Expert Qualifications

### 1.1 Career

I serve as Senior Elections Analyst for Real Clear Politics. I joined Real Clear Politics in January of 2009 after practicing law for eight years. I assumed a fulltime position with Real Clear Politics in March of 2010. Real Clear Politics is a company of approximately 50 employees, with its main offices in Washington D.C. It produces one of the most heavily trafficked political websites in the world, which serves as a one-stop shop for political analysis from all sides of the political spectrum and is recognized as a pioneer in the field of poll aggregation. Real Clear Politics produces original content, including both data analysis and traditional reporting. It is routinely cited by the most influential voices in politics, including David Brooks of The New York Times, Brit Hume of Fox News, Michael Barone of The Almanac of American Politics, Paul Gigot of The Wall Street Journal, and Peter Beinart of The Atlantic.

My main responsibilities with Real Clear Politics consist of tracking, analyzing, and writing about elections. I collaborate in rating the competitiveness of Presidential, Senate, House, and gubernatorial races. As a part of carrying out these responsibilities, I have studied and written extensively about demographic trends in the country, exit poll data at the state and federal level, public opinion polling, and voter turnout and voting behavior. In particular, understanding the way that districts are drawn and how geography and demographics interact is crucial to predicting United States House of Representatives races, so much of my time is dedicated to that task.

I am currently a Visiting Scholar at the American Enterprise Institute, where my publications focus on the demographic and coalitional aspects of American Politics.

### 1.2 Publications and Speaking Engagements

I am the author of the 2012 book The Lost Majority: Why the Future of Government is up For Grabs and Who Will Take It. In this book, I explore realignment theory.

It argues that realignments are a poor concept that should be abandoned. As part of this analysis, I conducted a thorough analysis of demographic and political trends beginning in the 1920s and continuing through modern times, noting the fluidity and fragility of the coalitions built by the major political parties and their candidates.

I also co-authored the 2014 Almanac of American Politics. The Almanac is considered the foundational text for understanding congressional districts and the representatives of those districts, as well as the dynamics in play behind the elections. PBS's Judy Woodruff described the book as "the oxygen of the political world," while NBC's Chuck Todd noted that "Real political junkies get two Almanacs: one for the home and one for the office." My focus was researching the history of and writing descriptions for many of the newly-drawn districts, including tracing the history of how and why they were drawn the way that they were drawn. Because the 2014 Almanac covers the 2012 elections, analyzing how redistricting was done was crucial to my work. I have also authored a chapter in Larry Sabato's post-election compendium after every election dating back to 2012.

I have spoken on these subjects before audiences from across the political spectrum, including at the Heritage Foundation, the American Enterprise Institute, the CATO Institute, the Bipartisan Policy Center, and the Brookings Institution. In 2012, I was invited to Brussels to speak about American elections to the European External Action Service, which is the European Union's diplomatic corps. I was selected by the United States Embassy in Sweden to discuss the 2016 elections to a series of audiences there and was selected by the United States Embassy in Spain to fulfill a similar mission in 2018. I was invited to present by the United States Embassy in Italy, but was unable to do so because of my teaching schedule.

### 1.3 Education

I am currently enrolled as a doctoral candidate in political science at The Ohio State University. I have completed all my coursework and have passed comprehensive
examinations in both methods and American Politics. As of this writing, my dissertation has been approved for defense by my committee, and awaits formatting review. Chapter 3 of the dissertation involves the use of communities of interest in redistricting simulations. In pursuit of this degree, I have also earned a Master's Degree in Applied Statistics. My coursework for my Ph.D. and M.A.S. included, among other things, classes on G.I.S. systems, spatial statistics, issues in contemporary redistricting, machine learning, nonparametric hypothesis tests and probability theory.

In the winter of 2018, I taught American Politics and the Mass Media at Ohio Wesleyan University. I taught Introduction to American Politics at The Ohio State University for three semesters from Fall of 2018 to Fall of 2019, and again in Fall of 2021. In the Springs of 2020, 2021, 2022 and 2023, I taught Political Participation and Voting Behavior at The Ohio State University. This course spent several weeks covering all facets of redistricting: how maps are drawn, debates over what constitutes a fair map, measures of redistricting quality, and similar topics.

### 1.4 Prior Engagements and Court Appointments

A full copy of all cases in which I have testified or been deposed is included on my c.v, attached as Exhibit 1. In 2021, I served as one of two special masters appointed by the Supreme Court of Virginia to redraw the districts that will elect the Commonwealth's representatives to the House of Delegates, state Senate, and U.S. Congress in the following decade. The Supreme Court of Virginia accepted those maps, which were praised by observers from across the political spectrum. E.g., "New Voting Maps, and a New Day, for Virginia," The Washington Post (Jan. 2, 2022), available at https://www.washingtonpost.com/opinions/ 2022/01/02/virginia-redistricting-voting-mapsgerrymand Henry Olsen, "Maryland Shows How to do Redistricting Wrong. Virginia Shows How to Do it Right," The Washington Post (Dec. 9, 2021), available at https://www. wash ingtonpost.com/opinions/2021/12/ 09/maryland-virginia-redistricting/; Richard Pildes, "Has VA Created a New Model for a Reasonably Non-Partisan Redistricting Process,"

Election Law Blog (Dec. 9, 2021), available at https://electionlawblog.org/?p=126216.
In 2019, I was appointed as the court's expert by the Supreme Court of Belize. In that case I was asked to identify international standards of democracy as they relate to malapportionment claims, to determine whether Belize's electoral divisions (similar to our congressional districts) conformed with those standards, and to draw alternative maps that would remedy any existing malapportionment.

I served as a Voting Rights Act expert to counsel for the Arizona Independent Redistricting Commission in 2021 and 2022.

## 2 Scope of Engagement

I have been retained by the law firm of Nelson Mullins on behalf of Secretary of State Kyle Ardoin to evaluate Louisiana's legislative maps ("Enacted Maps" or "Enacted Plan") and the demonstration maps proposed by their expert, Mr. William Cooper ("Cooper Illustrative Maps" or "Illustrative Maps"). I am being compensated at a rate of $\$ 400.00$ per hour to provide my expert analysis. I have been asked to explore the following questions in reference to the minority-majority districts that Mr. Cooper created, in addition to those contained in the Enacted Map:

- Whether the minority populations in the new minority-majority districts in the Illustrative Maps are compact?
- Whether the portion of the minority group that appears compact, if any, is sufficient to constitute a majority of the district?


## 3 Summary of Opinions

Based on the work performed as addressed in the following sections of the report, I hold to the following opinions to a reasonable degree of professional certainty:

- The newly created minority-majority districts in the Cooper Illustrative Map are not based upon compact minority populations. While some minority-majority districts using such populations are certainly possible in Louisiana, these new districts are created by aggregating geographically distant clusters of residents.
- Most (but not all) of these newly drawn districts do include a large, compact cluster of minority residents of voting age. However, the populations in these clusters are not large enough to constitute a majority of the district.


## 4 Data Relied Upon and Construction of Datasets

For purposes of this report, I reviewed and/or relied upon the following materials:

- Shapefiles for Louisiana political materials and demographic information at the block, precinct, and parish level, downloaded from the Redistricting Data Hub, available at https://redistrictingdatahub.org/;
- Data and maps provided by Plaintiffs' Experts;
- The computer code accompanying this report;
- Other documents referenced in this report.

In defining "Black Voting Age Population," or "BVAP" for purposes of this report, at the instruction of counsel I am using the "any part Black" definition based upon data from the United States Census. That is to say, if a person informs the census that they identify, in whole or in part, as Black, I will count that individual as Black. The voting age population is calculated by summing the members of ethnic groups over the age of 18. Residents are counted as White only if they identify themselves as being White, with no other racial or ethnic identity specified.

All shapefiles are projected using the WGS 84 projection. Calculations are performed using R, a computer programming package that is frequently used for data analysis in the statistics and political science disciplines.

## 5 Discussion of Additional Cooper House Districts

### 5.1 Shreveport Area

The Enacted Plan creates three majority Black districts in the Shreveport area: Districts 2, 3 and 4. District 2 is centered on downtown Shreveport and has a BVAP of $67.4 \%$. District 3 is centered on southern Shreveport and has a BVAP of $73.9 \%$. District 4 is located west of Shreveport and the areas around most of Cross Lake; the BVAP is $72.1 \%$. They are depicted in Fig. 1 (Here, Black lines denote district boundaries, while dashed blue lines denote parish boundaries.

Figure 1: Black Majority BVAP Districts in the Shreveport Area, Enacted Map. Here, the dashed blue line depicts parish boundaries. Shaded districts are Black majority.

© OpenStreetMap contributors

Mr. Cooper's Illustrative Map, by contrast, creates four minority-majority districts in the Shreveport area: Districts 1, 2, 3 and 4 (Fig. 2). Illustrative Districts 2 and 3 are still centered on Shreveport, although they are pushed southward. Illustrative District 4 is pushed south and westward and extended to the Texas border. Illustrative District 1 is pushed into Downtown Shreveport relative to the Enacted Map, but still
extends out to the Texas and Arkansas borders. The BVAPs of districts 1, 2, 3 and 4 are, respectively, $55.3 \%, 67.3 \%, 58.8 \%$, and $57.5 \%$.

An individual analysis of these districts reveals that the populations included in Cooper's districts were not reasonably compact. In this analysis, I employ two approaches. First, I utilize a qualitative approach, relying in part on Justice O'Connor's instruction that redistricting is one area where "appearances do matter." Shaw v. Reno, 509 U.S. 630 (1993). Second, I utilize a quantitative approach, described below.

Figure 2: Black Majority BVAP Districts in the Shreveport Area, Cooper Illustrative Map. Here, the dashed blue line depicts parish boundaries. Shaded districts are Black majority.


### 5.1.1 Cooper Illustrative District 1

Consider an example of a district that my analysis suggests does not contain a compact minority population that is capable of comprising a majority in a reasonably configured district: Illustrative District 1. Figure 3 depicts a map, referred to as a choropleth map, which shows the census blocks included in the Illustrative Map's version of District 1. Each block is color coded by its BVAP; empty blocks are shaded in white.

This map nicely illustrates the non-compact nature of the population enclosed by the new Black majority Illustrative districts. Heavily Black areas are separated by overwhelmingly White neighborhoods, as the district stretches from downtown Shreveport to the Arkansas border.

Of course, choropleth maps have their limitations, because we cannot readily see whether the geographic (or, to use the jargon from spatial analysis, "areal") units (here, census blocks) contain one Black resident, or 100; these are simply percentages. However, there are other types of maps that allow us to see the distribution of people more clearly. For example, dot density maps take a geographic unit, such as a precinct or census block, and then fill it not with colors, but with dots according to the number of residents. Figure 4 provides an example of such a map, where one blue dot represents 10 Black residents (rounded to the nearest 10). We can see that the Black population of the district is quite spread out. There is a large cluster around downtown Shreveport, and then another cluster just past I-220. Other clusters occur in the small towns between Caddo Lake and Black Bayou Lake, along with smattering of Black residents in the rural areas across the countryside.

In this type of map, however, the intervening spaces are not necessarily empty. For example, there may be White voters residing in those blocks. Figure 5 provides one solution to this problem, by placing an orange " x " for every 10 White residents of voting age (rounded to the nearest 10). As you can see, there are also strong concentrations of White voters, particularly west of I-49 near Shreveport, extending northward to Caddo Lake and beyond.

Figure 3: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 1. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 4: Location of Black population in Cooper Illustrative District 1. One blue dot represents 10 Black residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 5: Location of Black and White populations in Cooper Illustrative District 1. One blue dot represents 10 Black residents of voting age. One orange ' $x$ ' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


In other words, it is not necessarily the case that some fluke of geography is responsible for the dispersion of the Black population in this district. Much of the district is populated, but it is a mix of Black and White population centers.

Of course, we know that districts must comply with the one-person-one-vote constitutional requirement. It may be that there is a compact minority population sufficient to create a majority in a district in one discrete area, but that the district also extends out into neighboring areas simply to comply with constitutional requirements, capturing Black residents as a byproduct of geography. Put differently, it there were a Black population within, say, the boundaries of State Route I-220 in Shreveport, it would likely be irrelevant that there also happened to be a dispersed Black population included elsewhere in the district as it sought to comply with one-person-one-vote.

Illustrative District 1 has a VAP of 33,473 , meaning that 16,737 residents are needed to constitute a majority. The area of greatest Black population concentration in the district - the portion of the district located within Shreveport south of I-220 and I-49 - contains only 11,556 Black residents of voting age. In other words, the portion of the district containing a compact Black population is well short of a majority, constituting just a third of the population of the district.

To create an additional district in the Shreveport area where the minority group is a numeric majority, Illustrative District 1 must extend well beyond the city limits, across heavily White areas to take in pockets of Black populations. This practice is colloquially known among redistricters as "baconmandering." The Illustrative Map doesn't do this because it must accumulate a sufficient number of residents; it does so because it must accumulate a sufficient number of Black residents.

I also explore this using a more quantitative approach. In particular, I utilize the moment of inertia method of calculating the compactness of a population. See, e.g., Micah Altman, "Modeling the Effect of Mandatory District Compactness on Partisan Gerrymanders," 17 Pol. Geog. 8, 995 (1998). The moment of inertia metric is actually among the oldest of the redistricting metrics. See James B. Weaver \& Sidney W. Hess, "A

Procedure for Nonpartisan Districting: Development of Computer Techniques," 73 The Yale Law Journal 228, 297-300 (Dec. 1963) (describing the moment of inertia metric and its use in redistricting); Isobel M.L. Robertson, "The Delimitation of Local Government Electoral Areas in Scotland," 33 Jrnl. Op. Rsrch. Soc. 517, 518 (June 1982) (describing a redistricting algorithm employing the moment of inertia approach for population compactness); Henry F. Kaiser, "An Objective Method for Establishing Legislative Districts, 10 Midwest Jrnl. Pol. Sci. 200 (1966) (providing a lengthy mathematical description of the moment of inertia as applied to redistricting); S.W. Hess, et al, "Nonpartisan Political Redistricting by Computer," 13 Op. Rsrch. 998, 999 (1965).

The moment of inertia approach is defined as the "sum of squared distances from each person to [their] district's center." Hess et al., at 999. To find the most compact Black population in each proposed district, we first find the centroids of each individual precinct. We (really, a computer) pick a precinct to begin with and identify all adjacent precincts. We pick one of those adjacent precincts and determine what the population centroid would be if they were in the same district. Next, we calculate the distance from each precinct to the population centroid, square that distance, and multiply by the population of the precinct. The moment of inertia will be the sum of these weighted squared distances. We calculate this value for every adjacent precinct and select the smallest moment. These two precincts are then locked together in the same district, and the process then repeats, until the BVAP of the precincts equals half of the total population of the original district. We then perform the entire algorithm such that it begins once for every precinct in the proposed district and identify the district with the smallest moment of inertia as the most compact grouping of Black residents over the age of 18 in the district.

One problem with the moment of inertia approach is that after a heavily populated cluster is identified, it will tend to avoid other heavy population clusters. In this context, it is a relatively minor problem, as the entire point of the exercise is to see if multiple clusters separated by substantial distances are required to be combined in order to create
a $50 \%+1$ BVAP district.
Regardless, counsel has also asked me to employ an area-based algorithm to identify compact population clusters. The algorithm employed here is similar to that utilized in some redistricting simulations. See, e.g., Jowei Chen \& Jonathan Rodden, "Unintentional Gerrymandering: Political Geography and Electoral Bias in Legislatures," 8 Q. J. of Poli. Sci. 239 (2013). It is also consistent with the definition of "compact" as an areabased metric in some contemporary dictionaries. E.g., Webster's New Twentieth Century Dictionary, Unabridged 368 (2d ed. 1980) (defining the adjective version of compact as "1. Closely and firmly united, as the particles of solid bodies; solid; dense; as a compact mass of people; a compact body or substance. . . . 5. taking little space; arranged neatly in a small space. 6. Designating or of a relatively small, light, economical model of automobile. Syn. - close, condensed, hard, solid) (including other irrelevant definitions such as 2. Composed of, 3. Held together, 4. Brief, as in "compact discourse").

To identify this, I used the same basic algorithm as above, except that rather than using the BVAP to weight squared distances, I instead utilized the area of precincts. By favoring precincts with centroids that are near one another, and favoring smaller precincts over larger precincts, the algorithm will build groups that take up little area. Once again, the algorithm will repeat for every precinct until the BVAP of the grouping is equivalent to $50 \%+1$ of the overall population of the district. Note that I do not always provide results for both techniques in the interest of brevity, however either approach may be calculated from the provided computer code implementing these approaches.

Figures 6-7 show the results of both algorithms for District 1. The first map shows the most compact grouping of Black residents sufficient to constitute a majority of Illustrative District 1's population using the moment of inertia method, while the second map shows the most compact grouping using the areal/Chen \& Rodden method. Note that the approach sometimes produces "holes" on the map. This is because we are searching for a minimally compact group; the contiguity requirement of redistricting may, in fact, require an even less compact group to be drawn into a district.

Figure 6: Most compact group of Black residents of voting age in Cooper Illustrative District 1 sufficient to constitute a majority of the population in the district, using the moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,737 Black residents of voting age this approach identifies within the boundaries of of Illustrative District 1 .


Figure 7: Most compact group of Black residents of voting age in Cooper Illustrative District 1 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,737 Black residents of voting age this approach identifies within the boundaries of Illustrative District 1.


These maps show that the most compact Black population in this district configuration that would be sufficient to constitute a majority of the district's population stretches beyond Shreveport, out to Caddo Lake, and to the outskirts of Mooringsport and Belcher, which are located almost halfway to the Arkansas border. In the process, the most compact configuration of Black residents in the district that would be sufficient to constitute a majority of the district also crosses heavily White areas and depopulated areas as well. The same is true using the areal method.

In other words, this analysis shows that the heavily White, rural precincts in this District are not just added to achieve population equality. They are added to join isolated Black residents with a more compact Black population in Shreveport in order to meet the minority-majority threshold.

That is to say, here, these isolated Black population pockets are not incidental to the $50 \%+1$ district, they are needed to draw such a district in the configuration Mr. Cooper attempts to create while attempting to draw four Black majority districts in the Shreveport area. In short, while there appears to be a compact minority population near the Shreveport area that can support three Black majority districts, that population is not sufficient to constitute a majority of the population in the four majority Black districts drawn in the Illustrative Map.

### 5.1.2 Cooper Illustrative District 2

To be clear, this is not an approach that will intrinsically defeat a minoritymajority district. Consider districts 2, 3 and 4 in the Shreveport Area. District 2 is a bit tricky, because the Black population exists in three clusters, separated by a heavily white area and the Red River. Nevertheless, there exists a sufficient number of Black residents on the western side of the river to create a majority of the population in the district, and most of the blocks separating the two clusters are at least diverse. Figures 8-9 illustrate this.

Whichever population compactness metric we employ, we come up with the same grouping of Black voters. The data show that there are a sufficient number of Black voters over the age of 18 in Cooper Illustrative District 2 to comprise a majority of residents in the district in a relatively compact group. In other words, the remaining residents of Cooper's Illustrative District 2, white or Black, would not have to be added to achieve a majority-BVAP district, but rather are added to meet the equal population requirement.

Figure 8: Most compact group of Black residents of voting age in Cooper Illustrative District 2 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,457 Black residents of voting age this approach identifies within the boundaries of Illustrative District 2.


Figure 9: Most compact group of Black residents of voting age in Cooper Illustrative District 2 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,457 Black residents of voting age this approach identifies within the boundaries of Illustrative District 2.


### 5.1.3 Cooper Illustrative District 3

Likewise, Illustrative District 3 involves compact Black populations that comprise a majority of the voting age population of the district. As illustrated in figures 10 13, it contains a large Black population north of Louisiana Highway 3132 that is almost sufficient to constitute a majority on its own.

In Illustrative District 3, we see that the most compact grouping of Black voters over the age of 18 that would comprise a majority in the districts drawn by Mr. Cooper does extend out away past the most heavily Black precincts. But it is not as disparate a grouping as some of the districts that follow.

Figure 10: Percent BVAP in census blocks contained in Cooper Map, Illustrative District 3. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 11: Location of Black and White populations in Cooper Illustrative District 3. One blue dot represents 10 Black residents of voting age. One orange ' $x$ ' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 12: Most compact group of Black residents of voting age in Cooper Illustrative District 3 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,558 Black residents of voting age this approach identifies within the boundaries of Illustrative District 3.


Figure 13: Most compact group of Black residents of voting age in Cooper Illustrative District 3 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,558 Black residents of voting age this approach identifies within the boundaries of Illustrative District 3.


### 5.1.4 Cooper Illustrative District 4

The same is true of Illustrative Map District 4 in this area. As you can see from the choropleth map and dotplot maps, the bulk of the district's Black population is contained in a single area in the southeastern portion of the district. The rest of the district is more rural and is heavily White.

But this heavily rural, White area is not added to the district to find disparate Black residents who can fill out a district at $50 \%+1$. While the moment of inertia (compact population) approach does reach out into those areas (because adding the heavily populated, heavily Black precinct southwest of Cross Lake would move the population moment of inertia considerably), the compact area/Chen \& Rodden approach avoids them altogether.

Figure 14: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 4. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 15: Location of Black population in Cooper Illustrative District 4. One blue dot represents 10 Black residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 16: Location of Black and White populations in Cooper Illustrative District 4. One blue dot represents 10 Black residents of voting age. One orange ' $x$ ' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 17: Most compact group of Black residents of voting age in Cooper Illustrative District 4 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 17,553 Black residents of voting age this approach identifies within the boundaries of Illustrative District 4.


Figure 18: Most compact group of Black residents of voting age in Cooper Illustrative District 4 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 17,553 Black residents of voting age this approach identifies within the boundaries of Illustrative District 4.


### 5.2 Natchitoches Area

### 5.2.1 Cooper Illustrative District 23

Cooper's Illustrative House District 23 creates a Black majority district in northwestern Louisiana. It is $50.56 \%$ Black. The Enacted Map has no Black majority district in this area. This is because the district Mr. Cooper creates does not contain a compact minority population; no such district can be drawn here. Instead, it plucks geographically distant populations from Natchitoches and Campti in the southeast, Coushatta in the northeast, and Mansfield in the West, and collects them in a single district. The Voting Age Population of the district is 34,987 , meaning that to consist of a majority of the VAP would require a group to have a population of at least 17,494 individuals; the BVAP of the district contained in the Illustrative Map is 17,690.

The precincts around Natchitoches and Campti have a Black population of 9,261; the precincts around Coushatta and Edgefield have a Black population of 1,825 , and the precincts around Mansfield and South Mansfield have a BVAP of 4,246. Even aggregating these numbers is insufficient to push the district to minority-majority status. Achieving that requires picking up Black voters living in heavily White rural blocks east of Coushatta and north of Mansfield. We see this illustrated in Figures 19-23.

None of the disparate population clusters in the district come close to containing Black populations of 17,494 , and even combined they fail to hit $50 \%+1$. In other words, there's no compact minority grouping in this district that can constitute a majority of the voting age population in the district; any minority-majority district in this area will necessarily sprawl across heavily White, rural precincts. Note that because the BVAP of the district is so close to the minimal BVAP required to draw a $50 \%+1$ BVAP district, the most compact Black population sufficient to constitute a majority in the district is contained in an area that is coterminous with the district boundaries; the blue dashed lines in the maps above overlap with the black district edge.

Figure 19: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 23. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 20: Location of Black population in Cooper Illustrative District 23. One blue dot represents 10 Black residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 21: Location of Black and White populations in Cooper Illustrative District 23. One blue dot represents 10 Black residents of voting age. One orange ' $x$ ' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 22: Most compact group of Black residents of voting age in Cooper Illustrative District 23 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 17,494 Black residents of voting age this approach identifies within the boundaries of Illustrative District 23. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


Figure 23: Most compact group of Black residents of voting age in Cooper Illustrative District 23 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 17,494 Black residents of voting age this approach identifies within the boundaries of Illustrative District 23. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


Figure 24: Black Majority BVAP Districts in the St. Charles Area, Enacted Map. Here, the dashed blue line depicts parish boundaries. Shaded districts are Black majority.


### 5.3 St. Charles Area

The Enacted Plan creates one minority majority district in the Lake Charles area. As depicted in Figures 24 and 25, Mr. Cooper splits this district to create two minority majority districts: Districts 34 and 38 .

Figure 25: Black Majority BVAP Districts in the St. Charles Area, Cooper Map. Here, the dashed blue line depicts parish boundaries. Shaded districts are Black majority.


### 5.3.1 Cooper Illustrative Districts 34 and 38

Cooper's District 34 (Figs. 26-30, which looks like a pointer dog about to identify a duck), has a VAP of 32,241 and a BVAP of 16,131 , meaning that it is majority Black by ten residents. District 38 has a VAP of 32,365 , such that a group must have a population of 16,183 to constitute a numeric majority in the district. The district has a BVAP of 16,455 . The minority population in District 34 is not particularly compact; to achieve his ten-person majority here Mr. Cooper has to scrape together Black residents from heavily white tendrils in the district. Moreover, because every precinct in the district has at least ten adult Black residents, all of these precincts are needed to achieve the minimum BVAP; the district in its entirety is the most compact group within the district of Black voters that gets to $50 \%+1$ of the population (hence, the blue dashed lines in those maps are coterminous with the black district boundary). There is no compact group of Black voters sufficient to constitute a majority of the Voting Age Population in this district.

District 38 (Figs. 31-38) fares even worse in terms of minority compactness. There is a cluster of Black residents of voting age around Lake Charles, but this cluster does not have the necessary population of 16,183 . To achieve this, Mr. Cooper once again has to reach out into the surrounding countryside, and over to the town of Iowa. In fact, if one removes just the two (heavily White) Iowa precincts from the map, the BVAP of the district falls to 15,758 . Likewise, if one removes the three (heavily White) rural precincts in the northern arm of the district, the district's BVAP falls to 16,055 , short of a majority (removing two rural precincts here is how one draws the most compact district). In other words, Cooper's District 38 is more like District 1 than District 4: It ranges into rural, White areas not to pick up population, but to pick up isolated census blocks that happen to contain Black individuals, without which the map cannot reach a majority BVAP status.

There is a sufficiently compact Black population in the Lake Charles area to support one minority-majority district. There is not a compact Black population capable of sustaining two, at least given the Illustrative Maps. To draw two (barely) minority-

Figure 26: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 34. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 27: Location of Black population in Cooper Illustrative District 34. One blue dot represents 10 Black residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 28: Location of Black and White populations in Cooper Illustrative District 34. One blue dot represents 10 Black residents of voting age. One orange ' $x$ ' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 29: Most compact group of Black residents of voting age in Cooper Illustrative District 34 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,121 Black residents of voting age this approach identifies within the boundaries of Illustrative District 34. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


Figure 30: Most compact group of Black residents of voting age in Cooper Illustrative District 34 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,121 Black residents of voting age this approach identifies within the boundaries of Illustrative District 34. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


Figure 31: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 38. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 32: Location of Black population in Cooper Illustrative District 38. One blue dot represents 10 Black residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 33: Location of Black and White populations in Cooper Illustrative District 38. One blue dot represents 10 Black residents of voting age. One orange ' $x$ ' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 34: Most compact group of Black residents of voting age in Cooper Illustrative District 38 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,183 Black residents of voting age this approach identifies within the boundaries of Illustrative District 38. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


Figure 35: Most compact group of Black residents of voting age in Cooper Illustrative District 38 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,183 Black residents of voting age this approach identifies within the boundaries of Illustrative District 38. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.

majority districts, Mr. Cooper is forced to rely on Black populations in outlying towns or precincts, often in heavily White areas of the parish.

### 5.4 Baton Rouge Area

Mr. Cooper draws new majority Black districts in the Baton Rouge area with Illustrative Districts 60, 65, 68 and 69. (Compare Figure 36 with Figure 37). He then removes a minority-majority district that exists in the Enacted Plan: District 62. Illustrative Districts 60, 65, 68 and 69 have BVAP percentages of $52.8 \%, 56 \%, 54.2 \%$ and $50.2 \%$, respectively. However, by splitting up the core of Black voters in Baton Rouge, he is forced to "baconmander" the remaining districts into far-flung areas of the map, creating several districts where the Black population is not geographically compact. Thus, the question is how Cooper accomplished the feat of drawing three additional minoritymajority districts here.

Figure 36: Black Majority BVAP Districts in the Baton Rouge Area, Enacted Map. Here, the dashed blue line depicts parish boundaries. Shaded districts are Black majority.


Figure 37: Black Majority BVAP Districts in the Shreveport Area, Cooper Map. Here, the dashed blue line depicts parish boundaries. Shaded districts are Black majority.


### 5.4.1 Cooper Illustrative District 29

The resulting districts provide good contrasts that help explain what a compact minority group sufficient to constitute a majority in a district would look like. Thus, this report first compares three districts that Mr. Cooper redrew to their counterparts in the Enacted Map. Consider the Enacted District 29, in Figure 39.

Here, the district stretches through heavily White areas, meandering along the banks of the Mississippi River. However, there exists in the area on the East side of the Mississippi a geographically compact Black population that could be sufficient to constitute a majority in a district. The wanderings on the west side of the Mississippi River exist to meet the equal population requirement, and are not necessary for making the district one where Black voters are a majority of the voting age population.

Contrast that with the Illustrative Maps' version of District 29 (which resembles a guinea pig climbing up the side of the map), in Figure 40.

In this district there is also a geographically compact Black population east of the Mississippi River, but it is insufficient to constitute a majority of the population. To achieve this, the Illustrative Map must cross over into rural, White areas to pick up isolated Black residents.

Figure 38: Most compact group of Black residents of voting age in Enacted District 29 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,519 Black residents of voting age this approach identifies within the boundaries of Enacted District 29.


Figure 39: Most compact group of Black residents of voting age in Cooper Illustrative District 29 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 17,076 Black residents of voting age this approach identifies within the boundaries of Illustrative District 29 .


Figure 40: Most compact group of Black residents of voting age in Cooper Illustrative District 29 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 17,076 Black residents of voting age this approach identifies within the boundaries of Illustrative District 29.


### 5.4.2 Cooper Illustrative District 61

The Enacted and Illustrative versions of District 61 further illustrate this phenomenon. Compare Figure 41 with Figure 42.

Once again, the Black population in the Enacted version of District 61 is geographically distinct, and it is sufficient to constitute a majority of the population. It is true that there are heavily White areas and isolated Black residents included in the district, but they are not necessary to create a $50 \%+1$ BVAP district. They are necessary to create a district that complies with one-person-one-vote in this configuration.

The Illustrative Map's District 61, takes a very different approach (Figures 42 43).

Because this district is barely majority-minority (BVAP $50.2 \%$ ) every Black resident in the district is needed to cross the majority threshold (it is 166 Black residents over the $50 \%+1$ threshold). Thus, unlike the Enacted Map, the Illustrative Map here ventures out into heavily White areas not simply to comply with one-person-one-vote, but to cross the $50 \%+1$ threshold under Gingles. In other words, the minority group that is sufficient to comprise $50 \%+1$ of the district is not compact under the Illustrative Map.

Figure 41: Most compact group of Black residents of voting age in Enacted District 61 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,812 Black residents of voting age this approach identifies within the boundaries of Enacted District 61.


Figure 42: Most compact group of Black residents of voting age in Cooper Illustrative District 61 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 17,766 Black residents of voting age this approach identifies within the boundaries of Enacted District 61. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


Figure 43: Most compact group of Black residents of voting age in Cooper District 61 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 17,766 Black residents of voting age this approach identifies within the boundaries of Enacted District 61. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line


### 5.4.3 Cooper Illustrative District 63

In the same vein, the Enacted Map's version of District 63, depicted in Figure 44, extends into lightly populated, rural areas, but there exists a heavily compact cluster of Black residents in the southeast of the map that constitutes a majority of the Voting Age population.

The Illustrative Map, however, Figures 45-46, ranges far and wide across the outskirts of East Baton Rouge Parish to collect isolated Black individuals to cross the $50 \%+1$ threshold. In other words, its most compact Black population that could comprise $50 \%+1$ of the district is necessarily less compact than in the Enacted Plan, and is non-compact in general.

Figure 44: Most compact group of Black residents of voting age in Enacted District 63 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,793 Black residents of voting age this approach identifies within the boundaries of Enacted District 63.


Figure 45: Most compact group of Black residents of voting age in Cooper Illustrative District 63 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,937 Black residents of voting age this approach identifies within the boundaries of Enacted District 63.


Figure 46: Most compact group of Black residents of voting age in Cooper Illustrative District 63 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,937 Black residents of voting age this approach identifies within the boundaries of Enacted District 63.


### 5.4.4 Cooper Illustrative District 60

The other districts that Mr. Cooper creates deploy the same techniques. The Illustrative Map's newly created District 60 relies on cobbling together minority groups from dispersed portions of the area, connecting Black voters in Gonzales, White Castle, and Plaquemine. These areas are not functionally contiguous - that is, one must travel outside of the district to go across the Mississippi River. As with District 23 above, none of these groups approaches $50 \%$ of the BVAP. The overall VAP of the district is 33,620 . The cluster around Plaquemines has 3,760 Black residents of voting age, the precincts around White Castle have 1,307 Black residents of voting age, and the precincts around Gonzales have a BVAP of 5,531 . Again, this is a district created by stitching together heavily Black clusters with mostly White areas with the occasional Black resident included. See Figs. 47-50.

Figure 47: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 60. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 48: Location of Black and White populations in Cooper Illustrative District 60. One blue dot represents 10 Black residents of voting age. One orange 'x' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 49: Most compact group of Black residents of voting age in Cooper Illustrative District 60 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,936 Black residents of voting age this approach identifies within the boundaries of Illustrative District 60. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


Figure 50: Most compact group of Black residents of voting age in Cooper Illustrative District 60 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,936 Black residents of voting age this approach identifies within the boundaries of Illustrative District 60. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


### 5.4.5 Cooper Illustrative District 65

Likewise, in District 65, the Black population is concentrated in the overwhelmingly Black western portion of the district. Getting to a BVAP of 16,758 ( $50 \%$ of the district) requires taking in Black voters from outlying, heavily White areas surrounding the district. As the final two maps show, the most compact Black population in the district that reaches $50 \%+1$ of the district's population can't be drawn entirely, or even almost entirely, within this area; once again it's only achieved by pulling the Black residents in heavily White precincts and blocks in the outskirts/rural areas of Baton Rouge. See Figs. 51-54.

Figure 51: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 65. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 52: Location of Black and White populations in Cooper Illustrative District 65. One blue dot represents 10 Black residents of voting age. One orange ' $x$ ' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 53: Most compact group of Black residents of voting age in Cooper Illustrative District 65 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,759 Black residents of voting age this approach identifies within the boundaries of Illustrative District 65 .


Figure 54: Most compact group of Black residents of voting age in Cooper Illustrative District 65 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,759 Black residents of voting age this approach identifies within the boundaries of Illustrative District 65.


### 5.4.6 Cooper Illustrative District 67

District 67 is much the same. Because it is only marginally $50 \%+1$ BVAP, the entire district is necessary to cross that threshold. It takes in the downtown area of Baton Rouge, but then passes through almost exclusively White areas to take in a patch of Black residents at the southeastern end of the district. See Figs. 55-58

Figure 55: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 67. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 56: Location of Black and White populations in Cooper Illustrative District 67. One blue dot represents 10 Black residents of voting age. One orange ' x ' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 57: Most compact group of Black residents of voting age in Cooper Illustrative District 67 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 18,238 Black residents of voting age this approach identifies within the boundaries of Illustrative District 67 . Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


Figure 58: Most compact group of Black residents of voting age in Cooper Illustrative District 67 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 18,238 Black residents of voting age this approach identifies within the boundaries of Illustrative District 67 . Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


### 5.4.7 Cooper Illustrative District 69

District 69 is almost entirely reliant on isolated Black individuals living in heavily White pockets to (barely) cross the $50 \%+1$ threshold. While there is a heavy concentration of majority Black precincts in the northern edge of the district, those blocks do not even come close to containing $50 \%$ of the Black population of the district. Instead, the district ranges southward into mixed and even overwhelmingly White areas of the region to cross that threshold. See Figs. 59-62.

Figure 59: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 69. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 60: Location of Black and White populations in Cooper Illustrative District 69. One blue dot represents 10 Black residents of voting age. One orange 'x' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 61: Most compact group of Black residents of voting age in Cooper Illustrative District 69 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,419 Black residents of voting age this approach identifies within the boundaries of Illustrative District 69. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


Figure 62: Most compact group of Black residents of voting age in Cooper Illustrative District 69 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,419 Black residents of voting age this approach identifies within the boundaries of Illustrative District 69. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


### 5.4.8 Cooper Illustrative District 101

Finally District 101, which calls to mind Godzilla bending over, likewise does not contain a consolidated Black population at its core. While there is a compact grouping in the northwestern portion of the district, it is only by ranging out toward the parish line that the $50 \%+1$ threshold is crossed. See Figs. 63-66.

The Illustrative Maps do provide additional districts where Black voters are more than $50 \%$ of the Voting Age Population. It does so, however, at the expense of districts that actually contain compact groups that can constitute a majority of the population in a reasonably configured district.

Figure 63: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 101. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 64: Location of Black and White populations in Cooper Illustrative District 101. One blue dot represents 10 Black residents of voting age. One orange ' $x$ ' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 65: Most compact group of Black residents of voting age in Cooper Illustrative District 101 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,477 Black residents of voting age this approach identifies within the boundaries of Illustrative District 101. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


Figure 66: Most compact group of Black residents of voting age in Cooper Illustrative District 101 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group. This is the most compact collection of at least 16,477 Black residents of voting age this approach identifies within the boundaries of Illustrative District 101. Note that, in this map, the dashed blue line mostly sits on top of the district boundary line.


## 6 Discussion of Additional Cooper Senate Districts

The Illustrative Map for the state senate offers more of the same. It creates three more Black majority districts than the Enacted Map. However, the populations in all three of these districts are dispersed. The ideal population for a district here in the Senate map is 119,430 residents.

### 6.1 Shreveport Area

The first new district Mr. Cooper creates is in the Shreveport area. The Enacted Map (Figure 67) creates one Black majority district in the area. District 39 has a BVAP of 60,190 , which constitutes $63.7 \%$ of the overall voting age population. While the district is sprawling, there are over 40,000 Black residents in the portion of the district in the City of Shreveport alone, who are enough to constitute a majority of the population in the district on their own.

The Illustrative Map (Figure 68), by contrast, splits this population in Shreveport to create an additional Black majority district. It is difficult to say whether the "new" district is District 38 or District 39. But regardless, both districts rely upon sprawling collections of Black residents to reach the $50 \%+1$ threshold under Gingles' first prong. The net effect is to take a district based upon a compact population and split it into two districts based upon non-compact populations.

The two districts here are discussed individually below.

Figure 67: Black Majority VAP District in the Shreveport Area, Enacted Map. Here, the dashed blue line depicts parish boundaries. Shaded districts are Black majority.


Figure 68: Black Majority VAP Districts in the Shreveport Area, Cooper Illustrative Map. Here, the dashed blue line depicts parish boundaries. Shaded districts are Black majority.


### 6.1.1 Cooper Illustrative District 38

District 38 is the less egregious of the two districts. For a group to constitute a majority of the district as drawn, it would need a VAP of 43,212 . There are 45,955 Black adult residents in the district as drawn, or $53.2 \%$ of the overall VAP.

But this again relies on drawing together Black populations from across the area, as the maps provided in Figures 69-73 demonstrate. The portion of the district in Caddo Parish is multi-racial - about $60 \%$ Black, with that population spread out over the city. There are 34,954 Black residents of voting age in this portion of the district not enough to constitute a majority. To get to a Black VAP of 43,212 , the district must instead cross the Red River to take in downtown Bossier City and then extend further into Bossier Parish past another layer of predominately White precincts. In other words, this is not a compact population group.

Figure 69: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 38. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 70: Location of Black population in Cooper Illustrative District 38. One blue dot represents 10 Black residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 71: Location of Black and White populations in Cooper Illustrative District 38. One blue dot represents 10 Black residents of voting age. One orange ' $x$ ' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 72: Most compact group of Black residents of voting age in Cooper Illustrative District 38 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group.


Figure 73: Most compact group of Black residents of voting age in Cooper Illustrative District 38 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group.


### 6.1.2 Cooper Illustrative District 39

Nor is Illustrative District 39 based on a compact majority population. As a price of creating a second majority-Black district in the area, it sees its BVAP substantially reduced to $52.5 \%$ vis-a-vis the Enacted Map. Not only that, but, like Illustrative District 1 in the House map, it must now reach out into rural Caddo Parish to reach the $50 \%+1$ threshold, taking in isolated pockets of Black residents in small towns and individual Black residents. This is illustrated in Figures 74-78.

Figure 74: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 39. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 75: Location of Black population in Cooper Illustrative District 39. One blue dot represents 10 Black residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 76: Location of Black and White populations in Cooper Illustrative District 39. One blue dot represents 10 Black residents of voting age. One orange ' $x$ ' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 77: Most compact group of Black residents of voting age in Cooper Illustrative District 39 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group.


Figure 78: Most compact group of Black residents of voting age in Cooper Illustrative District 39 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group.


### 6.2 East/West Baton Rouge Area

Mr. Cooper draws an additional majority Black district in the Baton Rouge area. As shown in Figure 79, the Enacted Map draws two majority Black districts here: Districts 14 and 15. Mr. Cooper's Illustrative Map (Figure 80), by contrast, takes the Black population in Baton Rouge and divvies it up among three districts, creating a new majority-Black 17th District.

Figure 79: Black Majority VAP Districts in the Baton Rouge Area, Illustrative Map. Here, the dashed blue line depicts parish boundaries. Shaded districts are Black majority.


Figure 80: Black Majority VAP Districts in the Baton Rouge Area, Illustrative Map. Here, the dashed blue line depicts parish boundaries. Shaded districts are Black majority.

© OpenStreetMap contributors

### 6.2.1 Cooper Illustrative District 17

The new 17th Senate district in the Illustrative Map has a VAP of 91,461 . This means that a group would have to have a population of 45,731 to form a majority in the district. The BVAP as drawn is 47,997 , giving the district a percent BVAP of $52.5 \%$.

But as with the other districts reviewed in this report, this Black population is not compact. As the maps below show, the Black population is most concentrated east of the Mississippi River, in East Baton Rouge Parish. That accounts for 28,437 Black residents of voting age. When combined with the Black residents of voting age in West Baton Rouge Parish, the combined Black population is 36,586 . This is still well short of what would be needed to constitute a majority of the district's population (even this requires crossing over heavily White enclaves like Brusly to reach Black areas around Addis).

To achieve a majority Black population in this district requires pairing large portions of Iberville and Pointe Coupee parishes with the remaining district core. In particular, the Illustrative Map includes New Roads and Plaquemine in the district to crosses the minimum 45,731 threshold. But doing so requires crossing large swathes of lightly populated, heavily White territory to achieve the population minimum required by the Voting Rights Act. In short, the district achieves its majority Black population only by uniting geographically disparate clusters of Black voters.

Figure 81: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 17. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 82: Location of Black population in Cooper Illustrative District 17. One blue dot represents 10 Black residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 83: Location of Black and White populations in Cooper Illustrative District 17. One blue dot represents 10 Black residents of voting age. One orange ' $x$ ' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 84: Most compact group of Black residents of voting age in Cooper Illustrative District 17 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group.


Figure 85: Most compact group of Black residents of voting age in Cooper Illustrative District 17 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group.


### 6.3 New Orleans Area

Mr. Cooper makes creates substantial changes to the districts in the New Orleans area. His Illustrative Map creates a new minority-majority district by first making minor changes to districts 4,5 and 7 from the Enacted Map. He then implements more significant changes to District 3. All told, these changes allow him to reconfigure District 19 as a minority-majority district. Compare Figures 86 and 87.

The problem with Mr. Cooper's approach is that he actually ends up reducing the number of districts that contain compact Black populations. The first set of changes, to districts 4,5 and 7, are not problematic. Districts 4 and 5 have majorities clearly anchored in a single urban center (though District 5 resembles nothing so much as a dragon in flight). District 7 seems to meander across parish lines to rural portions of the state, but it has a compact majority of Black residents in New Orleans.

Because districts 4, 5, and 7 involve minor changes, I only discuss District 4 briefly, in order to illustrate what districts with compact Black majorities might look like, even though the overall district shape might be questionable.

Figure 86: Black Majority VAP Districts in the New Orleans Area, Enacted Map. Here, the dashed blue line depicts parish boundaries. Shaded districts are Black majority.

© OpenStreetMap contributors

Figure 87: Black Majority VAP Districts in the New Orleans Area, Illustrative Map. Here, the dashed blue line depicts parish boundaries. Shaded districts are Black majority.

© OpenStreetMap contributors

### 6.3.1 Cooper Illustrative District 4

At first blush, Illustrative District 4 looks like it might be another "baconmandered" district. But upon closer inspection, we can see that there is, in fact, a compact Black population contained wholly within the eastern portion of the district. Although there are Black individuals, and even a few concentrations of Black residents, in the western part of the district, they are not necessary to create a majority Black district in this configuration. This district would therefore contain a compact Black population numerous enough to constitute a majority in the district.

Figure 88: Most compact group of Black residents of voting age in Cooper Illustrative District 4 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group.


### 6.3.2 Cooper Illustrative District 3

The reconfigured District 3, however, no longer is anchored in a compact population center. Instead, the new district - which resembles a horse galloping southward across the map, takes in heavily Black precincts across the map, interspersed with unpopulated or heavily White areas in the middle. Because the BVAP of this district is relatively low, the Black population isn't based in a single portion of the district, but rather is spread across the area. Moreover, all that can be eliminated while keeping the district minority-majority is are a handful of precincts in the front "hoof" of the horse, in St. Bernard Parish. In other words, all of these disparate population centers are needed to create a $50 \%+1$ district.

Figure 89: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 3. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 90: Location of Black population in Cooper Illustrative District 3. One blue dot represents 10 Black residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 91: Location of Black and White populations in Cooper Illustrative District 3. One blue dot represents 10 Black residents of voting age. One orange ' $x$ ' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 92: Most compact group of Black residents of voting age in Cooper Illustrative District 3 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group.


Figure 93: Most compact group of Black residents of voting age in Cooper Illustrative District 3 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group.


### 6.3.3 Cooper Illustrative District 19

We see the same thing with the reconstituted Senate District 19. This district, based in New Orleans, has a VAP of 91,184 , meaning that a group must have a population of 45,593 to constitute a majority in the district. The district has a BVAP of 46,472 , meaning that the Black population exceeds the $50 \%+1$ threshold by around 900 residents of voting age.

In order to (barely) cross the threshold, the district grabs Black voters from across northern Jefferson Parish, and into portions of St. Charles Parish. Along the way, it takes in heavily Black towns, like Woodmere and Waggaman along with White plurality cities like Westwego and Destrehan. Of course, almost all of this is necessary to make the district work, given that it is just barely majority Black. In other words, unlike other district in the New Orleans area, the Black population in District 19 is spread out across multiple towns, and even parishes, stitched together to barely cross the $50 \%+1$ threshold.

Figure 94: Percent BVAP in census blocks contained in Cooper Illustrative Map, District 19. White areas indicate empty blocks. Dashed blue lines reflect Parish boundaries.


Figure 95: Location of Black population in Cooper Illustrative District 19. One blue dot represents 10 Black residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 96: Location of Black and White populations in Cooper Illustrative District 19. One blue dot represents 10 Black residents of voting age. One orange 'x' represents 10 White residents of voting age. Dashed blue lines reflect Parish boundaries.


Figure 97: Most compact group of Black residents of voting age in Cooper Illustrative District 19 sufficient to constitute a majority of the population in the district, using moment of inertia approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group.


Figure 98: Most compact group of Black residents of voting age in Cooper Illustrative District 19 sufficient to constitute a majority of the population in the district, using Chen \& Rodden approach. Here, dashed blue lines indicate the outer boundary of precincts containing the most compact group.


## 7 Conclusion

Mr. Cooper's Illustrative Map does produce districts with Black populations sufficient to constitute majorities in districts. However, those Black populations, either upon visual inspection or using typical techniques employed by political scientists, are not compact populations. In other words, this does not demonstrate the existence of additional districts beyond the baseline established by the Enacted Map that can be comprised of compact Black populations sufficient to constitute a majority in a reasonably configured district.

I declare under penalty of perjury under the laws of the State of Ohio that the foregoing is true and correct to the best of my knowledge and belief. Executed on 28 July 2023 in Delaware, Ohio.


## UNITED STATES DISTRICT COURT MIDDLE DISTRICT OF LOUISIANA

CIVIL ACTION NO. 3:22-cv-00178 SDD-SDJ
DR. DOROTHY NAIRNE, JARRETT LOFTON, REV. CLEE EARNEST LOWE, DR. ALICE WASHINGTON, STEVEN HARRIS, ALEXIS CALHOUN, BLACK VOTERS MATTER CAPACITY BUILDING INSTITUTE, AND THE LOUISIANA STATE CONFERENCE OF THE NAACP

Plaintiffs,
vs.
R. KYLE ARDOIN, IN HIS OFFICIAL CAPACITY AS SECRETARY OF STATE OF LOUISIANA

Defendant.
Deposition of SEAN P. TRENDE, given the above-entitled cause, pursuant to the following stipulation, before Lori L. Marino, Certified Shorthand Reporter, in and for the State of Louisiana, via Zoom videoconference on Tuesday, September 26, 2023, commencing at 8:05 AM.

## REPORTED BY:

Lori L. Marino
Certified Court Reporter

APPEARANCES (CONTINUED):
AMERICAN CIVIL LIBERTIES UNION FOUNDATION 915 15TH STREET LAKESHORE DRIVE
3 WASHINGTON, DC 20005 TELEPHONE: (202) 457-0800
4
BY: DAKOTA KNEHANS, ESQ.
5 dknehans@aclu.com REPRESENTING THE PLAINTIFF
6
7 LOUISIANA DEPARTMENT OF JUSTICE 1885 3RD STREET
8 BATON ROUGE, LOUISIANA 70802 TELEPHONE: (225) 326-6005

9
BY: AMANDA M. LAGROUE, ESQ
10 lagrouea@ag.louisiana.gov REPRESENTING ATTORNEY GENERAL
11
12 SHOWS, CALI \& WALSH, LLP 628 ST. LOUIS STREET
13 BATON ROUGE, LOUISIANA 70802 TELEPHONE: (225) 346-1461
14
BY: JOHN C. WALSH, ESQ.
15 john@scwllp.com
REPRESENTING: SECRETARY OF STATE
16
17 ALSO PRESENT:
18 CHRISTINA WILLIAMS
MARISA WRIGHT
19 NITHIN VENKATRAMAN
ELIZAESTRELLA
JASON KURTYKA
21
22
23
24
25

APPEARANCES:
(ALL PARTICIPANTS PRESENT VIA ZOOM VIDEOCONFERENCE:)
3
4 HARVARD LAW SCHOOL
ELECTION LAW CLINIC
4105 WASSERSTEIN HALL (WCC)
6 EVERETT STREET
6 CAMBRIDGE, MASSACHUSETTS 02138
TELEPHONE: (617)998-1582
7
BY: T. ALORA THOMAS-LUNDBORG, ESQ.
thhomaslundborg@law.harvard.edu
AND
10 BY: DANIEL HESSEL, ESQ.
dhessel@law.harvard.edu
REPRESENTING THE PLAINTIFF
12
13 NELSON MULLINS
301 HILLSBOROUGH STREET, SUITE 1400
14 RALEIGH, NORTH CAROLINA 27602
TELEPHONE: (919) 329-3800
15
BY: PHILLIP J. STRACH, ESQ.
16 phil.strach@nelsonmullins.com REPRESENTING THE DEFENDANTS
17
18 ELIAS LAW GROUP, LLP
250 MASSACHUSETTS AVENUE, NW SUITE 400
19 WASHINGTON, D.C. 20001
TELEPHONE: (202) 968-4490
20
BY: DANIEL COHEN, ESQ.
21 dcohen@elias.law
REPRESENTING THE GALMON PLAINTIFFS
22
24
24
24
25

## IN DEX

## SEAN P. TRENDE

1146 ELDERBERRY LOOP
DELAWARE, OHIO 43015
4
5

|  |  |  | 5 |  |  | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | EXHIBIT | INDEX |  | 1 | SEAN P. TRENDE, having been |  |
| 2 | EXHIBIT 1 - | 13 |  | 2 | first duly sworn was examined and |  |
| 3 | EXHIBIT 2 - | 13 |  | 3 | testified on his oath as follows: |  |
| 4 | EXHIBIT 3 - | 14 |  | 4 | EXAMINATION |  |
| 5 | EXHIBIT 4 - | 16 |  | 5 | BY MS. THOMAS-LUNDBORG: |  |
| 6 | EXHIBIT 5 - | 17 |  | 6 | Q Good morning, Mr. Trende. If you |  |
| 7 | EXHIBIT 6 - | 18 |  | 7 | could, please, state your full name and |  |
| 8 | EXHIBIT 7 - | 18 |  | 8 | address for the record. |  |
| 9 | EXHIBIT 8 - | 18 |  | 9 | A Sean, S-E-A-N, Patrick Trende |  |
| 10 | EXHIBIT 9 - | 19 |  | 10 | T-R-E-N-D-E. It's 1146 Elderberry Loop, |  |
| 11 | EXHIBIT $10-$ | 20 |  | 11 | Delaware, Ohio 43015. |  |
| 12 | EXHIBIT $11-$ | 20 |  | 12 | Q And you understand that you're under |  |
| 13 | EXHIBIT 12 - | 20 |  | 13 | oath today, correct? |  |
| 14 | EXHIBIT $13-$ | 20 |  | 14 | A Yes. |  |
| 15 | EXHIBIT 14 - | 36 |  | 15 | Q You understand that it's the same |  |
| 16 | EXHIBIT 15 - | 59 |  | 16 | oath that you would take in a court of law? |  |
| 17 | EXHIBIT 16 - | 90 |  | 17 | A Yes. |  |
| 18 | EXHIBIT $17-$ | 97 |  | 18 | Q Is there anything that would prevent |  |
| 19 | EXHIBIT 18 - | 106 |  | 19 | you from answering my questions truthfully |  |
| 20 |  |  |  | 20 | today? |  |
| 21 |  |  |  | 21 | A No. |  |
| 22 |  |  |  | 22 | Q You're not taking any medications or |  |
| 23 |  |  |  | 23 | other substances that might impede your |  |
| 24 |  |  |  | 24 | ability to answer truthfully? |  |
| 25 |  |  |  | 25 | A No. |  |
|  |  |  | 6 |  |  | 8 |
| 1 | STIPUL | TION |  | 1 | Q Nice to meet you again. We met once |  |
| 2 | It is stipulated | nd agreed by and |  | 2 | five years ago now, but my name is Alora |  |
| 3 | between Counsel for | he parties hereto that |  | 3 | Thomas-Lundborg. I am an attorney for the |  |
| 4 | the deposition of SEA | N P. TRENDE, is hereby |  |  | plaintiffs currently at Harvard Law Election |  |
| 5 | being taken pursuant | to the Federal Rules of |  | 5 | Clinic. |  |
| 6 | Civil Procedure for | purposes in accordance |  | 6 | A Nice to meet you again, as well. |  |
| 7 | with law; |  |  | 7 | Q I know others have put their |  |
| 8 | That the forma | ties of |  | 8 | representations in the chat. So I will not go |  |
| 9 | certification and filin | are specifically |  | 9 | through those right now on the record. I've |  |
| 10 | waived; |  |  | 10 | deposed you before. So I know you've been |  |
| 11 | That the forma | ties of reading and |  | 11 | deposed before. Have you done a Zoom |  |
| 12 | signing are specificall | not waived. |  | 12 | deposition before? |  |
| 13 | That all object | ons, save those as |  | 13 | A Yes. |  |
| 14 | to the form of the que | tion and/or |  | 14 | Q So I'm just going to remind you of |  |
| 15 | responsiveness of the | answer, are hereby |  | 15 | some very quick ground rules that I'm sure you |  |
| 16 | reserved until such ti | e as this deposition or |  | 16 | know very well. The first is to have verbal |  |
| 17 | any part thereof is us | or sought to be used |  | 17 | responses to all of my questions. Do you |  |
| 18 | in evidence. |  |  | 18 | understand that? |  |
| 19 | * * * * * | * * |  | 19 | A Yes. |  |
| 20 | LORI L. MAR | NO, Certified Court |  | 20 | Q And so that the record is clear, it's |  |
| 21 | Reporter, in and for ther | State of Louisiana, |  | 21 | important that we do not talk over one |  |
| 22 | officiated in adminis | ring the oath to the |  | 22 | another. You understand that? |  |
| 23 | witness. |  |  | 23 | A Yes. |  |
| 24 |  |  |  | 24 | Q If you don't understand a question of |  |
| 25 |  |  |  | 25 | mine, please, ask me to repeat it or to |  |

rephrase.
A Yes.
Q If you want to take a break, that's fine. I will be taking periodic breaks. If in a time crunch, I think we're going to try to power through as much as possible and take
shorter breaks, but if you need to take a break for some reason, just let me know, and
the only thing I ask is not to take a break while a question is pending. Do you understand that?

A Yes.
Q So counsel may object to certain questions I ask today. Unless you're instructed not to answer, you shall answer all the questions whether or not they're objected to. Do you understand that?
A Yes.
Q Where are you located today? Since
this is Zoom deposition, we're all in different locations.

A I'm located at the law office of
BakerHostetler here in Columbus, Ohio.
Q And who else is present in the room with you?

## 9

1 Louisiana House or the Louisiana Senate map
that was passed by the Louisiana Legislature
in 2021. Do you understand that?
A Yes.
Q And then, I will also be using the
term "illustrative map." When I say
illustrative map, I'll be referring to the maps drawn as a part of the Gingles 1 inquiry by Mr. Bill Cooper. Do you understand that?

A Yes.
Q Did you do anything to prepare for today's deposition?

A Yes.
Q What did you do?
A I spoke briefly with counsel and
spent some time looking over my report and reply.

Q You said you met with counsel. How
many meetings did you have with counsel?
A In preparation for this deposition,
one.
Q How long was that meeting?
A Maybe, a half hour.
Q And by counsel, do you mean
Mr. Strach, or do you mean someone else?

A Phil Strach.
Q Do you have any documents in front of you?

A I do not.
Q Okay. Were you able to download the exhibits to see today?

A I did look at them, yes. I'm sorry.
Do you want me to open them on my laptop or something to that effect?

Q I think when I will be putting documents on the screen, I find that it's helpful if you have your own version as I'm putting on Zoom a version of the document in case you want to look at sections that I will not be pointing you to when I'm sharing my screen.
A I may do that at the break then. I'm assuming -- well, we'll see how it goes. I might ask to take a quick break to do that depending which documents you're pulling up.

Q So we're going to use some terms of art today, and I'd like to go over those just briefly. The first term of art that I'll be using is the "enacted map," and when I say
enacted map, I may be referring to the

A I think Mr. Strach was present.
Yeah, I was with Mr. Strach actually. Yeah.
Q Was anyone else present?
A I believe Mr. Farr was on the call, as well, and Ms. Riggins, R-I-G-G-I-N-S, joined intermittently. MS. THOMAS-LUNDBORG:

So, I'm going to enter the first exhibit, just give me one second. One thing about Zoom depositions, they should be faster but they tend to be much slower, I find. So your screen now should be deposition notice of Sean Trende, and I will scroll through. This deposition notice is dated yesterday
September 25, 2023. Were you given a copy of this -- actually. Sorry strike that. I'm going to do it in the reverse order. I'm going to actually show you something first, another document first.

So now, I've put on the screen a document entitled "Deposition Notice of Sean P. Trende," dated



|  | 21 |  |  | 23 |
| :---: | :---: | :---: | :---: | :---: |
| 1 spending more time with these |  | 1 | Q Did you review other documents in |  |
| exhibits later in the deposition, but |  | 2 | preparation for your deposition? |  |
| exhibits B-1, B-2, C-1 and C-2 are |  | 3 | A Not to my recollection. |  |
| Mr. Cooper's comparative compactness |  | 4 | Q I'm now going to shift gears a little |  |
| measures for the illustrative map and |  | 5 | bit and ask you some questions about your |  |
| the enacted map. I'm going to stop |  | 6 | involvement in this case. When were you |  |
| sharing. |  | 7 | officially retained as an expert in this case? |  |
| BY MS. THOMAS-LUNDBORG: |  | 8 | A Gosh, I don't know. Probably before |  |
| Q I'd like to go back -- now that we |  | 9 | the stay was put into place. |  |
| 10 have entered a bunch of exhibits that we will |  | 10 | Q So that would have been in 2022? |  |
| 11 come back to later in this deposition, I'd |  | 11 | A Yeah. I want to say June of 2022, |  |
| 12 like go back to your deposition prep. Did you |  | 12 | but I'm not entirely sure. |  |
| 13 review the deposition transcript of Mr. Bill |  | 13 | Q And when did you begin work on this |  |
| 14 Cooper in your prep for today? |  | 14 | case? |  |
| 15 A No. |  | 15 | A It would probably have been around |  |
| 16 Q Were you aware that he had been |  | 16 | that time. |  |
| 17 deposed? |  | 17 | Q When you joined the case, what were |  |
| 18 A Yes. |  | 18 | you told the subject matter was? |  |
| 19 Q Did knowledge of his deposition play |  | 19 | A I believe -- I mean, this is trying |  |
| 20 any role in your prep today? |  | 20 | to remember more than a year ago, but my |  |
| 21 A No. |  | 21 | understanding of this case all along has been |  |
| 22 Q Did you review any of the other |  | 22 | that it was a Section 2 case. |  |
| 23 expert reports in this case? |  | 23 | Q And what was your understanding of |  |
| 24 A I might have early on in the case, |  | 24 | what the main issues were in the case? |  |
| 25 and I think I saw the report of McCartan when |  | 25 | A Well, as a Section 2 case, you know, |  |
|  | 22 |  |  | 24 |
| 1 it was filed, but other than that, no. I |  | 1 | my understanding is always that it's going to |  |
| 2 don't think so. |  | 2 | be about Gingles prongs one to three and then |  |
| Q You said that you saw -- you may have |  | 3 | the totality of the circumstances. I knew |  |
| 4 seen the report of Dr. McCartan. Do you |  | 4 | that my involvement was going to be limited |  |
| 5 intend to render any opinions on his report? |  | 5 | probably to Gingles prong one. |  |
| 6 A I don't know if counsel will ask me |  | 6 | Q Then, you anticipated my next |  |
| 7 at trial, but I don't have anything prepared |  | 7 | question, which is what were you asked to do |  |
| 8 or in my reports on him. |  | 8 | when you were retained in this case? |  |
| 9 Q Do you intend to render opinions on |  | 9 | A I honestly -- I don't remember, |  |
| 10 any of the other experts in this case? |  | 10 | because I believe when I was retained, it was |  |
| 11 A Yeah, it's the same basic answer. I |  | 11 | in a sort of -- real professional term, a fire |  |
| 12 don't really know what I'm going to testify to |  | 12 | drill trying to get ready for a hearing when |  |
| 13 at trial. I'll answer the questions that I'm |  | 13 | everything was on fast tracks back then; and |  |
| 14 asked, you know, that aren't objected to and |  | 14 | then, when the stay was put into place, things |  |
| 15 sustained, but to my recollection, I haven't |  | 15 | calmed down. So I don't remember initially |  |
| 16 seen the reports. I would imagine the only |  | 16 | exactly what my marching orders were. |  |
| 17 relevance of my reports to theirs would be in |  | 17 | Q What were your marching orders before |  |
| 18 direct. |  | 18 | you submitted what we have marked as Exhibit |  |
| 19 Q Did you render any opinions about |  | 19 | 3 , which is your initial report in this case? |  |
| 20 other experts in the two reports that you |  | 20 | A It was to examine the districts drawn |  |
| 21 submitted thus far? |  | 21 | by Mr. Cooper to determine -- first to |  |
| 22 A I don't believe so. Without knowing |  | 22 | illustrate the location of the black |  |
| 23 the substance of what their reports is about, |  | 23 | population of voting age in the districts, and |  |
| 24 there may be things in my report that are |  | 24 | second, to render an opinion as to whether |  |
| 25 applicable to them, but I don't know. |  | 25 | they were reasonably compact. |  |

Q Sorry. I'm just taking some notes.
And we've spent some time just now referencing Gingles. Are you familiar with the Gingles preconditions?

A Yes.
Q And what is your understanding of what the Gingles preconditions are?
A The first precondition, numerosity and compactness. You have a reasonably compact -- well, I guess the nature of what the group has to be is the prime legal issue you all will be fighting over, but it's a
reasonably compact minority group sufficient
to be a majority in a reasonably configured
district. The second prong is whether the
minority group posed as a block -- shows cohesion in it's voting, and then, the third prong is whether the majority votes as a block sufficient such that the minority group typically wouldn't be able to elect its candidate of choice.

Q Did you, when you were retained, understand that Mr. Cooper is a Gingles 1 expert for the plaintiffs?
A That's my understanding, yes.
reports of Mr. Cooper, did you do any other research to prepare for the expert reports that you submitted in this case?

A So as I was writing this report, I'd also done the research for my dissertation. My third paper in my dissertation deals with redistricting simulations. So I had done a lot of work on different ways to execute simulations, and part of that is different measures of compactness; and a lot of that research was directly relevant to my engagement in this matter. So it's kind of a tricky question to answer, because in a sense the answer is no, because most of the research that I utilized here came out of work for a separate project, but it's not really no, because there is other research that is relevant to this report.

Q Okay, we will spend some time discussing your dissertation a little bit later, but just focusing in on the work you did for this report, was there any research that you did for the report that did not coincide with the research that you were doing for your dissertation?
28

Q Was it your understanding that you would be a rebuttal Gingles 1 expert for the defendants or for defendant Secretary of State?
A Yes, that's right.
Q Do you intend to render any opinions on Gingles 2 and 3?

A No.
Q Outside of counsel, did you discuss
the case with anyone else?
A My wife.
Q Did you have any discussions with any
of the defense side experts in this case?
A I don't think so, no. I assume -- I
understand that question to ask if I have had discussion with defense side experts about the subject matter of this case.
Q That is correct. Not -- I'm sure
folks meet casually and have all kinds of discussions not relevant to today.
A Yes, that's right.
Q So we've spent sometime talking about
your preparation for the deposition. I'd like
to ask you about your preparation for writing
your expert report. Aside from reading the
8

A If we -- I don't remember any. If as
we go through the report, I spot things that I need to update this answer, I'll do it, but I don't remember any.

Q Now, you said -- I believe you answered yes, that you did review Mr. Cooper's expert reports. Did you receive Mr. Cooper's shape files and block equivalency files for his illustrative maps?

A Yes.
Q Did you upload these files into a GIS system?

A I would have read them in R.
Q So did you not upload his map files into a GIS system to actually see the output?

A Well, you can see the output in R. That's how all the maps in my report are generated.

Q Then, when you uploaded them into $R$,
did you use any other program to see the maps or simply used your R code and had them displayed through R ?

A My R code. I may have put them in today's redistricting, as well, but it was mostly my R code, if not exclusively.

Q Have you set up your R code to have outputs of visual maps that can be looked at?
A Yes. That's how all the maps in my report were generated.

Q I would like to go back to the sources of your report versus the sources of your dissertation. Were there any sources that you have used in your dissertation that you did not cite in your expert report or your expert reports for this case? So I'm now referencing Exhibit 3 and 4.

A The bibliography to my dissertation is something like 10 pages long. So yeah, there are a lot of things that I cite to in my dissertation that I don't cite to here.

Q How did you decide which literature review to cite in your expert report and which to leave out?

A Well, so the first dissertation paper is about the Supreme Court. So all those cites are irrelevant and the second dissertation is about paper was about integrated nested Laplace approximations -the second paper is about integrated nested Laplace approximations in spatial modeling of
coincided with your expert report -- with your dissertation, did you write any new code for the expert report in this case?

A Yes.
Q Can you explain that process to us?
A Well, you open up the R programming
environment in a program called RStudio, and
you begin -- you think about what it is that
you need your code to do, what it is you're
trying to accomplish, and you write a series of commands that R will execute to carry out those tasks.

Q And this process was separate from the process that you used in your dissertation; meaning, you went into RStudio and wrote brand new code for your report work in this case?

A I mean, you never write brand new code. I shouldn't say never. You rarely write brand new code, because there might be snippets you've used before rather that reinvent the wheel you can use. So the template for drawing these maps, I've used probably for about a year now. So I'm sure that language is reused, but in terms of, you
elections data. So that stuff wasn't relevant. And then, the third paper, which is the one on redistricting, has some things, such as different redistricting, simulations that have been proposed over the years that just weren't relevant. So I tried to pull out the relevant pieces of information or citations.

Q Then, how did you determine whether the literature from this third simulations chapter was relevant for not relevant.

A Well, if related to population compactness, which is what my report is about, that's the first cut on what's relevant. I am not aware of any, as you might call it, negative authority on the citations that I've put in. So to the extent I didn't include citations, it was just because I figured I had proved the point sufficiently and didn't need to list every single possible citation the way you might in a dissertation. Just like in writing a legal brief, you might not cite every single piece of authority for a proposition.

Q In addition to the work that
know, making sure that everything does what it needed to do here, it was all examined and executed on my computer.

Q You said that you may have used snippets in your code that you've used before, and one example you gave is the template for actually drawing the maps. Are there other examples of snippets of the codes that you used in this case that you have used previously?

A I'm sure there are. I just -- I'd have to think. I'm kind of trying to think through the code. You know, the dot plots -well, that's part of the maps. The dot plots, I've used the code before. The call to pull up the open street map background, I've used before. I think those are the main things that would have been important, but gosh, there's just stuff that like -- well, there's a couple of -- in the $R$ code at the very top, there's called source get packages and then, source -- there's another source command that will pull up the census data or ways to interpret the census data. So that would have been used before, and I'm sure there are other
things here and there that rather than try to reinvent the wheel, you would just import the code from a previous application, but those are the main ones that I can recall.

Q When you say you've used these snippets before, is that in other expert work, or is that in your other either academic work or professional work?
A I mean, probably both. So now, whenever I open up R, I always just execute that get packages command, because it imports all the packages that I typically use, because it's really frustrating to write a bunch of code and then execute it and have it crash, because you forgot to load the geomander G-E-O-M-A-N-D-E-R, package. So there's really not a clean delineation that this line of questioning might suggest.

Q How have you used this code -- let's focus on the academic work. How have you used this code in your academic work?

A Well, like I said, I tend to use the get packages command just as a matter of course. To pull up the background for the maps, the stuff that's borrowed from open

A Yes.
Q Do you recall when you last sent a
bill to counsel?
A Probably August.
Q Do you recall what time you included in your August bill?

A I think it went back to November.
Q Do you recall how much time you billed for in your August bill?

A I want to say it was in the neighborhood of 120 hours.

Q All right, so we actually are going to open another exhibit. Give me one second. I've seen various versions of these, but this was the version that was submitted with what is Exhibit 3 in this case, so with your
initial report, and this is your CV. It was
from this summer. So this is your CV as of
this summer that we received. I'm just going to scroll through.

MS. THOMAS-LUNDBORG:
I'm going to have this exhibit
marked as Exhibit 14.
BY MS. THOMAS-LUNDBORG:
Q Do you recognize Exhibit 14 as a true and accurate copy of your CV?

A Yes.
Q I think you said you have it in front of you, but I can also scroll on the screen.
Are there any updates to this version of your CV?

A Let's see. Yeah. The New Mexico redistricting case, I've been deposed in now and will be testifying tomorrow or Thursday.

Q Anything else?
A I guess the report in the
Congressional case here.
Q Is there anything else?
A I don't believe so.
Q Could you give me a brief overview of your educational background?

A Sure. I graduated Yale University in 1995 with a double major in history and
political science. In 2001, I graduated from
Duke Law School. While I was at Duke, I also earned my master's degree in political science. In 2016, and -- I apologize for having to say it this way, but I matriculated at the Ohio State University. I earned a Master's of Applied Statistics from OSU in 2019, and I should earn my -- have my Ph.D. in December, December 17th to be exact.

Q So I'd like to just ask you a couple of follow-up questions. You have a JD. Do you intend to render any legal opinions in this case?

A I won't be acting in any capacity as
a lawyer, and I'm going to try to avoid legal opinions.

Q Then, you mentioned your Ph.D.
graduation date. Do you recall being deposed
in South Carolina?
A Yes.
Q Okay. In April of 2022. At that
time, you testified that your expected
graduation date for your Ph.D. program was May
of 2022. Do you recall that?
A Yes.

1 G-I-M-P-E-L.
Q When did you formally form this current iteration of your committee?

A Oh, gosh, the current iteration was about two weeks ago. Jim came onboard -- we had -- it was Greg, Tom and Jim. So the original committee that was formed was Greg, Tom and -- Skyler Cranmer agreed to only do it for purposes of the prospectus; and if I'm getting my timeline right, because it's been a long strange trip, he was replaced by a guy named Bryce Acree, A-C-R-E-E, and then, Bryce committed suicide in December of 2019, and so it took awhile to find someone to replace him, and that's how Jim came on; and then, Alex came on a few weeks ago, because it turned out, you need three Ohio State faculty members on your committee. There was some confusion on reading the rules on external faculty members, and so he was added. I guess it was over Labor Day that he came on. So yeah, that would be about three weeks ago.

Q Sorry to hear about Professor Acree.
A Thank you.
Q I think we've already gone over the

Q What happened regarding your graduation?

A I wasn't able to complete the third paper as quickly as I'd like, and things got incredibly busy on the work front.

Q I believe when you and I met back in -- well, forever ago in 2018, your third paper was on the efficiency gap. When did you change your third dissertation topic?

A I believe I changed it after the
Rucho opinion came down. It might be after
Gill v. Whitford, but I think it was after
Rucho.
Q I believe you defended your
dissertation yesterday; is that correct?
A That's correct.
Q How did that go?
A Great. I passed or completed it or
however you want to word it.
Q Congratulations.
A Thank you.
Q Who was on your committee?
A My adviser is Greg Caldeira
C-A-L-D-E-I-R-A, and then, the committee is
Alex Acs, A-C-S, Tom Wood and Jim Gimpel,
chapters of your dissertation. I believe when I deposed you five years ago, your plan was to publish your chapters. Have any of those chapters been published in any peer-reviewed publication?

A No, I haven't submitted any of them.
Q Have you submitted any work for peer review.

A Yeah. Two papers.
Q And what's the status of those
papers?
A One of them is on my CV -- when you say papers, do you mean the papers from the dissertation or just in general?

Q In general.
A Yeah. So one of them is on my CV, and one of them was a piece on COVID that I did with a couple of public health professionals that sat on a desk until someone else published the same research, at which point, it was pretty much moot.

Q You said one of them is on your CV.
That is the -- on page six with James Gimbel
and Reeves and yourself, "Reconsidering
Bellwether Locations in U.S. Presidential


| 45 |  |
| :---: | :---: |
| 1 "constructive" in, I'll know what you're | 1 switched over formally. I been writing |
| 2 talking about. | 2 full-time for them since then. You know, I've |
| 3 Q Have you taught constructive MCMC? | 3 always had side projects, which |
| 4 A Yes. | 4 RealClearPolitics has been fine with along the |
| Q And in which course was that? | 5 way, but that's been my main employer. RCP |
| 6 A My voting rights -- my voter turnout | 6 has been the only employer I've had a W-2 from |
| 7 and participation class. | 7 since 2010 is perhaps the cleanest way to do |
| 8 Q How do you teach it in that class? | 8 that. |
| 9 A We talk about -- well, a good portion | 9 Q What is RealClearPolitics? |
| 10 of that class covers gerrymandering. So we | 10 A RealClearPolitics is a company of |
| 11 talk about redistricting simulations and the | 11 about 50 people that produces a website that |
| 12 various approaches that have been taken. I | 12 publishes daily. |
| 13 usually demonstrate the constructive Monte | 13 Q And how would you describe the nature |
| 14 Carlo since you can actually put it up on the | 14 of the content on RealClearPolitics? |
| 15 screen and draw a map every time a district | 15 A Well, most of what we do is |
| 16 flips so they can see how the algorithm works. | 16 aggregation. So we'll aggregate poles. We |
| 17 I always think it's way more interesting than | 17 aggregate articles from across the political |
| 18 they do, but -- | 18 spectrum. We do produce some original |
| 19 Q Do you teach students to run | 19 content, which is part of what I do, but it's |
| 20 constructive MCMC, or do you just demonstrate | 20 mostly polling and elections focused. |
| 21 it? | 21 Q And then, when you say you produced |
| 22 A No. I teach how it works and | 22 original contents, would that content be |
| 23 demonstrate it. | 23 considered peer-reviewed? |
| 24 Q You teach students to write their own | 24 A No. |
| 25 constructive MCMC codes? | 25 Q And is your work at RealClearPolitics |
| 46 |  |
| A No. | 1 still considered full-time? |
| 2 Q Have any of your courses taught | 2 A Yes. |
| 3 coding as part of the course? | 3 Q I'd like to, if you have the time, |
| A Yeah. So the -- there is one other | 4 just go through a couple more questions about |
| 5 update that should be on this as I look this | 5 your background, about prior testimony and |
| 6 over, which is -- so the political | 6 then, we can take a short break. |
| 7 participation and voting behavior I taught in | 7 A Sure. |
| 8 springs of 2022 and 2023, as well; and in the | 8 Q So staying on Exhibit 14, your resume |
| 9 fall of 2022, I taught a course -- I can't | 9 pages four through six lists the cases that |
| 10 remember the name, but the gist of it is | 10 you've served as an expert witness; is that |
| 11 survey methodology; and in both of those | 11 correct? |
| 12 courses, students have to do a fair amount of | 12 A Yeah, with a couple of additions we |
| 13 R coding to be able to pass. | 13 discussed earlier. |
| 14 Q Now, I'm going to shift gears | 14 Q Okay. Do you have a process for |
| 15 slightly. Can you give us a brief overview of | 15 updating this list in your resume? |
| 16 your professional background? | 16 A Usually, when I'm getting ready to |
| 17 A Starting when? I'm old now. | 17 submit the report, I'll add new cases on. |
| 18 Q Well, that's why I said brief. So I | 18 That's usually how I do it. And then, this |
| 19 know that you were a lawyer prior to your | 19 resume just kind of gets cut and pasted from |
| 20 current kind of iteration. So just a summary | 20 report to report with the updated cases on it. |
| 21 of the facets of your professional life. | 21 Q I see that you have some demarcations |
| 22 A Yeah, I practiced law until 2009, | 22 of the subject matter of the expert testimony. |
| 23 when I switched over to RealClearPolitics. | 23 Do you distinguish between cases where you |
| 24 I've been writing full-time at | 24 wrote reports and cases where you testified |
| 25 RealClearPolitics -- I guess it was 2010 I | 25 live in court? |

A I think this is all the cases where I
wrote reports, but there may be other ones
that I missed. I know the rule is cases where
you've been deposed or testified, but I don't
know. I just put it all on there. It's also,
I guess, only the last four years, but that's
a pain to keep up with too.
Q Do you know how many of these cases you've actually testified in court?
A Most of them.
Q But there are examples here like, I believe you did not testify in court in the Philip Randolph Institute v. Smith case?

A That's correct.
Q Are there other examples that you can recall?
A I didn't testify in court in Dixon v. Rucho, and I guess I would say in both of those cases, I wasn't called. I didn't testify in Carter v. Chapman because we were just amicus there. Didn't testify in NAACP v. McMaster because the case settled before we went to trial. I haven't testified yet in LULAC v. Abbott because that case hasn't gone to trial yet and the same is true of Agee v .
have been Section 2 Voting Rights Act cases?
A Well, the Dodge City case is a Section 2 case. The Agee v. Benson case is a Voting Rights Act case. The LULAC v. Abbott is a Voting Rights Act case, at least in part.

Q Sorry. Go ahead.
A I'll just say I can't remember if McMaster had a VRA component or either Rucho or the Covington cases had VRA components. I assume when we say Section 2, you mean Section 2 redistricting cases.

Q I think for the general question, you can tell me all Section 2 cases, and then, we can drill down on which of those were vote denial versus votes dilution. Are there any cases that we haven't mentioned that would have been vote denial?

A NAACP versus McCrory, the two Southern District of Ohio cases, Lee versus Board of Elections, Feldman, which eventually became Brnovich. Mecinas v. Hobbs. The Rodriguez case in Arizona, I think was a Section 2 case.

Q Then, you said of the vote dilution cases, I count three Dodge City, LULAC and

of interest, some states -- I know Dr. Chen
has suggested that that shouldn't be
considered one, or at least that's my
understanding of his article on the subject
matter. I don't know that the Voting Rights
Act is a traditional redistricting criteria.
I'd probably put it in that bucket now since
it effects all the redistricting decisions
but, obviously, you know, not before 1965 or '82.
Q What about respect for county and municipal lines?

A Yeah, yes, respect for county and municipal lines.

Q You said that One Person One Vote
could be one. Are you aware of -- could you
expound upon what One Person One Vote means?
A This is a legislative case. So the
maps have to be drawn within plus or minus
five percent. Even that's not quite
necessarily a safe harbor. There's that case
out of Georgia -- I'm blanking on the name
right now -- that struck down a map that still
fell within those numbers, but basically, you
can feel pretty good about your math if you're
to determine whether the populations in the districts were compact -- the minority populations in the districts were compact.

Q Did you consider other traditional redistricting criteria in answering this question?

A No. I just looked at each district that was drawn and the minority population within it.

Q Do you know whether Louisiana has mandated through legislation that traditional redistricting criteria be used when drawing maps?

A There is certainly a list of factors that have to be examined. I don't know or recall exactly which factors are on it.
Q Okay. MS. THOMAS-LUNDBORG: I'm going to introduce another exhibit. I am going to have this mark as Exhibit 15. So what I've put on the screen and what I'm having marked as Exhibit 15 is Joint Rule 21. As you see the top, I downloaded this directly from the Louisiana
within plus or minus five percent, and you're probably going to get struck down if you go outside of that.

Q I'm sorry. I'm just going to grab my charger. So we're not taking a five minute break. I just need one second to plug in my computer.

So going back to traditional redistricting criteria, would you agree that there is a tension between meeting the various traditional redistricting criteria?

A There can be, yeah. Frequently is.
Q Would you also agree that in drawing maps, tradeoffs are simply inevitable between traditional redistricting criteria?

A Yes.
Q When you began your expert work in this case, was your goal to capture compactness only or other traditional redistricting criteria in your analysis?

A My goal was -- well, like I said, I
honestly don't remember what I was doing at
the very beginning, because that was a fire drill situation; but at least once the dust settled and the stay was in place, my job was
laws, Louisiana State Legislature
website we all have been using, and
you can see the web address at the
bottom of the exhibit. We all have
been using this version throughout
deposition. I'd like to look at some
of the traditional redistricting
criteria here briefly.
BY MS. THOMAS-LUNDBORG:
Q Actually for a second, I'd like to go
back to Cooper's July 23 report. So this is
Exhibit 5 .
A Is this the first or second report?
Q Technically, it's his second report
in that he has a June report, a June 2022
report, but I am going to just focus on the
2023 reports for the purpose of your
deposition.
A Okay.
Q I'm now going to page eight,
paragraph -- no, I think I'm in the wrong --
well, it's page seven spilling over to page
eight. So at the top -- bottom of page seven,
beginning in paragraph eight, he states, "I
drew the Illustrative Legislative Plan based laws, Louisiana State Legislature you can see the web address at the bottom of the exhibit. We all have been using this version throughout deposition. I'd like to look at some of the traditional redistricting criteria here briefly.

Q Actually for a second, I'd like to go back to Cooper's July 23 report. So this is Exhibit 5.
A Is this the first or second report?
Q Technically, it's his second report in that he has a June report, a June 2022 report, but I am going to just focus on the 2023 reports for the purpose of your deposition.

Q I'
Q I'm now going to page eight, paragraph -- no, I think I'm in the wrong --
well, it's page seven spilling over to page eight. So at the top -- bottom of page seven, beginning in paragraph eight, he states, "I drew the Illustrative Legislative Plan based
on traditional redistricting principles, including population equality, compactness, contiguity, respect for communities of interest, and the non-dilution of minority voting strength. I followed the guidelines spelled out by the Legislature in Joint Rule 21, the legislative guidelines for the 2022 map," and then, there's citation. Do you see that?
A Yes.
Q When you were conducting your analysis, were you aware that Mr. Cooper -- do you recall reading this paragraph?

A I don't recall it, but I'm sure I did.

Q Were you generally aware that Mr. Cooper was using Joint Rule 21 when drawing his map?

A I don't know if I was aware of that, because I wasn't really looking at his compliance with state law.

Q Do you know what effect incorporating traditional redistricting criteria would have had on your analysis if you would have included it?

A None.
Q I think we'll explore that answer some more. I'll stop the share now. Now, you said that you were asked to look at the compactness of the minority community; is that correct?

A Yes, of the minority voting age population.

Q How did you define compactness when beginning your work?

A So for the population, you can't really use the Reock or Polsby-Popper, because those types of measures -- Reock is R-E-O-C-K. Polsby-Popper is two hyphenated names -because those deal with the shape of the district, not with the shape or density of populations within the district. So I used the only approach to population compactness I'm aware of, which is this moment of inertia approach.

Q And I think you testified no in the
past, but are you aware of any other expert in
a Gingles 1 case using this moment of inertia analysis when looking at compactness?
A No, I'm not really aware of cases
where people have tried to quantify the compactness of the population, but this is the only measure of population compactness I'm aware of.
Q Are you aware of cases where -- I think you just mentioned Reock and Polsby-Popper -- where Reock and Polsby-Popper have been used in a Gingles 1 analysis?
A Yeah. So you'll frequently use Reock or Polsby-Popper to measure the analogies, Reock and Polsby-Popper, convex hull, to measure the compactness of the district lines themselves, but I'm not aware of them being used to measure the compactness of populations.

Q You've used Polsby-Popper, convex hull and Reock in cases -- in instances where Section 2 compliance is important?

MR. STRACH:
Objection. Go ahead.
THE WITNESS:
Yeah. I think that's right but only to measure the compactness of the district.
BY MS. THOMAS-LUNDBORG:

11
12
13

Q Would one of those instances be your work in Virginia?
A So we never did a full Gingles analysis in Virginia. So I'm -- I have to be careful what I say, because I know there's a published report on that, but I did also sign a confidentiality order. So I can't stipulate that the Voting Rights Act is important, because I don't know whether Section 2 is triggered. I assume at least in some places it is, but we did use, I think, Reock and Polsby-Popper there, maybe, convex hull if we're looking at the compactness of districts to comply with the state law mandating compact districts.
Q What about in Arizona?
A Yeah. In Arizona, we used Reock and Polsby-Popper. There may have been a third metric there to measure the compactness of districts.

Q And Section 2 compliance was at issue in Arizona?

A Yes.
Q I have a question about how you
conceptually approached this idea of

| 65 |  |
| :---: | :---: |
| 1 compactness of the minority population. When | 1 to identify compact populations. |
| 2 looking at your figures, I noticed at multiple | 2 Q So let's spend some time talking |
| 3 times you used the term "most compact," and | 3 about moment of inertia, which you previewed |
| 4 actually, rather than speaking from memory, | 4 for us, and I do want to get your report up. |
| 5 let's get an example up. | 5 So give me one second to pull it up. Let me |
| 6 A I can stipulate to that. | 6 share my screen. So I'm going to go to page |
| 7 Q Okay. You recall that without me | 715 of your report. I want to make sure that |
| 8 needing to put it in front of you. What did | 8 we're looking at the right thing. Give me one |
| 9 you mean by most compact? | 9 second. This first full paragraph of the |
| 10 A Within a district, it is the group of | 10 moment of inertia approach, I think this is |
| 11 minority voters who could constitute 50 | 11 where you preview what you've described as the |
| 12 percent plus one of the district's voting age | 12 moment of inertia. Could you just tell us now |
| 13 population, and it's the group that had the | 13 in your own words what the moment of inertia |
| 14 smallest moment of inertia metric. | 14 approach is that you use here? |
| 15 Q Is it your understanding that the | 15 A Sure. If you have like a bike tire |
| 16 Voting Rights Act requires districts to be | 16 and you want to spin it, you spin it right on |
| 17 drawn at their most compact level? | 17 the center of the tire, and the reason is that |
| 18 A No. The question is if you're going | 18 the bike tires are perfectly balanced, and so |
| 19 to make a determination about -- let me step | 19 the place that spins is in the middle. Let's |
| 20 back. Within a district, there may only be | 20 say the top half for whatever reason of the |
| 21 one group, because some districts, you need | 21 bike tire gets -- it's made of lead. It's no |
| 22 every black individual of voting age that | 22 longer going to spin around that center axle, |
| 23 Cooper identified to meet the threshold in the | 23 right. You're going to spin it once, and the |
| 24 district; but in a district like the far | 24 lead part is going to drop to the bottom. The |
| 25 northwest of Louisiana, north of Shreveport, | 25 reason is the mass isn't equally distributed |
| 66 |  |
| 1 where I think the BVAP was around 55 percent, | 1 anymore. So the centroid, the physical center |
| 2 there are multiple ways you might describe the | 2 of the tire is no longer the spinning point. |
| 3 group within the district that gets you to 50 | 3 The spinning point is going to be much lower |
| 4 percent plus one. So the question in my mind | 4 down in the area of the bike tire. So that's, |
| 5 was okay, what's the best case scenario for | 5 basically, what the moment of inertia is |
| 6 Mr. Cooper? What's the most compact cluster | 6 trying to find. It's the point that the -- |
| 7 of minority voters that could constitute 50 | 7 it's the center of the mass in some ways of |
| 8 percent plus one of the district's voting age | 8 the object. So the way you calculate it is |
| 9 population? | 9 you find the sum of square distances to the |
| 10 Q Is there any peer-reviewed local | 10 district center and go from there. |
| 11 science literature on this most compact | 11 Q Okay. |
| 12 concept? | 12 A So it punishes outliers, right, |
| 13 A Well, yeah, the point of the | 13 because you're squaring the distance as you |
| 14 redistricting simulations that I cite to that | 14 even square there a loss. So that's a portion |
| 15 were using population compactness was to draw | 15 of it, but it, basically, a way to use the |
| 16 an optimized plan that minimized compactness, | 16 weighted square distances from the center. |
| 17 and so they were trying to draw using the | 17 Q I noticed that in your report, you've |
| 18 moment of inertia method, the most compact | 18 referred to the moment of inertia as a metric |
| 19 districts they could. | 19 and also as a method. Is there a difference |
| 20 Q Is it your testimony that those | 20 between a method and a metric? |
| 21 articles -- and I can look at one of them -- | 21 A You know, when I used them -- I guess |
| 22 uses most compact concept in the exact same | 22 when I used it, I probably had in mind the |
| 23 way that you do? | 23 method being the algorithm to calculate it, |
| 24 A Well -- no, they weren't using it for | 24 and the metric as the actual output, but I |
| 25 Section 2 compliance, but they were using it | 25 don't think -- there's no great importance to |

the difference when I used them.
Q Well, what in way is moment of inertia a metric?

A Because it will give you the sum of squared distances of individuals from the district center, which is the moment of inertia, and you can use it to compare across
different iterations to see which has more a compact population.

Q Now, you said it gives you the sum squared of districts. How is that output actually relayed in your report? Is it relayed through a number?

A It's some squared distances. No, it's stored in R.

Q So then, how do you relay the final metric in your report?

A It's the district -- it's relayed with a map. It's the district with -- it's the group of black voters of voting age within the district with the smallest moment of inertia, and it can be recalculated through the R code that I provided.

Q You said you linked through map and the purpose was to compare across districts;
is that correct?
A Within districts across clusters.
Q Within districts across clusters. Is there a way to compare across districts using this metric?

A I'm sure you could, but I didn't do that.

Q How would you do that if you wanted to compare across districts?

A You could look at the moment of inertia for District A for the most compact block of black population and then look at it for District B. If someone wanted to do that, the code is there for them to extract those particular numbers, but I was not doing comparisons across district. I was just identifying the most compact black populations sufficient to constitute 50 percent plus one of the district's voting age population in each district.

Q Okay, and if I want to compare across districts, in your code, would it spit out a numerical output that I could compare, or would I have to look visually at the two maps to do that comparison?

A It would be -- I believe it's stored in memory.
Q Right, but what's stored in memory?
Is it visual depiction of the map, or is there
an actual number that could be used to compare across districts?

A The number is calculated at some
point, and I think it's stored. You might
have to edit one of the functions to return
the moment of inertia value instead of the map, but it gets calculated over the course of
the -- actually no, you could just run the function by itself and not with the function call, and it would give you the value.

Q If I wanted to compare two moment of inertia values, how would I do that? How would I know which value was giving me a more compact value and which value was giving me a less compact value?

A The smaller value is more compact.
Q Did you for any of these simulations
that you've read here report the moment of inertia values?

A No, because I wasn't doing cross
district comparisons I was just looking for
the most compact population within each district.

Q Right.
A What's the best case scenario for
Mr. Cooper's maps.
Q Right. Did you do any comparison of Mr. Cooper's map and values to the enacted map on the moment of inertia method?

A No. I don't know whether any of the districts in the enacted map are VRA compliant. So I don't even have that baseline to go off of.

Q Do you use the moment of inertia metric or method as you have described here today in your dissertation in that Chapter 3?

A No, because the dissertation
Chapter 3 isn't dealing with the Voting Rights Act.

Q Have you published any peer-reviewed
academic research on the moment of inertia method or metric as you've described here today?

A No. The moment of inertia method slash metric is one of the oldest in the
compactness literature for determining the
compactness of a population. I haven't published my own peer-reviewed literature, and I doubt it would be publishable since this is such a venerable method for evaluating population compactness.

Q You say it's one of the oldest, but has it appeared in any of the many Gingles's cases that you're aware of?

A No, because from my understanding, the legal approach hasn't really been to explore population compactness. As I explained in my rebuttal report, up until fairly recently, it would have been extraordinarily computationally demanding to the point where it probably would have been infeasible to do it until fairly recently. So no, because my understanding is that the legal theory being propounded here isn't one that's been thoroughly explored.

Q Great. So just picking up on the
last thing that you said, how long has --
well, let me ask a different question. Did
your algorithm calculate moment of inertia for the whole map or just for the selected districts that you were asked to study?

A I only calculated the moment of inertia for minority populations within the remedial maps that -- or within the demonstration maps that would have been new VRA compliance suggested new VRA districts.
Q And how long have experts had access to computers that could calculate the moment of inertia for a handful of districts?

A Well, I have a pretty
state-of-the-art computer, and for a state
Senate district to iterate through the
different precinct's starting points, probably
takes a half hour. So I guess it depends how
big your districts are and how much time you
have, but the first redistricting simulation
to do -- the first published redistricting
simulations over statewide maps were in the
1990s. When you go back to like the 70s and
80 s, they're only doing it on 40 precinct
blocks. So it would be fairly recently that
you would realistically be able to do this.
Q What do you mean by fairly recently?
Are we talking the last 10 years?
A No. I assume you could have done in
on a state district in maybe, the last 20,
done it efficiently.
Q Are you aware of any cases in the last 20 years where the moment of inertia was calculated in the way that you've calculated it here?

A Well, again, I'm not the lawyer in this case, and I haven't done the thorough legal research that I'm sure the lawyers here have done. To my understanding, this is not a
legal approach that's been explored at least recently. So no, I'm not aware of any, --

Q Okay.
A -- but that's something I would have left the lawyers to research. All I knew is that when you're trying to measure the compactness of a population, this is the way to do it.

Q Great, but even in your own
redistricting work in which Section 2
compliance may have been at issue, you have not run moment of inertia in other instances?

A Well, when I did the work for the Arizona case, I wouldn't have been familiar with the moment of inertia approach yet; and in the other cases, I wasn't asked to look at
76

## population compactness.

Q Okay.
A It was hinted at in the Texas case, and in that -- as I talk it through, in that Kansas case. In that Kansas case, -- well, I can't get into why we made choices that we did in that case; and in the Michigan case, we're plaintiffs. So, obviously, we think our demonstration maps have compact minority populations, and the segregation in Michigan is so stark, it's almost impossible not to.

Q So you said in Texas, it was hinted at, but you didn't actually run the moment of inertia analysis that you ran here in Texas?

A No. No, that was a 200 plus page report and a lot of issues to cover, and so population compactness -- I got pressed in my deposition about ways to measure population compactness, metrics for it, but I didn't have time to actually run it.

Q So I think you've mentioned that you
partly came up with this moment of inertia
approach based on what you were asked to do by counsel; is that correct?

A Counsel asked me to explore
population compactness, because their
interpretation of the Voting Rights Act is
that it requires compact minority groups. I'm
guessing defense disagrees with that. I was
asked how would you do it, and I, in the course of doing research for my dissertation, had come across the moment of inertia approach, because that's the metric that the earliest redistricting simulations were using.
So I was familiar with it. So I didn't come up with it at the invitation of counsel. It's a question I was asked, and I at least had some sense of what the answer was from my outside research.

Q You said you came across this research in your research for your dissertation, but did you actually use the algorithms that you're using here in your dissertation?

A No. No. I was aware of how you would measure population compactness, because the articles that I cite here are all articles
that I came across in the course of my dissertation research, and so the algorithms are described within the articles, or at least
because going into these other densely populated areas will move your moment of inertia substantially. So that's a known issue with it.

Q Are there any other limitations?
A Not that I can recall sitting here.
Q I'd like to -- and maybe, this will jog our memory about what potential limitations could be. I've put your report back up. I'm going to move to page 17. This is Figure 6. Let me zoom in a little bit, but you have in front of you. So maybe, we're fine. That seems to be the whole figure. So this is -- I believe, your testimony was the output of your moment of inertia were these maps; is that correct?

A Yes.
Q And Figure 6 is the output of your first algorithm, which weighed BVAP; is that correct?

A That's correct.
Q And the black lines, it's my
understanding, that was the district that Mr. Cooper drew?

A Yes.
how to calculate the moment of inertia. So after being asked well, how would you find a compact population, it was a matter of going back to the articles, seeing the metric and then coding the metrics up.

Q Now, in your report -- and I can put it back up if it's helpful -- you discussed two separate algorithms; is that correct?
A That's correct. I have a hard copy in front of me now. So I can flip back and forth as need be.

Q I believe the first algorithm, you said weights BVAP, and you're seeking to pair -- use the moment of inertia to pair clusters until you reach a 50 percent BVAP; is that correct?
A Fifty percent plus one, yeah.
Q Fifty percent plus one, yeah. Does
this method, the first method, have any limitations?

A Yes. So one limitation of it that's discussed in the literature is that it will tend to avoid -- if you have one densely populated area, it will tend to avoid other densely populated areas and skirt them,

Q And then, the dotted line is -- the dotted lines -- are the lines that your algorithm determined was the most compact area within that district?

A That's right.
Q And then, there are other blue dots. What are those other blue dots represent?

A Every blue dot represents, I believe, 10 black residents of voting age.

Q Is it exactly 10 ? Do you know?
A No. No. It wouldn't work that way.
Most of them would be exactly 10 , but because
you have to round, the last one -- if there's
only one in a precinct -- or the last one in the precinct may not be 10 .

Q And the orange, what does that represent?

A White residents of voting age, 10 as well, with the caveat that the last one may be rounded.

Q Looking at the blue and orange, the
orange just visually looks larger to me, but
do the blue and orange dots represent the same population size?

A They represent the same population
size. The reason that the orange is larger is because the blue is overlaid -- when you draw these maps, you draw them in layers, and since we're mostly interested in the black voting age population, that's layered on top of the white population; and so to minimize the effect of overplotting, you make the orange dots a little bit larger, or the orange "X"s a little larger, and that allows them to stick through and avoid some of the overplotting concerns.
Q So you said you made the orange dots a little larger. I think that means -- or at least my understanding is in your code, you set the alpha code, the orange process to one and then the blue dot to point five. Does that sound correct?

A The alpha in the code determines the transparency, not the size.

Q Okay. But is it correct that in addition to the sizing that you just mentioned, the color the transparency is one for the orange and point five for the blue?

A That's right, because you're layering the blue on top of the orange, making the blue
right on top of each other, but that's the reference of two doughnut holes.

A So the one -- I guess, are you saying so -- I think we agree where that first one is just to the north of that lake. Are you saying there's another one to north?

Q They're right on top of each other, and it appears, when I zoom in, there's a closed hole, and on top of it, there's like a little triangle?

A I think that's just the boundary zigging and zagging.

Q I don't know that material, whether it's one or two visually -- to me, it appears to be two. Your testimony is that it's one. Regardless, it seems to be a non-contiguous space within the depiction, correct?

A Right. So the point here is not to draw the district. The point is to find the most compact black population. Perhaps, you'd need to make it even less compact. If you wanted to -- why would you even ever draw it as the group by itself, because that population is insufficient to maintain the population of a district? So this isn't

|  | 85 |  |  | 87 |
| :---: | :---: | :---: | :---: | :---: |
|  | redistricting directly. It's a way of | 1 | 50 percent plus one of the voting age |  |
|  | identifying a compact population within a | 2 | population that's reasonably compact. |  |
| 3 | district that's already been drawn. | 3 | BY MS. THOMAS-LUNDBORG: |  |
|  | Q I think you anticipated where I'm | 4 | Q I think you testified earlier that |  |
|  | going here. This visual depiction would not, | 5 | this is both a method and a metric. Using the |  |
|  | in fact, tell someone here's the most compact | 6 | metric portion of the moment of inertia |  |
|  | district, because it doesn't account for | 7 | displayed here, what numbers were you using to |  |
|  | contiguity or One Person One Vote, and we | 8 | determine whether or not a population was |  |
|  | don't know how many people you'd need to add | 9 | sufficiently compact to pass your metric? |  |
| 10 | have a full population of a district. | 10 | A Well, as I understand it, and it's |  |
| 11 | MR. STRACH: | 11 | admittedly been awhile since I practiced law, |  |
| 12 | Objection. Go ahead. | 12 | but reasonability is a question ultimately for |  |
| 13 | THE WITNESS: | 13 | the finder of fact to determine. So the |  |
| 14 | Yeah. This isn't a metric for | 14 | finder of fact is going to have to decide |  |
| 15 | determining the district's | 15 | whether it is reasonable or not. In my |  |
| 16 | compactness. It's a metric for | 16 | opinion, when you have a district that the |  |
| 17 | determining the population | 17 | most compact black population sprawls over |  |
| 18 | compactness; and since you're only | 18 | heavily white suburbs, places where there |  |
| 19 | looking for 50 percent plus one BVAP, | 19 | appear not to be black residents and goes out |  |
| 20 | generally speaking, you're going to | 20 | into rural areas, where it picks up isolated |  |
| 21 | need to add additional population to | 21 | pockets here and there, that's not compact |  |
| 22 | fill out an entire district, but the | 22 | under any reasonable definition of the term. |  |
| 23 | whole point of this is, you know, I | 23 | The fact finder might ultimately disagree with |  |
| 24 | didn't just want to just look at | 24 | that though. |  |
| 25 | where the black population of the | 25 | Q But did you have a numerical metric |  |
|  | 86 |  |  | 88 |
| 1 | district is residing, because you can | 1 | that you were using when making this |  |
| 2 | have a circumstance where, you know, | 2 | determination, or were you looking at the map |  |
| 3 | you draw a district -- there are | 3 | as we're doing here today? |  |
| 4 | actually of couple of examples in | 4 | A Looking at the map. You know, as |  |
| 5 | here of this -- where you can draw a | 5 | Justice O'Connor wrote in Shaw, redistricting |  |
| 6 | district that has a very compact | 6 | is an area where appearances do matter, and I |  |
| 7 | black population that's capable of | 7 | don't think there's anyway you can look at |  |
| 8 | being 50 percent plus one of the | 8 | this and say that is a reasonably compact |  |
| 9 | district's population; and then, you | 9 | population, but the fact finder might |  |
| 10 | just kind of go out into other areas, | 10 | disagree. It's just the same way that a |  |
| 11 | because you need One Person One Vote | 11 | Polsby-Popper of point two or 21 or. 22 is |  |
| 12 | and there just happened to be black | 12 | ultimately meaningless. You know, there's |  |
| 13 | residents of voting age in that area | 13 | ultimately a question of reasonability when |  |
| 14 | that you go out into, and that's not | 14 | the court in Allen v. Milligan was talking |  |
| 15 | something that is -- you know, that | 15 | about the demonstration districts there. They |  |
| 16 | would want to follow the Voting | 16 | said we don't see strange appendages. It |  |
| 17 | Rights Act or would fail to satisfy | 17 | doesn't seem to be extremely distended. |  |
| 18 | the Voting Rights Act. So that's | 18 | There's, obviously, judgment calls being made |  |
| 19 | what this exercise is meant to do. | 19 | there that the court is comfortable with. |  |
| 20 | You have this district that's drawn, | 20 | Q But Polsby-Popper and Reock, I think |  |
| 21 | and the district itself sprawls a | 21 | as you just mentioned, do give a numerical |  |
| 22 | bit, but we don't really care about | 22 | output that can be used by the court and |  |
| 23 | that. We care about knowing if the | 23 | compared across this district and the old |  |
| 24 | black population that reaches -- if |  | district or this district and other |  |
| 25 | there is a black cluster that reaches | 25 | configurations, correct? |  |

A This gives a numerical output if you really wanted to go down that road, but at the end of the day, all the Reock score is telling you is what percentage of the area of the minimum bounding circle is being filled. I mean, okay, why point to or not point to .21 or .22 ? It all requires some degree of judgment call.

Q But again, the Polsby-Popper and
Reock produced scores that are frequently actually recorded, and while your testimony today is that there is a recorded number for the moment of inertia, you did not provide those numbers in this report?

A No, but if you wanted to do a
cross-district comparison, it would be easy do to do from my code. If you wanted to run it under any other district, all you would have to do is go into my code and change the district number that you're drawing the map for, but population compactness is one of those things, especially in the context of the Voting Rights Act, that's tricky to do across districts, because for example, some districts don't have -- most of the districts don't have
a 50 percent plus one black population. So you'd never be able to -- the process would run infinitely had that happened once or twice. So it's a different approach than you would get with something like Polsby-Popper, but at the end of the day, they all involve some degree of judgment call.

Q I'm going to put something else on
the screen. I just want to make sure I get the right exhibit number. So I think you just testified that it would be easy to run your analysis on another district using your code and we did just that.

MS. THOMAS-LUNDBORG:
I am now sharing on the screen what I am going to have marked as Exhibit 16. This is a demonstrative exhibit where we did, in fact, run your code on one of the enacted map's districts. This is House District 62.

BY MS. THOMAS-LUNDBORG:
Q In your report, you spent some time talking about the changes that Mr. Cooper made in the Baton Rouge area. District 62 is one
of those changes, and I believe you also criticized the fact that Mr. Cooper redrew this district, District 62. Do you remember the part of your report where you discussed the Baton Rouge area?

A I remember the part of my report with the Baton Rouge area, but I don't remember what I said about District 62.

Q We can probably pull that up. Just give me one second. I am just getting myself organized. So I'm going to stop my share for a second, and we'll go back. I'm going to go back to your report. Just give me one second while I go to page 54. I'm on page 54 of your initial report, and I'll just read the first two sentences: "Mr. Cooper draws new black majority districts in the Baton Rouge area with Illustrative Districts 60, 65, 68 and 69. He then removes a minority-majority district that exists in the Enacted Plan: District 62." Do you see that?

A Yes, and so now, I can answer your previous question unless you had some follow-up you wanted to do before I get there.

Q You can go ahead.

A That's not a criticism of
Dr. Cooper -- or Mr. Cooper. What's going on
here is I was trying to figure out what the new districts were, and so there were to my view four new districts, but there were really only three additional minority-majority districts in the region.

Q In one of the districts that you note was changed in the Baton Rouge area was this district District 62, which I've now put back up on the screen. Do you see that?

A Yes.
Q Do you know, just going back to District 62, whether District 62 existed in its current configuration in the 2010 map?

A I don't.
Q Do you know whether District 62
crosses from an urban to suburban and rural population?

A It certainly does.
Q Does it surprise you that we were
able to find in the enacted map a district
like 62, which based on the eyeball test seems to fail your moment of inertia method?

A I think it clearly fails. Does it
surprise me? Kind of indifferent one way or the other, because there's lots of district I
didn't look at. But I wouldn't defend this as a VRA district.

MS. THOMAS-LUNDBORG:
You know, I think we can take another five-minute break. I just -so everyone on the phone is aware, if we keep going at this rate, I think I have another couple of hours, but I should be done after lunch. So my idea would be let's take a five-minute break now, and then, take a lunch break at 12:40ish for maybe, half an hour or so; and then, I would come back on the record, and maybe, only have an hour of time left, and then, I could turn it over to the Congressional folks. Now, that's assuming we're going at this rate. I'm assuming we're not going to get bogged down in this kind of next portion.

We can go off the record if we're not already off the record.

## (Recess taken.)

BY MS. THOMAS-LUNDBORG:
Q So I'd like to shift back to your
second algorithm. We spent some time before the break dealing with the first. So let me pull up your report again. In efficient use of my break, I did order lunch though. Okay, let's get this going.

So this is just by reference, I'm
sure you recall, but on page 16, you claim that your second algorithm is based on a Chen \& Rodden method; is that right?

A Yes.
Q In support of this second algorithm,
you cite an article from Chen \& Rodden from 2013 titled "Unintentional Gerrymandering:
Political Geography in Electorial Bias and Legislatures" from the Quarterly Journal of Political Science; is that right?
A Oh, yes. It's similar to the algorithm outlined by Chen \& Rodden, yeah.

Q And this is the primary article that you cite in support of this second algorithm; is that right?

A Correct.

1

Q Did you consult with any other sources to help you in your implementation of the Chen \& Rodden method?

A No. This is the basic method that I used for compactness in my dissertation. So it was familiar to me from that.

Q Okay.
A It's useful, because rather than
defining compactness by the district shape, it
defines compactness by the distance between centroids; and while populations are point reference data and don't really have shapes, they do have centroids.

Q When thinking about how to implement the Chen \& Rodden method for this litigation, did you discuss implementation with anyone?

A No. Other than the attorneys.
Q And I asked you this about the first algorithm, I'll ask it here. Have you written any peer-reviewed articles on the implementation of this second method?

A No.
Q Now, you write that your algorithm is similar to the Chen \& Rodden method. Why didn't you use the Chen \& Rodden method
96
itself?
A Because the Chen \& Rodden method is used for drawing compact districts as such, and here, we're not interested in the district shape. We're interested in the population. So rather than using the centroid of the precinct, it uses the centroid of the population, because we're dealing with point reference data in trying to find the centroids there, not with areal data, A-R-E-A-L.

Q So to rephrase, you can tell me if I got this correct. The Chen \& Rodden method draws actual districts where your method is not drawing districts in and of itself.

A That's right. We're both trying to find compact groupings by comparing distances
between centroids, which is the basic
approach. It's just a different application of how to do that. They're trying to draw districts. I'm trying to find compact populations. It's aeral units versus point reference units.

Q So let me just get that article up on the screen.

MS. THOMAS-LUNDBORG:

I'm going to have marked as Exhibit 17 the Chen \& Rodden article that we were just discussing "Unintentional Gerrymandering "Political Geography and Electorial Bias in Legislatures," and I will scroll quickly through it for identification purposes.
BY MS. THOMAS-LUNDBORG:
Q The only one difference is I have highlighted in my version some phrases that we may have discussed together, but otherwise, do you recognize this as the Chen \& Rodden article that you cite?

A Yes.
Q Okay. Now, this method is similar to the algorithm that we were discussing prior to
the break. I think the main difference is
that in the first algorithm, you weight BVAP, but in this algorithm, you're weighting the precinct size; is that correct?

A Let me just --
Q If you're looking at your report, I
believe you describe the differences between
the two on pages 15 and 16 of your report.

A Right, I'm looking at page 16. I just take this to be an important point, so I want to make sure I get it right. (Witness peruses document.) Yeah, that's right.

Q Okay, all right. So focusing on precincts for a minute, why did you decide to weight precinct size?

A Well, because, I have the lengthy definition beforehand of compact from around the time that the amendments to the Voting
Rights Act were passed, talking about it being
closely and firmly united, taking little
space, relatively little, small, light
economical model of the automobile not as
relevant, but the idea being that compact means small areas, and so that was the weighting here.

Q But why is precinct versus some other form of geography percent?

A Well, you could run it off blocks, but it would take forever.

Q Do you understand precincts to be a static form of geography, meaning a form of geography that doesn't change?
A No, they change over time, but this
is how most maps are drawn is at the precinct level. I don't know if there's split precincts within districts in this map. So they're a good unit of mapping, almost certainly what Mr. Cooper was using when he drew his map; but if someone really wanted to challenge it and they had say a super computer, you could conceivably run it at the block level. I tried, and after a day, I gave up on the endeavor.

Q You said that precincts can change over time. Is it your understanding that they do change over time in Louisiana?

A Yes.
Q Do you know who's responsible for precinct changes in Louisiana?

A I don't.
Q And to go over some of the aspects we discussed in the first method, like the first method, the second method does not necessarily fully populate districts; is that right?

A Right, because the point isn't to draw a district. The point is to identify the compact population that could be 50 percent plus one.

Q We talked about the ways in which your method might be related to what Chen \& Rodden did. I'd like to look at page 249 of their report of their article. So I'm on page 249 , and I'll just read for the record the first highlighted part of this article. It says, "Our goal is to design a districting algorithm that uses only traditional geographic criteria of the kind favored by reform advocates. Our challenge is to guarantee equal apportionment of population while requiring geographic contiguity for all simulated districts, paying no attention to either voter partisanship or any demographic information other than simple population counts. Another concern is geographic compactness." Do you see that?
A Yes.
Q Based on their description of what they were doing here, it seems that there are a few key differences between your approaches there. Is that fair to say?
A There are a few differences, but I don't think they're key.
Q Well, one difference is they sought


go on to describe their compact algorithm. They state, "Our procedure for simulating compact districts is as follows," and then, they list steps that they used. They refer step one through 2 c and then on the following page, they have 3a, 3b, 3c, 3d. Out of all the steps that they used, do they weight precinct size in any of their steps?
A No. They're weighting distances from centroids.

Q Why wouldn't you use the same weighting approach that they used?
A Because the question that I was asked to answer was to look at the area of the districts that are drawn.

Q Why wouldn't it be weighted districts
between centroids look at the area? THE COURT REPORTER: Can you repeat the question?
BY MS. THOMAS-LUNDBORG:
Q Why wouldn't the weighted districts between centroid answer the area of question?

A Because you may end up bringing in a massive precinct that inflates the size of the district, and since this is looking for a
small -- districts that are a small area, using a definition of compactness that focuses
on area, that was the more appropriate application.

Q So by weighting the district size, and I think this is what your answer was just now, your algorithm favored smaller precincts?

A Right. When given a choice, it will choose a smaller precinct by area.

Q And precincts should have a similar number of individuals in them, correct?

A No.
Q Do they tend to?
A Oh, I haven't looked at that, but I
don't think I'm going to testify to that,
because I don't think it's probably true.
Q Okay. Do you know if it's more
likely to find smaller precincts in urban
geography?
A Yes.
Q So by favoring smaller precincts,
your algorithm would favor urban geography
over rural geography?
A Right.
Q Since the Chen \& Rodden method
weighting of distances between centroids?
A Yeah, I think the confusion or disagreement is in the way that the question was proposed the second time. It's not that the centroid distances are going to have nothing to do with precinct size, because larger precincts are going to tend to have centroids that are further from the boundaries, but not necessarily. You could have like a long, skinny district, where coming at it from a certain angle, the centroid is very close to the boundary. So the area is a more direct way of getting at the precinct area, but there's still going to be a relationship between the size of the precinct favored and the location of precinct centroid.

Q So then, why not again use the Chen \& Rodden centroid district approach versus your weighted precinct approach?

A I suppose you could use the centroid, and someone could check to see if it got a different answer. I used area because rather than using their centroid method to try to approximate area, you could just use area.

Q I'd like to just focus for a second on their steps 3a through 3d, and I'm going to start reading the paragraph that begins with "Steps 2a through 2c are repeated until the total number of districts is exactly d . At this point in the procedure, these d districts are geographically contiguous and reasonably compact, due to the nearest distant criteria employed in step 2b. However, the districts are not guaranteed to be equally populated. Hence, repeated iterations of steps 3a through
3 c are designed to achieve an equitable
distribution of population across the
simulated districts." Do you see that?
A Yes.
Q And you did not run steps 3a through
3 c in your algorithm, correct?
A Oh, that's right, because we're not trying to sample whole district maps. The borrowing doesn't come from a way to draw full district maps, which isn't something I was looking into. The borrowing was the concept of geography as something unrelated to the shape of the district, Polsby-Popper or Reock. Or compactness, not geography.

Q So getting back to this question of precinct size and the favoring of smaller precincts, how would your approach work in a primarily suburban district?
A Well, since the idea of compactness that this is trying to explore is compact as in taking in little area, it will start with the precincts, and it will continue to pick up suburban precincts, which will tend to be smaller until you reach whatever 50 percent plus one of the population is for that clusters BVAP.
Q Okay. What about a rural area? Same?

A It will go through the precincts that it can find that are the smallest.

Q Okay.
A But part of the reason that you run
this algorithm with every precinct in the
House -- or in the district as a starting point is to ensure that every precinct is selected at least once. So it controls to a certain degree for that precinct size issue by starting in every precinct in the district.

Q But, I think we saw in the visual
that I can put back up on the screen, not every precinct is in the end going to be depicted in your analysis; and in fact, I don't think we put up the Chen \& Rodden version. So it probably helps ground our discussion. Let me just put up the right exhibit. So I'm back to Exhibit 3. I believe this is Figure 7 on page 18, which is that Chen \& Rodden version of this particular district. Do you see that?

A Yes.
Q So I think you just testified that your method wouldn't necessarily select all of the precincts, but in the output, there is a kind of dotted line around the precincts that are eventually selected; is that correct?

A Right. So it tries out every
precinct as a starting point in the district and takes the one that leads to the most compact area as defined by area.

Q Okay.
A And I think maybe, part of where
we're getting wrapped around the axle here is just remembering that this analysis is starting with the definition of compact as
being a small area. Maybe, that's not a good definition to use. That's something the court will have to decide, but if we were to use an understanding of compact as being a small dense area, this is the way of approaching it.

Q Could I ask a question about how this approach would work in a scenario where a town or municipality on its own would never be large enough to constitute a full district, and you would necessarily -- whether the district is majority-minority or majority -majority have to draw from the suburban and rural areas?

A Well, if it's majority-majority, it's not going to work, because you're never going to find that 50 percent plus one compact population. The algorithm will run infinitely and never converge. If you are running it on a small town -- I mean, that's the whole point of this is that that cluster up south of -- I think that's Caddo Lake. It might be Cross Lake up in the top -- yeah. I remember I used to fish on Caddo Lake with my dad, and I think that's what that one is. That small town to the south of it has a cluster of black

under the assumption that that's what compact means.

Q Right. I'm not trying to hide the ball here with my hypothetical. So I'll give the game away. What I'm really trying to figure out is are there circumstances under your analysis in which a combination of an urban, suburban and rural area would meet your test, and the underlying assumption here is that they're going to be times in which you will have to combine urban, suburban and perhaps, even rural areas to meet the equal population requirements.

A Well, it doesn't matter what you're doing to meet the equal population requirements. It only matters -- this analysis only tells us where the most compact black population is. If there is a compact black population that can be 50 percent plus one of the district, you can do whatever you want with the rest of the district, at least from my analysis. So like I said, if this district had taken in a little bit more of the black population of Shreveport, so it wouldn't have had to reach out halfway to the Arkansas
basis of their race, that's packing. It could be packing in a Voting Rights Act context if there were, in fact, more districts that could be drawn that would elect the minority candidate of choice under the -- and also meet the Gingles's preconditions, but that's the question here is whether this district is meeting the Gingles's preconditions.

Q You are familiar with the idea of packing in a racial context where a minority would be concentrated into a certain number of districts?

A Yes.
Q Okay.
A They're concentrated into a certain number of districts here.

MS. THOMAS-LUNDBORG:
I actually think we're at a good place to take a lunch break. I think after lunch I'm going to circle up, but I probably have a half an hour to an hour of questions. Then, I can turn it over to the Congressional folks.

We can go off the record.
border to get it's sufficient black
population, we probably are having a very
different discussion here even though the
district would still sprawl over a large area to meet the equal population requirement.
Q Right, and that would be true if the black population in your answer was concentrated in a particular area. I think you said multiple times that it is area that you're looking at, correct?

A With this metric, it's measuring area, correct.
Q And are you familiar with the term packing?

A Yes.
Q What is packing?
A Packing is when you intentionally place partisans within a district to reduce their impact, I guess, on elections.

Q Are you familiar with the term "packing in a racial context"?

A Yeah. So if you intentionally draw a district using race as a predominant factor to reduce the ability or to separate people in our context, I guess black individuals on the
(Lunch recess taken.)
BY MS. THOMAS-LUNDBORG:
Q So I have just a few more questions for you, and I can turn you over. I think though, I probably will in case -- well, let's get there when we get there.

You would agree that there are a varying waves of statistical measures of compactness that have been accepted by the courts in redistricting cases?

A Yes.
Q So I'd like to go through some of the measures of compactness that have been accepted by the court. Well, I'll ask one more question. The measures that have been accepted by the courts today are expressed as mathematical formulas, correct?

A Yes, as mathematical output, I guess. Sure.

Q Which measures have been the most prominent that you are aware of?

A Probably Reock and Polsby-Popper.
Q You just mentioned the Reock measure, and I think we've talked about it a bunch today. Do you know who the person is who's

## 125

credited with coming up with the Reock score?
A Ernest Reock.
Q Who is he?
A He was someone who published in 1961, well before I was learning who professors were. I just know he wrote the article.

Q Did you ever write an expert report
in a case where you credited Professor Reock
with the Reock method?
A Ibelieve so, yes.
Q Do you recall whether in that expert report you also listed Professor Reock's university affiliations?

A I don't know.
Q Does it sound familiar to that
Professor Reock may have been the director of
Rutgers University's Center for Government
Service?
A I have no reason to believe you would
make something like that up. So I can go
along with that.
Q Okay. How does Reock measure
compactness?
A It takes the district, and it draws
the smallest circle around the district that
understanding is that defense has a district different theory.

Q Do you recall that Mr. Cooper ran the Reock scores on both his illustrative map and the enacted map?

A Yes.
Q Do you recall what his results found?
A No. I wasn't interested in district compactness. I was interested in population compactness.

Q Would it surprise you that district compactness, that Mr. Cooper's maps either met or beat the enacted maps?

A On average, it would not surprise me.
Q Do you have any reason as you sit here today to -- strike that. Is it your opinion as you sit here today that Mr. Cooper's maps are non-compact on a district compactness basis?

A I haven't done any work one way or the other on the district level compactness of the maps.

Q I think I have just a few follow-up questions. You mentioned Reock, and you have run Reock in your redistricting work. I think

|  | 129 |  |  | 131 |
| :---: | :---: | :---: | :---: | :---: |
| 1 you've also mentioned Polsby-Popper, is that |  | 1 | A After Dr. Duchin pointed out that |  |
| 2 right? |  | 2 | it's just the square route of Polsby-Popper. |  |
| 3 A That's right. |  | 3 | Q Do you recall when that was? |  |
| 4 Q And generally, what is the |  | 4 | A I believe it was during the Texas |  |
| 5 Polsby-Popper method? |  | 5 | litigation before it got stayed. So sometime |  |
| 6 A The Polsby-Popper method takes -- |  | 6 | last year. |  |
| 7 instead of the minimum bounding circle, it |  | 7 | Q Let me just check quickly. |  |
| 8 takes the perimeter of the district and looks |  | 8 | MS. THOMAS-LUNDBORG: |  |
| 9 at the area of the circle with the same |  | 9 | Let me just check quickly. I |  |
| 10 perimeter as the district and asks what |  | 10 | think I'm done. Just in case |  |
| 11 percentage, and then, it's the ratio of the |  | 11 | anything else comes up, I will close |  |
| 12 area of that district to the area of the |  | 12 | out your deposition by the end of the |  |
| 13 circle with the same perimeter. |  | 13 | day, but I am going to turn it over |  |
| 14 Q You've also run Polsby-Popper in the |  | 14 | to the Congressional case, and just |  |
| 15 past? |  | 15 | leave it open for a second if |  |
| 16 A Yes. |  | 16 | anything comes up, but we will at |  |
| 17 Q And you've done that in your expert |  | 17 | least close out my deposition by the |  |
| 18 redistricting work? |  | 18 | end of today, but I'll close it out |  |
| 19 A Yes. |  | 19 | to Dan in the Congressional case |  |
| 20 Q And Mr. Cooper did it here on his |  | 20 | before doing that. |  |
| 21 maps and the enacted maps? |  | 21 | I think we're in a different |  |
| 22 A I will certainly accept your |  | 22 | zoom room. Do we want to go off the |  |
| 23 representation on that. |  | 23 | record and rejoin the others in Link |  |
| 24 Q Okay, and I'm going to ask the same |  | 24 | with the other one? |  |
| 25 questions about convex hull. Are you familiar |  | 25 | (Whereupon, the deposition was |  |
|  | 130 |  |  | 132 |
| with convex hull metric? |  | 1 | concluded at 12:24 PM.) |  |
| A Yes. |  | 2 |  |  |
| Q Have you run the convex hull metric |  | 3 |  |  |
| in your prior redistricting work? |  | 4 |  |  |
| 5 A Ihave. |  | 5 |  |  |
| Q I don't think I asked this question |  | 6 |  |  |
| 7 about Polsby-Popper. So let me go back |  | 7 |  |  |
| quickly. Does Polsby-Popper give a score? |  | 8 |  |  |
| A Yes. |  | 9 |  |  |
| 10 Q Does convex hull give a score? |  | 10 |  |  |
| 11 A Yes. |  | 11 |  |  |
| 12 Q And did you run convex hull in this |  | 12 |  |  |
| 13 case? |  | 13 |  |  |
| 14 A No, because I wasn't interested in |  | 14 |  |  |
| 15 district compactness. |  | 15 |  |  |
| 16 Q And then, a similar question about |  | 16 |  |  |
| 17 the Schwartzberg metric. Are you familiar |  | 17 |  |  |
| 18 with the Scwartzberg metric? |  | 18 |  |  |
| 19 A I am. |  | 19 |  |  |
| 20 Q Have you run that metric before? |  | 20 |  |  |
| 21 A I have. Though, I don't anymore. |  | 21 |  |  |
| 22 Q You said you don't anymore? |  | 22 |  |  |
| 23 A I don't. |  | 23 |  |  |
| 24 Q When did you stop running that |  | 24 |  |  |
| 25 metric? |  | 25 |  |  |



Page 135

| A | 19:5 36:8 | advisory | 126:14 | Allen 88:14 | announced |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A-C-R-E-E | Acee 53:1 | 134:12 | aims 108:19 | allow 82:8 | 120:20 |
| 39:12 | achieve | advocates | 108:23 | allowed | answer 6:15 |
| A-C-S 38:25 | 113:12 | 100:10 | al 15:5,5 | 105:11 | 7:24 9:15 |
| A-G-E-E | Acree 39:12 | aeral 96:21 | 16:13,14 | allows 81:9 | 9:15 22:11 |
| 53:6 | 39:23 | aeral-based | 106:13 | 82:2 | 22:13 |
| A-R-E-A-L | Acs 38:25 | 103:13 | Alex 38:25 | Alora 2:7 8:2 | 27:13,14 |
| 96:10 | Act 52:1,4,5 | affiliations | 39:15 | alpha 81:15 | 28:3 55:19 |
| Abbott 49:24 | 57:6 64:8 | 125:13 | ALEXIS 1:7 | 81:18 82:7 | 62:2 77:13 |
| 52:4 | 65:16 | aforementi... | algorithm | alternative | 91:22 |
| ability 7:24 | 72:18 77:2 | 133:9 | 44:13 | 108:15 | 109:14,22 |
| 122:24 | 86:17,18 | age 24:23 | 45:16 | altogether | 110:6 |
| 134:9 | 89:23 | 62:7 65:12 | 68:23 | 108:17 | 111:20,21 |
| able 10:5 | 98:11 | 65:22 66:8 | 73:23 | AMANDA | 112:23 |
| 13:14 | 120:13,15 | 69:20 | 78:12 | 3:9 | 117:5 |
| 25:20 38:3 | 120:19 | 70:19 80:9 | 79:19 80:3 | Amendment | 118:12 |
| 46:13 | 123:2 | 80:18 81:5 | 82:20 94:4 | 55:21 | 122:7 |
| 74:21 | acted 134:11 | 86:13 87:1 | 94:11,14,21 | amendments | answered |
| 82:12 90:2 | acting 37:14 | 102:25 | 94:23 | 98:10 | 28:6 |
| 92:22 | ACTION 1:4 | 117:1 | 95:19,23 | 120:15 | answering |
| 107:14 | actual 68:24 | Agee 49:25 | 97:17,19,20 | AMERIC... | 7:19 59:5 |
| above-enti... | 71:5 96:13 | 52:3 53:3,4 | 100:8 | 3:2 | answers |
| 1:15 | add 48:17 | 53:9 | 101:9,17,17 | amicus 49:21 | 56:11 |
| academic | 85:9,21 | aggregate | 101:21,22 | amount | anticipated |
| 33:7,20,21 | add-on | 47:16,17 | 102:4,6,8 | 46:12 | 24:6 85:4 |
| 44:7,10 | 107:15 | aggregation | 102:18 | analogies | anymore |
| 72:20 | added 39:20 | 47:16 | 103:6,8,11 | 63:10 | 68:1 |
| accept | adding | ago 8:2 23:20 | 103:13 | analysis | 130:21,22 |
| 129:22 | 118:24 | 38:7 39:5 | 108:22,22 | 19:24 55:3 | anytime 34:2 |
| accepted | addition | 39:16,22 | 108:25 | 55:7 58:20 | anyway 88:7 |
| 124:9,14,16 | 30:25 | 40:2 | 109:1 | 61:12,24 | apologize |
| accepting | 81:21 | $\underset{\text { agree }}{ } 58: 9,13$ | 110:7,22 | 62:24 63:8 | 37:4 |
| 55:6 | additional | 84:4 | 113:17 | 64:4 76:14 | 106:23 |
| access 74:6 | 85:21 92:6 | 107:17 | 114:19 | 90:12 | appear 16:20 |
| accommod... | additions | 124:7 | 116:17 | 115:3,24 | 17:15 83:2 |
| 14:2 | 48:12 | agreed 6:2 | algorithms | 117:18 | 87:19 |
| accomplish | address 7:8 | 39:8 | 42:21,22 | 118:1 | 117:5 |
| 31:10 | 60:3 | AGREEM... | 77:18,24 | 119:24 | appearances |
| account 85:7 | administer... | 4:10 | 78:8 | 121:7,17,22 | 2:1 3:1 4:7 |
| 103:7 | 6:22 | ahead 52:6 | 103:19 | 127:20 | 88:6 |
| accurate | admittedly | 63:20 | 108:15,18 | and/or 6:14 | appeared |
| 16:2,21 | 87:11 | 85:12 | 108:20 | 133:7 | 73:7 |
|  | adviser 38:23 | 91:25 | ALICE 1:6 | angle 112:11 | appears 84:8 |


| 84:14 | 112:25 | 121:12 | 10:18 | 124:21 | ball 121:4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| appendages | approxima... | argue 55:10 | 14:11 | 127:18 | ballpark |
| 88:16 | 29:23,25 | Arizona | 93:20,21 | awhile 39:14 | 34:14,19 |
| applicable | April 37:21 | 52:22 | 120:2 | 87:11 | based 44:13 |
| 22:25 | Ardion 15:5 | 64:16,17,22 | assumption | axle 67:22 | 60:25 |
| application | Ardoin 1:11 | 75:23 | 121:1,9 | 115:23 | 76:23 |
| 33:3 54:8,8 | 16:13 | Arkansas | attached |  | 92:23 |
| 54:11 | area 68:4 | 121:25 | 19:6 | B | 94:11 |
| 96:18 | 78:24 80:3 | art 10:22,23 | attention | B 5:1 70:13 | 100:19 |
| 101:12 | 86:13 88:6 | article 57:4 | 100:13 | B-1 20:16 | 108:21 |
| 110:4 | 89:4 90:25 | 94:15,22 | 103:4,14 | 21:3 | 117:4 |
| Applied 37:7 | 91:5,7,17 | 96:23 97:2 | attorney | B-2 20:18 | baseline |
| applying | 92:9 | 97:14 | 3:10 8:3 | 21:3 | 72:11 |
| 101:3,4 | 102:19 | 100:4,6 | attorneys | back 21:9,11 | basic 22:11 |
| apportion... | 103:21 | 107:13 | 95:17 | 21:12 | 95:4 96:17 |
| 100:11 | 109:14,17 | 108:2 | August 13:1 | 24:13 29:5 | basically |
| 101:1,8 | 109:22 | 125:6 | 18:20 | 34:4 35:14 | 57:24 68:5 |
| approach | 110:1,3,9 | 134:12 | 35:11,13,16 | 38:6 54:23 | 68:15 |
| 44:20 | 111:17,20 | articles 47:17 | authority | 58:8 60:11 | basis 123:1 |
| 62:18,20 | 112:13,14 | 66:21 | 30:16,23 | 65:20 | 128:19 |
| 67:10,14 | 112:23,25 | 77:22,22,25 | 134:5 | 74:18 78:4 | Baton 3:8,13 |
| 73:10 | 112:25 | 78:4 95:20 | automobile | 78:7,10 | 90:25 91:5 |
| 75:10,24 | 114:7,13 | Aside 26:25 | 98:14 | 79:10 | 91:7,17 |
| 76:23 77:8 | 115:20,20 | asked 22:14 | AVENUE | 91:12,13 | 92:9 |
| 90:4 96:18 | 116:1,5 | 24:7 62:4 | 2:18 | 92:10,13 | bearing |
| 108:14,16 | 118:21,24 | 73:25 | average | 93:16 94:3 | 53:21 |
| 109:12 | 119:10,11 | 75:25 | 128:14 | 104:18 | beat 128:13 |
| 112:19,20 | 119:17 | 76:23,25 | avoid 37:15 | 107:25 | began 58:17 |
| 114:3 | 120:12,17 | 77:5,12 | 78:23,24 | 108:1,3 | beginning |
| 116:7 | 120:25 | 78:2 83:17 | 81:10 | 114:1 | 14:3 58:23 |
| 118:16,18 | 121:8 | 95:18 | 103:22 | 115:1,7 | 60:24 |
| approached | 122:4,8,9 | 105:14 | aware 14:4 | 130:7 | 62:10 |
| 64:25 | 122:12 | 109:13 | 14:13 | background | begins 113:3 |
| approaches | 126:4,5 | 111:19 | 21:16 | 32:16 | behavior |
| 43:10 | 129:9,12,12 | 127:16 | 30:15 41:9 | 33:24 | 46:7 |
| 44:17 | areal 96:10 | 130:6 | 55:6,9 | 36:23 | believe 12:4 |
| 45:12 | 120:9,11 | asks 129:10 | 57:16 | 46:16 48:5 | 15:8 17:22 |
| 100:21 | areas 78:25 | aspects 99:18 | 61:12,16,19 | 54:2 | 19:19 |
| approaching | 79:2 82:11 | assume 26:14 | 62:19,22,25 | bad 120:20 | 22:22 |
| 116:5 | 86:10 | 52:10 | 63:4,5,13 | BakerHost... | 23:19 |
| appropriate | 87:20 | 64:10 | 73:8 75:2 | 9:23 | 24:10 28:5 |
| 110:3 | 98:16 | 74:24 | 75:11 | balanced | 36:21 38:6 |
| approximate | 116:13 | assuming | 77:20 93:8 | 67:18 | 38:10,14 |

Page 137

| 40:1 41:23 | 24:22 | 60:23 | 21:10 | 49:19 | 36:15,19 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 49:12 71:1 | 65:22 | 67:24 | 33:13 | calling 102:6 | 37:13 |
| 78:12 | 69:20 | boundaries | 124:24 | calls 88:18 | 43:19 |
| 79:14 80:8 | 70:12,17 | 112:9 | busy 38:5 | calmed 24:15 | 49:13,22,24 |
| 91:1 97:24 | 79:22 80:9 | 126:19 | BVAP 66:1 | CAMBRI... | 50:1,2,22 |
| 105:1 | 81:4 82:11 | boundary | 78:13,15 | 2:6 | 50:24 51:2 |
| 111:8,21 | 82:19,20 | 84:11 | 79:19 | candidate | 51:3,5,21 |
| 115:7 | 84:20 | 112:12 | 85:19 | 25:21 | 51:25 52:2 |
| 125:10,19 | 85:25 86:7 | 126:24 | 97:19 | 123:5 | 52:3,3,4,5 |
| 127:9 | 86:12,24,25 | bounding | 114:12 | capable 86:7 | 52:22,23 |
| 131:4 | 87:17,19 | 89:5 126:2 | C | capacity $1: 7$ | 53:13,14 |
| Bellwether | 90:1 91:16 | 126:6 | C | 1:11 37:14 | 54:24 55:1 |
| 40:25 | 102:25 | 129:7 | C 3:14 134:1 | capture | 55:4,8 |
| 41:15 | 116:25 | brand 31:16 | 134:1 | 58:18 | 57:18,21 |
| Benson 50:1 | 117:7 | 31:18,20 | C-1 20:21 | 105:23 | 58:18 |
| 52:3 53:1 | 118:19,25 | break 9:3,8,9 | 21:3 | 106:21 | 62:23 66:5 |
| best 66:5 | 119:7,18 | 10:17,19 | C-2 20:23 | car 106:24 | 72:4 75:7 |
| 72:4 134:8 | 121:18,19 | 48:6 53:18 | 21:3 | care 86:22,23 | 75:23 76:3 |
| Bias 94:17 | 121:24 | 54:25 58:6 | C-A-L-D-.. | careful 64:5 | 76:5,5,7,7 |
| 97:6 | 122:1,7,25 | 93:7,13,14 | 38:24 | Carlo 43:3,6 | 105:7 |
| bibliography | blanking | 94:5,7 | C-plus-plus | 44:14,15,20 | 107:12 |
| 29:12 | 57:22 | 97:18 | 42:9 | 45:14 | 124:5 |
| big 74:14 | block 25:16 | 123:19 | Caddo 83:12 | Carolina | 125:8 |
| bike 67:15,18 | 25:18 28:8 | breaks 9:4,7 | 116:21,23 | 2:14 37:19 | 127:10 |
| 67:21 68:4 | 70:12 99:9 | brief 30:22 | calculate | 51:3,8,21 | 130:13 |
| bill 11:9 14:8 | blocks 74:20 | 36:22 | 68:8,23 | carry 31:11 | 131:10,14 |
| 16:25 17:4 | 98:20 | 46:15,18 | 73:23 74:7 | Carter 49:20 | 131:19 |
| 17:16 18:1 | blue 80:6,7,8 | briefly 10:23 | 78:1 | case 10:14 | cases 48:9,17 |
| 18:2,7,17 | 80:21,23 | 11:15 | calculated | 14:3,13 | 48:20,23,24 |
| 20:16 | 81:2,16,23 | 17:11 60:8 | 71:7,11 | 16:3,22 | 49:1,3,8,19 |
| 21:13 35:4 | 81:25,25 | bringing | 74:1 75:4,4 | 18:10 | 50:11,14,20 |
| 35:10,13,16 | 82:4,5,16 | 109:23 | Caldeira | 21:23,24 | 51:8,10,12 |
| billed 34:23 | 82:16 | Brnovich | 38:23 | 22:10 23:6 | 51:25 52:1 |
| 35:2,16 | board 52:20 | 52:21 | CALHOUN | 23:7,14,17 | 52:9,11,13 |
| bit $23: 5$ | 134:10,13 | Bryce 39:12 | 1:7 | 23:21,22,24 | 52:16,19,25 |
| 27:20 | bogged 93:22 | 39:12 | CALI 3:12 | 23:25 24:8 | 53:7 55:9 |
| 79:11 81:8 | border 122:1 | bucket 57:7 | call 12:4 | 24:19 | 62:25 63:5 |
| 82:2 86:22 | borrowed | build 43:6 | 30:15 | 26:10,13,17 | 63:17 73:8 |
| 117:7 | 33:25 | BUILDING | 32:15 | 27:3 29:10 | 75:2,25 |
| 118:9 | borrowing | 1:7 | 71:14 89:8 | 31:3,17 | 124:10 |
| 121:23 | 101:11 | builds | 90:7 | 32:9 34:6,9 | 127:22 |
| 127:3 | 113:20,22 | 103:16,23 | called 31:7 | 34:12,23 | casually |
| black 1:7 | bottom 60:4 | bunch 16:7 | 32:21 34:1 | 35:2,23 | 26:19 |

Page 138

| cause 1:15 | Chain 44:14 | 110:25 | 45:10 | 89:17,19 | commencing |
| :---: | :---: | :---: | :---: | :---: | :---: |
| caveat 80:19 | challenge | 112:18 | clean 33:17 | 90:12,19 | 1:19 |
| CCR 134:21 | 99:7 | 115:4,9 | cleanest 47:7 | 107:14 | committed |
| 134:21 | 100:10 | Chen's | clear 8:20 | 134:12 | 39:13 |
| census 32:23 | 104:10 | 106:21 | 20:25 | coded 42:6,7 | committee |
| 32:24 | change 38:9 | 107:9 | 55:24 | codes 32:8 | 38:22,24 |
| center 67:17 | 89:19 | Chet 126:10 | 111:24 | 45:25 | 39:3,7,18 |
| 67:22 68:1 | 98:24,25 | choice 25:21 | clearly 92:25 | coding 42:3 | 54:5,16 |
| 68:7,10,16 | 99:11,13 | 110:8 | CLEE 1:6 | 42:5 46:3 | common |
| 69:6 | changed | 117:22 | Clinic 2:4 8:5 | 46:13 78:5 | 50:20 |
| 125:17 | 38:10 92:9 | 123:5 | close 43:8 | COHEN | communities |
| centroid 68:1 | 111:10 | choices 76:6 | 112:12 | 2:20 | 43:2 56:25 |
| 96:6,7 | changes | choose 110:9 | 131:11,17 | cohesion | 61:3 |
| 109:22 | 90:24 91:1 | CHRISTI... | 131:18 | 25:17 | community |
| 112:5,12,17 | 99:16 | 3:18 | closed 83:24 | coincide | 62:5 |
| 112:19,21 | 133:7 | circle 89:5 | 84:9 | 27:24 | compact |
| 112:24 | Chapman | 123:20 | closely 98:12 | coincided | 24:25 |
| centroids | 49:20 | 125:25 | 103:21 | 31:1 | 25:10,13 |
| 43:8,8 | chapter | 126:2,4,6 | cluster 66:6 | color 81:22 | 43:5 59:2,3 |
| 95:11,13 | 30:11 43:1 | 129:7,9,13 | 83:3 86:25 | 82:2 | 64:14 65:3 |
| 96:9,17 | 72:15,17 | circumstan... | 102:14 | Columbus | 65:9,17 |
| 109:10,17 | chapters | 86:2 | 104:25 | 9:23 | 66:6,11,18 |
| 111:5,7,20 | 40:1,3,4 | circumstan... | 116:20,25 | combination | 66:22 67:1 |
| 112:1,8 | charger 58:5 | 24:3 121:6 | 118:13,19 | 121:7 | 69:9 70:11 |
| certain 9:13 | chat 8:8 | citation | clusters 70:2 | combine | 70:17 |
| 112:11 | check 41:6 | 30:20 61:8 | 70:3 78:15 | 121:11 | 71:18,19,20 |
| 114:23 | 41:11 54:7 | citations | 103:24 | come 21:11 | 72:1 76:9 |
| 123:11,15 | 112:22 | 30:8,16,18 | 114:12 | 77:7,10 | 77:3 78:3 |
| certainly | 131:7,9 | cite 29:9,14 | Coca 50:2 | 93:16 | 80:3 83:16 |
| 59:14 | Chen 57:1 | 29:15,17 | code 28:21 | 105:15 | 84:20,21 |
| 92:20 99:5 | 94:11,15,21 | 30:22 | 28:23,25 | 113:20 | 85:2,6 86:6 |
| 104:6 | 95:3,15,24 | 66:14 | 29:1 31:2,9 | comes 131:11 | 87:2,9,17 |
| 129:22 | 95:25 96:2 | 77:22 | 31:16,19,20 | 131:16 | 87:21 88:8 |
| CERTIFI... | 96:12 97:2 | 94:15,23 | 32:5,13,15 | comfortable | 96:3,16,20 |
| 4:12,13 | 97:13 | 97:14 | 32:20 33:3 | 88:19 | 98:9,15 |
| 133:1 | 100:2 | cites 29:21 | 33:14,19,21 | coming | 99:24 |
| certification | 101:23,23 | City 50:2 | 41:23 42:1 | 112:11 | 101:20 |
| 6:9 | 104:1,4,11 | 52:2,25 | 42:11,14,16 | 125:1 | 102:1,13,24 |
| Certified | 104:16 | 53:13,14 | 42:18,19 | command | 103:15,15 |
| 1:17,23 | 105:3,7,8,8 | Civil 1:4 3:2 | 43:3 69:23 | 32:22 | 104:24 |
| 6:20 134:3 | 105:22 | 6:6 134:12 | 70:14,22 | 33:11,23 | 108:6,21 |
| certify 133:4 | 107:11,12 | claim 94:10 | 81:14,15,18 | commands | 109:1,3 |
| 134:4 | 107:25 | class 45:7,8 | 82:14 | 31:11 | 113:8 |

Page 139

|  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $114: 6$ | $113: 25$ | $63: 18$ | $61: 11$ | $45: 20,25$ | $21: 14$ |
| $115: 20,25$ | $114: 5$ | $64: 21$ | conference | consult $95: 1$ | $24: 21$ |
| $116: 4,16$ | $118: 2$ | $66: 2574: 5$ | $1: 844: 7,10$ | content | $25: 2327: 1$ |
| $117: 9,12$ | $120: 14,16$ | $75: 20$ | confidenti... | $47: 14,19,22$ | $61: 12,17$ |
| $118: 19$ | $120: 21$ | $134: 9,11$ | $64: 7$ | contents | $65: 2366: 6$ |
| $119: 18$ | $124: 9,13$ | compliant | configurati... | $47: 22$ | $79: 24$ |
| $120: 8,10$ | $125: 23$ | $72: 11$ | $56: 292: 15$ | context | $90: 2491: 2$ |
| $121: 1,17,18$ | $126: 12,16$ | $117: 4$ | configurati... | $55: 22$ | $91: 1692: 2$ |
| compactness | $126: 22,24$ | comply $64: 14$ | $88: 25$ | $89: 22$ | $92: 299: 5$ |
| $21: 425: 9$ | $127: 17,22$ | component | configured | $122: 21,25$ | $128: 3$ |
| $27: 10$ | $127: 25$ | $52: 8$ | $25: 14$ | $123: 2,10$ | $129: 20$ |
| $30: 13$ | $128: 9,10,12$ | components | confused | contiguity | Cooper's |
| $41: 18$ | $128: 19,21$ | $52: 9$ | $120: 6$ | $56: 17,21$ | $17: 1918: 2$ |
| $43: 11$ | $130: 15$ | computati... | confusion | $61: 385: 8$ | $18: 3,17,21$ |
| $55: 11$ | company | $73: 14$ | $39: 18$ | $100: 12$ | $18: 2519: 7$ |
| $56: 17,21$ | $47: 10$ | computer | $112: 2$ | $101: 16,18$ | $19: 17,18$ |
| $58: 1961: 2$ | comparative | $32: 358: 7$ | Congratul... | $101: 24$ | $20: 16,19,21$ |
| $62: 5,9,18$ | $21: 4$ | $74: 1099: 8$ | $38: 20$ | contiguous | $20: 2421: 4$ |
| $62: 2463: 2$ | compare | computers | Congress | $83: 2,3,8$ | $28: 6,7$ |
| $63: 3,12,14$ | $69: 7,25$ | $74: 7$ | $120: 13,18$ | $102: 2,4,7,9$ | $60: 1172: 5$ |
| $63: 23$ | $70: 4,9,21$ | conceivably | Congressio... | $102: 15$ | $72: 7$ |
| $64: 13,19$ | $70: 2371: 5$ | $99: 8$ | $14: 13$ | $103: 2$ | $128: 12,18$ |
| $65: 166: 15$ | $71: 15$ | concentrated | $36: 19$ | $113: 7$ | copies $15: 9$ |
| $66: 16$ | $107: 20$ | $122: 8$ | $93: 19$ | continue | $19: 6$ |
| $72: 2573: 1$ | compared | $123: 11,15$ | $123: 23$ | $114: 8$ | copy $12: 18$ |
| $73: 5,11$ | $88: 23$ | concept | $127: 10$ | CONTINU... | $13: 1116: 2$ |
| $75: 1676: 1$ | comparing | $66: 12,22$ | $131: 14,19$ | $3: 1$ | $16: 21$ |
| $76: 17,19$ | $96: 16$ | $101: 6,10$ | consider 59:4 | contractual | $17: 1536: 8$ |
| $77: 1,21$ | comparison | $107: 23$ | considered | $134: 11$ | $78: 9$ |
| $85: 16,18$ | $70: 2572: 6$ | $113: 22$ | $47: 2348: 1$ | controls | correct $7: 13$ |
| $89: 2195: 5$ | $89: 16$ | conception | $57: 3$ | $114: 22$ | $14: 20,21$ |
| $95: 9,10$ | comparisons | $101: 14$ | constitute | converge | $26: 18$ |
| $100: 17$ | $70: 16$ | conceptually | $65: 1166: 7$ | $116: 18$ | $38: 15,16$ |
| $101: 6,11,14$ | $71: 25$ | $64: 25$ | $70: 18$ | convex $63: 11$ | $41: 2,24,25$ |
| $103: 19,21$ | complete | concern | $102: 20$ | $63: 16$ | $42: 1044: 1$ |
| $105: 23$ | $38: 3$ | $100: 16$ | $116: 9$ | $64: 12$ | $44: 548: 11$ |
| $106: 22$ | completed | concerns | $117: 2,20$ | $129: 25$ | $49: 14$ |
| $107: 10,21$ | $38: 18$ | $81: 11$ | constraints | $130: 1,3,10$ | $55: 1462: 6$ |
| $107: 24$ | completely | concluded | $108: 18$ | $130: 12$ | $70: 176: 24$ |
| $108: 16,19$ | $82: 7$ | $132: 1$ | constructive | Cooper $11: 9$ | $78: 8,9,16$ |
| $108: 23$ | $104: 13$ | conditional | $43: 3,5$ | $17: 1,4,10$ | $79: 16,20,21$ |
| $110: 2$ | compliance | $54: 22$ | $44: 15,20,22$ | $17: 1618: 7$ | $81: 17,20$ |
| $11: 17$ | $61: 21$ | conducting | $45: 1,3,13$ | $19: 21$ | $84: 17$ |
|  |  |  |  |  |  |

Page 140

| 88:25 | 46:3,9 | 57:6 58:9 | d 4:1 5:1 | decide 29:16 | 33:17 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 94:25 | 71:11 77:6 | 58:11,15,20 | 113:5,6 | 87:14 98:6 | demanding |
| 96:12 | 77:23 | 59:5,12 | D.C 2:19 | 116:3 | 73:14 |
| 97:21 | courses 46:2 | 60:8 61:23 | dad 116:23 | decision | demarcated |
| 103:7 | 46:12 | 100:9 | daily 47:12 | 55:21 | 51:24 |
| 105:5 | court 1:1,23 | 113:8 | DAKOTA | decisions | demarcati... |
| 110:11 | 6:20 7:16 | criticism | 3:4 | 57:8 | 48:21 |
| 111:11 | 29:20 | 92:1 | Dan 131:19 | declaration | demograp... |
| 113:17 | 48:25 49:9 | 104:20 | DANIEL | 17:10,21 | 100:14 |
| 115:16 | 49:12,17 | criticisms | 2:10,20 | defend 93:3 | 103:4 |
| 122:10,12 | 51:6,11,12 | 104:15 | data 30:1 | defendant | demography |
| 124:17 | 51:13 53:6 | 105:6,14 | 32:23,24 | 1:12 26:3 | 103:6 |
| 127:11 | 55:6,20 | 106:20 | 95:12 96:9 | defendants | demonstrate |
| 133:8 | 88:14,19,22 | 107:9 | 96:10 | 2:16 26:3 | 45:13,20,23 |
| 134:8 | 109:18 | criticized | date 17:13 | defended | demonstra... |
| corrections | 116:2 | 91:2 104:4 | 37:18,23 | 38:14 | 74:4 76:9 |
| 133:7,17,19 | 124:14 | criticizing | 41:4 54:4 | defense 13:8 | 88:15 |
| counsel 4:10 | 134:3 | 105:22 | 133:9,13 | 19:20 | demonstra... |
| 6:39:13 | courts | critiquing | dated 12:16 | 26:13,16 | 90:17 |
| 11:15,18,19 | 124:10,16 | 55:13 | 12:25 | 77:4 128:1 | denial 52:15 |
| 11:24 13:9 | 127:18 | cross 71:24 | 13:20 | define 62:9 | 52:17 |
| 14:2 22:6 | cover 15:3 | 116:21 | 134:16 | defined | dense 116:5 |
| 26:9 35:4 | 16:11 | cross-district | Daubert 50:6 | 115:20 | densely |
| 35:10 | 76:16 | 89:16 | 50:9,12,15 | 120:16 | 78:23,25 |
| 76:24,25 | covered | crosses 92:18 | 50:25 51:6 | 134:11 | 79:1 |
| 77:11 | 14:15 82:8 | crunch 9:5 | day 39:21 | defines 95:10 | density 62:16 |
| 105:13 | covers 45:10 | curious | 89:3 90:6 | defining 95:9 | DEPART... |
| 106:11,23 | COVID | 117:17 | 99:9 | definitely | 3:7 |
| 134:13 | 40:17 | current 39:3 | 131:13 | 34:21 | depending |
| count 52:25 | Covington | 39:4 46:20 | 134:16 | definition | 10:20 |
| Counties | 52:9 | 92:15 | DC 3:3 | 87:22 98:9 | 83:23 |
| 41:15 | Cranmer | currently 8:4 | dcohen@el... | 110:2 | 118:22 |
| counts | 39:8 | 41:21 | 2:21 | 111:16 | 119:1 |
| 100:16 | crash 33:14 | cut 30:14 | deal 62:15 | 115:25 | depends |
| county 57:11 | create 43:14 | 48:19 | 117:18 | 116:2 | 74:13 |
| 57:13 | 43:17 44:3 | cutting 107:2 | dealing | 120:21 | depicted |
| couple 32:20 | created | 126:1 | 72:17 94:5 | degree 37:3 | 115:3 |
| 37:10 | 43:20 | CV 35:24,25 | 96:8 | 56:25 89:7 | depiction |
| 40:18 48:4 | credited | 36:8,13 | 126:18 | 90:7 | 71:4 82:13 |
| 48:12 86:4 | 125:1,8 | 40:12,16,22 | deals 27:6 | 114:23 | 83:6 84:17 |
| 93:10 | 127:19,24 | 41:3 | December | Delaware 4:3 | 85:5 |
| course 33:24 | criteria 56:6 |  | $37: 9,9$ | 7:11 | deposed 8:10 |
| 34:21 45:5 | 56:9,20,24 | D | 39:13 54:4 | delineation | 8:11 21:17 |

Page 141

|  |  |  |  |  |  |
| :---: | :---: | :---: | :--- | :--- | :--- |
| $36: 15$ | determine | $134: 8$ | $29: 19,22$ | $70: 20$ | $126: 18,22$ |
| $37: 18 ~ 40: 2$ | $24: 21 ~ 30: 9$ | directly | $30: 2131: 2$ | $71: 2572: 2$ | $126: 24$ |
| $49: 450: 4$ | $59: 187: 8$ | $27: 11$ | $31: 1538: 9$ | $74: 11,25$ | $127: 17,22$ |
| $105: 18$ | $87: 13$ | $59: 2585: 1$ | $38: 1540: 1$ | $79: 2380: 4$ | $127: 25$ |
| deposition | determined | director | $40: 14$ | $84: 19,25$ | $128: 1,8,11$ |
| $1: 146: 4,16$ | $80: 3$ | $125: 16$ | $42: 12,18,20$ | $85: 3,7,10$ | $128: 19,21$ |
| $8: 129: 20$ | determines | disagree | $43: 1344: 2$ | $85: 2286: 1$ | $129: 8,10,12$ |
| $11: 12,20$ | $81: 18$ | $87: 23$ | $54: 21$ | $86: 3,6,20$ | $130: 15$ |
| $12: 13,15,24$ | determining | $88: 10$ | $72: 15,16$ | $86: 21$ | district's |
| $13: 7,12,19$ | $72: 25$ | disagreem... | $77: 6,17,19$ | $87: 16$ | $65: 1266: 8$ |
| $14: 1,11,12$ | $85: 15,17$ | $112: 3$ | $77: 2495: 5$ | $88: 23,24,24$ | $70: 19$ |
| $14: 18,22$ | dhessel@la... | disagrees | distance | $89: 18,20$ | $85: 1586: 9$ |
| $16: 2418: 8$ | $2: 10$ | $77: 4$ | $68: 13$ | $90: 12,20,25$ | districting |
| $19: 1621: 2$ | difference | discovered | $95: 10$ | $91: 3,3,8,19$ | $56: 15$ |
| $21: 11,12,13$ | $68: 1969: 1$ | $119: 19$ | distances | $91: 20$ | $100: 7$ |
| $21: 1923: 2$ | $97: 10,18$ | discuss $26: 9$ | $68: 9,16$ | $92: 10,10,14$ | districts |
| $26: 2360: 6$ | $100: 25$ | $95: 16$ | $69: 5,14$ | $92: 14,17,22$ | $24: 20,23$ |
| $60: 18$ | differences | $108: 10$ | $96: 16$ | $93: 2,495: 9$ | $43: 5,759: 2$ |
| $76: 18$ | $82: 897: 24$ | discussed | $109: 9$ | $96: 499: 23$ | $59: 364: 13$ |
| $105: 13,21$ | $100: 21,23$ | $20: 142: 17$ | $111: 5,7,19$ | $101: 5$ | $64: 15,20$ |
| $106: 6,14$ | $111: 24$ | $48: 1355: 1$ | $112: 1,5$ | $102: 11,12$ | $65: 16,21$ |
| $131: 12,17$ | different | $78: 7,22$ | distant $113: 8$ | $103: 15$ | $66: 19$ |
| $131: 25$ | $9: 2127: 8,9$ | $91: 497: 12$ | distended | $107: 21$ | $69: 11,25$ |
| depositions | $30: 442: 17$ | $99: 19$ | $88: 17$ | $108: 6$ | $70: 2,3,4,9$ |
| $12: 10$ | $42: 19$ | $127: 2$ | distinguish | $109: 25$ | $70: 2271: 6$ |
| describe | $56: 10,11$ | discussing | $48: 23$ | $110: 5$ | $72: 10$ |
| $47: 1366: 2$ | $69: 873: 22$ | $27: 2041: 1$ | distributed | $112: 10,19$ | $73: 2574: 5$ |
| $97: 24$ | $74: 1290: 4$ | $44: 24$ | $67: 25$ | $113: 19,21$ | $74: 8,14$ |
| $109: 1$ | $96: 18$ | $54: 25$ | distribution | $113: 24$ | $88: 15$ |
| $126: 11$ | $101: 4,21$ | $55: 1397: 3$ | $104: 12$ | $114: 4,20,24$ | $89: 24,24,25$ |
| described | $107: 23$ | $97: 17$ | $113: 13$ | $115: 10,18$ | $90: 20$ |
| $67: 11$ | $108: 8,16$ | discussion | district $1: 1,2$ | $116: 9,11$ | $91: 17,18$ |
| $72: 14,21$ | $111: 16$ | $26: 16$ | $25: 1543: 9$ | $117: 3,4,7$ | $92: 4,5,7,8$ |
| $77: 25$ | $112: 23$ | $115: 6$ | $45: 15$ | $117: 10,14$ | $96: 3,13,14$ |
| description | $120: 23$ | $122: 3$ | $52: 1956: 1$ | $117: 20$ | $96: 2099: 3$ |
| $100: 19$ | $122: 3$ | discussions | $59: 762: 16$ | $118: 12,15$ | $99: 21$ |
| design $100: 7$ | $128: 2$ | $26: 12,20$ | $62: 17$ | $119: 8,16$ | $100: 13$ |
| designed | $131: 21$ | displayed | $63: 12,24$ | $121: 20,21$ | $103: 1,23,24$ |
| $113: 12$ | dilution | $28: 2287: 7$ | $65: 10,20,24$ | $121: 23$ | $107: 18$ |
| desk $40: 19$ | $52: 15,24$ | dissertation | $65: 2466: 3$ | $122: 4,18,23$ | $109: 3,15,16$ |
| detect $118: 17$ | direct $22: 18$ | $27: 5,6,20$ | $68: 1069: 6$ | $123: 7$ | $109: 21$ |
| determinat... | $112: 13$ | $27: 2529: 7$ | $69: 18,19,21$ | $125: 24,25$ | $110: 1$ |
| $65: 1988: 2$ | direction | $29: 8,12,15$ | $70: 11,13,16$ | $126: 1,4,5$ | $111: 1$ |
|  |  |  |  |  |  |

Page 142

| 113:5,6,9 | doughnut | 107:18 | easy 19:12 | 107:11 | equally 67:25 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 113:14 | 83:5,9,19 | 109:15 | 89:16 | employed | 113:10 |
| 119:2 | 84:2 | 123:4 | 90:11 | 113:9 | equitable |
| 123:3,12,16 | download | draws 91:16 | economical | employer | 113:12 |
| dixit 56:13 | 10:5 | 96:13 | 98:14 | 47:5,6 | equivalency |
| Dixon 49:17 | downloaded | 125:24 | edge 126:1 | enacted | 28:8 |
| dknehans... | 59:24 | drew 60:25 | edges 107:17 | 10:24,25 | Ernest 125:2 |
| 3:5 | Dr 1:6,6 22:4 | 79:24 99:6 | edit 71:9 | 19:23 20:3 | especially |
| document | 57:1 92:2 | drill 24:12 | educational | 21:6 72:7 | 89:22 |
| 10:13 | 105:8,8 | 52:14 | 36:23 | 72:10 | ESQ 2:7,10 |
| 12:22,24 | 106:21 | 58:24 | effect 10:9 | 90:19 | 2:15,20 3:4 |
| 13:5 98:4 | 107:9,11 | DRIVE 3:2 | 61:22 81:7 | 91:20 | 3:9,14 |
| documents | 131:1 | drop 67:24 | effectively | 92:22 | estimate |
| 10:2,11,20 | draw 45:15 | Duchin | 126:3 | 128:5,13 | 34:14 |
| 23:1 | 55:17 | 131:1 | effects 57:8 | 129:21 | ESTRELLA |
| Dodge 50:2 | 56:16 | due 108:17 | efficiency | endeavor | 3:19 |
| 52:2,25 | 66:15,17 | 113:8 | 38:8 | 99:10 | et 15:5,5 |
| 53:12,14 | 81:2,3 | Duke 37:2,2 | efficient 94:6 | engagement | 16:13,13 |
| doing 19:23 | 84:19,22 | duly 7:2 | efficiently | 27:12 | 106:13 |
| 27:24 | 86:3,5 | 134:5 | 75:1 | ensure | ethnic 56:25 |
| 58:22 | 96:19 | dust 58:24 | eight 60:20 | 114:21 | evaluate |
| 70:15 | 99:23 |  | 60:23,24 | enter 12:8 | 56:15 |
| 71:24 | 101:4 | E | either 33:7 | entered | evaluating |
| 74:19 77:6 | 102:12 | E 4:1 5:1,1 | 51:7 52:8 | 21:10 | 73:4 |
| 88:3 | 113:20 | 134:1,1 | 100:14 | entire 85:22 | eventually |
| 100:20 | 116:12 | earlier 20: | 128:12 | entirely | 52:20 |
| 104:17 | 122:22 | 42:17 | Elderberry | 23:12 | 115:16 |
| 121:15 | drawer | 48:13 | 4:37:10 | entitled | EVERETT |
| 131:20 | 117:22 | 55:12 87:4 | elect 25:20 | 12:24 | 2:5 |
| DOROTHY | drawing | earliest 77:9 | 123:4 | enumerate | evidence |
| 1:6 | 31:23 32:7 | early 21:24 | Election 2:4 | 104:6,9 | 6:18 |
| $\boldsymbol{\operatorname { d o t }} 32: 13,14$ | 58:13 | 50:14 | 8:4 | enumerated | 104:22 |
| 80:8 81:16 | 59:12 | earn 37:8 | elections | 104:8 | exact 37:9 |
| 82:4,5 | 61:18 | earned 37:3 | 30:1 41:1 | enumeration | 55:3,7,19 |
| dots 80:6,7 | 89:20 96:3 | 37:6 | 41:16 | 104:14 | 66:22 82:5 |
| 80:23 81:8 | 96:14 | EARNEST | 47:20 | environment | 101:12 |
| 81:12 | 119:23 | 1:6 | 52:20 | 31:7 | 108:10 |
| 82:16 | drawn 11:8 | easier 16:14 | 122:19 | equal 56:22 | exactly $24: 16$ |
| dotted 80:1,2 | 24:20 56:1 | east 117:23 | Electorial | 100:11 | 59:16 |
| 82:16 | 57:19 59:8 | 117:24 | 94:17 97:5 | 101:1,8 | 80:10,12 |
| 115:15 | 65:17 83:1 | 118:4 | ELIAS 2:18 | 121:12,15 | 111:14 |
| double 36:25 | 85:3 86:20 | 119:12,17 | ELIZA 3:19 | 122:5 | 113:5 |
| doubt 73:3 | 99:1 | 119:19 | emphatic | equality 61:2 | exam 54:9,12 |

Page 143

| EXAMIN... | 60:4,12 | explain 31:5 | 120:20 | 53:15 | 108:8,9 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4:117:4 | 90:10,17,18 | explained | faculty 39:17 | Federal 6:5 | 110:18 |
| examine | 97:2 106:6 | 73:12 | 39:19 | feel 57:25 | 114:16 |
| 24:20 | 108:2 | explore 62:2 | fail 86:17 | Feldman | 116:16 |
| examined 7:2 | 115:7,7 | 73:11 | 92:24 | 50:17 | 118:1 |
| 32:2 59:15 | exhibits 10:6 | 76:25 | 120:4 | 51:17 | 127:16 |
| example 32:6 | 15:9 16:7 | 114:6 | fails 92:25 | 52:20 | finder 87:13 |
| 43:18 65:5 | 17:20,24 | 119:11 | fair 46:12 | fell 57:24 | 87:14,23 |
| 89:24 | 19:1,6,8,10 | 120:17,23 | 100:22 | Fifty 78:17 | 88:9 |
| examples | 21:2,3,10 | explored | fairly $13: 15$ | 78:18 | finding 43:7 |
| 32:8 49:11 | existed 92:14 | 73:19 | 73:13,16 | fighting | 43:10 |
| 49:15 86:4 | exists 91:20 | 75:10 | 74:20,22 | 25:12 | fine 9:4 47:4 |
| exclusively | expected | exploring | fall 46:9 | figure 79:11 | 79:13 |
| 28:25 | 37:22 | 119:5 | familiar 25:3 | 79:13,18 | 117:11 |
| execute 27:8 | experiment | expound | 50:5 56:5 | 83:1 92:3 | fire $24: 11$ |
| 31:11 | 108:15 | 57:17 | 75:23 | 115:8 | 58:23 |
| 33:10,14 | expert 15:4 | expressed | 77:10 95:6 | 121:6 | firmly 98:12 |
| executed | 16:2,25 | 124:16 | 119:14 | figured 30:18 | first 7:2 8:16 |
| 18:19 32:3 | 17:3,5,16 | extent 30:17 | 122:13,20 | figures 65:2 | 10:23 12:8 |
| exercise | 17:17,20 | external | 123:9 | file 54:7,11 | 12:21,22 |
| 86:19 | 18:3 21:23 | 39:19 | 125:15 | filed 22:1 | 19:9 24:21 |
| exhibit 4:9 | 23:7 25:24 | extract 70:14 | 129:25 | 50:15 51:1 | 25:8 29:19 |
| 5:2,3,4,5,6 | 26:2,25 | extraordin... | 130:17 | 51:4 54:13 | 30:14 |
| 5:7,8,9,10 | 27:2 28:7 | 73:14 | far 16:4 | 54:14 | 53:20 |
| 5:11,12,13 | 29:9,10,17 | extremely | 22:21 35:2 | 105:8 | 60:13 67:9 |
| 5:14,15,16 | 31:1,3 33:6 | 88:17 | 65:24 | files 28:8,8 | 74:15,16 |
| 5:17,18,19 | 34:5 48:10 | eyeball 92:23 | 102:13 | 28:11,14 | 78:12,19 |
| 12:9 13:6 | 48:22 | F | 118:16 | filing 6:9 | 79:19 84:4 |
| 13:19 | 51:18 | F | Farr 12:4 | fill 85:22 | 91:15 94:5 |
| 14:17 15:1 | 55:14,17,25 | F 134:1 | fast $24: 13$ | filled 89:5 | 95:18 |
| 16:10 17:9 | 58:17 | facets 46:21 | faster 12:11 | 102:12 | 97:19 |
| 18:1,2,2,3 | 62:22 | fact 19:22 | favor 110:22 | fills 126:4 | 99:19,19 |
| 18:15,17 | 103:25 | 44:3 55:13 | 119:3 | final 16:18 | 100:6 |
| 19:15,16 | 104:3 | 85:6 87:13 | favored | 53:8,10 | 101:19 |
| 20:15,16,18 | 125:7,11 | 87:14,23 | 100:9 | 69:16 | 104:19 |
| 20:18,20,21 | 127:6 | 88:9 90:18 | 110:7 | find 10:11 | 118:18 |
| 20:23,23 | 129:17 | 91:2 103:6 | 112:16 | 12:12 16:6 | fish 116:23 |
| 24:18 | expert's | 115:3 | favoring | 39:14 | five 8:2 40:2 |
| 29:11 | 127:20 | 120:2 | 110:21 | 51:20,21 | 57:20 58:1 |
| 35:20,23 | experts 19:21 | 123:3 | 114:2 | 68:6,9 78:2 | 58:5 81:16 |
| 36:4,5,7 | 22:10,20 | factor 122:23 | favoritism | 84:19 | 81:23 |
| 48:8 59:20 | 26:13,16 | factors 56:12 | 111:2 | 92:22 96:9 | five-minute |
| 59:21,23 | 74:6 | 59:14,16 | February | 96:16,20 | 53:18 93:7 |

Page 144

| 93:13 | 134:10 | G | 94:16 97:4 | 133:5,8 | 12:8,19,20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| flip 44:18,19 | formed 39:7 | G 53:5 | getting 39:10 | gives 69:10 | 13:5,17,18 |
| 78:10 | formulas | G-E-O-M-... | 48:16 | 89:1 | 14:14,16,17 |
| 107:16 | 124:17 | 33:16 | 91:10 | giving 71:17 | 14:24,25 |
| flips 45:16 | forth 56:18 | G-I-M-P-E... | 112:13 | 71:18 | 15:6 16:8 |
| fly 14:6 | 78:11 | 39:1 | 114:1 | go 8:8 10:22 | 17:9,24 |
| focus 33:20 | 134:6 | GALMON | 115:23 | 19:9,10 | 18:14,16 |
| 60:16 | forthcoming | 2:21 | 120:18 | 20:9,10 | 19:4 20:8 |
| 108:18 | 41:4 | game 121:5 | Gill 38:12 | 21:9,12 | 20:11,12,15 |
| 113:1 | found 51:13 | gap 38:8 | Gimbel | 28:2 29:5 | 20:17,20,22 |
| focused | 128:7 | gears 23:4 | 40:23 | 38:17 48:4 | 21:6 22:12 |
| 47:20 | FOUNDA... | 46:14 | Gimpel | 52:6 54:23 | 23:4 24:1,4 |
| focuses 110:2 | 3:2 | general 3:10 | 38:25 | 58:2 60:10 | 34:4 35:19 |
| focusing | four 48:9 | 40:14,15 | Gingles 11:8 | 63:20 67:6 | 36:1,4 |
| 27:21 98:5 | 49:6 92:5 | 52:12 | 24:2,5 25:3 | 68:10 | 37:15 |
| folks 26:19 | 106:16 | generally | 25:3,7,23 | 72:12 | 46:14 58:2 |
| 93:19 | Fourteenth | 51:24 | 26:2,7 | 74:18 | 58:4,8 |
| 123:24 | 55:21 | 61:16 | 54:25 | 85:12 | 59:19,20 |
| follow 86:16 | frequently | 85:20 | 55:14,17,23 | 86:10,14 | 60:16,20 |
| follow-up | 58:12 63:9 | 129:4 | 55:25 | 89:2,19 | 65:18 67:6 |
| 37:11 54:2 | 89:10 | generate | 62:23 63:8 | 91:12,12,14 | 67:22,23,24 |
| 91:24 | front 10:2 | 43:5,22 | 64:3 | 91:25 | 68:3 78:3 |
| 128:23 | 15:25 | generated | 127:20 | 93:24 | 79:1,10 |
| followed 61:5 | 36:10 38:5 | 28:18 29:4 | Gingles's | 99:18 | 85:5,20 |
| following | 65:8 78:10 | geographic | 73:7 | 107:4,25 | 87:14 90:8 |
| 1:16 109:5 | 79:12 | 100:9,12,16 | 120:19 | 108:1,12 | 90:16 |
| follows 7:3 | 118:11 | 101:16 | 123:6,8 | 109:1 | 91:11,12 |
| 109:3 | frustrating | geographic... | GIS 28:11,15 | 114:15 | 92:2,13 |
| foregoing | 33:13 | 113:7 | gist 46:10 | 117:20,23 | 93:9,20,21 |
| 133:5 | full 7:7 64:3 | geography | give 12:9 | 123:25 | 94:8 97:1 |
| 134:6 | 67:9 85:10 | 43:18 | 35:20 | 124:12 | 103:14 |
| forever 38:7 | 113:20 | 94:17 97:5 | 36:22 | 125:20 | 105:1,11,15 |
| 98:21 | 116:9 | 98:19,23,24 | 46:15 67:5 | 126:14 | 105:16 |
| forgot 33:15 | full-time | 110:19,22 | 67:8 69:4 | 130:7 | 106:5,15,17 |
| form 6:14 | 46:24 47:2 | 110:23 | 71:14 | 131:22 | 108:1,3,9 |
| 39:2 54:6 | 48:1 | 113:23,25 | 88:21 | goal 58:18,21 | 108:13 |
| 54:16 | fully 99:21 | geomander | 91:10,13 | 100:7 | 110:15 |
| 98:19,23,23 | function | 33:15 | 106:3 | goes 10:18 | 111:6 |
| formalities | 71:13,13 | Georgia | 121:4 | 53:15 | 112:5,7,14 |
| 6:8,11 | functions | 57:22 | 130:8,10 | 87:19 | 113:2 |
| formally 39:2 | 71:9 | gerrymand... | given 1:14 | 103:11 | 115:2 |
| 47:1 | further 112:8 | 45:10 51:3 | 12:17 | going 8:14 | 116:15,15 |
| format |  |  | 110:8 | 9:5 10:21 | 118:3,4,17 |

Page 145

| 118:20,24 | 66:3 69:20 | 123:21 | hinted 76:3 | idea 64:25 | 76:11 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 119:9,11,16 | 83:8,9 | halfway | 76:12 | 83:9 93:12 | inapplicable |
| 120:8,10,17 | 84:23 | 121:25 | history 36:25 | 98:15 | 104:13 |
| 121:10 | 101:25 | HALL 2:5 | Hobbs 50:17 | 114:5 | include |
| 123:20 | 102:1 | handful 74:8 | 52:21 | 123:9 | 30:17 |
| 129:24 | grouped | happen | hole 83:9,19 | identificati... | 83:10,14 |
| 131:13 | 103:21 | 111:9 | 83:24,25 | 97:8 | included |
| $\operatorname{good} 7: 6$ | grouping | happened | 84:9 | identified | 17:20 19:1 |
| 45:9 57:25 | 83:10 | 38:1 86:12 | holes 83:5 | 65:23 | 35:12 |
| 99:4 | 103:15 | 90:3 | 84:2 | identify 67:1 | 61:25 |
| 104:21 | groupings | happens | honestly 24:9 | 99:23 | 103:5 |
| 116:1 | 96:16 | 120:1 | 34:18 | identifying | including |
| 123:18 | groups 77:3 | harbor 57:21 | 58:22 | 70:17 85:2 | 61:2 |
| gosh 23:8 | guarantee | hard 15:9 | hopefully | ignore | incorporat... |
| 32:18 39:4 | 100:11 | 78:9 | 15:7 | 108:17 | 61:22 |
| 104:17 | 101:1,8,24 | HARRIS 1:7 | hour 11:23 | illustrate | incorrectly |
| Government | 102:4,7 | Harvard 2:4 | 53:20 | 24:22 | 53:2 |
| 125:17 | guaranteed | 8:4 | 74:13 | illustrative | increase |
| grab 58:4 | 113:10 | hate 56:13 | 93:15,17 | 11:6,7 21:5 | 103:17 |
| graduate | guess 25:10 | health 40:18 | 123:21,22 | 28:9 60:25 | incredibly |
| 54:8 | 36:18 | hear 39:23 | hours 34:11 | 91:18 | 38:5 |
| graduated | 39:20 | hearing | 34:17 | 128:4 | INDEX 4:8,9 |
| 36:24 37:1 | 46:25 49:6 | 24:12 | 35:18 | imagine | indifferent |
| graduation | 49:18 51:5 | heavily $82: 11$ | 93:10 | 22:16 | 93:1 |
| 37:18,23 | 56:15 | 87:18 | House 11:1 | impact | indirectly |
| 38:2 54:4 | 68:21 | help 95:2 | 43:25 | 122:19 | 111:4 |
| great 15:10 | 74:13 84:3 | helpful 10:12 | 90:20 | impede 7:23 | individual |
| 38:18 | 120:6 | 16:6 78:7 | 114:20 | implement | 65:22 |
| 68:25 | 122:19,25 | helps 115:5 | 118:12 | 95:14 | individuals |
| 73:20 | 124:18 | hereinbefore | hull 63:11,17 | implement... | 69:5 82:10 |
| 75:18 | guessing | 134:6 | 64:12 | 95:2,16,21 | 110:11 |
| Greg 38:23 | 77:4 | hereto 6:3 | 129:25 | implications | 117:1 |
| 39:6,7 | guidelines | HESSEL | 130:1,3,10 | 55:23 | 122:25 |
| ground 8:15 | 61:5,7 | 2:10 | 130:12 | import 33:2 | inertia 62:19 |
| 115:5 | 134:10 | hide 121:3 | hyphenated | importance | 62:23 |
| 117:4 | guy 39:11 | highlight | 62:14 | 68:25 | 65:14 |
| 118:10 |  | 108:9,11 | hypothetical | important | 66:18 67:3 |
| grounding | H | highlighted | 117:16 | 8:21 32:18 | 67:10,12,13 |
| 117:13 | H5:1 | 97:11 | 118:10 | 63:18 64:8 | 68:5,18 |
| group 2:18 | half 11:23 | 100:6 | 120:2,7 | 98:2 | 69:3,7,22 |
| 25:11,13,16 | 67:20 | 108:5,13 | 121:4 | imports | 70:11 |
| 25:19 | 74:13 $\mathbf{9 3} \cdot 15$ | HILLSBO... |  | $33: 11$ | 71:10,16,23 |
| 65:10,13,21 | 93:15 | 2:13 | I | impossible | 72:8,13,20 |

Page 146

| 72:23 | 49:13 | 87:20 | 88:18 89:8 | 23:25 32:1 | 21:19 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 73:23 74:2 | instructed | issue 25:11 | 90:7 | 32:13 | 51:14 |
| 74:8 75:3 | 9:15 | 64:21 | July 15:5,13 | 34:13,20 | known 79:3 |
| 75:21,24 | insufficient | 75:20 79:4 | 15:17 | 35:1 45:1 | knows |
| 76:14,22 | 84:24 | 114:23 | 60:11 | 46:19 47:2 | 103:12 |
| 77:7 78:1 | integrated | issues 23:24 | June 17:1,4 | 49:3,5,8 | KURTYKA |
| 78:14 79:3 | 29:23,24 | 76:16 | 17:13,25 | 50:1 55:18 | 3:20 |
| 79:15 | intend 22:5,9 | iterate 44:18 | 23:11 | 55:22 57:1 | KYLE 1:11 |
| 82:14 | 26:6 37:12 | 74:11 | 60:15,15 | 57:5,9 |  |
| 83:15 87:6 | intentionally | iteration | Justice 3:7 | 59:10,15 | L |
| 89:13 | 122:17,22 | 39:3,4 | 88:5 | 61:19,22 | L 1:16,23 6:1 |
| 92:24 | interest 43:2 | 46:20 | K | 64:5,9 | 6:20 134:3 |
| 102:6 | 57:1 61:4 | iterations | K | 68:21 | 134:21 |
| 126:10 | 102:24 | 69:8 | K-1 18:2 | 71:17 72:9 | Labor 39:21 |
| inevitable | interested | 113:11 | K-2 18:4 | 80:10 | LAGROUE |
| 58:14 | 81:4 96:4,5 |  | Kansas 76:5 | 82:15,18,19 | 3:9 |
| infeasible | 102:14 | J | 76:5 | 82:21,23,25 | lagrouea@ ... |
| 73:16 | 128:8,9 | J 2:15 | keep 49:7 | 83:18 | 3:10 |
| infinite | 130:14 | Jacobson | 93:9 | 84:13 85:9 | laid 118:23 |
| 104:23 | 134:14 | 51:4 | 118:24 | 85:23 86:2 | 119:2 |
| infinitely | interesting | James 40:23 | key 100:21 | 86:15 88:4 | lake 83:12,13 |
| 90:3 | 45:17 | JARRETT | 100:24 | 88:12 | 83:14 84:5 |
| 116:17 | intermitte... | 1:6 | kind 19:12 | 92:13,17 | 116:21,22 |
| inflates | 12:6 | JASON 3:20 | 27:12 | 93:6 99:2 | 116:23 |
| 109:24 | interpret | Java 42:8 | 32:12 | 99:15 | LAKESH... |
| information | 32:24 | JD 37:11 | 44:17 | 101:22 | 3:2 |
| 30:7 | interpretat... | Jim 38:25 | 46:20 | 102:3,8 | language |
| 100:15 | 77:2 | 39:5,6,15 | 48:19 | 103:14 | 31:25 |
| 103:4 | intervention | job 58:25 | 53:11,20 | 104:12 | languages |
| initial 13:7 | 34:8 | jog 79:8 | 86:10 93:1 | 105:12,15 | 42:2,5 |
| 19:18,25 | introduce | JOHN 3:14 | 93:22 | 105:16 | Laplace |
| 24:19 | 17:24 | john@scwl... | 100:9 | 107:4 | 29:23,25 |
| 35:24 | 59:19 | 3:15 | 115:15 | 108:20 | laptop 10:8 |
| 91:15 | invitation | joined 12:6 | kinds 26:19 | 110:17 | large 116:9 |
| initially | 77:11 | 23:17 | KNEHANS | 111:12,13 | 122:4 |
| 24:15 | involve 41:17 | Joint 59:23 | 3:4 | 117:6,17 | larger 80:22 |
| inquiry 11:8 | 90:6 | 61:6,17 | knew 14:14 | 124:25 | 81:1,8,9,13 |
| instances | involvement | Journal | 24:3 75:14 | 125:6,14 | 111:6,6 |
| 51:16 | 23:6 24:4 | 94:18 | know 8:7,10 | 126:7 | 112:7 |
| 63:17 64:1 | ipse 56:13 | judge 51:17 | 8:16 9:8 | knowing | law 2:4,4,18 |
| 75:21 | irrelevant | judges 51:21 | 14:7 19:12 | 22:22 | 6:7 7:16 |
| 105:3 | 29:21 | judgment | 22:6,12,14 | 86:23 | 8:4 9:22 |
| Institute 1:7 | isolated | 53:8,10 | 22:25 23:8 | knowledge | 37:2 46:22 |

Page 147

| 55:1 61:21 | 67:2,19 | litigation | look 10:7,14 | 29:14 | 118:3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 64:14 | 93:12 94:8 | 95:15 | 16:11 46:5 | 76:16 | majority-... |
| 87:11 | 124:5 | 131:5 | 60:6 62:4 | lots 93:2 | 116:14 |
| laws 60:1 | level 65:17 | little 23:4 | 66:21 | LOUIS 3:12 | majority-... |
| lawyer 37:15 | 99:2,9 | 27:20 | 70:10,12,24 | Louisiana | 56:1 |
| 46:19 75:6 | 128:21 | 79:11 81:8 | 75:25 | 1:2,7,11,18 | 116:11 |
| lawyers | LIBERTIES | 81:9,13 | 85:24 88:7 | 3:7,8,13 | making 32:1 |
| 55:10 75:8 | 3:2 | 84:10 | 93:3 100:3 | 6:21 11:1,1 | 34:2 81:25 |
| 75:14 | life 46:21 | 98:12,13 | 109:14,17 | 11:2 14:12 | 88:1 |
| layered 81:5 | light 98:13 | 114:7 | 118:18,21 | 43:21,23,24 | 103:14 |
| layering | lighten 82:1 | 117:7 | 120:8,10 | 59:10,25 | mandated |
| 81:24 | limitation | 120:6 | looked 29:2 | 60:1 65:25 | 59:11 |
| layers 81:3 | 78:21 | 121:23 | 59:7 | 99:13,16 | mandating |
| lead 67:21,24 | limitations | 127:2 | 110:14 | 117:11 | 64:14 |
| leads 115:19 | 78:20 79:5 | live $48: 25$ | looking | 120:10,12 | $\boldsymbol{\operatorname { m a p }} 10: 24$ |
| learning | 79:9 | 82:10 | 11:16 | 127:10 | 10:25 11:1 |
| 125:5 | limited 24:4 | LLP 2:18 | 51:23 | 134:3,12,22 | 11:6,7 |
| leave 29:18 | line 33:17 | 3:12 | 61:20 | LOWE 1:6 | 19:22,23 |
| 131:15 | 80:1 82:16 | load 33:15 | 62:24 | lower 68:3 | 20:3 21:5,6 |
| Lee 52:19 | 107:4 | local 66:10 | 64:13 65:2 | LULAC | 28:14 |
| left 75:14 | 115:15 | located 9:19 | 67:871:25 | 49:24 52:4 | 32:16 34:2 |
| 93:17 | 119:23 | 9:22 | 80:21 | 52:25 | 42:16 |
| 104:22 | lines 57:12 | location | 82:13,25 | 53:11 | 43:20,23 |
| 106:23 | 57:14 | 24:22 | 85:19 88:2 | lunch 93:11 | 44:19 |
| legal 25:11 | 63:12 | 112:16 | 88:4 97:23 | 93:14 94:7 | 45:15 |
| 30:22 | 79:22 80:2 | locations | 98:1 | 123:19,20 | 55:17 |
| 37:12,15 | 80:2 | 9:21 40:25 | 103:10,20 | 124:1 | 57:23 61:8 |
| 73:10,17 | 106:16 | 41:15 | 109:25 | M | 61:18 |
| 75:8,10 | 107:3 | lodged | 113:22 | M | 69:19,24 |
| legislation | Link 131:23 | 104:11 | 120:24 | M 3:9 | 71:4,11 |
| 59:11 | linked 69:24 | LOFTON | 122:10 | main 23:24 | 72:7,7,10 |
| legislative | list 30:20 | 1:6 | 126:23 | 32:17 33:4 | 73:24 |
| 57:18 | 48:15 | long 11:22 | looks 80:22 | 42:5 43:9 | 82:22 88:2 |
| 60:25 61:7 | 59:14 | 29:13 | 83:4,6,21 | 47:5 97:18 | 88:4 89:20 |
| Legislature | 109:4 | 39:11 | 83:24 | 104:20 | 92:15,22 |
| 11:2 60:1 | listed 125:12 | 44:25 | 129:8 | maintain | 99:3,6 |
| 61:6 | lists 48:9 | 73:21 74:6 | Loop 4:3 | 84:24 | 101:20 |
| Legislatures | literature | 106:16 | 7:10 | major 36:25 | 104:7,24 |
| 94:18 97:6 | 29:16 | 112:10 | Lori 1:16,23 | majority | 107:21 |
| lengthy 98:8 | 30:10 | long-time | 6:20 134:3 | 25:14,18 | 117:22 |
| 118:9 | 66:11 | 104:18 | 134:21 | 91:17 | 118:11 |
| let's 33:19 | 72:25 73:2 | longer 67:22 | loss 68:14 | 116:11,12 | 128:4,5 |
| 36:14 65:5 | 78:22 | 68:2 | $\boldsymbol{\operatorname { l o t }} 27: 8,10$ | 117:25 | map's 90:19 |

Page 148

| mapping | $106: 5$ | $107: 16$ | measuring | $68: 19,20,23$ | $130: 1,3,17$ |
| :---: | :---: | :---: | :--- | :--- | :--- |
| $99: 4$ | Markov | mean $11: 24$ | $122: 11$ | $72: 8,14,21$ | $130: 18,20$ |
| maps $11: 8$ | $44: 14,16$ | $11: 25$ | $126: 12,21$ | $72: 2373: 4$ | $130: 25$ |
| $28: 9,17,20$ | mass $67: 25$ | $15: 17$ | Mecinas | $78: 19,19$ | metrics |
| $29: 2,3$ | $68: 7$ | $23: 19$ | $50: 18$ | $83: 1587: 5$ | $76: 1978: 5$ |
| $31: 2332: 7$ | MASSAC... | $31: 1833: 9$ | $52: 21$ | $92: 24$ | Mexico $14: 6$ |
| $32: 14$ | $2: 6,18$ | $40: 13$ | medications | $94: 1295: 3$ | $36: 14$ |
| $33: 2534: 1$ | massive | $43: 18$ | $7: 22$ | $95: 4,15,21$ | $105: 2,2,7$ |
| $43: 15,17,23$ | $109: 24$ | $50: 14$ | meet $8: 1,6$ | $95: 24,25$ | $105: 19,22$ |
| $44: 456: 15$ | master's $37: 3$ | $52: 10$ | $26: 1954: 4$ | $96: 2,12,13$ | $106: 8,13$ |
| $57: 19$ | $37: 7$ | $56: 2265: 9$ | $65: 23$ | $97: 16$ | Michigan |
| $58: 14$ | material | $74: 2289: 6$ | $82: 20$ | $99: 19,20,20$ | $76: 7,10$ |
| $59: 13$ | $84: 13$ | $103: 5$ | $121: 8,12,15$ | $100: 2$ | middle $1: 2$ |
| $70: 2472: 5$ | math 57:25 | $111: 2$ | $122: 5$ | $104: 5,11,16$ | $67: 19$ |
| $74: 3,4,17$ | mathemati... | $116: 19$ | $123: 5$ | $105: 22,23$ | Milligan |
| $76: 979: 16$ | $124: 17,18$ | $117: 15$ | meeting | $106: 21,21$ | $88: 14$ |
| $81: 399: 1$ | matriculated | meaning | $11: 22$ | $107: 9,13$ | mind $66: 4$ |
| $101: 5$ | $37: 5$ | $31: 15$ | $58: 10$ | $108: 1,21$ | $68: 22$ |
| $104: 7$ | matter $1: 7$ | $98: 23$ | $123: 8$ | $110: 25$ | mine $8: 25$ |
| $113: 19,21$ | $23: 18$ | meaningless | meetings | $112: 24$ | minimize |
| $128: 12,13$ | $26: 17$ | $88: 12$ | $11: 19$ | $115: 13$ | $81: 6$ |
| $128: 18,22$ | $27: 12$ | means $57: 17$ | members | $119: 22$ | minimized |
| $129: 21,21$ | $33: 23$ | $81: 13$ | $39: 17,20$ | $125: 9$ | $66: 16$ |
| marching | $41: 13$ | $98: 16$ | $54: 5,17$ | $126: 10$ | minimum |
| $24: 16,17$ | $48: 22$ | $121: 2$ | memory $65: 4$ | $129: 5,6$ | $89: 5126: 2$ |
| Marino $1: 16$ | $51: 2457: 5$ | meant $86: 19$ | $71: 2,379: 8$ | $134: 7$ | $126: 5$ |
| $1: 236: 20$ | $78: 388: 6$ | $120: 22$ | mentioned | methodology | $129: 7$ |
| $134: 3,21$ | $117: 22$ | measure $63: 3$ | $37: 17$ | $46: 11$ | minority |
| MARISA | $121: 14$ | $63: 10,12,14$ | $44: 12$ | $111: 10,11$ | $25: 13,16,19$ |
| $3: 18$ | $134: 14$ | $63: 23$ | $52: 1663: 6$ | $111: 15$ | $59: 2,861: 4$ |
| mark $16: 7$ | matters | $64: 19$ | $76: 21$ | metric $64: 19$ | $62: 5,765: 1$ |
| $59: 21$ | $121: 16$ | $75: 15$ | $81: 22$ | $65: 14$ | $65: 1166: 7$ |
| marked 13:6 | McCartan | $76: 18$ | $88: 21$ | $68: 18,20,24$ | $74: 276: 9$ |
| $13: 18$ | $21: 2522: 4$ | $77: 21$ | $124: 23$ | $69: 3,17$ | $77: 3$ |
| $14: 17,25$ | McCrory | $124: 23$ | $128: 24$ | $70: 572: 14$ | $101: 19,25$ |
| $16: 1017: 9$ | $52: 18$ | $125: 22$ | $129: 1$ | $72: 21,24$ | $102: 1$ |
| $18: 1,14,16$ | McMaster | $126: 16,23$ | met $8: 1$ | $77: 878: 4$ | $117: 24$ |
| $19: 9,15$ | $49: 2251: 2$ | $127: 4,10$ | $11: 1838: 6$ | $85: 14,16$ | $123: 4,10$ |
| $20: 12,15,17$ | $52: 8$ | measures | $104: 19$ | $87: 5,6,9,25$ | minority-... |
| $20: 20,23$ | MCMC | $21: 527: 10$ | $118: 2$ | $103: 13$ | $91: 1992: 6$ |
| $24: 1836: 5$ | $44: 13,16,21$ | $62: 13$ | $128: 12$ | $107: 20$ | $118: 15$ |
| $59: 23$ | $44: 2245: 3$ | $124: 8,13,15$ | method | $118: 20$ | minus $57: 19$ |
| $90: 1697: 1$ | $45: 20,25$ | $124: 20$ | $66: 18$ | $122: 11$ | $58: 1$ |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

Page 149

| minute 58:5 | motions | 102:19 | 108:22 | 70:23 | 94:20 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 98:6 | 50:15 | need 9:7 28:3 | 128:18 | 87:25 | 107:1 |
| minutes | move 14:19 | 30:19 31:9 | non-contig... | 88:21 89:1 | 108:7 |
| 53:20 | 79:2,10 | 39:17 54:3 | 83:7 84:16 | 119:25 | 110:14 |
| missed 49:3 | MULLINS | 54:5 58:6 | non-dilution | numerosity | 113:18 |
| model 98:14 | 2:13 | 65:21 | 61:4 | 25:8 | Ohio 4:3 |
| modeling | multiple 65:2 | 78:11 | noncontig... | NW 2:18 | 7:11 9:23 |
| 29:25 | 66:2 122:9 | 84:21 85:9 | 102:11,17 |  | 37:6 39:17 |
| moment | municipal | 85:21 | 102:21 | O | 52:19 |
| 62:19,23 | 57:12,14 | 86:11 | north 2:14 | O 6:1 | okay 10:5 |
| 65:14 | municipality | 107:3 | 65:25 | O'Connor | 14:16 |
| 66:18 67:3 | 116:8 | 117:20 | 83:11,14 | 88:5 | 27:19 35:6 |
| 67:10,12,13 |  | needed 32:2 | 84:5,6 | oath 6:22 7:3 | 37:21 |
| 68:5,18 | N | 54:17 | northwest | 7:13,16 | 48:14 |
| 69:2,6,21 | N4:1 5:1 6:1 | needing 65:8 | 65:25 | object 9:13 | 59:17 |
| 70:10 | NAACP 1:8 | negative | note 92:8 | 68:8 | 60:19 65:7 |
| 71:10,15,22 | 49:21 | 30:16 | noted 19:21 | objected | 66:5 68:11 |
| 72:8,13,20 | 52:18 | neighborh... | 133:17,19 | 9:16 22:14 | 70:21 |
| 72:23 | Nairne 1:6 | 35:18 | notes 25:1 | Objection | 75:12 76:2 |
| 73:23 74:1 | 15:5 16:13 | NELSON | notice 12:14 | 63:20 | 81:20 |
| 74:7 75:3 | name 7:7 8:2 | 2:13 | 12:16,24 | 85:12 | 82:25 89:6 |
| 75:21,24 | 46:10 50:3 | nested 29:23 | 13:7,12,20 | 118:7 | 94:7 95:7 |
| 76:13,22 | 56:19 | 29:24 | 14:1,18 | 126:14 | 97:16 98:5 |
| 77:7 78:1 | 57:22 | never 31:18 | noticed 65:2 | objections | 102:22 |
| 78:14 79:2 | 83:13 | 31:19 64:3 | 68:17 | 6:13 | 103:17 |
| 79:15 | named 39:12 | 90:2 116:8 | November | obstreperous | 105:25 |
| 82:14 | 56:21 | 116:15,18 | 35:14 | 111:13 | 107:5,6 |
| 83:15 87:6 | names 62:14 | nevertheless | 53:10 | obviously | 108:2 |
| 89:13 | nature 25:10 | 117:10 | number | 57:9 76:8 | 110:17 |
| 92:24 | 47:13 | new 14:5 | 69:13 71:5 | 88:18 | 114:13,17 |
| 102:5,6 | 127:1 | 31:2,16,18 | 71:7 89:12 | October | 115:21 |
| 126:10 | nearest 113:8 | 31:20 | 89:20 | 134:16 | 123:14 |
| Montana | necessarily | 36:14 | 90:10 | office 9:22 | 125:22 |
| 51:5 | 56:24 | 48:17 74:4 | 104:23 | officer 134:4 | 126:21 |
| Monte 43:3,6 | 57:21 | 74:5 91:16 | 110:11 | OFFICIAL | 129:24 |
| 44:14,15,20 | 99:20 | 92:4,5 | 113:5 | 1:11 | old 46:17 |
| 45:13 | 101:18 | 105:2,2,7 | 123:11,16 | officially | 88:23 |
| $\boldsymbol{m o o t} 40: 21$ | 107:22 | 105:19,22 | numbers | 23:7 | oldest 72:24 |
| morning 7:6 | 111:2 | 106:7,12 | 57:24 | officiated | 73:6 |
| 14:6 54:7 | 112:9 | Nice 8:1,6 | 70:15 87:7 | 6:22 | Oliver |
| 127:3 | 115:13 | NITHIN | 89:14 | oh 15:10 | 106:13 |
| motion 50:6 | 116:10 | 3:19 | 119:25 | 39:4 53:14 | onboard |
| 50:9,13,25 | necessary | non-comp... | numerical | 54:14 | 39:5 |

Page 150

| once 8:1 19:8 | outliers | 17:12 | 82:22 91:4 | 47:11 | Ph.D 37:8, 17 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 55:19 | 68:12 | 18:19 | 91:6 100:6 | 56:10,12,14 | 37:23 |
| 58:24 | outlined | 40:23 | 108:9 | 63:1 85:9 | 42:12,18,20 |
| 67:23 90:3 | 94:21 | 60:20,22,22 | 114:18 | 122:24 | Phil 10:1 |
| 114:22 | output 28:15 | 60:23 67:6 | 115:22 | percent | phil.strach... |
| ones 33:4 | 28:16 | 76:15 | PARTICI... | 57:20 58:1 | 2:16 |
| 49:2 | 68:24 | 79:10 | 2:2 | 65:12 66:1 | Philip 49:13 |
| opaque 82:6 | 69:11 | 91:14,14 | participati... | 66:4,8 | PHILLIP |
| open 10:8 | 70:23 | 94:10 98:1 | 45:7 46:7 | 70:18 | 2:15 |
| 31:6 32:16 | 79:15,18 | 100:3,4 | particular | 78:15,17,18 | phone 93:8 |
| 33:10,25 | 88:22 89:1 | 106:16 | 70:15 | 85:19 86:8 | phrases |
| 35:20 | 102:3,16 | 108:3,25 | 103:12 | 87:1 90:1 | 97:11 |
| 131:15 | 115:14 | 109:6 | 115:9 | 98:19 | phrasing |
| opinion | 124:18 | 115:8 | 122:8 | 99:24 | 106:1 |
| 24:24 | outputs 29:2 | pages 29:13 | parties 6:3 | 102:20 | physical 68:1 |
| 38:11 | outside 26:9 | 48:9 97:25 | 134:13 | 103:1 | pick 114:8 |
| 87:16 | 58:3 77:14 | 134:6 | partisans | 114:10 | 120:2 |
| 126:9 | overlaid 81:2 | pain 49:7 | 122:18 | 116:16 | picking |
| 128:17 | overplotting | pair 78:14,14 | partisanship | 117:2,9,13 | 73:20 |
| opinions | 81:7,10 | paper 27:6 | 100:14 | 118:25 | 118:3,4 |
| 22:5,9,19 | overview | 29:19,22,24 | partly 76:22 | 119:6 | picks 87:20 |
| 26:6 37:12 | 36:22 | 30:2 38:4,8 | 111:10 | 120:25 | piece 30:23 |
| 37:16 | 46:15 | papers 34:9 | Party 106:12 | 121:19 | 40:17 |
| 134:12 |  | 40:9,11,13 | pass 46:13 | percentage | pieces 30:7 |
| optimized | P | 40:13 | 54:22 87:9 | 89:4 126:3 | place 23:9 |
| 66:16 | P 1:14 4:2 | paperwork | passed 11:2 | 129:11 | 24:14 |
| or. 22 88:11 | 6:1,4 7:1 | 54:9 | 38:18 | perfect 107:1 | 58:25 |
| orange 80:16 | 12:25 | paperworks | 98:11 | perfectly | 67:19 |
| 80:21,22,23 | 13:20 15:4 | 54:19 | 120:13,18 | 67:18 | 108:10 |
| 81:1,7,8,12 | 16:12 | paragraph | pasted 48:19 | perimeter | 122:18 |
| 81:15,23,25 | 133:4,13 | 60:21,24 | Patrick 7:9 | 129:8,10,13 | 123:19 |
| 82:3,4,7 | 134:4 | 61:13 67:9 | pay 103:3,14 | periodic 9:4 | places 64:10 |
| order 12:20 | package | 113:3 | paying | person 57:15 | 87:18 |
| 64:7 94:7 | 33:16 | part 6:17 | 100:13 | 57:17 85:8 | PLAINTIFF |
| orders 24:16 | packages | 11:8 14:22 | peer 40:7 | 86:11 | 2:11 3:5 |
| 24:17 | 32:21 | 16:24 | peer-revie... | 124:25 | plaintiffs 1:9 |
| organized | 33:11,12,23 | 18:25 | 40:4 47:23 | personal | 2:21 8:4 |
| 91:11 | packing | 19:13 27:9 | 66:10 | 134:8 | 13:8 25:24 |
| original 39:7 | 122:14,16 | 32:14 | 72:19 73:2 | perspective | 76:8 |
| 47:18,22 | 122:17,21 | 42:11,20 | 95:20 | 120:9,11 | plan 40:2 |
| OSU 37:7 | 123:1,2,10 | 44:2 46:3 | pending 9:10 | persuasive | 60:25 |
| outcome | page 15:3,21 | 47:19 52:5 | 41:21 | 51:20,22 | 66:16 |
| 134:14 | 16:11,18 | 67:24 | people 44:16 | peruses 98:4 | 91:20 |


| play $21: 19$ | $114: 21$ | $43: 11$ | $121: 18,19$ | $110: 9$ | $134: 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $103: 18$ | $115: 18$ | $55: 11$ | $121: 24$ | $111: 22$ | present $2: 2$ |
| pleadings | $116: 19$ | $56: 22,25$ | $122: 2,5,7$ | $112: 6,14,16$ | $3: 179: 24$ |
| $34: 6$ | $119: 21$ | $59: 861: 2$ | $126: 17$ | $112: 16,20$ | $12: 1,3$ |
| please $7: 7$ | pointed | $62: 8,11,18$ | $128: 9$ | $114: 2,19,21$ | presented |
| $8: 25$ | $131: 1$ | $63: 2,365: 1$ | populations | $114: 23,24$ | $44: 6,9$ |
| plots 32:13 | pointing | $65: 1366: 9$ | $59: 1,3$ | $115: 2,18$ | presidential |
| $32: 14$ | $10: 15$ | $66: 1569: 9$ | $62: 17$ | precinct's | $40: 25$ |
| plug 58:6 | points $74: 12$ | $70: 12,19$ | $63: 1567: 1$ | $74: 12$ | $41: 16$ |
| plus 57:19 | $126: 18$ | $72: 173: 1,5$ | $70: 1774: 2$ | precincts | pressed |
| $58: 165: 12$ | poles $47: 16$ | $73: 11$ | $76: 10$ | $43: 744: 19$ | $76: 17$ |
| $66: 4,8$ | political $37: 1$ | $75: 1676: 1$ | $95: 11$ | $98: 6,22$ | pretty $40: 21$ |
| $70: 18$ | $37: 346: 6$ | $76: 17,18$ | $96: 21$ | $99: 3,11$ | $57: 2574: 9$ |
| $76: 15$ | $47: 17$ | $77: 1,21$ | portion $45: 9$ | $103: 9,18,22$ | $107: 11$ |
| $78: 17,18$ | $94: 17,19$ | $78: 380: 24$ | $68: 1487: 6$ | $110: 7,10,18$ | prevent $7: 18$ |
| $85: 1986: 8$ | $97: 5$ | $80: 2581: 5$ | $93: 23$ | $110: 21$ | preview |
| $87: 190: 1$ | polling $47: 20$ | $81: 682: 15$ | $108: 5,14$ | $111: 3,6,25$ | $67: 11$ |
| $99: 25$ | Polsby-Po... | $82: 18,19,21$ | portions | $112: 7$ | previewed |
| $103: 1$ | $62: 12,14$ | $82: 22$ | $102: 10$ | $114: 3,8,9$ | $67: 3$ |
| $114: 11$ | $63: 7,7,10$ | $84: 20,24,25$ | pose $117: 17$ | $114: 15$ | previous |
| $116: 16$ | $63: 11,16$ | $85: 2,10,17$ | posed $25: 16$ | $115: 14,15$ | $33: 391: 23$ |
| $117: 2,9,13$ | $64: 12,18$ | $85: 21,25$ | possibilities | $118: 22$ | previously |
| $118: 25$ | $88: 11,20$ | $86: 7,9,24$ | $104: 9$ | $119: 2,20$ | $32: 10$ |
| $119: 6$ | $89: 990: 5$ | $87: 2,8,17$ | possible $9: 6$ | precondition | $106: 11$ |
| $120: 25$ | $107: 19,22$ | $88: 989: 21$ | $30: 20$ | $25: 8$ | $111: 18$ |
| $121: 19$ | $113: 24$ | $90: 192: 19$ | $104: 7$ | preconditi... | primarily |
| PM $132: 1$ | $124: 22$ | $96: 5,8$ | possibly | $25: 4,7$ | $114: 4$ |
| pockets | $126: 25$ | $99: 24$ | $50: 18$ | $123: 6,8$ | primary |
| $87: 21$ | $127: 25$ | $100: 11,15$ | potential | predict $41: 16$ | $94: 22$ |
| point $30: 19$ | $129: 1,5,6$ | $101: 2,19$ | $79: 8$ | predominant | prime $25: 11$ |
| $40: 21$ | $129: 14$ | $102: 13,20$ | power 9:6 | $122: 23$ | principles |
| $66: 1368: 2$ | $130: 7,8$ | $102: 24$ | powering | prefer $42: 4$ | $61: 1$ |
| $68: 3,671: 8$ | $131: 2$ | $113: 13$ | $53: 19$ | prep $14: 22$ | print $106: 25$ |
| $73: 15$ | pop $118: 23$ | $114: 11$ | practiced | $16: 24$ | prior 20:4 |
| $81: 16,23$ | populate | $116: 17$ | $46: 22$ | $21: 12,14,20$ | $46: 1948: 5$ |
| $84: 18,19$ | $99: 21$ | $117: 5,8,12$ | $87: 11$ | preparation | $51: 25$ |
| $855: 23$ | populated | $117: 21,24$ | precinct | $11: 2023: 2$ | $97: 17$ |
| $88: 1189: 6$ | $78: 24,25$ | $117: 25$ | $74: 19$ | $26: 23,24$ | $130: 4$ |
| $89: 695: 11$ | $79: 2$ | $118: 4,5$ | $80: 14,15$ | $34: 4$ | probably |
| $96: 8,21$ | $113: 10$ | $119: 1,4,4,7$ | $96: 797: 21$ | prepare | $23: 8,15$ |
| $98: 299: 22$ | population | $119: 8,18$ | $98: 7,18$ | $11: 1127: 2$ | $24: 531: 24$ |
| $99: 23$ | $24: 23$ | $120: 9,11$ | $99: 1,16$ | prepared | $33: 935: 11$ |
| $113: 6$ | $30: 12$ | $121: 13,15$ | $109: 8,24$ | $22: 7134: 7$ | $51: 853: 1$ |
|  |  |  |  |  |  |

Page 152

| 57:7 58:2 | Professor | 41:20 | putting | 37:11 48:4 | RALEIGH |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 68:22 | 39:23 | publish 40:3 | 10:10,13 | 120:7 | 2:14 |
| 73:15 | 125:8,12,16 | publishable | Python 42:10 | 123:22 | $\boldsymbol{r a n} 76: 14$ |
| 74:12 | professors | 73:3 |  | 124:3 | 127:9 |
| 83:22 91:9 | 125:5 | published | Q | 128:24 | 128:3 |
| 108:12 | proffering | 40:4,20 | qualitative | 129:25 | Randolph |
| 110:16 | 55:3,7 | 41:8,10 | 56:12 | quick 8:15 | 49:13 |
| 115:5 | program | 64:6 72:19 | quantify | 10:19 | range 126:8 |
| 117:9 | 28:20 31:7 | 73:2 74:16 | 63:1 | quickly | rarely $31: 19$ |
| 118:14 | 37:23 | 125:4 | Quarterly | 13:15 15:6 | rate 93:9,20 |
| 119:3 | programm... | publishes | 94:18 | 15:7 18:18 | ratio 129:11 |
| 122:2 | 31:6 | 47:12 | question | 20:10 38:4 | RCP 47:5 |
| 123:21 | programs | pull 30:6 | 6:14 8:24 | 97:7 | reach 78:15 |
| 124:5,22 | 44:18 | 32:15,23 | 9:10 24:7 | 127:13 | 114:10 |
| 127:13 | prohibition | 33:24 67:5 | 26:15 | 130:8 | 119:6 |
| procedure | 134:11 | 91:9 94:6 | 27:13 | 131:7,9 | 121:25 |
| 6:6 108:6 | project 27:16 | pulled 15:24 | 52:12 54 | quite 57:20 | reaches |
| 109:2 | projects 47:3 | pulling 10:20 | 59:6 64:24 | R | 86:24,25 |
| 113:6 | prominent | punishes | 65:18 66:4 | R | read 28:13 |
| 134:12 | 124:21 | 68:12 | 73:22 | R 1:11 28:13 | 34:5,8 |
| proceeded | prong 24:5 | purpose | 77:12 | 28:16,19,21 | 71:22 |
| 53:7 | 25:15,18 | 60:17 | 87:12 | 28:22,23,25 | 91:15 |
| process 31:5 | prongs 24:2 | 69:25 | 88:13 | 29:1 31:6 | 100:5 |
| 31:13,14 | pronouncing | purposes 6:6 | 91:23 | 31:11 | 106:15,17 |
| 34:20 | 53:1 | 39:9 97:8 | 106:2 | 32:20 | 106:18 |
| 48:14 | proposed | 106:7 | 108:4,8 | 33:10 | 108:13 |
| 81:15 90:2 | 30:5 112:4 | pursuant | 109:13,19 | 41:24 | readers |
| produce | proposition | 1:15 6:5 | 109:22 | 42:15 | 106:24 |
| 47:18 | 30:24 | put 8:7 12:23 | 111:21 | 46:13 | reading 6:11 |
| 102:9 | propounded | 16:9 18:15 | 112:3 | 69:15,23 | 26:25 |
| 104:23,24 | 73:18 | 19:4 23:9 | 114:1 | 134:1 | 39:19 |
| produced | prospectus | 24:14 | 116:6 | R-E-O-C-K | 61:13 |
| 47:21 | 39:9 | 28:23 | 117:3,16 | 62:13 | 113:3 |
| 89:10 | proved 30:19 | 30:17 | 123:7 | R-I-G-G-I-... | ready $24: 12$ |
| produces | provide | 34:11 | 124:15 | 12:5 | 48:16 |
| 47:11 | 89:13 | 45:14 49:5 | 130:6,16 | R.S 134:5 | real 24:11 |
| producing | provided | 50:3 57:7 | questioning | race 103:5,10 | 126:12 |
| 104:21 | 69:23 | 59:21 65:8 | 33:18 | 103:10 | RealClear... |
| professional | public 40:18 | 78:6 79:9 | questions | 122:23 | 46:23,25 |
| 24:11 33:8 | publication | 90:8 92:10 | 7:19 8:17 | 123:1 | 47:4,9,10 |
| 46:16,21 | 40:5 41:5 | 106:10 | 9:14,16 | racial 51:2 | 47:14,25 |
| professionals | 41:14,17,21 | 111:14 | 19:11 | 122:21 | realistically |
| 40:19 | publications | 115:1,4,6 | 22:13 23:5 | 123:10 | 74:21 |

Page 153

| really $22: 12$ | 37:18,24 | 57:6,8 58:9 | 31:22 33:2 | 91:19 | 17:20,25 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 27:16 | 49:16 | 58:11,15,20 | rejoin 131:23 | render 22:5 | 18:3,6,11 |
| 33:13,16 | 50:11,24 | 59:5,12 | related 30:12 | 22:9,19 | 19:1,7,17 |
| 61:20 | 59:16 | 60:7 61:1 | 55:1 100:2 | 24:24 26:6 | 19:19,20,24 |
| 62:12,25 | 61:13,14 | 61:23 | 134:13 | 37:12 | 19:25 |
| 73:10 | 65:7 79:6 | 66:14 | relationship | 102:10 | 20:17,19,22 |
| 82:23 | 94:10 | 74:15,16 | 112:15 | Reock 62:12 | 20:24 |
| 86:22 89:2 | 105:18,21 | 75:19 77:9 | relationships | 62:13 63:6 | 21:25 22:4 |
| 92:5 95:12 | 125:11 | 85:1 88:5 | 134:11 | 63:7,9,11 | 22:5,24 |
| 99:6 121:5 | 128:3,7 | 101:13 | relatively | 63:17 | 24:19 |
| realtime | 131:3 | 124:10 | 98:13 | 64:11,17 | 26:25 27:4 |
| 108:12 | receipt 15:8 | 127:7 | relay 69:16 | 88:20 89:3 | 27:18,22,23 |
| reason 9:8 | receive 28:7 | 128:25 | relayed | 89:10 | 28:2,17 |
| 67:17,20,25 | received 36:1 | 129:18 | 69:12,13,18 | 107:19,22 | 29:4,6,9,17 |
| 81:1 | recess 53:24 | 130:4 | relevance | 113:24 | 30:13 31:1 |
| 111:15 | 94:1 124:1 | redrew 91:2 | 22:17 | 124:22,23 | 31:3,16 |
| 114:18 | recognize | reduce | relevant | 125:1,2,8,9 | 34:5 35:24 |
| 125:19 | 16:1 36:7 | 122:18,24 | 26:20 | 125:16,22 | 36:18 |
| 128:15 | 97:13 | Reeves 40:24 | 27:11,18 | 126:7,25 | 42:23 |
| reasonability | recollection | refer 109:4 | 30:2,6,7,11 | 127:4,9,19 | 48:17,20,20 |
| 87:12 | 22:15 23:3 | reference | 30:11,14 | 127:24 | 50:3 60:11 |
| 88:13 | 106:19 | 84:2 94:9 | 82:24 | 128:4,24,25 | 60:13,14,15 |
| reasonable | 107:8 | 95:12 96:9 | 98:15 | Reock's | 60:16 64:6 |
| 87:15,22 | Reconsider... | 96:22 | relying | 125:12 | 67:4,7 |
| reasonably | 40:24 | referencing | 111:17 | repeat 8:25 | 68:17 |
| 24:25 25:9 | record 7:8 | 25:2 29:11 | remedial | 109:19 | 69:12,17 |
| 25:13,14 | 8:9,20 | referred | 74:3 | repeated | 71:22 |
| 87:2 88:8 | 20:25 35:6 | 68:18 | remember | 113:4,11 | 73:12 |
| 113:7 | 93:16,24,25 | 83:19 | 23:20 24:9 | rephrase 9:1 | 76:16 78:6 |
| rebuttal | 100:5 | referring | 24:15 28:1 | 50:24 | 79:9 89:14 |
| 16:12,21 | 106:17 | 10:25 11:7 | 28:4 46:10 | 96:11 | 90:23 91:4 |
| 18:6,11,17 | 111:22 | reform | 50:22 51:1 | 117:15 | 91:6,13,15 |
| 18:25 19:7 | 123:25 | 100:10 | 51:4 52:7 | replace 39:14 | 94:6 97:23 |
| 19:17 | 131:23 | refresh 107:7 | 58:22 | replaced | 97:25 |
| 20:16,19,21 | recorded | refreshes | 83:12 91:3 | 39:11 | 100:4 |
| 20:24 26:2 | 89:11,12 | 106:19 | 91:6,7 | reply 11:17 | 105:9 |
| 73:12 | redistricting | regarding | 104:19 | 18:10 | 125:7,12 |
| 105:9,17 | 27:7 28:24 | 38:1 44:7 | 116:22 | 105:10 | 126:11 |
| recalculated | 30:3,4 | 44:10 | 127:12,13 | report 11:16 | reported |
| 69:22 | 36:15 43:2 | Regardless | rememberi... | 15:4,11 | 1:22 134:6 |
| recall 17:19 | 44:7 45:11 | 84:16 | 115:24 | 16:2,12,21 | reporter 1:17 |
| 19:1 33:4 | 52:11 56:6 | region 92:7 | remind 8:14 | 16:25 17:3 | 1:23 6:21 |
| 35:9,12,15 | 56:8,20 | reinvent | removes | 17:5,16,17 | 53:6 |

Page 154

| 109:18 | rereview | 17:3 18:9 | 127:14 | route 131:2 | 121:8,12 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 134:3 | 18:6 | 21:13,22 | 129:2,3 | RStudio 31:7 | Rutgers |
| REPORT... | research | 23:1 28:6 | rights $44: 10$ | 31:15 | 125:17 |
| 4:13 | 27:2,5,11 | 29:17 40:8 | 45:6 52:1,4 | Rucho 38:11 |  |
| reporting | 27:14,17,22 | reviewed | 52:5 57:5 | 38:13 | S |
| 134:7 | 27:24 | 14:19 | 64:8 65:16 | 49:18 52:8 | S 6:1 17:10 |
| reports 14:20 | 34:12 | 17:16 | 72:17 77:2 | rule 49:3 | S-E-A-N 7:9 |
| 21:23 22:8 | 40:20 | revised 14:1 | 86:17,18 | 59:23 61:6 | S-T-A-T-A |
| 22:16,17,20 | 72:20 75:8 | 14:18 | 89:23 | 61:17 | 42:4 |
| 22:23 27:1 | 75:14 77:6 | 19:18,19,24 | 98:11 | rules 6:5 | safe 57:21 |
| 27:2 28:7 | 77:14,16,16 | revisions | 120:13,15 | 8:15 39:19 | sample |
| 29:10 | 77:24 | 54:20 | 120:19 | 134:10,12 | 104:21 |
| 48:24 49:2 | reserved | Riggins 12:5 | 123:2 | run 43:19 | 113:19 |
| 60:17 | 6:16 | right 8:9 | road 89:2 | 45:19 | sampling |
| represent | residents | 17:22 | Rodden | 71:12 | 104:14,20 |
| 19:5 80:7 | 80:9,18 | 20:13 26:5 | 94:12,15,21 | 75:21 | sat 40:19 |
| 80:17,23,25 | 86:13 | 26:21 | 95:3,15,24 | 76:13,20 | satisfy 86:17 |
| representa... | 87:19 | 35:19 | 95:25 96:2 | 89:17 90:3 | save 6:13 |
| 129:23 | 102:25 | 39:10 44:4 | 96:12 97:2 | 90:11,18 | saw 21:25 |
| representa... | 118:20 | 44:14 | 97:13 | 98:20 99:8 | 22:3 |
| 8:8 | residing 86:1 | 53:17 | 100:3 | 101:13 | 101:16 |
| REPRESE... | respect 57:11 | 57:23 | 101:23,24 | 104:22 | 102:5,17 |
| 2:11,16,21 | 57:13 61:3 | 63:22 67:8 | 104:4,11,16 | 113:16 | 114:25 |
| 3:5,10,15 | responses | 67:16,23 | 107:13 | 114:18 | saying 84:3,6 |
| represents | 8:17 | 68:12 71:3 | 108:1 | 116:17 | says $41: 3$ |
| 80:8 | responsible | 72:3,6 80:5 | 110:25 | 127:3,15 | 100:7 |
| Republican | 99:15 | 81:24 83:2 | 112:19 | 128:25 | scenario 66:5 |
| 106:12 | responsive... | 83:4,22 | 115:4,9 | 129:14 | 72:4 116:7 |
| require | 6:15 | 84:1,7,18 | 126:10 | 130:3,12,20 | 118:1 |
| 101:18 | rest 13:14 | 90:10 | Rodriguez | running | School 2:4 |
| required | 121:21 | 94:12,19,24 | 50:19 | 43:13 44:3 | 37:2 |
| 101:15 | results 128:7 | 96:15 98:1 | 52:22 | 116:18 | Schwartzb... |
| 134:10 | resume 48:8 | 98:3,4,5 | role 21:20 | 120:7 | 130:17 |
| requirement | 48:15,19 | 99:21,22 | 103:17 | 130:24 | science 37:1 |
| 118:2 | 51:23 | 101:7,10,18 | room 9:24 | runs 119:15 | 37:4 66:11 |
| 122:5 | retained 23:7 | 108:11 | 131:22 | rural 87:20 | 94:19 |
| requireme... | 24:8,10 | 110:8,24 | Rouge 3:8,13 | 92:18 | score 89:3 |
| 121:13,16 | 25:22 | 111:18 | 90:25 91:5 | 110:23 | 125:1 |
| requires | return 71:9 | 113:18 | 91:7,17 | 114:13 | 127:4,19 |
| 65:16 77:3 | reused 31:25 | 115:6,17 | 92:9 | 116:13 | 130:8,10 |
| 89:7 | REV 1:6 | 119:22 | round 80:13 | 117:11,21 | scored 126:7 |
| requiring | reverse 12:20 | 121:3 | rounded | 119:17 | scores 89:10 |
| 100:12 | review 16:25 | 122:6 | 80:20 | 120:9 | 128:4 |

Page 155

| screen 10:11 | $60: 10,13,14$ | $91: 21$ | $106: 14$ | $65: 25$ | $74: 1777: 9$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $10: 16$ | $67: 5,9$ | $92: 11$ | series $31: 10$ | $117: 6,8$ | $101: 13$ |
| $12: 13,23$ | $83: 19$ | $100: 17$ | served $13: 8$ | $121: 24$ | single $30: 20$ |
| $14: 25$ | $91: 10,12,13$ | $106: 19$ | $14: 248: 10$ | side $26: 13,16$ | $30: 23$ |
| $15: 2516: 9$ | $94: 4,11,14$ | $107: 14$ | Service | $47: 3104: 1$ | sit $128: 15,17$ |
| $17: 818: 16$ | $94: 23$ | $108: 11$ | $125: 18$ | $105: 4$ | sitting $79: 6$ |
| $19: 420: 11$ | $95: 21$ | $112: 22$ | set $19: 10$ | sign $54: 5$ | situation |
| $20: 14$ | $99: 20$ | $113: 14$ | $29: 181: 15$ | $64: 6$ | $58: 24$ |
| $36: 11$ | $106: 3$ | $115: 10$ | $82: 20$ | signature | six $40: 23$ |
| $45: 15$ | $108: 4$ | seeing $78: 4$ | $134: 6$ | $15: 22$ | $48: 9$ |
| $59: 2267: 6$ | $112: 4$ | seeking | sets $43: 17$ | $16: 17$ | size $80: 24$ |
| $90: 9,15$ | $113: 1$ | $78: 13$ | settled $49: 22$ | $17: 12$ | $81: 1,19$ |
| $92: 11$ | $120: 1$ | seen $22: 4,16$ | $58: 25$ | $18: 21$ | $82: 597: 21$ |
| $96: 24$ | $131: 15$ | $35: 21$ | seven $60: 22$ | Signed | $98: 7$ |
| $106: 10$ | Secondly | segregation | $60: 23$ | $133: 13,17$ | $103: 18$ |
| $115: 1$ | $101: 20$ | $76: 10$ | shape $28: 8$ | $133: 19$ | $109: 8,24$ |
| script $34: 1,3$ | Secretary | select $115: 13$ | $62: 15,16$ | signing $6: 12$ | $110: 5$ |
| scroll $12: 15$ | $1: 113: 15$ | selected | $95: 996: 5$ | similar $42: 21$ | $111: 22$ |
| $15: 6,7$ | $26: 3$ | $73: 24$ | $102: 5,7,10$ | $43: 994: 20$ | $112: 6,15$ |
| $16: 15$ | Section | $114: 22$ | $102: 23$ | $95: 24$ | $114: 2,23$ |
| $17: 1136: 2$ | $23: 22,25$ | $115: 16$ | $113: 24$ | $97: 16$ | sizes $111: 3$ |
| $36: 1197: 7$ | $52: 1,3,10$ | selecting | shapes $95: 12$ | $110: 10$ | $111: 25$ |
| $107: 3$ | $52: 10,13,23$ | $103: 9$ | $102: 17$ | $130: 16$ | sizing $81: 21$ |
| scrolling | $54: 2555: 2$ | selection | share $14: 24$ | simple | skinny |
| $18: 18$ | $63: 1864: 9$ | $19: 8$ | $20: 1162: 3$ | $100: 15$ | $112: 10$ |
| Scwartzberg | $64: 21$ | Senate $11: 1$ | $67: 691: 11$ | simply $28: 21$ | skirt $78: 25$ |
| $130: 18$ | $66: 25$ | $43: 21,23$ | sharing | $58: 14$ | Skyler $39: 8$ |
| SDD-SDJ | $75: 19$ | $74: 11$ | $10: 15$ | simulated | slash $72: 24$ |
| $1: 4$ | sections | send $35: 4$ | $14: 1617: 8$ | $100: 13$ | slightly $46: 15$ |
| Sean 1:14 | $10: 14$ | sense $27: 13$ | $21: 790: 15$ | $113: 14$ | slower $12: 12$ |
| $4: 26: 47: 1$ | see $10: 6,18$ | $77: 13$ | Shaw $88: 5$ | simulating | small $98: 13$ |
| $7: 912: 14$ | $13: 1,11,22$ | $103: 8$ | shift $23: 4$ | $108: 6$ | $98: 16$ |
| $12: 25$ | $15: 3,21$ | sent $35: 9$ | $46: 1494: 3$ | $109: 2$ | $110: 1,1$ |
| $13: 2015: 4$ | $16: 17,18$ | $106: 11$ | short $48: 6$ | simulation | $116: 1,4,19$ |
| $16: 12$ | $18: 19,23$ | sentences | shorter $9: 7$ | $43: 6,19$ | $116: 24$ |
| $133: 4,13$ | $28: 15,16,20$ | $91: 16$ | Shorthand | $74: 15$ | $118: 13$ |
| $134: 4$ | $36: 1441: 6$ | separate | $1: 17$ | simulations | smaller $71: 20$ |
| second $12: 9$ | $45: 16$ | $27: 16$ | show $12: 21$ | $27: 7,930: 4$ | $110: 7,9,18$ |
| $20: 14$ | $48: 21$ | $31: 1378: 8$ | $13: 17$ | $30: 1043: 4$ | $110: 21$ |
| $24: 24$ | $59: 2460: 3$ | $122: 24$ | $55: 2582: 3$ | $43: 14,14$ | $114: 2,10$ |
| $25: 15$ | $61: 869: 8$ | September | shows $3: 12$ | $44: 345: 11$ | smallest |
| $29: 21,24$ | $82: 12$ | $1: 1912: 17$ | $25: 16$ | $66: 14$ | $65: 14$ |
| $35: 2058: 6$ | $88: 16$ | $13: 21$ | Shreveport | $71: 21$ | $69: 21$ |
|  |  |  |  |  |  |

Page 156

| 114:16 | spatial 29:25 | ST 3:12 | staying 48:8 | 51:11 | sufficient |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 118:21 | speaking | stark 76:11 | stenotype | 128:16 | 25:13,19 |
| 120:25 | 65:4 85:20 | start 16:8 | 134:7 | struck 51:19 | 70:18 |
| 125:25 | specifically | 113:3 | step 65:19 | 57:23 58:2 | 102:25 |
| Smith 49:13 | 6:9,12 | 114:7 | 109:5 | students | 117:2,19 |
| smooth | spectrum | 119:16 | 113:9 | 45:19,24 | 118:14 |
| 107:16 | 47:18 | starting | 120:1 | 46:12 | 122:1 |
| snippets | spelled 61:6 | 46:17 | steps 109:4,7 | study 73:25 | sufficiently |
| 31:21 32:5 | spend 27:19 | 74:12 | 109:8 | stuff 30:1 | 30:19 87:9 |
| 32:8 33:6 | 67:2 | 114:20,24 | 113:2,4,11 | 32:19 | suggest |
| soft 53:5 | spending | 115:18,25 | 113:16 | 33:25 | 33:18 |
| somewhat | 21:1 | 119:20 | STEVEN 1:6 | subject 23:18 | suggested |
| 82:1 | spent 11:16 | Stata 42:3,4 | stick 81:9 | 26:17 | 57:2 74:5 |
| sorry 10:7 | 25:2 26:22 | state 1:8,11 | stipulate | 41:13 | suicide 39:13 |
| 12:18 25:1 | 54:24 | 1:18 3:15 | 64:7 65:6 | 48:22 50:8 | SUITE 2:13 |
| 34:19 | 55:12 | 6:21 7:7 | stipulated | 50:12 | 2:18 |
| 39:23 42:7 | 90:23 94:4 | 26:4 37:6 | 6:2 | 51:24 57:4 | sum 68:9 |
| 52:6 54:13 | spilling 60:22 | 39:17 51:2 | stipulation | submit 48:17 | 69:4,10 |
| 55:2 58:4 | $\boldsymbol{s p i n} 67: 16,16$ | 51:6 56:2 | 1:16 | submitted | summary |
| 83:18,18 | 67:22,23 | 60:1 61:21 | stop 14:16 | 22:21 | 46:20 |
| 108:7 | spinning | 64:14 | 21:6 62:3 | 24:18 27:3 | summer |
| 111:3 | 68:2,3 | 74:10,25 | 91:11 | 35:22 40:6 | 35:25 36:1 |
| 120:14 | spins 67:19 | 109:2 | 103:12 | 40:7 | super 99:7 |
| sort 24:11 | spit 70:22 | 134:3,22 | 130:24 | subsequent | superior |
| sought 6:17 | split 99:2 | state-of-th... | stored 69:15 | 119:15 | 126:11 |
| 100:25 | spoke 11:15 | 74:10 | 71:1,3,8 | substance | supervision |
| 101:7 | spot 28:2 | states 1:1 | Strach 2:15 | 22:23 | 134:8 |
| sound 81:17 | sprawl 122:4 | 57:1 60:24 | 10:1 11:25 | substances | support |
| 125:15 | sprawled | statewide | 12:1,2 | 7:23 | 94:14,23 |
| sounds 43:12 | 117:10 | 74:17 | 15:12,16 | substantially | suppose |
| source 32:21 | sprawling | static 98:23 | 63:19 | 79:3 | 112:21 |
| 32:22,22 | 103:22 | statistical | 85:11 | substantive | Supreme |
| sources 29:6 | sprawls | 124:8 | 118:6 | 19:11 | 29:20 |
| 29:6,7 95:2 | 86:21 | Statistics | 126:13 | suburban | 55:20 |
| south 37:19 | 87:17 | 37:7 | strange | 92:18 | sure 8:15 |
| 51:3,7,21 | springs 46:8 | status 40:10 | 39:11 | 114:4,9 | 20:13 |
| 116:20,25 | square 68:9 | 41:5,11 | 88:16 | 116:12 | 23:12 |
| Southern | 68:14,16 | statute | street 2:5,13 | 117:21 | 26:18 |
| 52:19 | 131:2 | 134:10 | 3:2,7,12 | 119:4,10 | 31:24 32:1 |
| space 83:7 | squared 69:5 | stay 23:9 | 32:16 34:1 | 120:12 | 32:11,25 |
| 84:17 | 69:11,14 | 24:14 | strength 61:5 | 121:8,11 | 36:24 48:7 |
| 98:13 | squaring | 58:25 | strike 12:19 | suburbs | 50:17 |
| 108:17 | 68:13 | stayed 131:5 | 50:23 | 87:18 | 51:22 |

Page 157

| 55:24 56:4 | takes 74:13 | 114:9 | 134:4,6 | 55:12 | 13:10,16,25 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 61:14 67:7 | 115:19 | tension 58:10 | Texas 76:3 | 56:20 | 14:23 15:2 |
| 67:15 70:6 | 125:24 | term 10:23 | 76:12,14 | 60:21 62:2 | 15:20 16:5 |
| 75:8 90:9 | 129:6,8 | 11:6 24:11 | 131:4 | 62:21 63:6 | 16:16 17:7 |
| 94:10 98:3 | talk 8:21 | 50:5 56:5 | Thank 38:21 | 63:22 | 17:14,23 |
| 105:10 | 44:16 45:9 | 65:3 87:22 | 39:24 | 64:11 66:1 | 18:5,13,22 |
| 124:19 | 45:11 76:4 | 122:13,20 | 53:19,21,23 | 67:10 | 19:14 20:7 |
| surprise | talked 100:1 | terms 10:21 | theirs 22:17 | 68:25 71:8 | 21:8 36:3,6 |
| 92:21 93:1 | 124:24 | 31:25 | theoretically | 76:8,21 | 53:16,25 |
| 128:11,14 | talking 14:10 | 120:16 | 56:16 | 81:13 | 59:18 60:9 |
| survey 46:11 | 26:22 45:2 | terribly | theory 73:18 | 83:11 84:4 | 63:25 87:3 |
| sustain | 67:2 74:23 | 51:20 | 127:23 | 84:11 85:4 | 90:14,22 |
| 118:15 | 88:14 | test 92:23 | 128:2 | 87:4 88:7 | 93:5 94:2 |
| sustained | 90:24 | 120:4 | thereof 6:17 | 88:20 | 96:25 97:9 |
| 22:15 | 98:11 | 121:9 | thing 9:9 | 90:10 | 106:4,9 |
| switched | tallying | testified 7:3 | 12:10 | 92:25 93:6 | 109:20 |
| 46:23 47:1 | 103:10 | 37:22 | 20:13 | 93:9 97:18 | 119:13 |
| sworn 7:2 | target 104:12 | 48:24 49:4 | 43:24 | 100:24 | 123:17 |
| 134:5 | tasks 31:12 | 49:9,23 | 44:23 67:8 | 105:9,12,24 | 124:2 |
| system 28:12 | taught 45:3 | 51:10,12 | 73:21 | 110:6,15,16 | 126:20 |
| 28:15 | 46:2,7,9 | 62:21 87:4 | 107:16 | 111:23 | 131:8 |
|  | teach 45:8,19 | 90:11 | things 22:24 | 112:2 | thorough |
| T | 45:22,24 | 115:12 | 24:14 28:2 | 114:25 | 75:7 |
| T 2:7 5:1 6:1 | Technically | testify 14:5 | 29:14 30:3 | 115:4,12,22 | thoroughly |
| 6:1 134:1,1 | 60:14 | 22:12 | 32:17 33:1 | 116:21,23 | 73:19 |
| T-R-E-N-.. | technique | 49:12,17,20 | 38:4 56:17 | 122:8 | thought |
| 7:10 | 120:23 | 49:21 | 89:22 | 123:18,19 | 55:19 |
| tables 20:2 | TELEPH... | 105:2,11 | think 9:5 | 124:4,24 | three 24:2 |
| take 7:16 9:3 | 2:6,14,19 | 110:15 | 10:10 12:1 | 127:2,13,16 | 39:17,22 |
| 9:6,7,9 | 3:3,8,13 | 134:5 | 14:10 19:8 | 128:23,25 | 52:25 92:6 |
| 10:19 48:6 | tell 16:4 | testifying | 21:25 22:2 | 130:6 | threshold |
| 53:18 93:6 | 52:13 | 36:16 | 26:14 31:8 | 131:10,21 | 65:23 |
| 93:12,13 | 67:12 85:6 | testimony | 32:12,12,17 | thinking | 82:21 |
| 98:2,21 | 96:11 | 48:5,22 | 35:14 | 95:14 | Thursday |
| 103:5,6 | telling 89:3 | 51:13,19 | 36:10 | third 25:17 | 36:16 |
| 106:1 | tells 121:17 | 66:20 | 38:12 | 27:6 30:2 | tiles 34:2 |
| 123:19 | template | 79:14 | 39:25 | 30:10 38:3 | time 6:16 9:5 |
| taken 6:5 | 31:23 32:6 | 84:15 | 44:12,17 | 38:7,9 43:1 | 11:16 14:8 |
| 45:12 | tend 12:11 | 89:11 | 45:17 49:1 | 64:18 | 14:11 21:1 |
| 53:24 94:1 | 33:22 | 105:17 | 50:2,16 | Thomas-L... | 23:16 25:2 |
| 121:23 | 78:23,24 | 106:7,12,15 | 52:12,22 | 2:7 4:11 | 27:19 |
| 124:1 | 110:13 | 111:8 | 53:5,15,17 | 7:5 8:3 | 34:23 35:1 |
| 134:4 | 112:7 | 133:5,6 | 54:10 | 12:7 13:4 | 35:7,12,15 |

Page 158

| 37:22 | Tom 38:25 | transparen... | 31:10 | U.S 40:25 | unit 99:4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 45:15 48:3 | 39:6,8 | 81:19,22 | 32:12 43:4 | ultimately | 102:23 |
| 55:12 67:2 | tomorrow | transparent | 66:17 68:6 | 87:12,23 | united 1:1 |
| 74:14 | 14:6 36:16 | 82:1,6 | 75:15 92:3 | 88:12,13 | 98:12 |
| 76:20 | tonight 14:7 | travel 14:9 | 96:9,15,19 | 119:18 | units 96:21 |
| 90:23 | top 32:20 | Trende 1:14 | 96:20 | unbiased | 96:22 |
| 93:17 94:4 | 59:24 | 4:2 6:4 7:1 | 103:22 | 104:21 | university |
| 98:10,25 | 60:23 | 7:6,9 12:14 | 104:6 | unclear | 36:24 37:6 |
| 99:12,13 | 67:20 81:5 | 12:25 | 107:20 | 111:22 | 125:13 |
| 111:23 | 81:25 84:1 | 13:20 15:4 | 111:12 | underlying | University's |
| 112:4 | 84:7,9 | 16:13 | 113:19 | 121:9 | 125:17 |
| timeline | 104:7 | 133:4,13 | 114:6 | understand | unpersuasi... |
| 39:10 | 116:22 | 134:4 | 121:3,5 | 7:12,15 | 51:13 |
| times 65:3 | topic 38:9 | trial 22:7,13 | tthomaslu... | 8:18,22,24 | unrelated |
| 104:23 | total 82:15 | 49:23,25 | 2:8 | 9:11,17 | 113:23 |
| 121:10 | 82:18,22 | 53:9,15 | Tuesday | 11:3,9 20:3 | update 28:3 |
| 122:9 | 113:5 | triangle | 1:19 | 25:23 | 46:5 |
| timing 53:12 | totality 24:3 | 84:10 | turn 93:18 | 26:15 | updated 41:7 |
| tiny 107:1 | town 116:7 | Tribe 50:19 | 123:23 | 44:21,23 | 48:20 |
| tire 67:15,17 | 116:19,24 | tricky 27:13 | 124:4 | 82:9 87:10 | updates 20:2 |
| 67:21 68:2 | 117:19 | 89:23 | 131:13 | 98:22 | 36:12 |
| 68:4 | 118:14 | tried 30:6 | turned 39:16 | 127:21 | updating |
| tires 67:18 | tracks 24:13 | 63:1 99:9 | turnout 45:6 | understan... | 48:15 |
| TITLE 4:6 | tradeoffs | 118:10 | twice 90:4 | 23:21,23 | upload 28:11 |
| titled 15:4 | 58:14 | 127:22 | two 17:24 | 24:1 25:6 | 28:14 |
| 94:16 | traditional | tries 115:17 | 22:20 39:5 | 25:25 26:1 | uploaded |
| today 7:13 | 56:6,8,19 | triggered | 40:9 52:18 | 54:18 | 28:19 |
| 7:20 9:14 | 56:24 57:6 | 64:10 | 62:14 | 55:15,16 | urban 92:18 |
| 9:19 10:6 | 58:8,11,15 | trip 39:11 | 70:24 | 57:4 65:15 | 110:18,22 |
| 10:22 14:4 | 58:19 59:4 | true 16:1,20 | 71:15 78:8 | 73:9,17 | 120:12 |
| 14:15 20:4 | 59:11 60:7 | 36:7 49:25 | 83:5,21 | 75:9 79:23 | 121:8,11 |
| 21:14,20 | 61:1,23 | 110:16 | 84:2,14,15 | 81:14 | use 10:21 |
| 26:20 | 100:8 | 122:6 | 88:11 | 99:12 | 28:20 |
| 56:23 | 104:10 | 133:8 | 91:16 | 116:4 | 31:22 |
| 72:15,22 | traditionally | 134:8 | 97:25 | 120:3 | 33:12,22 |
| 88:3 89:12 | 56:13,14 | truthfully | 108:18,20 | 128:1 | 34:2 44:21 |
| 104:20 | transcribed | 7:19,24 | types 62:13 | 134:9 | 62:12 63:9 |
| 124:16,25 | 134:7 | try 9:5 33:1 | typically | understood | 64:11 |
| 128:16,17 | transcript | 37:15 | 14:8 25:20 | 56:23 | 67:14 |
| 131:18 | 21:13 | 107:16 | 33:12 | 120:14,16 | 68:15 69:7 |
| today's 11:12 | 134:8,9,10 | 112:24 |  | Unintentio... | 72:13 |
| 28:24 | transcripti... | trying 23:19 | U | 94:16 97:4 | 77:17 |
| told 23:18 | 133:6 | 24:12 | U 6:1 | UNION 3:2 | 78:14 94:6 |

Page 159

| 95:25 | VENKAT... | votes 25:18 | 38:19 67:4 | 88:10 93:1 | weeks 39:5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 104:4 | 3:19 | 52:15 | 67:7,16 | 101:4 | 39:16,22 |
| 107:9,19 | verbal 8:16 | voting 24:23 | 70:21 | 104:18 | weighed |
| 109:11 | version 10:12 | 25:17 | 85:24 | 106:24 | 79:19 |
| 112:18,21 | 10:13 | 44:10 45:6 | 86:16 90:9 | 112:3,13 | weight 97:19 |
| 112:25 | 35:22 | 46:7 52:1,4 | 98:3 108:7 | 113:20 | 98:7 109:7 |
| 116:2,3 | 36:12 60:5 | 52:5 57:5 | 121:21 | 116:5 | 111:1,3 |
| 120:23 | 97:11 | 61:5 62:7 | 131:22 | 128:20 | weighted |
| 126:25 | 101:23 | 64:8 65:12 | wanted | ways 27:8 | 68:16 |
| 127:19,24 | 115:5,9 | 65:16,22 | 20:12 | 32:23 66:2 | 109:16,21 |
| useful 95:8 | versions | 66:8 69:20 | 55:10 70:8 | 68:7 76:18 | 112:20 |
| uses 66:22 | 35:21 | 70:19 | 70:13 | 100:1 | weighting |
| 96:7 100:8 | versus 29:6 | 72:17 77:2 | 71:15 | 108:16 | 97:20 |
| 107:16 | 52:15,18,19 | 80:9,18 | 84:22 89:2 | WCC 2:5 | 98:17 |
| 119:20 | 96:21 | 81:4 86:13 | 89:15,17 | we'll 10:18 | 103:18 |
| usually 44:17 | 98:18 | 86:16,18 | 91:24 99:6 | 17:11 18:1 | 109:9,12 |
| 45:13 | 106:13 | 87:1 89:23 | WASHIN... | 19:9 20:25 | 110:5 |
| 48:16,18 | 112:19 | 98:10 | 1:6 2:19 | 47:16 62:2 | 111:5,19,25 |
| utilized | 118:4 | 102:25 | 3:3 | 91:12 | 112:1 |
| 27:15 | videoconfe... | 117:1 | wasn't 30:1 | we're 9:5,20 | weights |
| 43:10 | 1:18 2:2 | 120:13,15 | 38:3 49:19 | 10:21 16:8 | 78:13 |
| V | view 92:5 | 120:19 | 50:18 | 53:11 58:5 | went $31: 15$ |
| V | Virginia 64:2 | 123:2 | 51:19 | 64:13 67:8 | 35:14 |
| v 15:5 16:13 | 64:4 | VRA 52:8,9 | 54:22 | 76:7 79:12 | 49:23 |
| 38:12 | visual 29:2 | 72:10 74:5 | 61:20 | 81:4 88:3 | weren't 30:6 |
| 49:13,17,20 | 71:4 82:13 | 74:5 93:4 | 71:24 | 93:20,21,25 | 66:24 |
| 49:21,24,25 | 83:6 85:5 | 117:4 | 75:25 | 96:4,5,8,15 | west 117:23 |
| 50:19 52:3 | 114:25 | vs 1:10 | 107:12 | 102:14 | 117:23 |
| 52:4,21 | 119:24 | W | 128:8 | 105:16 | 118:3 |
| 53:188:14 | visually | W | 130:14 | 108:24 | 119:5,10 |
| value 71:10 | 70:24 | W-2 47:6 | WASSER... | 113:18 | 120:3 |
| 71:14,17,18 | 80:22 | wait 107:2,2 | 2:5 | 115:23 | wheel 31:22 |
| 71:18,19,20 | 84:14 | 108:7 | waves 124:8 | 120:7 | 33:2 |
| values 71:16 | visuals 120:4 | waiting | way 16:15 | 123:18 | white 80:18 |
| 71:23 72:7 | vote $52: 14,17$ | 53:11 | 30:20 | 131:21 | 81:6 82:10 |
| various | 52:24 | waived 6:10 | 34:22 37:5 | we've $25: 2$ | 87:18 |
| 35:21 | 57:15,17 | 6:12 | 45:17 47:5 | 26:22 | 118:5 |
| 45:12 | 85:8 86:11 | WALSH | 47:7 56:23 | 39:25 | Whitford |
| 58:10 | voter 45:6 | 3:12,14 | 66:23 68:8 | 124:24 | 38:12 |
| varying | 100:14 | want 9:3 | 68:15 69:2 | 127:2 | wife 26:11 |
| 124:8 | voters 1:7 | 10:8,14 | 70:4 75:4 | web 60:3 | William |
| venerable | 65:11 66:7 | 23:11 | 75:16 | website | 17:10 |
| 73:4 | 69:20 | 35:17 | 80:11 85:1 | 47:11 60:2 | WILLIAMS |

Page 160

| 3:18 | wouldn't | Y | yesterday | 93:14 | 52:10,11,13 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| witness 4:8 | 25:20 51:6 | Yale 36:24 | 12:16 | $12035: 18$ | 52:23 |
| 6:23 13:2 | 75:23 | Yaqui 50:18 | 13:21 | 13 5:2,3,14 | 54:25 55:2 |
| 13:23 | 80:11 93:3 | yeah 12:2,2 | 38:15 | 20:23 | 63:18 64:9 |
| 15:14,18 | 104:23 | 14:5,9,14 | Z | 133 4:12 | 64:21 |
| 20:5 48:10 | 109:11,16 | 15:15,19 | Z | 134:6 | 66:25 |
| 53:22 | 109:21 | 22:11 | zagging | 134 4:13 | 75:19 |
| 63:21 | 111:1,20 | 23:11 | 84:12 | 14 5:4,15 | 2-3 4:7 |
| 85:13 98:3 | 115:13 | 29:13 34:3 | zero 126:8 | 18:19 36:5 | 20 5:11,12,13 |
| 103:25 | 121:24 | 36:14 | zigging 84:12 | 36:7 48:8 | 5:14 34:16 |
| 118:8 | wrapped | 39:21 40:9 | zoom 1:18 | 1400 2:13 | 74:25 75:3 |
| 126:15 | 115:23 | 40:16 41:7 | 2:2 8:11 | 1434 134:12 | $20076: 15$ |
| 133:1 | WRIGHT | 44:25 46:4 | 9:20 10:13 | 15 5:16 53:20 | 20001 2:19 |
| WITNESS'S | 3:18 | 46:22 | 12:10 | 59:21,23 | 20005 3:3 |
| 4:12 | write 31:2,10 | 48:12 | 79:11 | 67:7 97:25 | 2001 37:1 |
| Wood 38:25 | 31:18,20 | 53:14 | 83:23 84:8 | 15TH 3:2 | 2009 46:22 |
| word 38:19 | 33:13 42:1 | 54:15 | 106:25 | 165:5,17 | 2010 46:25 |
| 44:25 | 42:17,21 | 56:22 | 131:22 | 90:17 | 47:7 92:15 |
| words 67:13 | 45:24 | 57:13 | 0 | 94:10 | 2013 94:16 |
| 111:14 | 95:23 | 58:12 63:9 | $021382: 6$ | 97:25 98:1 | 107:13 |
| 120:22 | 125:7 | 63:22 | 02138 2:6 | 17 5:6,18 | 201637:4 |
| work 18:9 | writing 17:4 | 64:17 | 1 | 79:10 97:2 | 2018 38:7 |
| 23:13 27:8 | 17:17 | 66:13 | 14:65:2 11:8 | 108:2 | 55:20 |
| 27:15,21 | 18:10 | 78:17,18 | 14.6 $13: 625: 23$ | 17th 37:9 | 201937:8 |
| 30:25 | 26:24 27:4 | 85:14 | 26:2 55:14 | 54:4 | 39:13 |
| 31:16 33:6 | 30:22 | 94:21 98:4 | 55:17,23,25 | 18 5:7,8,9,19 | 202 2:19 3:3 |
| 33:7,8,20 | 34:12 | 107:17 | 62:23 63:8 | 106:6 | $202111: 3$ |
| 33:21 38:5 | 46:24 47:1 | 112:2 | 118:12 | 115:8 | 2022 23:10 |
| 40:7 47:25 | written | 116:22 | 127:20 | 1885 3:7 | 23:11 |
| 54:23 | 16:25 | 117:15 | 10 5:11 20:15 | 18th 15:13 | 37:21,24 |
| 58:17 | 42:11 | 120:5 | 29:13 | 195:10 | 41:4 46:8,9 |
| 62:10 64:2 | 95:19 | 122:22 | 74:23 80:9 | 1961 125:4 | 60:15 61:7 |
| 75:19,22 | wrong 60:21 | 126:17 | 80:10,12,15 | 1965 57:9 | 2023 1:19 |
| 80:11 | wrote 31:16 | 127:23 | 80:10, 12,15 $80: 18$ | 1980s 120:22 | 12:17 13:1 |
| 104:3 | 43:3 48:24 | year 23:20 | 106 5:19 | 1982 120:15 | 15:6 17:1,4 |
| 114:3 | 49:2 88:5 | 31:24 | 11 5:12 18:20 | 1990s 74:18 | 17:13 |
| $116: 7,15$ $127: 7$ | 125:6 | 34:21 | $20: 18$ | 1995 36:25 | 18:20 46:8 |
| 128:20,25 | X | $\begin{array}{r} 131: 6 \\ \text { vears } 8 . \end{array}$ | 113 106:16 | 2 | 106:14 |
| 129:18 | $\mathbf{X} 4: 1$ 5:1,1 | years $8: 2$ 30:5 40: | 1146 4:3 7:10 | 25:3 13:19 | 134:16 |
| 130:4 | 82:4,7 | 39:6 74:23 | $\begin{aligned} & 12 \\ & 12 \end{aligned}$ | 14:17 | 21 59:24 61:7 |
| works 45:16 | X's 81:8 | 75:3 | $\text { 12:24 } 132$ | 23:22,25 | 61:17 |
| 45:22 |  |  | 12:40ish | 26:7 52:1,3 | 88:11 89:6 |



# Unintentional Gerrymandering: Political Geography and Electoral Bias in Legislatures 

Jowei Chen ${ }^{1}$ and Jonathan Rodden ${ }^{2, *}$<br>${ }^{1}$ Department of Political Science, University of Michigan, 5700 Haven<br>Hall, 505 South State Street, Ann Arbor, MI 48109-1045, USA; jowei@umich.edu<br>${ }^{2}$ Department of Political Science and Hoover Institution, Stanford University, Encina Hall West, Suite 100, Stanford, CA 94305-6044, USA;<br>jrodden@stanford.edu


#### Abstract

While conventional wisdom holds that partisan bias in U.S. legislative elections results from intentional partisan and racial gerrymandering, we demonstrate that substantial bias can also emerge from patterns of human geography. We show that in many states, Democrats are inefficiently concentrated in large cities and smaller industrial agglomerations such that they can expect to win fewer than $50 \%$ of the seats when they win $50 \%$ of the votes. To measure this "unintentional


[^0]Online Appendix available from:
http://dx.doi.org/10.1561/100.00012033_app
Supplementary Material available from:
http://dx.doi.org/10.1561/100.00012033_supp
MS submitted 4 April 2012; final version received 13 January 2013
ISSN 1554-0626; DOI 10.1561/100.00012033
© 2013 J. Chen and J. Rodden
gerrymandering," we use automated districting simulations based on precinct-level 2000 presidential election results in several states. Our results illustrate a strong relationship between the geographic concentration of Democratic voters and electoral bias favoring Republicans.

In majoritarian political systems like the United States, the extent to which electoral support for a party translates into legislative representation is driven by the geographic distribution of votes across districts. For instance, in a set of hotly contested U.S. states including Florida, Michigan, Ohio, Missouri, Indiana, and Pennsylvania, the Democrats have had far more statewide success in winning presidential, U.S. Senate, and gubernatorial races than in winning control of state legislatures. Party strategists and pundits as well as academics (King and Gelman, 1991; Hirsch, 2003; McDonald, 2009a) have noticed that this disconnect between statewide partisanship and representation is driven by a disadvantageous distribution of Democratic voters across legislative districts. A window into this phenomenon is provided by Florida's notorious tied presidential election of November 2000, in which votes for George W. Bush outnumbered votes for Al Gore in $68 \%$ of Florida's Congressional districts.

Why does this type of electoral bias emerge? One source of bias is intentional gerrymandering, whereby district maps are drawn to favor partisan or racial groups. Another source is unintentional gerrymandering, whereby one party's voters are more geographically clustered than those of the opposing party due to residential patterns and human geography.

Ever since Elbridge Gerry proposed his famous Massachusetts district, the U.S. literature on electoral bias has been dominated by the notion of intentional gerrymandering. The machinations of politically motivated cartographers take center stage in the theory literature (e.g., Gilligan and Matsusaka, 1999; Gul and Pesendorfer, 2010) as well as in empirical studies (e.g., Abramowitz, 1983; Cain, 1985; Cox and Katz, 2002; Herron and Wiseman, 2008; McCarty et al., 2009). Likewise, studies of racial gerrymandering have used theoretical (e.g., Shotts, 2001, 2003) and empirical analyses (e.g., Brace et al., 1988; Hill, 1995; Lublin, 1997; Cameron et al., 1996; Griggs and Katz, 2005) to show that efforts at enhanced minority representation inexorably pack Democrats into relatively few districts.
A significant reform movement in the United States is predicated on the notion that observed electoral bias stems from intentional gerrymandering.

Districting reformers in many states have advanced various statutory and constitutional proposals to prohibit partisan gerrymandering and enforce more neutral, objective criteria and procedures in the redistricting process. In Florida, for example, in response to a striking pattern of proRepublican electoral bias, a coalition of left-wing interest groups invested significant energy and resources into passing Amendments 5 and 6 , which voters approved in November 2010. These ballot initiatives mandate that newly drawn congressional and state legislative districts be compact and contiguous in shape, and the initiatives prohibit redistricting plans drawn with the intent to favor either political party.

Such reforms are based on the assumption that human geography plays no significant role in generating electoral bias. Reformers are betting that the inefficient distribution of Democrats across districts in a number of states would disappear if the process of districting could only be sufficiently insulated from Republican cartographers and minority interest groups.

This article examines the possibility that human geography plays a far greater role in generating electoral bias in the United States than commonly thought. Building on existing literature, we explore the argument that Democrats are often more clustered in space than Republicans as a result of the industrial revolution, great migration, and subsequent patterns of suburbanization (Fenton, 1966; Dixon, 1968; Erikson, 1972, 2002; Jacobson, 2003; McDonald, 2009a, 2009b). This argument dovetails with the emphasis on similar aspects of human geography in the comparative literature (e.g., Johnston, 1976; Taylor and Gudgin, 1976; Gudgin and Taylor, 1979; Johnston and Hughes, 2008; Rodden, 2010).
We show that in many urbanized states, Democrats are highly clustered in dense central city areas, while Republicans are scattered more evenly through the suburban, exurban, and rural periphery. We illuminate this pattern with an in-depth case study of Florida and demonstrate that it holds up in many other states. Precincts in which Democrats typically form majorities tend to be more homogeneous and extreme than Republican-leaning precincts. When these Democratic precincts are combined with neighboring precincts to form legislative districts, the nearest neighbors of extremely Democratic precincts are more likely to be similarly extreme than is true for Republican precincts. As a result, when districting plans are completed, Democrats tend to be inefficiently packed in homogeneous districts.

This observation raises some vexing empirical questions: To what extent is observed pro-Republican electoral bias a function of human geography rather
than intentional gerrymandering? To what extent might pro-Republican bias persist in the absence of partisan and racial gerrymandering?

The main contribution of this paper is to answer these questions by generating a large number of hypothetical alternative districting plans that are blind as to party and race, relying only on criteria of geographic contiguity and compactness. We achieve this through a series of automated districting simulations. The simulation results provide a useful benchmark against which to contrast observed districting plans. We show that in general, pro-Republican partisan bias is quite persistent in the absence of intentional gerrymandering. Moreover, consistent with our argument about human geography, we demonstrate that the highest levels of electoral bias against Democrats occur in states where Democratic voters are most concentrated in urban areas.

## 1 Political Geography and the Roots of Electoral Bias in the United States

Electoral maps from recent U.S. presidential elections illustrate clearly that in much of the United States, support for Democrats is highly clustered in densely populated city centers, declines gradually as one traverses the suburbs and exurbs, and levels off in moderately Republican rural areas. Additionally, in the rural periphery, there are scattered pockets of strong support for Democrats in smaller agglomerations associated with nineteenth century industrial activity along railroad lines, canals, lakes, and rivers, as well as in college towns.

To illustrate the relationship between population density and voting behavior, we match precinct-level results from the 2000 presidential election to precinct boundary files produced by the U.S. Census. We are able to obtain such 2000 precinct-level data for 20 states. We then generate block group estimates of election results, which we plot against population density data from the census in Figure 1. The relationship between population density and Democratic voting is generally widespread, but there is some cross-state heterogeneity. This relationship is most pronounced in the most industrialized and urbanized states, but it is less pronounced or absent in less industrialized Southern states with large rural African American populations and in relatively sparse Western states.

It is important to note that the densely populated urban block groups in the lower-right corners of the scatter plots in Figure 1 are not randomly

Figure 1. Population density and Republican Presidential Vote Share, census block groups.


Figure 2. The spatial arrangement of partisanship in Florida.
distributed in space; many of them are in close proximity to one another. For example, support for Democrats in Florida is highly concentrated in downtown Miami and the other coastal cities to its immediate North, as well as downtown Orlando, Tampa, St. Petersburg, Daytona, Gainesville, Jacksonville, Tallahassee, and Pensacola, as well as a few other smaller railroad and college towns. The suburbs of these cities, along with rural Florida, are generally Republican, but only moderately so.

Figure 2 displays the distance in kilometers between the center of Miami's central business district and the location of every census block group in Florida. Figure 2 displays this distance on the horizontal axis, and the vertical axis displays the block group's Bush vote share. Block groups toward the right of this plot are further away from Miami, and the extreme right side of the plot depicts block groups in the Florida panhandle. The lower left corner of the plot displays the large number of overwhelmingly Democratic precincts in downtown Miami, Ft. Lauderdale, and Palm Beach. Above these urban cores in the graph are more heterogeneous suburban neighborhoods where the Bush vote share, on average, only slightly exceeds $50 \%$.
The tips of each of the other "stalactites" in Figure 2 are city centers where Al Gore's vote share in November 2000 often exceeded $90 \%$. In each case, as one moves outward from the city center, the Bush vote increases, and each
city is surrounded first by a very mixed area, second by a suburban periphery that produced solid but not overwhelming support for Bush, and then finally by a rather heterogeneous but moderately Republican periphery. Analogous plots are quite similar in all of the other states that are characterized by high correlations between population density and voting in Figure 1.

These depictions illustrate two important patterns with consequences for districting. First, Democrats are far more clustered within homogeneous precincts than are Republicans. For example, while Bush received over $80 \%$ of the vote in only 80 precincts, Gore received over $80 \%$ in almost 800 precincts. Second, the stalactite shape of cities and their surroundings in Figure 2 illustrate that Democratic precincts tend to be closer to one another in space than Republican precincts. That is, the nearest neighbors of predominantly Democratic precincts are more likely to be predominantly Democratic than is the case for Republican precincts.

Some simple spatial statistics allow us to demonstrate this. First, we can identify the nearest neighbor of every precinct, defined as the precinct with the most proximate centroid, and ask whether that neighbor has the same partisan disposition. For any reasonable cut-off used to differentiate "Democratic" and "Republican" precincts (e.g., lower than 40th vs. higher than 60 th percentile values of Bush share, 30 th vs. 70 th, etc.), we find that indeed, the nearest neighbors of Democratic precincts are significantly more likely to be Democratic than is the case for Republicans, whose neighbors are more heterogeneous.

Alternatively, rather than forcing precinct partisanship to be binary, it is useful to examine the extent to which each precinct's election results are correlated with those of its neighbors, and ask whether the extent of this spatial autocorrelation is higher in Democratic than in Republican districts. Anselin's (1995) local Moran's $I$ is well suited to this task. For each precinct $i$, the local Moran's $I$ is given by:

$$
I_{i}=\frac{Z_{i}}{m_{2}} \sum_{j} W_{i j} Z_{j}
$$

where

$$
m_{2}=\frac{\sum_{i} Z_{i}^{2}}{N}
$$

and $Z_{i}$ is the deviation of Bush share with respect to the mean across all precincts, $N$ is the number of precincts, and $W_{i j}$ is a matrix of weights with ones in position $i, j$ whenever precinct $i$ is a neighbor of precinct $j$,


Figure 3. 2000 Bush vote share. Colors correspond to Bush vote share, heights correspond to local Moran's I.
and zero otherwise. We define neighbors as precincts that share any part of any boundaries or vertices (Queen Contiguity), although we get very similar results when using Rook contiguity or distance-based spatial weights.

Overall, $I_{i}$ is much higher for majority-Democratic precincts than for Republican precincts, indicating that Democratic precincts are far more spatially clustered. Figure 3 displays $I_{i}$ for each precinct using an extruded map, in which the height of each extrusion corresponds to the extent of spatial autocorrelation, and the color moves from blue to red as the precinct's Bush vote share increases. Figure 3 illustrates clearly that the most Democratic precincts in Florida's city centers are also those with the highest levels of local spatial autocorrelation; that is, they are surrounded by other very Democratic precincts. While there are some Republican-leaning areas of high spatial autocorrelation in little Havana, suburban Jacksonville, and the Panhandle, Republican precincts overall tend to be located in more heterogeneous neighborhoods.

The process of building electoral districts involves someone - incumbent politicians, judges, or districting boards - stringing together contiguous census blocks. Drawing on the rhetoric of reform advocates, let us consider a districting process in which these census blocks are assembled without
political or racial manipulation. To illustrate, consider a process of randomly selecting one of the dots in Figure 2 and randomly connecting it with surrounding dots until enough dots have been selected to form a state legislative district or Congressional district.

This process is likely to undermine the representation of Democrats for three reasons. First, suppose that the initial seed is a precinct in one of the stalactites representing Florida's large cities, such as Miami, Jacksonville, or Tampa. Such a city is sufficiently large that this process will likely combine extremely Democratic districts with other extremely Democratic districts, thereby forming a district that is overwhelmingly Democratic.

Second, outside of little Havana, it is difficult to find a Florida precinct that, when randomly chosen as the initial seed, would produce an analogously extreme Republican district. In addition to being more internally heterogeneous, Republican precincts tend to be located in heterogeneous suburban and rural areas of the state where their nearest neighbors are more diverse. For instance, suppose the initially chosen precinct is rural and extremely pro-Republican. If one strings together neighboring precincts until reaching the population threshold for a district, this will usually require the inclusion of some rather heterogeneous precincts, often including pockets of Democrats in small cities or towns and on the fringes of larger cities.

A third reason concerns the locations of small Democratic-leaning towns throughout Florida. Although dense, pro-Democratic cities are often combined together to form Democratic districts along the Eastern Coast, there are also small, isolated, inland pockets of Democratic voters in the manufacturing and transportation agglomerations that sprung up along railroad tracks in the nineteenth century, such as Ocala or Pensacola, and the college towns of Tallahassee and Gainesville. When the size of districts is large relative to these small clusters of Democrats, these towns are often subsumed into predominantly rural, moderately Republican districts, thus wasting Democratic votes in districts that are won by Republicans.

The roots of unintentional gerrymandering in Florida can be summarized as follows. The complex process of migration, sorting, and residential segregation that generated a spatial distribution of partisanship has left the Democrats with a more geographically concentrated support base than Republicans. When compact, contiguous districts are imposed onto this geography without regard for partisanship, the result will be a skew in the distribution of partisanship across districts such that with $50 \%$ of the votes, Democrats can expect fewer than $50 \%$ of the seats.

## 2 Automated Districting and Electoral Bias

Studies of electoral bias typically flow from the normative premise that in a two-party system, a party with $50 \%$ of the votes should receive $50 \%$ of the seats. Empirical studies use either aggregate data over several elections or transformations of district-level data from individual elections to examine the seat share that would be obtained by the parties under a hypothetical scenario of a tied election. Our goal is different. Rather than examining the bias associated with existing districting plans, many of which were undoubtedly influenced by efforts at partisan and racial gerrymandering, we seek to estimate the electoral bias that would emerge under hypothetical districting plans that are not intentionally gerrymandered.

Rather than using information from existing districts to simulate hypothetical tied elections, we use information from precinct-level election results, and we perform a large number of automated, computer-based simulations of legislative districting plans. Our computer simulations construct these districting plans in a random, partisan-blind manner, using only the traditional districting criteria of equal apportionment and geographic contiguity and compactness of single-member legislative districts. For each of these simulated districting plans, we calculate the Bush-Gore vote share of each simulated single-member district, and we use this vote share to determine whether the district would have returned a Democratic or Republican majority. We begin with Florida's 2000 presidential race because of its unique quality as a tied election.

Since the early 1960s, scholars have suggested automated districting as a solution to the problem of partisan gerrymandering (e.g., Vickrey, 1961; Weaver and Hess, 1963; Nagel, 1965). More recently, scholars have used hypothetical districting experiments to examine partisan polarization (McCarty et al., 2009), partisan representation (Altman, 1998), and the impact of various districting criteria (McDonald, 2009b). These previous studies have often used automated redistricting in order to obtain a baseline against which to detect the intentions of those drawing the lines. Cirincione et al. (2003) use a simulated districting algorithm to detect racial gerrymandering in South Carolina's congressional districting plan, while Altman and McDonald (2004) propose an enhanced method of this algorithm for detecting partisan gerrymandering. Johnston and Hughes (2008) apply an automated districting algorithm in Brisbane, Australia in order to gain a baseline against which to compare the boundaries chosen by neutral
commissioners. Extending this past work, we use simulations to examine the electoral consequences of a hypothetical districting process without any intentional partisan or racial gerrymandering.

As of the November 2000 election, Florida consisted of 6,045 voting precincts. These precincts are the smallest geographic unit at which election results are publicly announced, so we use the precinct as the building block for our simulations. Hence, a complete districting plan consists of assigning each one of Florida's precincts to a single legislative district. Florida voters cast 5.96 million Presidential election ballots in 2000, so the average precinct cast a total of 986 presidential votes.

Our goal is to design a districting algorithm that uses only traditional geographic criteria of the kind favored by reform advocates. Our challenge is to guarantee equal apportionment of population while requiring geographic contiguity for all simulated districts, paying no attention to either voter partisanship or any demographic information other than simple population counts. Another concern is geographic compactness. Many districting reform proposals include explicit (if vague) compactness requirements, and reformers sometimes equate compactness with fairness. Moreover, an algorithm that makes no attempt to achieve compactness might create districts that seem too far removed from the real world. On the other hand, if we build some strict compactness criteria into the algorithm, we run the risk that any pro-Republican bias observed in the simulated plans could be driven exclusively by compactness criteria that, for instance, force the most extreme Democratic precincts in Miami to be joined together.

Our approach is to experiment with alternative algorithms that approach compactness in different ways or ignore it altogether. Due to space constraints, we focus here on two algorithms: one that aims for compactness and one that does not.

Our procedure for simulating compact districts is as follows. Suppose that we begin with $n$ precincts and wish to create $d$ districts with equal population.
(1) To begin the simulation procedure, each of the $n$ precincts represents a single district. Hence, there are $n$ districts, each containing only one precinct at the outset.
(2a) Randomly select one of the $n$ districts and denote it as district $i$.
(2b) Among the neighboring districts that border district $i$, select the one that is geographically closest, and denote it as district $j$. Geographic
proximity is measured as the distance between district $i$ 's centroid and the respective centroids of $i$ 's neighboring districts.
(2c) Merge district $i$ together with district $j$ in order to form a single, new district. There are now $n-1$ total districts remaining.

Steps 2a through 2c are repeated until the total number of districts is exactly $d$. At this point in the procedure, these $d$ districts are geographically contiguous and reasonably compact, due to the nearest distance criterion employed in step 2b. However, the districts are not guaranteed to be equally populated. Hence, repeated iterations of steps 3a through 3c are designed to achieve an equitable distribution of population across the simulated districts. These steps iteratively reassign precincts to different districts until equally populated districts are achieved.
(3a) Among all pairs of districts that border one another, identify the pair with the greatest disparity in district population. Within this pair, let us denote the more populated district as $i$ and the less populated district as $j$.
(3b) Identify the set of all precincts currently within district $i$ that could be reassigned to district $j$ without violating the geographic contiguity of either district $i$ or $j$.
(3c) For each precinct $p$ satisfying the criterion in step 3 b , define $D_{p}$ as precinct $p$ 's geographic distance to the centroid of district $i$, minus precinct $p$ 's distance to the centroid of district $j$.
(3d) Among the set of precincts satisfying the criteria in step 3b, select the precinct, $p$, with the highest value of $D_{p}$. Reassign this precinct from district $i$ to district $j$.

Steps 3a through 3d are repeated until every district's population is within $5 \%$ of the ideal district population. The ideal district population is defined as the statewide population, divided by $d$, the total number of districts. Hence, these steps iteratively reassign precincts in order to achieve equal population across the districts. However, steps 3c and 3d perform such precinct reassignment in a manner that preserves the geographic compactness of the districts. Compactness is preserved because step 3d generally reassigns a precinct that was geographically distant from its old district's centroid and geographically close to the centroid of its new district.

In order to simulate non-compact districts, steps 1 and 2 a are performed in the same manner as in the compact districting algorithm. The procedure for non-compact districts then proceeds as follows:
(2b) Select one of district $i$ 's bordering districts at random and denote it as district $j$.
(2c) Merge district $i$ together with district $j$ in order to form a single, new district. There are now $n-1$ total districts remaining.

Steps 2a through 2c are repeated until the total number of groups is exactly $d$. At this point in the procedure, these $d$ districts are geographically contiguous but not guaranteed to be equally populated. Hence, repeated iterations of steps 3a through 3c are designed to achieve an equitable distribution of population across the simulated districts.
(3a) Identify the most populated district and denote it as district $i$.
(3b) Randomly select one of the precincts lying within district $i$ and denote it as precinct $p$.
(3c) If precinct $p$ can be reassigned from district $i$ to a new district without violating the geographic contiguity of either this new district or district $i$, then reassign $p$ to this new district. If two or more new districts satisfy this criterion, then reassign precinct $p$ to one of these new districts at random.

Steps 3a through 3c are repeated until every district's population is within $5 \%$ of the ideal district population. The ideal district population is defined as the statewide population, divided by $d$, the total number of districts.

In order to help illustrate the output of these simulations, the Appendix displays sample maps of both compact and non-compact plans for Florida's 25 Congressional districts, as well as maps that zoom in on Miami and Jacksonville.

## 3 Simulation Results

For each procedure, we perform 25 simulations of Florida districting plans for each of a range of reasonable legislature sizes, ranging from 2 to 200 districts. For each simulation, we can simply aggregate the precinct-level Bush-Gore vote counts within each district and count up the number of districts in


Figure 4. Republican electoral bias in simulated Florida districting plans.
Note: Black dots indicate the average share of simulated districts that have pro-Bush majorities in the simulated plans. Gray bars depict the entire range of pro-Bush district shares that were observed across all simulations for each given legislature size. Red bars depict the range of simulated outcomes for legislatures of 25 districts (Florida's Congressional Delegation), 40 districts (the Florida State Senate), and 120 districts (the Florida State House).
which Bush received a majority. The expectation is that if there is no partisan bias, the average share of pro-Bush districts should be around $50 \%$.

Our simulations reveal pro-Republican bias in the partisan distribution of seats in any realistically sized legislature; that is, significantly over onehalf of the legislative seats have Republican majorities. Figure 4 summarizes the distribution of seat shares produced under our simulations. The left panel presents results using the non-compact procedure, and the right panel reports results for the compact procedure. In this figure, the horizontal axis represents the number of single-member districts in each simulated plan. The vertical axis reports the percentage of these districts that have Republican majorities. For each different hypothetical legislature size, the dot represents the average share of simulated districts with pro-Bush majorities across all simulated plans, and the gray bars depict the entire range observed across all simulations for each given legislature size. The red colored
bars depict the entire range of simulated outcomes for legislatures of 25 districts (Florida's Congressional Delegation), 40 districts (the Florida State Senate), and 120 districts (the Florida State House).

The figure illustrates, for example, that when we conducted random simulations that divided Florida into 25 districts using the compact procedure, Republicans won an average of $61 \%$ of the seats. The most biased of the simulated plans gave the Republicans $68 \%$ of the seats, and the least biased plan gave them $56 \%$. Overall, this plot illustrates the significant proRepublican bias that results from a districting procedure that is based solely on geography and population equality. Moreover, this result is not driven by the compactness of the simulated districts. The results are just as striking when we use the non-compact simulation procedure.

We find that the real-life districting plans enacted by the Republicancontrolled Florida legislature in 2002 are all within the range of districting plans produced by our simulation procedures. For example, in 2002, the state legislature enacted a Congressional districting plan in which Bush voters outnumbered Gore voters in 17 out of 25 districts, or $68 \%$. This level of pro-Republican electoral bias falls just within the tail of the distribution of electoral biases produced across all of the randomly simulated, compact districting plans ( $56-68 \%$ ), as illustrated in Figure 4. Hence, because the enacted districting plan falls within the range of plans produced by our compact districting procedure, we are simply unable to prove beyond a doubt that the enacted districting plan represents an intentional, partisan, Republican gerrymander.

Both panels of Figure 4 show that a legislature consisting of only two single-member districts will always have exactly one Democratic and one Republican seat, a result that follows naturally from Florida's 50-50 Bush-Gore vote share. But as the legislature grows in size, the partisan division of legislative seats quickly begins to favor the Republicans. When the simulated legislature has 25 seats - the size of Florida's Congressional delegation after the 2000 reapportionment - Republicans win an average of $61.2 \%$ of the districts when we use the compact procedure and $63.5 \%$ of the districts when we use the non-compact procedure.

As the size of the legislature increases further, some of the medium-density Democratic clusters in suburbs and small towns that had previously been subsumed in their surrounding Republican peripheries begin to win their own seats, and thus the Republican seat share slowly declines. However, a striking result is that the Republicans always continue to control over
one-half of the total seats. For any districting plan of realistic size, the pro-Republican bias exhibited in our simulations is significant. With only a few exceptions, the entire range of simulations produces a hypothetical legislature with a solid Republican majority in spite of the tied election.

To provide a closer illustration of the distribution of districting plans produced by the simulations, we conduct 250 independent simulations in which Florida is divided into 25 congressional districts using the non-compact procedure. Figure A6 in the Online Appendix depicts the partisan breakdown of districts produced under these 250 simulations.

This figure illustrates that all of the 250 simulated plans result in pro-Republican electoral bias: In each plan, at least 14 of the 25 districts ( $56 \%$ ), and as many as 19 of the 25 districts ( $76 \%$ ), have a pro-Bush majority. Moreover, the figure reveals that the distribution of partisan bias across the simulations follows a normal distribution. Most of the simulations resulted in the production of 15,16 , or 17 pro-Bush districts. Drawing 14 or 18 proBush districts was a rarer outcome, and only an exceedingly small number of simulations produced as many as 19 Bush-leaning districts. Hence, these simulations demonstrate that a range of partisan outcomes is achievable under the simulations, but most of the simulations result in a predictable partisan distribution of seats that indicates significant pro-Republican electoral bias.

## 4 A Closer Look at Political Geography

Next, we use the simulation results to take a closer look at political geography as an explanation for this persistent Republican advantage. In Figure 5, we present the results of 200 independent random simulations in which Florida is divided into 25 districts.

Each plotted point in Figure 5 represents one of Florida's 6,045 precincts, and we plot high, medium, and low density precincts separately, referring to them loosely as urban, suburban/town, and rural. For each plotted point, the horizontal axis measures the partisanship of the precinct, as measured by Bush-Gore vote share in November 2000. The vertical axis measures the average partisanship of the 200 simulated districts to which the precinct was assigned during our simulations.

The patterns of spatial autocorrelation reported above give rise to the generally positive correlation between the partisanship of a precinct and the


Figure 5. The partisanship of precincts' assigned districts.
Note: Each point represents a single Florida precinct. The horizontal axis indicates the precinct's partisanship, as measured by George Bush's November 2000 share of the twoparty vote. The vertical axis measures the average partisanship (George Bush vote share) of the simulated district to which the precinct was assigned. This measure is based on 25 independent random simulations of dividing Florida into 40 Senate districts, using the non-compact simulation algorithm.
partisanship of the legislative district to which the precinct was assigned. In other words, pro-Bush precincts are typically assigned to pro-Bush districts. In particular, the left and middle plots reveal that outside of dense city centers, pro-Bush precincts were almost always assigned to majority-Bush districts. Hence, the lower-right quadrants of these plots - where proRepublican precincts are assigned to majority-Democratic districts - are generally empty.

By contrast, majority-Gore precincts outside of dense urban neighborhoods are often in the upper-left quadrant of the plots. In other words, rural, small town, and suburban precincts that lean Democratic are often subsumed into moderately Republican districts. As described above, there are isolated pockets of support for Democrats in African-American enclaves in the suburbs of big cities and in smaller towns with a history of railroad industrialization or universities. However, these Democratic pockets are generally surrounded by Republican majorities, thus wasting these Democratic votes. As a result, the Democrats are poorly situated to win districts outside of the urban core.

Figure 5 illustrates that pro-Gore precincts in urban areas are generally assigned to overwhelmingly Democratic districts in our simulations. There is a large cluster of observations at the bottom of the lower-left
quadrant of the bottom graph, indicating that Democratic precincts are assigned to extremely Democratic districts. By contrast, there are very few corresponding Republican precincts in the extreme upper right of any of the plots. Taken together, these plots show that because of their geographic support distribution, Democrats not only waste more votes in the districts they lose, but they also accumulate more surplus votes in the heavily Democratic districts they win. These two phenomena explain the rather extreme pro-Republican bias revealed by our simulations.

## 5 Does Geography Constrain Partisan Gerrymandering?

Taken together, the simulation results presented thus far suggest that residential geography alone generates significant partisan bias in Florida's districting plans. As Figure 4 illustrates, almost the entire range of simulated districting plans for every reasonable legislature size produces at least some pro-Republican bias. Among all of the randomly simulated plans consisting of 25 districts (U.S. Congressional delegation), 40 districts (Florida Senate), and 120 districts (Florida House), not a single simulated plan produces at least as many Gore-leaning districts as Bush-leaning districts. Hence, both the compact and the non-compact simulation procedures are unable to produce a single Congressional, Senate, or House districting plan for Florida that is either neutral or pro-Democratic in its distribution of seats. This finding reflects the significant pro-Republican bias in Florida that results from the geographic constraint that each district must be contiguous, even if non-compact district shapes are permitted. Our simulation results show that this contiguity requirement alone is sufficient to consistently produce pro-Republican districting outcomes in Florida.

Could a sufficiently creative Democratic gerrymander work around these geographic constraints and produce a neutral or pro-Democratic districting plan in Florida? In theory, it seems that a clever Democratic cartographer might generate radial districts emanating from the city centers so as to break up the major agglomerations and create snake-like districts to connect some of the smaller cities. Such a hypothetically contorted districting arrangement would possibly neutralize the inherent Republican advantages in geographic districting. Is such a hypothetically neutral or pro-Democratic gerrymander achievable in real-life practice?

First, the key finding of our simulation results is that for the Florida Congressional, Senate, or House districts, our two simulated districting procedures are unable to produce a single districting plan that is neutral or pro-Democratic in terms of electoral bias. Hence, a real-life Democratic gerrymanderer would have to draw districting maps with even more creativity than our simulated non-compact districting plans in order to achieve a hypothetically neutral outcome. Moreover, human geography makes the task of a Democratic cartographer far more difficult than that facing a Republican-favoring cartographer, whom we have shown can do strikingly well by literally choosing precincts at random.

Second, to determine whether an electorally neutral districting plan in Florida is achievable in real-life practice, we examine the districting plans proposed by Democrats in the state legislature. Even though Florida's state legislature was controlled by the Republican Party during the 2002 redistricting cycle, Democratic legislators are nevertheless permitted to propose their own districting plans, and many did so in 2002 . We examine these Democrat-proposed districting plans in order to measure how the most Democrat-favorable districting proposals fared in terms of electoral bias.

Specifically, we obtained district-level statistics for every proposed districting plan submitted to the Florida Senate during the 2002 redistricting cycle. To see how these real-world districting proposals compare against our non-compact, simulated districting plans, Figure 6 displays the number of Bush-leaning districts in the Congressional (Figure 6A) and Florida Senate (Figures 6B) districting plans adopted by the Republican-dominated legislature in 2002. Additionally, Figure 6 also displays the number of Bush-leaning districts in each of the alternative districting proposals submitted during the redistricting process by various Republican legislators, by various Democratic legislators, and by the League of Women Voters (hereinafter: LWV) in the Florida legislature. ${ }^{1}$

Figure 6 displays the share of majority-Republican seats generated by each proposed plan and each computer-simulated plan, as well as a histogram displaying the distribution of Republican seat shares generated by 100 of our simulations. Figure 6A displays plans for the Florida delegation

[^1]

Figure 6A. Enacted, proposed, and simulated districting plans for Florida's 25 congressional districts.
Note: Proposed plans include all Congressional districting plans submitted for consideration to the Florida State Senate Committee on Reapportionment in 2002.
to the U.S. House, and Figure 6B displays plans for the Florida Senate. In terms of electoral bias, every one of the submitted plans falls well within the range of the simulated districting plans. Not surprisingly, the Republican plans tend to produce larger Republican majorities than Democratic or LWV plans, but remarkably, not a single unbiased or pro-Democratic plan was submitted by any of the Democratic legislators. Of course, we cannot conclude from Figure 6 that Democrats submit biased plans solely because

Unintentional Gerrymandering


Figure 6B. Enacted, proposed, and simulated districting plans for Florida's Senate (40 districts).
Note: Proposed plans include all Senate districting plans submitted for consideration to the Florida State Senate Committee on Reapportionment in 2002.
of the constraints generated by human geography. However, at a minimum, Figure 6 suggests that the level of bias produced in the real world of strategic partisan cartographers, courts, and the Voting Rights Act is not radically different from that produced by human geography alone.

We acknowledge, however, that various political considerations may have influenced the drawing of the various Democrat-submitted plans. For example, important considerations for Democratic cartographers include
minority representation and protection of incumbents, especially those incumbents submitting the districting proposals. An additional possibility is that Democratic mapmakers understood that a pro-Democratic redistricting plan would never secure passage in the Republican-controlled state legislature; hence, perhaps only plans with built-in Republican bias were even worth submitting.

## 6 Simulation Results across U.S. States

The most striking result thus far is the rather consistent size of the proRepublican bias in Florida; additionally, much of this bias would have occurred with a simple, random districting scheme that is blind to race or partisanship. This finding raises at least two broad questions. First, to what extent does an urban concentration of Democrats generate a similar political geography of electoral bias in other states? Second, building upon Figure 6, to what extent does the electoral bias that would be generated by our automated districting algorithm track electoral bias observed in actual districting plans?

In order to provide the necessary cross-state perspective, we have linked November 2000 precinct-level data reported by county governments with corresponding GIS boundary files provided by the U.S. Census Bureau. The reprecincting and the use of completely different precinct identifiers in the two data sets make this a difficult challenge. While improved coordination between the census department and state election officials will soon allow for a more complete data set for more recent elections, for the November 2000 elections we have been able to match 20 states. We have applied exactly the same automated districting algorithm introduced above and produced graphs like those in Figure 4.

The only difference is that because elections in other states were not tied, before performing the simulations we applied a uniform swing to the precinct-level results in order to examine the seat share in a "hypothetical" tied election. We then calculate the average bias estimates across all simulations corresponding to the number of districts in each state's lower chamber, its upper chamber, and its U.S. Congressional delegation. A useful feature of the 2000 presidential election is the fact that it was very close in a number of states, so that the uniform swing used to achieve a hypothetical tie is not
a far stretch of the imagination. However, in consistently lopsided states like Massachusetts or Oklahoma, close statewide elections are less frequent.

Figure 1 revealed that the extent to which Democrats are spatially concentrated in urban areas varies considerably across states. We capture this heterogeneity in a simple way by using block group-level data and regressing, state by state, the Democratic vote share in the 2000 presidential election on logged population density, weighting by the block group's population. The coefficient from this regression is displayed on the horizontal axis of the first panel of Figure 7. The vertical axis displays the average estimated Republican vote share obtained from 50 simulations of the state's Congressional and state legislative districts. Observations above 0.5 indicate that on average, the districting algorithm produced districts that would turn tied elections into Republican legislative majorities.


Figure 7. Simulated electoral bias in state legislatures and the urban concentration of democrats.
Note: The solid lines represent least-squares regression fits. The horizontal axis in the left plot is measured as the estimated coefficient of population density when county-level Gore (November 2000) vote share is regressed onto county-level population density within each state. The vertical axis represents the simulated electoral bias for state legislative chambers, measured as the percentage of simulated congressional districts with Republican majorities when the statewide Republican vote share is exactly $50 \%$.

Figure 7 suggests that Florida is not an outlier. The correlation between population density and Democratic voting is even higher in several other states, and in most of them, the simulations consistently produced similar or even higher levels of pro-Republican bias than in Florida. Average bias in favor of Republicans is substantial - surpassing $5 \%$ of legislative seats - in around half the states for which simulations were possible. It appears that in some of the largest and most urbanized U.S. states, even without overt racial or partisan gerrymandering, the Democrats are at a disadvantage in translating votes to seats simply because their voters are inefficiently clustered in urban areas. According to the simulations, this problem is less severe for the Democrats in Western and Southern states, where their voters are more efficiently spread out in space. The second panel in Figure 7 provides a different perspective on urbanization and electoral bias by plotting the simulation results against the extent to which the state has urbanized since 1950, suggesting that the Democrats face the most inefficient geographic support distributions in states that have experienced the most urbanization.

Next, we compare the bias generated by our simulated plans to that created by the districting plans that were in place both before and after the 2002 redistricting cycle. To calculate the latter, we superimpose the actual legislative district boundaries on the November 2000 precinct-level presidential election results and aggregate Bush and Gore votes, then apply the uniform swing in order to examine the share of districts that would be won by Bush in a hypothetical tied state legislature election. In Figure 8, this quantity is plotted on the vertical axis, and the simulated Republican seat shares are plotted on the horizontal axis, with lower chambers displayed in red and the upper chambers in blue

The positive correlation between the simulation estimates and those based on actual districts suggests the strong ability of our simulations to predict the direction and extent of electoral bias across states. In general, the states where the simulations produced large pro-Republican bias, like Texas and Pennsylvania, are the same states where the actual districting plans produced similar bias. As with the simulations, observed electoral bias in these states tends to favor Republicans, sometimes quite dramatically so.

Figure 8 plots include a 45 -degree line, such that any observation above (below) the line indicates that the observed pro-Republican bias associated with the existing plan exceeds (falls short of) the bias found in our raceand partisan-blind simulations. Most of the districting plans are clustered fairly close to this 45-degree line, suggesting that in most states, observed


Figure 8. Electoral bias in simulated districting plans versus actual districting plans.
Note: In both plots, the horizontal axis plots estimates of the share of seats in the legislature that would have Republican majorities from districting simulations under the hypothetical scenario of a tied statewide 2000 presidential vote. Also using 2000 presidential results, the vertical axis plots the percent of seats that would be won by Republicans after applying the uniform swing to votes aggregated to the level of actual districting plans. Each measure is displayed separately for the upper and lower chambers of each state's legislature.
electoral bias would not necessarily disappear in the absence of intentional partisan and racial gerrymandering. Moreover, the 45 -degree line provides a useful benchmark against which to compare observed districting plans. For instance, the plans drawn by Democrats in California and Georgia are friendlier to Democrats than the average of the simulated plans. Yet, in a state like Georgia, where the simulations reveal an especially bad geography for Democrats, even an aggressive pro-Democratic gerrymander was unable to completely erase the built-in pro-Republican bias. The simulations also identify cases, like the Florida House of Representatives and the Texas State Senate, where Republican cartographers appear to have done better for themselves than would be predicted from the simulations.

We must stop short of characterizing the deviation from the 45 -degree line in Figure 8 as a measure of partisan gerrymandering because this deviation is also driven by a variety of factors including court interventions and efforts at racial representation. Nevertheless, automated districting simulations place
observed plans into useful perspective. If one encounters a districting plan characterized by 7 or $8 \%$ pro-Republican bias in a state like Georgia or Pennsylvania, one cannot necessarily infer that partisan manipulation has taken place. Nor can one necessarily infer that efforts at minority representation are to blame, because party- and race-blind simulations produce even larger levels of bias.

On the other hand, in a state like New Jersey, Democrats are evenly dispersed throughout an urban corridor that lacks a sprawling and heterogeneous rural periphery, thus avoiding the phenomenon described in the Florida example above. As a result, the simulations predict modest proDemocratic bias in New Jersey, and this is reflected in the actual adopted plans. If Republicans in New Jersey and neighboring Pennsylvania submitted plans that produced an identical $10 \%$ bias in their favor, claims of partisan manipulation should carry more weight in New Jersey.

## 7 Discussion

This article has demonstrated that in contemporary Florida and several other urbanized states, voters are arranged in geographic space in such a way that traditional districting principles of contiguity and compactness will generate substantial electoral bias in favor of the Republican Party. This result is driven by a partisan asymmetry in voters' residential patterns: Democrats live disproportionately in dense, homogeneous neighborhoods in large cities that aggregate into landslide Democratic districts, or they are clustered in minor agglomerations that are small relative to the surrounding Republican periphery. Republicans, on the other hand, live in more sparsely populated suburban and rural neighborhoods that aggregate into districts that are geographically larger, more politically heterogeneous, and moderately Republican. We have explained how these geographic patterns can explain a large part of the pro-Republican bias observed in recent legislative elections in Florida and several other states.

Together, our theoretical explanation and our simulation results contribute to the literature on legislative districting and electoral bias in three ways. First, we have built upon and extended the work of political geographers who have noticed that electoral bias emerges in two-party systems when one party's voters are more concentrated in space. For example, Gudgin and Taylor (1979) show that in a competitive two-party system, if
the cross-district support distributions of the two parties are skewed, the party with too many of its supporters packed into the districts of the tail of the distribution will suffer in the transformation of votes to seats. Writing in the 1970s about Britain, they conjecture that due to the inevitability of densely packed support in coalfields and manufacturing districts, the Labour Party faced a right-skewed support distribution, causing it to suffer from a less efficient transformation of votes to seats than the Conservatives. Rydon (1957) and Johnston (1976) provide similar descriptive accounts of pro-Conservative electoral bias in Australia and New Zealand, respectively.
Erikson (1972, 2002), Jacobsen (2003), and McDonald (2009a, 2009b) have made similar observations about the relative concentration of Democrats in urban U.S. House districts in the post-war period. However, perhaps because the process of redistricting is typically more politicized in the United States than in Commonwealth countries, the U.S. literature tends to focus overwhelmingly on the partisan and racial motivations of those drawing the lines. This article has attempted to provide a window into the role of human geography in U.S. electoral bias through the use of automated simulations. It shows that pro-Republican bias can be quite pronounced even in the absence of intentional gerrymandering, and is greatest in states where Democratic voters are more geographically concentrated than Republican voters. A goal for future research is to complete simulations for all 50 states, and develop more sophisticated explanations for cross-state and time-series variation in the partisan bias owing to human geography.
Second, our findings show that voter geography confounds the traditionally hypothesized relationship between gerrymandering and the partisan control of legislatures. Past scholars have taken sharp positions in favor (e.g., Carson et al., 2007) and against (Abromowitz et al., 2006; Mann, 2007; McCarty et al., 2009) the hypothesis that gerrymandering affects polarization in the House of Representatives, and scholars have also examined the impact of gerrymandering on the incumbency advantage (Friedman and Holden, 2009). Other studies have analyzed the effect of racial gerrymandering (e.g., Hill, 1995; Shotts, 2001, 2003) and respect for municipal boundaries (e.g., McDonald, 2009b) on electoral bias.

Our findings caution that the relationships between intentional gerrymandering and observed electoral bias are not necessarily identical across different states. Rather, the nexus between districting strategies and partisan control of legislatures is confounded by the electoral bias that emerges from underlying residential patterns in each state. Because geographic patterns
of Democratic voter concentration vary widely across states, each state has a different baseline partisan seat distribution that would emerge under a districting process without overt gerrymandering. Hence, our work suggests the possibility that each state's unique voter geography may either open up or restrict opportunities for mapmakers wishing to implement politically motivated gerrymandering strategies. Simulation results like those presented in this article might provide a useful baseline for future empirical studies.

Third, our simulation results offer insight into the likely effect of various redistricting reforms, such as Amendments 5 and 6 in Florida, that attempt to mandate the seemingly objective districting criteria of compactness, contiguity, and respect for municipal boundaries. Our simulation method mimics the type of districting process mandated by such reforms. Our results suggest that in Florida, New York, Pennsylvania, and other urbanized states with substantial rural peripheries, such reforms are likely to lock in a powerful source of pro-Republican electoral bias that emanates from the distinct voter geography of these states. Hence, our simulations suggest that reducing the partisan bias observed in such states would require reformers to give up on what Dixon (1968) referred to as the "myth of non-partisan cartography," focusing not on the intentions of mapmakers, but instead on an empirical standard that assesses whether a districting plan is likely to treat both parties equally (e.g., King et al., 2006; Hirsch, 2009).

Although presidential and statewide elections have been quite close over the last decade, the Republicans have consistently controlled between 60 and $70 \%$ of the seats in Florida's state legislature and Congressional delegation. Beyond the electoral bias in the transformation of votes to seats that we illustrate in this paper, Ansolabehere et al. (2012) describe another, more subtle impact of the asymmetric distribution of partisans across districts. It is conceivable that because of the extent to which liberals are packed into urban districts, the Democratic platform, or at least its perception by Florida voters, is driven by its legislative incumbents - a small group of leftists from Miami-Dade and Broward counties who never face Republican challengers - which in turn makes it difficult for the party to compete in the crucial moderate districts. This hypothesis may help to explain why the Democrats consistently receive higher vote shares in presidential than in state races.

It is striking that political geography can turn a party like the Florida Democrats, with a persistent edge in statewide registration and presidential voting, into something approaching a permanent minority in legislative
races. One might imagine that a future Supreme Court would entertain the notion that this situation reaches the rather high bar for justiciability of partisan gerrymandering laid out in Davis v. Bandemer (1986), where a gerrymander must be shown to have essentially locked a party out of power in a way that frustrates "the will of the majority." The recent opinions of the pivotal justices, however, suggest that a claimant would need to demonstrate that an "egregious" gerrymander is intentional. Proving such intent in court will be difficult in states where equally egregious electoral bias can emerge purely from human geography.

## References

Abramowitz, A. I. 1983. "Partisan Redistricting and the 1983 Congressional Elections." Journal of Politics 45(3): 767-770.
Abramowitz, A., B. Alexander, and M. Gunning. 2006. "Incumbency, Redistricting, and the Decline of Competition in U.S. House Elections." Journal of Politics 68(1): 75-88.
Altman, M. 1998. "Modeling the Effect of Mandatory District Compactness on Partisan Gerrymanders." Political Geography 17(8): 989-1012.
Altman, M. and M. McDonald. 2009. "BARD: Better Automated Redistricting." Journal of Statistical Software 10(2): 2-36.
Altman, M. and M. McDonald. 2004. "A Computation-Intensive Method for Evaluating Intent in Redistricting." Prepared for the 2004 Annual Meeting of the Midwest Political Science Association.
Anselin, L. 1995. "Local Indicators of Spatial Association." Geographical Analysis 27(2): 93-115.
Ansolabehere, S., W. Leblanc, and J. M. Snyder, Jr. 2012. "When Parties Are Not Teams: Party Positions in Single Member District and Proportional Representation Systems." Economic Theory 49(3): 521-547.
Brace, K., B. Grofman, L. Handley, and R. Niemi. 1988. "Minority Voting Equality: The 65 Percent Rule in Theory and Practice. Law \& Policy 10(1): 43-62.
Cain, B. 1985. "Assessing the Partisan Effects of Redistricting." American Political Science Review 79(2): 320-33.
Cameron, C., D. Epstein, and S. O'Halloran. 1996. "Do Majority-Minority Districts Maximize Substantive Black Representation in Congress?" American Political Science Review 9(4): 794-812.
Carson J., M. Crespin, C. Finocchiaro, and D. Rohde. 2007. "Redistricting and Party Polarization in the U.S. House of Representatives." American Politics Research 35(6): 878-904.
Cirincione, C., T. Darling, and T. O'Rourke. 2003. "Assessing South Carolina's 1990s Congressional Districting." Political Geography 19(2): 189-211.
Cox, G. W. and J. N. Katz. 2002. Elbridge Gerry's Salamander: The Electoral Consequences of the Reapportionment Revolution. Cambridge: Cambridge University Press.
Dixon, R. G. 1968. Democratic Representation: Reapportionment in Law and Politics. New York: Oxford.
Erikson, R. 1972. "Malapportionment, Gerrymandering, and Party Fortunes in Congressional Elections." American Political Science Review 66(4): 1234-1245.
Erikson, R. 2002. "Sources of Partisan Bias in U.S. Congressional Elections: An Update Stimulated by Ron Johnston's Essay." Political Geography 21: 49-54.

Fenton, J. H. 1966. Midwest Politics. New York: Holt, Reinhart and Winston.
Friedman, J. N. and R. T. Holden. "The Rising Incumbent Reelection Rate: What's Gerrymandering Got To Do With It?" Journal of Politics 71: 593-611.
Gilligan, T. W. and J. G. Matsusaka. 1999. "Structural Constraints on Partisan Bias Under the Efficient Gerrymander." Public Choice 100(1-2): 65-84.
Griggs, D. and J. Katz. 2005. "The Impact of Majority-Minority Districts on Congressional Elections." Unpublished Paper, California Institute of Technology.
Grofman, B. and G. King. 2007. "The Future of Partisan Symmetry as a Judicial Test for Partisan Gerrymandering after LULAC v. Perry." Election Law Journal 6(1): 2-35.
Gudgin, G. and P. J. Taylor. 1979. Seats, Votes, and the Spatial Organisation of Elections. London: Routledge.
Gul, F. and W. Pesendorfer. 2010. "Strategic Redistricting." American Economic Review 100(4): 1616-1641.
Herron, M. and A. Wiseman. 2008. "Gerrymanders and Theories of Law Making: A Study of Legislative Redistricting in Illinois." Journal of Politics 70(1): 151-167.
Hill, K. A. 1995. "Does the Creation of Majority Black Districts Aid Republicans? An Analysis of the 1992 Congressional Elections in Eight Southern States." Journal of Politics 57(2): 384-401.
Hirsch, S. 2003. "The United States House of Unrepresentatives: What Went Wrong in the Latest Round of Congressional Redistricting." Election Law Journal 2(2): 179-216.
Hirsch, S. 2009. "A Proposal for Redistricting Reform: A Model State Constitutional Amendment." Paper presented at American Mathematics Society, Washington, DC, January 8, 2009.
Jacobson, G. C. 2003. "Terror, Terrain, and Turnout: Explaining the 2002 Midterm Elections." Political Science Quarterly 118(1): 1-22.
Johnston, R. J. 1976. "Spatial Structure, Plurality Systems and Electoral Bias." Canadian Geographer 20: 310-328.
Johnston, R. J. and C. A. Hughes. 2008. "Constituency Delimitation and the Unintentional Gerrymander in Brisbane." Australian Geographical Studies 16(2): 99-110.
King, G. and A. Gelman. 1991. "Systemic Consequences of Incumbency Advantage in U.S. House Elections." American Journal of Political Science 35(1): 110-138.
King, G., B. Grofman, A. Gelman, and J. Katz. 2006. Brief of Amicus Curiae filed in LULAC v. Perry.
Lublin, D. 1997. The Paradox of Representation: Racial Gerrymandering and Minority Interests in Congress. Princeton, NJ: Princeton University Press.
Mann, T. E. 2007. "Polarizing the House of Representatives: How Much does Gerrymandering Matter?" In Red and Blue Nation? Characteristics and Causes of America's Polarized Parties, Pietro S. Novolo and David W. Brady, eds. Stanford, CA: Hoover Institution, pp. 263-283.
McCarty, N., K. T. Poole, and H. Rosenthal. 2009. "Does Gerrymandering Cause Polarization?" American Journal of Political Science 53(3): 666-680.
McDonald, M. 2009a. "Seats to Votes Ratios in the United States." Unpublished Paper, George Mason University.
McDonald M. 2009b. The Midwest Mapping Project. Fairfax, VA: George Mason University Press.
McDonald, M. D. and R. L. Engstrom. 1989. "Detecting Gerrymanders. In Toward Fair and Effective Representation: Political Gerrymandering and the Courts, ed. Bernard Grofman. New York, NY: Agathon, pp. 178-202.
Nagel, S. S. 1965. "Simplified Bipartisan Computer Redistricting." Stanford Law Review 17(5): 863-869.
Rodden, J. 2010. "The Geographic Distribution of Political Preferences." Annual Review of Political Science 13: 297-340.

Rydon, J. 1957. "The Relation of Votes to Seats in Elections for the Australian House of Representatives 1949-54." Political Science 9: 49-65.
Shotts, K. 2001. "The Effect of Majority-Minority Districts on Partisan Gerrymandering." American Journal of Political Science 45(1): 120-135.
Shotts, K. 2003. "Does Racial Redistricting Cause Conservative Policy Outcomes? Policy Preferences of Southern Representatives in the 1980s and 1990s." Journal of Politics 65(1): 216-226.
Taylor, P. J. and G. Gudgin. 1976. "The Myth of Non-Partisan Cartography: A Study of Electoral Biases in the English Boundary Commission's Redistribution for 1955-1970." Urban Studies 13(13): 13-25.
Vickrey, W. 1961. "On the Prevention of Gerrymandering." Political Science Quarterly 76(1): 105-110.
Weaver, J. B. and S. W. Hess. 1963. "A Procedure for Nonpartisan Districting." Yale Law Review 72(2): 228-308.
Wildgen J. and R. Engstrom. 1980. "Spatial Distribution of Partisan Support and the Seats/Votes Relationship." Legislative Studies Quarterly 5(3): 423-436.

## Rebuttal Report of Sean P. Trende in Nairne, et al. v. Ardoin, et al.

1. I have been asked by counsel to review the Declaration of William Cooper, dated August 11, 2023, and respond to it insofar as it critiques my previous report in this matter. Mr. Cooper's response, on my read, is confined to $\mathbb{T}$ I50-52 of my report.
2. First, Cooper doesn't respond to the meat of my report. For example, he does not dispute that I've calculated the moment of inertia statistic correctly, nor does he dispute that the moment of inertia is a legitimate approach for calculating the compactness of a population, nor does he dispute that I have identified the most compact groups of Black residents of voting age sufficient to constitute a majority in each district. In fact, he suggests that with some more work, the "unorthodox" approach outlined may be worthy of a peer-reviewed article.
3. To the extent this is a critique, it isn't clear why this approach would be called "unorthodox." Mr. Cooper doesn't dispute that this method of measuring population compactness is among the oldest metrics for compactness in the redistricting literature. That its application may be unorthodox has nothing to do with the reliability or legitimacy of the technique itself, which is peer-reviewed and well-established.
4. With those concessions in place, Mr. Cooper simply offers legal argumentation that, in my view, is best reserved for counsel to make and judges to decide. He writes "In a Section 2 redistricting lawsuit, compactness is not measured by where part of a minority population is located in a district. Rather, it is measured based on the distribution of the entire population of the district and the district shape."
5. That is pure legal analysis; the way to measure compactness is something for the lawyers to argue and judges to decide. To the extent it is even proper for me to respond, I would simply note that the language of Gingles prong 1 references the compactness of the minority population, not the compactness of the district itself (which must simply be 'reasonably configured'). Opining on the implications of this is not something I was retained to do, nor would I be particularly inclined to do so. I was simply retained to determine whether the minority populations were reasonably compact, upon which plaintiffs' experts do not appear to engage.
6. Cooper notes that he has never been involved in a case that involves the moment of inertia approach, and that his (and my) Maptitude for Redistricting software doesn't include this metric. What of this? It's true that most litigation focuses on the compactness of the district shape. My understanding is that defendants wish to focus on the compactness of the population. My understanding is that this reflects multiple references in Gingles, LULAC and other cases to the compactness of the population. That Mr. Cooper has never been involved in a case involving population compactness has nothing to do with the proper legal standard, in my view. But that's also something, in my view, for lawyers to argue and judges to decide. At best, the only thing relevant from his opinion here is that he doesn't dispute that the MOI approach is an accepted way to measure the compactness of populations.
7. In $\mathbb{5} 2, \mathrm{Mr}$. Cooper indirectly explains why he likely hasn't been involved in cases involving population compactness. Until fairly recently, undertaking the venture that he suggests (measuring the MOI for White and Black populations in every district in the state) would have been, as he suggests, a "monumental" project. First, shapefile data was not widely available until the 2010s. Even today, state legislative shapefiles pre2010 can be difficult to obtain. But one can easily obtain congressional district shapefiles going back to the Founding, census shapefiles going back to the 1910s, and election return data going back decades. But this is a new development. Second, computing power has increased dramatically. Running computer simulations on a statewide basis wasn't achieved until the 1990s, and didn't become commonplace until the 2000s. Chen \& Rodden ran a ground-breaking, state-of-the-art simulation in the early 2010s that produced a thousand simulated maps.
8. Today, however, my desktop computer can produce millions of simulated maps using more accurate and computationally involved techniques than those found in Chen \& Rodden in a few hours. The "monumental" task Mr. Cooper describes - which would have previously been monumental indeed - would involve a few hours gathering data, a few more hours adapting the code I've written (my senate code currently takes 135 lines
to produce five separate analyses), and then leaving my computer to run overnight. In other words, the reason Mr. Cooper hasn't encountered this type of analysis is not that it is incorrect, it is that until relatively recently it would have been infeasible.
9. The closest Mr. Cooper comes to offering expert rebuttal testimony is his final paragraph, where he suggests that my failure to look at the MOI for all of the Black and White populations in the Enacted Plan renders my analysis "topological gobbledygook." Five-syllable words aside, this is not reasoning, it is ipse dixit. Mr Cooper offers no actual justification for why a proper analysis would need to do this. I struggle to imagine such a justification.
10. Perhaps under an equal protection theory one would want to see if Whites and Blacks of voting age are treated differently. In a Section 2 case, however, I'm unsure what such an endeavor would tell us. After all, most of the districts in Louisiana don't have minority populations sufficient to comprise a majority of the population in their districts, whether compact or not. The VRA also doesn't require compact White populations, nor, to my understanding, does Louisiana law. In short, undertaking the task Mr. Cooper describes would not be difficult. To my understanding of the issues in this case, however, it would not provide useful insight either.

I declare under penalty of perjury under the laws of the State of Ohio that the foregoing is true and correct to the best of my knowledge and belief. Executed on 21 Aug. 2023 in Delaware, Ohio.


Seàn P. Trende

# UNITED STATES DISTRICT COURT FOR THE MIDDLE DISTRICT OF LOUISIANA 

DR. DOROTHY NAIRNE, JARRETT<br>LOFTON, REV. CLEE EARNEST LOWE, DR. ALICE WASHINGTON, STEVEN HARRIS, ALEXIS CALHOUN, BLACK VOTERS MATTER CAPACITY BUILDING INSTITUTE, and THE LOUISIANA STATE CONFERENCE OF THE NAACP,

Plaintiffs,
v.
R. KYLE ARDOIN, in his capacity as Secretary of State of Louisiana,

Defendant.

Case No. 3:22-cv-00178-SDD-SDJ

## SURREBUTTAL DECLARATION OF DOUGLAS JOHNSON, PH.D.

## AUGUST 21, 2023

1. I am over the age of eighteen (18) and am competent to testify to the matters set forth herein. The following is true of my own personal knowledge and I otherwise believe it to be true.
2. I am the President of National Demographics Corporation ("NDC") and have consulted on over 400 redistricting projects across the country. A copy of my current CV was attached to my prior expert report in this case. My CV lists my history of redistricting and related expert-witness experience.
3. I have been retained by counsel for the Legislative Intervenors, the Honorable Clay Schexnayder, in his official capacity as Speaker of the Louisiana House of Representatives, and the Honorable Patrick Page Cortez, in his official capacity as President of the Louisiana Senate. My compensation is $\$ 300$ per hour for my work on this case and is not contingent upon the outcome of the case.

## Scope of Work

4. Counsel asked me to respond to the August 11, 2023, rebuttal report of plaintiffs' expert, Mr. Cooper. Mr. Cooper creates and then "rebuts" inaccurate paraphrases of my previous report. In this report I will respond to Mr. Cooper's actual quotations, not some creative but distorted paraphrasing.

## Mr. Cooper's Use of Race

5. In paragraph 30 of his rebuttal report, Mr. Cooper admits that he changed his illustrative plans on the basis of race:
"I also made changes to improve the performance of the districts for black preferred candidates based on the feedback counsel received from Dr. Handley."
6. Mr. Cooper provides no elaboration on how he increased the Black percentage of voters "based on the feedback counsel received from Dr. Handley." Nor does Mr. Cooper state in which districts he increased the percentage of Black voters based on the unspecified "feedback" he received from plaintiffs' counsel, but at least in this statement he admits race was the predominant factor in the changes he made. This confirms the primary opinion of my earlier report.

## Mr. Cooper's Lack of Use of, or Lack of Disclosure of, CVAP Data

7. In paragraph 19 of his rebuttal report, Mr. Cooper makes this statement:
"Dr. Johnson claims that I did not import CVAP data into Maptitude. This is not true. Disaggregated block-level CVAP data is available in Maptitude running on my desktop computer. . . . I only examined CVAP by district at the summary level as I drew the plans."
8. The CVAP data are not in the Census Block file that Mr. Cooper disclosed as the Census Block file he used while drawing his maps.
9. The assumption underlying the statement in my report was that Mr. Cooper did, in fact, turn over the files he said he used when drawing the maps. He now states his mapping files included data that was not in the file he turned over. This apparent conflict means either that the
statement in his rebuttal report is incorrect, or he has failed to turn over the data files he used while drawing his maps. Only Mr. Cooper can answer which is the case.
10. Mr. Cooper also asserted that he provided block-level CVAP data from the Redistricting Data Hub in a file that he turned over. This is an irrelevant statement. Maptitude for Redistricting can only tabulate data "at the summary level," as Mr. Cooper asserts he did (in paragraph 19), if that data are available in the Census Block file Maptitude is using for mapping. No block-level CVAP data are in the mapping Block file that Mr. Cooper provided.

## Mr. Cooper's Inaccurate and Misleading List of "New" Majority-Black Districts

11. In paragraph 19 Mr . Cooper creates a fake paraphrase of my report:
"Dr. Johnson makes additional false claims that I overcounted the number of additional majority-Black districts in the Illustrative Plan."
12. I find it telling that he did not actually quote my report. Here is my actual statement from my opening report:
13. Plaintiffs' expert claims the 2023 Illustrative Plans shows the Legislature could have drawn three more majority-Black Senate Districts (Mr. Cooper's June 30, 2023, report at paragraph 73, claiming new majority-AP Black VAP SDs 17, 19 and 38) and six more majority-Black House Districts (paragraph 103, claiming new majority-AP Black VAP HDs $1,23,38,60,65$ and 68 ).
14. Unfortunately, plaintiffs' expert's data are incorrect. As his own June 30, 2023, report's Exhibit N-1 shows, HD23 is already majority-Black in the Enacted Map:

## [table omitted from quotation]

80. And plaintiffs' expert also fails to mention that his 2023 House Illustrative Map eliminates a majority-Black VAP district: HD62, as shown in his June 30, 2023, report's own Exhibit I-1 and N-1

## [table omitted from quotation]

81. In summary, plaintiffs' expert's claimed list of "six additional majorityBlack districts" incorrectly includes HD23 as an "additional" district, when HD23 was already majority-AP Black VAP in the enacted map. And plaintiffs' expert's
claimed list also fails to acknowledge that the 2023 House Illustrative Map also eliminates majority-AP Black VAP HD62."
82. Mr. Cooper's "rebuttal" ignores the fact that each of my statements is accurate:
a. HD23 is not a new majority-AP Black VAP district. It is already majority-AP Black VAP in the Enacted map; and
b. His list of majority-AP Black VAP districts fails to acknowledge that he redrew Enacted HD62 so that it is no longer majority-AP Black VAP.
83. Mr. Cooper's paragraph 35 is accurate when it says new majority-Black districts "can easily be determined by doing a manual count comparing the district-level percentages." But this just adds to the mystery of why the list in his earlier report was wrong, as I accurately noted in my report.

## Illustrative Map New Majority-Black Districts Are Not More Compact

15. In paragraph 13 of his rebuttal report, Mr. Cooper again gets creative in his paraphrasing:
"I have prepared additional exhibits to counter Dr. Johnson's claims in 9母 15-29 that the majority Black districts in the Illustrative Plan are not compact."
16. However, Mr. Cooper's report in this section reacts to a straw-man argument. My argument, as stated in paragraph 15 of my opening report, was that "the twenty-one districts changed between the 2022 House Illustrative Map and the 2023 House Illustrative Map made the 2023 map even less compact than the 2022 House Illustrative Map." That statement, and the analysis that followed, compared Mr. Cooper’s 2022 House Illustrative Map to his 2023 House Illustrative Map. Since the changes between the 2022 Illustrative Map and the 2023 Illustrative Map did not improve compactness, clearly improving compactness was not a significant consideration in that 2023 redraw. Yet again, the evidence is clear that race was the predominate
factor when Mr. Cooper was drawing the districts. Since my point was that the 2023 districts are not more compact than the 2022 districts, Mr. Cooper's rebuttal that the Illustrative Map districts are more compact than the Enacted Map districts is irrelevant.
17. In Mr. Cooper's paragraphs $14,15,16$ and 17 , he dwells entirely on plan-wide compactness scores of his 2023 Illustrative Map compared to the Enacted Map.
18. Mr. Cooper claims to rebut my statements about "the majority Black districts in the Illustrative Plan" but never mentions the majority Black districts.
19. Even more oddly, the referenced paragraphs of my report also did not mention "the majority Black districts." Mr. Cooper seems confused about what he is rebutting in this portion of his report.
20. In this section of his "rebuttal" Mr. Cooper simply claims the raw numbers presented in the Maptitude reports declare his maps are "more compact" than the Enacted Maps. He does not state, and thus I cannot respond or reply to, how he came to that conclusion. There are many ways to look at compactness data. One common, but mistaken, approach is to look at average scores. This is a poor approach. Consider two maps: one map where every district is reasonably compact, and another map where half the districts are highly compact and the other half are extremely non-compact. The average score for both maps would be the same, despite the significant compactness problems in the second map. A second way to analyze compactness data is to select a threshold below which a district is considered non-compact and then count how many districts in each map are non-compact. (And to repeat that for each compactness measure in use). These are just two of the ways compactness data can be evaluated - there are many others. Mr. Cooper does not state how he is reviewing the data. He simply makes a questionable, unsupported, and overly broad blanket claim that his map is "more compact."
21. What is clear, however, is that Mr. Cooper's "Rebuttal" report does not raise any concerns with nor rebut the compactness analysis contained in my report.
22. Despite Mr. Cooper's statement that his compactness rebuttal also addresses Paragraphs 22 through 26 of my report, those paragraphs of my report describe the way Maptitude for Redistricting software works, not compactness.
23. Similarly, Paragraphs 27 through 29 of my report address how Mr. Cooper's own report states that the number of majority-Black House and Senate districts has increased faster than the rate of increase in the Black population according to Mr. Cooper's own data. Despite Mr. Cooper's reference to them, those paragraphs also are not part of my report's discussion of compactness.

## Being "Aware" of Data Does Not Equal Using that Data

24. In paragraph 23, Mr. Cooper writes:
"Contrary to Dr. Johnson's claim in $9 \mathbb{1} 36$-37, I was aware of cultural regions, MSAs, and Planning Districts as I developed the Illustrative Plans. Of course, there is no way to avoid multiple regional splits and comply with one-person, one-vote and the Voting Rights Act."
25. Mr. Cooper frames his entire discussion of cultural regions, MSAs and Planning Districts as factors other than race that he claims to consider when drawing his illustrative plans. As a professional demographer and someone who has created hundreds of redistricting plans in my career, I find Mr. Cooper's statement that "I was aware" noteworthy for its omission-that is, that he made no claim to have actually drawn any lines based on those regions. One can be "aware" that the Mississippi is a river, or that Texas is west of Louisiana, but being "aware" of something provides no evidence that one factored something into the drawing of maps.
26. I agree with Mr. Cooper that one or two crossings of a regional border may be necessary to "comply with one-person, one-vote" requirements. But the Illustrative Maps cross
numerous regional borders five, six, seven or even eight times. One-person, one-vote requirements can require that one district cross a regional boundary on one side and that another district cross the same regional boundary on the other side, as one or two crossings may be necessary to ensure that districts on each side of the region in question can share the region's population to meet equal population requirements.
27. Equal population requirements do not require more than two boundary crossings. Yet, Mr. Cooper's 2023 Illustrative Senate and House maps cross many regional boundaries five, six, seven and even eight times. Those crossings cannot be explained by the need to meet population requirements.
28. It may be true that Mr. Cooper was "aware" of those regional boundaries. But the five, six, seven and eight crossings of those boundaries prove that race, not the regional boundaries, was his predominate consideration when drawing his district lines. ${ }^{1}$

## Pure Luck Is Unlikely to Result in Eight House Districts between 50.2 and 50.9\% AP Black VAP

29. In paragraph 29 of his rebuttal report, Mr. Cooper states:
"I did not shade or color-code census blocks by race percentages, nor did I know the exact racial percentage of any VTD while I was drawing the map."
30. Yet the precision of his 2023 Illustrative House map, where eight House districts are between $50.2 \%$ and $50.9 \%$ AP Black VAP, the unusual shape of some of those districts, and the way those districts ignore city, region, and major roads as their borders, prove one of three scenarios had to be true:

[^2]a. Mr. Cooper had AP Black VAP data on his screen;
b. Mr. Cooper has so much experience drawing maps in Louisiana that he knows the AP Black VAP percentage of each Vote Tabulation District without needing to put the shading on his screen; or
c. Mr. Cooper did a trial-and-error approach of adding in 'this or that' Vote Tabulation District until the districting in question reached his desired barely-over-50\% target in each of those districts.
31. Any of these three scenarios prove Mr. Cooper used race as the predominant factor when drawing the Illustrative Maps.
32. 2023 Illustrative House Map District 69 provides an illustration of what Mr. Cooper asks the Court to believe: that the district boundary shown below arrived at precisely 50.2 percent AP Black VAP without Mr. Cooper looking at - or using pre-existing detailed knowledge of racial data. Note how the lines in the north go almost, but not quite, to the Baton Rouge - Merrydale border; how the lines zig and zag through northeast Baton Rouge (near Monticello) seemingly randomly; how the border goes all the way to the City's eastern boundary along the Lively Bayou, then veers back in through Baton Rouge neighborhoods just north of Interstate 12, and extends outside Baton Rouge to include the unincorporated Cottages at Southfork / Regency Club Apartments area rather than staying in Baton Rouge and including the section of the City below I12 along Harrells Ferry Road:

33. Each of these decisions contributed to the creation of a district that is precisely $50.2 \%$ AP Black VAP. In my experience, it is extremely unlikely that one district would end up at such a barely-majority figure purely by luck if drawn by a mapper who "did not shade or colorcode census blocks by race percentages, nor did I know the exact racial percentage of any VTD while I was drawing the map."
34. HD69 is not unique. In the Illustrative House Map a total of eight districts ended up - we are apparently supposed to believe 'by luck' - at 50.2 to 50.9 percent AP Black VAP.
35. Mr. Cooper presents two conflicting claims in paragraphs 29 and 30 of his rebuttal report:
"I did not shade or color-code census blocks by race percentages, nor did I know the exact racial percentage of any VTD while I was drawing the map"

AND
"I made changes to improve the performance of the districts for black preferred candidates based on the feedback counsel received from Dr. Handley."
36. These eight very precisely-drawn districts and the lack of any explanation from Mr . Cooper regarding how he arrived at these lines (other than that they created majority-AP Black VAP districts) can only lead to the conclusion that his use of race as a predominate factor when making "changes to improve the performance of the district for black preferred candidates" is the accurate statement.

## Parish Splits

37. In Paragraph 37, Mr. Cooper lauds that his map contains fewer Parish Splits than the Enacted Map. But in his Paragraph 26 Mr. Cooper acknowledges that dividing a Parish can "make perfect sense."
38. I agree with Mr. Cooper's opinion in Paragraph 26 of his Rebuttal report that a Parish split is not automatically negative, which leads to the logical conclusion that raw counts of the number of split Parishes is not a conclusive factor in one map being preferable to another.
39. I also note that Mr. Cooper seems unaware that his statement that it "makes perfect sense" for both the Enacted and Illustrative House District 54 to cross the Parish, Planning District, MSA and "Key Cultural Region" border undermines the eleven pages he spent in his original report trying to assert these were important boundaries.

## "Minor" Changes

40. In Paragraph 7, Mr. Cooper repeats his "minor" characterization of the differences between the original Illustrative Maps and the 2023 Illustrative Maps:
"The changes I made between the 2022 Illustrative Plan and the now-current Illustrative Plan are minor."
41. As I demonstrated in my prior report, and as Mr. Cooper acknowledged as accurate in paragraph 12 of his Rebuttal report, the 2023 Illustrative House Map moves 83,489 people into a different district assignment than in the original Illustrative House Map.
42. As I demonstrated in my prior report, and as Mr. Cooper acknowledged as accurate in paragraph 12 of his Rebuttal report, the 2023 Illustrative Senate Map moves 35,276 people into a different district assignment than in the original Illustrative Senate Map.
43. I disagree that changing over 118,000 district assignments is "Minor."
44. In paragraph 28 of his report, Mr. Cooper makes a similar (and also inaccurate) claim that the differences between the House and Senate maps he incorrectly analyzed as the "Enacted" maps and the actual Enacted maps are "substantially similar."
45. Since Mr. Cooper has yet to provide the geographic files for the map he incorrectly analyzed as the "Enacted" maps, I cannot calculate the precise count of how many people he had in the wrong districts. From a visual review of the images in his reports and an eyeball comparison of those images with the population data in Maptitude, there are at least tens of thousands of people moved between the different versions of the maps. My previous report maps the substantial differences between the different versions. In my opinion, maps that reassign tens of thousands of people are rarely "substantially similar."
46. The attached exhibits 1 (for the Senate) and 2 (for the House) report the total population, population deviation, percentage population deviation and AP Black VAP percentage for each House and Senate district in each plan. A comparison of these exhibits, in addition to the maps in my earlier reports, reinforce the significant, or non-"minor," racial and other differences between the enacted plans and Mr. Cooper's various rounds of illustrative maps.

All opinions in this report are subject to amendment in the event additional relevant information is received.

I declare under penalty of perjury that the foregoing is true and correct.
Executed this 21st day of August, 2023.


Douglas Johnson, Ph.D.

## Exhibit 1

| District | Population | Deviation | \% Deviation | \% 18+_AP_Blk |
| :---: | :---: | :---: | :---: | :---: |
| 37 | 113,500 | -5,930 | -5.0\% | 24.9\% |
| 34 | 113,538 | -5,892 | -4.9\% | 63.7\% |
| 30 | 113,737 | -5,693 | -4.8\% | 12.2\% |
| 17 | 114,040 | -5,390 | -4.5\% | 30.1\% |
| 32 | 114,168 | -5,262 | -4.4\% | 18.1\% |
| 12 | 114,171 | -5,259 | -4.4\% | 22.3\% |
| 28 | 114,358 | -5,072 | -4.2\% | 22.7\% |
| 11 | 114,481 | -4,949 | -4.1\% | 8.4\% |
| 13 | 114,815 | -4,615 | -3.9\% | 7.7\% |
| 1 | 115,622 | -3,808 | -3.2\% | 21.4\% |
| 2 | 115,780 | -3,650 | -3.1\% | 57.7\% |
| 15 | 115,848 | -3,582 | -3.0\% | 73.9\% |
| 33 | 116,896 | -2,534 | -2.1\% | 23.0\% |
| 27 | 117,231 | -2,199 | -1.8\% | 28.8\% |
| 6 | 117,595 | -1,835 | -1.5\% | 22.9\% |
| 35 | 117,819 | -1,611 | -1.3\% | 15.5\% |
| 4 | 117,821 | -1,609 | -1.3\% | 57.2\% |
| 21 | 118,105 | -1,325 | -1.1\% | 26.5\% |
| 18 | 118,250 | -1,180 | -1.0\% | 15.3\% |
| 16 | 119,031 | -399 | -0.3\% | 19.6\% |
| 3 | 119,519 | 89 | 0.1\% | 57.3\% |
| 29 | 119,834 | 404 | 0.3\% | 56.6\% |
| 14 | 120,750 | 1,320 | 1.1\% | 58.0\% |
| 31 | 120,902 | 1,472 | 1.2\% | 23.4\% |
| 8 | 120,920 | 1,490 | 1.2\% | 25.8\% |
| 25 | 122,998 | 3,568 | 3.0\% | 20.8\% |
| 10 | 123,168 | 3,738 | 3.1\% | 12.2\% |
| 19 | 123,416 | 3,986 | 3.3\% | 28.7\% |
| 20 | 123,445 | 4,015 | 3.4\% | 12.7\% |
| 5 | 123,995 | 4,565 | 3.8\% | 50.2\% |
| 26 | 124,178 | 4,748 | 4.0\% | 16.0\% |
| 38 | 124,283 | 4,853 | 4.1\% | 31.0\% |
| 7 | 124,487 | 5,057 | 4.2\% | 59.5\% |
| 36 | 124,512 | 5,082 | 4.3\% | 25.2\% |
| 9 | 124,537 | 5,107 | 4.3\% | 11.9\% |
| 24 | 124,799 | 5,369 | 4.5\% | 53.1\% |
| 39 | 124,908 | 5,478 | 4.6\% | 63.7\% |
| 23 | 125,014 | 5,584 | 4.7\% | 12.8\% |
| 22 | 125,286 | 5,856 | 4.9\% | 26.1\% |
|  |  |  |  |  |
|  | 120,116 | 686 | 0.57\% | Ave for Black-Majority |
|  | 119,160 | -270 | -0.23\% | Ave for Not-Black-Majority |

Population Deviation


Case 3:22-cv-00178-SDD-SDJ Document 152-5 10/10/23 Page 16 of 26
Dr. Douglas Johnson
Population Deviation

| District | Population | Deviation | \% Deviation | \% 18+_AP_Blk |
| :---: | :---: | :---: | :---: | :---: |
| 5 | 113,653 | -5,777 | -4.8\% | 51.8\% |
| 18 | 113,880 | -5,550 | -4.6\% | 14.7\% |
| 4 | 113,887 | -5,543 | -4.6\% | 58.1\% |
| 15 | 114,100 | -5,330 | -4.5\% | 54.8\% |
| 12 | 114,171 | -5,259 | -4.4\% | 22.3\% |
| 3 | 114,295 | -5,135 | -4.3\% | 51.3\% |
| 29 | 114,304 | -5,126 | -4.3\% | 50.9\% |
| 35 | 114,324 | -5,106 | -4.3\% | 20.1\% |
| 37 | 114,442 | -4,988 | -4.2\% | 22.0\% |
| 11 | 114,481 | -4,949 | -4.1\% | 8.4\% |
| 38 | 114,693 | -4,737 | -4.0\% | 53.2\% |
| 14 | 114,973 | -4,457 | -3.7\% | 55.9\% |
| 34 | 115,559 | -3,871 | -3.2\% | 63.0\% |
| 7 | 115,744 | -3,686 | -3.1\% | 52.7\% |
| 36 | 116,808 | -2,622 | -2.2\% | 15.5\% |
| 39 | 116,965 | -2,465 | -2.1\% | 52.5\% |
| 1 | 117,408 | -2,022 | -1.7\% | 21.9\% |
| 20 | 117,817 | -1,613 | -1.4\% | 12.8\% |
| 6 | 118,131 | -1,299 | -1.1\% | 26.5\% |
| 16 | 119,031 | -399 | -0.3\% | 19.6\% |
| 31 | 119,801 | 371 | 0.3\% | 25.9\% |
| 24 | 120,600 | 1,170 | 1.0\% | 52.0\% |
| 13 | 120,616 | 1,186 | 1.0\% | 11.2\% |
| 22 | 121,992 | 2,562 | 2.1\% | 28.2\% |
| 19 | 122,620 | 3,190 | 2.7\% | 50.1\% |
| 28 | 123,409 | 3,979 | 3.3\% | 20.3\% |
| 27 | 123,854 | 4,424 | 3.7\% | 35.8\% |
| 26 | 123,880 | 4,450 | 3.7\% | 15.2\% |
| 2 | 124,072 | 4,642 | 3.9\% | 51.7\% |
| 30 | 124,341 | 4,911 | 4.1\% | 13.7\% |
| 8 | 124,379 | 4,949 | 4.1\% | 19.8\% |
| 32 | 124,599 | 5,169 | 4.3\% | 18.4\% |
| 23 | 124,628 | 5,198 | 4.4\% | 13.9\% |
| 33 | 124,802 | 5,372 | 4.5\% | 26.6\% |
| 21 | 124,879 | 5,449 | 4.6\% | 25.5\% |
| 25 | 125,021 | 5,591 | 4.7\% | 13.6\% |
| 10 | 125,111 | 5,681 | 4.8\% | 11.4\% |
| 17 | 125,157 | 5,727 | 4.8\% | 54.5\% |
| 9 | 125,330 | 5,900 | 4.9\% | 12.2\% |
|  |  |  |  |  |
|  | 117,187 | -2,243 | -1.88\% | Ave for Black-Majority |
|  | 120,685 | 1,255 | 1.05\% | Ave for Not-Black-Majority |

## Exhibit 2

| District | Population | Deviation | \% Deviation | \% 18+_AP_Blk |
| :---: | :---: | :---: | :---: | :---: |
| 20 | 42,204 | -2,156 | -4.86\% | 15.5\% |
| 39 | 42,262 | -2,098 | -4.73\% | 28.4\% |
| 38 | 42,309 | -2,051 | -4.62\% | 23.1\% |
| 30 | 42,313 | -2,047 | -4.61\% | 20.4\% |
| 16 | 42,328 | -2,032 | -4.58\% | 62.5\% |
| 32 | 42,409 | -1,951 | -4.40\% | 14.4\% |
| 11 | 42,458 | -1,902 | -4.29\% | 56.4\% |
| 44 | 42,506 | -1,854 | -4.18\% | 59.5\% |
| 91 | 42,508 | -1,852 | -4.17\% | 40.7\% |
| 84 | 42,520 | -1,840 | -4.15\% | 19.9\% |
| 88 | 42,542 | -1,818 | -4.10\% | 13.4\% |
| 43 | 42,630 | -1,730 | -3.90\% | 14.5\% |
| 24 | 42,692 | -1,668 | -3.76\% | 10.2\% |
| 57 | 42,697 | -1,663 | -3.75\% | 57.9\% |
| 23 | 42,708 | -1,652 | -3.72\% | 50.9\% |
| 17 | 42,807 | -1,553 | -3.50\% | 63.3\% |
| 72 | 42,817 | -1,543 | -3.48\% | 52.7\% |
| 54 | 42,849 | -1,511 | -3.41\% | 3.1\% |
| 28 | 42,851 | -1,509 | -3.40\% | 26.8\% |
| 62 | 42,969 | -1,391 | -3.14\% | 55.1\% |
| 71 | 43,001 | -1,359 | -3.06\% | 11.3\% |
| 25 | 43,136 | -1,224 | -2.76\% | 23.5\% |
| 53 | 43,160 | -1,200 | -2.71\% | 20.2\% |
| 52 | 43,163 | -1,197 | -2.70\% | 14.7\% |
| 19 | 43,183 | -1,177 | -2.65\% | 27.5\% |
| 50 | 43,190 | -1,170 | -2.64\% | 32.1\% |
| 76 | 43,228 | -1,132 | -2.55\% | 26.1\% |
| 22 | 43,238 | -1,122 | -2.53\% | 24.7\% |
| 7 | 43,279 | -1,081 | -2.44\% | 29.4\% |
| 77 | 43,291 | -1,069 | -2.41\% | 8.3\% |
| 95 | 43,337 | -1,023 | -2.31\% | 13.6\% |
| 105 | 43,366 | -994 | -2.24\% | 35.9\% |
| 45 | 43,372 | -988 | -2.23\% | 14.0\% |
| 9 | 43,401 | -959 | -2.16\% | 21.1\% |
| 98 | 43,431 | -929 | -2.09\% | 17.8\% |
| 90 | 43,451 | -909 | -2.05\% | 21.0\% |
| 67 | 43,566 | -794 | -1.79\% | 51.9\% |
| 46 | 43,596 | -764 | -1.72\% | 21.2\% |
| 81 | 43,632 | -728 | -1.64\% | 11.8\% |
| 66 | 43,703 | -657 | -1.48\% | 18.5\% |
| 103 | 43,764 | -596 | -1.34\% | 25.0\% |
| 15 | 43,934 | -426 | -0.96\% | 6.2\% |
| 83 | 43,956 | -404 | -0.91\% | 54.6\% |


| 61 | 44,049 | -311 | -0.70\% | 75.3\% |
| :---: | :---: | :---: | :---: | :---: |
| 10 | 44,137 | -223 | -0.50\% | 32.9\% |
| 6 | 44,174 | -186 | -0.42\% | 16.5\% |
| 74 | 44,185 | -175 | -0.39\% | 6.8\% |
| 13 | 44,187 | -173 | -0.39\% | 27.0\% |
| 65 | 44,189 | -171 | -0.39\% | 21.9\% |
| 93 | 44,224 | -136 | -0.31\% | 56.6\% |
| 27 | 44,225 | -135 | -0.30\% | 11.0\% |
| 33 | 44,243 | -117 | -0.26\% | 7.7\% |
| 14 | 44,279 | -81 | -0.18\% | 22.2\% |
| 85 | 44,303 | -57 | -0.13\% | 35.5\% |
| 21 | 44,329 | -31 | -0.07\% | 55.4\% |
| 100 | 44,360 | 0 | 0.00\% | 80.8\% |
| 29 | 44,544 | 184 | 0.41\% | 73.6\% |
| 78 | 44,584 | 224 | 0.51\% | 9.3\% |
| 68 | 44,607 | 247 | 0.56\% | 20.2\% |
| 26 | 44,636 | 276 | 0.62\% | 64.3\% |
| 63 | 44,638 | 278 | 0.63\% | 69.7\% |
| 41 | 44,744 | 384 | 0.87\% | 20.1\% |
| 60 | 44,864 | 504 | 1.14\% | 37.7\% |
| 1 | 44,941 | 581 | 1.31\% | 23.1\% |
| 36 | 45,062 | 702 | 1.58\% | 15.0\% |
| 55 | 45,124 | 764 | 1.72\% | 24.3\% |
| 92 | 45,176 | 816 | 1.84\% | 30.2\% |
| 58 | 45,194 | 834 | 1.88\% | 56.8\% |
| 104 | 45,197 | 837 | 1.89\% | 14.0\% |
| 89 | 45,218 | 858 | 1.93\% | 3.7\% |
| 102 | 45,264 | 904 | 2.04\% | 65.6\% |
| 40 | 45,296 | 936 | 2.11\% | 54.6\% |
| 8 | 45,325 | 965 | 2.18\% | 19.9\% |
| 48 | 45,339 | 979 | 2.21\% | 17.9\% |
| 101 | 45,346 | 986 | 2.22\% | 60.2\% |
| 5 | 45,375 | 1,015 | 2.29\% | 19.4\% |
| 70 | 45,398 | 1,038 | 2.34\% | 21.2\% |
| 75 | 45,463 | 1,103 | 2.49\% | 27.8\% |
| 87 | 45,538 | 1,178 | 2.66\% | 59.1\% |
| 79 | 45,579 | 1,219 | 2.75\% | 11.6\% |
| 64 | 45,619 | 1,259 | 2.84\% | 6.6\% |
| 2 | 45,642 | 1,282 | 2.89\% | 67.4\% |
| 42 | 45,662 | 1,302 | 2.94\% | 18.7\% |
| 49 | 45,670 | 1,310 | 2.95\% | 10.1\% |
| 37 | 45,672 | 1,312 | 2.96\% | 17.5\% |
| 94 | 45,685 | 1,325 | 2.99\% | 9.4\% |
| 59 | 45,699 | 1,339 | 3.02\% | 18.7\% |


| 96 | 45,706 | 1,346 | $3.03 \%$ |  <br> 97 |
| :---: | :---: | :---: | :---: | :---: |
| 45,713 | 1,353 | $3.05 \%$ | $72.3 \%$ |  |
| 86 | 45,736 | 1,376 | $3.10 \%$ |  |
| 34 | 45,879 | 1,519 | $3.42 \%$ | $72.9 \%$ |
| 12 | 45,889 | 1,529 | $3.45 \%$ |  |
| 99 | 45,922 | 1,562 | $3.52 \%$ | $19.0 \%$ |
| 35 | 45,975 | 1,615 | $3.64 \%$ | $78.1 \%$ |
| 3 | 46,122 | 1,762 | $3.97 \%$ | $12.4 \%$ |
| 82 | 46,202 | 1,842 | $4.15 \%$ | $73.9 \%$ |
| 80 | 46,249 | 1,889 | $4.26 \%$ | $11.6 \%$ |
| 51 | 46,319 | 1,959 | $4.42 \%$ | $14.9 \%$ |
| 56 | 46,361 | 2,001 | $4.51 \%$ | $21.6 \%$ |
| 4 | 46,405 | 2,045 | $4.61 \%$ | $20.2 \%$ |
| 47 | 46,480 | 2,120 | $4.78 \%$ | $72.1 \%$ |
| 18 | 46,494 | 2,134 | $4.81 \%$ | $11.3 \%$ |
| 73 | 46,503 | 2,143 | $4.83 \%$ | $30.9 \%$ |
| 31 | 46,510 | 2,150 | $4.85 \%$ | $15.0 \%$ |
| 69 | 46,550 | 2,190 | $4.94 \%$ | $17.0 \%$ |
|  |  |  |  | $23.7 \%$ |
|  | 44,344 | -16 | $-0.04 \%$ | Ave for Not-Black-Majority |
|  | 44,401 | 41 | $0.09 \%$ | Ave for Black-Majority |


| District | Population | Deviation | \% Deviation | \% 18+_AP_Blk |
| :---: | :---: | :---: | :---: | :---: |
| 19 | 42,229 | -2,131 | -4.80\% | 13.2\% |
| 39 | 42,262 | -2,098 | -4.73\% | 28.4\% |
| 16 | 42,314 | -2,046 | -4.61\% | 59.8\% |
| 14 | 42,319 | -2,041 | -4.60\% | 37.7\% |
| 35 | 42,335 | -2,025 | -4.56\% | 8.7\% |
| 34 | 42,400 | -1,960 | -4.42\% | 50.0\% |
| 51 | 42,400 | -1,960 | -4.42\% | 22.2\% |
| 21 | 42,463 | -1,897 | -4.28\% | 54.3\% |
| 28 | 42,508 | -1,852 | -4.17\% | 24.5\% |
| 91 | 42,508 | -1,852 | -4.17\% | 40.7\% |
| 84 | 42,520 | -1,840 | -4.15\% | 19.9\% |
| 43 | 42,630 | -1,730 | -3.90\% | 14.5\% |
| 38 | 42,695 | -1,665 | -3.75\% | 50.8\% |
| 57 | 42,703 | -1,657 | -3.74\% | 53.4\% |
| 5 | 42,708 | -1,652 | -3.72\% | 50.9\% |
| 22 | 42,723 | -1,637 | -3.69\% | 18.7\% |
| 2 | 42,776 | -1,584 | -3.57\% | 67.3\% |
| 69 | 42,827 | -1,533 | -3.46\% | 50.2\% |
| 54 | 42,849 | -1,511 | -3.41\% | 3.1\% |
| 56 | 42,898 | -1,462 | -3.30\% | 20.4\% |
| 46 | 42,944 | -1,416 | -3.19\% | 17.9\% |
| 30 | 42,952 | -1,408 | -3.17\% | 20.6\% |
| 17 | 43,007 | -1,353 | -3.05\% | 54.5\% |
| 50 | 43,010 | -1,350 | -3.04\% | 20.4\% |
| 7 | 43,102 | -1,258 | -2.84\% | 18.0\% |
| 53 | 43,160 | -1,200 | -2.71\% | 20.2\% |
| 52 | 43,163 | -1,197 | -2.70\% | 14.7\% |
| 15 | 43,211 | -1,149 | -2.59\% | 8.3\% |
| 76 | 43,228 | -1,132 | -2.55\% | 26.1\% |
| 77 | 43,291 | -1,069 | -2.41\% | 8.3\% |
| 27 | 43,325 | -1,035 | -2.33\% | 9.1\% |
| 105 | 43,366 | -994 | -2.24\% | 35.9\% |
| 45 | 43,372 | -988 | -2.23\% | 14.0\% |
| 9 | 43,401 | -959 | -2.16\% | 21.1\% |
| 98 | 43,431 | -929 | -2.09\% | 17.8\% |
| 90 | 43,451 | -909 | -2.05\% | 21.0\% |
| 47 | 43,617 | -743 | -1.67\% | 9.0\% |
| 88 | 43,658 | -702 | -1.58\% | 11.8\% |
| 41 | 43,722 | -638 | -1.44\% | 26.8\% |
| 103 | 43,764 | -596 | -1.34\% | 25.0\% |
| 11 | 43,867 | -493 | -1.11\% | 55.5\% |
| 60 | 43,920 | -440 | -0.99\% | 52.8\% |
| 61 | 43,938 | -422 | -0.95\% | 50.2\% |


| 83 | 43,956 | -404 | -0.91\% | 54.6\% |
| :---: | :---: | :---: | :---: | :---: |
| 20 | 43,964 | -396 | -0.89\% | 35.8\% |
| 36 | 44,017 | -343 | -0.77\% | 11.9\% |
| 101 | 44,038 | -322 | -0.73\% | 50.8\% |
| 10 | 44,137 | -223 | -0.50\% | 32.9\% |
| 73 | 44,181 | -179 | -0.40\% | 21.3\% |
| 74 | 44,185 | -175 | -0.39\% | 6.8\% |
| 66 | 44,223 | -137 | -0.31\% | 18.8\% |
| 93 | 44,224 | -136 | -0.31\% | 56.6\% |
| 85 | 44,303 | -57 | -0.13\% | 35.5\% |
| 100 | 44,360 | 0 | 0.00\% | 80.8\% |
| 1 | 44,473 | 113 | 0.25\% | 55.3\% |
| 78 | 44,584 | 224 | 0.51\% | 9.3\% |
| 72 | 44,738 | 378 | 0.85\% | 50.6\% |
| 25 | 44,786 | 426 | 0.96\% | 16.2\% |
| 13 | 44,864 | 504 | 1.14\% | 24.2\% |
| 65 | 44,864 | 504 | 1.14\% | 56.0\% |
| 29 | 44,991 | 631 | 1.42\% | 57.8\% |
| 3 | 45,006 | 646 | 1.46\% | 58.8\% |
| 12 | 45,007 | 647 | 1.46\% | 18.9\% |
| 55 | 45,124 | 764 | 1.72\% | 24.3\% |
| 40 | 45,170 | 810 | 1.83\% | 54.9\% |
| 92 | 45,176 | 816 | 1.84\% | 30.2\% |
| 23 | 45,186 | 826 | 1.86\% | 50.6\% |
| 104 | 45,197 | 837 | 1.89\% | 14.0\% |
| 49 | 45,204 | 844 | 1.90\% | 11.6\% |
| 89 | 45,218 | 858 | 1.93\% | 3.7\% |
| 102 | 45,264 | 904 | 2.04\% | 65.6\% |
| 96 | 45,266 | 906 | 2.04\% | 55.5\% |
| 8 | 45,325 | 965 | 2.18\% | 19.9\% |
| 33 | 45,338 | 978 | 2.20\% | 7.7\% |
| 63 | 45,354 | 994 | 2.24\% | 57.2\% |
| 67 | 45,379 | 1,019 | 2.30\% | 51.6\% |
| 48 | 45,413 | 1,053 | 2.37\% | 18.2\% |
| 58 | 45,435 | 1,075 | 2.42\% | 51.3\% |
| 37 | 45,438 | 1,078 | 2.43\% | 18.7\% |
| 75 | 45,463 | 1,103 | 2.49\% | 27.8\% |
| 86 | 45,487 | 1,127 | 2.54\% | 20.0\% |
| 87 | 45,538 | 1,178 | 2.66\% | 59.1\% |
| 62 | 45,579 | 1,219 | 2.75\% | 26.8\% |
| 79 | 45,579 | 1,219 | 2.75\% | 11.6\% |
| 94 | 45,685 | 1,325 | 2.99\% | 9.4\% |
| 59 | 45,699 | 1,339 | 3.02\% | 18.7\% |
| 97 | 45,713 | 1,353 | 3.05\% | 72.3\% |


| 71 | 45,787 | 1,427 | $3.22 \%$ | $14.5 \%$ |
| :---: | :---: | :---: | :---: | :---: |
| 44 | 45,853 | 1,493 | $3.37 \%$ |  |
| 68 | 45,870 | 1,510 | $3.40 \%$ | $54.2 \%$ |
| 99 | 45,922 | 1,562 | $3.52 \%$ | $78.1 \%$ |
| 42 | 45,959 | 1,599 | $3.60 \%$ | $16.1 \%$ |
| 70 | 45,990 | 1,630 | $3.67 \%$ | $16.8 \%$ |
| 64 | 45,997 | 1,637 | $3.69 \%$ | $9.2 \%$ |
| 24 | 46,036 | 1,676 | $3.78 \%$ | $11.8 \%$ |
| 95 | 46,063 | 1,703 | $3.84 \%$ | $8.8 \%$ |
| 82 | 46,202 | 1,842 | $4.15 \%$ | $11.6 \%$ |
| 18 | 46,226 | 1,866 | $4.21 \%$ | $25.7 \%$ |
| 4 | 46,232 | 1,872 | $4.22 \%$ | $57.5 \%$ |
| 80 | 46,249 | 1,889 | $4.26 \%$ | $14.9 \%$ |
| 6 | 46,262 | 1,902 | $4.29 \%$ | $16.0 \%$ |
| 32 | 46,476 | 2,116 | $4.77 \%$ | $13.4 \%$ |
| 81 | 46,481 | 2,121 | $4.78 \%$ | $8.2 \%$ |
| 31 | 46,510 | 2,150 | $4.85 \%$ |  |
| 26 | 46,544 | 2,184 | $4.92 \%$ | $17.0 \%$ |
|  |  |  |  | 63 |
|  | 44,325 | -35 | $-0.08 \%$ | Ave for Not-Black-Majority |
|  | 44,428 | 68 | $0.15 \%$ | Ave for Black-Majority |


| District | Population | Deviation | \% Deviation | \% 18+_AP_Blk |
| :---: | :---: | :---: | :---: | :---: |
| 19 | 42,229 | -2,131 | -4.80\% | 13.2\% |
| 39 | 42,262 | -2,098 | -4.73\% | 28.4\% |
| 48 | 42,289 | -2,071 | -4.67\% | 18.2\% |
| 16 | 42,314 | -2,046 | -4.61\% | 59.8\% |
| 14 | 42,319 | -2,041 | -4.60\% | 37.7\% |
| 35 | 42,335 | -2,025 | -4.56\% | 8.7\% |
| 34 | 42,400 | -1,960 | -4.42\% | 50.0\% |
| 21 | 42,463 | -1,897 | -4.28\% | 54.3\% |
| 28 | 42,508 | -1,852 | -4.17\% | 24.5\% |
| 91 | 42,508 | -1,852 | -4.17\% | 40.7\% |
| 58 | 42,518 | -1,842 | -4.15\% | 50.5\% |
| 84 | 42,520 | -1,840 | -4.15\% | 19.9\% |
| 29 | 42,617 | -1,743 | -3.93\% | 58.6\% |
| 43 | 42,630 | -1,730 | -3.90\% | 14.5\% |
| 38 | 42,695 | -1,665 | -3.75\% | 50.8\% |
| 5 | 42,708 | -1,652 | -3.72\% | 50.9\% |
| 22 | 42,723 | -1,637 | -3.69\% | 18.7\% |
| 73 | 42,733 | -1,627 | -3.67\% | 22.5\% |
| 2 | 42,776 | -1,584 | -3.57\% | 67.3\% |
| 54 | 42,849 | -1,511 | -3.41\% | 3.1\% |
| 46 | 42,944 | -1,416 | -3.19\% | 17.9\% |
| 30 | 42,952 | -1,408 | -3.17\% | 20.6\% |
| 17 | 43,007 | -1,353 | -3.05\% | 54.5\% |
| 7 | 43,102 | -1,258 | -2.84\% | 18.0\% |
| 53 | 43,160 | -1,200 | -2.71\% | 20.2\% |
| 52 | 43,163 | -1,197 | -2.70\% | 14.7\% |
| 50 | 43,190 | -1,170 | -2.64\% | 32.1\% |
| 15 | 43,211 | -1,149 | -2.59\% | 8.3\% |
| 76 | 43,228 | -1,132 | -2.55\% | 26.1\% |
| 49 | 43,234 | -1,126 | -2.54\% | 10.3\% |
| 77 | 43,291 | -1,069 | -2.41\% | 8.3\% |
| 27 | 43,325 | -1,035 | -2.33\% | 9.1\% |
| 105 | 43,366 | -994 | -2.24\% | 35.9\% |
| 45 | 43,372 | -988 | -2.23\% | 14.0\% |
| 9 | 43,401 | -959 | -2.16\% | 21.1\% |
| 98 | 43,431 | -929 | -2.09\% | 17.8\% |
| 90 | 43,451 | -909 | -2.05\% | 21.0\% |
| 57 | 43,462 | -898 | -2.02\% | 57.3\% |
| 47 | 43,617 | -743 | -1.67\% | 9.0\% |
| 88 | 43,658 | -702 | -1.58\% | 11.8\% |
| 41 | 43,722 | -638 | -1.44\% | 26.8\% |
| 103 | 43,764 | -596 | -1.34\% | 25.0\% |
| 63 | 43,863 | -497 | -1.12\% | 57.4\% |


| 11 | 43,867 | -493 | -1.11\% | 55.5\% |
| :---: | :---: | :---: | :---: | :---: |
| 61 | 43,938 | -422 | -0.95\% | 50.2\% |
| 83 | 43,956 | -404 | -0.91\% | 54.6\% |
| 20 | 43,964 | -396 | -0.89\% | 35.8\% |
| 36 | 44,017 | -343 | -0.77\% | 11.9\% |
| 10 | 44,137 | -223 | -0.50\% | 32.9\% |
| 69 | 44,159 | -201 | -0.45\% | 51.8\% |
| 74 | 44,185 | -175 | -0.39\% | 6.8\% |
| 66 | 44,223 | -137 | -0.31\% | 18.8\% |
| 93 | 44,224 | -136 | -0.31\% | 56.6\% |
| 96 | 44,255 | -105 | -0.24\% | 51.7\% |
| 85 | 44,303 | -57 | -0.13\% | 35.5\% |
| 100 | 44,360 | 0 | 0.00\% | 80.8\% |
| 1 | 44,473 | 113 | 0.25\% | 55.3\% |
| 78 | 44,584 | 224 | 0.51\% | 9.3\% |
| 25 | 44,786 | 426 | 0.96\% | 16.2\% |
| 13 | 44,864 | 504 | 1.14\% | 24.2\% |
| 3 | 45,006 | 646 | 1.46\% | 58.8\% |
| 12 | 45,007 | 647 | 1.46\% | 18.9\% |
| 55 | 45,124 | 764 | 1.72\% | 24.3\% |
| 40 | 45,170 | 810 | 1.83\% | 54.9\% |
| 92 | 45,176 | 816 | 1.84\% | 30.2\% |
| 23 | 45,186 | 826 | 1.86\% | 50.6\% |
| 60 | 45,195 | 835 | 1.88\% | 50.5\% |
| 104 | 45,197 | 837 | 1.89\% | 14.0\% |
| 89 | 45,218 | 858 | 1.93\% | 3.7\% |
| 102 | 45,264 | 904 | 2.04\% | 65.6\% |
| 8 | 45,325 | 965 | 2.18\% | 19.9\% |
| 33 | 45,338 | 978 | 2.20\% | 7.7\% |
| 67 | 45,379 | 1,019 | 2.30\% | 51.6\% |
| 37 | 45,438 | 1,078 | 2.43\% | 18.7\% |
| 75 | 45,463 | 1,103 | 2.49\% | 27.8\% |
| 87 | 45,538 | 1,178 | 2.66\% | 59.1\% |
| 79 | 45,579 | 1,219 | 2.75\% | 11.6\% |
| 62 | 45,595 | 1,235 | 2.78\% | 27.6\% |
| 56 | 45,596 | 1,236 | 2.79\% | 20.2\% |
| 86 | 45,632 | 1,272 | 2.87\% | 16.9\% |
| 101 | 45,672 | 1,312 | 2.96\% | 51.6\% |
| 94 | 45,685 | 1,325 | 2.99\% | 9.4\% |
| 59 | 45,699 | 1,339 | 3.02\% | 18.7\% |
| 97 | 45,713 | 1,353 | 3.05\% | 72.3\% |
| 65 | 45,747 | 1,387 | 3.13\% | 52.3\% |
| 71 | 45,787 | 1,427 | 3.22\% | 14.5\% |
| 44 | 45,853 | 1,493 | 3.37\% | 60.9\% |


| 68 | 45,870 | 1,510 | $3.40 \%$ | $54.2 \%$ |
| :---: | :---: | :---: | :---: | :---: |
| 99 | 45,922 | 1,562 | $3.52 \%$ | $78.1 \%$ |
| 42 | 45,959 | 1,599 | $3.60 \%$ | $16.1 \%$ |
| 70 | 45,990 | 1,630 | $3.67 \%$ | $16.8 \%$ |
| 64 | 45,997 | 1,637 | $3.69 \%$ | $9.2 \%$ |
| 24 | 46,036 | 1,676 | $3.78 \%$ | $11.8 \%$ |
| 72 | 46,041 | 1,681 | $3.79 \%$ | $51.7 \%$ |
| 95 | 46,063 | 1,703 | $3.84 \%$ | $8.8 \%$ |
| 82 | 46,202 | 1,842 | $4.15 \%$ | $11.6 \%$ |
| 4 | 46,232 | 1,872 | $4.22 \%$ | $57.5 \%$ |
| 80 | 46,249 | 1,889 | $4.26 \%$ | $14.9 \%$ |
| 6 | 46,262 | 1,902 | $4.29 \%$ | $16.0 \%$ |
| 51 | 46,319 | 1,959 | $4.42 \%$ | $21.6 \%$ |
| 18 | 46,417 | 2,057 | $4.64 \%$ | $20.4 \%$ |
| 32 | 46,476 | 2,116 | $4.77 \%$ | $13.4 \%$ |
| 81 | 46,481 | 2,121 | $4.78 \%$ | $8.2 \%$ |
| 31 | 46,510 | 2,150 | $4.85 \%$ | $17.0 \%$ |
| 26 | 46,544 | 2,184 | $4.92 \%$ |  |
|  |  |  |  | 63.0 |
|  | 44,334 | -26 | $-0.06 \%$ | Ave for Not-Black-Majority |
|  | 44,411 | 51 | $0.12 \%$ | Ave for Black-Majority |

# UNITED STATES DISTRICT COURT FOR THE MIDDLE DISTRICT OF LOUISIANA 

DR. DOROTHY NAIRNE, JARRETT
LOFTON, REV. CLEE EARNEST LOWE, DR. ALICE WASHINGTON, STEVEN HARRIS, ALEXIS CALHOUN, BLACK VOTERS MATTER CAPACITY BUILDING INSTITUTE, and THE LOUISIANA STATE CONFERENCE OF THE NAACP,

Plaintiffs,
v.
R. KYLE ARDOIN, in his capacity as Secretary of State of Louisiana,

Defendant.

Case No. 3:22-cv-00178-SDD-SDJ

## DECLARATION OF DOUGLAS JOHNSON, PH.D.

1. I am over the age of eighteen (18) and am competent to testify to the matters set forth herein. The following is true of my own personal knowledge and I otherwise believe it to be true.
2. I am the President of National Demographics Corporation ("NDC") and have consulted on over 400 redistricting projects across the country. A copy of my current CV is attached. My CV lists my history of redistricting and related expert-witness experience.
3. I have been retained by counsel for the Legislative Intervenors, the Honorable Clay Schexnayder, in his official capacity as Speaker of the Louisiana House of Representatives, and the Honorable Patrick Page Cortez, in his official capacity as President of the Louisiana Senate. My compensation is $\$ 300$ per hour for my work on this case and is not contingent upon the outcome of the case.

## Scope of Work

4. Counsel asked me to undertake the following tasks:
a. Analyze plaintiffs' illustrative State House and State Senate plans for Louisiana served with plaintiffs' July 22, 2022, report of William Cooper (the "Illustrative Maps" or "2022 Illustrative Plans"), and the illustrative State House and Senate maps served with Plaintiffs' June 30, 2023, report of William Cooper (the "2023 Illustrative Plans") to analyze, among other things, whether race appears to be the predominate consideration used in drawing those maps;
b. Compare the 2022 Illustrative Maps and the 2023 Illustrative Maps to identify the scope of changes between the two sets of maps;
c. Review the "Key Regions" referenced by Plaintiffs' expert, Mr. Cooper, to identify whether there is sufficient evidence provided to support such designations and examine the degree to which the 2023 House and Senate Illustrative Maps follow and respect those "Key Regions" boundaries.
d. Review the other sections of plaintiffs' expert reports and comment on any areas I viewed as noteworthy or questionable.

## Data Used

5. For my analysis, I acquired and loaded into my computer the Louisiana state redistricting geography and data from Caliper Corporation, the Enacted House and Senate map geographic shapefile from the state's redistricting data website, and the 2022 and 2023 Illustrative House and Senate Plan files and other data from Plaintiffs' expert-witness disclosures in this case.

## Scope of Changes from 2022 to 2023 Illustrative Maps

7. On June 30, 2023, Mr. Cooper served a supplemental expert report that included his 2023 Illustrative Plans. Mr. Cooper asserted (in paragraph 11 of his supplemental report) that his new plans "update the illustrative plans described in [his] July 22, 2022, declaration to better reflect communities of interest and include other technical changes."
8. Using Maptitude, industry-standard GIS software for redistricting, and other software tools, I analyzed the four maps to determine the number of Census Blocks and population counts that were changed between the 2022 and 2023 State House illustrative maps, and between the 2022 and 2023 State Senate illustrative maps.
9. The Illustrative 2 House map makes changes to 21 House Districts ( $20.0 \%$ of the 105 total House Districts) from the Illustrative House map. The changed House Districts are Districts $1,2,18,29,48,49,50,51,56,57,58,60,62,63,65,69,72,73,86,96,101$. In total, 2,464 Census Blocks change House district assignments. These Census Blocks contain 83,489 people, of whom $44.6 \%(37,238)$ are Any Part Black. In other words, Illustrative House Map 2 changes the district assignments of 83,489 Louisiana residents (nearly the population equivalent of two entire House districts).
10. Mr. Cooper's Exhibit B-2 from his June 30, 2023, report purports to highlight in red the changed districts. It does not highlight HD1 and HD2, even though there was a change made to those districts-one that involved the reassignment of a single zero-population Census Block.
11. Mr. Cooper's Exhibit B-2 highlights as changed HD8, but in fact HD8 is unchanged, as can be confirmed by comparing this Exhibit B-2 from his June 30, 2023, report with Exhibit I-1 from his original July 22, 2022, report.
12. Mr. Cooper's Exhibit B-2 does not highlight as changed HD69, but both a comparison with his original July 22, 2022, report's Exhibit I-1 and a look at the map reveals HD69 is significantly changed. In the image below, the colored areas are the Illustrative 2 House Districts. The black lines are the Illustrative House Districts. And the Census Blocks with the black cross-hatching are the Blocks that changed assignments between plaintiff's expert's Illustrative map and his Illustrative 2 map. The numbers shown are the total population of each Census Block:

Figure 1

13. The changed House Districts stretch across Southern Louisiana from Lafayette to Baton Rouge and south to the border of the St Charles and Lafourche Parishes:

Figure 2

14. Turning to the State Senate maps, I have determined that 665 Census Blocks were moved from one Senate District in the Illustrative Senate map to a different Senate District in the Illustrative 2 Senate map. These Census Blocks contain 35,276 people, of whom 49.5\% $(17,467)$ are Any Part Black. The Census Blocks assigned to new Senate Districts in the Illustrative 2 Senate map change seven Senate Districts: SD7, SD8, SD14, SD15, SD17, SD19 and SD20 (18 \% of the 39 total Senate districts).

## Illustrative House and Senate Map Revisions Resulted in Less-Compact 2023 Maps

15. Oddly enough, the twenty-one districts changed between the 2022 House Illustrative Map and the 2023 House Illustrative Map made the 2023 map even less compact than the 2022 House Illustrative Map.
16. Both plaintiff's expert and I use the Maptitude for Redistricting software. I used Maptitude to compute the ten measures of compactness built into the software. The results are attached as an appendix to this report. The results show that only two compactness measures that improved were the Ehrenburg and Length-Width measures (focusing on the "minimum," or least-compact, district by each measure). HD96, which was the least-compact district in the 2022 House Illustrative Map, improved from a 0.12 Ehrenburg score to a 0.18 Ehrenburg score in the 2023 House Illustrative Map - still an extremely non-compact district by that measure, but no longer the least-compact district in the map.
17. The 0.06 improvement in HD96's Ehrenburg score was accompanied by a 0.09 improvement in neighboring HD48's Ehrenburg score. But those improvements were more than offset by the combination of a newly-added extra split of the St. Mary Parish, a 0.04 decrease in neighboring HD18's Ehrenburg score, and a significant 0.22 drop in neighboring HD50's Ehrenburg score.
18. But the Ehrenburg improvement in HD96 did not improve the overall map score, which remained a median 0.36 under Ehrenburg. Similarly, the average score remained constant or essentially constant at a 0.01 difference between the 2022 and 2023 maps under eight of the eleven compactness scores built into Maptitude. ${ }^{1}$

[^3]19. The scores for the three other compactness measures built into Maptitude ${ }^{2}$ became less compact for the 2023 House Illustrative Map than they were in the 2022 House Illustrative Map.
20. The changes to HD50 between the 2022 and 2023 Illustrative Maps further violate traditional redistricting principles by taking HD96 from being a simple combination of the southern non-contiguous portion of St Martin Parish and as much of St. Mary Parish as possible within the equal population requirements in the $2022 \mathrm{map}^{3}$, to now adding a 5,000person piece of Assumption Parish into HD50 and having HD96 become a third district dividing up St Mary Parish.

## Figure 3


21. The changes from the 2022 Senate Illustrative Map to the 2023 Senate Illustrative Map similarly make the 2023 Senate Illustrative map less-compact than the 2022 Senate

[^4]Illustrative according to the average score on eight of the eleven Maptitude compactness measures ${ }^{4}$. The least-compact district is less compact in the 2023 Senate Illustrative Map than the least-compact district in the 2022 Senate Illustrative Map according to two Maptitude compactness measures ${ }^{5}$ and unchanged by the other seven district-specific measures ${ }^{6}$.

## Maptitude Data Does Not Corroborate The Claim That Plaintiffs' Expert Used SocioEconomic Data When Mapping

22. Despite plaintiffs' expert's claims to have used "socio-economic characteristics" and data when drawing his maps (e.g., Cooper June 30, 2023, supplemental report in paragraphs 10, 75, and 105-106), the data used in his redistricting system do not include socio-economic data. To understand how clear this fact is, one must understand a little bit about how the Maptitude for Redistricting software (which both plaintiffs' expert and I use for most of our work) operates.
23. Maptitude stores data at the Census Block level and reports that data at the District level by aggregating all the Block-level data in a given District. The data and potential changes are displayed live in real time. But only data available in the Block level of geography can be calculated at the District level.
24. For illustrative purposes, below is a screen shot of my Maptitude window with the Enacted Senate map visible. In the image below, the area marked " 1 " is the list of layers available in the map (those with the green check mark are currently showing in the map, while those

[^5]with an " $x$ " in a red circle are currently hidden). While the other layers are available as overlays, Maptitude does its calculations using only the data available in the Census Block layer. The area marked " 2 " are the demographics for each district as drawn in the map at the time the screen shot was taken. And the area marked " 3 " is a "Pending Changes" window that currently shows no pending changes, but where the demographics of any impacted district(s) would be shown live corresponding to every mouse click in the map.

Figure 4

25. The Census Block data provided by Mr. Cooper contains only (1) the total population by race and ethnicity and (2) the voting age population by race and ethnicity that come standard from Caliper Corporation. Those are the full contents of the Census Bureau's PL94-171 redistricting data file, released after each decennial Census. No Citizen Voting Age Population data nor any other socio-economic data are included in the Maptitude Census Block data file provided by Mr. Cooper as the file he used for drawing his map.
26. Separately Mr. Cooper provided the Citizen Voting Age Population (CVAP) data compiled by HaystaqDNA (which he footnotes as coming from the "Redistricting Data Hub"). But he did not merge that into the Census Block file he claims was used while drawing his maps. He did not provide any socio-economic data compiled at the Census Block level. So the CVAP and socio-economic data would not have been compiled by, nor reported in, the Maptitude software as he drew the map and as he made decisions regarding where to place his illustrative map lines.

## Population Change, 2000 (1991 lines) to 2022

27. Plaintiffs' expert's discussion of the changes in the state's Black population between 2000 and 2020 seems to undermine the claim that the 2022 enacted plans undermine Black representation. As Mr. Cooper notes in his June 30, 2023, report (at paragraph 34), from 2000 to 2020 the state's "Any Party Black Voting Age Population" increased from 29.95\% to $31.25 \%$-- an increase of $1.3 \%$. And from 2000 to the enacted 2022 House map, the number of majority-Black seats increased from $26(24.8 \%$ of 105$)$ to $29(27.6 \%$ of 105$)$ majority-Black House seats, according to plaintiffs' expert's Paragraphs 53, 54 and $55-\mathrm{a}$ $2.8 \%$ increase. In other words, the Black-majority number of House seats increased more than twice as fast as the Black share of the state's Voting Age Population ( $2.8 \%$ versus $1.3 \%)$.
28. Similarly, as plaintiffs' expert notes in his June 30, 2023, report's paragraphs 53, 54 and 56, the number of majority-Black Senate seats increased from 10 in 2000 ( $25.6 \%$ of 39 ) to $11(28.2 \%$ of 39$)$ - an increase of $2.6 \%$, or exactly double the increase in the Black share of the state's Voting Age Population.

Figure 5

|  | 2000 | 2020/2022 with \% increase |
| :---: | :---: | :---: |
| Black \% of Voting Age Population | 29.95\% | $\begin{gathered} \text { (2020 Census) } \\ 31.25 \% \\ \mathbf{+ 1 . 3 \%} \\ \hline \end{gathered}$ |
| Majority-Black \% of House Districts | 26 | $\begin{gathered} \text { (2022 Enacted Map) } \\ 29 \\ \mathbf{+ 2 . 8 \%} \\ \hline \end{gathered}$ |
| Majority-Black \% of Senate Districts | 10 | $\begin{gathered} \hline \text { (2022 Enacted Map) } \\ 11 \\ \mathbf{+ 2 . 6 \%} \\ \hline \end{gathered}$ |

29. It is also worth noting that plaintiffs' expert's statement in his paragraph 58 is simply false, even according to his own math. His Figure 11 shows that three, not two, Black-majority House districts have been added between the map in place in 2000 and the 2022 enacted House map.

## Communities of Interest splits report (Exhibits L-1 and P-1)

30. In Exhibits L-1 and P-1 of his June 30, 2023, report, Mr. Cooper provides his list of "municipalities" split by the 2023 Illustrative Plans. These reports are misleading, however, as Census Places are not the same thing as municipalities or communities of interest. In fact, Census Places consist of incorporated towns and cities PLUS unofficial areas designated near-randomly by someone either in the Parish (possibly decades ago) or by someone in Washington DC.
31. As one example that I am personally very familiar with, my (unincorporated) community of Aptos, California, self-identifies as one community called "Aptos" and shares one high school, one primary shopping area, and is geographically isolated - all classic indications of a "community of interest." But the Census Bureau subdivides even our small 27,000resident unincorporated community into six different CDP's:

Figure 6

32. Plaintiffs' expert has not provided any support or explanation for his claims that such randomly-designated Census Designated Places - not recognized by state or local governments - constitute communities of interest worthy of consideration (in his view) in redistricting.

## Wikipedia Is Not A Reliable Source For Defining "Key Multi-Parish Community Regions"

33. Plaintiffs' expert identifies, in paragraph 27 and Figure 2 of the Cooper June 30, 2023, report, what he terms "key multi-parish cultural regions." In my view, however, the sources of evidence he uses to define these "key multi-parish cultural" regions are not sufficiently reliable to be used for such a political-science analysis or when mapping.
34. While the "Acadiana" region's 22 parishes are sourced to the Legislative website (see plaintiffs' expert's footnote 17) or a geography quiz from the state's Common Core curriculum asking students to identify the 12 delta parishes (footnote 19), his other regions are sourced to either an academic website that lists no shared characteristics since Louisiana achieved statehood in 1812 (footnote 18), or, even worse, uses Wikipedia as the source of a "key multi-parish community regions" (footnote 20). I am unconvinced that either Wikipedia or five pre-1812 characteristics are sufficiently accurate and reliable to allow plaintiffs' expert to accurately identify "key" communities of interest relevant to redistricting in 2023.

## Plaintiffs' Expert's Map Repeatedly Divides His Own "Key Regions"

35. Mr. Cooper's June 20, 2023, report's Figure 2 shows the state divided into "key multiparish cultural regions"; his Figure 3 shows the state divided into eight "Planning Districts" that he analyzes by race and ethnicity; and Figure 9 shows the Census-drawn Metropolitan Statistical Areas, or MSA's, which he also analyzes by race and ethnicity.
36. If plaintiffs' expert actually considered any of these true "key regions" in the state, the illustrative map would cross the region boundaries no more than twice (as one entry split and one exit split might be necessary to balance populations in a given region and the bordering region).
37. Plaintiff's 2023 Illustrative House map, to its credit, does unite the southeastern "PD-1 New Orleans Area" Planning District as much as possible, crossing its border only once (though even that crossing is notable, as it is the 1,005-person 'finger' extending east out of HD 54 along the shoreline highlighted by the arrow in the following figure):

Figure 7

38. Returning to the question of plaintiffs' "Key Regions," every other Planning District boundary is crossed by anywhere from three to seven House districts. If someone drawing a map truly considered Planning Districts as key communities of interest, that person would not draw a map in that way.
39. The 2023 Illustrative Senate map (where SD20 shares the same "finger" into Jefferson Parish shown above for HD54) pays even less attention to Planning Districts. PD-5, Imperial Calcasieu, is crossed by only two districts, but every other Planning District border is crossed by three to eight times.
40. The 2023 House and Senate Illustrative maps clearly show that plaintiffs' expert did not consider Planning Districts to be important when drawing maps.
41. Mr. Cooper's June 30, 2023, report's Figure 2 shows the state divided into eight "Key Cultural Regions."
42. But, again, if plaintiffs' expert actually considered these true "key regions," the illustrative map would cross the region boundaries no more than twice (as one entry split and one exit split might be necessary to balance populations in a given region and the bordering region).
43. Analysis of the 2023 Illustrative House Map shows that each "Cultural Region" border is crossed once (the unnamed Southeast Cultural Region), twice (Ark-La-Tex and Florida Parishes), three (Delta), five (unnamed area between Ark-La-Tex and Acadiana), or seven (Acadiana) times.
44. Analysis of the 2023 Illustrative Senate Map shows that each "Cultural Region" border is crossed three (Ark-La-Tex, Delta, and Florida), four (unnamed southeast region), five (unnamed area between Ark-La-Tex and Acadiana), or eight (Acadiana) times.
45. Again, one or two districts crossing can be explained by the need to equalize populations, but five or eight crossings prove even plaintiffs' expert did not consider these to actually be "key regions" for redistricting.
46. Similarly, plaintiffs' expert's 2023 Illustrative Maps do not respect or follow Metropolitan Statistical Area, or MSA, boundaries ${ }^{7}$ - the other geographic regions for which plaintiffs' expert provides racial and ethnic data in his discussion of key regions. As with "Key Cultural Regions" and Planning Districts, in the 2023 Senate Illustrative Map only one MSA has just the one or two border crossings arguably required for population balancing (Lake Charles, with two border crossings). The other eight MSA borders are crossed three, four, five and even six times by districts in the 2023 Senate Illustrative Map. In the 2023 House Illustrative Map, the Baton Rouge MSA border is crossed by eight different districts, while the Lafayette MSA border is crossed in seven places by six different districts (HD50 crosses the Lafayette MSA border twice). Clearly, the 2023 House and Senate Illustrative Maps do not consider MSA boundaries communities of interest whose boundaries should be respected.

## Plaintiffs' Expert's "Enacted Maps" are not the Actual Enacted Maps

47. A comparison of the official House and Senate enacted map population figures to the population figures plaintiffs' expert says are from the "official" enacted maps reveals that he has misdrawn or miscounted numerous House and Senate districts in the maps he claims are the enacted maps. Mr. Cooper's reported population totals do not match the actual population totals in all of the following districts:
a. House: HDs 19, 21, 24, 30, 32, 35, 37, 48 and 49
b. Senate: SDs $6,17,22,23,24,28,30$ and 37

[^6]48. In the Senate maps, the population differences range from 33 to 1,428 . In the House maps, the population differences range from 113 to 697 . Those population differences flag where there are problems, but they do not indicate the scale of the problem. For example, as shown in Figure 8 below, plaintiff's expert's Figure 34 clearly shows the wrong lines for House Districts 36 and 37. on the left is a cropped screen shot of plaintiff's expert's Figure 34 . On the right is an image I prepared showing the actual enacted border between House Districts 35 and 37. The clearly visible error is highlighted by the blue arrow, which is placed in the same spot over both images:

Figure 8

49. The blue arrow indicates the region plaintiffs' expert thinks is part of the enacted House District 35 (purple-colored in his map), but this area is actually in House District 37.
50. There are 805 people in the erroneously-assigned area. plaintiffs' expert's version of the "enacted" map draws 805 more people into House District 35 than are there in the actual
enacted map. But the population numbers in Mr. Cooper's June 30, 2023, Exhibit I-1 report that House District 35 is over by only 113 people (compared to the actual enacted map). The population differences prove that somewhere else in his map is one or more additional errors in the boundaries of these districts, though those errors cannot be seen in the cropped view of the District he included in his Figure 34.
51. Normally identifying all the differences between two maps in the Maptitude software is easy, using the Maptitude files for each plan. But in this project I cannot run that analysis because plaintiffs' expert did not provide the computer files that he used to draw what he erroneously called the "enacted" maps. In the absence of those computer files any analysis is limited to just what can be seen in the blurry enlargements of the statewide PDF-format maps provided in plaintiff's expert's exhibits.
52. Looking at plaintiffs' expert's statewide map of House Districts (Mr. Cooper's June 30, 2023, report's Exhibit I-2) does provide a bit more insight, as in the area at the north end of House District 35 and around House District 30 there are at least six errors visible in plaintiff's expert's version of the "enacted" map, again with blue arrows highlighting the visible errors:

Figure 9

## Mr. Cooper's Exhibit I-2



Actual Enacted House Districts Map

53. Here are the similar errors between House Districts 19 and 21, showing the incorrect assignment nearly half the territory of East Carroll County:

Figure 10

## Mr. Cooper's Exhibit I-2



Actual Enacted House Districts Map

54. Finally (for the House map), here are the visible errors between House Districts 48 and 49:

Figure 11

Mr. Cooper's Exhibit I-2
(HD49 is shown in pink)


Actual Enacted House Districts Map

55. This area is another good example of how those numbers fail to capture the scale of the error: while the net difference between the official populations of HD48 and 49 and plaintiff's expert's version of these two districts is only 697 people, plaintiff's expert's map of HD48 and HD49 has 6,700 people assigned to the wrong districts. The area indicated by the northwesternmost arrow in Figure 11, which plaintiffs' expert assigns to HD48 but is officially in HD49, mistakenly shifts over 3,000 people from HD49 to HD48. The yellow "foot" of HD48 indicated by the southernmost arrow is an area of 1,700 people mistakenly shifted by plaintiff's expert from HD48 to HD49. And the middle arrow highlights an area right along the border of the St. Martin and Iberia Parishes that is mistakenly assigned to HD49 instead of HD48. This area includes over 2,000 people. While the total district population numbers report a net error of 697 between these two House Districts, in fact the
errors involve the erroneous assignment of 6,700 Louisiana residents - fifteen percent (15\%) of the population of a full House District.

## Figure 12

|  | Cooper Ex. I-1 | NDC Fields |  |
| :---: | :---: | :---: | :---: |
| District | $\mathbf{2 0 2 0}$ Pop. | Official | Net |
| Pop | Diff. |  |  |
| 19 | 42,717 | 43,183 | 466 |
| 21 | 44,795 | 44,329 | -466 |
| 24 | 42,460 | 42,692 | 232 |
| 30 | 42,952 | 42,313 | -639 |
| 32 | 42,415 | 42,409 | -6 |
| 35 | 46,088 | 45,975 | -113 |
| 37 | 45,146 | 45,672 | 526 |
| 48 | 44,642 | 45,339 | 697 |
| 49 | 46,367 | 45,670 | -697 |

56. Plaintiffs' expert's exhibits and data related to what he calls the Enacted Senate map are similarly erroneous. The following images show zoomed-in details of Mr. Cooper's Exhibit H-2, which he claims show the 2022 Enacted Senate Districts, compared to the actual 2022 Enacted Senate Districts. The images are followed by a table showing the population differences between his erroneously labeled "Enacted" Senate Districts and the actual Enacted Senate Districts, similar to the table above for House Districts. The errors among the Senate Districts are larger than, and represent an even higher percentage of the total number of Senate Districts than, his errors in the House Districts.
57. The map below shows the clear visible errors between what plaintiffs' expert presents as the Enacted Senate map of Senate Districts 6 and 37 and the actual Enacted Senate map of Senate Districts 6 and 37:

## Figure 13

Mr. Cooper's Exhibit H-2


Actual Enacted Senate Districts Map

58. Plaintiffs' expert's portrayal of the eastern end of SD6 bears very little resemblance to the actual eastern end of Enacted SD6: where plaintiffs' expert shows SD6 going into Tangipahoa Parish with a small piece of Livingston Parish, the actual enacted SD6 never enters Tangipahoa Parish and travels all the way through Livingston County to the St. John the Baptist Parish border.
59. Plaintiffs' expert also shows what he says is Enacted SD37 with a major portion of Livingston Parish, a narrow arm into St Tammany Parish, and not including the southwestern and southeastern corners of Tangipahoa Parish, while the actual Enacted SD37 has only a geographically small piece of Livingston Parish, covering the entire southern end of Tangipahoa Parish, and with a much geographically larger pieces of St. Tammany Parish.
60. Mr. Cooper's map of what he says are the Enacted Senate Districts around Lafayette show even larger errors:

Figure 14

Mr. Cooper's Exhibit H-2 (SD17 is shown in pink, SD22 in Grey)

Actual Enacted Senate Districts Map


61. On the smaller scale of errors, the population numbers (shown below) reflect an error in SD30 that Mr. Cooper's Exhibit H-1 does not contain enough detail to identify. Had plaintiffs' expert provided his computer files for what he claims are the Enacted Senate Districts that error could be identified, but he did not provide those files.
62. The next-smallest error is the visibly clear differences in the borders of SD24 and 28 at the western end of SD24 in St. Landry Parish.
63. Plaintiffs' expert claimed "Enacted SD" map also fails to reflect the actual Enacted SD17's inclusion of territory and population from the north edge of Lafayette Parish, which plaintiffs' expert's map erroneously shows as being entirely in SD24.
64. Getting into much geographically larger errors, plaintiffs' expert's map shows the entire northern section of St. Martin Parish inside SD17 (the pink SD in his Exhibit H-2 map shown on the left in the side-by-side image above), but in reality SD22 goes all the way north to the St. Landry Parish border east of the BYU Portage and Henderson Levee Road.
65. Finally, and most significantly from a 'wrong population' perspective, plaintiffs' expert's version of the Senate District borders between SD23 and SD22 in Lafayette are off by tens of thousands of people. Again, exact numbers are impossible to calculate in the absence of plaintiffs' expert's computer file for whatever he thought was the Enacted map, but it appears that he has nearly 30,000 Lafayette Parish residents in SD23 who actually reside in SD22, and vice versa.
66. So where the table below shows the total population of SD23 in plaintiffs' expert's version of the map varies from the actual enacted map by only - 33 people, that is a NET error - in reality tens of thousands of people are in his version of SD23 who do not belong there, while tens of thousands of people who do belong there are not included - nearly half of the actual population of Enacted SDs 22 and 23 are not in plaintiffs' expert's versions of SD22 and 23.
67. As a result of these foregoing errors, the figures, data, and analysis of the 2022 enacted plans that are reported in plaintiffs' expert's two expert reports are unreliable.

## Figure 15

|  | Cooper H-1 | NDC Data |  |
| :---: | :---: | :---: | :---: |
| District | 2020 Pop. |  |  |
|  |  |  |  |
| 6 | 116,653 | 117,595 | 942 |
| 17 | 113,778 | 114,040 | 262 |
| 22 | 123,858 | 125,286 | 1428 |
| 23 | 125,047 | 125,014 | -33 |
| 24 | 125,094 | 124,799 | -295 |
| 28 | 115,710 | 114,358 | -1352 |
| 30 | 113,747 | 113,737 | -10 |
| 37 | 114,442 | 113,500 | -942 |

## Correlation of Race and the Illustrative Plan District Lines

68. As a professional political scientist and demographer, I have created or analyzed many hundreds of districting plans in my career in jurisdictions throughout the country, including in jurisdictions with significant minority voting-age populations. Leveraging this training and experience, I analyzed plaintiffs' expert's 2022 and 2023 House and Senate Illustrative Plans to assess the degree to which the racial characteristics of the plan correlated to, and drove, the district boundaries employed in those plans.
69. Plaintiffs' expert clearly drew his "new" majority-Black SD38 by precisely dividing the Black population of Shreveport along lines that provide the precise racial percentages needed to make Senate Districts 38 and 39 majority-Black - without any reference to compactness, major roads, communities, neighborhoods, clear visible features or any other traditional redistricting principle. The only reason Mr. Cooper provides for drawing the line where he drew it is race:

## Figure 16


70. Similarly, plaintiffs' expert carves the southern portion of Iberville Parish out of illustrative

Senate District 17 with no explanation and following no traditional redistricting principle

- the only explanation is race, as this change carves a region with few Blacks out of his majority-Black illustrative District 17: ${ }^{8}$

Figure 17

71. Plaintiffs' expert's third and final new majority-Black Senate District in his illustrative plan (Senate District 19) also has no explanation except a predominate reliance on race in deciding where to draw the District's boundary lines. Of particular note is the use of the Mississippi River as the District's northern border - except where concentrations of Black population on the north side of the river lead plaintiffs' expert to subordinate following the river to his predominate consideration (race). With no explanation other than race, plaintiffs' expert draws the district line across the river to precisely follow the Census Blocks containing higher densities of Black voters.

[^7]Figure 18

72. Plaintiffs' expert drew his "new" majority-Black HD1 by precisely dividing the Black population of Shreveport along lines that provide the precise racial percentages needed to make Senate Districts 38 and 39 majority-Black - without any reference to compactness, major roads, communities, neighborhoods, clear visible features or any other traditional redistricting principle. The only reason plaintiffs' expert provides for drawing the line where he drew it is race, with the majority-Black area carefully carved up to ensure both HD1 and HD2 end up as majority-Black, as a simple look at the map disproves any claim that the boundaries follow major roads, rivers, city borders, parish borders and even the socio-economic data plaintiff's expert spends so much time discussing (but did not provide in his disclosures, since they were not in his redistricting database):

Figure 19

73. Just to the south, in Natchitoches, HD23 similarly wanders across City and community boundaries, ignoring the freeway and other major roads, to focus on including majorityBlack Census Blocks:

Figure 20

74. In Lake Charles Parish, Illustrative HD38 sweeps west to carve the majority-Black Census Blocks out of Westlake, sweeps south out of Lake Charles to pull in a few majority-Black Census Blocks, again ignoring City borders, freeways, communities, and even socioeconomic data, and then carefully carves through the city to ensure that both HD38 and HD34 end up just barely majority-Black at $50.8 \%$ and $50.3 \%$ AP Black18+, respectively:

Figure 21

75. The 2023 Illustrative House Plan's divisions of the East Baton Rouge Parish starkly illustrates the blatant use of race as the predominate factor when carving up the region in a "pinwheel" fashion to maximize the number of House Districts that are just barely over $50 \%$ AP Black $18+\%$. The following map shows each Illustrative House District's number and its AP Black $18+\%$. Each district clearly carves into the most-Black areas of East Baton Rouge without regard to city borders, community boundaries, major roads, socio-economic areas or community boundaries - clearly only the careful division of the Black population
to get as many districts as possible just over $50 \%$ drove the decisions on where to draw the lines. ${ }^{9}$
76. With only 29,565 residents, Central is only two-thirds the size of a single House district. Population density is just one of the differences between relatively rural Central and nearby Baton Rouge, as Central has 472 residents per square mile while Baton Rouge has 2,567. The Enacted House Map leaves Central intact, entirely in HD65, while Mr. Cooper's Illustrative 2023 House map splits it into three districts (HD62, 63 and 65). Two of the Illustrative Districts each combine just roughly one-third of Central with the much more densely populated Baton Rouge or Baker (population density: 1,481 per square mile) across the Comite River (the Comite River is the western border of Central). The lack of attention paid to any consideration other than race is clearly illustrated by the fate of the City of Central in plaintiffs' expert's 2023 Illustrative House map:

[^8]Figure 22

77. While this report highlights how racial considerations predominated in the drawing of the illustrative maps' claimed new majority-Black districts, those new districts are only the beginning of plaintiffs' expert's reliance on race as his predominate factor. It is logically obvious that if plaintiffs' expert is using race as the predominate factor when drawing the new districts, by definition plaintiffs' expert is also using race as the predominate facor in drawing the (many more) districts surrounding the "new" districts.

## Racial Percentage Targets Drove the Drawing of the New Illustrative Districts

78. Plaintiffs' expert claims the 2023 Illustrative Plans shows the Legislature could have drawn three more majority-Black Senate Districts (Mr. Cooper's June 30, 2023, report at paragraph 73, claiming new majority-AP Black VAP SDs 17, 19 and 38) and six more majority-Black House Districts (paragraph 103, claiming new majority-AP Black VAP HDs $1,23,38,60,65$ and 68).
79. Unfortunately, plaintiffs' expert's data are incorrect. As his own June 30, 2023, report's Exhibit N-1 shows, HD23 is already majority-Black in the Enacted Map:

## Figure 23

| Population Summary Report na State House -- Illustrative Plan |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| District | 2020 Pop. | \% Devlation | 18+ Pop | $18+A P$ Black | $\begin{gathered} \% 18+\text { AP } \\ \text { Black } \end{gathered}$ | $18+$ NH White | $\begin{aligned} & \text { \% } 18+\mathrm{NH} \\ & \text { Whilte } \end{aligned}$ | 18+ Latino | $\% 18+$ <br> Latino | $\begin{aligned} & \text { 2016-2020 } \\ & \text { NH SR } \\ & \text { BCVAP } \end{aligned}$ | July 2021 <br> Registered Black Voters |
| 01 | 44473 | 0.25\% | 33473 | 18520 | 55.33\% | 13,247 | 39.58\% | 873 | 2.61\% | 58.65\% | 57.09\% |
| 02 | 42776 | -3.57\% | 32912 | 22164 | 67.34\% | 8,142 | 24.74\% | 1,717 | 5.22\% | 67.78\% | 71.86\% |
| 03 | 45006 | 1.46\% | 33115 | 19487 | 58.85\% | 11,725 | 35.41\% | 938 | 2.83\% | 61.40\% | 58.46\% |
| 04 | 46232 | 4.22\% | 35104 | 20197 | 57.53\% | 12,928 | 36.83\% | 1,052 | 3.00\% | 55.16\% | 57.10\% |
| 05 | 42708 | -3.72\% | 35751 | 18183 | 50.86\% | 12,647 | 35.38\% | 4,012 | 11.22\% | 59.90\% | 53.59\% |
| 06 | 46262 | 4.29\% | 36840 | 5889 | 15.99\% | 27,343 | 74.22\% | 1,390 | 3.77\% | 17.10\% | 13.48\% |
| 07 | 43102 | -2.84\% | 33286 | 5987 | 17.99\% | 23,596 | 70.89\% | 1,014 | 3.05\% | 15.48\% | 17.93\% |
| 08 | 45325 | 2.18\% | 33068 | 6571 | 19.87\% | 22,697 | 68.64\% | 1,875 | 5.67\% | 20.59\% | 17.31\% |
| 09 | 43401 | -2.16\% | 31974 | 6742 | 21.09\% | 20,834 | 65.16\% | 2,669 | 8.35\% | 20.82\% | 20.81\% |
| 10 | 44137 | -0.50\% | 34617 | 11395 | 32.92\% | 21,696 | 62.67\% | 557 | 1.61\% | 33.15\% | 31.75\% |
| 11 | 43867 | -1.11\% | 35553 | 19749 | 55.55\% | 14,068 | 39.57\% | 980 | 2.76\% | 59.48\% | 57.66\% |
| 12 | 45007 | 1.46\% | 35392 | 6685 | 18.89\% | 26,166 | 73.93\% | 1,393 | 3.94\% | 20.26\% | 18.58\% |
| 13 | 44864 | 1.14\% | 35197 | 8507 | 24.17\% | 23,649 | 67.19\% | 2,017 | 5.73\% | 28.74\% | 25.44\% |
| 14 | 42319 | -4.60\% | 32389 | 12217 | 37.72\% | 18,584 | 57.38\% | 798 | 2.46\% | 39.40\% | 38.10\% |
| 15 | 43211 | -2.59\% | 32579 | 2695 | 8.27\% | 27,392 | 84.08\% | 1,003 | 3.08\% | 7.95\% | 6.82\% |
| 16 | 42314 | -4.61\% | 32063 | 19160 | 59.76\% | 11,021 | 34.37\% | 678 | 2.11\% | 56.47\% | 62.64\% |
| 17 | 43007 | -3.05\% | 31497 | 17158 | 54.48\% | 11,636 | 36.94\% | 1,765 | 5.60\% | 57.80\% | 61.13\% |
| 18 | 46417 | 4.64\% | 35794 | 7310 | 20.42\% | 26,708 | 74.62\% | 1,047 | 2.93\% | 20.24\% | 21.16\% |
| 19 | 42229 | -4.80\% | 32254 | 4250 | 13.18\% | 26,052 | 80.77\% | 642 | 1.99\% | 12.58\% | 11.68\% |
| 20 | 43964 | -0.89\% | 33646 | 12053 | 35.82\% | 20,538 | 61.04\% | 522 | 1.55\% | 33.94\% | 36.03\% |
| 21 | 42463 | -4.28\% | 32737 | 17771 | 54.28\% | 13,990 | 42.73\% | 571 | 1.74\% | 54.32\% | 57.40\% |

80. And plaintiffs' expert also fails to mention that his 2023 House Illustrative Map eliminates a majority-Black VAP district: HD62, as shown in his June 30, 2023, report's own Exhibit $\mathrm{I}-1$ and $\mathrm{N}-1$ :

Figure 24

81. In summary, plaintiffs' expert's claimed list of "six additional majority-Black districts" incorrectly includes HD23 as an "additional" district, when HD23 was already majorityAP Black VAP in the enacted map. And plaintiffs' expert's claimed list also fails to acknowledge that the 2023 House Illustrative Map also eliminates majority-AP Black VAP HD62.
82. Plaintiffs' expert also fails to note that a portion of the AP Black VAP used to create the "new" majority-AP Black VAP House Districts were taken out of some already-narrowlymajority districts. In fact, there are seven House Districts that (1) were already majorityAP Black VAP in the enacted map and (2) are between $50 \%$ and $53 \%$ AP Black VAP in the 2023 House Illustrative Map, and all seven had their AP Black share of Voting Age Population reduced. The smallest reductions were tiny $0.3 \%$ reductions in HD67 (now 51.6\% AP Black VAP in the 2023 House Illustrative Map) and in HD23 (now 50.6\% AP

Black VAP in the 2023 House Illustrative Map). But the other reductions were significant: already-borderline HD72 went from just 52.7\% AP Black VAP in the Enacted Map to just 50.6\% AP Black VAP in the 2023 House Illustrative Map. And HD58, HD101, HD34, and HD61 all went from solidly majority-AP Black VAP to well within the margin-of-error of no longer being majority-AP Black VAP:

Figure 25

| \% AP Black VAP |  |  |  |
| :---: | :---: | :---: | :---: |
| HD | Enacted | 2023 Illust. | Change |
| 67 | $51.9 \%$ | $51.6 \%$ | $-0.3 \%$ |
| 23 | $50.9 \%$ | $50.6 \%$ | $-0.3 \%$ |
| 72 | $52.7 \%$ | $50.6 \%$ | $-2.1 \%$ |
| 58 | $56.8 \%$ | $51.3 \%$ | $-5.5 \%$ |
| 101 | $60.2 \%$ | $50.8 \%$ | $-9.5 \%$ |
| 34 | $72.6 \%$ | $50.0 \%$ | $-22.5 \%$ |
| 61 | $75.3 \%$ | $50.2 \%$ | $-25.1 \%$ |

83. As shown in the maps shown earlier in this report, plaintiffs' expert uses race as a predominate factor to draw the lines that create these districts. It is worth noting how precisely race has been used: In the 2023 Illustrative Map, eleven majority-AP Black VAP House Districts are less than 53\% AP Black VAP. That is 8 more than the 3 such borderline House Districts in the Enacted Map. The 2023 Senate Illustrative Map is even more extreme: eleven of the Senate map's sixteen majority-AP Black VAP districts are just barely majority-AP Black VAP at less than 53\% AP Black VAP.
84. One significant risk associated with drawing districts so close to the $50 \%$ "line" as plaintiffs' expert does is the impact of a new statistical method employed in 2020 by the Census Bureau called "differential privacy." This policy was intended to protect
respondent privacy. ${ }^{10}$ The methodology adds noise, or "blurring," to the Census data, which means that Census data now has a "margin of error" in its population counts. The Census Bureau estimates the margin of error to be very roughly $1 \%$ for total population counts at the Congressional level, with higher margins of error in smaller geographic areas (such as legislative districts) and for racial or ethnic counts within that total population figure. And the margin of error grows significantly for sub-groups within a geographic area, such as the ethnic breakdowns within each district. With plaintiffs' expert's carefully tailored razor-thin majority-Black percentages, there is a statistically significant chance that some or even many of those districts are in fact not $50 \%$ Black.
85. There is also the sensitivity analysis to consider. Plaintiffs' expert uses $50 \%$ AP Black VAP as his target for a district likely to elect the candidate preferred by Black voters, without citing any support for that number. Even if $50 \%$ is a statistically-estimated figure, any polarized voting analysis used to calculate that "likely to elect" percentage is a statistical analysis with a margin of error and chance of mischaracterizing the data. ${ }^{11}$
86. As a simple illustration of this concept, suppose that the true "effective" percentage is $53 \%$ AP Black VAP for all the districts in the State. In that hypothetical example, the enacted Senate map would elect more Black-preferred candidates (10) than the 2022 and 2023 Senate Illustrative plans (6 and 5, respectively).
87. In Mr. Cooper's 2023 Illustrative House plan, nearly one-third - 11 of his 35 claimed "majority-Black" districts - are less than 53\% AP Black VAP. So, if 53\% is the real-world

[^9]"effective" percentage, the Enacted Senate Map would elect 26 Black-voter-preferred candidates, compared to only 22 in the 2022 House Illustrative Map and only 24 in the 2023 House Illustrative Map.
88. Given the margin of error in the Census's "differential privacy" 2020 Census data, the AP Black VAP Census data could easily be off by at least one to three percent, and the statistical margin of error in any polarized voting analysis could easily be $3 \%$ or more.
89. A sensitivity analysis in the other direction - asking how many districts would elect the Black-preferred candidate if the true effectiveness percentage is $45 \%$ AP Black VAP instead of $50 \%$ - finds that there are no districts where the AP Black VAP percentage is between 41 and 50 percent in the Enacted Map, in the 2022 Illustrative Map, or in the 2023 Illustrative Map. This means that, as noted above, a Census or polarized voting error that under-estimates the "effective" percentage could have a major impact on the number of effective districts in the 2022 and 2023 Illustrative House Maps and leave the House and Senate Illustrative Maps with fewer effective districts than the Enacted Maps. But a Census or polarized voting error that over-estimates the "effective" percentage would have to be larger than a $9 \%$ error before it changed the number of "effective" districts in any of the Enacted or Illustrative maps.
90. The chart below shows the AP Black VAP percentage of all House districts in the enacted (blue bars) and illustrative (orange bars) plans.

Figure 26

91. The chart below shows the same data, but has been simplified to show only the districts that are majority-AP Black VAP in either plan. The way the majority-AP Black VAP districts were drawn to just-barely cross the $50 \%$ line is clear, as the grouping of districts precisely above $50 \%$ makes clear the predominate consideration of race in drawing the illustrative map:

Figure 27

92. The same precision targeting on $50 \%$ AP Black VAP occurs in the illustrative Senate map. If anything the illustrative Senate map is even more racially focused than the illustrative House map, as the illustrative Senate map are even more precisely drawn just above 50\% AP Black than the illustrative House districts (and thus are even more vulnerable to inaccuracies in the Census data resulting from the differential privacy "noise" in the data).
93. The enacted map performs much better in a sensitivity / robustness test. In the hypothetical case where the true effectiveness level is $53 \%$ AP Black VAP, only 5 districts in the 2023 Illustrative Senate Plan would elect the Black-preferred candidate, compared to 10 Senate districts in the Enacted Map that would elect the Black-preferred candidate in that hypothetical case.

Figure 28

94. As the full chart above and the more focused chart below reveal, the illustrative districts are drawn to just barely exceed the 50 percent line.

Figure 29


All opinions in this report are subject to amendment in the event additional relevant information is received.

I declare under penalty of perjury that the foregoing is true and correct.
Executed this 28th day of July, 2023.


Douglas Johnson, Ph.D.


[^0]:    * The authors wish to thank Micah Altman, Pablo Beramendi, Kyle Dropp, David Epstein, Andrew Gelman, Tony Hill, Nolan McCarty, Michael McDonald, Boris Shor, John Sides, and Chris Warshaw for helpful comments and suggestions.

[^1]:    1 The Florida Senate provides information on all plans submitted to the Senate Committee on Reapportionment by Senators or the public at archive.flsenate.gov, accessed on September 20, 2012.

[^2]:    ${ }^{1}$ The 2023 Illustrative Senate map crosses the Houma-Thibodaux MSA border five times and the New Orleans - Metairle MSA border five times; the Baton Rouge MSA border six times; the Lafayette MSA border six times; the Delta "Key Multi-Parish Cultural Region" border six times; and the Acadiana "Key Multi-Parish Cultural Region" border ten times. The 2023 Illustrative House map crosses the Lafayette MSA border seven times; the Baton Rouge MSA border eight times, and the Acadiana "Key Multi-Parish Cultural Region" eight times.

[^3]:    ${ }^{1}$ The eight constant or 0.01 change compactness measures are Reock, Schwartzberg, alternate Schwartzberg, PolsbyPopper, Population Polygon, Area/Convex Hull/ Population Circle, and Ehrenburg.

[^4]:    ${ }^{2}$ Cut Edges, Perimeter, and Length-Width.
    ${ }^{3}$ HD5 5 in the 2022 House Illustrative Map is identical to HD50 in the Enacted Map.

[^5]:    ${ }^{4}$ Less-compact: Reock, Schwartzberg, Alternate Schwartzberg, Polsby-Popper, Area/Convex Hull, Ehrenburg, Length-Width and Cut Edges. More-compact (by the absolute minimum change possible of 0.01 in each case): Population Polygon and Population Circle, along with the Perimeter measure.
    ${ }^{5}$ Reock and Population Polygon
    ${ }^{6}$ The "cut edges" and Perimeter tests do not give useful individual district scores - they are only useful as whole-map measurements - so they are not included in this count.

[^6]:    ${ }^{7}$ Plaintiff's expert did not provide any MSA geographic file. I downloaded the national Core Based Statistical Areas shapefile from Data.gov and exported the Louisiana MSAs out of that file: https://catalog.data.gov/dataset/tiger-line-shapefile-2020-nation-u-s-core-based-statistical-areas-cbsa

[^7]:    ${ }^{8}$ Of the 1,727 total population in the highlighted area (which is removed from SD17 in the illustrative map), only $2.52 \%$ is AP Blk VAP.

[^8]:    ${ }^{9}$ As will be discussed below, with the new "differential privacy" introducing margins of error into the 2020 Census data, there is a good chance these carefully-fine-tuned districts are not actually over $50 \%$ AP Black VAP.

[^9]:    10 For the Census Bureau's explanation of differential privacy, see https://www.census.gov/programs-surveys/decennial-census/decade/2020/planning-management/process/disclosure-avoidance/differentialprivacy.html (last accessed May 29, 2023).
    ${ }^{11}$ One proof of this is the result of the $L U L A C$ case in Texas, where a Section 2 case ordered a Congressional District redrawn to elect a Latino-preferred (Democratic) candidate, and a Republican won the redrawn district.

